
 UNIVERSITY OF OSLO

Department of informatics

Package Templates and

programming in the large

Alexander Eismont

August 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30902818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I want to thank my supervisor Stein Krogdahl for his guidance and helpful feedback during

the course of this thesis.

Table of Contents

Chapter 1 Introduction .. 1

1.1 Thesis structure .. 3

Chapter 2 An overview of the Package Templates mechanism .. 4

2.1 Syntax .. 4

2.2 Graph structure example .. 5

2.3 Renaming and additions .. 6

2.4 Class hierarch’s inside templates ... 8

2.5 Merging ... 9

2.6 Template hierarchies .. 11

2.7 Super- and tsuper calls ... 14

2.8 Multiple tsuperclasses .. 15

2.9 Constructors in Package Templates ... 18

2.10 Required types ... 20

2.11 Subtemplates and templates as parameters .. 21

2.12 Visibility .. 24

Chapter 3 General consideration for evaluation .. 26

3.1 The programming process ... 26

3.2 Special aspects of PT ... 27

3.2.1 Visibility regulation .. 27

3.2.2 Issue with superclasses ... 28

3.2.3 Java with PT ... 28

3.3 What makes PT good ... 28

Chapter 4 A simulation package in PT ... 30

4.1 Discrete event simulation in Java .. 30

4.2 Helsgaun’s version .. 31

4.2.1 Simset, a two way circular list ... 31

4.2.2 The Coroutines package ... 33

4.2.3 The Simulation package ... 34

4.3 Simulation with PT .. 35

4.3.1 Second utility list .. 40

4.4 Visibility regulation ... 41

4.5 Evaluation .. 43

4.5.1 Multiple superclasses ... 43

4.5.2 Java library as templates .. 46

Chapter 5 Compiler ... 47

5.1 Structure of our compiler ... 47

5.2 Additional tools ... 48

5.3 The template Syntax .. 48

5.4 The template Semantics ... 49

5.5 The template GenerateCode .. 51

5.6 Evaluation .. 53

5.6.1 Making changes to the compiler .. 53

5.6.2 Template parameters .. 56

5.6.3 Tabstarct template instantiation ... 58

5.6.4 Subclasses as a option .. 59

5.6.5 Visibility regulation .. 61

Chapter 6 Graphical User Interface .. 62

6.1 AWT and Swing .. 62

6.2 Design of a specific GUI ... 64

6.3 Implementing a specific GUI .. 65

6.3.1 The template Frames .. 66

6.3.2 The template Menu ... 67

6.3.3 The templates PaintFigures and PaintNumbers ... 67

6.3.4 template MainGUI .. 68

6.3.5 GUI program with templates parameters ... 70

6.4 Evaluation .. 71

6.4.1 Solutions for required types ... 72

6.4.2 Challenges with renaming using template parameters 73

6.4.3 Alternative instantiations .. 74

6.4.4 Subclasses and type parameters as an option ... 76

6.4.5 Visibility regulation for required types .. 78

6.4.6 Visibility regulation for template classes and their members 79

6.4.7 Merging of classes .. 81

6.5 A new version of Swing/AWT using PT ... 83

Chapter 7 Conclusion .. 85

7.1 Did we get a better implementation with PT? ... 85

1

Chapter 1

Introduction

The OMS-group at the department of Informatics at the University of Oslo has from 2006 to

2012 had a NFR-project called the SWAT-project (Semantics-preserving Weaving –

Advancing the Technology). This project was working with new modularization mechanisms

for modeling and programming in object oriented languages. One of results from that project,

and what this thesis will be about, is a mechanism called Package Templates.

Package Templates (or PT for short), is a mechanism that was designed to make it possible to

write and use modules containing multiple classes. Its main idea was that it should be possible

to extend the classes of such a template in parallel (and do other additions) when such a

template is used in a program.

As the name template indicates, PT is a mechanism where the content of the module is

inserted, once or multiple times, into the program. To become real classes in program, a

package template (or just template for short) has to be instantiated in that program. During an

instantiation the classes can be adjusted with renaming, merge of classes and additions to a

class. The name Package Templates for the mechanism discussed here might well describe

what it is all about. However, it has the drawback that it uses the same name for both the

mechanism as such, and or a language construct. Thus, to avoid misunderstandings, we will

refer to the mechanism as such as PT, while we will call the corresponding construct in the

language a template.

PT is meant as a mechanism that can be added to different object oriented languages.

