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Estimation of Coherence Between Blood Flow and
Spontaneous EEG Activity in Neonates

David M. Simpson*, Member, IEEE, Daniel A. Botero Rosas, and Antonio Fernando C. Infantosi

Abstract—Blood flow to the brain responds to changes in neu-
ronal activity and, thus, metabolic demand. In earlier work, we
observed correlation between cerebral blood flow and spontaneous
electroencephalogram (EEG) activity in neonates. Using coher-
ence, we now found that during Tracé Alternant EEG activity in
quiet sleep of normal term neonates, this correlation is strongest
at frequencies around 0.1 Hz, reaching statistical significance
(p < 0.05) in six of the nine subjects studied (p < 0.07 in eight
subjects). Due to noise, artifact, and spontaneous changes in the
subjects’ EEG patterns, the signals investigated included epochs
of missing samples. We, therefore, developed a novel algorithm
for the estimation of coherence in such data and applied a Monte
Carlo (surrogate data) method for its statistical analysis. This
process provides a test for the statistical significance of the max-
imum coherence within a selected frequency band. In addition to
permitting further insight into the mechanisms of cerebral blood
flow control, these algorithms are potentially of great benefit
in a wide range of biomedical applications, where interrupted
(gapped) recordings are often a problem.

Index Terms—Cerebral blood flow, coherence, electroencephalo-
gram (EEG), missing samples, Monte Carlo methods, neonates.

I. INTRODUCTION

T has long been known that there is a link between the

metabolic activity of the brain and cerebral blood flow [1],
[2]. Blood flow to the brain changes, for example, with sleep
[3], [4], during epileptic seizures [5], [6], and with sensory
stimulation [7]. In previous work [8], we investigated the
correlation between cerebral blood flow velocity (CBFV), as
measured by transcranial Doppler ultrasound, and spontaneous
electroencephalogram (EEG) activity during quiet sleep in new-
born babies [Tracé Alternant (TA) EEG pattern]. We found low,
but significant, correlation between the signals, with changes
in CBFV lagging those in the EEG by about 5 s. In this paper,
we extend that work by investigating the coherence between
these signals. The coherence gives the correlation between
signals selectively for frequency bands, and its use has become
particularly widespread in the analysis of neurophysiological
signals.

As in the previous work, the quality of the signals available
posed a significant technical challenge and required the devel-
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opment of new methods for estimating coherence and testing
its statistical significance. It is difficult to obtain high-quality
EEG and CBFV signals for prolonged periods (say, 10 min).
When the baby moves, the signals are often lost or severely
degraded by artifacts and noise. In addition, the EEG pattern
of interest, TA, is usually only intermittently present, and thus,
the signals analyzed are interrupted by periods of missing data.
Most standard signal processing algorithms cannot deal with
such cases. Such incomplete data are a common problem in
biomedical signal processing, and they are usually dealt with by
either analyzing the largest possible segment of good data (often
discarding smaller segments) or interpolation (when only short
segments are missing). Neither method is suitable in the present
study and we, therefore, sought to develop an estimator of co-
herence that does not require uninterrupted recordings. Further-
more, a Monte Carlo approach to determining the statistical sig-
nificance of coherence estimates, and in particular the maximum
coherence in a given frequency band, is also described.

The methods were developed specifically for the investiga-
tion of the coherence between CBFV and EEG, but we believe
they are also of great relevance in many other biomedical engi-
neering applications. A range of signal processing methods that
can deal with missing samples have been discussed in the recent
signal processing literature [9]-[11], but so far, these methods
have not been extensively employed in biomedical applications.
The development and application of such methods is timely, be-
cause they allow for a more effective use of any signals recorded
from patients, which is highly desirable from both economic and
ethical considerations.

In Section II, we will first describe the signals acquisition
and then the algorithms for estimating coherence and the Monte
Carlo statistical significance tests. The results of simulation
studies to test the novel algorithms are then shown, followed by
results from signals recorded in neonates. Some implications
of the current work, problems, and future developments are
discussed in the Section IV.

