
Classification and Comparison of Architecture Evolution-Reuse Knowledge –

A Systematic Review

Aakash Ahmad, Pooyan Jamshidi, Claus Pahl

School of Computing, Dublin City University, Ireland

Lero – the Irish Software Engineering Research Centre

[ahmad.aakash || pooyan.jamshidi || claus.pahl]@computing.dcu.ie

ABSTRACT –– Context: Architecture-centric software evolution (ACSE) enables changes in system’s structure

and behaviour while maintaining a global view of the software to address evolution-centric trade-offs. The existing

research and practices for ACSE primarily focus on design-time evolution and runtime adaptations to

accommodate changing requirements in existing architectures.

Objectives: We aim to identify, taxonomically classify and systematically compare the existing research focused

on enabling or enhancing change reuse to support ACSE.

Method: We conducted a systematic literature review (SLR) of 32 qualitatively selected studies, and

taxonomically classified these studies based on solutions that enable i) empirical acquisition and ii) systematic

application of architecture evolution-reuse knowledge to guide ACSE.

Results: We identified six distinct research themes that support acquisition and application of architecture

evolution-reuse knowledge. We investigated: a) how evolution-reuse knowledge is defined, classified and

represented in the existing research to support ACSE, b) what are the existing methods, techniques, and solutions

to support: b) empirical acquisition and c) systematic application of architecture evolution-reuse knowledge.

Conclusions: Change patterns (34% of selected studies) represent a predominant solution, followed by evolution

styles (25%) and adaptation strategies and policies (22%) to enable application of reuse knowledge. Empirical

methods for acquisition of reuse knowledge represent 19% including pattern discovery, configuration analysis,

evolution and maintenance prediction techniques (approximately 6% each). A lack of focus on empirical

acquisition of reuse knowledge suggests the need of solutions with architecture change mining as a

complementary and integrated phase for architecture change execution.

KEYWORDS: Software Architecture, Architecture-Centric Software Evolution, Architecture Evolution-Reuse

Knowledge, Systematic Literature Review, Evidence-Based Study in Software Evolution, Research Synthesis.

1. INTRODUCTION

Modern software systems operate in a dynamic environment with frequent changes in stakeholder needs, business

and technical requirements and operating environments [1, 2]. These changing requirements trigger a continuous

evolution in existing software to prolong its productive life and economic value over time [1, 3]. During the

design, development, and evolution of software systems; the role of an architecture as a blueprint of software is

central to map the changes in requirements [33] and their implementations in source code [4]. Architecture

abstracts the implementation specific details of a software by modelling lines-of-code as architectural components

and their interconnections. As a result, an architecture model enables planning, modelling and executing both

design-time evolution [3, 8] and runtime adaptation [21, 27] – at higher abstraction levels such as software

components and connectors [3, 7, 16, 21].

Lehman’s law of continuing change [2] poses a challenge to research and practices that aim to support long-living

and continuously evolving architectures [6, 21, 34] under frequently varying requirements [16, 33]. The law states,

“systems must be continually adapted or they become progressively less satisfactory”. To support a continuous

change [2], existing solutions focused on exploiting reusable knowledge and expertise to address recurring

evolution [35] and adaptation [34] of software architectures. However, there has been no attempt to analyse the

existing research with a systematic study of active trends, limitations and future dimensions for evolution reuse

in software architectures [7, 13]. Furthermore, considering the growing demand for autonomic computing [5, 12]

or specifically self-adaptive architectures [6, 8, 34], we must distinguish the effects of reuse on design-time [3]

(also static or off-line) as well as on run-time (also dynamic adaptation or online) evolution [21].

Recently, we conducted a systematic review [7] to classify and compare state-of-the-research and practices that

enable architecture-centric software evolution (ACSE). An evaluation of this review suggested, “given the

increasing importance of reuse in ACSE, a dedicated effort is required to systematically classify and compare

available evidences that support reuse in evolution and adaptation to address architecture-based change

management”. Existing studies of architecture evolution research are focused on analysing [13], characterising

[16] and comparing [7, 8] ACSE approaches. In contrast to the existing reviews on architectural evolution [7, 8,

13, 16], our focus in this review is to classify and compare research that enables acquisition and application of

reuse knowledge to support ACSE.

In recent years, interest in the area of Architecture Knowledge (AK) research [29] has grown – in books [9],

research conferences [10], workshops [18] and dedicated body-of-knowledge [22]. Although Architecture

Evolution-Reuse Knowledge (AERK)1 could be classified as a sub-domain of architecture knowledge (AK), a

survey of architecture knowledge research [29] identifies architectural maintenance and evolution as an

independent concern. This allows us to conclude that in the general context of AK, there is a need to explicitly

classify and compare research on evolution knowledge to address recurring evolution in architectures [34, 35, 36].

Thus, we shift architectural knowledge application focus from the reuse of design-time artefacts to the reuse of

evolution-centric artefacts. Although, the progress of architecture evolution reuse research [35, 36, 37] is reflected

over more than a decade starting in 2001 [37]. However, we did not find any evidence to systematically synthesise

the collective impact of existing research focused on architecture evolution-reuse knowledge.

To carry out this review, we followed the guidelines in [17] to conduct a systematic literature review (SLR) of

evolution reuse in architectures. SLRs helps to identify, classify and synthesise a comparative overview of state-

of-the-art research and enable knowledge transfer among the research community. The objective of this research

is to systematically identify and classify the available evidence about evolution reuse in software architectures,

and provide a comparison of existing research to highlight its potential, limitations and future dimensions.

This SLR includes 32 qualitatively selected studies that are classified as research that supports acquisition or

application of reuse knowledge to support ACSE. To assess the contribution of each study, we provide a

comparison among all the studies and synthesise our results using 12 comparison attributes. The comparison

attributes are derived and refined by following the guidelines in [11, 13, 16], our experience with SLRs [7, 52], a

qualitative assessment of the studies and an external validation of the review protocol.

In Figure 1, a classification of existing literature highlights primary contributions of this paper, focussing on:

 How architecture evolution-reuse knowledge is defined, classified and expressed in existing research to

support ACSE. The contribution is a taxonomic classification scheme to identify and categorise research with

overlapping and disjoint themes on evolution reuse.

 What existing methods and techniques enable or enhance evolution reuse in software architectures. We

classify and compare the state-of-research and analyse the research impact based on 26 (81%) of

qualitatively assessed studies.

 What existing methods and techniques enable an empirical acquisition of evolution-reuse knowledge. We

analyse the role of existing methodologies to discover and share evolution reuse based on 6 (19%) selected

studies.

Figure 1. An Overview of the Contribution of Systematic Review.

We identified three distinct research themes that enable reuse in architecture evolution. Change patterns [33, 38],

as the most prominent solution address corrective, perfective and adaptive changes [16] for design-time evolution

[3, 35] as well as runtime adaptations [21, 34]. In contrast, evolution styles [35, 36] only support design-time

evolution as corrective and perfective type changes [16], while adaptation strategies and policies [34, 39] enable

self-adaptation in running architectures. In general, we observed non-complementary and solution-specific

representation and expression of architecture evolution-reuse knowledge. In the knowledge acquisition context,

we identified three research themes – pattern discovery [40, 41], configuration analysis [37, 42] and evolution

and maintenance prediction [43, 44]. We observed a lack of research on empirical approaches to analyse and

discover knowledge [41, 43, 44] that can be shared and reused to guide ACSE.

Based on a taxonomic classification of studies, we provide a definition of architecture evolution-reuse knowledge.

We propose a framework, REVOLVE, that supports architecture change mining (for reuse knowledge acquisition)

as a complementary and integrated phase to architecture change execution (for reuse knowledge application).

1 Please note that we use the terms “Architecture-Evolution Reuse Knowledge” and “Evolution-Reuse Knowledge” and

“Reuse Knowledge” interchangeably – all referring to the same concept.

This framework guides the systematic review. The literature base we provide in [25] is itself subject to a

continuous evolution (adding newly published studies over time) and helps in knowledge sharing with ACSE

community [26, 31]. In particular, the results of this SLR are beneficial for:

 Researchers in software engineering and software architecture in particular, who require an identification of

relevant studies. A systematic presentation of research provides a foundational body of knowledge to develop

theory and solutions, analyse research implications and to establish future dimensions.

 Practitioners interested in understanding the methods and solutions with formalism and tool support to model,

analyse, and implement evolution reuse in software architectures.

In general, this SLR provides a literature base to identify emerging trends or formulating hypotheses as a

complement to existing studies [7, 8, 13, 16, 29]. The collected data in [25] – as an online literature base – provides

a detailed insight and objective interpretation of the results.

The remainder of this paper is organised as follows. Section 2 presents background details and related research.

Section 3 describes details about the research methodology we followed to plan, conduct and document the SLR.

Section 4 highlights the results based on a taxonomical classification of the literature. Sections 5 and 6 present

two separate concerns – application and acquisition of reuse knowledge respectively. Research implications and

validity threats are discussed in Section 7 with conclusions in Section 8.

2. BACKGROUND

Architectural maintenance [43], evolution [3, 36] and adaptation [34] represent different views of change

implementation determined by the types, means, times and frequency of changes in software architectures. We

highlight existing secondary studies in the context of ACSE that justifies the needs and scope of this review. In

contrast to the existing systematic reviews on ACSE [7, 8, 13, 16, 29], this SLR specifically focuses on a

taxonomical classification and comparison of research that supports evolution reuse in architectures.

2.1 Architecture-Centric Software Maintenance and Evolution

The implications of software maintenance and evolution in the context of system life cycle became obvious with

the emergence of Lehman’s laws of software evolution [2] and the ISO/IEC 14764 standard for software

maintenance [51]. Since then, maintenance and evolution represent a critical activity in system life cycle to

prolong the productive life, economic value and operational reliability of existing software [1, 2, 11]. However,

beyond these abstract laws and theoretical standardisations, a critical decision is to select an appropriate

abstraction to implement changes in software [3, 35, 36]. In contrast to source-code refactoring [4], architecture

models – as topological configurations of components and their connectors – represent an appropriate abstraction

of software to enable maintenance and evolution in a controllable fashion [3, 7, 13]. The software engineering

literature in general and theory of software architectures in particular treated maintenance and evolution as

virtually synonymous, interchangeable concepts [1, 27]. However, in this review; we must maintain a distinction

between the two based on the time of change implementation. More specifically, architectural maintenance refers

to post-deployment changes implemented as static or off-line modifications of architecture. In contrast,

architectural evolution refers to consequential changes in architectures usually implemented as dynamic or online

modifications of architecture. Furthermore, in order to consider the needs for autonomic computing [5] and self-

adaptive architectures [6, 8, 21], we must distinguish between design-time maintenance [43, 44] and run-time

evolution or adaptations [34, 39]. In the taxonomy of software change [11], the factors influencing evolution are:
 Time of Evolution: To operate in a dynamic and open world [12], modern software systems need to evolve

their architecture while maintaining system execution. This highlights a critical factor as a change (either

design-time or run-time evolution) that must be implemented in a timely and consistent fashion [34].

 Frequency of Change: It determines the rate at which software must evolve in order to keep its utility [2].

Therefore, evolution-reuse knowledge could provide assistance to effectively address frequent (business and

technical) change cycles in architecture of software systems.

 Evolution Reuse: To support a frequent evolution and adaptation in a timely fashion, solutions must follow

‘build-once, use-often’ philosophy to support reuse of recurring architectural changes [33, 42]. In recent

years, solution for architectural evolution promoted evolution styles [35, 36] to enable change reuse.

However, systematic reviews in ACSE [7, 13, 16, 29] suggest the needs for solutions that enable a continuous

empirical discovery of reuse knowledge that can be shared and reused to enable or enhance ACSE.

2.2 Secondary Studies on Software Architecture Evolution

In recent years, the SLRs on ACSE have focused on architecture evolution analysis [13], characterisation of

architectural changes [16], and classification and comparison of architecture evolution research [7, 8]. We

summarise the existing SLRs [13, 16, 7] (in Section 2.2.1) and survey-based studies [8] (in Section 2.2.2) to justify

the needs and scope for this review (in Section 2.2.3).

2.2.1 Systematic Literature Reviews of Software Architecture Evolution

A. Review of Architecture Change Characterisation – A systematic review (Williams et al. [16] in Table 1)

investigated a total of 130 peer-reviewed studies – published from 1976 to 2008 – to characterise design-time and

runtime evolution as corrective, perfective, adaptive and preventive type changes in architectures. The SLR [16]

proposed a comprehensive change characterisation scheme to systematically classify different approaches on how

to distinguish and characterise software architecture changes and change impact analysis. The scheme works as a

decision tree to provide support for system developers to assess the impact and feasibility of desired changes.

B. Review of Architecture Evolution Analysis – A systematic review (Breivold et al. [13] in Table 1) investigates

82 peer-reviewed studies – published from 1992 to 2012 – focused on design-time evolution of software

architectures. The SLR in [13] is focused on analysing the evolvability of a software architecture. The primary

objective of this review is to provide an overview of existing approaches for analysing and improving software

architecture evolution and to identify critical factors influencing software architecture evolvability.

C. Classification and Comparison of ACSE Research –We conducted a systematic review (Jamshidi et al. [7] in

Table 1) of 60 peer-reviewed studies – published from 1995 to 2011– focused on design-time and runtime

evolution of software architectures. In the SLR [7], we qualitatively investigated the state-of-the-art to classify

and compare of formalisms and tool support that enable or enhance software architecture evolution.

Table 1. A Summary of secondary studies on ACSE.

