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ABSTRACT 

 

During the last decades, the weights of trawl boards used in the North Sea, Norwegian Sea 

and the Barents Sea have increased significantly from barely a ton to a score of tons. In 

addition, the trawling speed has increased as well. These new faster and heavier trawl boards, 

in an event of impact with subsea structures, will result to tremendous loads on these 

structures. Impact with existing structures which were designed with recommendation from 

ISO 13628- part 1 may be devastating for the subsea structures as the new loads the structures  

will experience may be greater than its design loads. 

 

Model trails performed in the late 80´s at a water depth of 100m, speed at 1,8 m/s and trawl 

board weight up to 1 900 kg resulted to an establishment of a design impact energy 

requirement of 13 kJ [9]. Statoil, in response to the increase in weight and velocity of trawl 

boards, raised their impact energy recommendation to 38 kJ. 

 

This thesis aims at raising concerns on the level of conservatism in these values given that 

impact incidence that resulted to no damage at all on a subsea structure have been reported. It 

is worth mentioning that these structures were designed according to ISO 13628- part 1, but 

however the trawl board in this impact had a weight of 4 400 kg. 

Statoil´s recommendation springs from impact test conducted in air and a theoretical study of 

the trawling situation for subsea structures from DNV report. 

The following question arises: Is the Statoil´s recommended design impact energy of 38 kJ 

too conservative?  

 

The goal of this work is to challenge this impact energy recommendation. This will be done 

by conducting a series of impact test on a copper pipe under the following configurations: 

 

 An empty pipe will be impact tested in air. 

 

 A closed pipe filled with water will be impact tested in air. 

 

 A sealed water fill pipe will be impact tested in water. 

 

The result from the following configurations will be analyzed and compared in order to 

determine the possible effect of damping (due to water in and out of the structure) on its 

response, laying ground work for a full scale test. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 2 
 

 

Acknowledgement 

 

This thesis is dedicated to the memory of my beloved wife Bakhita Katume Nkofo, who’s 

passing early this year has been very painful for our son and I. However, the support and 

encouragement she gave to me throughout my studies and even during her last days, gave me 

the strength required to complete this thesis on time.  

 

This work would have been a fiasco without the love, and the very amazing patience my son 

Kristoffer Emesum demonstrated during this period. I appreciate his patience especially when 

I had to say to him too often `Not now, Kristoffer! I am working on my thesis´. 

 

Special thanks to my supervisors Prof. Arnfinn Nergaard (University of Stavanger) and Kjell 

Einar Ellingsen (Statoil ASA-Stavanger) for their guidance, provision of literatures, 

equipment and comments which kept me on the right track. 

 

I extend my gratitude to the mechanical engineering students working at the workshop in the 

University of Stavanger. They gave me a crash course in welding that was crucial in the 

building of the hammer used in this thesis. 

 

I would like to thank Ahmad Yaaseen Amith (University of Stavanger) for the effort he put in 

making this work possible. At a very short notice, you thought me how to prepare and install 

strain gages and made available the various devices needed for the test. 

 

And last but not the least, I wish to thank the following individuals whose encouragement 

contributed tremendously to the success of this thesis: 

 Professor Ove Tobias Gudmestad 

 Shaka and Adriana Nkofo 

 The Yenwongfai family 

 Dag H. Berg 

 The Cameroonian associations in Norway 

 Daniel Ebai Tambe and Enaka Enowntai 

 Mercy Tyskerud and Esama Marceline 

 Nyokabi Wanjiru Bækkelien and Noeline Goos 

 

 

A very big thank you for all those whose names could not be mentioned here, I appreciate 

your efforts.  



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 3 
 

 

Contents 

ABSTRACT ......................................................................................................... 1 

Acknowledgement ............................................................................................... 2 

List of Figures ...................................................................................................... 5 

List of Tables ........................................................................................................ 7 

List of Symbols ..................................................................................................... 8 

Abbreviations ..................................................................................................... 11 

Chapter1      Introduction ................................................................................. 12 

1.1      Background ............................................................................................................... 12 

1.2      Project Scope ............................................................................................................. 13 

1.3      Project Organization .................................................................................................. 14 

Chapter 2      FISHING GEAR ........................................................................ 15 

2.1     Bottom Trawl Gear ..................................................................................................... 15 

2.1.1     Bottom Otter Trawl ................................................................................................. 15 

2.1.1.1     Ground Rope .................................................................................................... 17 

2.1.1.2     Otter Boards ..................................................................................................... 18 
2.1.2     Bottom Pair Trawls Rigging and Double Bottom Trawl Rigging ...................... 20 
2.1.2.1     Bottom Trawl Fishing Area .............................................................................. 21 

2.1     Beam Trawling ........................................................................................................... 22 

Chapter 3     Trawl Gears Interaction Scenarios with Subsea Structures .. 24 

3.1     Impact ......................................................................................................................... 24 

3.1.1     Impact Energy ..................................................................................................... 25 
3.1.1.1     Calculation of Strain Energy Due To Impact ................................................... 26 

3.1.1.1.1     Elastic Strain Energy ..................................................................................... 26 
3.1.1.1.2     Plastic Strain Energy ..................................................................................... 27 

3.2     Pull-Over .................................................................................................................... 28 

3.3     Hooking ...................................................................................................................... 29 

Chapter 4     Theory on Deformation of Pipelines Due to Impact ................ 30 

4.1     General ....................................................................................................................... 30 

4.2     Determination of the Local and Global Displacements. ............................................ 32 

4.3     Theories on the Local and Global Plastic Energies Absorbed During Impact ........... 33 

4.3.1     Theory of Ellinas and Walker ............................................................................. 33 
4.3.2     Theory of Oliveira, Wierzbicki and Abramowicz ............................................... 35 

Chapter 5     State of the Art ............................................................................ 37 

5.1 DNV ............................................................................................................................... 37 

5.1.1     Impact with Trawl Board .................................................................................... 37 

5.1.2     Impact with Beam Trawl ..................................................................................... 39 

5.2     NORSOK U-001versus Statoil’s Internal Practice .................................................... 40 

 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 4 
 

Chapter 6      Experiment ................................................................................. 42 

6.1     Apparatus ................................................................................................................... 42 

6.1.1     The Hammer ........................................................................................................ 42 

6.1.2      The Pipeline ........................................................................................................ 45 
6.1.3     Water Tank .......................................................................................................... 46 

6.2.     Sensors and Data Acquisition ................................................................................... 46 

6.2.1     Strain Gages ........................................................................................................ 46 
6.2.2     Spider8 and PC .................................................................................................... 47 
6.2.3     Distance Measuring Tools ................................................................................... 48 

6.3     Procedure .................................................................................................................... 48 

6.3.1     Group I - Empty Pipes in Air .............................................................................. 48 

6.3.2     Group II - Water-filled Pipe in Air ...................................................................... 49 
6.3.3     Group III - Water-filled Pipe in Water ................................................................ 50 

Chapter 7     Results .......................................................................................... 51 

7.1     Empty Pipes Tested in air ........................................................................................... 51 

7.2     Water-filled Pipes Tested in Air ................................................................................. 53 

7.3     Water-filled Pipes Tested in Water ............................................................................ 55 

7.4     Comparisons of the Results ........................................................................................ 57 

7.4.1     Local Displacement ............................................................................................. 57 

7.4.2     Maximum Permanent Transverse Displacement ................................................. 58 

7.4.3     Maximum Width of the Deformed Cross-Section .............................................. 59 
7.4.4     Local Permanent Thickness of the Deformed Cross-Section .............................. 60 
7.4.5     Local Indentation Energy Absorbed Plastically-Ellinas Theory ......................... 61 

7.4.6     Impact Energy Absorbed According to DNV versus Impact Energy Absorbed 

using Ellinas and Walker’s Theories ................................................................................ 62 

 

Chapter 8     Conclusion and recommendation .............................................. 64 
    8.1      Summary and Conclusion…………………………………………………………..64   

    8.2      Recommendations for a Full-Scale Impact test in Water…………………………..66 

 

Reference ..……………………………………………………………………67 

 

Appendix A……………………………………………………………………69 
   A1.       Velocity and Kinetic Energy of Striker…………………………………………….69 

   A2.       Maximum Strain……………………………………………………………………70 

   A3.       Elastic Strain Energy……………………………………………………………….71 

   A4.       Recommended Practice DNV-RP-F111...…………………………………………71 

 

Appendix B…………………………………………………………………….72 
   B1.       The Pipe´s Data…………………………………………………………………….72 

   B2.        Empty Pipes in Air...………………………………………………………………73 

   B3.        Water-Filled Pipes in Air...………………………………………………………..78 

   B4.        Water-Filled Pipes in Water……………………………………………………….83   
 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 5 
 

 

 

List of Figures 

 

Figure 2-1 Illustration of the main part of an Otter trawl ( stripersonline.com) ...................... 16 
Figure 2-2 Detailed illustration of an Otter trawl with standard dimensions [2] ..................... 16 
Figure 2-3 Different types of ground rope for Otter trawl [2] ................................................. 17 
Figure 2-4 Illustration of a typical standard rectangular Otter door [6] ................................... 18 
Figure 2-5 An illustration of a V-shaped Otter door [6] .......................................................... 18 

Figure 2-6 An illustration of a typical oval shaped Otter door[6] ............................................ 19 
Figure 2-7 Illustration of bottom pair trawl rigging technique [6] ........................................... 20 
Figure 2-8 Illustration of double bottom trawl rigging technique [6] ...................................... 20 