II. MATERIALS AND METHODS

A. Data Acquisition and Preprocessing

The set of signals used are the same as in the previous work
[8]. A group of nine normal newborns (gestational age 37-41
weeks, Apgar >8 at 1 and 5 min) were studied within seven
days of birth (six of them within the first three days), after
written informed parental consent and with approval of the
local ethics committee (Instituto Fernandes Figueira, Fiocruz,
Rio de Janeiro, Brazil). With the babies asleep, generally after
feeding, transcranial Doppler ultrasound signals were acquired
from the right middle cerebral artery (MCA) using a 9.56-MHz
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continuous wave system (Parks Electronics Lab., 806FC) and
a carefully positioned hand-held pencil-probe. The system’s
audio output was fed into a purpose-built hardware/software
system developed at the Leicester Royal Infirmary, Leicester,
U.K. This system estimated the maximum frequency enve-
lope to provide CBFV and simultaneously digitized the EEG
(derivation F4-T4), from a polygraphy system (EEG-5414K,
Nihon Kohden). The fronto-temporal EEG derivation was
chosen because it overlies the cortical region irrigated by the
MCA. The EEG signal was acquired with the standard filter
setting of 0.5 to 70 Hz. Both the CBFV and the EEG signals
were sampled at 200 Hz.

EEG signals were simultaneously recorded on paper (10 lead
montage, International 10-20 System, modified for newborns)
and then visually analyzed by experienced clinical staff. Based
on the complementary signals of electrooculogram (EOG),
electromyogram (EMG) (submentalis), and electrocardiogram
(ECG) (derivation D2), epochs of EEG showing the TA pattern
of EEG, free of excessive noise or artifact, were identified.
The corresponding segments of digitized signals (EEG and
CBFV) were then found. In the raw CBFYV signals, spikes were
removed and the signals were low-pass filtered (zero phase)
with a cutoff frequency of 20 Hz. The EEG signals were also
low-pass filtered (35-Hz cutoff). In the EEG signals, the power
in the frequency band from approximately 0.5 to 8.5 Hz was
calculated in consecutive intervals of 1 s, using a discrete
Fourier transform and a rectangular (boxcar) window. The
mean CBFV was calculated for each heartbeat, from which the
average CBFV in each 1-s interval was found (in the neonates,
a 1-s period typically corresponds to two to three heartbeats).
Periods of signals evidently contaminated by strong artifacts
(evident large movement artifacts in the raw EEG, or dropout
and loss of a pulsatile signal in the raw CBFV) were identified
by experienced technicians and excluded from further analysis,
by marking them “missing data.” An example of the resulting
mean CBFV (mCBFV) and the square-root of the power of the
EEG (rmsEEG) signals are shown in Fig. 1. These signals were
decimated to a 1-Hz sampling rate, after anti-alias filtering
(0.45-Hz cutoff, zero phase). The periods of missing samples
were marked in both signals such that all gaps coincide, al-
though this is not required in the analysis methods presented.
From the nine subjects studied, a total of 12 such signals were
obtained for analysis (Table I); i.e., three subjects contributed
two recordings. The length and the fraction of missing samples
are also given in Table I.

B. The Algorithm for Estimating Coherence

The coherence is defined as

sz(f)

= B NP

ey

where P,.(f) and P,,(f) are the power spectral densities of
the digital signals z[4] and y[i], respectively, and P, (f) is their
cross-spectrum. The most common method of estimating coher-
ence uses overlapped fast Fourier transforms (FFT) [12] to find
the auto- and cross-spectra. Clearly, this approach is not fea-
sible in the current signals, as the FFT requires all samples in
each window to be available.
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Fig. 1. An example of the mCBFV signal and the root-mean-square EEG
(rmsEEG) signals. In this case, 50% of the data is missing, and the same
segments of data have been marked as missing in both signals.

From the Wiener-Khintchine theorem [13], the spectra are
given by the discrete Fourier transform (DFT) of the auto- and
cross-correlation functions, respectively. This formed the basis
of the usual approach to spectral estimation, before the Welch
spectral estimates (using overlapped, windowed FFTs) [14] be-
came popular, and is the approach adopted here. The cross-cor-
relation functions can be estimated as

N—m—1

> afilyli + m] )
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where m is the lag, and " indicates an estimate. This is known as
the “unbiased estimate,” as the sum is normalized by the number
of samples for which the product z[i]y[i + m] could be evalu-
ated. In the case of missing samples, this approach may be gen-
eralized, and

R[] = % > alilyli +m] 3)

where ¢ € [, being the set of samples (numbering L in total),
where neither z[i] nor y[¢ + m] are missing; [, thus, is not a
continuous sequence, but it contains gaps. L evidently depends
on the length of the data, the lag m, and the pattern of missing
samples. For the case of no missing samples, (2) and (3) are
exactly equivalent. In a similar way, the autocorrelation func-
tions R, [m] and }?yy [rn] can be found. We are, thus, proposing
that to estimate the coherence, we first estimate the auto- and
cross-correlation functions, and then DFT these to obtain the
estimate of the auto- and cross-spectra required in (1).