Currently there is a working compiler for a version of PT defined for the Java language (the

compiler JPT). Though this version of the compiler can be used for some programs, they are

still many features that could be implemented to make the compiler better. In my thesis I will

study and evaluate the usefulness of PT and how easy it is to do “programming in the large”

with it (for more information on what aspects we will look at in this thesis see chapter 3). I

2

will therefore write program-libraries and frameworks as separate reusable modules in PT,

and evaluate how good the mechanism is for the chosen cases.

While writing a program with a number of classes, one could find oneself in a situation where

the classes you are writing have many similarities with other classes defined by you or with

classes that exist in the library for the programming languages. As is well known from the use

of subclasses, adjusting or expanding a class can make the job easier, since we won’t need to

write a fully new class, but instead use methods that already exist in another class. In Java

expanding a class can be done by making a subclass containing the add-ons we want. The

well-known scheme for writing subclasses in Java is as follows:

class A { … }
class B extends A { … }
class C extends A { … }

Figure 1 Visual representation of code above

However, subclasses do not always give what we want. As an example, assume that we want

to expand the classes above, by adding a couple of variables/methods to each of A, B and C,

so that the additions to A can be seen from the additions to B and C. We can try to do this by

creating subclasses of A, B and C called A’, B’ and C’ respectively, that define those new

variables/methods.

Below is a figure of the resulting hierarchy, where the class A is at the top of the hierarchy

tree:

3

Figure 2 Added subclasses to Figure 1

The problem with this solution is that classes B’ and C’ can’t make any reference to the class

A’, where the new variables/methods are. Thus, to obtain what we want it seems that we need

a mechanism that can add parts to A itself, so that every subclass of A could refer directly to

this method. PT introduces the ability to create a copy of a template class (at compile time)

and at the same time make changes to that class. In the next chapter we will look on how this

mechanism works.

1.1 Thesis structure

In chapter 2 we will describe PT in much more detail, focusing on the different mechanisms

PT offers. Chapter 3 deals with how I will perform my research and discuss what aspects of

PT we should be looking at. Chapters 4 through 6 describe the different cases that I worked at

during my thesis. The final chapter will summarize what we found from the cases I have done

and discuss these findings.

4

Chapter 2

An overview of the Package Templates

mechanism

In this chapter we will describe how the PT mechanism works. We will present PT

mechanisms as they are described in previous works, but a problem is that some of those

mechanisms have not been implemented yet. Thus, we cannot compile and run PT programs

that use these mechanisms, but we will describe how they are planned to be working.

2.1 Syntax

A template is similar to a standard Java package, since a template in PT is also a collection of

classes. Templates are here written in a Java-like language and PT then works as an add-on to

Java. The code below shows a simple template with two classes.

template T {
 class C1{ … }
 class C2{ … }
}

A template starts with the keyword template followed by the template name. Inside the

template braces, we can include several classes. As in Java packages, the classes inside a

template can include variables, methods and references to objects of classes in the same

template, and some may be subclasses of others as in a package.

To use the classes of a template in a Java program we need to instantiate it in that program

(that is, in a package). Inside the package an inst-statement is used to create such an

instantiation of a declared template. To do that we write inst followed by the name of the

5

template. The code below creates such instantiation of the template T (note that we write Java

packages in the same style as PT-templates):

package P{
 inst T ... ; //a simple instantiation
 …
 class C3 { ... }
 class C4 { ... }
}

The package P has an instantiation of template T and the result is that copies of the classes of

instantiated template are added to the package after some adjustments (that are discussed in

sec 2.2.3). Since these classes are copies of original classes, it’s also possible to make many

instantiations of the same template in a single package (but we then need to do some

renaming, which is discussed later). The package P might also include its own classes, like C3

and C4 above.

2.2 Graph structure example

Before going further in the PT mechanisms, we will look at an example with will be used for

the next couple sections. The code below is an example of a template, which has two classes

that are used to implement a graph-like structure, where the end-nodes of the outgoing edges

of a node in the graph are stored in a linked list.

template Graph {
 class Node {
 int node_id;
 Edge first_edge;
 void add_edge(Node c) {…}
 }

 class Edge{
 Node from, to;
 Edge next_egde;
 void add_edge() {…}
 }
}

Every node in this graph will have two local variables and a method for adding edges for a

graph node. One of the variables is an integer called node_id, which will have a unique

number for all nodes in the graph. The other variable is a reference to the first object in a

6

linked list of outgoing edges. This variable is of type Edge, which is a class that is used for

creating a linked list. The class Edge has a pointer to a node in the graph and a pointer to the

next Edge object, which will have a pointer to the next edge in the list. Both Node and Edge

have a method called add_edge, which takes a Node object as a parameter and adds that

object to the list of edges.