Study

Type

Study

Reference

Study

Focus

Year of

Publication

Time

Constraints

Total

Reviewed

Years of

Studies

Systematic
Literature
Review(s)

Williams et al. [16] Change Characterisation. 2010 Design-time, Runtime 130 1976-2008

Breivold et al. [13] Evolvability Analysis. 2011 Design-time 82 1992-2010

Jamshidi et al. [7] Classification and Comparison 2013 Design-time, Runtime 60 1995-2011

Ahmad et al. [25] Reuse-Driven Evolution N/A Design-time, Runtime 32 1999-2012

Surveys Bradbury et al. [8] Dynamic Evolution 2004 Runtime 14 1992-2002

Mapping
Studies

Li et al. [29] Architecture Knowledge 2013 N/A 55 2000-2011

2.2.2 Survey-based and Taxonomic Studies on Software Architecture Evolution

A. Survey of Self-Management in Dynamic Software – A survey-based study (Bradbury et al. [8] in Table 1)

reviewed 14 studies – published from 1992 to 2002 – focused on runtime evolution of software architectures. The

survey [8] synthesises formal specifications for dynamic adaptation of software architectures. The authors present

a set of classification criteria for the comparison of dynamic software architectures based on the types, processes

and infrastructure for dynamic adaptation of architectures.

B. Mapping Study on Knowledge-based Approaches in Software Architectures – A mapping study (Li et al. [29]

in Table 1) provides a systematic mapping of research on knowledge-based approaches in software architecture

according to 55 peer reviewed studies – published from 2000 to 2011. The mapping study [29] identifies gaps in

the application of knowledge-based approaches to five architecting activities that include architectural analysis,

synthesis, evaluation, implementation, along with maintenance and evolution. The study shows an increasing

interest in the application of knowledge-based approaches in software architecture with only 5/55 studies on

architectural knowledge for maintenance and evolution.

C. Industrial Survey and Taxonomic Study on Architecture Evolution – Stammel et al. [26] provide an overview

of various approaches evaluated based on real-world industrial scenarios on the evolution of sustainable systems.

The study targets practitioners because it is a general and live document based on a growing number of industrial

experience reports. Slyngstad et al. [28] perform a survey among software architects from software industry in

order to capture a more complete picture of risk and management issues in software architecture evolution.

Although not directly related to the ACSE, some taxonomies of software change [11, 27] try to answer the

questions like why, how, what, when and where aspects of software evolution that have also acted as a guideline

for us to define the comparison attributes (detailed in Section 3).

2.3 A Systematic Review of Architecture Evolution-Reuse Knowledge

The review in this paper (Ahmad et al. [25] in Table 1) is focused on a systematic identification, classification

and comparison of the existing research that supports application and acquisition of reuse knowledge to support

ACSE. In contrast to the mapping study on AK [26] that identifies only 5 studies on design-time maintenance and

evolution, our SLR is comprised of 32 studies published from 1999 to 2011 and is focused on both design-time

and runtime evolution. As presented in Table 1, the proposed SLR complements the existing body of secondary

studies on ACSE [8, 13, 16] and extends our previous review [7]. Given the importance of reuse in ACSE [13], it

exclusively focuses on classification and comparison of evolution-reuse knowledge.

In order to ensure that a similar review or any study has not already been performed, we searched the Compendex,

IEEE Xplore, ACM and Google Scholar digital libraries (on 23/10/2012). None of the retrieved publications was

related to any of our research questions detailed in Section 3. Considering the importance of reuse in ACSE [7,

13] and the relative maturity of architecture knowledge (AK) approaches [9, 22], a consolidation of existing

evidence about application and acquisition of reuse knowledge to support ACSE is timely.

3. RESEARCH METHODOLOGY

In contrast to a non-structured review process, a systematic literature review [15, 17] reduces bias by following a

precise and rigorous sequence of methodological steps to investigate the state-of-research. More specifically, an

SLR relies on a well-defined and evaluated review protocol to extract, analyse and document the results as

illustrated in Figure 2. We adopted the guidelines in [17] with a three-step review process that includes: Planning,

Conducting and Documenting the SLR. The review is complemented by evaluation of the outcome of each step,

as illustrated in Figure 2. We also provide a taxonomical classification and comparison of the reviewed studies.

A taxonomical classification is the foundation for comparative analysis of studies based on our defined

comparison attributes (Section 3.5) that are subject to external evaluation prior to results reporting in [25].

Figure 2. Systematic Review Process for Classification and Comparison of Reuse Knowledge in ACSE.

3.1 Definition and Evaluation of the Protocol for Systematic Review

According to the guidelines in [17], the review protocol drives the planning, conducting and documenting

phases of the systematic review as illustrated in Figure 2. The protocol definition is provided in the reminder of

Section 3. More specifically, protocol for SLR includes: i) identification of the needs and objectives for SLR

(Section 3.2), ii) definition of search strategies to identify, include and exclude and qualitatively analyse the

relevant literature (Section 3.3, Section 3.4), iii) data extraction and results synthesis (Section 3.5), and iv) results

classification (Section 3.6). We developed the review protocol by following the guidelines in [14, 15, 17] and our

experience with conducting the systematic review [7, 52]. Additional details about the review protocol are

provided in [25].

As suggested by [7] and [17], we externally evaluated the protocol before its execution. We asked two external

experts for feedback, who had experience in conducting SLRs in an area that overlaps with software architecture

research (see acknowledgement section). The feedback made by the expert resulted in a refined protocol. We also

performed a pilot study of the systematic review with 15 (approximately 50%) of the included studies. The

objective for conducting a pilot study was to first reduce the bias for a) identification of primary studies b)

extraction of data from these studies and c) synthesising the results of review. Based on the external review of

the protocol, we expanded the review scope, improved search strategies and refined the inclusion/exclusion

criteria during the pilot studies (see Section 3.3 for details).

3.2 Planning the Review

The review plan consists of three steps as i) identifying the needs for SLR, ii) specifying the research questions

and iii) defining and evaluating the review protocol, as illustrated in Figure 2.

3.2.1 Identify the needs for SLR

The needs for SLR have been identified in [7] and its contribution already justified in Section 2. This SLR

complements the existing reviews on ACSE [7, 8, 13, 16, 29] to investigate the state-of-research for application

and acquisition of architecture evolution-reuse knowledge (cf. Table 1). Although the progress of research on

architecture evolution reuse [35, 36, 37] is reflected over more than a decade [37], we did not find any evidence

to systematically synthesise the collective impact of existing research on reuse knowledge (Section 2.3).

Therefore, in this SLR, we aim to classify and compare existing research, identify the research potential, its

limitations and outline future dimensions for methods, techniques and solution that enable evolution reuse in

software architectures. In addition, the research questions help us to a) outline the scope and contributions of SLR

and b) defining and evaluating the review protocol to conduct the SLR.

3.2.2 Specify the Research Questions

The research questions are based on our motivation to conduct the SLR, i.e. the answers provide us with an

evidence-based overview of the definition, application and acquisition of reuse knowledge to support ACSE

methods and techniques. We define three research questions that represent the foundation for deriving the search

strategy for literature extraction. The objective outlines the primary intent of investigation for each question. In

addition, a comparative analysis allows us to analyse the collective impact of research, represented in terms of

comparison attributes (in Section 3.5, Table 5).

 Research Question 1 – How evolution-reuse knowledge is defined, classified and expressed in existing

literature to enable architecture-based software change management?

Objective – To understand the existing classification and representation of architecture evolution-reuse

knowledge that provides a foundation for a detailed comparison of solutions to enable ACSE.

 Research Question 2 – What are the existing methodologies and techniques that support application of

reuse knowledge to evolve software architectures?

Objective – To identify and compare existing solutions that support an explicit reuse of change

implementation mechanisms to enable design-time evolution and run-time adaptations in architectures.

 Research Question 3 – What empirical approaches are employed to discover evolution-reuse

knowledge?

Objective – To investigate and compare the available support for empirical acquisition/discovery of reuse

knowledge and expertise that can be shared to guide architecture evolution.

3.3 Conducting the Review

To conduct the review, we follow a three step process as i) searching the studies for review, ii) selection and

qualitative assessment of studies, and iii) extraction and synthesis of data from studies, as illustrated in Figure 2.

3.3.1 Selection of Primary Studies for Review

The search terms used to identify primary studies were developed using suggestions in [15] and guided by the

research questions (cf. Section 3.2). Our search process comprises of primary and secondary search.

 Primary Search is a five-step process to identify and retrieve the relevant literature. The summary of each

step involved in primary search is presented in Table 2.

 Secondary Search includes a) review of references/bibliography section in the selected primary studies to

find other relevant articles, b) review of citations to the selected primary studies to find any relevant articles,

also known as a backward pass [15, 17] and c) identify and contact authors of selected primary studies for

extended versions of the research, if required. The secondary search did not lead to identification of any

relevant studies. The secondary search and study selection was performed iteratively until no new studies

were found.

The research question resulted in a composition of search string applied to six databases as illustrated in Figure 3.

We extracted published peer-reviewed literature from years 1999 to 2012 (inclusive). The year 1999 was chosen

as the preliminary search found no earlier results related to any of the research questions with 1550 manuscripts

extracted. Because we used our primary search criteria on title and abstract, the results provided a relatively high

number of irrelevant studies, which were further refined with secondary search.

Table 2. A Summary of the Steps in the Literature Search.

Search Step Description

Step 1 - Derive Search Strings From RQs (cf. Table 1) in Section 3.1

Step 2 - Consider Synonyms

and Alternatives

Consider the alternative spellings and synonyms while composing search strings as:

- Evolution as [change, restructure, update, extension, , adaptation, reconfiguration, migration,
transformation, modification]

- Methods and Techniques to enable Reuse as [customise, pattern, plan, styles, framework, strategies].

- Empirical Methods for Discovery [identification, extraction, tracing, mining, discovery, acquisition]

- Architecture or Software Architecture [we only consider the term software architecture as only using
architecture resulted in a large amount of irrelevant studies focusing on Hardware, Network or System
Architecture etc.]

Step 3 - Search-term
Combinations

Boolean OR to incorporate alternative spellings and synonyms

Boolean AND to link the major terms. Number of unique search string depends on a multiplier: ([AND]
clause) x (<OR>-keywords)

Step 4 - Search String Division
Dividing strings so that they could be applied to different databases.

Assigning unique IDs to every (sub-) search string and customising them for all selected resources.

Step 5 - Reference Management Citations with Zotero.

Note that we have decomposed the search string for illustrative reasons in Figure 3. To search the primary studies

the sub-strings in Figure 3 were combined and represented as a single search string.

Figure 3. Summary of the Primary Search Process.

3.4 Selection and Qualitative Assessment of Primary Studies

The study selection comprises of a four-step process that includes, screening, initial selection, final selection and

qualitative assessment as presented in Table 3 and Table 4. In Table 4, the qualitative assessment helps us to

include/exclude studies and rank the selected studies based on their quality score in the Appendix.

3.4.1 Screening of Identified Literature

An initial screening is performed for all the studies based on four criteria as presented in Table 3. The screening

ensures that each of the selected study represents a i) peer-reviewed research and is ii) written in English language

and is iii) not a secondary study and iv) not a book. If the answer to all of these four criteria is [YES], the study

is included for initial selection. Otherwise, if the answer to any of the four criteria is [NO], the study is excluded.

3.4.2 Initial Selection

This process comprises screening of titles and abstracts of the potential primary studies. For almost 35% of

studies, no decision could be made just on title and abstract, as these papers did not make a clear distinction

between an explicit representation and application (RQ1 and RQ2) or acquisition (RQ1 and RQ3) of reuse

knowledge. During initial selection, the decision to exclude [NO] or proceeding to the final selection [YES] was

based on an examination of the full text for each study.

3.4.3 Final Selection

This process is based on a brief validation of the studies, the use of formalisms and tool support and details of the

experimental setup. After performing this step, 34 studies were selected. During the secondary search process,

references and citations for the 34 selected studies were also reviewed, but this did not lead to the inclusion of any

other relevant studies. As a result, 34 studies were included for qualitative assessment.

Table 3. Summary of the Study Selection Process (without qualitative assessment).

Step I - Screening

Is the study in English language? YES NO

Is the study a scientific peer-reviewed published research (no white papers or technical reports)? YES NO

Is the study not a secondary study? YES NO

Is the study not a book or a book chapter? YES NO

If [YES] to all four criteria then go to Step II, otherwise exclude study

Step II – Initial Selection

RQ1,

RQ2

Does the study presents a method, technique or a
solution for application of evolution reuse knowledge?

If [YES] go to Step III, otherwise exclude study

RQ2,

RQ3

Does the study presents a method, technique or a solution
for an empirical acquisition of evolution reuse knowledge?

If [YES] go to Step III, otherwise exclude study

Step III – Final Selection

RQ1,

RQ2

A. Are evaluations for application of reuse knowledge
and architecture evolution are provided?

RQ1,

RQ2

A. Are the Source(s) of reuse knowledge and its
discovery/acquisition presented?

B. Are Formalism and tool support for reuse
knowledge application provided?

B. Are the Details about the experimental setup of reuse
knowledge discovery/acquisition provided?

If [YES] to both A and B, then include study, otherwise exclude study

3.4.4 Qualitative Assessment of Included Studies

For the 34 included studies, we primarily focused on the technical rigor of content presented in the study. We

based our qualitative assessment on two factors as General Assessment (G) and Specific Assessment (S), as

summarised in Table 4. Additional details about the quality checklist are provided in [25]. Quality scores provided

us with a numerical quantification to rank the selected studies in the Appendix.

Table 4. Summary of Quality Assessment Checklist.

General Items for Quality Assessment (G)

Score for General Items ∑ 𝟓
𝑮=𝟏 = Yes = 1 Partially = 0.5 No = 0

G1 Are problem definition and motivation of the study clearly presented?

G2 Is the research environment in which the study was carried out properly explained?

G3 Are research methodology and its organisation clearly stated?

G4 Are the contributions of the in-line with presented results?

G5 Are the insights and lessons learnt from the study explicitly mentioned?

Specific Items for Quality Assessment (S)

 Score for Specific Items ∑ 𝟓
𝐒=𝟏 = Yes = 1 Partially = 0.5 No = 0

S1 Is the research clearly focused on application or acquisition of evolution reuse?

S2 Are the details about related research clearly addressing evolution reuse in architectures?

S3 Is the research validation clearly illustrates application or acquisition of evolution reuse?

S4 Are the results clearly validated in a real (industrial case study) evaluation context?