Figure 2-9 Area of operation for the bottom trawl [2] ............................................................. 21 
Figure 2-10 A conventional beam trawl [7] ............................................................................. 22 

Figure 3-1 Iillustration of  a trawl gear impact normally to a submarine pipeline [5] ............ 24 

Figure 3-2 Illustration of impact between trawl gear and subsea structure at an inclined angle 

[5]..............................................................................................................................................25 

Figure 3-3  A typical stress-strain curve [12]...........................................................................27 

Figure 3-4 Trawl board pull-over force-time history for rectangular and V boards [21].........28 

Figure 3-5  Hooking scenario between a tubular structure and an oval door...........................29 

Figure 4-1 A deformed  pipeline clamped at both ends (after impact).....................................30 

Figure 4-2 A section through a deformed pipe showing the deformed geometry................... 31 

Figure 4-3 Deformed and un-deformed cross-sections of a pipeline in the impact plane [13] 

..................................................................................................................................................31 

Figure 4-4  Definition of local indentation,global displacement and total displacement for the 

idealised deformed cross-section [13]......................................................................................32 

Figure 4-5 A fully clamped pipeline struck by a mass G travelling at a speed Vo [13]...........34 

Figure 5-1 Reduction factors for concrete coated and bare pipes [5].......................................37 

Figure 5-2 Ch coefficient for effect of span height on impact velocity [5]..............................38 

Figure 6-1  The impact hammer and its dimensions(mm)...................................................... 43 

Figure 6-2  Detailed diagram of the top structure and its dimensions (mm)...........................44 

Figure 6-3  The impact hammer..............................................................................................44 

Figure 6-4 Illustration of a strain gage attached at a pipe's mid-span ....................................46 

Figure 6-5  Illustration of the mode of connection between the two strain gages and a 15-pin 

port.......................................................................................................................................... 47 

Figure 6-6  Spider 8 hardware (white box to the left) connected to a PC...............................47 

Figure 6-7  Measured parameters for the deformed cross-section .........................................49 

Figure 6-8  Experimental setup for impact test in water.........................................................50 

Figure 7-1  Strain variation with time for the impact load at the mid-span of an empty pipe in 

air............................................................................................................................................ 52 

Figure 7-2 Strain variation with time for impact at mid-span of a water-filled pipe in air.....54 

Figure 7-3  Strain variationwith time for impact at mid-span of a water-filledpipe in water. 56 

Figure 7-4  Variation of the local displacement with kinetic energy of the striker for the 

various groups..........................................................................................................................57 

Figure 7-5  Variation of the maximum permanent transverse displacement with kinetic energy 

of the striker for the various groups.........................................................................................58 

Figure 7-6  Variation of the maximum width of the deformed cross-section with kinetic 

energy of the striker for the various groups.............................................................................59 

file:///D:/master%20thesis/My%20master%20thesis%202013-well%20edited.doc%23_Toc357721888
file:///D:/master%20thesis/My%20master%20thesis%202013-well%20edited.doc%23_Toc357721889
file:///D:/master%20thesis/My%20master%20thesis%202013-well%20edited.doc%23_Toc357721890
file:///D:/master%20thesis/My%20master%20thesis%202013-well%20edited.doc%23_Toc357721891
file:///D:/master%20thesis/My%20master%20thesis%202013-well%20edited.doc%23_Toc357721892
file:///D:/master%20thesis/My%20master%20thesis%202013-well%20edited.doc%23_Toc357721893
file:///D:/master%20thesis/My%20master%20thesis%202013-well%20edited.doc%23_Toc357721894
file:///D:/master%20thesis/My%20master%20thesis%202013-well%20edited.doc%23_Toc357721895
file:///D:/master%20thesis/My%20master%20thesis%202013-well%20edited.doc%23_Toc357721896
file:///D:/master%20thesis/My%20master%20thesis%202013-well%20edited.doc%23_Toc357721897


Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 6 
 

Figure 7-7  Variation of the local permanent thickness of the deformed cross-section with 

kinetic energy of the striker for the various groups..................................................................60 

Figure 7-8  Variation of the local indention energy absorbed plastically with kinetic energy of 

the striker for the various groups using Ellinas and Walker's theory.......................................61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 7 
 

 

 

 

List of Tables 

 

Table 1-1 Classification of Otter doors based on their dimensions and weights [2] ............... 19 

Table 5-1 Design load requirements for trawl gear-pipeline interaction[20]...........................40 

Table 5-2 Generic design loads requirement [19] .................................................................... 40 

Table 7-1 Values measured from the deformed cross-sections for the empty pipes tested in 

air..............................................................................................................................................51  

Table 7-2 Calculated values of local and global displacements and their associated plastic 

energies, for the empty pipes tested in air.................................................................................52 

Table7-3 Values measured from the deformed cross-sections for the water-filled pipes in air

 .................................................................................................................................................. 53 

Table7-4 Calculated values of local and global displacements and their associated plastic 

energies for the water-filled pipes tested in air ........................................................................ 53 

Table 7-5 Values measured from the deformed cross-sections for the water-filled pipes tested 

in water ..................................................................................................................................... 55 

Table 7-6 Calculated values of local and global displacements and their associated plastic 

energies for the water-filled pipes in water .............................................................................. 55 

Table 7-7 Total impact energy absorbed for the various striker weights ................................. 62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 8 
 

 

List of Symbols 

 

Ws Total elastic energy of the pipe 

 

Ws Strain energy per unit length 

l ,L Length of the pipeline 

A Cross-sectional area of pipeline 

E Young´s modulus of elasticity 

ε Strain 

εmax Maximum strain 

Wo Total kinetic energy of impact 

WT Total strain energy density 

Wp Plastic  energy density 

R Mean outer radius of pipeline 

ro Radius of deformed cross-section of pipeline 

D Outer diameter of pipeline 

Dm Maximum width of the deformed pipeline´s 

cross-section 

Tr Local permanent thickness of deformed 

cross-section 

Wf Maximum permanent transverse 

displacement  

Wg Permanent global displacement 

Wl Local displacement 

Epl Energy absorbed by pipeline plastically 

Egl Energy absorbed by pipeline globally 

Emem Energy absorbed by pipeline´s shell 

membrane behaviour 

Δ
γ 

Wl/2R 

 

 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 9 
 

Δ
γm 

 

Dimensionless indentation 

λ Dimensionless kinetic energy 

W
γ 

W/2R 

G Mass of striker 

H Wall thickness of pipeline 

σy Uniaxial yield stress of the pipeline material 

Vo Initial impact velocity of striker 

V Velocity of  trawl board 

Es Trawl boards’ impact energy 

Rfs Reduction factor depending on the outer pipe 

diameter 

mt Trawl board steel mass 

Ch Span height correction factor for effective 

pull-over velocity 

ma Trawl board´s added mass 

kb Lateral bending stiffness of the trawl board 

αU Material strength factor 

Ea Impact energy associated with impact force 

fy,temp Temperature derating value of the yield stress 

fy (SMYS- fy,temp ) αU 

t Steel wall thickness 

Eloc Kinetic energy absorbed by local deformation 

of the coating and pipe wall 

Cb Effective mass factor 

σt Tensile strength 

ν Poisson´s ratio 

ET Calculated impact energy using Ellinas and 

Walker´s theory 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 10 
 

ET-DNV Calculated impact energy using DNV-RP-

F111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 11 
 

 

 

Abbreviations 

 

 

SMYS 

 

Specified Minimum Yield Strength 

DNV 

 

Det  Norske Veritas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 12 
 

 

 

Chapter1      Introduction 
 

 

1.1      Background 

 

The coexistence of the petroleum and fishing industries as a matter of fact, has led to 

inevitable interactions between the equipment and structures in use by these sectors. It is well 

known that subsea structures are sites of attraction for various types of fishes and hence the 

regions around these structures turn to be great fishing grounds for fishermen. It is therefore 

obvious that fishing around these subsea structures will increase the likelihood of interaction 

between the fishing gears and the subsea structures such as pipelines, well heads, templates 

etc. a situation that may lead to the damage of both the fishing gear and the subsea structures. 

 

In some areas of the Norwegian Continental Shelf, structures like pipelines are buried as a 

preventive method. However, for larger structures, burial is not a feasible option and hence 

there is a need to design them in such a way that they interact with these trawl gear, resulting 

to little or no damage for both equipment i.e. the subsea structure is overtrawlable. 

 

In the Norwegian Continental Shelf, the Norwegian Petroleum Directorate set requirements 

for the design and installation of subsea structures and according to ISO 13628: Petroleum 

and gas industries- design and operation of subsea production systems part 1, subsea 

structures shall be designed for trawl board interactions i.e. impact, snagging and pull over.  

 

Nowadays, the weights of the trawl board in use in the North sea, Norwegian sea and the 

Barents sea have increased significantly from the past 20 years: from 1500 kg in the early 

80´s to 4 000 kg in 2005 [5]  and possibly more than 6 000 kg in 2013. 

Not only have the weights increased, the trawl velocities have also been increased up to 4 m/s. 

This increase in both the velocity and the weight will result to an increase in the impact force 

as well as the impact energies on the structures. It follows that the design loads and impact 

energy recommended by both the NORSOK U-001 and DNV-RP- F111 may no longer be 

relevant. Therefore there is a need for revised version of these recommendations. 