2.3 Renaming and additions

The main idea of the PT mechanism is that a graph structure like the one described in the

previous section can be used for any problems that need a graph-structure for its data.

However in such a program one usually also need some additional variables or methods than

those that are defined in the template classes.

Let’s look at a chess program example that uses graph to store the possible states and

situations it has looked at. This chess program is meant to be used for finding the best move in

the current situation. Each state (or node) must have variables to store were the chess pieces

are placed on the board. To make the data-structure for this chess problem we can adjust the

name from the template Graph. For this example we may want to change the name of the

class Node to a name that will be a more accurate description for the chess program. We can

also rename local variables and methods. The name of the variable node_id will be changed to

chess_id. The method add_edge in Node and Edge will be renamed to “add_chess_edge”.

Finally the second class in the template Graph, class Edge will be renamed to Edge_Chess.

The following code makes the changes described above:

package Chess_Simulation {
 inst Graph with Node => Chess_State
 (node_id -> chess_id, add_egde -> add_chess_egde),
 Edge => Edge_Chess
 (add_edge -> add_chess_edge);
}

Using an arrow “=>” after the “inst”-statement renames the specified class. The name of the

class on the left side is a class from the instantiated template and on the right side is the new

name of the class. For each “inst”-statement, the renaming process can be done on all classes

inside a template. For each the template classes, renaming the variables and methods is done

7

inside parentheses following the “inst” statement, using “->”, with original name on the left

side of the “->” and the new name on the right.

In class Node in template Graph, the method add_edge takes a Node object as a parameter.

Since the class Node has been renamed, the parameter to add_chess_edge must now be an

object of class Chess.

Continuing with the chess program example, we shall look at another important feature in PT.

This feature is adding more variables and methods to a class defined in a template. Additions

to a class can only be made during an instantiation of a template. For this chess program will

need a variable that stores the state of the chess board. Therefore the class Chess_State

(renamed from class Node) includes a two dimensional array called “state” to store

information about the chess board. A number of other methods will also be needed for this

program. One of them being a method called check_board that will try to find the best

possible move in the current situation.

The package Chess_Simulation adds the changed described above:

package Chess_Simulation {
 inst Graph with Node => Chess_State
 (node_id -> chess_id, add_edge -> add_chess_edge);
 List_Node => List_Chess
 (add_edge -> add_chess_edge);

 class Chess_State adds {
 String[][] state;
 …
 void check_board(){
 … // finds best move

}
 }
}

After an instantiation of the template Graph is made with the “inst”-statement, we can now

add variables and methods to the class Chess_State. This is done by using adds-statement

after the name of the class you want to add to. All the code that comes after the adds-

statement will be included in the class Chess_State along with the variables and methods that

already where defined previously in class Node.

8

2.4 Class hierarch’s inside templates

Templates may also contain class hierarchies, and these will be preserved during an

instantiation independent of addition and name changes. In the code below there is a class A

with a subclass B:

template Sub{
 class A {
 int n;
 void print(){
 System.out.println(“ N: ” + n);
 }
 }

 class B extends A{
 int s;
 void print {
 super.print();
 System.out.println(“S: ” + s);
 }
 }
}

Note that both classes in this template have a print method. The one in class A prints the

variable n. In class B the method print prints the variable n and variable s by using the super-

statement to call on print method in the superclass A.

The code below renames both classes in the template Sub:

package Sub_Package{
 inst Sub with A => C, B => D
 class C adds {
 int c;
 }
 class D adds {
 int d;
 }
}

The class A and B will change names to C and D. After that, the class D will now be a

subclass of the class C and we therefore have the same class hierarchy as before when B was

a subclass of class A. Calling the print method in D will call the print method in D’s

9

superclass, which in this case is C. If we only changed the name of class B to D and we didn’t

change A, we still keep the same class hierarchy, so that D will be a subclass of A.

2.5 Merging

Another interesting feature of Package Templates is that it is possible to merge classes when

instantiating templates. The classes that are merged can come from the same or different

instantiations. When classes are merged the resulting class will have all the variables and the

methods of the original classes. PT does not allow name collisions between the merged

classes (but this can easily be solved by renaming). A name collision comes from there being

two or more members with the same name in the resulting merged class.

As an example of a merge, we look at the template bellow called FigureInfo. FigureInfo has a

class Figur, which represents different figures. It has two variables called form and pos, and

two methods display_figure and print_form. The string form says what form the figure has,

like square, circle etc, while pos gives the position e.g. on a screen.

template FigureInfo {
 class Figure{
 String form;
 int pos;
 void display_figure(){
 … // draws the figure on the screen
 }
 void print_form(){ … }
 }
}

The second template used in the merging process is called ActionInfo. This template keeps

information about different actions that can be performed by the user: mouse clicks, play

sound etc. These occur in a class Action with variables name and id and methods do_action

and print_form.