In estimating the auto- and cross-spectra using the
Welch-method, Hanning data-windows are probably most
commonly applied to control spectral leakage. Applying a
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TABLE 1
THE TOTAL LENGTH OF THE DATA AND THE PERCENTAGE OF MISSING SAMPLES IN THE mCBFV AND rmsEEG SIGNALS FOR EACH OF THE 12 RECORDINGS
Subject (Recording) 1(1) 1(2) 2 3 4(1) 42) 5 6 7(1) 7Q2) 8 9
Length of recording (s) 354 280 586 496 76 607 368 120 496 190 433 117
Samples 362 | 521 | 464 | 548 | 92 50.1 11.4 19.2 1.0 10.5 20.1 0
missing (%)
p (max. coherence) 0.637 | 0.349 | 0.022 | 0.008 | 0.040 | <0.002 | <0.002 | 0.052 | <0.002 | 0.002 | <0.002 0.060

window to the signal is equivalent (in terms of the expected
value of the spectral estimate) to applying the same window,
convolved with itself, to the auto- (or cross-) correlation
function [13]. The window applied to the auto- (or cross-)
correlation function is known as the lag-window.

For the cross spectrum, therefore

f)xy(f) = DFT{Rwy [m] ) w[m]}/fs “4)

where ny [rn] is obtained in accordance with (3), w[m] is the
lag-window, and f; is the sampling rate. An equivalent estimator
is then used for the auto-spectra. Finally, the coherence estimate
is found as

o) = S)

N

Pao(f)Pyy(£)

In conventional coherence estimates, overlapped windows are
employed, and auto- and cross-spectra are obtained by aver-
aging over these windows, to reduce estimation errors. In the al-
gorithm presented here, we follow the correlogram method [13]
of spectral estimation, where the spectra are smoothed by ap-
plying a lag-window to the correlation functions. As with con-
ventional coherence estimates, the length of the window repre-
sents a compromise between frequency resolution (which in-
creases with longer windows) and random errors (which de-
crease when a larger number of windows is employed). In the
current application, we selected data-windows of length 26 s
(corresponding to a frequency resolution of approximately 0.04
Hz), which corresponds to lag-windows of 51 samples. The se-
lected frequency resolution was considered the minimum nec-
essary for the range of frequencies of interest (up to 0.5 Hz).
Although a higher frequency resolution would be desirable, this
would require longer lags. However, it is known that correla-
tion estimates become progressively less robust at longer lags
[13], and this is exacerbated when some samples are missing.
The auto- and cross-spectra were obtained by zero-padding to
64 samples before applying the DFT in (4), such that coherence
estimates are found at intervals of 0.016 Hz.

C. The Algorithm for Testing the Statistical Significance of
Coherence Estimates

Significance tests for the conventional coherence estimate
[12] are well established [15], but they cannot be readily
adapted for the case of missing samples, and the algorithm
described above. Furthermore, in the current application, we do
not expect the maximum coherence to necessarily occur at some
previously precisely known frequency, but at any point within
the frequency band corresponding to TA EEG activity. We,
therefore, wish to test the significance of the maximum value of
coherence in a given frequency band, and not just the coherence

at any given frequency (or a set of frequencies). The use of
repeated significance tests (one for each frequency component)
is not recommended, as the probability of achieving a positive
result increases, if the frequency range under investigation is
expanded. This problem is common when applying multiple
statistical tests, and the Bonferroni correction is one solution
that is frequently applied. However, this solution cannot be
employed in the current problem, because the coherence esti-
mates are not independent. Following our previous approach
[8], we therefore developed a solution using the Monte Carlo
method, which can deal with the twin problem of 1) testing
the significance of our modified coherence estimator (i.e.,
with missing samples), and 2) assessing the significance of the
maximum coherence within a given frequency range.

