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ABSTRACT –– Context: Architecture-centric software evolution (ACSE) enables changes in system’s structure 

and behaviour while maintaining a global view of the software to address evolution-centric trade-offs. The existing 

research and practices for ACSE primarily focus on design-time evolution and runtime adaptations to 

accommodate changing requirements in existing architectures.  

Objectives: We aim to identify, taxonomically classify and systematically compare the existing research focused 

on enabling or enhancing change reuse to support ACSE.  

Method: We conducted a systematic literature review (SLR) of 32 qualitatively selected studies, and 

taxonomically classified these studies based on solutions that enable i) empirical acquisition and ii) systematic 

application of architecture evolution-reuse knowledge to guide ACSE.  

Results: We identified six distinct research themes that support acquisition and application of architecture 

evolution-reuse knowledge. We investigated: a) how evolution-reuse knowledge is defined, classified and 

represented in the existing research to support ACSE, b) what are the existing methods, techniques, and solutions 

to support: b) empirical acquisition and c) systematic application of architecture evolution-reuse knowledge.  

Conclusions: Change patterns (34% of selected studies) represent a predominant solution, followed by evolution 

styles (25%) and adaptation strategies and policies (22%) to enable application of reuse knowledge. Empirical 

methods for acquisition of reuse knowledge represent 19% including pattern discovery, configuration analysis, 

evolution and maintenance prediction techniques (approximately 6% each). A lack of focus on empirical 

acquisition of reuse knowledge suggests the need of solutions with architecture change mining as a 

complementary and integrated phase for architecture change execution. 

KEYWORDS: Software Architecture, Architecture-Centric Software Evolution, Architecture Evolution-Reuse 

Knowledge, Systematic Literature Review, Evidence-Based Study in Software Evolution, Research Synthesis. 

1. INTRODUCTION 

Modern software systems operate in a dynamic environment with frequent changes in stakeholder needs, business 

and technical requirements and operating environments [1, 2]. These changing requirements trigger a continuous 

evolution in existing software to prolong its productive life and economic value over time [1, 3]. During the 

design, development, and evolution of software systems; the role of an architecture as a blueprint of software is 

central to map the changes in requirements [33] and their implementations in source code [4]. Architecture 

abstracts the implementation specific details of a software by modelling lines-of-code as architectural components 

and their interconnections. As a result, an architecture model enables planning, modelling and executing both 

design-time evolution [3, 8] and runtime adaptation [21, 27] – at higher abstraction levels such as software 

components and connectors [3, 7, 16, 21].  

Lehman’s law of continuing change [2] poses a challenge to research and practices that aim to support long-living 

and continuously evolving architectures [6, 21, 34] under frequently varying requirements [16, 33]. The law states, 

“systems must be continually adapted or they become progressively less satisfactory”. To support a continuous 

change [2], existing solutions focused on exploiting reusable knowledge and expertise to address recurring 

evolution [35] and adaptation [34] of software architectures. However, there has been no attempt to analyse the 

existing research with a systematic study of active trends, limitations and future dimensions for evolution reuse 

in software architectures [7, 13]. Furthermore, considering the growing demand for autonomic computing [5, 12] 

or specifically self-adaptive architectures [6, 8, 34], we must distinguish the effects of reuse on design-time [3] 

(also static or off-line) as well as on run-time (also dynamic adaptation or online) evolution [21].  

Recently, we conducted a systematic review [7] to classify and compare state-of-the-research and practices that 

enable architecture-centric software evolution (ACSE). An evaluation of this review suggested, “given the 

increasing importance of reuse in ACSE, a dedicated effort is required to systematically classify and compare 

available evidences that support reuse in evolution and adaptation to address architecture-based change 

management”. Existing studies of architecture evolution research are focused on analysing [13], characterising 

[16] and comparing [7, 8] ACSE approaches. In contrast to the existing reviews on architectural evolution [7, 8, 

13, 16], our focus in this review is to classify and compare research that enables acquisition and application of 

reuse knowledge to support ACSE. 



In recent years, interest in the area of Architecture Knowledge (AK) research [29] has grown – in books [9], 

research conferences [10], workshops [18] and dedicated body-of-knowledge [22]. Although Architecture 

Evolution-Reuse Knowledge (AERK)1 could be classified as a sub-domain of architecture knowledge (AK), a 

survey of architecture knowledge research [29] identifies architectural maintenance and evolution as an 

independent concern. This allows us to conclude that in the general context of AK, there is a need to explicitly 

classify and compare research on evolution knowledge to address recurring evolution in architectures [34, 35, 36]. 

Thus, we shift architectural knowledge application focus from the reuse of design-time artefacts to the reuse of 

evolution-centric artefacts. Although, the progress of architecture evolution reuse research [35, 36, 37] is reflected 

over more than a decade starting in 2001 [37]. However, we did not find any evidence to systematically synthesise 

the collective impact of existing research focused on architecture evolution-reuse knowledge.   

To carry out this review, we followed the guidelines in [17] to conduct a systematic literature review (SLR) of 

evolution reuse in architectures. SLRs helps to identify, classify and synthesise a comparative overview of state-

of-the-art research and enable knowledge transfer among the research community. The objective of this research 

is to systematically identify and classify the available evidence about evolution reuse in software architectures, 

and provide a comparison of existing research to highlight its potential, limitations and future dimensions. 

This SLR includes 32 qualitatively selected studies that are classified as research that supports acquisition or 

application of reuse knowledge to support ACSE. To assess the contribution of each study, we provide a 

comparison among all the studies and synthesise our results using 12 comparison attributes.  The comparison 

attributes are derived and refined by following the guidelines in [11, 13, 16], our experience with SLRs [7, 52], a 

qualitative assessment of the studies and an external validation of the review protocol. 

In Figure 1, a classification of existing literature highlights primary contributions of this paper, focussing on:  

 How architecture evolution-reuse knowledge is defined, classified and expressed in existing research to 

support ACSE. The contribution is a taxonomic classification scheme to identify and categorise research with 

overlapping and disjoint themes on evolution reuse. 

 What existing methods and techniques enable or enhance evolution reuse in software architectures. We 

classify and compare the state-of-research and analyse the research impact based on 26 (81%) of 

qualitatively assessed studies.  

 What existing methods and techniques enable an empirical acquisition of evolution-reuse knowledge. We 

analyse the role of existing methodologies to discover and share evolution reuse based on 6 (19%) selected 

studies. 

 

Figure 1. An Overview of the Contribution of Systematic Review. 

We identified three distinct research themes that enable reuse in architecture evolution. Change patterns [33, 38], 

as the most prominent solution address corrective, perfective and adaptive changes [16] for design-time evolution 

[3, 35] as well as runtime adaptations [21, 34]. In contrast, evolution styles [35, 36] only support design-time 

evolution as corrective and perfective type changes [16], while adaptation strategies and policies [34, 39] enable 

self-adaptation in running architectures. In general, we observed non-complementary and solution-specific 

representation and expression of architecture evolution-reuse knowledge. In the knowledge acquisition context, 

we identified three research themes – pattern discovery [40, 41], configuration analysis [37, 42] and evolution 

and maintenance prediction [43, 44]. We observed a lack of research on empirical approaches to analyse and 

discover knowledge [41, 43, 44] that can be shared and reused to guide ACSE.  

Based on a taxonomic classification of studies, we provide a definition of architecture evolution-reuse knowledge. 

We propose a framework, REVOLVE, that supports architecture change mining (for reuse knowledge acquisition) 

as a complementary and integrated phase to architecture change execution (for reuse knowledge application). 

                                                                 
1 Please note that we use the terms “Architecture-Evolution Reuse Knowledge” and “Evolution-Reuse Knowledge” and 

“Reuse Knowledge” interchangeably – all referring to the same concept. 



This framework guides the systematic review. The literature base we provide in [25] is itself subject to a 

continuous evolution (adding newly published studies over time) and helps in knowledge sharing with ACSE 

community [26, 31]. In particular, the results of this SLR are beneficial for: 

 Researchers in software engineering and software architecture in particular, who require an identification of 

relevant studies. A systematic presentation of research provides a foundational body of knowledge to develop 

theory and solutions, analyse research implications and to establish future dimensions. 

 Practitioners interested in understanding the methods and solutions with formalism and tool support to model, 

analyse, and implement evolution reuse in software architectures.  

In general, this SLR provides a literature base to identify emerging trends or formulating hypotheses as a 

complement to existing studies [7, 8, 13, 16, 29]. The collected data in [25] – as an online literature base – provides 

a detailed insight and objective interpretation of the results. 

 

The remainder of this paper is organised as follows. Section 2 presents background details and related research. 

Section 3 describes details about the research methodology we followed to plan, conduct and document the SLR. 

Section 4 highlights the results based on a taxonomical classification of the literature. Sections 5 and 6 present 

two separate concerns – application and acquisition of reuse knowledge respectively. Research implications and 

validity threats are discussed in Section 7 with conclusions in Section 8. 

2. BACKGROUND 

Architectural maintenance [43], evolution [3, 36] and adaptation [34] represent different views of change 

implementation determined by the types, means, times and frequency of changes in software architectures. We 

highlight existing secondary studies in the context of ACSE that justifies the needs and scope of this review. In 

contrast to the existing systematic reviews on ACSE [7, 8, 13, 16, 29], this SLR specifically focuses on a 

taxonomical classification and comparison of research that supports evolution reuse in architectures. 

2.1 Architecture-Centric Software Maintenance and Evolution 

The implications of software maintenance and evolution in the context of system life cycle became obvious with 

the emergence of Lehman’s laws of software evolution [2] and the ISO/IEC 14764 standard for software 

maintenance [51]. Since then, maintenance and evolution represent a critical activity in system life cycle to 

prolong the productive life, economic value and operational reliability of existing software [1, 2, 11]. However, 

beyond these abstract laws and theoretical standardisations, a critical decision is to select an appropriate 

abstraction to implement changes in software [3, 35, 36]. In contrast to source-code refactoring [4], architecture 

models – as topological configurations of components and their connectors – represent an appropriate abstraction 

of software to enable maintenance and evolution in a controllable fashion [3, 7, 13]. The software engineering 

literature in general and theory of software architectures in particular treated maintenance and evolution as 

virtually synonymous, interchangeable concepts [1, 27]. However, in this review; we must maintain a distinction 

between the two based on the time of change implementation. More specifically, architectural maintenance refers 

to post-deployment changes implemented as static or off-line modifications of architecture. In contrast, 

architectural evolution refers to consequential changes in architectures usually implemented as dynamic or online 

modifications of architecture. Furthermore, in order to consider the needs for autonomic computing [5] and self-

adaptive architectures [6, 8, 21], we must distinguish between design-time maintenance [43, 44] and run-time 

evolution or adaptations [34, 39]. In the taxonomy of software change [11], the factors influencing evolution are: 
 Time of Evolution: To operate in a dynamic and open world [12], modern software systems need to evolve 

their architecture while maintaining system execution. This highlights a critical factor as a change (either 

design-time or run-time evolution) that must be implemented in a timely and consistent fashion [34].  

 Frequency of Change: It determines the rate at which software must evolve in order to keep its utility [2]. 

Therefore, evolution-reuse knowledge could provide assistance to effectively address frequent (business and 

technical) change cycles in architecture of software systems.  

 Evolution Reuse: To support a frequent evolution and adaptation in a timely fashion, solutions must follow 

‘build-once, use-often’ philosophy to support reuse of recurring architectural changes [33, 42]. In recent 

years, solution for architectural evolution promoted evolution styles [35, 36] to enable change reuse. 

However, systematic reviews in ACSE [7, 13, 16, 29] suggest the needs for solutions that enable a continuous 

empirical discovery of reuse knowledge that can be shared and reused to enable or enhance ACSE.  

2.2 Secondary Studies on Software Architecture Evolution 

In recent years, the SLRs on ACSE have focused on architecture evolution analysis [13], characterisation of 

architectural changes [16], and classification and comparison of architecture evolution research [7, 8]. We 



summarise the existing SLRs [13, 16, 7] (in Section 2.2.1) and survey-based studies [8] (in Section 2.2.2) to justify 

the needs and scope for this review (in Section 2.2.3).  

