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Abstract 

This thesis examines the impact of including higher moments than the mean and variance when 

optimizing an investment portfolio. As prior research on venture capital portfolio strategy has focused 

on diversification across industries and the optimal number of investments, this thesis adds insight to 

portfolio prioritization by focusing on the effect of portfolio diversification across different risk levels. 

More specifically, this study uses Monte Carlo to simulate returns from different risk levels and then 

determines how a “higher moments” optimal allocation change if the returns come from a non-

normal as opposed to a normal distribution with everything else being equal. Although this study may 

provide insight for asset allocation in general, the relevance for the venture capital setting is 

recognized as high because extreme outcomes are more often observed in these portfolios compared 

to portfolios of ordinary noted stocks. I review some of the current literature on venture capital 

returns and find that the individual returns seem very well explained by a lognormal probability 

distribution. In my analysis, I find that constructing an optimal venture capital portfolio based on the 

skewness and kurtosis of the distribution, in addition to the mean and variance, should indicate 

minimal degrees of diversification between different risk profiles. This result does not align with the 

fact that many venture capital practitioners use stage diversification as a risk reduction strategy. The 

result can probably also explain some of the differences in performance between U.S. and European 

venture capital funds. 
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1 Introduction 

In modern portfolio theory, an important assumption is that a rational investor’s preference 

to invest in a risky asset compared to a risk-free asset is determined by the expected return of the 

two assets and the investor’s tolerance for the underlying risk of the risky asset. Risk can be defined 

in various ways, but is commonly associated with uncertainty and the tails of a distribution (Diebold, 

Doherty et al. 2010). Variance and standard deviation are well-known tools for measuring risk but 

using these measures as the only measure of risk is intuitively very limited. First, it does not consider 

the direction of a deviation from the mean, and second, it is not a reliable measure for the likelihood 

of extreme outcomes on either side of the mean (Bodie, Kane et al. 2009). These are both moments 

of a probability distribution that could affect an investor’s asset allocation decision.  

The expected return and variance criteria (M-V) for optimal portfolio allocation was 

introduced by Markowitz and implies the assumption that asset returns are normally distributed or 

that the investor has a quadratic utility function2 (Markowitz 1952). Therefore, when dealing with 

returns that are close to normally distributed, studies have shown that an optimal allocation decision 

based on the expected return and portfolio variance has little deviation from the direct optimal asset 

allocation (Levy and Markowitz 1979; Simaan 1993; Jondeau and Rockinger 2006). A well-known 

problem in modern finance is that returns in the financial markets seem to be non-normal, and many 

authors argue that extreme returns occur too often for an assumption of normality to hold (Fama 

1963; Mandelbrot 1963; Taleb 2007). When returns are non-normally distributed, the M-V criteria 

has been shown to give a poor approximation of the direct optimal allocation (Jondeau and 

Rockinger 2006).  

To argue that returns are non-normally distributed is easier in a venture capital (VC) setting. 

Research shows that a return on ten times the investment or a bankruptcy are not uncommon 

scenarios in a VC portfolio, although most returns are centered around a low normal rate of return 

(Sahlman 1990). Some of the most impressive returns from VC-backed companies come from Apple, 

Lotus, and Compaq, and these companies gave a return at public offering of 235, 63, and 38 times 

their initial VC financing, respectively (Bygrave and Timmons 1992). In general, this research implies 

that VC has a higher probability of extreme outcomes than a normal distribution would assume. 

Therefore, it seems likely that the venture capitalists (VCs) should consider the higher moments of 

the return distribution when putting together their portfolios. 

This thesis examine the characteristics of VC returns and asses the similarity to a probability 

distribution. With Monte Carlo simulation and Crystal Ball™, I put together the optimal portfolio 

given different degrees of risk aversion and assess how this optimal asset allocation change when 
                                                           
2
 A quadratic function can only be derived twice.  
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returns are assumed to come from two different probability distributions. I contend that this will 

offer new input on risk reduction strategies used in the VC industry. The rest of the thesis is 

organized as follows. In section two, I introduce the VC market. Next, I explain the traditional 

portfolio selection theory and argue why one should account for higher moments when returns are 

non-normal distributed. Section four is a thorough review of VC returns and an assessment of a 

probability distribution that fit this setting. Section five introduces higher moments in a portfolio 

selection, and section six presents the Monte Carlo simulation and the optimization results. In the 

last section I discuss the impact of these results.       

 

2 The Venture Capital Market  

VC has grown to be a very important industry for promoting economic growth and 

innovation. The VCs serve as important financial intermediaries that provide capital to firms that 

otherwise would have difficulty to acquiring necessary financing. The firms that receive this financing 

are usually newly founded and have few tangible assets on their balance sheet (Gompers and Lerner 

2001). The VCs then analyzes human capital, expansion potential, and other aspect of the business, 

and finances those that seem most promising. 

As the companies that receive financing often have a great amount of uncertainty regarding 

their future, there is also a significant potential upside to the investment. History shows that while 

many of these companies go bankrupt, some VC investments do hit the jackpot. Some examples of 

this are Apple, Lotus, and Compaq as previously mentioned, but other examples include Yahoo, EBay, 

Cisco Systems, Starbucks, and Intel as they have all produced enormous return to their investors 

(Sahlman 1990; Gompers and Lerner 2001; Swensen 2005). The VC market is very large, and its range 

of service extends from providing capital in the earliest phase of a company’s life to financing 

expansion phases through to public offering (Berg-Utby 2010). The level of uncertainty and individual 

risk is reduced as the VC firm invests in more mature companies, but this reduction in uncertainty 

also restricts the possibility of investing in a firm that can produce an extremely high return. The 

market is often divided into a seed, early growth and expansion phase, corresponding to where in its 

life-cycle the investment is (Robinson 1987).   

Endowments, foundations, and pension funds are the largest investor group in the VC market 

and they mainly invest in these young companies through managed VC funds. The VCs normally take 

an annual fee of 2 to 3 percent of the total invested capital in their funds to select and actively 

manage the investments (Sahlman 1990; Cochrane 2005; Cumming 2010). VC is, today, a multibillion 

dollar industry with large amounts invested in funds worldwide. The U.S. market is much larger than 
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the European market, and research also show that the U.S. VC funds give on average a higher return 

than the European funds (Hege, Palomino et al. 2003). In 2009, €3.2 billion was invested in European 

VC-backed companies and €14.9 billion in U.S. VC-backed companies from corresponding 1,234 and 

2,489 deals, respectively (Ernst&Young 2009).  

2.1. The Venture Capital Investment Cycle 

 VCs have three core activities: to buy, own, and sell companies. It is a cyclical process that 

starts over and over again, as illustrated in figure 1 (Berg-Utby 2010).          

 

Figure 1: The Venture Capital Investment cycle. 

The first core activity is the investment/buy decision. This task is a four-stage process where the VC 

firm decides to reject or go further with a possible investment based on how they interpret 

information that comes to their attention at each stage (Cumming 2010). Research has shown that 

this decision is based on a set of established criteria. The entrepreneur’s capabilities, the 

attractiveness of his product, the market conditions, and the potential returns if the venture is 

successful (Robinson 1987; Hall and Hofer 1993; Cumming 2010). All criteria are present in every 

stage, but the level of importance may vary from stage to stage.  

The first stage of this process is the Sourcing or Deal Flow. This stage is all available 

investment opportunities that the VC firm gets knowledge of when searching for the best investment 

opportunity. The Deal Flow can come to a VC firm in many ways, but it is often direct contact from 

entrepreneurs, referrals from trusted sources, or from participating in relevant forums such as 

entrepreneur networking events that gives the firm knowledge of which potential investments are 

available. The VC firm tries to interpret gathered information as effectively as possible before 

deciding which companies it will further explore. The next stage is the Screening process. The main 

focus in this process is in on the market conditions rather than on the entrepreneur himself (Hall and 

Hofer 1993). Thus, the firm analyzes and determines the project’s feasibility and the magnitude of its 

market potential. Stage three is the Due Diligence stage, which is the most time-consuming phase. 

