
“Analysis of Characterizing Phases on Waveforms – An Application to Vertical Jumps”  

by Richter C, O’Connor NE, Marshall B, Moran K 

Journal of Applied Biomechanics 

© 2013 Human Kinetics, Inc. 

 

 

 

 

 

 

 

Note. This article will be published in a forthcoming issue of 

the Journal of Applied Biomechanics. The article appears here 

in its accepted, peer-reviewed form, as it was provided by the 

submitting author. It has not been copyedited, proofread, or 

formatted by the publisher. 

 

 

 
Section: Technical Note  

 

Article Title: Analysis of Characterizing Phases on Waveforms – An Application to Vertical 

Jumps 

 

Authors: Chris Richter
1,2

, Noel E. O’Connor
2
, Brendan Marshall

1
 and Kieran Moran

1
  

 

Affiliations: 
1 

Applied Sports Performance Research, School of Health and Human 

Performance, Dublin City University, Dublin, Ireland. 
2 

CLARITY: Centre for Sensor Web 

Technologies, Dublin, Ireland.  

 

Journal: Journal of Applied Biomechanics 

 

Acceptance Date: August 2, 2013  

 
©2013 Human Kinetics, Inc. 

  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DCU Online Research Access Service

https://core.ac.uk/display/30933948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


“Analysis of Characterizing Phases on Waveforms – An Application to Vertical Jumps”  

by Richter C, O’Connor NE, Marshall B, Moran K 

Journal of Applied Biomechanics 

© 2013 Human Kinetics, Inc. 

 

 

 

Technical Note 

ANALYSIS OF CHARACTERIZING PHASES ON WAVEFORMS – AN 

APPLICATION TO VERTICAL JUMPS 

Chris Richter
1,2

, Noel E. O’Connor
2
, Brendan Marshall

1
 and Kieran Moran

1 

1 
Applied Sports Performance Research, School of Health and Human Performance, Dublin 

City University, Dublin, Ireland 

2 
CLARITY: Centre for Sensor Web Technologies 

 

Funding: None 

Conflict of Interest Disclosure: None 

Correspondence Address:  Chris Richter, CLARITY: Centre for Sensor Web Technologies, 

Room L1.29 Computer Science Building,  

Dublin City University,  

Dublin 9, Ireland 

 

email: chris.richter2@mail.dcu.ie 

Tel: 00353 1 700 6830  



“Analysis of Characterizing Phases on Waveforms – An Application to Vertical Jumps”  

by Richter C, O’Connor NE, Marshall B, Moran K 

Journal of Applied Biomechanics 

© 2013 Human Kinetics, Inc. 

 

Abstract:  

The aim of this study is to propose a novel data analysis approach, ‘Analysis of 

Characterizing Phases’ (ACP), that detects and examines phases of variance within a sample 

of curves utilizing the time, magnitude and magnitude-time domain; and to compare the 

findings of ACP to discrete point analysis in identifying performance related factors in 

vertical jumps. Twenty five vertical jumps were analyzed. Discrete point analysis identified 

the initial-to-maximum rate of force development (p = .006) and the time from initial-to-

maximum force (p = .047) as performance related factors. However, due to inter-subject 

variability in the shape of the force curves (i.e non-, uni- and bi-modal nature), these 

variables were judged to be functionally erroneous. In contrast, ACP identified the ability to: 

apply forces for longer (p < .038), generate higher forces (p < .027) and produce a greater 

rate of force development (p < .003) as performance related factors. Analysis of 

Characterizing Phases showed advantages over discrete point analysis in identifying 

performance related factors because it: (i) analyses only related phases, (ii) analyses the 

whole data set, (iii) can identify performance related factors that occur solely as a phase, (iv) 

identifies the specific phase over which differences occur, and (v) analyses the time, 

magnitude and combined magnitude-time domains. 