2.2.1 Systematic Literature Reviews of Software Architecture Evolution 

A. Review of Architecture Change Characterisation – A systematic review (Williams et al. [16] in Table 1) 

investigated a total of 130 peer-reviewed studies – published from 1976 to 2008 – to characterise design-time and 

runtime evolution as corrective, perfective, adaptive and preventive type changes in architectures. The SLR [16] 

proposed a comprehensive change characterisation scheme to systematically classify different approaches on how 

to distinguish and characterise software architecture changes and change impact analysis. The scheme works as a 

decision tree to provide support for system developers to assess the impact and feasibility of desired changes.  

B. Review of Architecture Evolution Analysis – A systematic review (Breivold et al. [13] in Table 1) investigates 

82 peer-reviewed studies – published from 1992 to 2012 – focused on design-time evolution of software 

architectures. The SLR in [13] is focused on analysing the evolvability of a software architecture. The primary 

objective of this review is to provide an overview of existing approaches for analysing and improving software 

architecture evolution and to identify critical factors influencing software architecture evolvability. 

C. Classification and Comparison of ACSE Research –We conducted a systematic review (Jamshidi et al. [7] in 

Table 1) of 60 peer-reviewed studies – published from 1995 to 2011– focused on design-time and runtime 

evolution of software architectures. In the SLR [7], we qualitatively investigated the state-of-the-art to classify 

and compare of formalisms and tool support that enable or enhance software architecture evolution.   

Table 1. A Summary of secondary studies on ACSE. 

Study 

Type 

Study 

Reference 

Study 

Focus 

Year of  

Publication 

Time 

Constraints 

Total 

Reviewed 

Years of 

Studies 

 

Systematic 
Literature 
Review(s) 

Williams et al. [16] Change Characterisation. 2010 Design-time, Runtime 130 1976-2008 

Breivold et al. [13] Evolvability Analysis. 2011 Design-time 82 1992-2010 

Jamshidi et al. [7] Classification and Comparison  2013 Design-time, Runtime 60 1995-2011 

Ahmad et al. [25] Reuse-Driven Evolution N/A Design-time, Runtime 32 1999-2012 

Surveys Bradbury et al. [8] Dynamic Evolution  2004 Runtime 14 1992-2002 

Mapping 
Studies 

Li et al. [29] Architecture Knowledge 2013 N/A 55 2000-2011 

 

2.2.2 Survey-based and Taxonomic Studies on Software Architecture Evolution 

A. Survey of Self-Management in Dynamic Software – A survey-based study (Bradbury et al. [8] in Table 1) 

reviewed 14 studies – published from 1992 to 2002 – focused on runtime evolution of software architectures. The 

survey [8] synthesises formal specifications for dynamic adaptation of software architectures. The authors present 

a set of classification criteria for the comparison of dynamic software architectures based on the types, processes 

and infrastructure for dynamic adaptation of architectures. 

B. Mapping Study on Knowledge-based Approaches in Software Architectures – A mapping study (Li et al. [29] 

in Table 1) provides a systematic mapping of research on knowledge-based approaches in software architecture 

according to 55 peer reviewed studies – published from 2000 to 2011. The mapping study [29] identifies gaps in 

the application of knowledge-based approaches to five architecting activities that include architectural analysis, 

synthesis, evaluation, implementation, along with maintenance and evolution. The study shows an increasing 

interest in the application of knowledge-based approaches in software architecture with only 5/55 studies on 

architectural knowledge for maintenance and evolution.  

C. Industrial Survey and Taxonomic Study on Architecture Evolution – Stammel et al. [26] provide an overview 

of various approaches evaluated based on real-world industrial scenarios on the evolution of sustainable systems. 

The study targets practitioners because it is a general and live document based on a growing number of industrial 

experience reports. Slyngstad et al. [28] perform a survey among software architects from software industry in 

order to capture a more complete picture of risk and management issues in software architecture evolution. 

Although not directly related to the ACSE, some taxonomies of software change [11, 27] try to answer the 

questions like why, how, what, when and where aspects of software evolution that have also acted as a guideline 

for us to define the comparison attributes (detailed in Section 3).  

2.3 A Systematic Review of Architecture Evolution-Reuse Knowledge 

The review in this paper (Ahmad et al. [25] in Table 1) is focused on a systematic identification, classification 

and comparison of the existing research that supports application and acquisition of reuse knowledge to support 

ACSE. In contrast to the mapping study on AK [26] that identifies only 5 studies on design-time maintenance and 



evolution, our SLR is comprised of 32 studies published from 1999 to 2011 and is focused on both design-time 

and runtime evolution. As presented in Table 1, the proposed SLR complements the existing body of secondary 

studies on ACSE [8, 13, 16] and extends our previous review [7]. Given the importance of reuse in ACSE [13], it 

exclusively focuses on classification and comparison of evolution-reuse knowledge.  

In order to ensure that a similar review or any study has not already been performed, we searched the Compendex, 

IEEE Xplore, ACM and Google Scholar digital libraries (on 23/10/2012). None of the retrieved publications was 

related to any of our research questions detailed in Section 3. Considering the importance of reuse in ACSE [7, 

13] and the relative maturity of architecture knowledge (AK) approaches [9, 22], a consolidation of existing 

evidence about application and acquisition of reuse knowledge to support ACSE is timely. 

3. RESEARCH METHODOLOGY 

In contrast to a non-structured review process, a systematic literature review [15, 17] reduces bias by following a 

precise and rigorous sequence of methodological steps to investigate the state-of-research. More specifically, an 

SLR relies on a well-defined and evaluated review protocol to extract, analyse and document the results as 

illustrated in Figure 2. We adopted the guidelines in [17] with a three-step review process that includes: Planning, 

Conducting and Documenting the SLR. The review is complemented by evaluation of the outcome of each step, 

as illustrated in Figure 2. We also provide a taxonomical classification and comparison of the reviewed studies. 

A taxonomical classification is the foundation for comparative analysis of studies based on our defined 

comparison attributes (Section 3.5) that are subject to external evaluation prior to results reporting in [25].  

 
Figure 2. Systematic Review Process for Classification and Comparison of Reuse Knowledge in ACSE.  

3.1 Definition and Evaluation of the Protocol for Systematic Review 

According to the guidelines in [17], the review protocol drives the planning, conducting and documenting 

phases of the systematic review as illustrated in Figure 2. The protocol definition is provided in the reminder of 

Section 3. More specifically, protocol for SLR includes: i) identification of the needs and objectives for SLR 

(Section 3.2), ii) definition of search strategies to identify, include and exclude and qualitatively analyse the 

relevant literature (Section 3.3, Section 3.4),  iii) data extraction and results synthesis (Section 3.5), and iv) results 

classification (Section 3.6). We developed the review protocol by following the guidelines in [14, 15, 17] and our 

experience with conducting the systematic review [7, 52]. Additional details about the review protocol are 

provided in [25]. 

As suggested by [7] and [17], we externally evaluated the protocol before its execution. We asked two external 

experts for feedback, who had experience in conducting SLRs in an area that overlaps with software architecture 

research (see acknowledgement section). The feedback made by the expert resulted in a refined protocol. We also 

performed a pilot study of the systematic review with 15 (approximately 50%) of the included studies. The 

objective for conducting a pilot study was to first reduce the bias for a) identification of primary studies b) 

extraction of data from these studies and c) synthesising the results of review.  Based on the external review of 

the protocol, we expanded the review scope, improved search strategies and refined the inclusion/exclusion 

criteria during the pilot studies (see Section 3.3 for details). 

3.2 Planning the Review 

The review plan consists of three steps as i) identifying the needs for SLR, ii) specifying the research questions 

and iii) defining and evaluating the review protocol, as illustrated in Figure 2. 

 



 

3.2.1 Identify the needs for SLR  

The needs for SLR have been identified in [7] and its contribution already justified in Section 2. This SLR 

complements the existing reviews on ACSE [7, 8, 13, 16, 29] to investigate the state-of-research for application 

and acquisition of architecture evolution-reuse knowledge (cf. Table 1). Although the progress of research on 

architecture evolution reuse [35, 36, 37] is reflected over more than a decade [37], we did not find any evidence 

to systematically synthesise the collective impact of existing research on reuse knowledge (Section 2.3).  

Therefore, in this SLR, we aim to classify and compare existing research, identify the research potential, its 

limitations and outline future dimensions for methods, techniques and solution that enable evolution reuse in 

software architectures. In addition, the research questions help us to a) outline the scope and contributions of SLR 

and b) defining and evaluating the review protocol to conduct the SLR. 

3.2.2 Specify the Research Questions  

The research questions are based on our motivation to conduct the SLR, i.e. the answers provide us with an 

evidence-based overview of the definition, application and acquisition of reuse knowledge to support ACSE 

methods and techniques. We define three research questions that represent the foundation for deriving the search 

strategy for literature extraction. The objective outlines the primary intent of investigation for each question. In 

addition, a comparative analysis allows us to analyse the collective impact of research, represented in terms of 

comparison attributes (in Section 3.5, Table 5). 

 Research Question 1 – How evolution-reuse knowledge is defined, classified and expressed in existing 

literature to enable architecture-based software change management? 

Objective – To understand the existing classification and representation of architecture evolution-reuse 

knowledge that provides a foundation for a detailed comparison of solutions to enable ACSE. 

 Research Question 2 – What are the existing methodologies and techniques that support application of 

reuse knowledge to evolve software architectures? 

Objective – To identify and compare existing solutions that support an explicit reuse of change 

implementation mechanisms to enable design-time evolution and run-time adaptations in architectures. 

 Research Question 3 – What empirical approaches are employed to discover evolution-reuse 

knowledge? 

Objective – To investigate and compare the available support for empirical acquisition/discovery of reuse 

knowledge and expertise that can be shared to guide architecture evolution. 

3.3 Conducting the Review 

To conduct the review, we follow a three step process as i) searching the studies for review, ii) selection and 

qualitative assessment of studies, and iii) extraction and synthesis of data from studies, as illustrated in Figure 2. 

3.3.1 Selection of Primary Studies for Review 

The search terms used to identify primary studies were developed using suggestions in [15] and guided by the 

research questions (cf. Section 3.2). Our search process comprises of primary and secondary search. 

 Primary Search is a five-step process to identify and retrieve the relevant literature. The summary of each 

step involved in primary search is presented in Table 2. 

 Secondary Search includes a) review of references/bibliography section in the selected primary studies to 

find other relevant articles, b) review of citations to the selected primary studies to find any relevant articles, 

also known as a backward pass [15, 17] and c) identify and contact authors of selected primary studies for 

extended versions of the research, if required. The secondary search did not lead to identification of any 

relevant studies. The secondary search and study selection was performed iteratively until no new studies 

were found. 

The research question resulted in a composition of search string applied to six databases as illustrated in Figure 3. 

We extracted published peer-reviewed literature from years 1999 to 2012 (inclusive). The year 1999 was chosen 

as the preliminary search found no earlier results related to any of the research questions with 1550 manuscripts 

extracted. Because we used our primary search criteria on title and abstract, the results provided a relatively high 

number of irrelevant studies, which were further refined with secondary search.  

 

 

 



Table 2. A Summary of the Steps in the Literature Search. 

Search Step Description 

Step 1 - Derive Search Strings From RQs (cf. Table 1) in Section 3.1 

Step 2 - Consider Synonyms  

and Alternatives 

Consider the alternative spellings and synonyms while composing search strings as:  

- Evolution as [change, restructure, update, extension, , adaptation, reconfiguration, migration,  
transformation, modification] 

- Methods and Techniques to enable Reuse as [customise, pattern, plan, styles, framework, strategies].   

- Empirical Methods for Discovery [identification, extraction, tracing, mining, discovery, acquisition] 

- Architecture or Software Architecture [we only consider the term software architecture as only using 
architecture resulted in a large amount of irrelevant studies focusing on Hardware, Network or System 
Architecture etc.] 

Step 3 - Search-term 
Combinations 

Boolean OR to incorporate alternative spellings and synonyms 

Boolean AND to link the major terms. Number of unique search string depends on a multiplier: ([AND] 
clause) x (<OR>-keywords) 

Step 4  - Search String Division 
Dividing strings so that they could be applied to different databases.  

Assigning unique IDs to every (sub-) search string and customising them for all selected resources. 