This stage is a more thorough evaluation of the firm’s capabilities and potential. The focus in this 

Invest

Manage

Exit
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stage is mainly on the entrepreneur and his team, and the objective is to determine whether they 

have the capabilities to realize potential returns. If the analyzed firm receives a favorable rating in 

this stage, then it moves to the final phase, the Negotiation stage. In this final stage, the VC firm and 

its potential investment discuss the specific terms of this particular case. This include terms of the 

contract, the staging of fund infusion, the valuation, and the board structure (Sahlman 1990; 

Cumming 2010). Providing all goes well in this final phase, the VC firm will invest in the venture; 

however, if any one of the areas under discussion is not satisfactorily resolved, the investment can 

still be rejected.                          

Through board representation, the VCs actively manage/own their investments and guide 

them to reach their potential. Their role as an active investor is to monitor and advise the 

entrepreneur (Sahlman 1990). While monitoring relates to controlling the entrepreneur’s actions so 

as to minimize wasteful expenditures (Jensen and Meckling 1976; Sahlman 1990), advising is a more 

supporting and value-adding role. This role includes supporting key decisions and providing advice 

with respect to strategic orientation, efficiency processes, and resource allocation (Cumming 2010). 

Research indicates that VCs have, on average, 40% of the board seats (Kaplan and Strömberg 2003), 

but their representation may often exceed this in situations where the entrepreneur is struggling to 

reach preset goals (Lerner 1995). These findings are consistent with agency theory and suggests that 

the VC firm will invest more resources for monitoring and advising when there is a greater risk that 

the entrepreneur will engage in non-pecuniary activities (Jensen and Meckling 1976).   

The third and last core activity is the exit/sell process. VC is an illiquid market; thus, to realize 

profit for the initial fund investors, the VC firm must turn their illiquid investments into a realized 

return (Gompers and Lerner 2001). To do this, the VC firm has two options for exit. The investments 

can either go public or be privately sold. Each of these two possibilities has its own set of advantages 

and disadvantages; hence, the best method is dependent upon the individual situation of the 

investment and the VC’s preferences. Some of the benefits of an initial public offering (IPO) are that 

it increases the investment’s liquidity and that the information about the firm becomes more 

accessible. A drawback to an IPO is the risk that the market value of the investment will be lower 

than what the VC firm could obtain from a trade sale. Another disadvantage is that there are 

regulations that prohibit the VC firm from not selling all of its shares within a given period when the 

investors want cash return rather than shares. With a trade sale, however, the initial investors 

receive immediate cash returns, and the investment can have a strategic value for a buyer that 

potentially can result in a very high exit price. One of the disadvantages of this exit strategy is 

determining when to sell because the value of the investment may vary significantly over time. A 

second disadvantage with respect to a trade sale is the issue of trust that may arise when there are 
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two private actors involved in the deal an no neutral party to endorse the information (Berg-Utby 

2010). 

2.2. Corporate Finance Challenges in Venture Capital  

While there are many aspects in the VC setting that may differ from mainstream corporate 

finance, these can be categorized into one of four main concepts. They are Information asymmetry, 

liquidity, ownership structure, and risk and return. These concepts symbolize the distinctiveness of 

VC, but they also entail a discrepancy when considering the underlying assumptions in modern 

finance for describing the VC market. While these differences are a challenge to all VCs, it is wrong to 

think of them as only a threat because they can also create great opportunity. 

In VC, information asymmetry is much greater between a buyer and a seller than it would be 

on a stock exchange because it is very difficult for the buyer (the VC firm) to actually obtain all of the 

information about the firm from the seller and it is in the seller’s best interest to withhold bad 

information about the prosperity of the company. This withholding of information is not a major 

problem on the stock market because there regulations require companies to make information 

public. The stock market is also so liquid that modern finance theory assumes that stock prices will 

self-regulate when new information is made public. This is not the case for the VC market where the 

buyer must conduct a thorough screening and evaluation of the company before making an 

investment decision. This problem is often referred to as the adverse selection problem within 

agency theory (Milgrom and Roberts 1992).   

Before the VC firm even begins the screening and evaluation process, an information 

problem arises that is primarily due to the liquidity of the investments. In VC, the investor must 

create the Deal Flow. This situation is unfamiliar to investors on the stock exchange where all shares 

are freely available to all investors. Research has shown that inexperienced VCs have a more difficult 

time obtaining attractive investment opportunities and have less bargaining power with their 

potential investments than their larger and more experienced colleagues (Gompers, Kovner et al. 

2009).   

After investing, another information asymmetry problem arises. The entrepreneur can 

attempt to maximize his own utility at the expense of the company. The reason why the 

entrepreneur can and will do this is because the VC firm cannot cost-efficiently monitor his behavior 

all of the time, and the entrepreneur will get a positive benefit-cost tradeoff when engaging in non-

pecuniary expenditures3 (Jensen and Meckling 1976). In the VC setting, this moral hazard problem is 

greater than for an investor investing in public stocks because there are fewer investors providing 

                                                           
3
 If an entrepreneur now owns 60% of the company, then he will pay only 60% for a private jet, better office 

etc., of which he has the full use. 
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capital on each investment and they have more capital at stake. The VC industry is trying to 

overcome this problem by making incentive contracts and performing active ownership.  

The active management role has yet another risk reduction function. In modern portfolio 

theory, one assume that a passive investor can eliminate all firm-specific risk by diversifying his 

portfolio and invest in a large number of stocks that respond different to economic events.  In a VC 

setting it is more difficult to diversify a portfolio in large numbers because the investment 

possibilities are not as liquid, there is little information about their past, and there is much 

uncertainty around their future. By active managing their investments, the VC firm can attempt to 

eliminate some of the firm-specific risk. To do this most effectively, the majority of VC partners only 

invest in industries of which they have knowledge (Gompers, Kovner et al. 2009). New research 

shows that a VC firm actually follows either a strategy to specialize in a specific industry or to spread 

investments across industries. The same study reveals that a firm’s overall strategy is not a critical 

success factor for the company, but if the individual partners in the VC firm are specialized in a 

specific industry, this will yield a better return (Gompers, Kovner et al. 2009). This is consistent with 

the assumption that industry specialization helps to reduce firm-specific risk more effectively. There 

are probably two reasons for this finding. First, the specialized partners are better able to find the 

best investment opportunities, and second, they are better suited to add value and reduce risk for 

their investments. This does not mean that a VC firm should allocate all of their capital in one 

company in that industry. Weiding and Mathonet (2004) argue that because of the individual 

investment’s risk profile, a VC fund should diversify in numbers to some degree. In another study, 

Kanniainen and Keuschnigg (2003) show that because of a VC’s active management role, the optimal 

portfolio will be a trade-off between the number of investments held and the intensity of advice. If 

the marginal return from higher advising effort is diminishing this call for a larger portfolio, but if the 

entrepreneur receives less support he wants a higher profit share which can make a portfolio 

expansion unprofitable (Kanniainen and Keuschnigg 2003). Normally, a VC portfolio consists of ten to 

twenty companies (Weidig and Mathonet 2004).  

The last challenge for the VC industry is that the research shows that the investment’s risk 

and return profile differs from that of public stocks (Chiampou and Kallett 1989; Sahlman 1990; 

Ruhnka and Young 1991; Weidig and Mathonet 2004; Cochrane 2005). This asset class is naturally 

more risky than a public stock on, for example, the S&P 500. The reason why it is more risky is 

because VCs deals with young firms that are in a startup or expansion phase and the uncertainty 

about their future is great. In a VC portfolio returns of ten times the investment and bankruptcy are 

expected as normal scenarios. When investing in small companies on a stock exchange, some of the 

same characteristics as high expected return and high volatility are expected. In VC, however, some 

outcomes are more extreme. Robinson (1987) found in a survey of 53 VCs that another strategy for 
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dealing with the high uncertainty and risk in VC is to include companies in all three phases of the 

market in the portfolio. He found that, on average, VCs diversify across the different stages of 

development by nearly an equal amount with approximately one-third in seed, early growth, and the 

expansion phase (Robinson 1987).   