S5 Are limitations and future implications for architecture evolution reuse clearly positioned?

Based on the quality assessment checklist in Table 4, the quality ranking formula is given as follows. G represents

5 factors as general assessment criteria from Table 4, providing a maximum score of 1 (25% weight), S represents

a total of 5 factors as specific items providing a maximum score of 3. S is weighted as 3 times more than G (75%

weight) as specific contributions of a study are more important than general factors for assessment. Based on a

consensus among the researchers and suggestions from the external reviewers, the criteria for qualitative

assessment maximum score was G + S = 4, where a 3-4 score represented quality papers, a score less than 3 and

greater than or equal to 1.5 was acceptable and a score less than 1.5 resulted in study exclusion.

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = [
∑ 5

𝐺=1

5
+ (

∑ 5
𝑆=1

5
× 3)]

Based on the qualitative assessment of 34 studies, we excluded two studies to finally select 32 studies for the

review. Two studies were excluded because their quality scored was less than 1.5 according to the criteria in Table

4. The selected studies are listed with title, authors, quality score and citation count in the Appendix. Please note

that quality ranking is an internal metric only that helps us to choose most related studies and does not reflect any

comparison or objective interpretation of selected studies.

3.5 Data Extraction and Synthesis

In order to record the extracted data from the selected studies, we followed [15, 17] and designed a structured

format as presented in Table 5. The format in Table 5 records the data as generic and documentation specific items

and comparison attributes for a collective and comparative analysis of research to answer RQ1 – RQ3. The data

was extracted by locating evidence for each item in the selected studies. Self-explanatory comparison attributes

(CA1 – CA12 in Table 5) are the smallest unit of data that we extracted from the literature for comparison purposes

and provided for external evaluation. These attributes provide the base for follow-up syntheses, i.e., mainly

classification and comparison of claims and supporting evidence of evolution reuse detailed in the paper. Instead

of reading through detailed results (Section 4, 5, 6), external reviewers examined a summary of results provided

in [25] to evaluate the protocol and suggestions about documentation of SLR results.

Table 5. Extracted Data and Comparison Attributes.

ID Data Item Aim

Generic and Documentation Specific Data

1 Study ID Unique id of study

2

Bibliography

a) List of Author(s)

b) Year of Publication

c) Source of Publication

 Book Chapter Journal Conference Workshop

3 Focus of Study Theme, Concepts, Motivation clearly presented: Yes No

4 Research Method Design and Evaluation Case Study Survey Experiments Other

5 Application Context Context and application domain:

Academic Industrial Both Other

6 Limitations Constraints, Limitations, Future research clearly stated:

Yes No

7 Related Research Positioning and Novelty of the research

8 Future Dimensions Implications on Future Research or Ideas clearly stated:

Yes No

Comparison Attributes for RQ1 and RQ2 (derived from [7,11,13, 16])

CA1 Knowledge Support Solutions to support reuse-knowledge in ACSE.

CA2 Type of Change Adaptive Perfective Corrective Preventive

CA3 Time of Change Design-time Runtime

CA4 Means of Change Type of Operational Support to implement change

CA5 Formalism Support Application of a specific formal approaches in modeling, analysing and executing
evolution

CA6 Arch. Descriptions UML ADL Graph Models State Transition Other

Comparison Attributes for RQ1 and RQ3 (derived from [7,11,13, 16])

CA7 Knowledge Source The type of collection – real data set for change instances

CA8 Type of Analysis Type of analysis to discover evolutionary knowledge

CA9 Type of Formalism Type of formalised methods and for empirical discovery

CA10 Time of Discovery Run-time Extraction Off-line Mining Other

Comparison Attributes for both RQ1, RQ2 and RQ3 (derived from [7,11,13, 16])

CA11 Tool Support Automation support for reuse-driven evolution. Yes No

CA12 Evaluation Method Design and Evaluation Case Study Survey Experiments Other

3.3 Classifying the Results

To discuss the results, first we need to provide a conceptual framework to systematically present the existing

literature and to identify the required steps that enable ACSE. With the help of a framework we can organise the

reviewed studies in terms of framework processes and activities that (a process-centric view to) support

application and acquisition of evolution-reuse knowledge. Section 3.3.1 highlights some established models and

frameworks for architectural evolution and adaptation, while Section 3.3.2 presents the proposed framework to

consolidate the existing research on application and acquisition of architecture evolution-reuse knowledge.

3.3.1 Models and Frameworks for Architectural Migration and Evolution

We introduce some established reference models and frameworks based on their impact and relevance for design-

time evolution [3] and runtime adaptations of software architectures [21]. The selected models and frameworks

are acknowledged through high citations in the research community, provide a detailed documentation and cover

a process-based view for design-time evolution as well runtime adaptations detailed as:

 Horseshoe Model for Architectural Extraction and Transformation

The horseshoe model [45] (proposed by Software Engineering Institute in 1999) represents one of the

classical approaches for architecture-based reverse and forward engineering. The Horseshoe model

follows a three-step process including architectural extraction, architectural transformation and

architecture-based development. In recent years, a number of solutions have extended the classical

horseshoe model that include i) SOA Migration Horseshoe [46], ii) SOA Migration Framework (SOA-

MF) [47], and iii) Architecture Driven Modernisation model [32]. The SOA Migration Horseshoe [46]

and SOA Migration Framework [47] support migration of a legacy software to service-oriented

architectures. In contrast, the Architecture Driven Modernisation (ADM) [32] model is a more generic

model that supports a process-based approach to architecture-based evolution. In Section 3.3.2, we

further explain how ADM model helps us to develop the proposed framework to support reuse in ACSE.

 IBM Autonomic Framework

The IBM autonomic framework provides a number of solutions to support autonomic computing [5, 12]

by means of dynamic and self-adaptive architectures [6, 8]. Two of the well-established autonomic

frameworks are i) Software Tuning Panels for Autonomic Control (STAC) [48] and Monitor, Analyse,

Plan, Execute Knowledge (MAPE-K) framework [5]. STAC aims to automatically re-architecture the

(system source code) to facilitate autonomic adaptation of a software. In contrast, the MAPE-K model

supports application of adaptation knowledge to execute dynamic adaptation of a software and ultimately

its underlying architecture. In Section 3.3.2, we further explain how MAPE-K framework helps us to

identify and develop the framework to highlight research on runtime adaptations of architectures.

3.3.2 A Framework to Classify Research on Acquisition and Application of Evolution Reuse Knowledge

We derive our proposed framework from two well-known reference models: the OMG ADM method [32] and the

IBM MAPE-K reference model [5], presented in Figure 4. ADM represents architectural modernisation and

evolution at design-time [35, 36], while MAPE-K loop supports runtime adaptations [34, 39]. Using established

reference models and practices validates the adequacy of our classification and comparison framework. In the

following, we briefly present the details for the ADM and MAPE-K models as a basis for our proposed framework

to organise research on reuse knowledge. Additional details about the proposed framework provided in [49].

The ADM horseshoe model consists of three architectural views: business architecture, application and data

architecture, and technical architecture, see Figure 4A. The existing system with a three-layer architecture is on

left, while the target system with evolved architectural view on right. The transformation from legacy to target

represents the path of evolution.

Figure 4. Reference Models for Knowledge in Architecture Evolution and Adaptation.

Therefore, the ADM method involves transformation of the existing legacy architectures in an incremental fashion

to the target architectures. The evolution involves the transformation of legacy (procedural) code to new (object-

oriented) code. In summary, transformation at any architectural layer relies on three elements:

 Knowledge discovery of the legacy system,

 Definition of target architecture, and

 Transformation steps for source to target evolution.

The MAPE-K reference framework describes dynamic adaptation process of software. The MAPE-K reference

model in Figure 4B is used to communicate the architectural aspects of autonomic systems. Although MAPE-K

does not entirely focus on architecture of dynamic software, it provides a reference model to monitor, analyse,

plan and execute run-time adaptation of architectures [8, 34, 39]. The MAPE-K reference model relies on:

 Monitoring monitors the system and measure attributes related to architectural configurations and properties

for possible run-time reconfigurations of architecture.

 Analysing analyses the measured run-time data and detects violations of the requirements.

 Planning generates a change plan for architectural reconfigurations.

 Execute enacts structural and behavioural changes to the running system based on the actions recommended

by the plan function

 Knowledge includes shared data such as topology information, metrics and policies for dynamic adaptation.

After discussing the ADM and MAPE-K reference frameworks, we propose an integrated framework called

REVOLVE presented in Figure 5. The reviewed studies are organised (in Section 4) according to the methods

and techniques for evolution history analysis (i.e. change mining for reuse knowledge acquisition) and change

implementation (i.e. change execution for reuse knowledge application), which form the two core activities of

REVOLVE in Figure 5, each covered by ADM and MAPE-K separately. Additional technical details about the

proposed REVOLVE framework in terms of framework activities and framework process are provided in [49].

Figure 5. REVOLVE – An Integrated View of Architecture Change Mining and Change Execution.

The concepts and methods used in ADM and MAPE-K reference models can be reused or possibly extended to

develop the processes and activities in REVOLVE framework. Method engineering [50] enables us to reuse the

existing concepts from existing methods (frameworks, models or solutions) to develop new methods by reusing

existing methodologies with reduced efforts and time to derive or develop new solutions. More specifically, during

architecture change mining process in the REVOLVE framework, we exploit the knowledge discovery concepts

from ADM [32] model for acquisition of evolutionary knowledge from architecture evolution histories. Moreover,

the discovered knowledge can be shared and reused as in the MAPE-K framework [5] to analyse, plan and execute

architectural adaptation.

The REVOLVE framework in Figure 5 along with the presentation of its processes, activities and their

corresponding studies in Table 6 is beneficial for ACSE researchers and practitioners. The framework assist ACSE

researchers with quick identification of relevant studies. A systematic presentation of state-of-the-research

provides a foundational body of knowledge to develop theory and solutions, analyse research implications and to

establish future dimensions. In addition, the framework can be beneficial for practitioners interested in

understanding the methods and solutions with formalism and tool support to model, analyse, and implement

evolution reuse in software architectures. The framework provides a process-centric view of a collection of

existing solutions for acquisition and application of reuse knowledge to evolve software architectures.

We conceptualised the logical relationship between individual research elements as a framework in Figure 5. It

defines an iterative mechanism to continuously discover reuse knowledge that can be shared and reused to guide

ACSE in a semi-automated way. The framework provides an aggregated representation of existing literature. In

Section 4, we further discuss the framework processes and activities from Figure 5. The results highlight a lack

of solutions that integrate the concept of empirical acquisition of reuse knowledge to guide ACSE with reuse

knowledge application. Beyond this review, this framework can assist researchers and practitioners to objectively

identify and interpret potential and limitations in state-of-the-art research [25].

4. RESULTS CATEGORISATION AND REUSE KNOWLEDGE TAXONOMY

Our discussion of results uses the REVOLVE framework for reuse knowledge from Section 3.3. Central to this

framework are a set of processes, activities and repositories (in Table 6, which complements Figure 6). The

processes encompass architecture change mining as a complementary and integrated phase to change execution –

a concept partially realised in only one of the reviewed studies [S7]2. We also present the relative distribution of

the five activities of the REVOLVE framework. Figure 6 highlights a significant portion (53%) of studies

focussing on methods and techniques for application of evolution-reuse knowledge. On the other hand, only 9%

of studies focus on analysing reuse knowledge. Please note that some of the studies cover different activities of

the REVOLVE framework. For example, studies [S9, S10, S17, S13] both represent research on identifying and

sharing reuse knowledge. Similarly, studies [S7, S29, S31] represent capturing and identifying reuse knowledge.

Table 6. Processes, Activities and Repositories of Framework to Represent Reviewed Studies.

 Process Activity Repository Research Evidences

1
Architecture

Change Mining

Identify Evolution Reuse Knowledge Evolution History [S7, S9, S10, S17, S29, S31]

Share Evolution Reuse Knowledge Knowledge Collection [S8, S9, S10, S17, S31]

Analyse Evolution Reuse Knowledge Knowledge Collection [S9, S10, S17, S29]

2

Architecture
Change Execution

Reuse Evolution Knowledge Knowledge Collection
[S1, S2, S3, S4, S5, S6, S8, S11, S12, S13,
S14, S15, S16, S18, S19, S20, S21, S22, S23,
S24, S25, S26, S27, S28, 30, S32]

Capture Evolution Reuse Knowledge Evolution History [S7, S29, S31]

Table 6 summarises the involved processes, their corresponding activities and associated repositories as well as

identified studies - concrete research evidence of the claims. In Figure 5, it is vital to highlight the complementary

role of tool support and formalism to support reuse in ACSE. In recent years, there is a growing need for tool and

automation support to model and execute architecture evolution in a (semi-) automated way [30, 35].

Figure 6. Percentage Distribution of Studies based on REVOLVE Framework Activities.

For example, in Figure 5, to support automation of the activity for reuse knowledge identification, the solution

must provide a tool or a prototype to analyse architecture evolution histories that contain evolutionary data of

significant size and complexity [S29, S31]. A lack of tool support results in an increase in the complexity of

architecture evolution process, process scalability (changes from small to large systems), and error proneness in

change implementation.

2 The notation [Sn] (n is a number) represents a reference to studies included in the SLR which are listed in the

Appendix. The notation also maintains a distinction between the bibliography and list of selected for SLR.

21%

11%

9%
53%

6%
Capture Evolution Reuse Knowledge

Identify Evolution Reuse Knowledge

Share Evolution Reuse Knowledge

Analyse Evolution Reuse Knowledge

Reuse Evolution Knowledge

4.1 A Taxonomical Classification of Architecture Evolution-Reuse Knowledge

The taxonomy defines a systematic identification, naming and organisation of reuse approaches into groups that

share, overlap or are distinguished by various attributes. A taxonomical classification provides an insight into the

commonality or distinction of research themes as denoted in Figure 7. We explicitly discuss three distinct

classification types of reuse knowledge research as generic and thematic. A solution-specific classification is

introduced in Sections 5 and 6 when we provide a comparison of existing research.