Keywords: analysis of characterizing phases, countermovement jump, motion analysis, 

performance related factor 

Word Count:  2201  
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Introduction 

Identification of performance related factors is a major goal in sports biomechanics as 

they provide useful information for optimizing training interventions. Traditionally discrete 

point analysis techniques are used to identify performance related factors, which hold a 

number of limitations: (i) only a few individual pre-selected data points are used to 

summarize a complex continuous signal, thereby discarding the vast majority of the signal 

and potentially important information, (ii) key events selected for analysis vary across 

studies, and (iii) performance related factors can occur over phases that are not necessarily 

captured in a single data point. In consequence, biomechanists have sought new ways to 

analyse data as a continuous signal,
1-3

 such as functional data analysis which: examines a 

sample of curves described by functions rather than discrete data points, does not require 

linear time normalization which can alter the data,
4
 and uncovers the underlying structure 

while maintaining all of the signal information.
4-10

 However, there are two possible 

limitations to functional data analysis as currently employed in biomechanics.
4-10

 Firstly, it 

does not inherently identify key-phases,
a
 it tends to be applied to the whole function 

assuming that key-phases have an overwhelming effect on the generated output score. In 

consequence, it has the potential to mask performance related factors. Secondly, it cannot 

examine the combined magnitude-time domain,
b
 which can hold important information. To 

date, no data analysis technique addresses the aforementioned limitations. The aim of this 

study is to propose a novel data analysis approach; ‘Analysis of Characterizing Phases’ 

(ACP), and to compare its findings to discrete point analysis when identifying performance 

                                                           
a
  To analyze key-phases it is necessary to pre-select or visually identify them prior to 

analysis, which can result in the identification of false key-phases. 

 
b
  The magnitude-time domain merges the information from a waveform’s shape and timing. 

This combination enables the identification of performance related factors that are 

dependent on both amplitude and time (i.e. impulse-momentum relationship in 

countermovement jumps). 
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related factors within the vertical ground reaction force (force) during the propulsive phase of 

the countermovement jump. 

Methods 

Twenty five male athletes (age = 22.0 ± 4.0 years; mass = 77.8 ± 9.8 kg), experienced 

in performing the countermovement jump and free from lower limb injury participated in this 

study. The University Ethics Committee approved the study. All participants were informed 

of any risk and signed an informed consent form before participation.  

Prior to data collection every participant performed a standard warm-up routine 

consisting of low intensity jogging, stretching and a self-selected number of sub-maximal and 

maximal countermovement jumps. Each participant performed 15 maximum effort 

countermovement jumps without an arm swing, standing with each foot on a separate force 

platform. Participants rested for 30 seconds between trials. Two force plates (BP-600900, 

AMTI, USA) recorded the force (1000Hz). Based on jump height, the best jump performance 

of each subject was identified and used for analysis. Jump height was calculated by the centre 

of mass vertical velocity at take-off            , with take-off determined when force fell 

below 5 N (Equation 1 and 2). 

          (∫              
        

                      
)                 Equation 1 

                            ⁄                                   Equation 2 

Only the force-time curve during the propulsion phase was analysed. The start of the 

propulsion phase was identified from the power-time curve of the body’s centre of mass. 

For the discrete point analysis, the following ‘key’ points were examined: initial 

force, mean force, maximum force, initial-to-maximum rate of force development, time from 

initial-to-maximum force, percentage initial-to-maximum force, time from maximum force to 
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take-off and propulsion phase duration.
11-16

 Initial-to-maximum rate of force development 

was calculated (Equation 3) from the initial force to the point i at which the maximum force 

occurred.
11

 All results are reported as mean ± standard deviation. 

           
                  

     
     Equation 3 

Force and continuous rate of force development curves were analyzed using ACP 

(Figure 1). Continuous rate of force development was determined by differentiating the 

functional force data. 