In the Monte Carlo method [16], [17], random signals are
generated, whose statistical characteristics reflect those of the
data recorded from the subjects, and are known to obey the
null-hypothesis, which in our case is HO: C'(f) = 0. We, thus,
generate a set of K pairs of uncorrelated random signals (7 [¢]
and y;[i],k = 1,..., K,* indicating simulated signals), with
the same pattern of missing samples, and the same respective
power spectra as the recorded data. In the current work, we
chose K = 499 [16] simulated signals. For each of these signal-
pairs, the coherence is then estimated (|C}(f)]), using the al-
gorithm described above. This process provides a distribution
of coherence estimates for uncorrelated signals, which reflects
the sampling distribution of the estimator under the null-hypoth-
esis of C(f) = 0, and is illustrated in Fig. 2. In accordance
with the percentile method [16], the percentage of coherence
estimates from the Monte Carlo simulations that lie above the
coherence obtained from the recorded data (marked at o and *
for two different frequencies in the figures) gives the signifi-
cance (p-value) of the coherence estimate. If this percentage lies
below the chosen significance level («), the coherence estimate
is considered statistically significant. The same approach is also
applied in testing the significance of the maximum coherence
value in a selected frequency band (max{|C(f)|}, f1 < f <
f2). For this reason, the cumulative density function of the max-
imum of |C’,1‘( f)] in the selected frequency range is employed,
rather than the coherence estimates at an individual frequency
component.

There are different options in generating the random signals
(also known as surrogate data) in this Monte Carlo method. If it
may be assumed that the signals are zero-mean and Gaussian,
their joint probability-density-functions are fully defined by
their second-order statistics [13]. Thus, the surrogate signals
should have the same power-spectrum as the recorded signals,
and according to the null-hypothesis, they must of course also
be uncorrelated. In previous work [8], we obtained these signals
by using the amplitude spectra of the recorded data and by
generating random phase spectra. In the present application,
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Fig. 2. Results from Monte Carlo simulations: The probability of obtaining
coherence estimates greater than or equal to |C| is shown for two selected
frequencies (0.094 Hz—solid line; 0.156 Hz—dashed line) and two different
recordings: (a) recording 4(2) and (b) recording 9 (see Table I). The coherence
estimates from the signals recorded from the subjects’ original signal are shown
as * for 0.094 Hz, and o for 0.156 Hz. In (a), this was larger than any estimates
from the simulated data at 0.094 Hz (*) and, thus, it is considered highly
significant (p < 0.002, for 499 simulated signals), whereas at 0.156 Hz, some
12% of simulation results exceed the value (p = 0.12—not significant). In (b),
p = 0.02 and p = 0.07, respectively. The signal in (b) was shorter than in
(a), which leads to the wider scatter in coherence estimates in the Monte Carlo
simulation. Thus, for example, a coherence estimate of 0.5 would be significant
(p < 0.05) in (a) but not in (b).

we used an autoregressive (AR) model (order par). The au-
toregressive approach was also recommended in recent work
[17] on coherence estimates. We estimated the coefficients
of the model by applying the Yule-Walker method to the
recorded data, using the autocorrelation functions (R, [m] and
Ryy [m]) obtained according to (3). A triangular lag-window
(as is commonly used in AR spectral estimates) was applied
here (equivalent to the biased autocorrelation estimate, as
recommended in [18]). The surrogate data were then obtained
by filtering white Gaussian noise with this AR filter. Care was
taken to avoid transients at the beginning of the signals z} []
and y;[i], by progressively increasing the model order over the
first par samples (following the approach in [18]).

III. RESULTS

The coherence estimator and the Monte Carlo statistical
tests were first assessed using simulated signals. The ex-
ample used also serves to illustrate the procedures. Five
hundred pairs of signals with known coherence between
them were generated, from filtered white noise (filter coef-
ficients —0.283,—-0.114,0.533,0.533,—0.114, —0.283, and
1,—-1.061,0.563, for the numerator and denominator poly-
nomials of the transfer function, respectively) and additive
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Fig. 3. Mean of coherence estimates from 500 pairs of simulated signals. The
correct coherence for this example (as obtained from theory) is shown in bold.
With no missing data in either x[¢] or y[i], the estimates from overlapped FFTs
(o) and the proposed algorithm (solid line) are almost identical. When samples
are missing (50% in [¢] and y[¢], and 40% in «[i] and 10% in y[¢], respectively),
the bias error becomes slightly worse, but broadly correct estimates are still
obtained.