Despite the challenges presented above, a VC fund manager has the same objective as any 

other portfolio manager, i.e., to construct the optimal portfolio with the highest amount of expected 

return and the lowest risk. As previously mentioned, most VCs are focusing on eliminating firm-

specific risk by having more than one investment in the portfolio, by industry specialization on the 

partner level, and by diversifying the portfolio across the different company phases. These strategies 

all seem sensible, and the empirical data support their use in practice (Robinson 1987; Sahlman 

1990; Weidig and Mathonet 2004; Gompers, Kovner et al. 2009).  

     

3 Traditional Portfolio Selection 

The optimal portfolio of risky investments can be defined as the best way to allocate capital 

in a given number of risk bearing securities. For a rational investor, this portfolio is the one that gives 

the highest expected return for a given level of risk or the lowest level of risk for a given expected 

return (Markowitz 1952).  

3.1.  A Portfolio’s Risk and Return  

Suppose that         are the portfolio weights of   securities in a given portfolio. If 

these investments have expected returns              , the expected return for the entire 

portfolio is the weighted average of the expected returns on these assets in the portfolio (Berk 

and DeMarzo 2007): 

                                    
 

                             

The uncertainty or risk regarding the expected return on a given security can be divided into 

two broad sources. First, there are the general economic conditions, such as inflation, interest rates, 

exchange rates, and market conditions. All of these economic factors can affect the price or dividend 

flow on a given security and, thus, the return to its investors. This type of uncertainty is often 

referred to as market risk, systematic risk or nondiversifiable risk. The other source of uncertainty is 

the firm-specific risk, nonsystematic risk or diversifiable risk. This uncertainty is influenced by 
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resource and development processes, personnel changes, and other conditions that only affect a 

specific firm (Bodie, Kane et al. 2009). 

The total level of risk in a portfolio will depend on whether the individual securities have risk 

that is systematic, firm-specific or both. This is because an impact on firm-specific risk to one single 

security, for example, valuable human capital leaves the company, will only affect that firm and no 

other security in the portfolio. Theoretically, this type of risk can be reduced to a negligible level 

through diversification, also investing in a large number of securities. Markowitz was the first to 

analytically show the role of diversification in forming an optimal portfolio through his mean-

variance criteria, using mean as a measure of expected return and variance as a measure of risk 

(Markowitz 1952). As illustrated in figure 2, if a portfolio only has securities with firm-specific risk, it 

is theoretically possible to eliminate all risk through diversification.  

 

Figure 2: The Standard deviation of a Portfolio, consisting of only systematic risk firm (Type S), only firm-spesific risk 

(Type F) or both types of risk (Typical). 

 

Using the covariance matrix, the total variance of a portfolio of   securities is obtained as the 

following formula (Markowitz 1952): 

                     

 

                  

  

                 

If we divide both sides of the first presentation of the equation by the standard deviation of the 

portfolio, it gives the following expression (equation 3) for a portfolio’s volatility. This expression 

illustrates that when combining stocks into a portfolio that places positive weights on each stock, 

unless all of the stocks have a perfect correlation with the portfolio, the risk of the portfolio is lower 

than the weighted average volatility of the individual stocks (Berk and DeMarzo 2007).  

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

1 10 100 1000 10000

St
an

d
ar

d
 d

e
vi

at
io

n
 o

f 
th

e
 

p
o

rt
fo

lio

Number of Firms

Type S

Typical 

Type F



12 
 

           

 

                       

 

                      

From equations 1 and 2, it is obvious that an investor can obtain different expected portfolio returns 

and variance by changing portfolio weights for the   securities available. Then, to obtain the optimal 

portfolio of these risky assets, one must find the optimal allocation of capital invested in the 

portfolio. This allocation is the unique allocation that yields the highest expected utility to the 

investor and can, therefore, be thought of as a tradeoff between the expected return and the risk the 

investor is willing to hold.  

3.2. The Investor’s Utility Function 

Based on the expected utility theory framework, I consider an investor who wants to allocate 

initial wealth to maximize expected utility from end-of-period wealth,        .   is the investor’s 

uncertain end-of-period wealth, which is expressed as       , the gross return from a 

portfolio4. Because a VC manager has no real opportunity to invest in a risk-free asset, I assume that 

the portfolio only consists of risky assets and short selling is not allowed (Simaan 1993; Jondeau and 

Rockinger 2006). The investor’s optimal asset allocation can be obtained by finding the portfolio 

weights,   , that maximize the expected utility (Zakamouline and Koekebakker 2009): 

            
  

                                                                  

I assume that the utility function is increasing concave and that a solution to this optimal allocation 

problem exists and is unique (Jondeau and Rockinger 2006; Zakamouline and Koekebakker 2009). 

The first-order-condition of this optimization problem is 

           

   
              

As my objective is to examine the impact of including higher moments of a distribution when 

selecting a portfolio, I now approximate the expected utility by a Taylor’s series expansion around 

the expected end-of-period wealth5. Suppose that   is a continuously differentiable function and the 

expected end-of-period wealth is            . Then a utility function can be expressed as: 

                                                           
4
 The initial wealth    is assumed to be 1, and all wealth is invested in the portfolio. 

5
  Taylor’s theorem states that any continuous differentiable function can locally be approximated by 

polynomials (the reminder term represent the difference between the approximation and the function): 
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 Here,          is the  th moment of the portfolio’s return distribution (Zakamouline and 

Koekebakker 2009).  The expected utility from the uncertain end-of-period wealth can be written as:   

               
        

  
                                    

 

   

 

 This Taylor’s series expansion is not suitable for numerical implementation. A solution to 

approximate the expected utility is to truncate this function at a given value  , assuming that all 

moments of the distribution over value   will be negligible (Jondeau and Rockinger 2006).  

3.3. Expected Utility with Two Moments 

At    , equation 5 is the equivalent to the mean-variance criteria proposed by Markowitz 

(1952) that the investor will choose the portfolio that yields highest expected return for a given level 

of variance or the lowest variance for a given expected return. This can be shown analytically as 

                             
 

 
                

 But since                         then,  

              
 

 
                                           

 I define the portfolio’s variance as6  

  
            

Equation 6 can then be rewritten as: 

                   
 

 
         

                                 

Given that the investor wants to maximize the expected utility, this expression shows that an 

investor will choose the portfolio that yields the highest grand total from the first two moments of a 

probability distribution, i.e., the expected return and variance. Note that because it is assumed that a 

risk-averse person has an increasing marginal utility with a decreasing rise (the utility function is 

increasing concave) (Bernoulli 1954), this formula correspond with the mean-variance rule: that the 

                                                           
6
 Calculating variance using gross return      , will give the same results as using the return    .    
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rational investor considers expected returns as a desirable occurrence and variance of return as an 

undesirable occurrence (Markowitz 1952). 

The first assumption underlying this approximation of expected utility is that the uncertain 

end-of-period wealth, also the gross portfolio return, is a normally distributed variable. The variable 

is then explained by the two first moments of the probability distribution; its mean and variance. The 

second assumption is that the investor utility function is quadratic, implying that any derivative over 

the second will be zero. This means that the investor would not appreciate higher moments of the 

distribution and only give a utility value to the first two. This last assumption is not realistic. Figure 3 

illustrates a normally distributed random variable. The probability distribution is then symmetrically 

shaped as a bell. This means that there is the same probability for a random variable, in this case a 

return, to be over or under the mean. It also means that the uncertain return is most likely to be the 

mean of the distribution and that the return is more likely to be close to the mean than far away. A 

normally distributed random variable has an approximately 68% chance of being within one standard 

deviation, 95% chance of being within two, and better than 99.7% chance of being within three 

standard deviations from its mean (Studenmund 2006). Thus, unless the variance of a return 

distribution is very high, assuming a normal distribution will exclude the probability of any extremely 

high or low outcomes.    