 

In a move to accommodate these changes in trawl board properties, Statoil increases both the 

trawl board pullover and impact design loads; with the impact energy increased to 38 kJ from 

a previous 13 kJ. A recommendation that may be pretty much conservative given that mainly 

traditional Finite Element Analysis in air was performed with these new trawl board 

properties and a full scale test was not performed in water. 
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1.2      Project Scope 

 

This thesis entails the following: 

 

 An impact test is executed on three separate set of pipeline: empty pipes in air, 

water-filled pipes in air and water-filled pipes in water. 

Each set of pipelines will be tested with different loads so that a sensitivity study 

can be done on the effect of load variation. 

 

 Measurements of the various geometric parameters on the deformed pipelines 

cross-sections and the use of these parameters as input data for recognized 

theoretical models. The outcome is the calculated values of plastic and global 

energies. 

 

 Comparisons of the results obtained from all three groups. The aim is to bring out 

the differences in deformed geometry, energy absorbed by the pipeline for the 

various groups, etc.  

 

 

 

 Computation of the impact energy absorbed by the pipelines using DNV-RP-F111 

and compare these with values obtained using the theoretical models. 
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1.3      Project Organization 

 

This project is organized as follows: 

 

Chapter 2 This section describes the main fishing gear in use in the Norwegian and 

North seas. It also describes parts of these fishing gear, focusing on those 

parts that interact with subsea structures such as trawl boards. 

 

Chapter 3 Here the various interaction scenarios between trawl boards and subsea 

structures are discussed, but emphasis is made on impact between these 

gear and submarine pipelines. Other interaction scenarios are simply 

introduced. 

 

Chapter 4 This section deals with theoretical models developed for the deformation 

of pipelines due to impact. Two widely accepted theories are introduced. 

Given that these theories agree very well with experiments, they will be 

used further in this work. 

The necessary parameters to be measured on the deformed cross-sections 

are defined. 

 

Chapter 5 In this chapter, the DNV´s simplified method for the calculation of 

impact energy absorbed by a pipeline is summarized. This chapter also 

discusses and compares the design load requirements stated by NORSOK 

U-001 and the Statoil´s internal practice. Emphasis is laid on the 

difference between the trawl board impact design loads specified by both 

documents. 

 

Chapter 6 The conducted test is described in details here. The design of the impact 

hammer is illustrated. The test procedure for each group, other devices 

used in the test as well as the data collection methods, is outlined.  

 

Chapter 7 In this section, the results from each group of pipelines are presented and 

comparisons are made between   the groups in terms of local indentation, 

local and global displacements, plastic and global energies etc. Calculated 

impact energy absorbed by pipelines using DNV is compared to that 

using one of the theoretical models. 

 

Chapter 8 Conclusion and recommendation for further work is made in this section 
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Chapter 2      FISHING GEAR  
 

There are numerous types of fishing gear being put into use by the commercial fishing 

industry worldwide. Some of these fishing gear are:  Seine Nets, Trawls, Dredges, Hooks and 

Lines etc. Trawl gears are much in use by the commercial fishing industry on the Norwegian 

continental shelf. In this chapter, a brief description of numerous fishing gear, their design 

methodologies, names of vital parts and the breaking load for those important parts that 

interact with subsea structures. In order to grasp an extensive knowledge on how these 

operate, operational procedures will be covered and area of operations in the Norwegian and 

the Barents seas will be illustrated. 

 

There following fishing gear are currently in use in most fishing areas in the world: 

 

 Bottom trawl  with heavy bobbins e.g. Otter trawl 

 Pelagic or mid-water trawl 

 Pair trawl 

 Beam trawl 

 Purse seine 

 Seine netting 

 Gill net 

 Long line 

 

 

In the North and Norwegian seas, it is worth noting that bottom otter trawl and beam trawl 

gears are commonly used.  

 

 

2.1     Bottom Trawl Gear 

 

These are widely used in the Norwegian waters. It consists of a net that is kept opened by 

either a door or a series of weights attached to it. The net is dragged on the sea floor often at a 

speed of 4 Knots (7km/h) [4], catching ground fishes and other species on its way. The trawl 

net may be drag on the seabed or mid water level, depending on the type of species that are 

targeted. There are two types of bottom trawl gear: the bottom Otter trawl gear and the bottom 

pair trawl rigging gears. 

 

 

2.1.1     Bottom Otter Trawl 

 

This gear is shaped like a bag and it is kept opened by otter boards. The otter boards move 

apart as they are pulled due to the hydrodynamic lift force acting on them. The trawl is towed 

along the sea bed to catch up fishes on the sea bed (figure 2-1) 

The Otter trawl gear consists of a large net, kept opened by trawl boards/doors. This trawling 

takes place in a water depth up to and above 400m. 
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Figure 2-1 Illustration of the main part of an Otter trawl ( stripersonline.com) 

Figure 2-2 Detailed illustration of an Otter trawl with standard dimensions [2] 
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2.1.1.1     Ground Rope 

 

Depending on the water depth, the ground rope will be made up of different materials such 

that it has enough weight to scrub the sea bottom while it is being pulled along. In shallow 

waters e.g. Coastal waters, light ground rope are used while in deep waters, heavy ground 

rope i.e. steel bobbins are used. The heavy ground rope is necessary for shrimp catch as 

suggested by Deshpande and George (1965). 

 

Some of the ground rope configurations are described in the figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

Figure 2-3 Different types of ground rope for Otter trawl [2] 
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2.1.1.2     Otter Boards 

 

Otter trawl doors/boards are made of steel or wood and are designed in such a way that they 

flow through water at a certain inclination. This inclination, combined with hydrodynamic lift 

force acting on it, cause a spread of the doors from each other resulting to the opening of the 

net in a horizontal direction. Trawl warps are used to attach the boards to the ship. 

 

The weight and shape of the Otter trawl have so much to say about its hydrodynamic 

efficiency. For this reason, many different types of board designs are used in the fishing 

industry as manufacturers attempt to  improve on the gear´s efficiency.  

There are principally three main different shapes of Otter board in use in the Norwegian trawl 

fishing industry: 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

The standard rectangular board are easily constructed and maintained. The earliest known 

boards were of this type. The cost of constructing these boards is quite low as the board is 

mainly made up  of wood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2-4 Illustration of a typical standard rectangular Otter door [6] 

Figure 2-5 An illustration of a V-shaped Otter door [6] 
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The V-type (vee) door is the most commonly used otter board in the North Sea despite its low 

efficiency. However, it is relatively cheap to construct and operate. Altering the shape of the 

plate can increase the water flow around the board considerably, improving on its 

performance. This is typical of a cambered V otter board 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

 

The Oval doors are quite extensively used by deep sea fleet. They are suitable for fishing over 

rough sea beds. 

 

Otter doors are classified according to their dimensions and weights. The table below shows 

some principal dimensions in the late 70s: 

 

Type In mm Gross area m
2
 Weight of one door(kg) 

Length Height In air Submerged 

1 2050 1210 2,00 560 330 

2 2255 1330 2,35 640 380 

3 2360 1390 2,75 685 410 

4 2750 1580 3,50 930 560 

5 3120 1780 4,45 1180 670 

6 3120 1780 4,45 1280 760 

7 3450 1970 5,27 1450 850 

8 3750 2150 6,30 1765 1040 

9 4000 2300 7,40 2050 1200 
Table 1-1 Classification of Otter doors based on their dimensions and weights [2] 

 

These values are based on survey conducted in the late 70s. However, the weights and 

dimensions of Otter doors have changed enormously since the 70s. In 2007, the weights of 

Otter doors have increased up to 6000 kg [5] and perhaps 10000 kg in 2013. 

 

 

 

 

 

Figure 2-6 An illustration of a typical oval shaped Otter door[6] 
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2.1.2     Bottom Pair Trawls Rigging and Double Bottom Trawl Rigging 

 

These gear are similar to the above mentioned gear but differ in the fact that: 

 There are no Otter doors. Instead, clump weights or a length of heavy wires are used to 

keep the gear on the sea bed. The lack of doors result to extremely small hydrodynamic 

lift force and therefore the need for two separate vessels, pulling the warps away thereby 

keeping the net open.(figure 2.7) 

 

 There are Otter doors (two),however two nets are connected together  in such a way that 

they have a common weep line attached to a clump weight .A single vessel is requited to 

tow the net as the doors keep the nets open.(figure 2.8)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7 Illustration of bottom pair trawl rigging technique [6] 

Figure 2-8 Illustration of double bottom trawl rigging technique [6] 
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2.1.2.1     Bottom Trawl Fishing Area  

 

Bottom trawl are widely in use in the North Sea, the Norwegian continental shelf, the Barents 

Sea and the area off the Svalbard islands. Demersal species such as Norway pout, prawn, 

redfish, cod etc. are the principal targets for this fishing method. The map below shows the 

area of frequent bottom trawl activities (gray area): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9 Area of operation for the bottom trawl [2] 
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2.1     Beam Trawling 

 

A standard beam trawl consists of a steel beam having trawl shoe (head) in each of its ends. A 

trawl net is placed with its upper part attached to the beam and the lower part, to the ground 

rope. Two bridles are linked to each of the trawl shoes, the steel warp and also to the middle 

of the beam; this ensures the stability of the trawl gear.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10 A conventional beam trawl [7] 
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Due to growing concern about the devastating effect of the beam trawl on the community of 

benthic animals, a new type of beam trawl was introduced .In this version, the chain matrix 

has been replaced by cables with electrodes, producing electricity that startles the fish [8]. 
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Chapter 3     Trawl Gears Interaction Scenarios with Subsea Structures 
 

The interaction scenarios between a trawl gear and a subsea structure is basically divided into 

two different phases: Impact and Pull-over. However, interactions such as hooking, sweep 

lines, net friction etc. may be considered where necessary. 