low-pass-filtered noise. The example was chosen to give a wide
range of coherence values and show overall characteristics that
broadly approximate those from the neonatal data. A range of
frequencies where coherence is very low was also included in
the example. The simulated signals corresponded to a sampling
rate of f; = 1 Hz. The results (Fig. 3) obtained with the new al-
gorithm (mean of 500 simulations) are almost identical to those
from the conventional coherence estimator (using overlapped
FFTs; marked as o in Fig. 3). The latter could of course only
be applied in the case of no missing samples, and they were
obtained with a window-length of 26 samples (equivalent to
the maximum lag of £25 samples in the alternative estimator),
an overlap of 25 samples, and Hanning windows. The mean of
the coherence estimates (Fig. 3) approximates the true values
(obtained from theory, using the filter coefficients and the
noise levels selected for this simulation), although there is
considerable bias, especially at the peak and where coherence
is zero. Conventional coherence estimates are known to be
biased [15], [19], and the proposed new algorithm does not
overcome this limitation (nor was it expected to). When 50%
of samples of z[i] and y[i] were set as missing (dotted line)
and then 40% of z[i] and 10% of y[i] (dashed line), the mean
coherence estimates show a slight increase in bias error. As
now less data are available for processing, this is not surprising.
The signals were all 400 samples in length. For the case of
50% missing samples, these were disposed in two blocks of
121 and 81 samples, respectively, placed in identical locations
in both signals. The 40% missing samples correspond to two
blocks of 61 and 101 samples, respectively. The 10% of missing
samples are contained in a single block, which partly overlaps
the missing samples in the first signal.

The Monte Carlo test for the significance of the coherence
estimate was then applied (K = 499) in each of the 500 sim-
ulated signal pairs. Thus, for each signal pair, the statistical
significance (p-value) at each frequency component was ob-
tained; when p < a = 5%, the coherence at that frequency
was considered to be statistically significant. The results (Fig. 4)
show that, as expected, statistically significant coherence is de-
tected in most signal-pairs at frequencies where coherence is
high (below frequencies of 0.35 Hz). Where |C(f)| ~ 0, ap-
proximately 5% of cases are found to be significant (thin hor-
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Fig. 4. The fraction of cases (in 500 simulations; see Fig. 3) in which the
Monte Carlo test showed statistically significant coherence (at a significance
level &« = 5%) between pairs of signals. Where coherence is high, all
simulated signals gave significant results. Where |C(f)| = 0, the expected
false-positive rate of 5% (shown as a thin horizontal line) was obtained. As
the number of missing samples increases (dotted and dashed lines), statistical
significance is obtained in fewer cases, but the false-positive rate is maintained
at approximately the expected level.

izontal line), which is in accordance with the selected signifi-
cance level of & = 5%. The Monte Carlo significance tests of
coherence gave similar results to those obtained by the conven-
tional method based on the normalizing transform [19], in the
case where the latter can be applied, i.e., when no data were
missing (solid line). In the signals with missing samples (dotted
and dashed lines), fewer cases are statistically significant where
coherence is high, but the false-positive rate (above about 0.35
Hz) remains approximately correct (& ~ 5%).

To check the false-positive rate further, we applied the tech-
nique to pairs of independent signals. To this end, we generated
500 pairs of independent white noise signals, and then applied
the same filters used in the previous example. Thus, the signals
x[i] and y[i] had the same power spectra as before, but a theo-
retical coherence of zero. We then estimated the coherence be-
tween these signals as before, and we tested the statistical sig-
nificance of the estimates. The results showed the false-positive
rate to be close to the expected value of @ = 5% in signals
with and without missing samples, for all frequencies. When
we considered the maximum coherence in a band of frequen-
cies from 0.08 to 0.13 Hz (the same range of interest as used
in the data recorded from our subjects), the Monte Carlo test
described above gave close to the expected o = 5% false-posi-
tive rate, both with and without missing samples. The need for
a specific test for maximum coherence is evident from the ob-
servation that 12% of the 500 signal pairs showed at least one
statistically significant coherence estimate (at « = 5%) in the
same frequency range.