Step 5 - Reference Management Citations with Zotero. 

 

Note that we have decomposed the search string for illustrative reasons in Figure 3. To search the primary studies 

the sub-strings in Figure 3 were combined and represented as a single search string. 

 

Figure 3. Summary of the Primary Search Process. 

3.4 Selection and Qualitative Assessment of Primary Studies  

The study selection comprises of a four-step process that includes, screening, initial selection, final selection and 

qualitative assessment as presented in Table 3 and Table 4. In Table 4, the qualitative assessment helps us to 

include/exclude studies and rank the selected studies based on their quality score in the Appendix. 

3.4.1 Screening of Identified Literature  

An initial screening is performed for all the studies based on four criteria as presented in Table 3. The screening 

ensures that each of the selected study represents a i) peer-reviewed research and is ii) written in English language 

and is iii) not a secondary study and iv) not a book. If the answer to all of these four criteria is [YES], the study 

is included for initial selection. Otherwise, if the answer to any of the four criteria is [NO], the study is excluded. 

3.4.2 Initial Selection 

This process comprises screening of titles and abstracts of the potential primary studies. For almost 35% of 

studies, no decision could be made just on title and abstract, as these papers did not make a clear distinction 

between an explicit representation and application (RQ1 and RQ2) or acquisition (RQ1 and RQ3) of reuse 



knowledge. During initial selection, the decision to exclude [NO] or proceeding to the final selection [YES] was 

based on an examination of the full text for each study. 

3.4.3 Final Selection 

This process is based on a brief validation of the studies, the use of formalisms and tool support and details of the 

experimental setup. After performing this step, 34 studies were selected. During the secondary search process, 

references and citations for the 34 selected studies were also reviewed, but this did not lead to the inclusion of any 

other relevant studies. As a result, 34 studies were included for qualitative assessment.  

Table 3. Summary of the Study Selection Process (without qualitative assessment). 

Step I - Screening 

Is the study in English language? YES NO 

Is the study a scientific peer-reviewed published research (no white papers or technical reports)?  YES NO 

Is the study not a secondary study?  YES NO 

Is the study not a book or a book chapter? YES NO 

If [YES] to all four criteria then go to Step II, otherwise exclude study 

Step II – Initial Selection 

 

RQ1, 

RQ2 

Does the study presents a method, technique or a 
solution for application of evolution reuse knowledge? 

 

If [YES] go to Step III, otherwise exclude study 

 

RQ2, 

RQ3 

Does the study presents a method, technique or a solution 
for an empirical acquisition of evolution reuse knowledge? 

 

If [YES] go to Step III, otherwise exclude study 

Step III – Final Selection 

 

RQ1, 

RQ2 

A. Are evaluations for application of reuse knowledge 
and architecture evolution are provided?  

 

RQ1, 

RQ2 

A. Are the Source(s) of reuse knowledge and its 
discovery/acquisition presented? 

B. Are Formalism and tool support for reuse 
knowledge application provided? 

B. Are the Details about the experimental setup of reuse 
knowledge discovery/acquisition provided? 

If [YES] to both A and B, then include study, otherwise exclude study 

 

3.4.4 Qualitative Assessment of Included Studies 

For the 34 included studies, we primarily focused on the technical rigor of content presented in the study. We 

based our qualitative assessment on two factors as General Assessment (G) and Specific Assessment (S), as 

summarised in Table 4. Additional details about the quality checklist are provided in [25]. Quality scores provided 

us with a numerical quantification to rank the selected studies in the Appendix. 

Table 4. Summary of Quality Assessment Checklist. 

General Items for Quality Assessment (G) 

Score for General Items ∑  𝟓
𝑮=𝟏  = Yes = 1 Partially = 0.5 No = 0 

G1 Are problem definition and motivation of the study clearly presented?    

G2 Is the research environment in which the study was carried out properly explained?    

G3 Are research methodology and its organisation clearly stated?    

G4 Are the contributions of the in-line with presented results?    

G5 Are the insights and lessons learnt from the study explicitly mentioned?    

Specific Items for Quality Assessment (S) 

 Score for Specific Items ∑  𝟓
𝐒=𝟏  =  Yes = 1 Partially = 0.5 No = 0 

S1 Is the research clearly focused on application or acquisition of evolution reuse?    

S2 Are the details about related research clearly addressing evolution reuse in architectures?    

S3 Is the research validation clearly illustrates application or acquisition of evolution reuse?    

S4 Are the results clearly validated in a real (industrial case study) evaluation context?    

S5 Are limitations and future implications for architecture evolution reuse clearly positioned?    

Based on the quality assessment checklist in Table 4, the quality ranking formula is given as follows. G represents 

5 factors as general assessment criteria from Table 4, providing a maximum score of 1 (25% weight), S represents 

a total of 5 factors as specific items providing a maximum score of 3. S is weighted as 3 times more than G (75% 

weight) as specific contributions of a study are more important than general factors for assessment. Based on a 

consensus among the researchers and suggestions from the external reviewers, the criteria for qualitative 

assessment maximum score was G + S = 4, where a 3-4 score  represented quality papers,  a score less than 3 and 

greater than or equal to 1.5 was acceptable  and a score less than 1.5 resulted in study exclusion.  



𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = [ 
∑  5

𝐺=1  

5
+  (

∑  5
𝑆=1  

5
× 3 ) ] 

 

Based on the qualitative assessment of 34 studies, we excluded two studies to finally select 32 studies for the 

review. Two studies were excluded because their quality scored was less than 1.5 according to the criteria in Table 

4. The selected studies are listed with title, authors, quality score and citation count in the Appendix. Please note 

that quality ranking is an internal metric only that helps us to choose most related studies and does not reflect any 

comparison or objective interpretation of selected studies. 

3.5 Data Extraction and Synthesis  

In order to record the extracted data from the selected studies, we followed [15, 17] and designed a structured 

format as presented in Table 5. The format in Table 5 records the data as generic and documentation specific items 

and comparison attributes for a collective and comparative analysis of research to answer RQ1 – RQ3. The data 

was extracted by locating evidence for each item in the selected studies. Self-explanatory comparison attributes 

(CA1 – CA12 in Table 5) are the smallest unit of data that we extracted from the literature for comparison purposes 

and provided for external evaluation. These attributes provide the base for follow-up syntheses, i.e., mainly 

classification and comparison of claims and supporting evidence of evolution reuse detailed in the paper. Instead 

of reading through detailed results (Section 4, 5, 6), external reviewers examined a summary of results provided 

in [25] to evaluate the protocol and suggestions about documentation of SLR results. 

Table 5. Extracted Data and Comparison Attributes. 

ID Data Item Aim 

Generic and Documentation Specific Data  

1 Study ID Unique id of study 

 

2 

 

Bibliography 

a) List of Author(s) 

b) Year of Publication 

c) Source of Publication 

     Book Chapter      Journal      Conference        Workshop       

3 Focus of Study Theme, Concepts, Motivation clearly presented: Yes     No 

4 Research Method Design and Evaluation     Case Study     Survey     Experiments      Other 

5 Application Context Context and application domain:  

Academic      Industrial      Both      Other 

6 Limitations Constraints, Limitations,  Future research clearly stated: 

Yes     No 

7 Related Research Positioning and Novelty of the research 

8 Future Dimensions Implications on Future Research or Ideas clearly stated: 

Yes     No 

Comparison Attributes for RQ1 and RQ2 (derived from [7,11,13, 16]) 

CA1 Knowledge Support Solutions to support reuse-knowledge in ACSE. 

CA2 Type of Change  Adaptive      Perfective      Corrective      Preventive  

CA3 Time of Change Design-time       Runtime 

CA4 Means of  Change Type of Operational Support to implement change  

CA5 Formalism Support Application of a specific formal approaches in modeling, analysing and executing 
evolution 

CA6 Arch. Descriptions UML      ADL      Graph Models      State Transition      Other 

Comparison Attributes for RQ1 and RQ3 (derived from [7,11,13, 16]) 

CA7 Knowledge Source The type of collection – real data set for change instances 

CA8 Type of Analysis  Type of analysis to discover evolutionary knowledge 

CA9 Type  of Formalism Type of formalised methods and for empirical discovery 

CA10 Time  of Discovery Run-time Extraction      Off-line Mining      Other 

Comparison Attributes for both RQ1, RQ2 and RQ3 (derived from [7,11,13, 16]) 

CA11 Tool Support Automation support for reuse-driven evolution. Yes     No 

CA12 Evaluation Method Design and Evaluation     Case Study     Survey      Experiments     Other 

 

 

 

 

 

 

  

    

    

   

 

      

    

     

 

 

 



3.3 Classifying the Results  

To discuss the results, first we need to provide a conceptual framework to systematically present the existing 

literature and to identify the required steps that enable ACSE. With the help of a framework we can organise the 

reviewed studies in terms of framework processes and activities that (a process-centric view to) support 

application and acquisition of evolution-reuse knowledge. Section 3.3.1 highlights some established models and 

frameworks for architectural evolution and adaptation, while Section 3.3.2 presents the proposed framework to 

consolidate the existing research on application and acquisition of architecture evolution-reuse knowledge.  

3.3.1 Models and Frameworks for Architectural Migration and Evolution 

We introduce some established reference models and frameworks based on their impact and relevance for design-

time evolution [3] and runtime adaptations of software architectures [21]. The selected models and frameworks 

are acknowledged through high citations in the research community, provide a detailed documentation and cover 

a process-based view for design-time evolution as well runtime adaptations detailed as: 

 Horseshoe Model for Architectural Extraction and Transformation 

The horseshoe model [45] (proposed by Software Engineering Institute in 1999) represents one of the 

classical approaches for architecture-based reverse and forward engineering. The Horseshoe model 

follows a three-step process including architectural extraction, architectural transformation and 

architecture-based development. In recent years, a number of solutions have extended the classical 

horseshoe model that include i) SOA Migration Horseshoe [46], ii) SOA Migration Framework (SOA-

MF) [47], and iii) Architecture Driven Modernisation model [32]. The SOA Migration Horseshoe [46] 

and SOA Migration Framework [47] support migration of a legacy software to service-oriented 

architectures. In contrast, the Architecture Driven Modernisation (ADM) [32] model is a more generic 

model that supports a process-based approach to architecture-based evolution. In Section 3.3.2, we 

further explain how ADM model helps us to develop the proposed framework to support reuse in ACSE. 

 IBM Autonomic Framework 

The IBM autonomic framework provides a number of solutions to support autonomic computing [5, 12] 

by means of dynamic and self-adaptive architectures [6, 8]. Two of the well-established autonomic 

frameworks are i) Software Tuning Panels for Autonomic Control (STAC) [48] and Monitor, Analyse, 

Plan, Execute Knowledge (MAPE-K) framework [5]. STAC aims to automatically re-architecture the 

(system source code) to facilitate autonomic adaptation of a software. In contrast, the MAPE-K model 

supports application of adaptation knowledge to execute dynamic adaptation of a software and ultimately 

its underlying architecture. In Section 3.3.2, we further explain how MAPE-K framework helps us to 

identify and develop the framework to highlight research on runtime adaptations of architectures. 

3.3.2 A Framework to Classify Research on Acquisition and Application of Evolution Reuse Knowledge  

We derive our proposed framework from two well-known reference models: the OMG ADM method [32] and the 

IBM MAPE-K reference model [5], presented in Figure 4. ADM represents architectural modernisation and 

evolution at design-time [35, 36], while MAPE-K loop supports runtime adaptations [34, 39]. Using established 

reference models and practices validates the adequacy of our classification and comparison framework. In the 

following, we briefly present the details for the ADM and MAPE-K models as a basis for our proposed framework 

to organise research on reuse knowledge. Additional details about the proposed framework provided in [49]. 

The ADM horseshoe model consists of three architectural views: business architecture, application and data 

architecture, and technical architecture, see Figure 4A. The existing system with a three-layer architecture is on 

left, while the target system with evolved architectural view on right. The transformation from legacy to target 

represents the path of evolution.  

 

 
 

Figure 4. Reference Models for Knowledge in Architecture Evolution and Adaptation. 