 

Figure 3: Normal distribution with mean 0 and SD 1. The probability density function is 
 

     
 

       

    

 

Studies have shown that the mean-variance utility function provides a good approximation to 

the direct optimization when returns are close to normally distributed (Levy and Markowitz 1979; 

Simaan 1993; Jondeau and Rockinger 2006). However, one intuitive problem that emerges with the 

mean-variance criteria is what if one are dealing with a variable that is not normally distributed, for 
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example, the distribution is asymmetric or perhaps has a higher probability of extreme outcome than 

a normal distribution implies (Bodie, Kane et al. 2009).  

If the probability distribution is non-normal, then it may yield a different asset allocation than 

a mean-variance optimal would imply. Given two distributions that have the same variance and 

expected return but where one is positively skewed and the other negatively skewed, the investor 

should choose the positively skewed distribution because it yields a higher probability of positive 

returns (Bodie, Kane et al. 2009). If the investor makes the decision based on only expected return 

and variance, then she would as likely choose the investment option with a negatively skewed 

distribution even if this is not the optimal decision. The kurtosis, i.e., the probability of extreme 

outcomes, should also affect the investor’s optimal decision. If an investor makes decisions based on 

the mean and variance, then she can underestimate the probability of extreme outcomes because 

she assumes that the returns are normally distributed. Figure 4 shows a normal and a fat-tailed 

distribution with the same mean and variance and a skewed and normal distribution with the same 

mean and variance (Bodie, Kane et al. 2009).  

 

Figure 4: The distributions to the left have both a mean of 10% and SD of 20%. The distributions to the right have a mean 
of 6% and a SD of 17% (Bodie, Kane et al. 2009).  

These two examples illustrate that the third moment, the skewness, and the fourth moment, the 

kurtosis, of a probability distribution could impact an investor’s optimal asset allocation if returns are 

non-normal distributed7. Thus, if VC returns are non-normal distributed, the portfolio allocation 

decision should also include the skewness and kurtosis of the distribution.  

                                                           
7
 The skewness is zero and the kurtosis is three if returns are normally distributed. Figure 4 shows these 

moments measured as statistically defined. That is 
       

   for skewness and 
       

   for kurtosis. Kurtosis is 

denoted as excess kurtosis, which is the kurtosis minus three.   
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4 Venture Capital Returns 

Before assessing which probability distribution best fits the VC setting, I review some of the 

literature on VC returns. The most common measures used in the literature to present the returns 

are the interim internal rate of return (IRR) or the total value to paid-in capital (TVPI) (Kaplan and 

Schoar 2005; Mathonet and Meyer 2007; Ludovic 2009). The interim IRR is the discount rate that 

establishes the net present value of cash flows plus the latest net asset valuation (NAV) from an 

individual investment or fund, equal to zero. The net asset valuation is the VC’s share of the 

investment’s market capitalization at the measurement time, usually net of the management fee and 

carried interest (Kaplan, Sensoy et al. 2002; Ludovic 2009). The interim IRR is often called the dollar-

weighted return because it considers both the size and the timing of cash flows. It can be presented 

as a discount rate at time   (Weidig and Mathonet 2004; Bodie, Kane et al. 2009) 

 
   

        

 

   

 
    

        
                                                    

The TVPI is the multiple obtained by dividing the sum of cash outflows     from the investment plus 

the latest NAV, on total cash inflow/invested capital       (Mathonet and Meyer 2007). Therefore, 

the timing of financing and cash returns will not affect this measure (Weidig and Mathonet 2004). 

The TVPI at time   can be expressed as   

      
        

 
   

    
 
   

                                                                 

Because financial returns are normally presented as annual returns, the TVPI multiple is often 

annualized using the following formula (  is one year) (Campbell, Lo et al. 1997; Das, Jagannathan et 

al. 2002): 

                            
 

                                           

 In the appendix, I provide an example on the timing difference between the IRR and the annualized 

TVPI. 

4.1.  Present Literature on Venture Capital Returns 

VC authors normally use the VentureOne or the Venture Economics database when 

collecting industry data. Both databases provide self-reported valuations (NAV’s) on individual and 

fund levels. These self-reported valuations made by the VC firm or the investment itself, can give a 

biased return estimate. In a survey of 143 VC financings, Kaplan, Sensoy and Strömberg (2002) find 

that the valuations are relatively unbiased compared to the actual situation, but that the databases 
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are missing the valuations on a significant amount of the financing rounds that they report. Most 

valuations are from large financing rounds and on investments that eventually go public (Kaplan, 

Sensoy et al. 2002). Cochrane (2005) argues that because one are more likely to observe valuation 

data for a firm that is successful, that is, receives new financing, goes public, or is acquired, this will 

give an upward biased result if only those valuations are used to estimate an average return. He 

corrects for this bias using a maximum-likelihood estimate to measure the probability for a company 

to be successful, go bankrupt, or remain private but not receive new financing at the end of sample. 

In this study, Cochrane finds that the VC returns have similar characteristics as the smallest NASDAQ 

stocks (Cochrane 2005). Among industry participants and researchers, there has long been an 

understanding that the VC returns are very different from the normal stock market, but even if this 

study shows that VC returns are not as special as previously thought, one thing is certain: the VC 

market is a very uncertain and volatile market that has the ability to produce extreme outcomes.     

An earlier survey by Chiampou and Kallett (1989) estimated the risk and return profile for 35 

privately held VC funds that are six years or older. The reason why they choose these mature funds is 

because, normally, all committed capital is then invested and the fund begins to get known returns 

on the portfolio companies (Chiampou and Kallett 1989). The sample gives an average annual 

geometric return of 24.4%, which is measured by annualizing the product of each period’s gross 

realized return8 and not the last period’s TVPI (Berk and DeMarzo 2007). The geometric return is 

often called the time-weighted return because it values the timing of returns in the same way as the 

IRR. This measure considers only returns for one single unit invested, e.g., one stock or one dollar, 

and the gain or loss on that unit. This measuring method eliminates the effect of the size on cash 

flows from an individual investment, which also is valued by the IRR, but it serves as a better 

measure of return than the annualized TVPI for comparison with other asset types, such as public 

stocks (Bodie, Kane et al. 2009). The annual standard deviation for the sample is 51.2%. In the same 

period, the S&P 500 had an annual geometric average return of 15.9% and a SD of 12.3%. Chiampou 

and Kallett also find the standard deviation as an inappropriate measure for risk. One reason for this 

is due to the illiquidity of the market and the characteristics of a typical successful VC fund 

(Chiampou and Kallett 1989). For a typical successful VC fund, the internal rate of return can be 

illustrated by a J-curve (figure 5) because write-offs and management fees are acknowledged 

immediately in the portfolio, but the value of the firms in the portfolio (NAV’s) is valued at cost until 

a new round of financing (Berg-Utby 2010).  

                                                           
8
 The gross realized return at time   is the value of the investment at time   (NAV) plus cash outflow at time  , 

divided on previous period’s valuation    ,      
       

      
 .  
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Figure 5: An illustration of the typical J-curve for a successful VC fund.    

 

Venture Economics presented in the end of 2008 the average pooled IRR for the top quarter funds in 

their database. These returns are divided into stages based on the company phase the fund focus. 

The seed funds have an IRR of 12.9%, early growth funds of 18.8%, and expansion funds of 12.4%9. 

The survey also presents the IRR for generalist funds, i.e., funds that widely spread their investments 

across different stages10. The generalist fund has an IRR of  22.2% (Berg-Utby 2010). 