A. Generic Classification is derived based on a review of studies and our experience with previous SLRs [7,

52] that helped us to refine classification attributes based on studies for analysing the role of reuse knowledge

in ACSE. In Figure 7, the literature is classified into methods and techniques that enable change reuse in

architectural evolution (26 studies, i.e., 81%) and empirical acquisition or discovery (6 studies, i.e., 19%) of

reuse knowledge and expertise by exploiting evolution histories. Dotted rectangles in Figure 7 represent the

comparison attributes extracted by full-text investigation of the selected studies, as explained in Table 5 – data

extraction and synthesis.

B. Thematic Classification provides details about the predominant research themes based on time and type of

evolution. In the following, we focus on taxonomy of identified research themes based on a mapping of activities

in REVOLVE framework to identified research themes in Figure 7.

Figure 7. A Taxonomical Classification of Architecture Evolution Reuse Knowledge.

1. Evolution Styles [S1, S5, S8, S11, S13, S21, S23] are inspired by a conventional concept of architecture

styles that represent a reusable vocabulary of architectural elements (component or connectors) and a set of

constraints on them to express a style [20]. Evolution styles focus on defining, classifying, representing and

reusing frequent evolution plans [S1, S11] and architecture change expertise [S5, S8, S13, S21]. Style-based

approaches represent 22% of the reviewed studies addressing corrective and perfective changes implemented

as design-time evolution. In the style-driven approaches, we observed a trend towards structural evolution-off-

the-shelf [S13, S21] and evolution planning [S1, S8] with time, cost and risk analysis to derive evolution plans.

2. Change Patterns [S2, S6, S12, S14, S15, S16, S17, S20, S21, S27, S29, S30, S24] exploit the same idea as

design patterns [19] that aim at providing a generic, repeatable solution to recurring design problems. In

contrast, change patterns follow reuse-driven methods and techniques to offer a generic solution to frequent

evolution problems. Pattern-based solutions accounted for 41% of total reviewed literature, focusing on

corrective, adaptive and perfective changes supporting both design-time as well as run-time evolution.

Adaptation and reconfiguration patterns [S16, S19] are the run-time evolution solutions. The solutions also

address the co-evolution of processes [S30], requirements [S2] and underlying architecture models. In addition,

a number of studies propose language-based formalism [S6, S12, S14, S15] to enable reuse in architectural

migration and integration. Unlike styles that only use model-driven evolution, pattern-based changes are

expressed as different techniques using model transformations [S2, S30], state transitions [S16, S19] and change

operationalisation [S27].

3. Adaptation Strategies and Policies [S3, S4, S25, S26, S28, S32] focus on reuse and customisation of

adaptation policies [S3, S4], reusable and knowledge-driven strategies [S25, S26, S32] and aspects [S28] to

support the reuse of policies in self-adaptive architectures. With a recent emphasis on autonomic computing,

and growing demand for highly available architectures, reuse-driven strategies aim to support knowledge-driven

reuse at runtime. These accounted for 19% of reviewed literature with a focus on adaptive change. Run-time

reconfigurations of architectures are also highlighted in the MAPE-K reference model [5, S4].

4. Pattern Discovery [S19, S29] represent methods and techniques for post-mortem analysis of evolution history

(change logs [S29] and version control [S19]) to discover recurring changes as pattern instances. Pattern-based

knowledge acquisition/discovery mechanisms represented a 6% of the total study population.

5. Architecture Configuration Analysis [S7, S31] exploits configuration management techniques to analyse

architectural configurations [S7]. It focuses on mining architecture revision histories to capture evolution and

variability in order to represent crosscutting relationships among evolving architecture elements. This is

particularly beneficial to classify changes as atomic and composite types and allows determining the extent to

which architectural change can be parallelised (commutative and dependent changes) [S31]. Architecture

configuration analysis represented 6% of total study population.

6. Evolution and Maintenance Prediction [S9, S10] focuses on prediction of maintenance and evolution efforts

for software architectures. We included two studies in which [S9] represents a set of change scenarios for

predicting perfective and adaptive evolution tasks in architectures. In [S10], based on an architectural evaluation

and maintenance prediction, the required maintenance and evolution effort for a software system can be

estimated [S10].

4.2 A Mapping of Identified Research Themes to Activities in REVOLVE Framework

While the REVOLVE framework has provided a broader categorisation of research, some observations and

interpretation of the results suggested an explicit mapping among the identified research themes and the activities

of REVOLVE framework. Figure 8 provides a mapping of the framework’s activities (cf. Figure 6) and the

identified research themes (cf. Figure 7) to classify and compare application (Section 5) and acquisition (Section

6) of architecture evolution-reuse knowledge. The circles on right axis in Figure 8 represents mapping between

framework activities and identified research themes for a study reference (e.g., ‘8’ represents ‘S8’ in the Appendix

list of selected studies). Alternatively, the circles on left axis represents publication map (providing a temporal

distribution, 1999 to 2012) for framework activities and identified research themes.

In this section, an iterative mapping process has been employed to present the identified research themes and to

provide an answer to the first research question (RQ1). The map as bubble plot is depicted in Figure 8 to enable

a mapping of research themes to activities of REVOLVE based on:

 Five activities of the REVOLVE framework (cf. Figure 6) along the horizontal axis.

 Six identified research themes (cf. Figure 7) along the vertical axis.

Figure 8. Study mapping over the range of research themes, REVOLVE activities and time period.

For example in Figure 8, the bubble at right-axis and at the intersection of “research theme” change pattern (CP)

and “framework activity” knowledge reuse (KR) represents the studies [S2, S6, S12, S14, S15, S16, S19, 20, 22,

27, 30] that support change patterns to apply reuse knowledge in ACSE. Alternatively, the bubble at left-axis that

intersects “CP” and 2012 represents the studies [2, 29, 30] published in 2012 and focus on change patterns. The

relative size of the bubble indicates the total number of studies (bigger the size, more studies a theme represents).

4.3 Definition of Architecture Evolution-Reuse Knowledge

Research Question RQ1 addresses how architecture evolution-reuse knowledge is defined and expressed in the

context of ACSE and is answered in this section. After we have defined architecture evolution-reuse knowledge

here, we answer RQ 2 (application of reuse knowledge in Section 5) and RQ3 (acquisition of reuse knowledge in

Section 6).

In the reviewed studies, we observed that interpreting and assessing individual studies as isolated solutions to a

specific research problem lacks consistency in representing what exactly defines architecture evolution-reuse

knowledge and how it is classified and expressed in literature. This could be a direct consequence of the respective

author views on how to achieve reuse in a solution-specific context. For example, the concept of evolution style

has distinct and diverse interpretations as Garlan et al. who define evolutionary plans [S1, S11] following a style,

while Tamzalit et al. exploit styles as evolution patterns [S13, S21, S23]. Moreover, Cuesta et al. express evolution

styles as an integrated part of architectural knowledge [S8] that drives architecture evolution. In addition, Yskout

et al. utilised change patterns for architecture co-evolution [S2], Côté et al. for pattern-to-pattern integration

[S27], Gomma et al. for run-time adaptations [S16, S19] and Zdun et al. exploited language based formalism for

evolution and integration patterns [S6, S12, S15]. This reflects a lack of consideration of what existing methods

could be leveraged, extended or refined to achieve reuse that drives ACSE [3, 6, 7].

Evolution in the reviewed literature refers to design-time changes [S1, S2, S6, S13, S20] or run-time adaptations

[S3, S4, S16, S25] as perfections, reconfigurations or corrections in architectural structure and behaviour [16].

We observed that the term evolution (also including evolving, evolve, co-evolution) has six variations as change

(also including changing), Reconfiguration, Adaptation, Restructuring, Update, Transformation and Migration.

The reasons for distinctive terminologies are:

 Type of architecture change refers to Corrective, Adaptive (also Reconfigurative [S16, S19]), Perfective

(also Updative [S23], Restructurive [S21], Transformative [S5], Migrative [S6]). With a more conventional

interpretation of ISO/IEC 14764 and architectural change characterisation [16], we did not find any study to

support preventive changes. This indicates that existing work lacks support for reuse in pre-emptive and pro-

active evolution of architectures [5, 6].

 Time Constraint of Change refers to Evolution, Change, Update and Restructure for design-time evolution

[3], while Reconfiguration and Adaptation refer to run-time evolution [S3, 6]. In Figure 9, there is a clear

inclination (53% of total studies) towards style-driven approaches, evolutionary plans and model co-evolution

for design-time (a.k.a. static evolution). In contrast, run-time (a.k.a. dynamic evolution) comprises of 28% of

studies focussing on self-adaptation and runtime reconfigurations reflected by studies published in 2004 and

2009. However, with a growing importance of autonomic computing [5] and the context of high-availability

architectures [S3, S4, S16, S19, S25, S26, S32], there is a need to realise the potential of reuse at runtime

reflected by the MAPE-K model.

Figure 9. Study Distribution – Time Constraints of Architectural Evolution Reuse.

This suggests that evolution is an unclear term in the context of types and time of architectural changes making it

hard to implicitly derive a unified or aggregated definition for evolution reuse knowledge. In the study titles, the

keyword “evolution” occurs 10 times, “change” 5 times and “adaptation” 6 times (i.e., approx. 34% , 15% and

Reuse@Runtime
9/32 Studies

(28%)

Reuse@Designtime
17/32 Sudies

(53%)

- Evolution Paths [S1, S11]
- Evolution Styles [S5, S21, S23, S8]
- Model Co-evolution [S2, S30]
- Pattern-to-Pattern Evolution [27]
- Pattern-language based Formalism
 [S6, S12, S14, S15]
- Evolution Patterns and Rules [S20, S22]
- Evolution Shelf [S13]

- Adaptation Patterns [S16, S19]
- Self-adaptation Strategies [S3]
- Self-repair Strategies [S4]
- Reusable Adaptation Aspects [S18, S28]
- Policies for Self-adaptive Behaviour
 [S25, S26, S32]

19% respectively). Due to a characterisation of architectural change types [16] and times of evolution [11], a clear

consensus or unified definition is not possible. In fact, it would only limit the acceptance of the concept with a

narrow view based on available evidence. However, an aggregated definition of evolution-reuse knowledge is

important to classify and compare the existing research. We further discuss the types and time or architectural

changes in Section 5, while answering RQ2 – a comparison of method for application of reuse knowledge.

Reuse in the reviewed studies is expressed as evolution styles (7 studies, 22%), change patterns (13 studies, 40%),

ii) adaptation strategies and policies (6 studies, 19%) in Figure 7. An interesting observation is that although they

are novel as methodical approaches, both evolution styles and change patterns conceptually extend the more

conventional concepts of architecture styles [20] and design patterns [19] to represent evolution expertise.

Evolution styles [S1, S13, S21] primarily aims at defining, classifying, representing and reusing frequent

corrective and perfective changes as a design-time activity. In contrast, change patterns [S2, S16, S19] promote

the ‘build-once, use often’ philosophy to offer a generic, repeatable solution to frequent adaptive, corrective and

perfective changes as design-time and run-time-time evolution. The concept of reusable adaptation strategies and

policies is only represented in the context of reuse plans [S3, S4, S25] and aspects [S28] for self-adaptive

architectures.

Once we have identified the relative representation and expression of architecture evolution and evolution reuse,

we can provide a consolidated view of architecture evolution-reuse knowledge in the context of ACSE. We

provide an aggregated definition of Architecture Evolution-Reuse knowledge (AERK) as

“A collection and integrated representation (problem-solution mapping) of empirically discovered generic and

repeatable change implementation expertise that can be shared and reused as a solution to frequent (architecture)

evolution problems.”

In the existing literature, the generic and repetitive solutions are predominantly expressed as evolution styles and

patterns. In addition, frequent evolution operations represent addition, removal or modification of architecture

elements as design-time change or runtime adaptation. Some studies [S1, S11, S13, S20] implicitly denoted reuse

as a first-class abstraction – by operationalising and parameterising changes – to resolve recurring evolution tasks.

In summary, to answer RQ1, we provided a definition of a generic and thematic classification scheme and

organised research about reuse knowledge in ACSE along this scheme. A classification, definition and

representation of reuse knowledge is missing in the existing literature to reflect a consolidated impact of research

that has progressed for more than a decade (1999 - 2012). This classification is not meant to be exhaustive and

might need to be adapted to consider future developments. Figure 7 and Figure 8, however, provide a foundation

for a more fine-granular classification and comparison of studies as discussed in Section 5 below.

5. APPLICATION OF ARCHITECTURE EVOLUTION-REUSE KNOWLEDGE

Based on the generic and thematic classification in Section 4, to answer to RQ2 we classify and compare the

existing methods and techniques that support application of evolution-reuse knowledge based on the generic and

thematic classification in Section 4. A systematic identification and comparison of existing research is particularly

beneficial to gain an insight into aspects of problem-solution mapping, architecture evolution characterisation,

or to assess formalisms and tool support. The comparative analysis is presented as a number of structured tables

(Table 7, Table 8). Additional details of synthesised data are available in [25]. In this section, a thematic coding

process has been employed to identify the comparison attributes (cf. Table 5) and to provide an answer to the

RQ2. More specifically, what are the existing methods and techniques that enable application of reuse knowledge

to support architecture evolution is answered in Section 5.1 and how to compare the existing techniques to analyse

a collective impact of existing research that enhance evolution reuse is answered in Section 5.2.

5.1 Methods and Techniques for Application of Evolution Reuse Knowledge

Based on the classification of research themes, we focus on answering RQ2 with Table 7. It has three columns

associated with the following aspects:

 Problem View – Why there is a need for reuse knowledge to address recurring evolution problems?

 Solution View – How do solutions provide methods and techniques to address these research problems?

 Comparison View – What are the trends, type, means and time of evolution, formalism and tool support,

architectural description notations and evaluation methods? See Table 8 for details.