Normalization: The captured samples differed in length/duration and had to be 

normalized before applying ACP. A basis b-spline system was used for normalization to 

avoid linear time normalization. General properties of basis b-spline system are outlined 

elsewhere.
5,18,19

 

Identification of Characterizing Phases: To identify characterizing phases the force 

variance-covariance matrix was calculated and analyzed using an Eigen analysis.
c
 This seeks 

to find a simplified description of the variance-covariance matrix by solving the Eigen 

function generating Eigen vectors, called principal components, and Eigen values. Principal 

components can be seen as a series of loadings, where high positive or high negative values 

demonstrate high distribution, indicating a specific ‘pattern of variance’. Every principal 

component has a corresponding Eigen value that represents the influence it has on the data 

set. The sum of all Eigen values fully describes the system created by the variance-covariance 

matrix where each Eigen value indicates the effect size of the corresponding principal 

component. Principal components were considered until they described 99% of the data’s 

variance.
20

 To increase the interpretability of the retained principal components a VARIMAX 

                                                           
c
  A variance-covariance matrix should only be used if the used data does not differ in unit 

or origin.
17
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rotation was performed.
5,9,10

 The rotated principal components are used to identify pattern-

characterizing phases, called key-phases. The position and sign of the principal component’s 

absolute maximum were used to establish the key-phase start and end point. The last value 

differing in sign before and after the absolute maximum defined the start and end of the key-

phase, respectively (Figure 2a). Each key-phase is separated into segments, based on 

thresholds (e.g. 100%, 95% and 90% of the principal component peak). These segments vary 

in their pattern-characterizing potential from high to low. The highest pattern-characterizing 

potential is defined by the data between thresholds 1 and 2 (Figure 2b). The second highest 

pattern-characterizing potential is defined by the segments between thresholds 2 and 3 prior 

and after the segment with the highest pattern-characterizing potential, and so on. 

Examining pattern-characterizing phases: Similarity scores were calculated for each 

participant within identified key-phases. These scores measure the relationship between 

curves with respect to time, magnitude and the combined magnitude-time domain, and were 

used for statistical analysis. Similarity scores were generated by calculating the Euclidean 

distance between two curves (Equation 4), which is the root sum of all squared distances 

defined by the curves of a participant q and the best jump p at every point i within the 

selected segment.  

                    √∑          
 
       Equation 4 

A low similarity score indicates high similarity between the signals, and vice versa. 

Where a significant difference between the similarity scores is evident, the similarity scores 

were recalculated within the segments of the next lowest pattern-characterizing potential 

phase.
d
 This process is terminated when a non-significant stage, the start point, or the end 

                                                           
d
   In the example given (Figure 2), the score for the second iteration is calculated using the 

data ranging from 80.1-81.8 % and 87.7-88.5 % of the movement cycle (individually), 

without the data within the highest pattern-characterizing potential (81.8-87.7 %). 
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point of the key-phase is reached. This approach explores the total phase over which a 

difference exists and avoids a possible overwhelming effect of a highly significant key phase 

erroneously causing a non-significant phase to appear significant.  

The present study used a correlation analysis (p = .05) to examine the relationship 

between discrete points (discrete point analysis) or similarity scores (ACP) and jump height. 

Factors that significantly correlated with jump height (performance outcome) were defined as 

performance related factors and classified into weak (r² < .09), moderate (.09 < r² < .49) and 

strong (r² > .49).
21

 

Results 

The discrete point analysis technique did not identify any relationship between jump 

height and either high forces or the duration of force application (Table 1). Factors that did 

correlate with jump height were initial-to-maximum rate of force development and time from 

initial-to-maximum force (Table 1). 

Analysis of Characterizing Phases found key-phases in both force and rate of force 

development which correlated with jump height (Table 2, Figure 3 and 4). Similarity scores 

for the time domain correlated with jump height (p = .041, r² = .16) for all key-phases, 

indicating that higher jumps were achieved by a longer force application. Similarity scores in 

force correlated with jump height for key-phases spanned by principal component 4 and 5 in 

the magnitude and magnitude-time domains. These scores indicated that higher jumps were 

achieved by generating higher forces over a phase of 64-96 % of the cycle. Similarity scores 

for rate of force development correlated with performance for key-phases spanned by 

principal component 2, 3 and 7 in the magnitude domain, and 2, 3, 6 and 7 in the combined 

magnitude-time domain. The rate of force development similarity scores indicated that higher 
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jumps were achieved by a greater magnitude in rate of force development over a phase of 18-

80 % and 88-99 %. 