The coherence estimator was then applied to mCBFV and
rmsEEG signals recorded from the neonates. The median
and quartiles of the coherence estimates [Fig. 5(a)] from the
12 recordings show that there is a clear peak in coherence
at around 0.1 Hz, with the median value reaching 0.59. The
p-values [Fig. 5(b)] show a clear minimum in the same fre-
quency band, where the median value drops below p = 5%.

The results presented were obtained with autoregressive
model orders of 10. We also applied the Akaike Information
Criterion (AIC) on each signal to estimate optimal orders.
The minimum of the AIC indicated orders between 1 and 14
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Fig. 5. The |C(f)| (a) for the set of 12 signals studied, together with the
corresponding p-values (b).

for the signals (mostly below 10). However, AIC and similar
criteria are known often to underestimate the order of “real” (as
opposed to simulated) data [13], and the presence of multiple
(and shallow) minima in the AIC function suggested that a
considerable range of model orders are almost equally as good.
We, thus, repeated the Monte Carlo simulation with constant
orders of 5, 10, and 14, as well as the “optimal” order for all
signals, and results were all similar. Results presented in this
paper are those for model order 10.

Considering the broad peak around 0.1 Hz, which varies be-
tween individuals, we tested the maximum coherence in the
range from 0.08 to 0.13 Hz. It was found that in 10 of the 12
recordings (from eight of the nine subjects), at least one of the
frequencies in this range gave statistically significant coherence.
When applying the Monte Carlo test for the maximum coher-
ence in this frequency range, 8 of the 12 recordings (from six of
the nine subjects) were found to have a statistically significant
peak in coherence (Table I). In two more subjects, significance
was almost attained (p < 7%).

To consider the coherence in the context of the power spectra
of the signals, the median and quartiles of the power spectra for
mCBFV and rmsEEG are shown in Fig. 6(a) and (b), respec-
tively. The latter have a spectral peak at around 0.1 Hz (as was
expected from the usual periodicity of TA EEG), whereas the
former contain predominantly lower frequencies.

IV. DISCUSSION

In previous work [8], we had found that there is low, but sta-
tistically significant cross-correlation between mean CBFV and
the power of the EEG signal during TA activity in the new-
born. There are sound physiological reasons why such corre-
lation might be expected, given our understanding of cerebral
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Fig. 6. The power-spectral density (obtained from autoregressive modeling
and order 10) of the mCBFV (a) and rmsEEG (b). The median (solid line)
and quartiles (dotted lines) for the 12 recordings are shown. The power-spectral
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blood flow control [1]. Even in premature babies, evidence of
active blood flow control has been found, and this progressively
strengthens with gestational age [20]. However, we had been
unsure if a relationship between EEG and CBFV would be evi-
dent in spontaneous EEG activity of neonates. With the current
work, we aimed to refine our previous results, by ascertaining
in which frequency band the dependence between the signals
is strongest. The coherence function is the obvious tool for this
purpose, and it provided a clear answer to the question: Coher-
ence is strongest in a frequency band around 0.1 Hz, during TA
EEG activity. Only one of the nine subjects (both recordings of
subject 1, Table I) gave clearly nonsignificant results. Two fur-
ther subjects were just above the @ = 5% threshold; it may be
noted that both were relatively short, and statistically significant
results were, therefore, more difficult to achieve. The frequency
of the coherence peak corresponds roughly to the periodicity
of the TA pattern, where high- and low-voltage activity alter-
nates in approximately 10-s cycles. The power spectra of rm-
SsEEG showed a pronounced peak in the vicinity of 0.1 Hz in all
cases; such peaks were less evident (although often present) in
mCBFV.

The ability of the cerebral vasculature to respond to variations
in the demand for blood supply is of great clinical relevance, as
several serious neonatal pathologies have been linked to fail-
ings of the blood flow control system [21]-[23]. A wide range
of methods have been developed to assess cerebral blood flow
control, based on transcranial Doppler measurements of blood
flow and recordings of blood pressure [24], but none has proven
entirely satisfactory for routine clinical application in neonates.
One reason for this difficulty is that cerebral blood flow control
involves complex mechanisms, which are affected by many fac-

tors [4], [25]-[27]. The current work further demonstrates that
spontaneous EEG activity is significantly correlated with CBFV,
and this may need to be considered in mathematical models of
blood flow control. It is interesting to note that the frequency
range around 0.1 Hz, where highest correlation was found in
the current work, was also found to be particularly relevant in
other studies of cerebral blood flow control, which did not in-
volve the EEG signal [24], [28].