For each reviewed study, the problem and solution views are captured in Table 5 (with ID 5, 6 in generic and

documentation specific items) and represented in Table 7. While the comparison view is represented with a set of

comparison attributes in Table 5. Note that, due to the classification scheme (styles vs. patterns vs. strategies and

policies), we denote adaptation patterns [S16, S19] as a sub-theme of change patterns [S2, S17]. For example,

Table 7 highlights change patterns as a solution to address the problems of continuous runtime adaptations of

software architectures. More specifically, the studies [S16, S19] propose adaptation patterns to support reuse of

architectural configurations and adaptations. Furthermore, Table 7 serves as a catalogue for problem-solution map

along with the available evidence to support application of reuse knowledge.

Table 7. Methods and Techniques to enable Application of Evolution Reuse Knowledge.

5.2 Comparison of Methods and Techniques for Application of Evolution-Reuse Knowledge

In order to go beyond the analysis of individual studies, a holistic comparison of existing research based on

comparison attributes including their objective and concrete evidence is provided in Table 8. We compare

available methods and techniques based on comparison attributes CA1 to CA12 (cf. Table 5). The comparison of

research methodologies to support the application of evolution reuse knowledge is based on eight distinct

comparison attributes CA1-CA6, CA11, CA12 from the full list (remaining ones will be covered in section 6).

CA 1: What are the identified research trends for reuse in architecture-based evolution and adaptation?

Objective: The aim is to identify available solutions that support reuse knowledge for ACSE. In addition, an

overview of research builds the foundation for a comparative analysis of individual methodologies as discussed

below and mapped out later on in Figure 10. Each theme (from Section 4.1) contains one or more trends. Figure

10 provides a mapping of the research themes (y-axis) to types and time of architectural changes (x-axis). For

example, in Figure 10 the study [S4] represents “adaptation strategies” for “perfective changes” at “runtime”.

Research Problem Solution (Method & Techniques) Studies

Evolution Styles

How to o enable evolution planning and
trade-off analysis?

Evolution Paths - to plan and apply reusable evolution strategies. [S1, 11]

How to achieve recurring structural
evolution of architecture?

Evolution Shelf – library of reusable and reliable evolution expertise.

[S13]

How to enhance change reusability and
architecture consistency?

Update Styles – reuse expertise for restructuring and updating architectures.

[S21,
S23]

How to exploit architecture knowledge as
an asset for architecture evolution?

AK-driven evolution styles – use of AK as evolution styles to constrain and trigger evolution

[S8]

How to reuse in transformation and
refinement of component-model to
service-driven architectures?

Style-based Transformations – to achieve migration from component-based architecture to business-
driven service architecture.

[S5]

Change Patterns

How to Co-evolve process, requirements
with architectures?

Co-Evolving Models – reusable patterns to enable co-evolution in process and requirements to their
underlying architectures.

[S2, S30]

How to enable a continuous runtime
adaptation of architectures?

Adaptation Patterns – reuse @ runtime to support architectural reconfigurations and self-adaptations.

[S16,
S19]

How to exploit the reuse of design
methods, documents and process for
architecture migration and evolution?

Pattern-to-Pattern Evolution & Integration – evolution operators and design documents to tackle
requirement & and architecture changes [S27]. Model-based migration and integration of process-
centric architecture models [S12, S15].

[S27,
S12, S15]

How to enable an incremental migration of
legacy architecture by means of reusable
decision models?

Pattern Language-based Formalism – to facilitate a piecemeal migration of architecture models. [S6, S14]

How to effectively manage evolution at
different architectural abstractions?

Evolution Patterns and Rules – to model, analyse and execute architectural transformations at
different abstraction levels.

[S20,
S22]

Adaptation Strategies and Policies

How to provide mechanisms for
architecture to adapt at run time in order to
accommodate varying resources, system
errors, and changing requirements?

Strategies for Self-adaptation – supported with stylised architectural design models for automatically

monitoring system behavior falling outside of acceptable ranges, then a high-level repair strategy is
selected.

[S3, S4]

How to utilise reusable aspects to develop
self-adaptive architectures?

Reusable Adaptation Aspects – to Reusable aspects & policies to develop self-adaptive
architectures.

[S28]

How to efficiently construct system global
adaptation behaviour according to the
dynamic adaptation requirements?

Composable Adaptation Planning – that provides a systematic coordination mechanism to achieve
effective and correct composition. It also allows prototyping, testing, evaluation and injection of new
adaptation behaviours for component-based adaptable architectures.

[S18]

How to specifying and enact architectural
adaptation policies that drive self-adaptive
behavior?

Knowledge-Based Adaptation Management - for reasoning and decision-making about the timing
and nature of specific adaptations grounded on knowledge-based adaptation policies.

[S25,
S26, S32]

Table 8. A Holistic Comparison of Methods and Techniques to Support Application of Reuse Knowledge.

(‘--' represents an attribute not discussed in the reviewed study, ‘++’ represents an implicit discussion of the

attribute, the remaining is all explicit in the literature).

Comparison

Attributes

Methods/

Techniques

Research
Trends

(CA1)

Type of Change

(CA2)

Time of
Change

(CA3)

Means of

Change

(CA4)

Evolution

Support

Formalism

(CA5)

Architecture
Description

(CA6)

Tool Support

(CA11)

Evaluation

Method

(CA12)

E
v
o

lu
ti

o
n

 S
ty

le
s

Evolution Paths
[S1, S11]

Evolution Plans

Corrective &
Perfective

Design-time

Change Operations,

Model
Transformation++

QVT-based
Model Evolution

Acme ADL, UML
2.0++

AEvol

Case Study

Evolution Shelf
[S13]

Evolution Styles Corrective++ &
Perfective

Design-time Model
Transformation

QVT-based
Model

Evolution++

Acme ADL, UML
2.0++

-- Case Study

Update Styles
[S21, S23]

Updating Styles
[S11],

Architecture
Style[S10]

Corrective++ &
Perfective

Design-time

Model
Transformation

Graph
Transformation

Rules++

ADL++,

UML 2.0,

AGG [S11],

USE[S10]

Case Study

AK-driven
Evolution Styles

[S8]

AKdES

Corrective++

& Perfective

Runtime

Model
Transformation

QVT-based
Model Evolution

ATRIUM
Metamodel

ATRIUM

Case Study

Style-based
Transformations

[S5]

Style –based
evolution and

refinement

Corrective++

& Perfective

Design-time

Model
Transformation

Graph
Transformation

Rules

UML Profile for
SOA, Graph

Model

Poseidon,
GTXL

Case Study

C
h

a
n

g
e

P
a
tt

e
rn

s

Model Co-
evolution

[S2, S30]

Requirements
[S2],

Business
Process [S30]

Adaptive &
Corrective

Design-time

Model
Transformation

--

UML 2.0 [S2],

Graph Model
[S15]

VIATRA[S2]

-- [S15]

Industrial
Validation [S2]

Case Study
[S2]

Adaptation
Patterns

[S16, S19]

Adaptation
State-machines

Adaptive &
Perfective

Run-time Reconfiguration++

Operations

State Transition

XTEAM, xADL,

UML 2.0

REPLUSSE
[S6],

SASSY [S9]

Case Study

Pattern-to-
Pattern Evolution

Pattern-to-
pattern evolution
and Integration

Corrective &
Perfective++

Design-time

Change
Operations++

Jackson’s
Framework [S27]

Context
Diagram,

--

Case Study

Pattern
Language-based

Formalism

[S6, S12, S15,
S14]

Pattern-based
Migration [S6],

Integration

 [S12, S15]

& Evolution
[S14]

Corrective,
Perfective &

Adaptive

Design-time

--[S6, S14],

Model
Transformation

[S12, S15]

--[6]

Model-driven

Software
Development
[S12, S15],

RADM[S14]

IDL [6],

UML 2.0, XMI
[S12, S15],

[S14]

-- [6],

MDSD Tool
Chain

[S12, S15],

ArchPad[S14]

Case Study
[12, 15],

Migration of
Document
Archival

System [S6],

 Industrial
Case

Study[S14]

Evolution
Patterns & Rules

 [S20, S22]

SAEV [S20],

TranSAT[S22]

Corrective &
Perfective

Design-time

Change Operation,
Evolution Rules

[S20],

Model
Transformation

[S22]

SAEV, ECA
[S20],

AOSD [S22]

ADL [20],

AgroUML[S22]

--[s20]

SafArchie

[S22]

Case study

A
d

a
p

ta
ti

o
n

S
tr

a
te

g
ie

s
 a

n
d

 P
o

li
c
ie

s

Strategies for
Self-adaptation
and Self-repair

[S3, S4]

Rainbow
Framework [S3],

Style-based
Adaptation [S4]

Adaptive,
Perfective

& Corrective++

Run-time

Adaptation
operators, Repair
Strategies [S4]

--

ADL [S3]++,

ACME[S4]

Rainbow,
Stitch

Language
[S3]

Case Study

Reusable and
Composable
Adaptation

Aspects

[S28, S18]

Aspect-orinted
Architecture

[S28],
Composable
Adaptation

Palnning [S18]

Adaptive
&Corrective++

Run-time

Aspect generation &
weaving [S28]++

Composable
Adaptation Plans

[S18]

CaesarJ AO-
Programming

Language [S28],

--[S18

--[S28],

Component
Architecture

Model

[S18]

--

Case Study

Adaptation
Policies for Self-

adaptive
Behaviour

[S25, S26, S32]

Knowledge-
based

Adaptation
Management

Adaptive
&Corrective++

Run-time

Knowledge-based
Adaptation Policies

Architectural
Adaptation
Manager

xADL

KBAAM

Case Study

1. Evolution-off-the-Shelf – we observed a trend following evolution styles for structural evolution [S1, S11, S13]

in component-based architectures and evolution planning [S1, S11] based on time, cost and risk of changes to

define alternative evolution strategies. An interesting observation is a recent emergence of evolution style [S8]

that exploits architecture knowledge as an asset to drive evolution-off-the-shelf [S13]. In Figure 10, our

comparison suggests that evolution style-based approaches only focus on corrective and perfective type changes

[16]. We could not find any evidence to support adaptive or preventive type evolution. Evolution styles are limited

to supporting only design-time evolution in software architectures.

2. Pattern and Language-based Formalisms – pattern-based solutions address the co-evolution of business

processes [S30] and requirements [S2] along with their underlying architecture models. Adaptation [S19] and

reconfiguration patterns [S16] support dynamic adaptations as well. Pattern language-based solutions aims at

building a system-of-patterns to support migration [S6], integration [S12, S15] and evolution [S14] of component-

based architectures. Based on the comparison map in Figure 10, we can conclude that pattern-based techniques

enable corrective, adaptive and perfective type changes, but do not address preventive change. Pattern-based

solutions are heavily biased towards design-time evolution. However, studies on reconfiguration and adaptation

patterns suggest a potential for future research to address dynamic adaptation by leveraging change patterns [S19].

3. Reuse Knowledge for Self-adaptation and Self-repair – in particular self-adaptive and self-repair techniques

reflect the recent emphasis on autonomic computing and growing demands for high-availability architectures.

Reuse-driven self-adaptation enables dynamic evolution reflected as reusable adaptation strategies for adaptive

architectures [S3, S25]. In addition, knowledge-based adaptation policies [S4, S26, S32] enhance self-

organisation and repair of dynamic adaptive architectures. Self-adaptation strategies are the key to supporting

dynamic and high-availability architectures. Unlike styles and patterns, reusable adaptation strategies focus on

runtime reuse of adaptation expertise. Moreover, self-repair [S4, S26] policies promise to tackle preventive type

of changes. However, based on the mapping in Figure 10; we did not find explicit evidence to address preventive

changes that corresponds to unanticipated evolution [6].

Figure 10. A Comparison Map of Research Trends – based on Time and Types of Changes.

CA 2: What types of architectural changes are supported to achieve evolution reuse?

Objectives: to investigate the type of change support offered by existing ACSE solutions: corrective, perfective,

adaptive and preventive changes [16]. This change typology is based on the ISO/IEC 14764 standard and

architecture change characterisation in [16].

In Figure 10, style-driven approaches focus on corrective and perfective changes (also reported as updative [S23],

restructurive [S21], transformative [S5] and migrative [S6]). Pattern-based solutions support corrective [S27],

perfective [S12, S15, S6, S14] and adaptive change support (also called reconfigurative [S16, S19]). Adaptation

strategies and policies, as the name indicates, primarily focus on run-time adaptive [S3, S4, S28] changes. Note

that none of the reviewed studies addresses preventive change that aims to prevent problems before they occur.

This suggests a lack of focus on tackling unanticipated evolution [6, S4] in software architectures.

CA 3: How do time aspects affect change implementation during architecture evolution?

Objectives: to analyse the temporal aspects [11] in terms of the time (or stage) associated to architecture evolution

in Figure 10. The existing evidence suggests:

 Reuse@Runtime enables application of reuse knowledge at runtime to achieve dynamic adaptation.

Reconfiguration patterns reflect reusable strategies as a consequence of growing demands for autonomic and

self-adaptive architectures for run-time evolution [S2, S4, S25, S26, S27]. We could not find evidence of

style-based approaches that facilitate runtime reuse.

 Reuse@Designtime enables application of reuse knowledge at design-time to achieve evolution. Style-driven

approaches [S1, S13, S8] are heavily oriented towards design-time evolution. In contrast, pattern-driven reuse

is aimed primarily at design-time changes [S2, S30, S27], but also support run-time reconfigurations [S16,

S19]. However, adaptation strategies lack explicit support for design-time reuse.

CA 4: What are the existing means of architectural change to achieve evolution reuse?

Objectives: to study and compare the change implementation mechanisms and to analyse if there exist any

recurring themes among them. We only present the predominant means of change as (at least indicated in five or

more studies) as individual methods and techniques are already summarised in Table 8.

Evolution operators as the most utilised means of change that could be further classified as change [S1, S11, S20,

S22, S27], adaptation [S19] and reconfiguration operators [S16]. Model transformation enables design-time

evolution as discussed in [S1, S13, S21, S23, S5, S2, S30]. Furthermore, adaptation plans exploit repair strategies

and aspect weaving mechanism [S4, S18, S26, S28, S32] for runtime adaptation.