 

3.1     Impact 

 

This is the initial stage where the trawl gear hits the subsea structure. This interaction usually 

last for a hundredth of a second .In case of a submarine pipeline, it is mainly restricted to the 

coating and the pipes shell. For a submarine pipeline laid on the sea bed, the energy from 

impact is transferred to the pipe, it´s coating and to the soil. All of these offer a certain level 

of resistance to the impact force. The pipe´s resistance to the impact load may lead to local 

and in some cases, global deformation and dent in the pipe wall as well. 

There are basically two impact scenarios between a trawl gear and a subsea structure: 

 Trawl gear direction normal to  subsea structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this type of impact, there is no reduction in the impact energy as the trawl gear does not 

rotate i.e. it hits the structure head on. If the gear comes to rest after impact, then its initial 

kinetic energy would be transferred entirely to the structure. In most situations, the gear does 

not come to rest after impact. It is rebounded with some of its initial kinetic energy. 

 

 

 

 

 

 

 

Figure 3-1 Iillustration of  a trawl gear impact normally to a submarine pipeline [5] 
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 Trawl gear travels at an inclined angle to the pipeline 

 

 

 

 
Figure 3-2 Illustration of impact between trawl gear and subsea structure at an inclined angle [5] 

 

 

Due to the angle of incline, only a fraction of the gear´s initial kinetic energy will be 

transferred to the structure 

 

 

3.1.1     Impact Energy 

 

When a pipe is subjected to impact normal to its length, the impact energy distributes itself in 

the pipe in a complex manner. However, the energy transformation from one form to another 

is rather simple to understand. The energy transferred can be divided into three stages: 

 

 Before impact, the energy of the system comprises of only kinetic energy of the 

hammer. 

 

 During impact, part of this translational kinetic energy of the hammer is transformed 

into strain energy in both the pipe and the hammer whereas some part is transformed 

into vibrational energy in the hammer, pipe and even the support on which the pipe is 

placed.  

If the support is perfectly rigid, there will be no vibrational or strain energy transferred 

to the support. However, it is impossible to make a support perfectly rigid. 

The stress wave generated by the impact propagates through the material, dissipating a 

negligible trace of the energy in the form of heat. 

 

 A rebound of the hammer may occur. This is due to a fraction of the strain and 

vibrational energy in the system been converted to kinetic energy of the hammer. 
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3.1.1.1     Calculation of Strain Energy Due To Impact 

 

3.1.1.1.1     Elastic Strain Energy 

 

In theory, the amount of strain energy in the pipe prior during impact determines the size of 

the dent and the bending in the pipe. The determination of the amount kinetic energy 

converted to strain energy is very important. 

 

Consider a pipe under the following state of strain: 

 Uniform strain at any cross-section of the pipe. 

 Variable strain at different cross-sections of the pipe. 

 

The total strain energy of the pipe may be determined as follows: 

 

 

 

                                                                                                                      (1) 

 

 

 

Where              Ws = Total elastic (linear) strain energy of the pipe   

                          ws = Strain per unit length of the pipe 

                             l = Length of the pipe 

 

 

At a given section, the elastic strain energy per unit length is given by the relation 

 

 

                                                                                                                        (2) 

 

 

Where                    A = cross-sectional area of the pipe 

                               E = Young´s modulus of the pipe´s material 

                               ε = strain 

 

 

It follows from equation (1) and (2) above that the total elastic strain energy of the pipe is 

given by: 

 

 

 

                                                          

                                                                                                                        (3) 
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The strain energy in the pipe at any time can be expressed as a fraction of the total kinetic 

energy of impact Wo . 

 

 

 

               (4)    

 

 

 

 

The following conclusion can be made based on experiment conducted Richard J. Charles 

[11]: 

 

 The ratio                      is constant for impacts with any hammer 

 

 

 

 The ratio                  is a measure of the  fraction of kinetic energy of  impact  

 

which is transformed to strain energy in the gaged section of the pipe. 

 

 

 

3.1.1.1.2     Plastic Strain Energy 

 

A metal may yield under impact such that it deforms and do not return to its initial state after 

impact and or unloading.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3  A typical stress-strain curve [12] 
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The point B is called the yield point. This is the point after which the material undergoes 

inelastic or permanent deformation. 

There are many criteria used to predict the initiation of yielding: Rankine´s criterion, St. 

Venant’s criterion, Tresca criterion etc. 

When a material is loaded until the yield point is exceeded i.e. in the plastic region, the total 

strain energy density in the system (WT) consists of two parts: Elastic strain energy (Ws) and 

Plastic s energy (Wp) densities. 

   

  WT = Ws + Wp                          (5) 

 

 

 

 

3.2     Pull-Over 

 

Pull over is the secondary phase. The gear is pulled over the structure as the vessel continues 

forward. The structure experiences huge vertical and horizontal forces, which can last up to a 

dozen seconds. The duration of the pull over will very much depends on: the velocity of the 

trawl gear, the stiffness of the warp line etc. As oppose to impact that mostly lead to a local 

response, pull over results to a global response from the structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 Trawl board pull-over force-time history for rectangular and V boards [21] 
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3.3     Hooking 

 

Hooking is a rare interaction between trawl gear and pipeline. It generally involves the trawl 

gear been wedged under the pipeline.The result of such interaction is that the pipeline might 

be lifted and experience large vertical load as the trawler tries to free the gear. 

The pipeline may be deflected laterally during hooking. Yielding and local buckling may be 

initiated during hooking as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5 Hooking scenarion between a tubular structure and an oval door [22] 
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Chapter 4     Theory on Deformation of Pipelines Due to Impact 
 

4.1     General 

 

The response of a pipeline clamped at both ends and struck transversely on the span, consists 

of both local indentations and a global beam-like behavior. If the impact load is sufficiently 

large enough, deformations (failure modes) of the pipeline may be visible. The type of failure 

modes will then depend on the impact face of the striker. The striker may have different types 

of shapes e.g. conical, spherical, wedge, octagonal, blunt etc. For example, Jones et al [16] 

demonstrated that a wedge shaped striker do not perforate a pipeline on impact, but it 

however causes a localized crack which may result to a slow leakage or a more global failure 

at the supports with the possibility of the pipe´s content been released.  

 

Looking at the picture of a deformed pipeline (see fig below), it is obvious that the total 

displacement is made up of a local (change in cross section) and a global (beam-like) 

displacements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pipeline before impact has a mean radius R. The deformed geometry can be idealized as 

shown in the figure below, using the following assumptions: 

 After impact the pipeline´s cross section under the indenter is deformed into a circular 

profile with radius ro and closed with a chord.  

 The center of the un-deformed cross section, generally used to define the global 

displacements coincides with the equal area axis of the deformed section. 

 

 

 

Figure 4-1 A deformed  pipeline clamped at both ends (after impact) 
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Figure 4-2 A section through a deformed pipe showing the deformed geometry 

Figure 4-3 Deformed and un-deformed cross-sections of a pipeline in the impact plane [13] 
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4.2     Determination of the Local and Global Displacements. 

 

The local and global displacements can be obtained from these three measurements: 

 

 The overall permanent displacement (Wf) 

 The local permanent thickness of the deformed cross-section (Tf) 

 The maximum with of the deformed cross section (Dm) 

 

The radius of the deformed cross-section can be computed from the relation shown below 

[17]: 

 

                                                                                                  

                              (6) 

 

 

 

 

Where Tr is the residual thickness across the deformed profile at the impact location. Both Tr 

and Dm can be measured after the impact test. 

 

 

Figure 4-4  Definition of local indentation,global displacement and total displacement for the idealised 

deformed cross-section [13] 
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The angles β and ϕo are given by 

 

 

                                                                                             (7) 

 

 

   and 

 

                                (8)                 

 

 

The local displacement (Wl) is estimated as 

   

                                                                                            (9) 

 

Where  

 

                   (10)  

 

 

The permanent global displacement is then given by 

 

 

    (11) 

 

 

 

 

4.3     Theories on the Local and Global Plastic Energies Absorbed During Impact 

 

Much research has been done on pipelines under impact loading using numerous types of 

strikers. Although it is very complex to quantize the amount of impact energy transferred to 

plastic energy in the material, theories on plastic energies absorbed during impact has been 

proposed, tested and accepted, some of which will be summarized below: 

 

 

 

4.3.1     Theory of Ellinas and Walker 

 

Consider a fully clamped rigid, perfectly plastic pipeline struck at the mid span (L1=L) by a 

mass G with velocity Vo as shown in the figure below. 
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The energy absorbed by the pipeline plastically during the local indentation phase is given by 

 

  

                                                                                                                (12)  

 

 

 

 Where  

 

 

 

And K=150. 

 The dimensionless indentation at the start of global deformations              is given by  

 

   (13) 

 

 

 

 

 

 

 

With  

 

 

 

 (14) 

 

 

 

 

In case of only local deformation i.e. insufficient kinetic energy to start global deformation, 

then 
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Figure 4-5 A fully clamped pipeline struck by a mass G travelling at a speed Vo [13] 
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           (15) 

 

 

Where  

λ = dimensionless initial kinetic energy. 