Sahlman (1990) reports another Venture Economics survey of 383 individual investments 

made by 13 VCs between 1969 and 1985. These returns are measured as the TVPI (Kaplan and Schoar 

2005). More than one-third of these investments results in a loss and the majority of the sample 

gives a small return, but a small portion of the investments (6.8% of the total amount invested) have 

a TVPI multiple of 11 or more. This finding is consistent with a usual assumption in the industry that 

one in ten investments in the fund will produce a “home-run”, and give a sufficient return for the 

entire portfolio. From the reported returns, it seems this return distribution is non-normal, and it 

appears positively skewed with the highest probability for low returns. This article does not say 

mention an annual return, but I might presume from the information provided that a preliminary 

annualized TVPI as an average of all investments is 9.5%11. Figure 6 shows the distribution of returns 

(Sahlman 1990).       

                                                           
9
 Venture Economics name the stages differently from me. They term the second stage “development” and the 

third stage “balanced”.  
10

 This survey is of the whole private equity market, thus the generalist fund also includes the buyout stage. 
11

      
                         

                            
    ,                    
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Figure 6: The distribution of returns presented by Sahlman (1980) 

 

    As mentioned previous, Cochrane (2005) presents one of the most comprehensive studies 

on VC risk and return using data provided from the VentureOne database, ranging from 1987 to June 

2000. Cochrane argues that the individual return distribution is highly skewed and well described by 

a lognormal distribution. After correcting for the selection bias previously described, he finds an 

average annual geometric log (continuously compounded) return of 15% and a standard deviation of 

89%. The gross return he uses is defined as the valuation of the investment at time  , divided by the 

valuation at time    , without subtracting management fee. A VC investment will obtain a new 

valuation at every financing round and when it goes public or is acquired. Because of the illiquidity of 

the VC market, Cochrane argues that the current value of an investment at one financing round 

cannot be regarded as realized return for a VC firm. He, therefore, calculates a return for the 

investment from each VC financing round to eventual IPO, acquisition or failure (Cochrane 2005). 

This calculation will likely yield a more correct realized return in this illiquid market, but Cochrane 

does not mention how he handles intermediate cash distributions. Because previous cash 

distributions affect a company’s valuation at IPO (it will be worth less), but is not included in 

Cochrane’s calculations of return, this will probably give a downward biased return estimate.  

A study conducted by Weiding and Mathonet (2004) reveals a remarkable distribution of 

returns from both individual investments and funds. Their findings support Cochrane’s assumption 

with respect to a lognormal distributed VC market. They report an average TVPI of 6.2 and a very 

high standard deviation of 53.8 for a direct investment. For a fund, the average TVPI is 1.7 and the SD 

is 1.9. It is important to note that these return and risk numbers are for the total investment period 

and cannot directly be compared with measures from time series, as I have presented earlier. The 

return distribution is illustrated in figure 7 (Weidig and Mathonet 2004). 
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Figure 7: The Risk Profile of a Venture Capital fund and the direct investment (Weidig and Mathonet 2004) 

 

4.2.   A Probability Distribution That Fits the VC Setting 

Therefore, what probability distribution best fits the VC industry? VCs are investing in 

inventions and entrepreneurs, an asset class that is very uncertain and has very low predictability. 

From the literature presented above, I can first draw the conclusion that the VC return distribution 

has thick tails, or high kurtosis. A distribution that well describes this situation is the t-student 

distribution (Campbell, Lo et al. 1997). A problem with this distribution that does not seem to fit the 

VC setting is that it is symmetrical. It assumes the same probability for a random variable to be over 

or under the mean. In VC, it appears there is a high probability for low returns, but there is also a 

higher probability for extreme high returns than extreme low returns. This higher probability of 

extreme high returns exists because the VC firm can only lose its initial investment but can gain 

nearly unlimited returns. Like Cochrane (2005), I find that the probability distribution that best fits 

the VC setting is the lognormal distribution.   

A random variable, for example, a VC gross return      , is lognormal distributed if the 

logarithm to this variable, the return continuously compounded, is normally distributed (Campbell, 

Lo et al. 1997). The lognormal distribution is a positively skewed distribution with most values near a 

lower limit of zero (Limpert, Werner et al. 2001). The uncertain variable cannot fall below this lower 

limit, e.g., the price of a stock cannot fall below zero. This distribution seems to have the properties 

to describe the return characteristics of VC. This is because the VC firm can, at the most, lose its 

investments, i.e., obtain a gross return 0, but there is also a possibility for unlimited gains. As 
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presented earlier, the majority of returns are low normal rates, which also is consistent with a 

lognormal distribution. Figure 8 illustrates a random variable that is lognormal distributed. 

 

 

Figure 8: A lognormal distributed random variable with standard deviation 1 and Mean 0. The probability density 

function is 
 

      
 

  
 

              
 

 

5 Portfolio Selection with Higher Moments 

Considering the VC characteristics previously described and the underlying assumptions for 

using the mean-variance criteria when putting together a portfolio, it appears that a mismatch exists. 

When returns are non-normal distributed, the higher moments of a distribution will impact the 

optimal allocation. As VC returns appears positively skewed and good described by a lognormal 

distribution, a VC fund manager could probably yield a more optimal portfolio by accounting for 

higher moments of the distribution. 

5.1. Expected Utility with Four Moments  

I use the expected utility equation that I previously found (equation 5) and now truncate it at 

four moments,    . The Investor’s expected utility from the uncertain end-of-period wealth can 

then be approximated using the same approach as Jondeau and Rockinger (2006).  
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I define the portfolio’s skewness and kurtosis of the end-of-period return as 12 

           
             

           
             

The expected utility can then be written as the following function: 

                    
 

 
         

  
 

  
        

  
 

  
         

          

This expected utility function shows that a risk-averse investor responds positively to the expected 

return and skewness but negatively to variance and kurtosis if the following inequalities hold for the 

derivatives of the person’s utility function (Scott and Horvath 1980). 

                 If   is odd and 

                  If   is even.  

These preferences for the moments of a probability distribution are often used and are generally 

accepted (Dittmar 2002).  

Let’s now consider the case of a risk-free investment opportunity where the investor receives 

a certain gross return. Although I earlier stated that there is no real opportunity for a VC manger to 

invest in a risk-free asset, an assumed risk-free investment opportunity can be used to show what 

the manger should minimally expect in return from the risky portfolio to be satisfied with the risky 

investment. Let     be a certain end-of-period wealth, assumed to be very close to the same 

expected end-of-period wealth as earlier   . Then, the utility function for this certain amount can be 

approximated around the expected end-of-period wealth as (Pratt 1964; Milgrom and Roberts 1992). 

                                                                                                  

Because the expected return and the certain amount are assumed to be very close, the terms 

over the first derivative are regarded as zero and ignored (Milgrom and Roberts 1992). A risk-averse 

investor will prefer the risky investment if its expected utility has a higher value than the utility of a 

certain investment          E      . For the risky investment to give the same expected utility 

as the utility of a risk-free investment, I combine equation 11 and 12.    

                              
 

 
         

  
 

  
          

  
 

  
           

  

                                                           
12

 These definitions differ from the statistical definitions, which I have presented in a footnote earlier. 
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This equation can then be rearranged and expressed as the Investor’s certainty equivalent   

              
 

 
     

  
 

  
    

  
 

  
     

                                                   

     
    

  , is a measure of the investor’s risk aversion, i.e., her aversion towards the different 

moments in a probability distribution (Pratt 1964; Arrow 1970). Equation 13 shows that a rational 

investor needs a higher return from a risky investment to obtain the same utility as one would 

receive from a certain investment. The risk premium, which is what the investor obtains in expected 

excess return for taking the risky investment, is expressed as                (Bodie, Kane et al. 

2009). 

Now I have developed the tools that can help analytically solve the allocation problem for a 

VC manager. However, before going further, I first must assume a specific utility function that can be 

general for all rational VC managers and, thus, contains certain properties because the risk aversion 

is dependent on the utility function itself.    