CA 5: What types of formal methodologies are exploited to support reuse in ACSE?

Objectives: to analyse the extent to which formal techniques facilitate modelling, analysing and executing

evolution reuse. We only present predominant formal methods (at least indicated in three or more studies).

We observed an overwhelming bias towards model-based architecture evolution that is primarily achieved through

model transformation with QVT [S1, S11, S13] and also graph-based specifications [S11, S10, S5, S12, S15].

This observation is also reported in [7]. The only exceptions are adaptation patterns [S16, S19, S12, S27] that

exploit state-transition and pattern-to-pattern integration using or architecture evolution.

CA 6: What are the notations used for architectural descriptions in evolving architecture models?

Objectives: to identify the modelling notation used to support architecture evolution. We primarily focus on

investigating the role of architecture descriptions in enabling and enhancing architecture evolution (at least three

studies).

The three commonly used architectural description notation are UML 2.0 [S11, S13, S23, S2, S19, S12],

Architecture Description Languages (ADLs) [S11, S13, S21, S16, S20, S3, S25, S26] and UML Profiles [S5, S22,

S18]. The primary motive to use ADLs or UML is the availability of extensive research literature and tool support

to specify architecture models with model-based verification and transformation to support evolution. Most

notable ADLs are ACME and xADL.

CA 11: What is the available tool support to enable or enhance reuse in architectural evolution and adaptation?

Objectives: to analyse the role of automation and tool support in enabling the architect to model, analyse and

execute reuse in ACSE.

Tool support is significant to assist the architects in decisions making and automating complex tasks, especially

where there is a need to model and choose among alternative evolution paths [S1, S11]. In the reviewed studies,

tool support is generally provided in terms of research prototypes. Automation allows an architect to model [S1,

S21], analyse and execute generic, reusable strategies for evolution [S2, S1, S21]. However, there is a mandatory

user intervention through appropriate parameterisation and customisation of evolution process to accommodate

the human perspective before and after evolution [S6, S9, S11, S12]. Some practical issues and lessons learned

regarding tool support for architecture evolution reuse has been reported in [30].

CA 12: What is the context of evaluation methods to validate research hypotheses or results?

Objectives: The aim is to analyse the context of evaluation, where evaluation context defines the research

environment in which the results are evaluated.

The comparative analysis suggest that validation of the proposed solutions or generated results are heavily based

on surveys, controlled experimentation with case studies [S1, S21, S8] or evaluation in an industrial context [S2,

S6, S14]. It is evident that solutions are heavily oriented towards case-study based evaluation, usually in a lab-

experimentation context. The only exceptions are the studies [S2, S6, S14] that focus on co-evolution of

requirements and architectures evaluated in industrial settings.

6. ACQUISITION OF ARCHITECTURE EVOLUTION-REUSE KNOWLEDGE

In this section, we investigate the methods and techniques for acquisition of reuse knowledge to answer RQ3, i.e.,

what are the existing methods and techniques for acquisition of evolution-reuse knowledge (Section 6.1) and how

these methods and techniques can be compared to consolidate the impact of existing research (Section 6.2). Note

the solutions for this research question (i.e., RQ3) are complementary to the methods and techniques that support

application of reuse knowledge in ACSE.

6.1 Methods and Techniques for Acquisition of Evolution-Reuse Knowledge

In Section 5, we identified change pattern discovery [S17, S29], evolution and maintenance prediction [S9, S10]

and architecture configuration analysis [S7, S31] as the three research themes to support reuse knowledge

acquisition. More specifically,

 Change Pattern Discovery techniques focus on investigating evolution histories for an experimental

identification of recurring change sequences as potential change patterns.

 Evolution and Maintenance Prediction methods focus on maintenance profiles [S9] and scenario-based [S10]

prediction of maintenance efforts to enhance or enable architecture evolution.

 Architecture Configuration Analysis deals with architectural system model that tightly integrates architectural

concepts with concepts from configuration management. Change composition analysis [S31] focuses on

analysing change operationalisation based on a hierarchical composition of change instances, i.e., defining

and reusing atomic change operations to build up composite change operations.

Solutions for reuse knowledge acquisition primarily focus on the post-mortem analysis of architecture evolution

histories to discover evolutionary knowledge. In Table 9, we summarise the problem-solution mapping to

highlight research on knowledge discovery. In this section, the problem solution views are presented and captured

in Table 5 (generic and documentation specific items), while attributes CA7 - CA12 (are presented in Table 5

asfor comparison purposes. We can observe a relative lack of focus on establishing and exploiting experimental

foundation for a continuous and incremental acquisition of reuse knowledge.

Table 9. A Summary of Methods and Techniques for Acquisition of Reuse Knowledge.

We have identified only a relatively limited number of studies (6/32 of included studies, i.e., 19% approximately),

which do not allow us for any stronger judgments. However, we believe that highlighting the existing literature

based on a problem-solution mapping helps us to analyse the current state of research and possible future

directions as detailed in Table 9. In addition, summarised results in Table 9 allow us to assess methodologies for

a collective impact of existing research on acquisition of reuse knowledge.

6.2 A Comparison of Methods and Techniques for Acquisition of Evolution-Reuse Knowledge

We provide a comparison of existing techniques in Table 10 that enable reuse knowledge acquisition based on six

comparison attributes CA6-CA11 from Table 5. The comparative analysis highlights the sources of knowledge,

Research Problem Solution

(Knowledge Acquisition Techniques)

Included
Studies

Change Pattern Discovery

How to empirically discover reusable
change operators & patterns?

Evolution History Analysis – post-mortem analysis of architecture evolution

logs [S29] and version histories [S17] to identify change patterns.
[S17, S29]

Maintenance and Evolution Prediction

How to predict the efforts of architecture-
based maintenance and evolution?

Maintenance Profiling – the architecture is evaluated using so-called scenario
scripting and the expected maintenance effort for each change scenario is
evaluated for perfective and adaptive changes [S9].

Scenario-based Change Prediction – of complex changes during initial
analysis of existing architecture, and how and to what extent the process to
elicit and assess the impact of such changes might be improved [S10].

[S9, S10]

Configuration Analysis

How to capture and relate changes for
architecture configurations?

Revision History Mining – captures evolution and variability to represent
crosscutting relationships among evolving architecture elements [S7].

Dependency Analysis – analyse change classification and to dependency

analysis [S31].

[S7, S31]

the adoption of empirical approaches and the role of formalisms and tool support, type of knowledge discovery

along with evaluation methods.

Table 10. Comparison of Methods and Techniques for Reuse Knowledge Acquisition.

 Comparison
Attributes

Methods &

Techniques

Knowledge
Source

(CA7)

Type of
Analysis

(CA8)

Type of

Formailsm

(CA9)

Time of
Discovery

(CA10)

Tool
Support

(CA11)

Evaluation
Method

(CA12)

Change Patterns
Discovery

[S17, S29]

Change Logs
[S29],

Version Control
[S17]

Postmortem
Analysis [S29],

Architecture
Snapshots [S17]

Graph Mining
[S29],

Version Snapshot
[S17]

Design-time

G-Pride
[S29],

HEAT [17]

Case Study

Evolution and
Maintenance

Prediction [S9, S10]

Maintenance
Profiles [S9],

Change
Scenarios [S10]

Change
scenarios based

Evaluation

Not explicitly
mentioned

Design-time

Not explicitly
mentioned

Case Study

Configuration
Analysis [S7, S31]

Revision Histories
[S7],

Change Logs
[S31]

Configuration
Management
analysis [S7]

Not explicitly
mentioned [S7],

Graph Matching
[S31]

Design-time

Mae [S7],

G-Pride [S31]

Case Study

We now describe the comparison attributes in detail including their objective and concrete evidence as comparison

options used in the columns of Table 10.

CA 6: What types of knowledge sources are investigated for acquisition of reuse knowledge?

Objective: In order to discover evolutionary knowledge, existing knowledge sources need to be considered. A

knowledge source represents a repository that maintains historical ACSE data for knowledge acquisition.

 Pattern Discovery Techniques exploit change logs [S29] and version controls [S17]) as centrally managed

repositories of evolution history. Change logs and version controls contain fine-grained traces of evolution

data sets that can be queried and searched to analyse architecture-centric evolution history overtime.

 Evolution and Maintenance Prediction utilise maintenance profiles [S9] that represent a set of change

scenarios for perfective and adaptive maintenance tasks. More specifically, by exploiting maintenance profile,

the architecture is evaluated using the so-called scenario scripting. The expected maintenance effort for each

change scenario is assessed. Based on architectural evaluation and maintenance prediction, the required

maintenance and evolution effort for a software system and its underlying architecture can be estimated.

 Architecture Configuration Analysis investigates architecture revision histories [S7] and change logs [S31].

Revision histories contain datasets for architectural configuration analysis, reflecting evolution and variability

of architectures. These are necessary to represent crosscutting relationships among evolving architectural

elements [S7]. In long-term analyses [S31], dependencies among change operations determine if evolution

operations could be parallelised based on identified commutative and dependent change operations.

CA 7: What types of analyses are performed on knowledge sources for acquisition of reuse knowledge?

Objective: to analyse the application of knowledge discovery/acquisition mechanisms on knowledge sources.

Post-mortem analysis [S29] and version control snapshots [S17] techniques are employed to discover change

patterns. In the context of architecture evolution prediction, scenario-based analyses are used as well as techniques

from configuration analysis and management.

CA 8: What type of formal methods and techniques are utilised for reuse knowledge acquisition?

Objective: to identify the types of formal methods used for knowledge acquisition.

The role of the formalism, detailing the application of formal techniques, is discussed in three studies. In particular,

graph-based formalisms are exploited for sub-graph mining [9], [S29] to identify recurring change patterns and

graph matching [S31] techniques are used to discover change composition and dependencies among operations.

Snapshots of architecture versions are used to discover patterns and possible drifts in architecture from one version

to another [S17].

CA 9: Is knowledge acquisition performed at design-time or run-time?

Objective: to distinguish between the techniques for run-time and/or design-time discovery or acquisition of reuse

knowledge. In all of the reviewed studies, evolution reuse-knowledge discovery is performed as a design-time

activity. We did not find any evidence that highlights maintaining and analysing traces of runtime architectural

adaptations.

CA 10: How are the knowledge acquisition techniques evaluated?

Objective: to compare the type of evaluation methodologies used to validate the knowledge acquisition

techniques.

The evaluation of knowledge acquisition techniques are primarily based on surveys, controlled experimentation

with case studies or evaluation in an industrial context. Existing solutions mainly apply evaluations based on case

study and usually in a controlled lab experimentation.

CA11: What is the tool support for analysing and discovering reuse knowledge from evolution knowledge

sources?

Objective: to investigate the extent to which the existing research supports automation and customisation of the

knowledge acquisition process with support by prototypes and tools.

Tool support is critical, especially where the amount of data or the complexity of the knowledge source is

substantial. It is difficult, time consuming and error prone to perform analyses manually. In most cases, prototypes

enable efficient pattern analysis, discovery [S17, S29] and composition analysis [S31, S7].

7. RESEARCH IMPLICATIONS AND DISCUSSIONS

In this paper, we present the results of a systematic review to analyse the collective coverage and impact of existing

research that enable or enhance architecture evolution with reuse knowledge. We classified existing work (Section

4) and provided a comparative analysis for methods and technique that enable application (Section 5) and

acquisition (Section 6) of reuse knowledge to guide architecture evolution. In this section, we present a summary

of research progress and principle findings of the SLR to highlight trends and possible future research. A yearly

distribution of reviewed studies (research progression to-date) and associated research trends are presented in

Figure 11. The year 1999 was chosen as the preliminary search found no earlier results related to any of the

research questions.

Figure 11. Temporal distribution of primary studies (1999 - 2012).

7.1 Research Trends and Future Directions

In the context of software evolution, research on architecture evolution reuse is continuously growing over more

than a decade (as observed in the reviewed studies from 1999 to 2012). As indicated in Figure 11, we did not set

a lower boundary for the year of publication in the search process, yet the timeframe of identified studies reflects

also the timeframe of emergence and maturation of solutions. The trend curve starts in 1999 with a study on

predicting architecture maintenance and evolution [S9]. Since 2004, an interesting observation (cf. Table 11) is a

continuous exploitation of the concept ‘evolution styles’ to support planning [S1, S11], operationalising [S21] and

fostering [S13] of reuse knowledge.

0

1

2

3

4

5

6

7

8

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Change
Prediction

Pattern
Languages

Chage
Patterns

Evolution
Styles

Pattern
Discovery

Adaptation
Strategies

Coevolution
Patterns

X-axis: Year of Study Publication Y-axis: Number of Studies
Published

Identified Research Trends

A reflection on research trends and possible future directions is presented in Table 11 along the aspects of methods

and techniques to support application and acquisition of reuse knowledge.

Table 11. A Summary of Identified Research Trends and Future Research Dimensions.

Classification
Methods and Techniques for Application of Reuse Knowledge Methods and Techniques for Acquisition of Reuse

Knowledge

Solutions
Evolution

Styles
Change
Patterns

Adaptation

Strategies

Pattern
Discovery

Evolution
Prediction

Configuration
Analysis

Identified
Research

Trends

Evolution
Planning

[S1, S11, S8]

Model Co-
evolution

[S2, S30]

Self-Adaptation

and Repair [S3, S4]

Log-based
Post-mortem

Analysis
[S29]

Evolution
Scenario
Analysis

[S10]

Change
Configuration
Analysis [S7]

Evolution
Paths

[S21, S23]

Adaptation
Patterns [S16,

S19]

Compos-able

Adaptations [S18,
S28]

Change
Version

Mining [S17]

Maintenance
Profile

Analysis
[S9]

Change
Composition

Analysis [S31]
Evolution

Shelf

[S13, S21]

Pattern
Languages

[S6, S12, S15]

Adaptation

Knowledge [S25,
S26, S32]

Potential for

Future

Dimensions

Reuse@Runtime Reuse@Designtime Evolution Mining

Reconfiguration

Patterns

Knowledge-driven
Migration, Integration and

Evolution

Analysing Evolution-centric Couplings

Adaptation Plans and
Reusable Infrastructure

Reuse-Driven Co-
evolution of Architectures

Evolution Dependency Analysis

7.1.1 Research Trends in Application of Reuse Knowledge

The identified research themes to express reuse knowledge in architecture evolution are primarily classified as

evolution styles, change patterns and adaptation strategies. Evolution styles [S1] are focused on deriving generic

evolution plans [S11, S8, S21] to support design-time evolution of architectures. In contrast, adaptation strategies

[S3] aim to support reusable adaptation strategies [S18, S28] to support runtime evolution. Only change patterns

[S2, S16] could support both design-time and run-time evolution in architectures. More specifically, pattern

languages [S6, S12] and architecture co-evolution [S2, S30] are the most notable trends for enabling pattern-

driven reusable evolution. Although we only identified two studies, adaptation patterns promote reuse in runtime

evolution [S16, S19].