Therefore, the ADM method involves transformation of the existing legacy architectures in an incremental fashion 

to the target architectures. The evolution involves the transformation of legacy (procedural) code to new (object-

oriented) code. In summary, transformation at any architectural layer relies on three elements:  

 Knowledge discovery of the legacy system,  

 Definition of target architecture, and  

 Transformation steps for source to target evolution.  

The MAPE-K reference framework describes dynamic adaptation process of software. The MAPE-K reference 

model in Figure 4B is used to communicate the architectural aspects of autonomic systems. Although MAPE-K 

does not entirely focus on architecture of dynamic software, it provides a reference model to monitor, analyse, 

plan and execute run-time adaptation of architectures [8, 34, 39]. The MAPE-K reference model relies on:  

 Monitoring monitors the system and measure attributes related to architectural configurations and properties 

for possible run-time reconfigurations of architecture.  

 Analysing analyses the measured run-time data and detects violations of the requirements.  

 Planning generates a change plan for architectural reconfigurations.  

 Execute enacts structural and behavioural changes to the running system based on the actions recommended 

by the plan function 

 Knowledge includes shared data such as topology information, metrics and policies for dynamic adaptation.  

After discussing the ADM and MAPE-K reference frameworks, we propose an integrated framework called 

REVOLVE presented in Figure 5. The reviewed studies are organised (in Section 4) according to the methods 

and techniques for evolution history analysis (i.e. change mining for reuse knowledge acquisition) and change 

implementation (i.e. change execution for reuse knowledge application), which form the two core activities of 

REVOLVE in Figure 5, each covered by ADM and MAPE-K separately. Additional technical details about the 

proposed REVOLVE framework in terms of framework activities and framework process are provided in [49]. 

 
 

Figure 5. REVOLVE – An Integrated View of Architecture Change Mining and Change Execution. 

 

The concepts and methods used in ADM and MAPE-K reference models can be reused or possibly extended to 

develop the processes and activities in REVOLVE framework. Method engineering [50] enables us to reuse the 

existing concepts from existing methods (frameworks, models or solutions) to develop new methods by reusing 

existing methodologies with reduced efforts and time to derive or develop new solutions. More specifically, during 

architecture change mining process in the REVOLVE framework, we exploit the knowledge discovery concepts 

from ADM [32] model for acquisition of evolutionary knowledge from architecture evolution histories. Moreover, 

the discovered knowledge can be shared and reused as in the MAPE-K framework [5] to analyse, plan and execute 

architectural adaptation. 

The REVOLVE framework in Figure 5 along with the presentation of its processes, activities and their 

corresponding studies in Table 6 is beneficial for ACSE researchers and practitioners. The framework assist ACSE 

researchers with quick identification of relevant studies. A systematic presentation of state-of-the-research 

provides a foundational body of knowledge to develop theory and solutions, analyse research implications and to 

establish future dimensions. In addition, the framework can be beneficial for practitioners interested in 

understanding the methods and solutions with formalism and tool support to model, analyse, and implement 



evolution reuse in software architectures. The framework provides a process-centric view of a collection of 

existing solutions for acquisition and application of reuse knowledge to evolve software architectures. 

We conceptualised the logical relationship between individual research elements as a framework in Figure 5. It 

defines an iterative mechanism to continuously discover reuse knowledge that can be shared and reused to guide 

ACSE in a semi-automated way. The framework provides an aggregated representation of existing literature.  In 

Section 4, we further discuss the framework processes and activities from Figure 5. The results highlight a lack 

of solutions that integrate the concept of empirical acquisition of reuse knowledge to guide ACSE with reuse 

knowledge application. Beyond this review, this framework can assist researchers and practitioners to objectively 

identify and interpret potential and limitations in state-of-the-art research [25].  

4. RESULTS CATEGORISATION AND REUSE KNOWLEDGE TAXONOMY 

Our discussion of results uses the REVOLVE framework for reuse knowledge from Section 3.3. Central to this 

framework are a set of processes, activities and repositories (in Table 6, which complements Figure 6). The 

processes encompass architecture change mining as a complementary and integrated phase to change execution – 

a concept partially realised in only one of the reviewed studies [S7]2. We also present the relative distribution of 

the five activities of the REVOLVE framework. Figure 6 highlights a significant portion (53%) of studies 

focussing on methods and techniques for application of evolution-reuse knowledge. On the other hand, only 9% 

of studies focus on analysing reuse knowledge. Please note that some of the studies cover different activities of 

the REVOLVE framework. For example, studies [S9, S10, S17, S13] both represent research on identifying and 

sharing reuse knowledge. Similarly, studies [S7, S29, S31] represent capturing and identifying reuse knowledge. 

Table 6. Processes, Activities and Repositories of Framework to Represent Reviewed Studies. 

 Process Activity Repository Research Evidences 

1 
Architecture 

Change Mining 

Identify Evolution Reuse Knowledge Evolution History [S7, S9, S10, S17, S29, S31] 

Share Evolution Reuse Knowledge Knowledge Collection [S8, S9, S10, S17, S31] 

Analyse Evolution Reuse Knowledge Knowledge Collection [S9, S10, S17, S29] 

2 

 

Architecture 
Change Execution 

 

Reuse Evolution Knowledge Knowledge Collection 
[S1, S2, S3, S4, S5, S6, S8, S11, S12, S13, 
S14, S15, S16, S18, S19, S20, S21, S22, S23, 
S24, S25, S26, S27, S28, 30, S32] 

Capture Evolution Reuse Knowledge Evolution History [S7, S29, S31] 

 

Table 6 summarises the involved processes, their corresponding activities and associated repositories as well as 

identified studies - concrete research evidence of the claims. In Figure 5, it is vital to highlight the complementary 

role of tool support and formalism to support reuse in ACSE. In recent years, there is a growing need for tool and 

automation support to model and execute architecture evolution in a (semi-) automated way [30, 35]. 

 
Figure 6. Percentage Distribution of Studies based on REVOLVE Framework Activities. 

For example, in Figure 5, to support automation of the activity for reuse knowledge identification, the solution 

must provide a tool or a prototype to analyse architecture evolution histories that contain evolutionary data of 

significant size and complexity [S29, S31]. A lack of tool support results in an increase in the complexity of 

architecture evolution process, process scalability (changes from small to large systems), and error proneness in 

change implementation.  

                                                                 
2 The notation [Sn] (n is a number) represents a reference to studies included in the SLR which are listed in the 

Appendix. The notation also maintains a distinction between the bibliography and list of selected for SLR. 

21%
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4.1 A Taxonomical Classification of Architecture Evolution-Reuse Knowledge 

The taxonomy defines a systematic identification, naming and organisation of reuse approaches into groups that 

share, overlap or are distinguished by various attributes. A taxonomical classification provides an insight into the 

commonality or distinction of research themes as denoted in Figure 7. We explicitly discuss three distinct 

classification types of reuse knowledge research as generic and thematic. A solution-specific classification is 

introduced in Sections 5 and 6 when we provide a comparison of existing research.  

A. Generic Classification is derived based on a review of studies and our experience with previous SLRs [7, 

52] that helped us to refine classification attributes based on studies for analysing the role of reuse knowledge 

in ACSE. In Figure 7, the literature is classified into methods and techniques that enable change reuse in 

architectural evolution (26 studies, i.e., 81%) and empirical acquisition or discovery (6 studies, i.e., 19%) of 

reuse knowledge and expertise by exploiting evolution histories. Dotted rectangles in Figure 7 represent the 

comparison attributes extracted by full-text investigation of the selected studies, as explained in Table 5 – data 

extraction and synthesis.  

B. Thematic Classification provides details about the predominant research themes based on time and type of 

evolution. In the following, we focus on taxonomy of identified research themes based on a mapping of activities 

in REVOLVE framework to identified research themes in Figure 7. 

 

Figure 7. A Taxonomical Classification of Architecture Evolution Reuse Knowledge. 

1. Evolution Styles [S1, S5, S8, S11, S13, S21, S23] are inspired by a conventional concept of architecture 

styles that represent a reusable vocabulary of architectural elements (component or connectors) and a set of 

constraints on them to express a style [20]. Evolution styles focus on defining, classifying, representing and 

reusing frequent evolution plans [S1, S11] and architecture change expertise [S5, S8, S13, S21]. Style-based 

approaches represent 22% of the reviewed studies addressing corrective and perfective changes implemented 

as design-time evolution. In the style-driven approaches, we observed a trend towards structural evolution-off-

the-shelf [S13, S21] and evolution planning [S1, S8] with time, cost and risk analysis to derive evolution plans. 

2. Change Patterns [S2, S6, S12, S14, S15, S16, S17, S20, S21, S27, S29, S30, S24] exploit the same idea as 

design patterns [19] that aim at providing a generic, repeatable solution to recurring design problems. In 

contrast, change patterns follow reuse-driven methods and techniques to offer a generic solution to frequent 

evolution problems. Pattern-based solutions accounted for 41% of total reviewed literature, focusing on 

corrective, adaptive and perfective changes supporting both design-time as well as run-time evolution. 

Adaptation and reconfiguration patterns [S16, S19] are the run-time evolution solutions. The solutions also 

address the co-evolution of processes [S30], requirements [S2] and underlying architecture models. In addition, 

a number of studies propose language-based formalism [S6, S12, S14, S15] to enable reuse in architectural 

migration and integration. Unlike styles that only use model-driven evolution, pattern-based changes are 

expressed as different techniques using model transformations [S2, S30], state transitions [S16, S19] and change 

operationalisation [S27].  

3. Adaptation Strategies and Policies [S3, S4, S25, S26, S28, S32] focus on reuse and customisation of 

adaptation policies [S3, S4], reusable and knowledge-driven strategies [S25, S26, S32] and aspects [S28] to 

support the reuse of policies in self-adaptive architectures. With a recent emphasis on autonomic computing, 



and growing demand for highly available architectures, reuse-driven strategies aim to support knowledge-driven 

reuse at runtime. These accounted for 19% of reviewed literature with a focus on adaptive change. Run-time 

reconfigurations of architectures are also highlighted in the MAPE-K reference model [5, S4].  

4. Pattern Discovery [S19, S29] represent methods and techniques for post-mortem analysis of evolution history 

(change logs [S29] and version control [S19]) to discover recurring changes as pattern instances. Pattern-based 

knowledge acquisition/discovery mechanisms represented a 6% of the total study population.  

5. Architecture Configuration Analysis [S7, S31] exploits configuration management techniques to analyse 

architectural configurations [S7]. It focuses on mining architecture revision histories to capture evolution and 

variability in order to represent crosscutting relationships among evolving architecture elements. This is 

particularly beneficial to classify changes as atomic and composite types and allows determining the extent to 

which architectural change can be parallelised (commutative and dependent changes) [S31]. Architecture 

configuration analysis represented 6% of total study population. 

6. Evolution and Maintenance Prediction [S9, S10] focuses on prediction of maintenance and evolution efforts 

for software architectures. We included two studies in which [S9] represents a set of change scenarios for 

predicting perfective and adaptive evolution tasks in architectures. In [S10], based on an architectural evaluation 

and maintenance prediction, the required maintenance and evolution effort for a software system can be 

estimated [S10].  

4.2 A Mapping of Identified Research Themes to Activities in REVOLVE Framework   

While the REVOLVE framework has provided a broader categorisation of research, some observations and 

interpretation of the results suggested an explicit mapping among the identified research themes and the activities 

of REVOLVE framework. Figure 8 provides a mapping of the framework’s activities (cf. Figure 6) and the 

identified research themes (cf. Figure 7) to classify and compare application (Section 5) and acquisition (Section 

6) of architecture evolution-reuse knowledge. The circles on right axis in Figure 8 represents mapping between 

framework activities and identified research themes for a study reference (e.g., ‘8’ represents ‘S8’ in the Appendix 

list of selected studies). Alternatively, the circles on left axis represents publication map (providing a temporal 

distribution, 1999 to 2012) for framework activities and identified research themes. 

In this section, an iterative mapping process has been employed to present the identified research themes and to 

provide an answer to the first research question (RQ1). The map as bubble plot is depicted in Figure 8 to enable 

a mapping of research themes to activities of REVOLVE based on: 

 Five activities of the REVOLVE framework (cf. Figure 6) along the horizontal axis.  

 Six identified research themes (cf. Figure 7) along the vertical axis. 

 
Figure 8. Study mapping over the range of research themes, REVOLVE activities and time period. 