5.2. The Optimal Asset Allocation of a Risky Portfolio using CARA Utility 

The negative exponential utility function, also called the CARA utility function can be used as 

a general expression for a VC mangers utility (Jondeau and Rockinger 2006; Pennacchi 2008) 

                                                                             

This function has some characteristics that are sound for this setting. First, it assumes a marginal 

increasing utility      , and second, it assumes a reduction in the change in marginal utility     

 . The third feature is that this expression assumes that the risk aversion is constant and does not 

change with different levels of wealth (Pennacchi 2008)13. This assumption may not be good for an 

individual personal investor because one can assume a desire to be less risk-averse and take riskier 

bets as personal wealth increases. However, for a VC manager this is as a good assumption because 

one is not investing personal money and should, therefore, have the same tolerance towards risk 

regardless of the amount of wealth they manage. The exponential utility function implies that the 

investor’s aversion towards the different moments of a distribution is a constant number   raised to 

the power of     regardless of wealth level and is illustrated as   

          

            

                                                           
13

 In other words, the investor has constant absolute risk aversion (CARA).  
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Given the formula for risk aversion described earlier    , the investor’s aversion towards variance 

and skewness regardless of the wealth level  , is  

   
      

     
   

     
      

     
        

The investor’s certainty equivalent can then be expressed as  

        
 

 
    

  
 

 
    

  
 

  
     

     

From this expression, I can assume, ad hoc, that the VC manager gives a utility score to 

competing portfolios of risky investments based on the expected gross return and risk of the 

portfolio (Bodie, Kane et al. 2009). The risk is then defined as the sum of the variance, skewness, and 

kurtosis of the portfolio. The utility score can be expressed as   

           
 

 
    

  
 

 
    

  
 

  
     

                              

Portfolios are given higher utility scores for higher expected returns, but lower scores for 

higher levels of risk. From available portfolios, the investor will always choose the portfolio that 

yields the highest utility score. The score of a risk-free investment will be its expected gross return; 

thus, for an investor to choose the optimal risky portfolio, its utility score must be higher than the 

risk-free return. If the investor is risk neutral      and does not emphasize risk, then the portfolio 

that yields the highest score will always be the one with the highest expected return. This means that 

for every value of risk aversion, the investor will put together the portfolio from available risky assets 

that give the highest utility score, and this will be the optimal portfolio. Actually, the VC fund-

structure makes the VC manager quite risk seeking. As mentioned, the firm will always receive a 

management fee for managing the investments in the fund but obtains only a carried interest in 

cases where the fund generates a very high return (Berg-Utby 2010). This gives the manager 

incentives to take high-risk investments. One moderating factor is that the funds have a limited 

lifetime, and the VC firm is depending on obtaining new funds to survive in the long run (Berg-Utby 

2010). A fund often lasts between 5 to 10 years (Gompers and Lerner 2001).   
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6 Analysis 

In this analysis, I put together a “four moments” optimal portfolio when assuming returns are 

normal and lognormal distributed, everything else being equal. I assume different distributions to 

determine if the difference in optimal allocation between the distributions implies different risk 

reduction strategies. In the VC setting, it is difficult to eliminate firm-specific risk in a portfolio 

through diversification in large numbers because of its illiquid nature. One risk reduction strategy can 

then be to diversify invested capital across investments with different risk profiles rather than invest 

all capital in one investment type. I now test if that is a good strategy for obtaining the optimal 

portfolio when assuming a normal and lognormal returns distribution. To simplify the analysis I 

assume that a VC manager can chose between three investment opportunities with different risk 

profiles. My objective is to determine how much percentage capital the VC manager will allocate in 

each investment to obtain the optimal portfolio. This allocation is where the VC manager gets the 

highest utility score. To obtain the solution, I insert the utility score formula (15) in Excel™ and use 

Crystal Ball™ to find the optimal allocation for these three investment opportunities. As mentioned, I 

find an optimal solution when the returns come from a normal and a lognormal distribution, 

everything else being equal.  

6.1.  Monte Carlo Simulation and Optimization 

I first use Monte Carlo simulation to simulate a thousand returns for each investment 

opportunity individually. This simulation is based on assumptions about the probability distribution, 

mean, and standard deviation. Because these investments are individual firms in the very early 

stages of development, I do not assume a correlation between the returns. This will actually provide 

a high incentive to diversify between the investments14. The expected returns used for the simulation 

is also assumed to be arithmetic and not geometric. The reason for this is as follows. If measured 

historic returns give a good representation of the underlying probability distribution of an asset, then 

the arithmetic average return will provide a good forecast for the investment’s expected return 

because the arithmetic return assumes that every return in a time series is equally likely to happen 

again, irrespective of when it occurs. In contrast, the geometric return is better to calculate the 

realized return of an asset because, as previously mentioned, this is a time-weighted measure and 

considers when the return occurred (Bodie, Kane et al. 2009).   

 These simulated trials are used to calculate the skewness and kurtosis for each investment 

opportunity when returns come from a normal and lognormal distribution. I use the formulas for 

                                                           
14

 Equation 3, as earlier presented, shows that the lower the correlation is the higher the risk reduction is from 
portfolio diversification.  
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skewness and kurtosis as presented earlier. Because I calculate from a simulated sample, I also have 

to correct for degrees of freedom and do not simply divide the total sample by the numbers of trials. 

Degrees of freedom can be defined as the number of observations/trials minus the number of 

assumptions needed to calculate the statistical measure (Zikmund, Babin et al. 2010)15. The skewness 

of the normal distribution is zero because the distribution is symmetrical. The kurtosis, as statistically 

defined, is three and, therefore, it is usual to calculate the excess kurtosis of a distribution, defining 

the excess kurtosis for a normal distribution as zero. Because I use the formulas presented earlier, I 

also calculate values for kurtosis when returns come from a normal distribution. To calculate the 

total skewness and kurtosis for a portfolio, I use Jondeau and Rockingers (2009) definitions for co-

skewness and co-kurtosis:   

                                                                                       

                                                                                                

By following the same procedure as the covariance matrix for calculating portfolio variance, 

one can develop the matrix one step further to apply for skewness and kurtosis. For a portfolio with 

portfolio weights    and return   , the co-skewness matrix for         is 
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When       ,      gives the skewness of the asset   and is, therefore, denoted as   
  for        . 

The co-skewness between the three assets can also be collected into seven entities16. This yields the 

                                                           
15

I multiply the total sum of variance with 
 

   
, the total sum of skewness with 

 

          
, and the total sum of 

kurtosis with 
      

               
 to correct for degrees of freedom.  

16 Like these examples:                and                 and                          
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following expression for the skewness of a portfolio with three assets (the calculation of kurtosis uses 

the same procedure; however, it will not be presented in this thesis): 

   
    

   
    

   
    

   
     

           
           

           
           

        

   
                     

This yields the following general formula for a portfolio's skewness and kurtosis. 

                                  

   

                                     

                                         

    

                         

 After the calculated skewness and kurtosis are added to the model in Excel™, I use the 

optimization function in Crystal Ball™ to find the allocation between the three investments that 

yields the highest utility score. This is a deterministic optimization17 that is based on the same 

expected return and standard deviation as the simulation. I find the optimal allocation by using a 

thousand iterations. The table below provides an overview of some of the relevant measures used in 

the optimization (and the simulation):  

          Normal distribution Lognormal distribution 

Investment:  E(R) SD    Skewness  Kurtosis  Skewness Kurtosis  

 High risk = X1  0,25 1,10 - 4,100 43,021 1301,574 

Medium risk = X2 0,15 0,55 - 0,256 5,138 75,309 

Low risk = X3 0,10 0,275 - 0,016 0,536 3,572 

Table 1: The expected return and volatility is based on the literature review as presented earlier. 

The three investment opportunities represent common risk profiles expected in the VC industry. 