The main benefit of the novel algorithm proposed for esti-
mating coherence is that it can be applied in signals where some
samples are missing, and it provides a simple means of testing
the statistical significance of the results. The intermittent loss of
data is a common problem in signals acquired from human sub-
jects, where noise, artifact, and variations in physiological state
often lead to interrupted recordings.

The results from simulation studies provide validation of
the method presented. Coherence estimates are close to the ex-
pected values and, without missing samples, give results similar
to those obtained with the conventional technique [12]. Recent
work [17] also advocated the use of surrogate data to study
coherence estimates. In that work, the failure of conventional
statistical techniques in the presence of sharp spectral peaks
was considered, and neither missing data, nor maximal coher-
ence over a band of frequencies, were investigated. In some
of our earlier simulation studies, problems were encountered
with coherence estimates that occasionally exceeded unity:
This occurred where true coherence values were close to one
in the immediate vicinity (in a range corresponding roughly to
the bandwidth of the lag-window) of rapid variations in signal
spectra. This problem may be explained considering spectral
leakage, which can greatly distort spectral estimates, and even
lead to negative values in the power-spectral-density estimates
from the correlogram method [13]. The use of the Hanning
window (convolved with itself for the lag-window) can resolve
this problem for spectral estimates [13], and in the current work
on signals with missing samples, it was also found to greatly
reduce the incidence of excessive coherence values. Even so,
near sharp transients in the power spectra, coherence estimates
may occasionally exceed unity, and they are, thus, clearly
invalid. With the human data investigated here, this problem
did not arise, and in no cases were excessive coherence values
obtained.

Care has to be taken in applying the proposed method, in re-
gard to the length of data available. The maximum lag is in-
versely proportional to the frequency resolution of coherence es-
timates, which makes longer lags desirable. For signals without
missing samples, it has been noted that the maximum lag in esti-
mates of autocorrelation (and cross-correlation) should be much
smaller than the length of the signals available [13], to avoid ex-
cessive estimation errors. These considerations should also be
applied in signals with some missing samples, where the number
of samples that can be used at each lag [L in (3)] depends not
only on the lag, but also on the distribution of missing samples.
If at any lag L falls to zero, the estimator fails.

In common with other algorithms for estimating coherence,
stationarity and ergodicity of the signals is assumed. As in
most biomedical applications, this assumption is probably not
strictly valid. High-pass filtering was used to greatly attenuate
trends and low-frequency variations that are probably the most
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common causes of nonstationarity in bioelectric signals. In
addition, by removing signal segments containing evident
artifact, and selecting only those segments containing the TA
EEG pattern, stationarity is probably better approximated than
in some other applications. Detailed analysis of the effect any
nonstationarity may have on the coherence analysis is beyond
the scope of this paper.

The selection of the autoregressive model order is potentially
a problem in this method, as the usual techniques are gener-
ally known to be unreliable [13]. However, the results we ob-
tained suggested that the estimated p-values are not sensitive to
the signals accurately simulating the spectrum of the original
data. This is in agreement with the conventional techniques for
the statistical analysis of coherence estimates [15], in which the
number of data-windows and the true coherence determines the
random error in the estimates, but the signals’ spectra are not de-
termining factors. More accurate modeling of the signals does,
however, seem to become important when the spectra contain
sharp peaks [17], which is not the case in our data.

Computational load for the Monte Carlo simulations was not
excessive: Each signal pair required some 5 s to perform the
Monte Carlo significance tests, using Matlab ® on a Pentium 4
processor. Considerable improvements in speed could probably
be achieved by more efficient implementations of the proposed
algorithm.

Although the technique was effective in solving the original
problem of estimating the coherence between CBFV and EEG
activity, we hope the algorithm will also provide a powerful
tool for a much wider range of applications in biomedical signal
processing. The results obtained provide the basis for our con-
tinuing investigation of cerebral blood flow control. One main
question to be addressed now is whether the observed variations
in CFV are mediated through concomitant changes in blood
pressure (or other physiological variables), or whether they re-
flect active cerebrovascular blood flow control.
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