For example in Figure 8, the bubble at right-axis and at the intersection of “research theme” change pattern (CP) 

and “framework activity” knowledge reuse (KR) represents the studies [S2, S6, S12, S14, S15, S16, S19, 20, 22, 

27, 30] that support change patterns to apply reuse knowledge in ACSE. Alternatively, the bubble at left-axis that 

intersects “CP” and 2012 represents the studies [2, 29, 30] published in 2012 and focus on change patterns. The 

relative size of the bubble indicates the total number of studies (bigger the size, more studies a theme represents). 

4.3 Definition of Architecture Evolution-Reuse Knowledge 

Research Question RQ1 addresses how architecture evolution-reuse knowledge is defined and expressed in the 

context of ACSE and is answered in this section. After we have defined architecture evolution-reuse knowledge 

here, we answer RQ 2 (application of reuse knowledge in Section 5) and RQ3 (acquisition of reuse knowledge in 

Section 6). 

In the reviewed studies, we observed that interpreting and assessing individual studies as isolated solutions to a 

specific research problem lacks consistency in representing what exactly defines architecture evolution-reuse 

knowledge and how it is classified and expressed in literature. This could be a direct consequence of the respective 

author views on how to achieve reuse in a solution-specific context. For example, the concept of evolution style 

has distinct and diverse interpretations as Garlan et al. who define evolutionary plans [S1, S11] following a style, 

while Tamzalit et al. exploit styles as evolution patterns [S13, S21, S23]. Moreover, Cuesta et al. express evolution 

styles as an integrated part of architectural knowledge [S8] that drives architecture evolution. In addition, Yskout 

et al. utilised change patterns for architecture co-evolution [S2], Côté et al. for pattern-to-pattern integration 

[S27], Gomma et al. for run-time adaptations [S16, S19] and Zdun et al. exploited language based formalism for 

evolution and integration patterns [S6, S12, S15]. This reflects a lack of consideration of what existing methods 

could be leveraged, extended or refined to achieve reuse that drives ACSE [3, 6, 7].  

Evolution in the reviewed literature refers to design-time changes [S1, S2, S6, S13, S20] or run-time adaptations 

[S3, S4, S16, S25] as perfections, reconfigurations or corrections in architectural structure and behaviour [16]. 

We observed that the term evolution (also including evolving, evolve, co-evolution) has six variations as change 

(also including changing), Reconfiguration, Adaptation, Restructuring, Update, Transformation and Migration. 

The reasons for distinctive terminologies are: 

 Type of architecture change refers to Corrective, Adaptive (also Reconfigurative [S16, S19]), Perfective 

(also Updative [S23], Restructurive [S21], Transformative [S5], Migrative [S6]). With a more conventional 

interpretation of ISO/IEC 14764 and architectural change characterisation [16], we did not find any study to 

support preventive changes. This indicates that existing work lacks support for reuse in pre-emptive and pro-

active evolution of architectures [5, 6].   

 Time Constraint of Change refers to Evolution, Change, Update and Restructure for design-time evolution 

[3], while Reconfiguration and Adaptation refer to run-time evolution [S3, 6]. In Figure 9, there is a clear 

inclination (53% of total studies) towards style-driven approaches, evolutionary plans and model co-evolution 

for design-time (a.k.a. static evolution). In contrast, run-time (a.k.a. dynamic evolution) comprises of 28% of 

studies focussing on self-adaptation and runtime reconfigurations reflected by studies published in 2004 and 

2009. However, with a growing importance of autonomic computing [5] and the context of high-availability 

architectures [S3, S4, S16, S19, S25, S26, S32], there is a need to realise the potential of reuse at runtime 

reflected by the MAPE-K model.  

Figure 9. Study Distribution – Time Constraints of Architectural Evolution Reuse. 

This suggests that evolution is an unclear term in the context of types and time of architectural changes making it 

hard to implicitly derive a unified or aggregated definition for evolution reuse knowledge. In the study titles, the 

keyword “evolution” occurs 10 times, “change” 5 times and “adaptation” 6 times (i.e., approx. 34% , 15% and 

Reuse@Runtime 
9/32 Studies  

(28%) 

Reuse@Designtime 
17/32 Sudies 

(53%) 

- Evolution Paths [S1, S11] 
- Evolution Styles [S5, S21, S23, S8] 
- Model Co-evolution [S2, S30] 
- Pattern-to-Pattern Evolution [27] 
- Pattern-language based Formalism  
       [S6, S12, S14, S15] 
- Evolution Patterns and Rules [S20, S22] 
- Evolution Shelf [S13] 
  

- Adaptation Patterns [S16, S19] 
- Self-adaptation Strategies [S3] 
- Self-repair Strategies [S4] 
- Reusable Adaptation Aspects [S18, S28] 
- Policies for Self-adaptive Behaviour 
         [S25, S26, S32] 



19% respectively). Due to a characterisation of architectural change types [16] and times of evolution [11], a clear 

consensus or unified definition is not possible. In fact, it would only limit the acceptance of the concept with a 

narrow view based on available evidence. However, an aggregated definition of evolution-reuse knowledge is 

important to classify and compare the existing research. We further discuss the types and time or architectural 

changes in Section 5, while answering RQ2 – a comparison of method for application of reuse knowledge. 

Reuse in the reviewed studies is expressed as evolution styles (7 studies, 22%), change patterns (13 studies, 40%), 

ii) adaptation strategies and policies (6 studies, 19%) in Figure 7. An interesting observation is that although they 

are novel as methodical approaches, both evolution styles and change patterns conceptually extend the more 

conventional concepts of architecture styles [20] and design patterns [19] to represent evolution expertise. 

Evolution styles [S1, S13, S21] primarily aims at defining, classifying, representing and reusing frequent 

corrective and perfective changes as a design-time activity. In contrast, change patterns [S2, S16, S19] promote 

the ‘build-once, use often’ philosophy to offer a generic, repeatable solution to frequent adaptive, corrective and 

perfective changes as design-time and run-time-time evolution. The concept of reusable adaptation strategies and 

policies is only represented in the context of reuse plans [S3, S4, S25] and aspects [S28] for self-adaptive 

architectures. 

Once we have identified the relative representation and expression of architecture evolution and evolution reuse, 

we can provide a consolidated view of architecture evolution-reuse knowledge in the context of ACSE. We 

provide an aggregated definition of Architecture Evolution-Reuse knowledge (AERK) as  

“A collection and integrated representation (problem-solution mapping) of empirically discovered generic and 

repeatable change implementation expertise that can be shared and reused as a solution to frequent (architecture) 

evolution problems.” 

In the existing literature, the generic and repetitive solutions are predominantly expressed as evolution styles and 

patterns. In addition, frequent evolution operations represent addition, removal or modification of architecture 

elements as design-time change or runtime adaptation. Some studies [S1, S11, S13, S20] implicitly denoted reuse 

as a first-class abstraction – by operationalising and parameterising changes – to resolve recurring evolution tasks. 

In summary, to answer RQ1, we provided a definition of a generic and thematic classification scheme and 

organised research about reuse knowledge in ACSE along this scheme. A classification, definition and 

representation of reuse knowledge is missing in the existing literature to reflect a consolidated impact of research 

that has progressed for more than a decade (1999 - 2012). This classification is not meant to be exhaustive and 

might need to be adapted to consider future developments. Figure 7 and Figure 8, however, provide a foundation 

for a more fine-granular classification and comparison of studies as discussed in Section 5 below. 

 

5. APPLICATION OF ARCHITECTURE EVOLUTION-REUSE KNOWLEDGE 

Based on the generic and thematic classification in Section 4, to answer to RQ2 we classify and compare the 

existing methods and techniques that support application of evolution-reuse knowledge based on the generic and 

thematic classification in Section 4. A systematic identification and comparison of existing research is particularly 

beneficial to gain an insight into aspects of problem-solution mapping, architecture evolution characterisation, 

or to assess formalisms and tool support. The comparative analysis is presented as a number of structured tables 

(Table 7, Table 8). Additional details of synthesised data are available in [25]. In this section, a thematic coding 

process has been employed to identify the comparison attributes (cf. Table 5) and to provide an answer to the 

RQ2. More specifically, what are the existing methods and techniques that enable application of reuse knowledge 

to support architecture evolution is answered in Section 5.1 and how to compare the existing techniques to analyse 

a collective impact of existing research that enhance evolution reuse is answered in Section 5.2. 

 

5.1 Methods and Techniques for Application of Evolution Reuse Knowledge 

Based on the classification of research themes, we focus on answering RQ2 with Table 7. It has three columns 

associated with the following aspects: 

 Problem View – Why there is a need for reuse knowledge to address recurring evolution problems?  

 Solution View – How do solutions provide methods and techniques to address these research problems?  

 Comparison View – What are the trends, type, means and time of evolution, formalism and tool support, 

architectural description notations and evaluation methods? See Table 8 for details. 

For each reviewed study, the problem and solution views are captured in Table 5 (with ID 5, 6 in generic and 

documentation specific items) and represented in Table 7. While the comparison view is represented with a set of 

comparison attributes in Table 5. Note that, due to the classification scheme (styles vs. patterns vs. strategies and 

policies), we denote adaptation patterns [S16, S19] as a sub-theme of change patterns [S2, S17]. For example, 

Table 7 highlights change patterns as a solution to address the problems of continuous runtime adaptations of 



software architectures. More specifically, the studies [S16, S19] propose adaptation patterns to support reuse of 

architectural configurations and adaptations. Furthermore, Table 7 serves as a catalogue for problem-solution map 

along with the available evidence to support application of reuse knowledge. 

Table 7. Methods and Techniques to enable Application of Evolution Reuse Knowledge. 

5.2 Comparison of Methods and Techniques for Application of Evolution-Reuse Knowledge 

In order to go beyond the analysis of individual studies, a holistic comparison of existing research based on 

comparison attributes including their objective and concrete evidence is provided in Table 8. We compare 

available methods and techniques based on comparison attributes CA1 to CA12 (cf. Table 5). The comparison of 

research methodologies to support the application of evolution reuse knowledge is based on eight distinct 

comparison attributes CA1-CA6, CA11, CA12 from the full list (remaining ones will be covered in section 6).  

 

CA 1: What are the identified research trends for reuse in architecture-based evolution and adaptation? 

Objective: The aim is to identify available solutions that support reuse knowledge for ACSE. In addition, an 

overview of research builds the foundation for a comparative analysis of individual methodologies as discussed 

below and mapped out later on in Figure 10. Each theme (from Section 4.1) contains one or more trends. Figure 

10 provides a mapping of the research themes (y-axis) to types and time of architectural changes (x-axis). For 

example, in Figure 10 the study [S4] represents “adaptation strategies” for “perfective changes” at “runtime”. 

Research  Problem Solution (Method & Techniques) Studies 

Evolution Styles 

How to o enable evolution planning and 
trade-off analysis? 

Evolution Paths - to plan and apply reusable evolution strategies. [S1, 11] 

How to achieve recurring structural 
evolution of architecture? 

Evolution Shelf – library of reusable and reliable evolution expertise.  

[S13] 

How to enhance change reusability and 
architecture consistency? 

Update Styles – reuse expertise for restructuring and updating architectures.   

[S21, 
S23] 

How to exploit architecture knowledge as 
an asset for architecture evolution? 

AK-driven evolution styles – use of AK as evolution styles to constrain and trigger evolution  

[S8] 

How to reuse in transformation and 
refinement of component-model to 
service-driven architectures?   

Style-based Transformations – to achieve migration from component-based architecture to business-
driven service architecture.  

[S5] 

Change Patterns 

How to Co-evolve process, requirements 
with architectures?  

Co-Evolving Models – reusable patterns to enable co-evolution in process and requirements to their 
underlying architectures.  

 

[S2, S30] 

How to enable a continuous runtime 
adaptation of architectures?  

Adaptation Patterns – reuse @ runtime to support architectural reconfigurations and self-adaptations.  

[S16, 
S19] 

How to exploit the reuse of design 
methods, documents and process for 
architecture migration and evolution? 

Pattern-to-Pattern Evolution & Integration – evolution operators and design documents to tackle 
requirement & and architecture changes [S27]. Model-based migration and integration of process-
centric architecture models [S12, S15]. 