 Future Research Dimensions – we can identify the need for future research based on time aspects of evolution

reuse that include:

o Reuse@runtime refers to application of reuse to support reuse-driven dynamic adaptation in

software architectures (a.k.a. on-line evolution). In an architectural context for high availability,

there is an obvious need to capitalise on generic and off-the-shelf expertise to support reuse-driven

self-adaptation [S3, S4, S18, S25]. The IBM autonomic framework [5] - Monitor-Analyse-Plan-

Execute (MAPE) loop – embodies the topology, policy and problem determination knowledge to

derive configuration plans and to enforce adaptation policies to monitor and execute software

adaptations. In contrast to studies [S4, S25, S32], we argue that augmenting the conventional MAPE

loop with explicit evolution reuse knowledge can systematically address frequent adaptation tasks.

The existing solutions either allow customisation of reusable infrastructure [S3], self-repair [S4] or

adaptation aspects [S28] to existing software. However, they lack support for evolution reuse to

guide dynamic adaptations. When addressing recurring evolution, the potential lies with fostering

and reusing off-the-shelf dynamic adaptations to enable evolution reuse at runtime.

o Reuse@design-time refers to application of reuse to support generic and reusable evolution in

software architectures (a.k.a. off-line evolution). Existing research clearly focuses on styles and

patterns for the reuse of generic evolution plans, change operationalisation and model-based

architecture co-evolution. With the REVOLVE framework, our review suggests the need to augment

styles [S1, S11, S13, S21] and pattern-driven solutions [S2, S30] with repository mining techniques

[S17, S29, S31] to discover reusable evolution strategies.

7.2.2 Research Trends in Acquisition of Reuse Knowledge
In contrast to reuse knowledge application, we can observe a clear lack of research on knowledge

discovery/acquisition techniques (only 6 studies) despite an acknowledged need. The primary themes for

evolution-centric knowledge acquisition represent pattern discovery, evolution prediction and architecture

configuration analysis. Change pattern discovery aims at investigating change logs [S29] and version control

[S17] systems for post-mortem analysis of evolution histories. Frequent change instances from evolution histories

are identified and represented as change patterns. Architecture-based prediction of software evolution aims to

exploit scenario-based analysis to estimate the efforts of software evolution [S9, S10]. Configuration analysis

techniques aim to investigate the evolution-centric dependencies for software architectures [S7, S31].

 Future Research Dimensions – the comparative analysis for knowledge acquisition techniques suggest an

investigation of evolution-centric dependencies. In particular, we believe in a need for Evolution Mining that

aims at analysing, discovering and sharing explicit knowledge to be reused to anticipate and guide

architecture change management. In the reviewed studies, there is little evidence of architecture change

mining. Our review suggests the needs for empirically derived evolution plans and the need to analyse

evolution dependencies. Such dependency analysis is significant to identify the commutative and dependent

changes in order to investigate parallelisation of evolution operations.

7.2 Benefits of the Systematic Review for Researchers and Practitioners

The classification framework (in Section 5) provides a holistic view of different evolution reuse aspects to be

considered in the context of the REVOLVE framework (Figure 5). The trends in Table 11 reiterate the fact that

among prominent concerns to tackle ACSE are time aspects of evolution. It reflects on the role of formalisms and

tool support that can be exploited to leverage conventional data mining techniques for post-mortem analysis of

architecture evolution histories. There is a need to develop a tool chain that could automate the REVOLVE

framework with appropriate and minimal user intervention.

The classification and comparison and its accompanying templates [25] contain 12 comparison attributes that

provides a moderate amount of information. For instance, for the 32 papers and 12 comparison attributes, it creates

a collection with 32*12 = 384 data points. As a result, the user can for example query and analyse the database

based on <Subject: Architecture Model Evolution> [Object: using Graph Transformation] (Implications: for

change reuse and architecture consistency). This is beneficial for

 Researchers who require a quick identification of relevant studies and detailed insight into state-of-the-art

that supports application and acquisition of reuse knowledge in ACSE.

 Practitioners interested in understanding the existing methods with supporting formalism and tool support to

analyse and execute evolution reuse.

7.3 Threats to Validity of the Systematic Review

This SLR provides a classification of existing evidence of reuse in architecture-centric software evolution by

reviewing and analysing peer-reviewed literature. Apart from addressing the research questions and providing an

overview in the field according to the REVOLVE framework, we also identified areas that are not covered in the

literature body. This work has been performed based on the review protocol explained in Section 3.

Although the observations and results of systematic reviews are considered to be reliable [14, 15], this type of

review work has its own limitations that should be considered [31]. We discuss the each of the validity threats

associated to different steps in our SLR (cf. Figure 2).

 Threats to the identification of primary studies. In our search strategies, the key idea was to retrieve as much

as possible of the available literature to avoid any possible bias. Another critical challenge in addressing these

threats was to determine the scope of our study, since the notion of reuse knowledge means different things

to different research communities including software architecture, software product-lines and self-adaptive

software. Therefore, to cover all and avoid bias, we searched for common terms and combined them in our

search string (cf. Figure 3). While this approach decreases the bias, it also significantly increases the search

work. To identify relevant studies and ensure the process of selection was unbiased, a review protocol was

developed and evaluated.

 Threats to selection and data extraction consistency. We have identified a lack of consistent terminologies

for reuse knowledge (Section 4). This poses difficulties for the composition of the search queries and the

inclusion/exclusion criteria. Such difficulties led us to analyse the terms concerning reuse knowledge that

were found on the selected studies. However, since the notion of “reuse knowledge” is used in numerous

studies, but we specifically concerned with “architecture (-based) evolution reuse knowledge”, we had to

exclude a majority of retrieved studies that affected the low precision of our search. In addition, we performed

quality assessment (Section 3.4 for details) on the studies to ensure that the identified findings and

implications came from credible sources.

 Threats to data synthesis and results. The threat to the reliability of results is mitigated as far as possible by

involving multiple researchers, having a unified scheme for data synthesis, and several steps where the

scheme and process were piloted and externally evaluated. Although as a general practice, we were

determined to use the guidelines provided in [17] to perform our systematic review, we had deviations from

their procedures as we have detailed in Section 3.

To summarise, we believe that the validity of the study is high, given the use of a systematic procedure, the

involvement and discussion among the researchers and external evaluations. The openness of our review by

exposing our data in [25] allows other researchers to judge the trustworthiness of the results objectively. This

initiative is suggested by the evidence-based software engineering community (e.g. http://www.dur.ac.uk/ebse/).

8. CONCLUSION

Our focus in this SLR was architecture evolution-reuse knowledge (AERK), i.e. knowledge specific to reuse in

the evolution of software architecture. As such, it forms part of the wider architectural knowledge (AK) research

in the software architecture community. The AERK perspective presented in this work shifts the reuse focus from

artefacts (like software architectures) to processes (here, the evolution of architectures).

Based on a qualitative selection of 32 studies, we investigated the coverage and concerns of reuse knowledge in

architecture-centric software evolution. More specifically, we provide a taxonomical classification and holistic

comparison of existing research based on 12 comparisons attributes to derive conclusions about central aspects,

gaps and possible future research directions.

We define what exactly constitutes reuse knowledge in the context of architecture evolution based on the

systematic review. Moreover, we derived a taxonomy that aims to assist the researchers in classifying existing

and future approaches for reuse-driven evolution that reflects a continuous progression of research over the last

decade. We presented the research implications organised by the REVOLVE framework to consolidate the

existing work with reflections on future research. The comparative analyses are presented in a number of

structured tables. The reported results aim to facilitate knowledge transfer among researchers and practitioners to

promote the ‘build-once, use-often’ philosophy to address recurring evolution. Based on the proposed conceptual

framework, we distinguish between research efforts on architecture change discovery and mining (6/32 studies,

i.e., 19% of the reviewed literature) and architecture change execution (26/32, 81%). Five distinct research

activities – identifying, sharing, analysing, reusing and capturing reuse knowledge – frame the scope of reuse-

driven architecture evolution. We also identified a number of research gaps and potential future trends:

 Reuse Knowledge Mining and Discovery. In this evolution reuse context, the most frequent research focus

are change patterns to promote reuse for both the design-time evolution and run-time adaptation of

architectures. Knowledge capturing and identification represent the activities that have received significantly

less research effort.

 Dynamic, Run-time Evolution. The solutions for reuse of design-time changes show a relative maturation

with change patterns. However, with growing needs for autonomic computing and self-adaptive architectures,

more efforts are required to systematically address dynamic evolution. We believe that architecture evolution

mining is particularly helpful to discover reuse knowledge that can be shared and reused to address anticipated

and unanticipated evolution problems. A relative lack of focus on empirical identification of reuse knowledge

suggests the need of solutions with architecture change mining as a complementary and integrated phase for

architecture change execution.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Jim Buckely (affiliated with: Lero – the Irish Software Engineering Research Centre,

University of Limerick, Ireland) and Bardia Mohabbati (affiliated with: Simon Fraser University, Canada) for their feedback

and thoughtful suggestions throughout the development and evaluation of the review protocol. This work was supported, in

part, by Science Foundation Ireland grant 10/CE/I1855 to Lero - the Irish Software Engineering Research Centre

(www.lero.ie).

http://www.dur.ac.uk/ebse/
file:///C:/Drop/Dropbox/PooAakashResearch/09%20JSEP/03%20JSME_Revised_Poo_Commments/Revised%20Paper/www.lero.ie

REFERENCES

[1] T. Mens and S. Demeyer. Software Evolution. Springer, 2008.

[2] M. Lehman, Laws of Software Evolution Revisited. In Software Process Technology, LNCS 1996.

[3] N. Medvidovic, D. Rosenblum, and R. N. Taylor. "A Language and Environment for Architecture-based

Software Development and Evolution. In International Conference on Software Engineering, 1999.

[4] I. Moghadam, and M. Cinnéide. Automated Refactoring Using Design Differencing." In 16th European

Conference on Software Maintenance and Reengineering, 2012.

[5] A.G. Ganek and T. A Corbi. The Dawning of the Autonomic Computing Era. IBM Systems Journal, 42(1), 5-

18. 2003

[6] K. Mens, Kim, T. Mens, B. Wouters and R. Wuyts. "Managing Unanticipated Evolution of Software

Architectures. In Workshop on Object-Oriented Technology, LNCS. 1999.

[7] P. Jamshidi, M. Ghafari, A. Ahmad and C. Pahl. A Framework for Classifying and Comparing Architecture

Centric Software Evolution. In 17th European Conference on Software Maintenanace and Reengineering, 2013.

[8] J. Bradbury, J. Cordy, J. Dingel, M. Wermelinger. A Classification of Formal Specifications for Dynamic

Software Architectures. In International Workshop on Self-Managed Systems, 2004.

[9] M. A. Babar, T. Dingsøyr, P. Lago and H.V. Vliet. Software Architecture Knowledge Management: Theory

and Practice, 2009.

[10] Joint 10th Working IEEE/IFIP Conference on Software Architecture and 6th European Conference on

Software Architecture. [Online:] http://www.wicsa.net/

[11] J. Buckley, T. Mens, M. Zenger, A. Rashid and G. Kniesel. Towards a Taxonomy of Software

Change. Journal of Software Maintenance and Evolution: Research and Practice, 309-332. 2005

[12] L. Baresi, E. D. Nitto, and C. Ghezzi. Toward Open-world Software: Issue and Challenges. In IEEE

Computer: 36-43. 2006.

[13] H.P Breivold, I. Crnkovic, and M. Larsson. A Systematic Review of Software Architecture Evolution

Research. In Information and Software Technology 54, no. 1: 16-40. 2012.

[14] M. Petticrew and H. Roberts. Systematic Reviews in the Social Sciences: A Practical Guide. Oxford:

Blackwell. 2006.

[15] H. Zhang and M.A. Babar. Systematic Reviews in Software Engineering: An Empirical Investigation, In

Information and Software Technology, 2012.

[16] B. J. Williams and J. C. Carver. Characterizing Software Architecture Changes: A Systematic Review. In

Information and Software Technology, 2010, pp. 31-51.

[17] P. Brereton, B. Kitchenham, D. Budgen, M. Turner and M. Khalil. Lessons from Applying the Systematic

Literature Review Process within the Software Engineering Domain. In Journal of Systems and Software, 80(4),

571-583, 2007

[18] Workshop on SHaring and Reusing Architectural Knowledge. [Online:] http://www.shark-workshop.org/.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. "Design patterns: Abstraction and Reuse of Object-oriented

Design. In Object-Oriented Programming (ECOOP), 1993.

[20] C. Pahl, S. Giesecke, and W. Hasselbring. "Ontology-based Modelling of Architectural Styles." In

Information and Software Technology 51.12 (2009): 1739-1749.

[21] P. Oreizy, M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum

and A. Wolf. An Architecture-based Approach to Self-adaptive Software. In IEEE Journal of Intelligent Systems

and Their Applications.

[22] WICSA Wiki. http://wwwp.dnsalias.org/wiki/WICSA_2011.

[23] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining version histories to guide software changes.

International Conference on Software Engineering (ICSE), 2004.