 

 

If the initial kinetic energy is sufficient enough to start a global deformation, then the 

following hold: 

 

  And   

 

 

 

The global energy absorbed is then given by: 

 

 

 

                                                                                                                                 (16) 

 

 

 

 

 

4.3.2     Theory of Oliveira, Wierzbicki and Abramowicz 

 

 

Base on the setup in figure 4.4, Oliveira et al [15] in their theoretical analysis worked out that 

the local denting behavior absorbs the external energy 

 

 

 

                                                                                                                                  (17)                                              

 

 

This is valid up to  

 

 

 

                                         (18) 

 

Where  

 

 

 

                                         (19)     
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The local behavior is assumed to cease when the global deformation starts. This happens 

when  

 

 

 

The global energy absorbed plastically is given by 

 

 

 

      (20) 

 

 

 

For larger global deformation than     where     

 

 

                                           (21) 

 

 

 

Some of the impact energy can be absorbed by membrane behavior of the pipeline shell. In 

this case, the global deformation       is larger than           i.e. 

 

 

 

This energy is can be calculated from: 

 

 

                         (22) 

 

 

 

The total energy absorbed by the pipeline plastically will therefore be  

 

                                            Wp =  Epl  +  Egl  +  Emem (23) 
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Chapter 5     State of the Art 
 

5.1 DNV 

 

The DNV-RP-F111 recommended practice is widely used for the design of subsea pipelines 

in the oil and gas industry.  The version dated 2010, proposed simple and conservative 

method to calculate the energy absorbed by the pipe locally based on the following 

assumptions [5]: 

 The pipe deforms locally by indentation. 

 All the impact energy is absorbed through indentation. 

 

5.1.1     Impact with Trawl Board 

 

 In case of impact of a trawl board with a pipeline, the trawl board´s impact energy is given 

by: 

 

                                                                                                                                                           

 (24) 

Where 

mt = the trawl board steel mass. 

Rfs = reduction factor depending on the outer pipe diameter (see figure 5-1 below). 

Ch = span height correction factor for effective pull-over velocity (see fig 5-2 below).  

V = velocity of the trawl board. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1 Reduction factors for concrete coated and bare pipes [5] 
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As the trawl board moves in water, the hydrodynamic added mass of the trawl board 

contributes to the impact force. The associated impact force due to hydrodynamic added 

mass is given by: 

 

        (25) 

 

Where 

ma  = the trawl board´s added mass 

kb   = the lateral bending stiffness of the board 

The energy associated by this impact force is given by: 

 

 

 (26) 

 

 

Where 

fy =  ( SMYS – fy, temp)αU 

fy, temp = the temperature derating value of the yield stress. 

αU = the material strength factor. 

t   = the steel wall thickness. 

 

 

 

 

 

Figure 5-2 Ch coefficient for effect of span height on impact velocity [5] 
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The kinetic energy absorbed by local deformation of the coating and the pipe wall is then: 

 

                Eloc = Max (Es, Ea) 

 

5.1.2     Impact with Beam Trawl 

 

The impact energy absorbed by the pipe and its coating in the case of a beam trawl is given 

by: 

 (27) 

 

 

Where 

Cb = A factor taking into account the effective mass and may conservatively be set equal to 

0.5 if a more precise estimate is not available 

mt = The steel mass of the beam trawl with shoes inclusive 

ma = The hydrodynamic added mass including the mass of water entrapped in the beam. 

 

5.1.3 Impact with clump weights 

In the case of a clump weight, the total absorbed energy can be calculated from: 

 

 (28) 

 

Where 

mt = The dry steel weight of the clump weight 

ma = Hydrodynamic added mass of water entrapped in the sections. 

 

The hydrodynamic added mass ma can be calculated as follows: 

 

 The mass of water displaced multiplied by 2.29. This is valid for impact closer to the 

sea bed. 

 The mass of water displaced multiplied by 0.8 in case of limited length. 
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5.2     NORSOK U-001versus Statoil’s Internal Practice 

 

The design of subsea structures is mainly governed by ISO 13628-1, annex F (NORSOK U-

001) requirements, especially for trawl loads. Model trails done in the late 80´s at water depth 

of 100m with a trawl board mass up to 1900 kg at a speed of 1.8 m/s, resulted to the design 

loads requirements shown in the table below: 

 

Design load type Design load figure 

Trawl net friction 2x200 kN 0
o
 to 20

o
 

horizontal 

ULS 

Trawl board over-pull 300 kN 0
o
 to 20

o
 

horizontal 

ULS 

Trawl board impact 13 kJ  ULS 

Trawl board snag 600 kN 0
o
 to 20

o
 

horizontal 

PLS ( if not overtrawlable/snag free) 

Trawl ground rope snag 1000 kN 0
o
 to 20

o
 

horizontal 

PLS ( if not overtrawlable/snag free) 

Trawl board snag on sea line 600 kN  PLS ( if not overtrawlable/snag free) 

Table 5-1 Design load requirements for trawl gear -pipeline interactions [20] 

 

The weights of trawl gear have increased tremendously since the 80´s. These increase, have 

called for concern on the design load requirements specified by ISO 13628-1. As a matter of 

fact, it is logical to step up the design load for pull-over and trawl board impact. 

 

Statoil in its internal documents (TR1230) presented the following design loads and 

conditions: 

 

Design load 

type 

Fixed generic trawl loads 

Design loads Load condition Direction 

Trawl net 

friction 

2x200 kN ULS or ALS 1) 0
o
 to 20

o
 

horizontal 

Trawl board 

and 

equipment 

pull-over 

450 kN  2) 3) ULS or ALS 1) 0
o
 to 20

o
 

horizontal 

Trawl board 

impact 

38 kJ  2) 3) ULS or ALS 1) 0
o
 to 20

o
 

horizontal 

1) ULS or ALS depending on trawl interference frequency at field. ALS applies if 

frequency is less than 0.01x year. 

2) Applies for largest type of trawl gear currently used in the North and Norwegian seas. 

3) Applies for standard tubular framework structure. 

Table 5-2 Generic design loads requirement [19] 
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The design loads were calculated based on a model trail in which a trawl board of 4500 kg 

and a clump weight of 6000 kg moving at a speed of 2.8 m/s, at a water depth of 100m. 

From the tables above, one can see that Statoil accommodates the increase in trawl weights by 

multiplying the design loads for trawl board pull-over by a factor of 1.5 and trawl board 

impact by a factor of 2.9.  
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Chapter 6      Experiment  
 

This experiment was conducted in the instrumentation laboratory at the University of 

Stavanger. The steel rods and plates required for the construction of the main apparatus in this 

experiment were gathered from the Department of Material Science´s workshop at the 

University. 

 

This experiment was undertaken to investigate the effect of water trapped in the pipe as well 

as water surrounding the pipe, on the amount of Impact energy absorbed by the pipe. In order 

to reach this purpose, a hammer (´chested-hammer´) was built from scratch with the ability to 

deliver a blow that lasts a hundredth of a second, fulfilling the definition of an impact. 

 

 

6.1     Apparatus 

 

 

 

6.1.1     The Hammer  

 

The impact apparatus consist mainly of five parts (fig 6.1 below): 

 

 A support that is fixed and non-rotational such that the pipeline can be fully clamped 

in it. 

 

  A base plate structure that carries the support and provide a foundation for the top 

structures. 

 

 Four steel pipes acting as a structural pillar: transferring the weight of the top 

structures to the foundation as well as providing enough stiffness to withstand both 

horizontal and vertical movement of the whole structure. 

 

 A top structure that accommodates the striker. 

 

 A striker, with a top protruded end for the addition of weights and a bottom smooth 

end meant to indent the pipe. The striker and its auxiliary parts are attached to the top 

plate in such a way that they are adjustable. This is important because in this 

experiment, the striker is designed to strike the mid-span of the pipeline. 
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Figure 6-1  The impact hammer and its dimensions(mm) 
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Figure 6-2  Detailed diagram of the top structure and its dimensions (mm) 

Figure 6-3  The impact hammer 
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6.1.2      The Pipeline   

 

The pipeline is made up of half-hard copper having the following qualities: 

 

 Tensile strength, σt:                                               min 310 N/mm
2 
 

 

 Yield strength, σy:                                                  min 280 N/mm
2
 

 

  Young`s Modulus E:                                             1.2E11 N/m
2
  

 

 Density ρ:                                                               8.94 kg/dm
3
  

 

 Poisson’s ratio, ν:                                                   0.3  

 

 Coefficient of Linear Thermal Expansion, α:        17E-6 

 

 Outer diameter, OD:                                              15 mm  

 

 Inner diameter, ID:                                                13 mm  

 

 Wall thickness, T:                                                  1 mm  

 

Three copper pipes of length 2000mm each was cut into fifteen pipes. Each of the fifteen 

pipes had a length 320mm. The pipes were divided into a three groups: 

 

 Group 1 consist of five empty pipes. 

 

 Group 2 consist of five water-filled pipes. The water is trapped in the pipe by a 

stopper, place at both ends. This group will be tested in air. 

 

 Group 3 consist of five water-filled pipes. In this case, the pipes will be tested in 

water.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 46 
 

6.1.3     Water Tank 

 

The water tank used in this experiment is a large rectangular bowl of dimensions 720 mm x 

650 mm x 170 mm. 