 

[S27, 
S12, S15] 

How to enable an incremental migration of 
legacy architecture by means of reusable 
decision models? 

Pattern Language-based Formalism – to facilitate a piecemeal migration of architecture models.  [S6, S14] 

How to effectively manage evolution at 
different architectural abstractions? 

Evolution Patterns and Rules – to model, analyse and execute architectural transformations at 
different abstraction levels. 

[S20, 
S22] 

Adaptation Strategies and Policies 

How to provide mechanisms for 
architecture to adapt at run time in order to 
accommodate varying resources, system 
errors, and changing requirements? 

Strategies for Self-adaptation – supported with stylised architectural design models for automatically 

monitoring system behavior falling outside of acceptable ranges, then a high-level repair strategy is 
selected. 

 

[S3, S4] 

How to utilise reusable aspects to develop 
self-adaptive architectures? 

Reusable Adaptation Aspects – to Reusable aspects & policies to develop self-adaptive 
architectures. 

 

[S28] 

How to efficiently construct system global 
adaptation behaviour according to the 
dynamic adaptation requirements? 

Composable Adaptation Planning – that provides a systematic coordination mechanism to achieve 
effective and correct composition. It also allows prototyping, testing, evaluation and injection of new 
adaptation behaviours for component-based adaptable architectures. 

 

 

[S18] 

How to specifying and enact architectural 
adaptation policies that drive self-adaptive 
behavior? 

Knowledge-Based Adaptation Management - for reasoning and decision-making about the timing 
and nature of specific adaptations grounded on knowledge-based adaptation policies. 

[S25, 
S26, S32] 



Table 8. A Holistic Comparison of Methods and Techniques to Support Application of Reuse Knowledge. 

(‘--' represents an attribute not discussed in the reviewed study, ‘++’ represents an implicit discussion of the 

attribute, the remaining is all explicit in the literature). 

 

Comparison 

Attributes 

 

Methods/  

Techniques 

Research 
Trends 

(CA1) 

Type of Change 

(CA2) 

Time of 
Change 

(CA3) 

Means of 

Change 

(CA4) 

 

Evolution 

Support 

Formalism 

(CA5) 

 

 

Architecture 
Description 

(CA6) 

 

 

Tool Support 

(CA11) 

 

Evaluation 

Method 

(CA12) 

E
v
o

lu
ti

o
n

 

 S
ty

le
s

 

 

Evolution Paths 
[S1, S11] 

 

Evolution Plans 

 

Corrective      & 
Perfective 

 

Design-time 

Change Operations, 

Model 
Transformation++ 

 

QVT-based 
Model Evolution 

 

 

Acme ADL, UML 
2.0++ 

 

AEvol 

 

Case Study 

Evolution Shelf 
[S13] 

Evolution Styles Corrective++ & 
Perfective 

Design-time Model 
Transformation 

QVT-based 
Model 

Evolution++ 

Acme ADL, UML 
2.0++ 

-- Case Study 

 

Update Styles 
[S21, S23] 

Updating Styles 
[S11], 

Architecture 
Style[S10] 

 

Corrective++ & 
Perfective 

 

Design-time 

 

Model 
Transformation 

 

Graph 
Transformation 

Rules++ 

 

ADL++, 

UML 2.0, 

 

AGG [S11], 

USE[S10] 

 

Case Study 

AK-driven 
Evolution Styles 

[S8] 

 

AKdES 

 

Corrective++ 

& Perfective 

 

Runtime 

 

Model 
Transformation 

 

QVT-based 
Model Evolution 

 

ATRIUM 
Metamodel 

 

ATRIUM 

 

Case Study 

Style-based 
Transformations 

[S5] 

Style –based 
evolution and 

refinement 

 

Corrective++ 

& Perfective 

 

Design-time 

Model 
Transformation 

Graph 
Transformation 

Rules 

UML Profile for 
SOA, Graph 

Model 

 

Poseidon, 
GTXL 

 

 

Case Study 

C
h

a
n

g
e

 

P
a
tt

e
rn

s
 

 

Model Co-
evolution 

[S2, S30] 

Requirements 
[S2], 

Business 
Process [S30] 

 

Adaptive          & 
Corrective 

 

Design-time 

 

Model 
Transformation 

 

-- 

UML 2.0 [S2], 

Graph Model 
[S15] 

VIATRA[S2] 

-- [S15] 

Industrial 
Validation [S2] 

Case Study 
[S2] 

Adaptation 
Patterns 

[S16, S19] 

Adaptation 
State-machines 

Adaptive          & 
Perfective 

Run-time Reconfiguration++ 

Operations 

 
State Transition 

 

XTEAM, xADL, 

UML 2.0 

REPLUSSE 
[S6], 

SASSY [S9] 

 

Case Study 

 

Pattern-to-
Pattern Evolution 

Pattern-to-
pattern evolution 
and Integration  

Corrective      & 
Perfective++ 

 

Design-time 

 

Change 
Operations++ 

 

Jackson’s 
Framework [S27] 

 

Context 
Diagram, 

 

-- 

 

Case Study 

 

 

 

Pattern 
Language-based 

Formalism 

[S6, S12, S15, 
S14] 

 

Pattern-based 
Migration [S6],  

 

Integration 

 [S12, S15 ]  

 

& Evolution 
[S14] 

 

 

 

Corrective, 
Perfective & 

Adaptive 

 

 

 

 

Design-time 

 

 

 

--[S6, S14],  

 

Model 
Transformation 

[S12, S15] 

 

 
--[6] 

 
Model-driven 

Software 
Development 
[S12, S15],  

 
RADM[S14] 

 

 

IDL [6],  

 

UML 2.0, XMI 
[S12, S15],  

 

[S14] 

 

-- [6],   

 

MDSD Tool 
Chain  

[S12, S15],  

 

ArchPad[S14] 

 

Case Study 
[12, 15], 

 

Migration of 
Document 
Archival 

System [S6], 

 

 Industrial 
Case 

Study[S14] 

Evolution 
Patterns & Rules 

 [S20, S22] 

SAEV [S20],  

 

TranSAT[S22] 

 

Corrective      & 
Perfective 

 

Design-time 

Change Operation, 
Evolution Rules 

[S20],  

Model 
Transformation 

[S22] 

SAEV, ECA 
[S20],  

 

AOSD [S22] 

ADL [20],  

 

AgroUML[S22] 

--[s20] 

SafArchie 

[S22] 

 

Case study 

A
d

a
p

ta
ti

o
n

  

S
tr

a
te

g
ie

s
 a

n
d

 P
o

li
c
ie

s
 

 

 

Strategies for 
Self-adaptation 
and Self-repair 

[S3, S4] 

 

 

Rainbow 
Framework [S3], 

Style-based 
Adaptation [S4] 

 

Adaptive, 
Perfective           

& Corrective++ 

 

Run-time 

 

Adaptation 
operators, Repair 
Strategies [S4] 

 

 

 

-- 

 

 

ADL [S3]++,  

 

ACME[S4] 

 

Rainbow, 
Stitch 

Language 
[S3] 

 

 

Case Study 

 

Reusable and 
Composable 
Adaptation 

Aspects 

[S28, S18] 

 

Aspect-orinted 
Architecture 

[S28], 
Composable 
Adaptation 

Palnning [S18] 

 

 

Adaptive          
&Corrective++ 

 

 

Run-time 

 

Aspect generation & 
weaving [S28]++ 

 

Composable 
Adaptation Plans 

[S18] 

 

CaesarJ AO-
Programming 

Language [S28], 
 

--[S18 

 

--[S28], 

 

Component 
Architecture 

Model 

[S18] 

 

-- 

 

Case Study 

Adaptation 
Policies for Self-

adaptive 
Behaviour  

[S25, S26, S32] 

Knowledge-
based 

Adaptation 
Management 

 

Adaptive          
&Corrective++ 

 

 

Run-time 

 

Knowledge-based 
Adaptation Policies 

Architectural 
Adaptation 
Manager 

 

xADL 

 

KBAAM 

 

Case Study 



 

1. Evolution-off-the-Shelf – we observed a trend following evolution styles for structural evolution [S1, S11, S13] 

in component-based architectures and evolution planning [S1, S11] based on time, cost and risk of changes to 

define alternative evolution strategies. An interesting observation is a recent emergence of evolution style [S8] 

that exploits architecture knowledge as an asset to drive evolution-off-the-shelf [S13]. In Figure 10, our 

comparison suggests that evolution style-based approaches only focus on corrective and perfective type changes 

[16]. We could not find any evidence to support adaptive or preventive type evolution. Evolution styles are limited 

to supporting only design-time evolution in software architectures. 

2. Pattern and Language-based Formalisms – pattern-based solutions address the co-evolution of business 

processes [S30] and requirements [S2] along with their underlying architecture models. Adaptation [S19] and 

reconfiguration patterns [S16] support dynamic adaptations as well. Pattern language-based solutions aims at 

building a system-of-patterns to support migration [S6], integration [S12, S15] and evolution [S14] of component-

based architectures. Based on the comparison map in Figure 10, we can conclude that pattern-based techniques 

enable corrective, adaptive and perfective type changes, but do not address preventive change. Pattern-based 

solutions are heavily biased towards design-time evolution. However, studies on reconfiguration and adaptation 

patterns suggest a potential for future research to address dynamic adaptation by leveraging change patterns [S19]. 

 

3. Reuse Knowledge for Self-adaptation and Self-repair – in particular self-adaptive and self-repair techniques 

reflect the recent emphasis on autonomic computing and growing demands for high-availability architectures.  

 

Reuse-driven self-adaptation enables dynamic evolution reflected as reusable adaptation strategies for adaptive 

architectures [S3, S25]. In addition, knowledge-based adaptation policies [S4, S26, S32] enhance self-

organisation and repair of dynamic adaptive architectures. Self-adaptation strategies are the key to supporting 

dynamic and high-availability architectures. Unlike styles and patterns, reusable adaptation strategies focus on 

runtime reuse of adaptation expertise. Moreover, self-repair [S4, S26] policies promise to tackle preventive type 

of changes. However, based on the mapping in Figure 10; we did not find explicit evidence to address preventive 

changes that corresponds to unanticipated evolution [6]. 

 

 
Figure 10. A Comparison Map of Research Trends – based on Time and Types of Changes. 

CA 2: What types of architectural changes are supported to achieve evolution reuse?  

Objectives: to investigate the type of change support offered by existing ACSE solutions: corrective, perfective, 

adaptive and preventive changes [16].  This change typology is based on the ISO/IEC 14764 standard and 

architecture change characterisation in [16]. 

In Figure 10, style-driven approaches focus on corrective and perfective changes (also reported as updative [S23], 

restructurive [S21], transformative [S5] and migrative [S6]). Pattern-based solutions support corrective [S27], 

perfective [S12, S15, S6, S14] and adaptive change support (also called reconfigurative [S16, S19]). Adaptation 

strategies and policies, as the name indicates, primarily focus on run-time adaptive [S3, S4, S28] changes. Note 

that none of the reviewed studies addresses preventive change that aims to prevent problems before they occur. 

This suggests a lack of focus on tackling unanticipated evolution [6, S4] in software architectures.  

 



CA 3: How do time aspects affect change implementation during architecture evolution?  

Objectives: to analyse the temporal aspects [11] in terms of the time (or stage) associated to architecture evolution 

in Figure 10. The existing evidence suggests:   

 Reuse@Runtime enables application of reuse knowledge at runtime to achieve dynamic adaptation. 

Reconfiguration patterns reflect reusable strategies as a consequence of growing demands for autonomic and 

self-adaptive architectures for run-time evolution [S2, S4, S25, S26, S27]. We could not find evidence of 

style-based approaches that facilitate runtime reuse. 

 Reuse@Designtime enables application of reuse knowledge at design-time to achieve evolution. Style-driven 

approaches [S1, S13, S8] are heavily oriented towards design-time evolution. In contrast, pattern-driven reuse 

is aimed primarily at design-time changes [S2, S30, S27], but also support run-time reconfigurations [S16, 

S19]. However, adaptation strategies lack explicit support for design-time reuse.  

CA 4: What are the existing means of architectural change to achieve evolution reuse?  