Assuming that a risk-free investment give a return on 5%, the risk premium from these three 

investments grows proportionally with the growth in volatility (Bodie, Kane et al. 2009). As previously 

mentioned, the investor should then choose the optimal risky portfolio if it yields a utility score over 

1.05. Because I am only interested in finding the allocating that yields the highest utility score from 

available risky investments, that the value of the utility score is over or under a risk-free investment, 

will not affect my results.    

                                                           
17

 This is an optimization that finds the optimal forecast value based on the assumptions (including the 
calculated skewness and kurtosis) without simulating returns.  
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6.2. Results 

I obtain the optimal portfolio using values for the risk aversion parameter   ranging between 

0 and 20. This range should cover most of the values used in the literature on portfolio optimization 

(Jondeau and Rockinger 2006). For explanatory reasons, I assume that a constant parameter value 

between 0.1 and 0.7 describes a person with low risk aversion. A constant value between 0.9 and 1.5 

is defined as medium risk aversion, and, finally, all values over 1.5 are regarded as high risk aversion. 

The constant value   raised to the power of     indicates the investor’s aversion toward the  th 

moment of a distribution. I also include    , a risk neutral person, to show the allocation if the 

person does not care about risk.  

 When returns come from a normal distribution, the asset allocation that yields the highest utility 

score is  

 Asset Allocation 

Risk aversion (b-value) X1 X2 X3 

0 1 - - 

0,1 0,86 0,14 - 

0,3 0,40 0,54 0,06 

0,5 0,25 0,39 0,36 

0,7 0,19 0,33 0,49 

0,9 0,15 0,29 0,57 

1,1 0,12 0,26 0,62 

1,3 0,10 0,24  0,66 

1,5 0,08 0,22 0,70 

2 0,05 0,19 0,76 

5 - 0,03 0,97 

10 - - 1 

20 - - 1 

From these results, one can see that a strategy to diversify investments between the three 

investment opportunities will be the optimal solution for most values of risk aversion. For the 

extreme low value of risk aversion, the optimal solution will be to allocate the most capital in the 

high risk investment. This will be consistent with a person who does not emphasize risk. For extreme 

high values of risk aversion, the optimal solution is all capital in the low risk/low return investment. 

This is also consistent with a person who is strongly inclined to avoid risk.  
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When returns are assumed Lognormal distributed, the asset allocation that yields the highest utility 

score is 

 Asset Allocation 

Risk aversion (b-value) X1 X2 X3 

0 1 - - 

0,1 0,96 - 0,04 

0,3 0,43 - 0,57 

0,5 0,24 - 0,76 

0,7 - 0,02 0,98 

0,9 - - 1 

1,1 - - 1 

1,3 - - 1 

1,5 - - 1 

2 - - 1 

5 - - 1 

10 - - 1 

20 - - 1 

These results indicate that in a VC setting where returns are better described by a lognormal 

distribution, the optimal allocation will include little or no diversification between the different 

investment types for most values of risk aversion. For medium and high risk aversion, the VC 

manager will actually prefer to invest 100% in the low risk investment. One drawback from this four 

moment optimization with a non-symmetric distribution is that the kurtosis is assumed to have a 

negative impact on the investor’s expected utility. When the distribution is symmetrical and has the 

same possibility for positive or negative returns, it is logical that a risk-averse investor will prefer that 

most returns are close to the mean. When returns are lognormal distributed this assumption may 

not be as intuitive. The returns are now positively skewed; thus, there is a higher probability for 

extreme positive returns with no threat of extreme low returns. It seems likely that an investor 

would appreciate a high possibility for extreme returns when they are positive, as is the case in my 

simulation. For this reason, I also find the optimal portfolio when leaving the kurtosis out of the 

utility score 
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These are the result for a lognormal distribution when using a three moment portfolio selection. 

 Asset Allocation 

Risk aversion (b-value) X1 X2 X3 

0 1 - - 

0,1 1 - - 

0,3 1 - - 

0,5 1 - - 

0,7 1 - - 

0,9 1 - - 

1,1 1 - - 

1,3 1 - - 

1,5 1 - - 

2 1 - - 

5 1 - - 

10 1 - - 

20 1 - - 

This yields the same result with respect to diversification between the three investments as 

previously found. The difference is that now the investor wants to allocate all capital in the high risk 

opportunity for every value of risk aversion. This difference can be explained by the fact that the VC 

manager wants to exploit the probability of obtaining extremely high positive returns when there is 

no real risk of obtaining extremely low returns. It is important to stress that these results do not 

mean that a VC firm should allocate all capital in a single company. I still believe Weiding and 

Mathonet (2004) make a good point when arguing that a VC fund should contain several 

investments. From my analysis, however, one can conclude that the optimal portfolio strategy will be 

to allocate all capital in one type of investment and not diversify between different risk profiles. A 

sample of the optimization reports produced by Crystal Ball™ is presented in the appendix.  

 

7 Conclusion 

In this thesis, I have studied the impact on asset allocation when including the higher 

moments of a return distribution for optimizing a VC portfolio. I first present arguments for why an 
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optimal allocation decision should include the higher moments of a return distribution and then 

show how this optimal allocation can be derived analytically. I do this by using Taylor’s series 

expansion to approximate an investor’s expected utility of end-of-period wealth as a function of 

higher moments. I find that the optimal asset allocation, when returns come from a normal 

distribution, is very different from the optimal solution when returns are lognormal distributed. 

When returns are normally distributed, the optimal allocation involves diversification between 

investment opportunities for nearly every value of risk aversion. When the returns are lognormal 

distributed, an optimal allocation will include no or minimal degrees of diversification for every value 

of risk aversion. These results imply that diversification between investments with different risk 

profiles may not be a good risk reduction strategy in the VC industry. Because the perception of a 

negative preference for kurtosis when returns are lognormal distributed is questionable, I also find 

the optimal solution for three moments. The result from this test shows that a good portfolio 

strategy in the VC setting is to invest all capital in high risk profile investments. 

 In general, a parallel can be drawn between the three investment opportunities used in the 

simulation and the different stages in the VC Industry. As mentioned earlier, the level of uncertainty 

and risk is reducing as the company becomes more mature. The high, medium, and low risk 

investment, therefore, can be thought of as an investment in the seed, early growth, and expansion 

phase.  My result is very different from Robinson (1987) who states that VCs are diversifying their 

investments at a fairly equal amount across the three stages. If returns were normally distributed, 

then I would conclude that this would be a good risk-reduction strategy. However, based on my 

results I have determined that a strategy to invest all capital in only one stage would be the optimal 

solution for VC. More specifically, to invest all capital in seed stage companies would probably give 

the best results. These findings should entice the VC practitioners to evaluate the asset allocation 

strategy that they are currently using.          

  The findings herein may also explain some of the differences in performance between 

European and U.S. VC funds. On average, the U.S. funds show a significantly higher performance than 

their European colleagues. That the U.S. VC market is more mature than the European market is one 

possible explanation for this (Hege, Palomino et al. 2003), but business cultural differences between 

these two markets may also account for some the difference. My results further indicate that if one 

market is including more seed stage companies in their portfolios, this should result in higher 

performance, on average. If, for example, the European VC funds are more concerned with the 

company’s reputation, then they are reluctant to include in their portfolios too many seed stage 

companies that have a higher probability of going bankrupt. If their U.S. counterparts, however, are 

not as risk averse, and are more willing to invest in seed stage companies, then this could explain 

higher returns from the U.S. funds. 
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There are also some limitations with the analysis that is worth noticing. First, the model does 

not consider the time perspective of a VC fund. It will be impossible to invest in a very early stage 

investment as the fund approaches closing because there will not be sufficient time to create value. 

Usually an investment in a company in the very early stage of development is preferred in the first 

year of the VC fund because the time to exit in these cases is very long. An investment in later stages 

of development will be preferred when the fund is approaching closing (Berg-Utby 2010). Second, 

the expected returns that is used for the different risk profiles, is not consistent with the fund IRR 

measured by Venture Economics. They presents that the early growth funds have a higher average 

return than the seed phase. The risk profiles used in my simulation are traditional, thus, higher risk 

gives higher expected return. The same study also shows that the generalist fund has a higher return 

than the funds focusing on one single phase. There can be many reasons for these findings. 