[24] C. Jiang, Chuntao, F. Coenen, and M. Zito. A Survey of Frequent Subgraph Mining Algorithms. Knowledge

Engineering Review, 2012.

[25] A. Ahmad and P. Jamshidi. A Classification and Comparison of Software Architecture Evolution Reuse-

Knowledge. [Online:] http://www.computing.dcu.ie/~pjamshidi/SLR/SLR-ERK.html.

[26] J. Stammel, Z. Durdik, K. Krogmann, R. Weiss, and H. Koziolek. Software Evolution for Industrial

Automation Systems: Literature Overview, Karlsruhe Reports in Informatics, 2011.

http://www.wicsa.net/
http://www.shark-workshop.org/
http://wwwp.dnsalias.org/wiki/WICSA_2011
http://www.computing.dcu.ie/~pjamshidi/SLR/SLR-ERK.html

[27] N. Chapin, J. E. Hale, K. M. Kham, J. F. Ramil, and W.G. Tan, Types of software evolution and software

maintenance. Journal of Software Maintenance: Research and Practice 13(1), 2001.

[28] O. P. N. Slyngstad, R. Conradi, M. A. Babar, V. Clerc, H. van Vliet, Risks and Risk Management in Software

Architecture Evolution: An industrial survey. In 15th Asia-Pacific Software Engineering Conference, 2008.

[29] Z. Li, P. Liang, P. Avgeriou. Application of Knowledge-based Approaches in Software Architecture: A

Systematic Mapping Study. In Information and Software Technology, 2013.

[30] J.M. Barnes, D. Garlan, Challenges in Developing a Software Architecture Evolution Tool as a Plug-In.

In 3rd Workshop on Developing Tools as Plugin-Ins, 2013.

[31] A. X. Garg, D. Hackam, M. Tonelli, Systematic review and meta-analysis: when one study is just not

enough. Clinical Journal of the American Society of Nephrology, 3(1), 253-260, 2008.

[32] W. M. Ulrich, P. Newcomb. Information Systems Transformation: Architecture-Driven Modernization Case

Studies. 2010. Morgan Kaufmann Publishers Inc.

[33] K. Yskout, R. Scandariato, W. Joosen. Change Patterns: Co-evolving Requirements and Architecture.

In Journal of Software and Systems Modeling, 2012.

[34] D. Garlan, S. Cheng, A. Huang, B. Schmerl, P. Steenkiste. Rainbow: Architecture-Based Self-Adaptation

with Reusable Infrastructure. In IEEE Computer, vol. 37, pp. 46-54, 2004.

[35] J. M. Barnes, D. Garlan and B. Schmerl. Evolution Styles: Foundations and Models for Software Architecture

Evolution. In Journal of Software and Systems Modeling, 2012.

[36] O. L. Goaer. D. Tamzalit, M. Oussalah, A. D. Seriai. Evolution Shelf: Reusing Evolution Expertise within

Component-Based Software Architectures. In IEEE International Computer Software and Applications

Conference, 2008.

[37] A. Hoek, M. Rakic, R. Roshandel and N. Medvidovic. Taming Architectural Evolution. In Joint 8th

European Software Engineering Conference and 9th ACM SIGSOFT International Symposium on Foundations

of Software Engineering, 2001.

[38] I. Côté, M. Heisel , I. Wentzlaff. Pattern-Based Evolution of Software Architectures. In European

Conference on Software Architecture, 2007.

[39] N. Gui and V. De. Florio, Towards Meta-Adaptation Support with Reusable and Composable Adaptation

Components. In IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems, 2012.

[40] X. Dong, M. W. Godfrey. Identifying Architectural Change Patterns in Object-Oriented Systems. In 16th

IEEE International Conference on Program Comprehension, 2008.

[41] A. Ahmad. P. Jamshidi, C. Pahl. Graph-based Pattern Identification from Architecture Change Logs. In

10th International Workshop on System/Software Architectures, 2012.

[42] A. Ahmad. P. Jamshidi, M. Arshad, C. Pahl. Graph-based Implicit Knowledge Discovery from Architecture

Change Logs. In 7th Workshop on SHaring and Reusing Architectural Knowledge, 2012.

[43] P. Bengtsson and Jan Bosch. Architecture Level Prediction of Software Maintenance. In 3rd European

Conference on Software Maintenance and Reengineering, 1999.

[44] N. Lassing, D. Rijsenbrij, H. Vliet. How Well can We Predict Changes at Architecture Design Time. In

Journal of Systems and Software, 2003.

[45] R. Kazman, S.Woods, J. Carriere. Requirements for Integrating Software Architecture and Reengineering

Models: CORUM II. In Working Conference on Reverse Engineering, pp. 154-163, 1998

[46] A. Winter and J. Ziemann, Model-based Migration to Service-Oriented Architectures. In International

Workshop on SOA Maintenance and Evolution, 2007.

[47] M. Razavian and P. Lago. Towards A Conceptual Framework for Legacy to SOA Migration. In Service-

Oriented Computing. ICSOC/ServiceWave 2009 Workshops, 2009.

[48] E.Dancy and J.R.Cordy, James R.STAC: Software Tuning Panels for Autonomic Control. In 2006

conference of the Center for Advanced Studies on Collaborative Research. 2006.

[49] A. Ahmad, P. Jamshidi, C. Pahl. A Framework for Acquisition and Application of Software Architecture

Evolution Knowledge. In ACM SIGSOFT Software Engineering Notes. Vol 38, Issue 4, September 2013.

[50] S. Brinkkemper. Method Engineering: Engineering of Information Systems Development Methods and

Tools. In Information and Software Technology, 1996.

[51] Bennett, K.H., Rajlich, V. Software Maintenance and Evolution: a Roadmap. In ICSE’2000 - Future of

Software Engineering, Limerick, 2000, pp. 73-87.

[52] P. Jamshidi, A. Ahmad, and C. Pahl. Cloud Migration Research: A Systematic Review. IEEE Transactions

on Cloud Computing, 2013.

Appendix – List of Studies for Systematic Literature Review

Study
ID

Author(s), Title, Channel of Publication Year of
Publication

Citation
Count

Quality
Score

[S1] J. M. Barnes, D. Garlan and B. Schmerl. Evolution Styles: Foundations and Models for Software Architecture
Evolution. In Journal of Software and Systems Modeling.

2012 0 3.8

[S2] K. Yskout, R. Scandariato, W. Joosen. Change Patterns: Co-evolving Requirements and Architecture. In Journal
of Software and Systems Modeling.

2012 04 3.6

[S3] D. Garlan, S. Cheng, A. Huang, B. Schmerl, P. Steenkiste. Rainbow: Architecture-Based Self-Adaptation with
Reusable Infrastructure. In IEEE Computer

2004 665 3.6

[S4] D. Garlan, S.W. Cheng, B. Schmerl. Increasing System Dependability through Architecture-Based Self-Repair.
In Architecting Dependable Systems.

2008 138 3.6

[S5] L. Baresi, R. Heckel, S. Thöne and D. Varró. Style-based Modeling and Refinement of Service-oriented
Architectures. In Journal of Software and Systems Modeling.

2006 82 3.5

[S6] M. Goedicke and U. Zdun. Piecemeal Legacy Migrating with an Architectural Pattern Language. In Journal of
Software Maintenance: Research and Practice.

2002 29 3.4

[S7]

A. Hoek, M. Rakic, R. Roshandel and N. Medvidovic. Taming Architectural Evolution. In Joint 8th European Software
Engineering Conference and 9th ACM SIGSOFT International Symposium on Foundations of Software Engineering.

2001 72 3.3

[S8] C. E. Cuesta, E. Navarro, D. E. Perry, C. Roda. Evolution Styles: Using Architectural Knowledge as an Evolution
Driver. In Journal of Software: Evolution and Process.

2012 0 3.3

[S9] P. Bengtsson and Jan Bosch. Architecture Level Prediction of Software Maintenance. In 3rd European Conference
on Software Maintenance and Reengineering.

1999 107 3.3

[S10] N. Lassing, D. Rijsenbrij, H. v. Vliet. How Well can we Predict Changes at Architecture Design Time. In Journal of
Systems and Software.

2003 31 3.3

[S11]

D. Garlan, J. M. Barnes, B. Schmerl, O. Celiku. Evolution Styles: Foundations and Tool Support for Software
Architecture Evolution. In Joint Working IEEE/IFIP Conference on Software Architecture 2009 & European
Conference on Software Architecture.

2009 47 3.2

[S12] C. Hentrich and U. Zdun. Patterns for Process-Oriented Integration in Service-Oriented Architectures. In 11th
European Conference on Pattern Languages of Programs.

2006 42 3.2

[S13]

O. L. Goaer. D. Tamzalit, M. Oussalah, A. D. Seriai. Evolution Shelf: Reusing Evolution Expertise within
Component-Based Software Architectures. In IEEE International Computer Software and Applications Conference.

2008 13 3.0

[S14]

O. Zimmermann, U. Zdun, T. Gschwind, F. Leymann. Combining Pattern Languages and Reusable Architectural
Decision Models into a Comprehensive and Comprehensible Design Method. In 7th Working IEEE/IFIP
Conference on Software Architecture.

2008 27 3.0

[S15] U. Zdun and S. Dustdar. Model-Driven and Pattern-Based Integration of Process-Driven SOA Models. In
International Journal Business Process Integration and Management, 2007.

2007 41 2.9

[S16] H. Gomaa, M. Hussein. Software Reconfiguration Patterns for Dynamic Evolution of Software Architectures. In
4th Working IEEE/IFIP Conference on Software Architecture.

2004 50 2.8

[S17] X. Dong, M. W. Godfrey. Identifying Architectural Change Patterns in Object-Oriented Systems. In 16th IEEE
International Conference on Program Comprehension.

2008 08 2.8

[S18]

N. Gui and V. De. Florio, Towards Meta-Adaptation Support with Reusable and Composable Adaptation
Components. In EEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems.

2012 0 2.8

[S19] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, D. A. Menascé. Software Adaptation Patterns for Service-oriented
Architectures. In ACM Symposium on Applied Computing.

2010 19 2.7

[S20] N. Sadou, D. Tamzalit, M. Oussalah. How to Manage Uniformly Software Architecture at Different Abstraction
Levels. In 24th International Conference on Conceptual Modeling.

2005 08 2.4

[S21] D. Tamzalit, T. Mens. Guiding Architectural Restructuring through Architectural Styles. In 17th IEEE International
Conference and Workshops on Engineering of Computer-Based Systems.

2010 10 2.1

[S22]

O. Barais, L. Duchien, A. Le Meur. A Framework to Specify Incremental Software Architecture Transformations.
In 31st EUROMICRO Conference on Software Engineering and Advanced Applications.

2005 17 2.1

[S23] D. Tamzalit, M. Oussalah, O. L. Goaer, A. d. Seriai. Updating Software Architectures: A Style-based Approach.
In International Conference on Software Engineering Research and Practice.

2006 07 2.0

[S24]

Le. Goaer, M. Oussalah, D. Tamzalit. Reusing Evolution Practices onto Object-Oriented Designs: An
Experiment with Evolution Styles. In 19th International Conference on Software Engineering and Data Engineering.

2010 0 2.0

[S25] J. C. Georgas R. N. Taylor. Towards a Knowledge-Based Approach to Architectural Adaptation Management.
In 1st ACM SIGSOFT Workshop on Self-managed Systems.

2004 41 1.9

[S26] J. C. Georgas, A. v.d. Hoek, R. N. Taylor. Architectural Runtime Configuration Management in Support of
Dependable Self-Adaptive Software. In Workshop on Architecting Dependable Systems.

2005 17 1.9

[S27] I. Côté, M. Heisel, I. Wentzlaff. Pattern-Based Evolution of Software Architectures. In European Conference on
Software Architecture.

2007 02 1.8

[S28] E. Truyen and W. Joosen. Towards an Aspect-oriented Architecture for Self-adaptive Frameworks. In Workshop
on Aspects, Components, and Patterns for Infrastructure Software.

2008 04 1.7

[S29] A. Ahmad. P. Jamshidi, C. Pahl. Graph-based Pattern Identification from Architecture Change Logs. In 10th
International Workshop on System/Software Architectures.

2012 02 1.6

[S30] P. Jamshidi, C. Pahl. Business Process and Software Architecture Model Co-evolution Patterns. In Workshop
on Modeling in Software Engineering.

2012 01 1.5

[S31] A. Ahmad. P. Jamshidi, M. Arshad, C. Pahl. Graph-based Implicit Knowledge Discovery from Architecture
Change Logs. In 7th Workshop on SHaring and Reusing Architectural Knowledge.

2012 0 1.5

[S32] J. C. Georgas R. N. Taylor. An Architectural Style Perspective on Dynamic Robotic Architectures. In IEEE 2nd
International Workshop on Software Development and Integration in Robotics.

2007 02 1.5

http://acme.able.cs.cmu.edu/pubs/show.php?author=Jeffrey-M_Barnes
http://acme.able.cs.cmu.edu/pubs/show.php?author=David_Garlan
http://acme.able.cs.cmu.edu/pubs/show.php?author=Bradley_Schmerl
http://acme.able.cs.cmu.edu/pubs/show.php?year=2012
http://www.inf.mit.bme.hu/en/biblio/author/444
http://dl.acm.org/author_page.cfm?id=81100064176&coll=DL&dl=ACM&trk=0&cfid=285899024&cftoken=39019093
http://dl.acm.org/author_page.cfm?id=81100630405&coll=DL&dl=ACM&trk=0&cfid=285899024&cftoken=39019093
http://www.informatik.uni-trier.de/~ley/pers/hd/z/Zimmermann:Olaf.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gschwind:Thomas.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Leymann:Frank.html
http://dl.acm.org/author_page.cfm?id=81375592566&coll=DL&dl=ACM&trk=0&cfid=285899024&cftoken=39019093
http://dl.acm.org/author_page.cfm?id=81100408215&coll=DL&dl=ACM&trk=0&cfid=285899024&cftoken=39019093