Objectives: to study and compare the change implementation mechanisms and to analyse if there exist any 

recurring themes among them. We only present the predominant means of change as (at least indicated in five or 

more studies) as individual methods and techniques are already summarised in Table 8. 

Evolution operators as the most utilised means of change that could be further classified as change [S1, S11, S20, 

S22, S27], adaptation [S19] and reconfiguration operators [S16]. Model transformation enables design-time 

evolution as discussed in [S1, S13, S21, S23, S5, S2, S30]. Furthermore, adaptation plans exploit repair strategies 

and aspect weaving mechanism [S4, S18, S26, S28, S32] for runtime adaptation.  

CA 5: What types of formal methodologies are exploited to support reuse in ACSE?   

Objectives: to analyse the extent to which formal techniques facilitate modelling, analysing and executing 

evolution reuse. We only present predominant formal methods (at least indicated in three or more studies). 

We observed an overwhelming bias towards model-based architecture evolution that is primarily achieved through 

model transformation with QVT [S1, S11, S13] and also graph-based specifications [S11, S10, S5, S12, S15]. 

This observation is also reported in [7]. The only exceptions are adaptation patterns [S16, S19, S12, S27] that 

exploit state-transition and pattern-to-pattern integration using or architecture evolution.  

 

CA 6: What are the notations used for architectural descriptions in evolving architecture models?   

Objectives: to identify the modelling notation used to support architecture evolution. We primarily focus on 

investigating the role of architecture descriptions in enabling and enhancing architecture evolution (at least three 

studies).  

The three commonly used architectural description notation are UML 2.0 [S11, S13, S23, S2, S19, S12], 

Architecture Description Languages (ADLs) [S11, S13, S21, S16, S20, S3, S25, S26] and UML Profiles [S5, S22, 

S18]. The primary motive to use ADLs or UML is the availability of extensive research literature and tool support 

to specify architecture models with model-based verification and transformation to support evolution. Most 

notable ADLs are ACME and xADL. 

CA 11: What is the available tool support to enable or enhance reuse in architectural evolution and adaptation?  

Objectives: to analyse the role of automation and tool support in enabling the architect to model, analyse and 

execute reuse in ACSE.  

Tool support is significant to assist the architects in decisions making and automating complex tasks, especially 

where there is a need to model and choose among alternative evolution paths [S1, S11]. In the reviewed studies, 

tool support is generally provided in terms of research prototypes. Automation allows an architect to model [S1, 

S21], analyse and execute generic, reusable strategies for evolution [S2, S1, S21]. However, there is a mandatory 

user intervention through appropriate parameterisation and customisation of evolution process to accommodate 

the human perspective before and after evolution [S6, S9, S11, S12]. Some practical issues and lessons learned 

regarding tool support for architecture evolution reuse has been reported in [30]. 

CA 12: What is the context of evaluation methods to validate research hypotheses or results?  

Objectives: The aim is to analyse the context of evaluation, where evaluation context defines the research 

environment in which the results are evaluated.  

The comparative analysis suggest that validation of the proposed solutions or generated results are heavily based 

on surveys, controlled experimentation with case studies [S1, S21, S8] or evaluation in an industrial context [S2, 

S6, S14]. It is evident that solutions are heavily oriented towards case-study based evaluation, usually in a lab-

experimentation context. The only exceptions are the studies [S2, S6, S14] that focus on co-evolution of 

requirements and architectures evaluated in industrial settings. 



 

6. ACQUISITION OF ARCHITECTURE EVOLUTION-REUSE KNOWLEDGE 

In this section, we investigate the methods and techniques for acquisition of reuse knowledge to answer RQ3, i.e., 

what are the existing methods and techniques for acquisition of evolution-reuse knowledge (Section 6.1) and how 

these methods and techniques can be compared to consolidate the impact of existing research (Section 6.2). Note 

the solutions for this research question (i.e., RQ3) are complementary to the methods and techniques that support 

application of reuse knowledge in ACSE. 

6.1 Methods and Techniques for Acquisition of Evolution-Reuse Knowledge 

In Section 5, we identified change pattern discovery [S17, S29], evolution and maintenance prediction [S9, S10] 

and architecture configuration analysis [S7, S31] as the three research themes to support reuse knowledge 

acquisition. More specifically, 

 Change Pattern Discovery techniques focus on investigating evolution histories for an experimental 

identification of recurring change sequences as potential change patterns.  

 Evolution and Maintenance Prediction methods focus on maintenance profiles [S9] and scenario-based [S10] 

prediction of maintenance efforts to enhance or enable architecture evolution.  

 Architecture Configuration Analysis deals with architectural system model that tightly integrates architectural 

concepts with concepts from configuration management. Change composition analysis [S31] focuses on 

analysing change operationalisation based on a hierarchical composition of change instances, i.e., defining 

and reusing atomic change operations to build up composite change operations.  

Solutions for reuse knowledge acquisition primarily focus on the post-mortem analysis of architecture evolution 

histories to discover evolutionary knowledge. In Table 9, we summarise the problem-solution mapping to 

highlight research on knowledge discovery. In this section, the problem solution views are presented and captured 

in Table 5 (generic and documentation specific items), while attributes CA7 - CA12 (are presented in Table 5 

asfor comparison purposes. We can observe a relative lack of focus on establishing and exploiting experimental 

foundation for a continuous and incremental acquisition of reuse knowledge. 

 

Table 9.  A Summary of Methods and Techniques for Acquisition of Reuse Knowledge. 

 

We have identified only a relatively limited number of studies (6/32 of included studies, i.e., 19% approximately), 

which do not allow us for any stronger judgments. However, we believe that highlighting the existing literature 

based on a problem-solution mapping helps us to analyse the current state of research and possible future 

directions as detailed in Table 9. In addition, summarised results in Table 9 allow us to assess methodologies for 

a collective impact of existing research on acquisition of reuse knowledge. 

6.2 A Comparison of Methods and Techniques for Acquisition of Evolution-Reuse Knowledge 

We provide a comparison of existing techniques in Table 10 that enable reuse knowledge acquisition based on six 

comparison attributes CA6-CA11 from Table 5. The comparative analysis highlights the sources of knowledge, 

Research Problem Solution 

(Knowledge Acquisition Techniques) 

Included 
Studies 

Change Pattern Discovery 

How to empirically discover reusable 
change operators & patterns? 

Evolution History Analysis – post-mortem analysis of architecture evolution 

logs [S29] and version histories [S17] to identify change patterns.  
[S17, S29] 

Maintenance and Evolution Prediction 

How to predict the efforts of architecture-
based maintenance and evolution? 

Maintenance Profiling – the architecture is evaluated using so-called scenario 
scripting and the expected maintenance effort for each change scenario is 
evaluated for perfective and adaptive changes [S9].  

 

Scenario-based Change Prediction – of complex changes during initial 
analysis of existing architecture, and how and to what extent the process to 
elicit and assess the impact of such changes might be improved [S10]. 

 

 

 

[S9, S10] 

Configuration Analysis 

How to capture and relate changes for 
architecture configurations? 

Revision History Mining – captures evolution and variability to represent 
crosscutting relationships among evolving architecture elements [S7]. 

Dependency Analysis – analyse change classification and to dependency 

analysis [S31]. 

[S7, S31] 



the adoption of empirical approaches and the role of formalisms and tool support, type of knowledge discovery 

along with evaluation methods. 

 

Table 10. Comparison of Methods and Techniques for Reuse Knowledge Acquisition. 

     Comparison                              
Attributes 

 

Methods &  

Techniques 

 

Knowledge 
Source 

(CA7) 

 

Type of 
Analysis 

(CA8) 

 

Type of  

Formailsm 

(CA9) 

 

Time of 
Discovery 

(CA10) 

 

Tool 
Support 

(CA11) 

 

Evaluation 
Method 

(CA12) 

 

Change Patterns 
Discovery 

[S17, S29] 

 

Change Logs 
[S29], 

Version Control 
[S17] 

 

Postmortem 
Analysis [S29], 

Architecture 
Snapshots [S17] 

 

Graph Mining 
[S29], 

Version Snapshot 
[S17] 

 

 

Design-time 

 

G-Pride 
[S29], 

HEAT [17] 

 

 

Case Study 

 

Evolution and 
Maintenance 

Prediction [S9, S10] 

Maintenance 
Profiles [S9], 

Change 
Scenarios [S10] 

 

Change 
scenarios based 

Evaluation  

 

Not explicitly 
mentioned  

 

 

Design-time 

 

Not explicitly 
mentioned  

 

 

Case Study 

Configuration 
Analysis [S7, S31] 

Revision Histories 
[S7], 

Change Logs 
[S31] 

Configuration 
Management 
analysis [S7] 

Not explicitly 
mentioned [S7],  

Graph Matching 
[S31] 

 

Design-time 

 

Mae [S7],  

G-Pride [S31] 

 

Case Study 

 

We now describe the comparison attributes in detail including their objective and concrete evidence as comparison 

options used in the columns of Table 10. 

CA 6: What types of knowledge sources are investigated for acquisition of reuse knowledge? 

Objective: In order to discover evolutionary knowledge, existing knowledge sources need to be considered. A 

knowledge source represents a repository that maintains historical ACSE data for knowledge acquisition. 

 Pattern Discovery Techniques exploit change logs [S29] and version controls [S17]) as centrally managed 

repositories of evolution history. Change logs and version controls contain fine-grained traces of evolution 

data sets that can be queried and searched to analyse architecture-centric evolution history overtime.  

 Evolution and Maintenance Prediction utilise maintenance profiles [S9] that represent a set of change 

scenarios for perfective and adaptive maintenance tasks. More specifically, by exploiting maintenance profile, 

the architecture is evaluated using the so-called scenario scripting. The expected maintenance effort for each 

change scenario is assessed. Based on architectural evaluation and maintenance prediction, the required 

maintenance and evolution effort for a software system and its underlying architecture can be estimated.  

 Architecture Configuration Analysis investigates architecture revision histories [S7] and change logs [S31]. 

Revision histories contain datasets for architectural configuration analysis, reflecting evolution and variability 

of architectures. These are necessary to represent crosscutting relationships among evolving architectural 

elements [S7]. In long-term analyses [S31], dependencies among change operations determine if evolution 

operations could be parallelised based on identified commutative and dependent change operations. 

CA 7: What types of analyses are performed on knowledge sources for acquisition of reuse knowledge?   

Objective:  to analyse the application of knowledge discovery/acquisition mechanisms on knowledge sources.  

Post-mortem analysis [S29] and version control snapshots [S17] techniques are employed to discover change 

patterns. In the context of architecture evolution prediction, scenario-based analyses are used as well as techniques 

from configuration analysis and management.  

CA 8: What type of formal methods and techniques are utilised for reuse knowledge acquisition?  

Objective:  to identify the types of formal methods used for knowledge acquisition.  

The role of the formalism, detailing the application of formal techniques, is discussed in three studies. In particular, 

graph-based formalisms are exploited for sub-graph mining [9], [S29] to identify recurring change patterns and 

graph matching [S31] techniques are used to discover change composition and dependencies among operations. 

Snapshots of architecture versions are used to discover patterns and possible drifts in architecture from one version 

to another [S17]. 

CA 9:  Is knowledge acquisition performed at design-time or run-time?  

Objective: to distinguish between the techniques for run-time and/or design-time discovery or acquisition of reuse 

knowledge. In all of the reviewed studies, evolution reuse-knowledge discovery is performed as a design-time 



activity. We did not find any evidence that highlights maintaining and analysing traces of runtime architectural 

adaptations.  

CA 10: How are the knowledge acquisition techniques evaluated? 

Objective: to compare the type of evaluation methodologies used to validate the knowledge acquisition 

techniques. 

The evaluation of knowledge acquisition techniques are primarily based on surveys, controlled experimentation 

with case studies or evaluation in an industrial context. Existing solutions mainly apply evaluations based on case 

study and usually in a controlled lab experimentation.  

CA11: What is the tool support for analysing and discovering reuse knowledge from evolution knowledge 

sources? 

Objective: to investigate the extent to which the existing research supports automation and customisation of the 

knowledge acquisition process with support by prototypes and tools. 

Tool support is critical, especially where the amount of data or the complexity of the knowledge source is 

substantial. It is difficult, time consuming and error prone to perform analyses manually. In most cases, prototypes 

enable efficient pattern analysis, discovery [S17, S29] and composition analysis [S31, S7]. 