Discussion 

The analysis techniques identified different performance related factors. Maximum 

force was not a performance related factor using discrete point analysis, but was a strong 

factor with ACP. Visual examination of each force curve indicated a significant variation in 

their shape, with curves being either non-, uni- or bi-modal in nature, and in the case of bi-

modal curves the maximum force could occur at either peak. This may explain the 

contrasting findings between the analysis techniques. To examine this possibility each force 

curve was divided into two phases (phase1: 0-60 %; phase2: 60-100 %) and the magnitude 

and timing of the maximum force in each phase was re-examined for correlation to jump 

height.
e
 The timing and magnitude of the maximum force in the second phase were 

subsequently identified as moderate performance related factors (p = .003, r² = .315 and p = 

.039, r² = .172, respectively). Due to the pre-selection of ‘key’ events and the inability to take 

into account their position, discrete point analysis can fail to identify performance related 

factors. This may explain previous contrasting findings, all of which used discrete point 

analysis, with some reporting maximum force as a performance related factor while others 

did not.
11-16

 Discrete point analysis identified the time from initial-to-maximum force and the 

initial-to-maximum rate of force development as moderate performance related factors. 

While these variables are mathematically feasible, they are functionally erroneous. Firstly, 

the time from initial-to-maximum force is highly distributed due to the multi-modal nature of 

the force curves. A separate analysis of early and late peaking athletes found no relationship 

with jump height for either group (p > .106). Secondly, rate of force development should 

                                                           
e
  These phases were based on the findings of ACP 



“Analysis of Characterizing Phases on Waveforms – An Application to Vertical Jumps”  

by Richter C, O’Connor NE, Marshall B, Moran K 

Journal of Applied Biomechanics 

© 2013 Human Kinetics, Inc. 

 

describe the neuromuscular capacity to ‘continue to increase/decline force’. This criterion is 

not met in the bi-modal force curves where maximum force can occur at the second peak and 

when discrete rate of force development is calculated relative to the start of the propulsion 

phase.
11-14

 For similar reasons, initial-to-maximum rate of force development can be 

calculated using the maximum force in the first or second phase. In consequence, the 

variables ‘time from initial-to-maximum force’ and ‘initial-to-maximum rate of force 

development’ would not easily relate to either a specific exercise or an instruction to change 

jump technique. This may partly explain the contrasting results in previous studies, all of 

which utilised discrete point analysis, where some studies reported initial-to-maximum rate of 

force development as a performance related factor while others did not. 
11,13,14

 

Analysis of Characterising Phases showed that high forces correlate with jump height 

within the phase of 64-96 % in the magnitude domain and the combined magnitude-time 

domain. In addition, ACP found continuous rate of force development to correlate moderately 

to strongly with jump height in the magnitude domain (32-79 % and 90-98 %) and the 

combined magnitude-time domain (18-80 % and 88-99 %). This provides important 

information for improving performance and indicates the advantage of ACP over discrete 

point analysis. However, we believe that the higher decline in continuous rate of force 

development (88-99 %) is due to the higher force and their extended period of application 

towards the end of the propulsion phase. Consequently, the higher decline in continuous rate 

of force development is functionally erroneous because no one would attempt to deliberately 

reduce force as fast as possible prior to take off; rather the higher and more prolonged forces 

must simply decline to zero quicker prior to take-off. 