 

 

6.2.     Sensors and Data Acquisition 

 

In order to get an inside into the strain evolution at the mid-span for the three pipe categories 

(mentioned above), a strain gage was placed at the tensioned-end of a pipeline from each 

category. 

 

6.2.1     Strain Gages 

 

The strain gages of the type K-LY43-6/120 were used in this experiment. Given that the 

striker will hit the pipe at the mid-span, this point is chosen as the point where the strain gages 

will be installed. This is because; this section will experience the greatest strain as compared 

to other sections along the pipeline. 

 

The installation of the strain gage was carefully done. Care was taken to ensure that the strain 

gages are attached at the midpoint of the pipeline and that that the gages are parallel to the 

pipe axis thereby eliminating reading errors that might originate from slight angular deviation 

of the gages from the pipe´s axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4 Illustration of a strain gage attached at a pipe's mid-span 
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Two strain gages are required for each pipe i.e. an active and a dummy gage. The active gage 

is attached to the pipe that will be stroked while the dummy gage is attached to the dummy 

pipe. The use of the dummy is to compensate for the effect of temperature variation on the 

strain gage readings. The six wires of both strain gages (2 greys and 1 red for each gage) are 

connected to a 15-pin port as shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 8                                                                     1  

 

                                                                         15                                                          9   

 

 

 

 

6.2.2     Spider8 and PC 

 

The 15 –pin port is then connected to a hardware called Spider8. Spider8 amplifies the signal 

from the sensors and sends it to the computer connected to it.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Active Dummy 

Figure 6-5  Illustration of the mode of connection between the two strain gages and a 15-pin port 

Figure 6-6  Spider 8 hardware (white box to the left) connected to a PC 
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The computer runs a program called Catman Basic. This program interprets the data from the 

Spider8 and output the strain in µm/m against time. The program further makes it possible to 

calibrate the strain gage. In this experiment, a gage factor of 2.02 was chosen. This value is 

recommended for these strain gages. 

 

6.2.3     Distance Measuring Tools 

 

The length, thickness and diameter of the original and deformed pipe were all measured using 

a meter rule and a calliper. 

 

 

 

6.3     Procedure 

 

As mentioned earlier, the pipes are grouped into three: empty pipes in air, water-filled pipes 

in air and water-filled pipes in water. Before starting the experiment, a strain gage is attached 

to the mid-span of the pipe. The experiment is conducted for each group with slight 

modifications as explained below: 

 

6.3.1     Group I - Empty Pipes in Air 

 

The first group of five empty pipes are differentiated with numbers. The pipe, to which a 

strain gage is attached to, is tested first.  

The hammer is placed on a level floor with two pieces of wooden slabs attached underneath. 

This levels the bottom steel plates which became curved after welding. 

 

The pipe is then placed at the support and adjusted such that the midpoint of the pipe 

coincides with the midpoint between the supports and the attached strain gage should be at the 

bottom of the pipeline. The dummy strain gage is placed on the table. 

 

The 15-pin port is then connected to the Spider8 which is then connected to a computer .The 

Catman program is started and configured as detailed in appendix III.  

 

The striker is then inserted inside the guide [see figure 6.1] and the top movable plate together 

with the striker are adjusted until the striker is located vertically above the midpoint of the 

supported pipe. The movable plate is then fixed at this position. Weights are added to the 

striker until the total weight including the weight of the striker reaches 94.37 N. 

The striker is then lifted to a height of 0.56 m and this point is set as a reference point. 

At this point, the strain readings are initialized in the Catman program. The striker is then 

dropped from the above mentioned height such that it falls freely, attaining a maximum 

velocity of 3.32 m/s (see appendix A1) striking the fully clamped pipe at its midpoint. 

 

The weights were chosen appropriately after many successive tests. This is particularly 

important as we do not want the pipe to be stroke twice i.e. at the first strike, the pipe will 

deform in such a way that a rebound will not strike that pipe. 
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After the impact, data acquisition is switched off .The deformed pipe is then retrieved for 

measurements. The pipe is sectioned through the midpoint of the indented surface. The 

maximum width of the deformed section (Dm) and the local permanent thickness of the 

deformed cross-section (Tr) are then measured using a calliper. 

 

 

 
 

Figure 6-7  Measured parameters for the deformed cross-section 

 

 

The experiment is repeated for the remaining four empty pipes in the group without strain 

gage and the weight of the striker is increased by 14N for each pipe.  

The Striker is raised to the same height (0.56 m) and released from rest. The pipes are 

sectioned and values for Dm and Tr are measured.  

 

 

 

6.3.2     Group II - Water-filled Pipe in Air 

 

In this group, the pipes are filled with water and sealed at both ends using a plastic stopper. 

The seal is firmed, preventing leakage of water from the pipe before, during and after impact. 

The first test is done with a pipe to which a strain gage is attached. The same procedures 

mentioned above for group I are followed and the various values of Dm and Tr measured. 
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6.3.3     Group III - Water-filled Pipe in Water 

 

The pipes in this group are filled with water and sealed at both ends as well. The first test is 

done on the pipe having a strain gage attached to it. The pipes are placed on support and the 

hammer is then placed in a rectangular bowl and water is poured in the bowl until the pipe is 

submerged. The amount of water is just sufficient to submerge the pipe.  

The reason for this is to avoid hydrodynamic forces acting on the hammer, thereby affecting 

its speed and weight. 

 

 

 
 

Figure 6-8  Experimental setup for impact test in water 

 

 

Except for the water tank, the same procedure mentioned above (Group II) is followed, and 

the measured values for  Dm and Tr for this group are recorded. 
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CHAPTER 7     Results  
 

The results for each group are presented below in both tabular and graphical forms. The tables 

contain the obtained values of Dm ,Tr and Wf  for all the pipes in the first group and the 

calculated values for the local and global plastic deformation energies according to the above 

mentioned theories. 

 

7.1     Empty Pipes Tested in air  

 

The table below show the measured values of Dm, Tr and Wf  , measured from the deformed 

cross-section of the pipes after impact with the striker. From the table, it is observed that the 

maximum permanent transverse displacement (Wf) increases with increase in weight (or 

kinetic energy) of the striker. This is to be expected as the size of the dent on the pipe will 

depends on the striker´s kinetic energy. 

              

In contrary to the transverse displacement, both the width of the cross-section and the 

residual thickness decrease with increasing striker energy. This tendency can be best 

explained by the fact that for an empty pipe, most of the plastic energy is used in indenting. 

Therefore less plastic energy is used in deforming the whole cross section. This phenomenon 

becomes significant at higher energies. 

       

 

 

 

Using the equations (9), (11), (12), (16), (17) and (20) from the theory of Ellinas and Oliveira 

mentioned above, the values of the local and permanent global displacements, absorbed local 

indentation and global deformation plastic energies were computed respectively(Table 7-2). 

 

The local displacement increases with increase in kinetic energy i.e. at higher kinetic energy, 

the pipe exhibits larger local displacement. However, the global displacement exhibits overall 

diminishing values as the kinetic energy of the striker increases. These values are presented in 

the table below: 

 

Table 7-1 Values measured from the deformed cross-sections for the empty pipes tested in air 

Empty pipes in air 
Element 

number 

Weight of 

Striker(N) 

Maximum 

permanent 

width across 

the deformed 

section (Dm) in 

mm 

Residual thickness 

across the deformed 

profile (Tr) in mm 

Maximum 

permanent 

transverse 

displacement (Wf) 

in mm 

1 94.372 16.68 11.73 3.28 

2 108.106 16.52 11.80 3.21 

3 121.840 16.58 11.59 3.42 

4 135.574 16.56 11.51 3.50 

5 149.308 16.46 11.45 3.56 
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The figure below (figure 7.1) shows how the strain varies with time. The striker stroke the 

pipe at time 440 second and the impact lasted about one hundredth of a second. The pipe´s 

strain reached a value of 0.0048. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum yield strain calculated in appendix A2 is 0.002583. Therefore as the pipe 

yields, it experience an additional strain of 0.002217 at the midpoint where the striker stroke. 

 

 

 

 

 

 

 

 

 

Empty pipes in air 

Element 

Number 

Kinetic 

energy of 

Striker (J) 

Wf 

(mm) 

Wl 

(mm) 

Wg 

(mm) 

Energy absorbed plastically during local 

indentation (Epl) and global deformation 

(Egl). In Joules [J] 

Ellinas and 

Walker 

Oliveira,Wierzebicki 

and Abramowicz 

Epl Egl Epl Egl 

1 52.848 3.28 2.581 0.6991 7.317 -0.054 5.003 0.984 

2 60.539 3.21 2.532 0.6784 7.109 -0.058 4.860 0.955 

3 68.231 3.42 2.758 0.6617 8.084 -0.061 5.528 0.931 

4 75.922 3.50 2.853 0.6474 8.502 -0.063 5.813 0.911 

5 83.613 3.56 2.940 0.6203 8.895 -0.068 6.082 0.873 

Table 7-2 Calculated values of local and global displacements and their associated plastic energies for the 

empty pipes tested in air 

Figure 7-1  Strain variation with time for the impact load at the mid-span of an empty pipe in air 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 53 
 

 

7.2     Water-filled Pipes Tested in Air 

 

 

It can be observed here that the transverse displacement and the maximum width of the cross- 

section increase with increasing striker energy while the residual thickness across the 

deformed section decreases. 