Inconsistency to allocate enough capital to investments in the stage of development the VCs focus on 

can be one of them. Another reason can be that the study is of the whole private equity market and, 

therefore, also includes the buyout phase.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

References 

Arrow, K. J. (1970). Essays in the theory of risk-bearing. Amsterdam, North-Holland. 

  

Berg-Utby, T. (2010). Lecture Notes in Corporate Finance Guest lecture: Private equity & Corporate 

Finance  

  

Berk, J. and P. DeMarzo (2007). Corporate Finance. 

  

Bernoulli (1954). "Exposition of a new theory on the measurement of risk." Econometrica 22(1): 23. 

  

Bodie, Z., A. Kane, et al. (2009). Investments. 

  

Bygrave, W. D. and J. A. Timmons (1992). Venture Capital at The Crossroads. 

  

Campbell, J. Y., A. W. Lo, et al. (1997). The Econometrics of Financial Markets. 

  

Chiampou, G. F. and J. J. Kallett (1989). "Risk / return profile of venture capital." Journal of Business 

Venturing 4(1): 1. 

  

Cochrane (2005). "The risk and return of venture capital." Journal of Financial Economics 75(1): 3. 

  

Cumming, D. (2010). Venture Capital: Investment Strategies, Structures, and Policies. 

  

Das, S., M. Jagannathan, et al. (2002). "The Private Equity Discount: An Empirical Examination of The 

Exit of Venture Backed Companies." 

  

Diebold, F. X., N. A. Doherty, et al., Eds. (2010). The Known, the Unknown, and the Unknowable 

in Finacial Risk Management. 



34 
 

  

Dittmar, R. F. (2002). "Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross 

Section of Equity Returns." The Journal of Finance 57(1): 369-403. 

  

Ernst&Young (2009). "Ernst & Young: Venture Capital Barometer 2009." 

  

Fama, E. F. (1963). "Mandelbrot and the Stable Paretian Hypothesis." The Journal of Business 36(4): 

420-429. 

  

Gompers, P., A. Kovner, et al. (2009). "Specialization and success : Evidence from venture capital." 

Journal of Economics and Management Strategy 18(3): 817-844. 

  

Gompers, P. and J. Lerner (2001). "The Venture Capital Revolution." Journal of Economic Perspectives 

15(2): 145-168. 

  

Hall, J. and C. W. Hofer (1993). "Venture Capitalists' Decision Criteria in New Venture Evaluation." 

Journal of Business Venturing 8(1): 25. 

  

Hege, U., F. Palomino, et al. (2003). "Determinants of Venture Capital Performance: Europe and the 

United States."  Working Paper. 

  

Jensen, M. C. and W. H. Meckling (1976). "THEORY OF THE FIRM: MANAGERIAL BEHAVIOR, AGENCY 

COSTS AND OWNERSHIP STRUCTURE." Journal of Financial Economics 3(4): 305-360. 

  

Jondeau, E. and M. Rockinger (2006). "Optimal Portfolio Allocation under Higher Moments." 

European Financial Management 12(1): 29-55. 

  

Kanniainen, V. and C. Keuschnigg (2003). "The optimal portfolio of start-up firms in venture capital 

finance." Journal of Corporate Finance 9(5): 521-534. 

  



35 
 

Kaplan, S. N. and A. Schoar (2005). "Private Equity Performance: Returns, Persistence, and Capital 

Flows." The Journal of Finance 60(4): 1791-1823. 

  

Kaplan, S. N., B. A. Sensoy, et al. (2002). "How well do venture capital databases reflect actual 

investments?". 

  

Kaplan, S. N. and P. Strömberg (2003). "Financial contracting theory meets the real world : An 

empirical analysis of venture capital contracts." Review of Economic Studies 70(2): 281. 

  

Lerner (1995). "Venture capitalists and the oversight of private firms." Journal of Finance , The 50(1): 

301. 

  

Levy, H. and H. M. Markowitz (1979). Approximating Expected Utility by a Function of Mean and 

Variance, Elgar Reference Collection. Pioneering Papers of the Nobel Memorial Laureates in 

Economics, vol. 2. Cheltenham, U.K. and Northampton, Mass.: Elgar: 30-39. 

  

Limpert, E., A. S. Werner, et al. (2001). "Log-Normal distributions across the sciences: Keys and 

Clues." 

  

Ludovic, P. (2009). "The performance of private equity funds." Review of Financial Studies , The 

22(4): 1747 - 1776. 

  

Mandelbrot, B. (1963). "The Variation of Certain Speculative Prices." The Journal of Business 36(4): 

394-419. 

  

Markowitz, H. (1952). "Portfolio Selection." The Journal of Finance 7(1): 77-91. 

  

Mathonet, P. and T. Meyer (2007). J-Curve Exposure: Managing a Portfolio of Venture Capital and 

Private Equity Funds. 

  

Milgrom, P. and J. Roberts (1992). Economics, Organization & Management. 



36 
 

  

Pennacchi, G. (2008). Theory of Asset Pricing. 

  

Pratt, J. W. (1964). "Risk Aversion in the Small and in the Large." Econometrica 32(1/2): 122-136. 

  

Robinson (1987). "Emerging strategies in the venture capital industry * 1." Journal of Business 

Venturing 2(1): 53. 

  

Ruhnka, J. C. and J. E. Young (1991). "Some hypotheses about risk in venture capital investing." 

Journal of Business Venturing 6(2): 115. 

  

Sahlman (1990). "The structure and governance of venture - capital organizations." Journal of 

Financial Economics 27(2): 473. 

  

Scott, R. C. and P. A. Horvath (1980). "On the Direction of Preference for Moments of Higher Order 

Than The Variance." Journal of Finance 35(4): 915-919. 

  

Simaan, Y. (1993). "What Is the Opportunity Cost of Mean-variance Investment Strategies?" 

Management Science 39(5): 578-587. 

  

Studenmund, A. H. (2006). Using Econometrics: A Practocal Guide. 

  

Swensen, D. F. (2005). Unconventional Success: A Fundamental Approach to Personal Investment. 

  

Taleb, N. N. (2007). The Black Swan: The Impact of the Highly Improbable. 

  

Weidig, T. and P. Mathonet (2004). "The Risk Profiles of Private Equity." 

  

Zakamouline, V. and S. Koekebakker (2009). "Portfolio performance evaluation with generalized 

Sharpe ratios : Beyond the mean and variance." Journal of Banking and Finance 33(7): 1242-1254. 



37 
 

  

Zikmund, W. G., B. J. Babin, et al. (2010). Business Research Methods. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

 Appendix  
 

 

A. Example on the Timing Difference between the IRR and the Annualized TVPI 

Assume that a VC firm invests 100 in a promising company at year 0. The next year, there is a 

second financing on 50, and the investment pays out 25 in year 3. In year 4, the investment goes 

public and produces a return on 500. The cash flow from this investment is  

Year  0 1 2 3 4 

Cash Flow -100 -50 25 - 500 

IRR 42%     

Annualized TVPI 36.8%     

Because not all of the financing is paid in year 0, and not all cash outflows are received in year 4, the 

IRR correctly gives a higher annual rate of return for the investment. The TVPI multiple is 

nevertheless, often used in the literature because it is simple to calculate and understand. It 

expresses how much money is received from the capital invested. If there only is one financing round 

and the investment only pay a return on exit, then the IRR and the TVPI will give the same annualized 

return. 

 

B. Optimization Reports from Crystal Ball™  

On the following pages, I present some of the reports produced by Crystal Ball™ after each 

optimization. The reports for a risk aversion on 0.1, 1.1, and 20 are included.  For more reports, the 

author can be contacted.   
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