In conclusion, ACP seems to be more effective at identifying performance related 

factors in the force curves of countermovement jumps than discrete point analysis because it: 

(i) analyses only related phases of curves and hence examines comparable neuromuscular 
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capacities, (ii) analyses the whole data set rather than prior selected features, (iii) can 

examine performance related factors that occur solely as a phase, (iv) identifies the specific 

phase over which differences occur and, (v) analyzes the time, magnitude and magnitude-

time domain. As such, ACP was able to identify the exact movement phase over which a 

training program should aim to alter technique or neuromuscular capacities to generate a 

greater impulse. In terms of jump height, the ability to: a) apply forces for longer, b) generate 

higher forces over an extended period towards take-off (64-95 % of the propulsion phase) and 

c) generate higher rate of force development (18-80 % of the propulsion phase) appear to be 

performance related factors.  
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Figure 1: Shows a flow chart describing the process of ACP 
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Figure 2: Visualisation of a) the detection of the start and the end point of a key-phase over 

the whole function and, b) the separation of a key phase into segments with different pattern-

characterizing potential  
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Figure 3: Summarizing findings of ACP indicating that a greater impulse is generated in 

‘better’ jumpers by applying forces for longer, higher forces over the movement cycle of 64-

96 % and, higher forces in the combined magnitude-time domain over the movement cycle of 

64-96 % 
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Figure 4: Summarizing findings of ACP indicating that a greater impulse is generated in 

‘better’ jumpers by a longer forces application, higher rate of force development over the 

movement cycle of 32-78 % and, higher rate of force development in the combined 

magnitude-time domain over the movement cycle of 18-80 % 
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Table 1: Descriptive statistics of the selected data points in the discrete point analysis  

 
Variable p-value r-value (r²) 

initial force (BW) p = .155 r = -.293 (.09) 

mean force (BW) p = .125 r = .315 (.10) 

maximum force (BW) p = .506 r = .139 (.02) 

time initial-to-maximum force (s) * p = .047 r = .401 (.16) 

percentage initial-to-maximum force (%) p = .060 r = .381 (.14) 

time peak-to-take-off (s) p = .187 r = -.273 (.07) 

discrete rate of force development (BW s
-1

)* P = .006 r = .537 (.29) 

duration propulsion-phase (s) p = .051 r = .395 (.16) 

*significant correlation to jump height 
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Table 2: Descriptive statistics of computed similarity scores in force and continuous rate of 

force development in ACP 

 
  Similarity scores of force 

 
 variability 

(%) 

range pattern |  

key phase (%) 

correlated  

phase (%) 
p-value r-value (r²) 

PC 1 combined 22 6-61 | 26-37 no p = .960 r = .010 (<.01) 

PC 2 combined 17 30-86 | 55-62 no p = .105 r = .330 (.11) 

PC 3 combined 28 1-32 | 1-4 no p = .470 r = .142 (.02) 

PC 4 combined* 8 81-100 | 93-95 81-96 p < .001 r = .722 (.52) 

 magnitude*   91-96 p < .001 r = .737 (.54) 

PC 5 combined* 25 55-96 | 82-86 64-95 p < .001 r = .711 (.51) 

 magnitude* -  64-94 p < .001 r = .686 (.47) 

       

  Similarity scores of continuous rate of force development 

 
 variability 

(%) 

range pattern |  

key phase (%) 

correlated  

phase (%) 
p-value r-value (r²) 

PC 1 combined 40% 23-100 | 83-87 no p = .299 r = .127 (.05) 

PC 2 combined* 27% 80-100 | 94-95 88-99 p < .001 r = .670 (.45) 

 magnitude*   90-98 p = .007 r = .525 (.28) 

PC 3 combined* 18% 69-85 | 69-85 69-80 p = .038 r = .417 (.17) 

 magnitude*   69-79 p = .038 r = .418 (.17) 

PC 4 combined 3% 3-28 | 7-9 no p = .088 r = .348 (.12) 

PC 5 combined 6% 93-100 | 93-100 no p = .090 r = .429 (.18) 

PC 6 combined* 3% 1-55 | 19-27 18-55 p = .008 r = .516 (.27) 

PC 7 combined* 3% 31-88 |59-67  31-79 p = .020 r = .459 (.21) 

 magnitude*   32-78 p = .008 r = .520 (.27) 
*
 significant correlation to jump height 

 

 