 

 

The increase in maximum permanent width across the deformed section as the striker´s 

weight increases signifies that a considerable amount of plastic energy has been used to 

deform the cross section and hence a relatively low energy will be used for indenting.  

 

 

 

 

 

 

 

Water-filled pipes in air 
Element 

number 

Weight of 

Striker(N) 

Maximum 

permanent 

width across 

the deformed 

section (Dm) in 

mm 

Residual thickness 

across the deformed 

profile (Tr) in mm 

Maximum 

permanent 

transverse 

displacement (Wf) 

in mm 

1 94.372 16.53 11.92 3.09 

2 108.106 16.52 11.82 3.19 

3 121.840 16.63 11.70 3.31 

4 135.574 16.64 11.58 3.43 

5 149.308 16.71 11.54 3.47 

Table7-3 Values measured from the deformed cross-sections for the water-filled pipes in air 

Water-filled pipe in air 

Element 

Number 

Kinetic 

energy of 

Striker (J) 

Wf 

(mm) 

Wl 

(mm) 

Wg 

(mm) 

Energy absorbed plastically during local 

indentation (Epl) and global deformation 

(Egl). In Joules [J] 

Ellinas and 

Walker 

Oliveira,Wierzebicki 

and Abramowicz 

Epl Egl Epl Egl 

1 52.848 3.09 2.393 0.6967 6.534 -0.054 4.467 0.981 

2 60.539 3.19 2.509 0.6811 7.013 -0.057 4.795 0.958 

3 68.231 3.31 2.624 0.6857 7.503 -0.056 5.130 0.965 

4 75.922 3.43 2.758 0.6719 8.084 -0.059 5.527 0.946 

5 83.613 3.47 2.790 0.6802 8.223 -0.057 5.622 0.957 

Table7-4 Calculated values of local and global displacements and their associated plastic energies for the 

water-filled pipes tested in air 
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From the figure below (fig 7.2), it can be seen that the strain in the midsection of the pipe 

attained the value 0.004.  The section experienced an additional strain of value 0.001417 well 

beyond its elastic region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-2 Strain variation with time for impact at mid-span of a water-filled pipe in air 
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7.3     Water-filled Pipes Tested in Water 

 

The trend in the values of Dm , Tr and Wf are quite similar to the case above where the water-

filled pipes were tested in air 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7-5 Values measured from the deformed cross-sections for the water-filled pipes tested in water 

Water-filled pipe in water 
Element number Weight of 

Striker(N) 

Maximum 

permanent width 

across the 

deformed 

section (Dm) in 

mm 

Residual 

thickness across 

the deformed 

profile (Tr) in 

mm 

Maximum 

permanent 

transverse 

displacement 

(Wf) 

in mm 

1 94.372 16.48 11.94 3.07 

 2 108.106 16.53 11.83 3.18 

3 121.840 16.62 11.62 3.39 

4 135.574 16.60 11.57 3.44 

5 149.308 16.70 11.47 3.54 

Water-filled pipe in water 

Element 

Number 

Kinetic 

energy of 

Striker (J) 

Wf 

(mm) 

Wl 

(mm) 

Wg 

(mm) 

Energy absorbed plastically during local 

indentation (Epl) and global deformation 

(Egl). In Joules [J] 

Ellinas and 

Walker 

Oliveira,Wierzebicki 

and Abramowicz 

Epl Egl Epl Egl 

1 52.848 3.07 2.380 0.6903 6.479 -0.055 4.430 0.972 

2 60.539 3.18 2.496 0.6843 6.958 -0.057 4.757 0.963 

3 68.231 3.39 2.717 0.6733 7.902 -0.059 5.403 0.948 

4 75.922 3.44 2.777 0.6629 8.167 -0.061 5.584 0.933 

5 83.613 3.54 2.871 0.6695 8.583 -0.059 5.868 0.942 

Table 7-6 Calculated values of local and global displacements and their associated plastic energies for the 

water-filled pipes in water 
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From figure 7.3, the water-filled copper pipe tested in water reached a strain value of 0.00440. 

This corresponds to an additional strain value of 0.001817 beyond the maximum elastic 

strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-3  Strain variationwith time for impact at mid-span of a water-filledpipe in water 
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7.4     Comparisons of the Results 

   

In order to fully determine the effect of water trapped in the pipe  as well as surrounding the 

pipe, values of  the local displacement, maximum permanent transverse displacement, 

maximum width of the deformed cross-sections, local permanent thickness of the deformed 

cross-section and the local indentation energy absorbed plastically for the various groups will 

be compared 

 

7.4.1     Local Displacement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the figure above (figure 7-4), it can be seen that the overall tendency for all the groups 

is an increase in local displacement for increase in the striker´s kinetic energy. However, there 

is a distinction between the various groups in the sense that, the empty pipes in air show 

larger local displacement at each kinetic energy than the water-filled pipes in air and in water. 

 

The water-filled pipes in air and those in water, show similar behavior with increase in the 

striker´s kinetic energy. Their local displacements are somewhat much closer to each other if 

we neglect the slight variation in the decimals. 

 

The values form a cluster as the kinetic energy becomes very high. Based on this trend, one 

can extrapolate that at very high kinetic energy of the striker (far greater than 80 J) the local 

displacements for the three groups converge. 

 

 

 
  

 

 

 

Figure 7-4  Variation of the local displacement with kinetic energy of the striker for the various groups 
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  7.4.2     Maximum Permanent Transverse Displacement 

 

 

 
 

Figure 7-5  Variation of the maximum permanent transverse displacement with kinetic energy of the 

striker for the various groups 

 

The empty pipes tested in air, show larger transverse displacement than the water-filled pipes 

tested in both air and water at each kinetic energy of the striker. 

 

Both water-filled pipes show relatively similar (within acceptable limits) transverse 

displacement, although their trends seem to deviate from a common path as the energy of the 

striker increases. 
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    7.4.3     Maximum Width of the Deformed Cross-Section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

From figure 7-6, the following trends can be deduced: 

 For the empty pipes tested in air, the maximum widths of the deformed cross-sections 

are large for low energies and small for high energies. 

 

 Both the water-filled pipes tested in air and water has maximum width of deformed 

cross-sections that increase with increase in the striker´s kinetic energy. 

 

 For most kinetic energy, the water-filled pipes tested in air show a large width of the 

deformed cross-sections than the others, although there is not much difference when 

compared with the water-filled pipes tested in water. This is true for most of the 

results.  

 

 

 

 

 

 

Figure 7-6  Variation of the maximum width of the deformed cross-section with kinetic energy of the striker for 

the various groups 
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 7.4.4     Local Permanent Thickness of the Deformed Cross-Section 

 

 
Figure 7-7  Variation of the local permanent thickness of the deformed cross-section with kinetic energy of 

the striker for the various groups 

 

For all three groups, the local thicknesses of the deformed cross-sections decrease with 

increase in kinetic energy. This is expected given that the dents somewhat increase in depth as 

the impact load increases. 

 

The water-filled pipes tested in air and in water, have larger thickness of the deformed cross-

sections than the empty pipes in air for the same energy of the striker. 
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 7.4.5     Local Indentation Energy Absorbed Plastically-Ellinas Theory 

 

 
Figure 7-8  Variation of the local indention energy absorbed plastically with kinetic energy of the striker 

for the various groups using Ellinas and Walker's theory 

 

The figure above (figure 7-8) shows how the indentation plastic energy varies with the impact 

energy (energy of the striker). All the groups show an increase in the absorbed plastic energy 

with increasing impact energy. The following points can be deduced: 

 

 The empty pipes tested in air generally absorbed the highest amount of indentation 

plastic energy for any given amount of impact energy. 

 

 The water-filled pipes tested in air and in water, absorbed to some extend almost the 

same amount of indentation plastic energy for the same impact energy. 
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7.4.6     Impact Energy Absorbed According to DNV versus Impact Energy Absorbed   

using Ellinas and Walker’s Theory 

 

The following assumptions are made: 

 The strain maxima occur around the region of the dent, spanning a length twice the 

diameter of the striker so that we can neglect the elastic energy absorbed elsewhere 

along the pipe. This  is a reasonable assumption given that the rest of the pipe remains 

intact after impact. 

 The striker models the impact from a trawl board. 

 

 From the above assumptions, the total elastic strain energy (Ws) and the impact energy 

absorbed (using DNV-RP-F111) can be calculated as shown in Appendix A3 and A4. 

The total impact energy absorbed by the pipe is then given by: 

 

     

ET = Ws +Epl +Egl 

   

Where 

 

Epl   =    Energy absorbed plastically during local indentation  

Egl =      Energy absorbed plastically global deformation         

 

 

 

Weight of 

Striker(kg) 

 

Impact energy 

absorbed (J) 

(DNV-RP-

F111) 

 

Total energy impact energy absorbed (J) Ellinas and Walker 

theory 

Group 1 

 

Group 2 Group 3 

ET-DNV ET % of 

ET-DNV  

ET % of 

ET-

DNV 

ET % of 

ET-DNV 

9.620 20.030 8.963 44.75 8.180 40.84 8.124 40.56 

11.020 22.945 8.751 38.14 8.656 37.72 8.601 37.49 

12.420 25.860 9.723 37.59 9.147 35.37 9.543 36.90 

13.820 28.775 10.139 35.24 9.725 33.79 9.806 34.08 

15.220 31.690 10.527 33.22 9.866 31.13 10.224 32.26 
Table 7-7 Total impact energy absorbed for the various striker weights 

                                                                            

 

From the table above, it can be deduced that the total impact energy absorbed using Ellinas 

and Walker´s theory is on average 37.79% of the calculated impact energy absorbed using 

DNV simplified formulas. This is true for the empty pipes tested in air. 