 

7. RESEARCH IMPLICATIONS AND DISCUSSIONS 

In this paper, we present the results of a systematic review to analyse the collective coverage and impact of existing 

research that enable or enhance architecture evolution with reuse knowledge. We classified existing work (Section 

4) and provided a comparative analysis for methods and technique that enable application (Section 5) and 

acquisition (Section 6) of reuse knowledge to guide architecture evolution. In this section, we present a summary 

of research progress and principle findings of the SLR to highlight trends and possible future research. A yearly 

distribution of reviewed studies (research progression to-date) and associated research trends are presented in 

Figure 11. The year 1999 was chosen as the preliminary search found no earlier results related to any of the 

research questions.  

 

 

 

 

Figure 11. Temporal distribution of primary studies (1999 - 2012). 

7.1 Research Trends and Future Directions 

In the context of software evolution, research on architecture evolution reuse is continuously growing over more 

than a decade (as observed in the reviewed studies from 1999 to 2012). As indicated in Figure 11, we did not set 

a lower boundary for the year of publication in the search process, yet the timeframe of identified studies reflects 

also the timeframe of emergence and maturation of solutions. The trend curve starts in 1999 with a study on 

predicting architecture maintenance and evolution [S9]. Since 2004, an interesting observation (cf. Table 11) is a 

continuous exploitation of the concept ‘evolution styles’ to support planning [S1, S11], operationalising [S21] and 

fostering [S13] of reuse knowledge.  
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A reflection on research trends and possible future directions is presented in Table 11 along the aspects of methods 

and techniques to support application and acquisition of reuse knowledge. 

Table 11. A Summary of Identified Research Trends and Future Research Dimensions. 

Classification 
Methods and Techniques for Application of Reuse Knowledge Methods and Techniques for Acquisition of Reuse 

Knowledge 

Solutions 
Evolution 

Styles 
Change 
Patterns 

Adaptation  

Strategies 

Pattern 
Discovery 

Evolution 
Prediction 

Configuration 
Analysis 

Identified 
Research 

Trends 

Evolution 
Planning 

[S1, S11, S8] 

Model Co-
evolution 

[S2, S30] 

Self-Adaptation  

and Repair [S3, S4] 

Log-based 
Post-mortem 

Analysis 
[S29] 

Evolution 
Scenario 
Analysis 

[S10] 

Change 
Configuration 
Analysis [S7] 
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7.1.1 Research Trends in Application of Reuse Knowledge  

The identified research themes to express reuse knowledge in architecture evolution are primarily classified as 

evolution styles, change patterns and adaptation strategies. Evolution styles [S1] are focused on deriving generic 

evolution plans [S11, S8, S21] to support design-time evolution of architectures. In contrast, adaptation strategies 

[S3] aim to support reusable adaptation strategies [S18, S28] to support runtime evolution. Only change patterns 

[S2, S16] could support both design-time and run-time evolution in architectures. More specifically, pattern 

languages [S6, S12] and architecture co-evolution [S2, S30] are the most notable trends for enabling pattern-

driven reusable evolution. Although we only identified two studies, adaptation patterns promote reuse in runtime 

evolution [S16, S19].  

 Future Research Dimensions – we can identify the need for future research based on time aspects of evolution 

reuse that include: 

o Reuse@runtime refers to application of reuse to support reuse-driven dynamic adaptation in 

software architectures (a.k.a. on-line evolution). In an architectural context for high availability, 

there is an obvious need to capitalise on generic and off-the-shelf expertise to support reuse-driven 

self-adaptation [S3, S4, S18, S25]. The IBM autonomic framework [5] - Monitor-Analyse-Plan-

Execute (MAPE) loop – embodies the topology, policy and problem determination knowledge to 

derive configuration plans and to enforce adaptation policies to monitor and execute software 

adaptations. In contrast to studies [S4, S25, S32], we argue that augmenting the conventional MAPE 

loop with explicit evolution reuse knowledge can systematically address frequent adaptation tasks. 

The existing solutions either allow customisation of reusable infrastructure [S3], self-repair [S4] or 

adaptation aspects [S28] to existing software. However, they lack support for evolution reuse to 

guide dynamic adaptations. When addressing recurring evolution, the potential lies with fostering 

and reusing off-the-shelf dynamic adaptations to enable evolution reuse at runtime. 

o Reuse@design-time refers to application of reuse to support generic and reusable evolution in 

software architectures (a.k.a. off-line evolution). Existing research clearly focuses on styles and 

patterns for the reuse of generic evolution plans, change operationalisation and model-based 

architecture co-evolution. With the REVOLVE framework, our review suggests the need to augment 

styles [S1, S11, S13, S21] and pattern-driven solutions [S2, S30] with repository mining techniques 

[S17, S29, S31] to discover reusable evolution strategies.   

7.2.2 Research Trends in Acquisition of Reuse Knowledge  
In contrast to reuse knowledge application, we can observe a clear lack of research on knowledge 

discovery/acquisition techniques (only 6 studies) despite an acknowledged need. The primary themes for 



evolution-centric knowledge acquisition represent pattern discovery, evolution prediction and architecture 

configuration analysis. Change pattern discovery aims at investigating change logs [S29] and version control 

[S17] systems for post-mortem analysis of evolution histories. Frequent change instances from evolution histories 

are identified and represented as change patterns. Architecture-based prediction of software evolution aims to 

exploit scenario-based analysis to estimate the efforts of software evolution [S9, S10]. Configuration analysis 

techniques aim to investigate the evolution-centric dependencies for software architectures [S7, S31].    

 Future Research Dimensions – the comparative analysis for knowledge acquisition techniques suggest an 

investigation of evolution-centric dependencies. In particular, we believe in a need for Evolution Mining that 

aims at analysing, discovering and sharing explicit knowledge to be reused to anticipate and guide 

architecture change management. In the reviewed studies, there is little evidence of architecture change 

mining. Our review suggests the needs for empirically derived evolution plans and the need to analyse 

evolution dependencies. Such dependency analysis is significant to identify the commutative and dependent 

changes in order to investigate parallelisation of evolution operations. 

 

7.2 Benefits of the Systematic Review for Researchers and Practitioners 

The classification framework (in Section 5) provides a holistic view of different evolution reuse aspects to be 

considered in the context of the REVOLVE framework (Figure 5). The trends in Table 11 reiterate the fact that 

among prominent concerns to tackle ACSE are time aspects of evolution. It reflects on the role of formalisms and 

tool support that can be exploited to leverage conventional data mining techniques for post-mortem analysis of 

architecture evolution histories. There is a need to develop a tool chain that could automate the REVOLVE 

framework with appropriate and minimal user intervention.  

The classification and comparison and its accompanying templates [25] contain 12 comparison attributes that 

provides a moderate amount of information. For instance, for the 32 papers and 12 comparison attributes, it creates 

a collection with 32*12 = 384 data points. As a result, the user can for example query and analyse the database 

based on <Subject: Architecture Model Evolution> [Object: using Graph Transformation] (Implications: for 

change reuse and architecture consistency). This is beneficial for 

 Researchers who require a quick identification of relevant studies and detailed insight into state-of-the-art 

that supports application and acquisition of reuse knowledge in ACSE. 

 Practitioners interested in understanding the existing methods with supporting formalism and tool support to 

analyse and execute evolution reuse.  

 

7.3 Threats to Validity of the Systematic Review 

This SLR provides a classification of existing evidence of reuse in architecture-centric software evolution by 

reviewing and analysing peer-reviewed literature. Apart from addressing the research questions and providing an 

overview in the field according to the REVOLVE framework, we also identified areas that are not covered in the 

literature body. This work has been performed based on the review protocol explained in Section 3.  

Although the observations and results of systematic reviews are considered to be reliable [14, 15], this type of 

review work has its own limitations that should be considered [31]. We discuss the each of the validity threats 

associated to different steps in our SLR (cf. Figure 2). 

 Threats to the identification of primary studies. In our search strategies, the key idea was to retrieve as much 

as possible of the available literature to avoid any possible bias. Another critical challenge in addressing these 

threats was to determine the scope of our study, since the notion of reuse knowledge means different things 

to different research communities including software architecture, software product-lines and self-adaptive 

software. Therefore, to cover all and avoid bias, we searched for common terms and combined them in our 

search string (cf. Figure 3). While this approach decreases the bias, it also significantly increases the search 

work. To identify relevant studies and ensure the process of selection was unbiased, a review protocol was 

developed and evaluated.  

 Threats to selection and data extraction consistency. We have identified a lack of consistent terminologies 

for reuse knowledge (Section 4). This poses difficulties for the composition of the search queries and the 

inclusion/exclusion criteria. Such difficulties led us to analyse the terms concerning reuse knowledge that 

were found on the selected studies. However, since the notion of “reuse knowledge” is used in numerous 

studies, but we specifically concerned with “architecture (-based) evolution reuse knowledge”, we had to 

exclude a majority of retrieved studies that affected the low precision of our search. In addition, we performed 

quality assessment (Section 3.4 for details) on the studies to ensure that the identified findings and 

implications came from credible sources.  



 Threats to data synthesis and results. The threat to the reliability of results is mitigated as far as possible by 

involving multiple researchers, having a unified scheme for data synthesis, and several steps where the 

scheme and process were piloted and externally evaluated. Although as a general practice, we were 

determined to use the guidelines provided in [17] to perform our systematic review, we had deviations from 

their procedures as we have detailed in Section 3.  

To summarise, we believe that the validity of the study is high, given the use of a systematic procedure, the 

involvement and discussion among the researchers and external evaluations. The openness of our review by 

exposing our data in [25] allows other researchers to judge the trustworthiness of the results objectively. This 

initiative is suggested by the evidence-based software engineering community (e.g. http://www.dur.ac.uk/ebse/). 

 

8. CONCLUSION 

Our focus in this SLR was architecture evolution-reuse knowledge (AERK), i.e. knowledge specific to reuse in 

the evolution of software architecture. As such, it forms part of the wider architectural knowledge (AK) research 

in the software architecture community. The AERK perspective presented in this work shifts the reuse focus from 

artefacts (like software architectures) to processes (here, the evolution of architectures). 

Based on a qualitative selection of 32 studies, we investigated the coverage and concerns of reuse knowledge in 

architecture-centric software evolution. More specifically, we provide a taxonomical classification and holistic 

comparison of existing research based on 12 comparisons attributes to derive conclusions about central aspects, 

gaps and possible future research directions. 

We define what exactly constitutes reuse knowledge in the context of architecture evolution based on the 

systematic review. Moreover, we derived a taxonomy that aims to assist the researchers in classifying existing 

and future approaches for reuse-driven evolution that reflects a continuous progression of research over the last 

decade. We presented the research implications organised by the REVOLVE framework to consolidate the 

existing work with reflections on future research. The comparative analyses are presented in a number of 

structured tables. The reported results aim to facilitate knowledge transfer among researchers and practitioners to 

promote the ‘build-once, use-often’ philosophy to address recurring evolution. Based on the proposed conceptual 

framework, we distinguish between research efforts on architecture change discovery and mining (6/32 studies, 

i.e., 19% of the reviewed literature) and architecture change execution (26/32, 81%). Five distinct research 

activities – identifying, sharing, analysing, reusing and capturing reuse knowledge – frame the scope of reuse-

driven architecture evolution.  We also identified a number of research gaps and potential future trends: 

 Reuse Knowledge Mining and Discovery. In this evolution reuse context, the most frequent research focus 

are change patterns to promote reuse for both the design-time evolution and run-time adaptation of 

architectures. Knowledge capturing and identification represent the activities that have received significantly 

less research effort.  

 Dynamic, Run-time Evolution. The solutions for reuse of design-time changes show a relative maturation 

with change patterns. However, with growing needs for autonomic computing and self-adaptive architectures, 

more efforts are required to systematically address dynamic evolution. We believe that architecture evolution 

mining is particularly helpful to discover reuse knowledge that can be shared and reused to address anticipated 

and unanticipated evolution problems. A relative lack of focus on empirical identification of reuse knowledge 

suggests the need of solutions with architecture change mining as a complementary and integrated phase for 

architecture change execution. 
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