Therefore the calculate impact energy absorbed by the pipes using DNV codes is 2.65 times 

larger than the energy calculated, using Ellinas and Walker´s theory. 
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It also follows that, for the water-filled pipes tested in water, the calculated impact energy 

absorbed is 35.77% of the energy calculated with DNV codes, implying that DNV values are 

2.79 times greater.  

 

The water-filled pipes tested in water absorbed impact energy that is 36.26% of the calculated 

DNV value, making the DNV value 2.76 times greater. 

 

The relationship between the impact energies calculated using the DNV codes and those 

calculated using the Ellinas and Walker´s theory (which as a matter of fact agrees with many 

data from experiments) can be expressed as shown below: 

 

ET-DNV = ƒ ET 
 

   Where  

  ET-DNV       = calculated impact energy using DNV-RP-F111 

  ET              = calculated impact energy using Ellinas and Walker´s theory      

 

  ƒ                = 2.73              the average of {2.65, 2.79, 2.76}.        

 

The factor ƒ determine the level of conservatism 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 64 
 

 

Chapter 8     Conclusion and Recommendation 
 

8.1 Summary and Conclusion  

 

In this thesis, the deformed geometry of the pipes cross-sections have been idealized and 

parameters such as the maximum width, permanent thickness etc. have been measured and 

used as inputs in accepted theories. 

The objective of this thesis has been to determine the effect of the water trapped in the subsea 

structure (in this case a pipeline) and the surrounding water on the amount of impact energy 

absorbed by the structure. 

 

Many assumptions that can have an effect on the values obtained in this work have been 

made. These assumptions are presented below: 

 

  The pipeline is perfectly clamped at the support in such a way that there is no 

displacement and yielding at the support. 

 

   The strain in the pipeline during impact is at its maximum at the vicinity of the point 

of contact with the striker i.e. up to a circular region of diameter equal to the striker´s 

diameter, measured from the striker´s axis. 

 

   The pipelines materials of the same quality such that they attain the same maximum 

elastic strain. 

 

 Negligible friction between the striker and the guide. 

 

 Negligible amount of energy lost during impact as sound and heat. 

 

Some of these assumptions are highly unachievable. For example, the pipeline experiences to 

some extend plastic deformation at the support and the strain wave propagates throughout the 

pipeline not at the vicinity of the impact point. 

 

From the results obtained from the test, the following observations are made: 

 

 The empty pipes tested in air exhibit the following: 

 

 The largest local displacement. 

 The largest transverse displacement. 

 Overall smaller width of deformed cross-section. 

 Lesser thickness of the deformed cross-sections. 

 Greatest amount of indentation plastic energy absorbed for any given impact 

energy. 

 

 

 

 

 



Full Scale Trawl Board Impact Testing In Water 

 

University of Stavanger 

Jacob Comuny Emesum Page 65 
 

 

 The water-filled pipes tested both in air and water exhibits similar  properties outlined 

below: 

 

 Smaller local displacement. 

 Larger width of deformed cross-sections. 

 Largest thickness of the deformed cross-sections. 

 Lesser amount of indentation plastic energy for any given impact energy. 

 

 

 

Based on these observations, it is clear that there is a significant effect on the pipeline´s 

resistance to deformation due to impact when water is trapped inside the pipeline. The water-

filled pipeline exhibits lesser indentation and plastic energy absorbed and hence offers 

somewhat higher resistance to damage due to impact with trawl gear. 

 

A plausible explanation to this behavior is that during impact, the initially unpressurised 

water-filled pipeline becomes pressurized as the incompressible fluid (water) is pushed away 

during impact from the point of contact.  An axial tension force whose magnitude depends on 

the internal surface roughness within the pipeline is developed. This force offers a resistance 

to the vertical impact force (the pipe´s shell act as a membrane in tension) thereby reducing 

the indentation plastic energy absorbed and subsequently reducing the indentation depth. 

 

On the other hand, there is little or no significant effect of the surrounding water on the 

response of the pipeline due to impact. It is however worth mentioning that the effect might 

be more pronounced at higher depths. 

 

The DNV codes are well known for their high level of conservatism. As demonstrated in the 

comparisons above (7.4.6), the DNV values are on average 2.73 times higher than those 

obtained from the experimental based model. 

When Statoil stepped up its design trawl board impact load by a factor of 2.9 (see 5.2), the 

overall level of conservatism increases to almost a factor of 8 i.e. 2.73 x 2.9.  

As earlier mentioned above, some structures which were designed with designed requirement 

postulated by NORSOK U-001 and DNV RP-F111 have been reported to have collided with 

pretty much heavier trawl board( 4400 kg) and acquired little or no significant damage from 

the interaction [22]. Is it really necessary for Statoil to step up the design impact load that 

high? 
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8.2 Recommendations for a full-scale impact test in water 

 

The test performed above, was not scaled. This limitation and many others may have made 

the effect of the surrounding water unclear. 

 

In order to reach a conclusive result, a full scale test is recommended. The test should also 

take into account the following: 

 

 Investigation of the overall effect of water depth on the response of the pipeline. 

Model trails were performed at 100m depth, but most subsea structures are now found 

in much more higher depths 

 

  The effect of damping due to surrounding water and its variation with depth. 

 

 Quantize the effect variations in hydrodynamic added mass of the trawl board may 

have on the impact energy. 

 

 Investigate the effect internal surface roughness may have on the impact resistance of 

the subsea structure, especially tubular shaped protective structures. 
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Appendix A:    

 

A1. Velocity and Kinetic Energy of Striker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inertia velocity of striker 

 

 

 

 

 

 

Acceleration due to gravity 

Distance travelled by striker 

From Newton´s equation of motion 

 

Masses of striker 

The striker’s kinetic energy is given by 

 

 

a 9.81
m

s
2



Vo 3.315
m

s

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Ey
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A2.    Maximum Strain 

The Rankine´s criterion which states that ´´ Yielding begins at a point in a member where the 
maximum principal stress reaches a value equal to the tensile (or compressive) yield stress Y´´ 

 

 

Then it follows that 

 

 

 

 

 

From  

 

 

 

This implies that at the yield point, 

Where Y is the tensile yield strength 

From the Hooke´s law 

Where Emod is the young´s modulus for the material  

Assuming the following: 
Pure elastic-plastic bending 
Uniaxial stress 

In case of the copper pipe 

Exx

xx  yy zz 

Emod

xx Y

And
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A3.   ELASTIC STRAIN ENERGY 

 outer diameter 

Wall thickness 
 

 

 

 

Maximum yield strain 
 

 

 

A4.  RECOMMENDED PRACTICE DNV-RP-F111 

Trawl board impact energy 

 

 

 Span height less than 0.3 m 

 This value is got by extrapolation on fig 5.1.1-1 
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Appendix B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1.       The Pipe´s Data 

 
Modulus of elasticity 

  minimum yield strength 

Poisson´s ratio 
 

mean diameter of pipe 
 

 mean radius of pipe 

 

  Impact location of striker 
measured from a clamped support 

  

Length of fully clamped pipe 
 

 Wall thickness of pipe 

Material: Half Hard copper 
E 117GPa
y 207MPa 18( )

 0.35

D 15.04mm

R0
D

2


R0 7.52 10
3

 m

L1
300mm

2
 L1 0.15m

L L1 L 0.15m

2L

H 1.15mm
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B2.        Empty Pipe in Air 
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Element 3 
 

 

 

 

 

 

 

 

 

 
 

 

 

 
Ellinas and Walker 

 

 

 

 

 
Energy absorbed plastically during 
local indentation 

 

 

 

Global plastic energy 

 

 

 
 

Oliveira , Wierzbicki and Abramowicz 

 

 
Energy absorbed plastically during local indentation 

 

 

 

Energy absorbed during deformation-global 
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Energy absorbed plastically during 
local indentation 

 

 

 

Global plastic energy 

 

 

 
 

Oliveira , Wierzbicki and Abramowicz 

 

 
Energy absorbed plastically during local indentation 

 

 

 

Energy absorbed during deformation-global 
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local indentation 
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Oliveira , Wierzbicki and Abramowicz 

 

 
Energy absorbed plastically during local indentation 
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Energy absorbed plastically during 
local indentation 

 

 

 

Global plastic energy 

 

 

 
 

Oliveira , Wierzbicki and Abramowicz 

 

 
Energy absorbed plastically during local indentation 

 

 

 

Energy absorbed during deformation-global 
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Energy absorbed plastically during 
local indentation 

 

 

 

Global plastic energy 

 

 

 
 

Oliveira , Wierzbicki and Abramowicz 

 

 
Energy absorbed plastically during local indentation 

 

 

 

Energy absorbed during deformation-global 
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Energy absorbed plastically during 
local indentation 

 

 

 

Global plastic energy 

 

 

 
 

Oliveira , Wierzbicki and Abramowicz 

 

 
Energy absorbed plastically during local indentation 

 

 

 

Energy absorbed during deformation-global 
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Energy absorbed plastically during 
local indentation 
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Oliveira , Wierzbicki and Abramowicz 

 

 
Energy absorbed plastically during local indentation 
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 B4.     Water-Filled Pipes in Water 
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