10

template ActionInfo {
 class Action {
 String form;
 int id;
 void do_action () {
 … // performs an action based on the form
 // example: if the name is play_sound, then do_action
 // will play a sound
 }

void print_form() { … }
 }
}

We here want a class, which we will call ActiveFigure, which is a merge between the classes

Figure from template FigureInfo and Action from template ActionInfo. The code below is an

example of that merge, but note that it’s not legal because of the name collations, both for

form and print_form.

package P {
 inst FigureInfo with Figure => ActiveFigure;
 inst ActionInfo with Action => ActiveFigure;
}

In the package P we create one instantiation of FigureInfo template and rename the class

Figure to name ActiveFigure. In the instantiation of the template ActionInfo, the class Action

is also renamed to ActiveFigure. Since they are renamed to the same name, the rules of PT say

that the classes will be merged to a new class ActiveFigure in package P. All the variables and

methods from the original classes will be included in this new class.

In both Figure and Action classes we have a variable and a method with the same names. We

therefore during the merging process, have to change names to avoid these name collisions.

The resulting program could look like:

11

package P {
 inst FigureInfo with Figure => ActiveFigure
 (form -> figure_form, print_form -> print_figure_form);

 inst ActionInfo with Action => ActiveFigure
 (form -> action_form, print_form -> print_action_form);

 ActiveFigure adds {
 void do_action () {
 ... // adds code for performing actions on figure: move
 // figure with mouse,change color etc.
 }
 }
}

One could imagine that the methods and variables with the same name could be put together,

but Package Templates doesn’t support the merging of variable and methods with the same

name. This is because two methods with the same name might not include the same code, or

two variables with the same name will be used for the same purpose. Therefore when merging

multiple classes, we have to change names, so that all names in the involved classes are

different. If the classes are large, and many names are equal, the process of renaming could

become quite long. But usually we will be merging classes that are quite different from each

other, so that the probability for name collision is small.

2.6 Template hierarchies

So far we have seen instantiation of templates being made in packages, but will now we look

at instantiations of templates inside other templates. The process of doing that is no different

than using templates in packages.

A typical example of a template hierarchy:

12

template T1 {
 class A1 { … }
 class B1 extends A1{ … }
 class C1 extends B1{ … }
}

template T2 {
 inst T1 with A1 => A2, B1 => B2, C1 => C2;
 class A2 adds { … }
 class B2 adds { … }
 class C2 adds { … }
}

package P1 {
 inst T2 with A2 => A3, B2 => B3, C2 => C3;
 class A3 adds { … }
 class B3 adds { … }
 class C3 adds { … }
}

Figure 3 Visual representation of a template hierarchy from example above

This example can be visualized as in Figure 3. Here the arrows that point from one template

to another represent instantiations. The arrows go from one class upwards to another represent

the subclasses relation. From template T1 we can see that B1 is the subclass of A1 and C1 is

the subclass of B1. Note that B2 will be a subclass of A2 (because B1 is a subclass of A1),

even if this is not indicated in T2.

13

The horizontal arrows that go from a class in a template to a class in another template

represent relation between the old and new version of a class in the instantiated template, with

the arrow going from the new to the old version. The new version may be simply a copy of

the old one, or there may be additions and/or renaming in the new one. Even if a template

class is not mentioned in a “with” statement, we still get this type of arrow. The class that the

blue arrow points to is in PT called its tsuperclass. The class on the opposite side will inherit

variables and methods from that tsuperclass. During instantiation of a template, the class from

that template that was used for the renaming process will be the tsuperclass. From the figure

above we can see that the class A1 from template T1 is the tsuperclass of A2 in template T2.

Since package P1 made an instantiation of the template T2 and renamed class A2 to A3, the

class A2 will be the tsuperclass of A3.

As templates or packages that make an instantiation of a template will get copies of all classes

from that instantiated template, thus T2 will get copies of classes A1, B1 and C1. Then class

A2 in template T2 will consist of everything from A1 and whatever was added to A1. The

same goes for the class A3, which will include copies of A1 and A2. This can be visualized as

in Figure 4. Note that we e.g. in T3 can no longer talk about the classes A2 and A1. They are

incorporated in renaming.

Figure 4 A Closer look at classes after instantiations

The figures 3 and 4 show the same instantiation of templates T1 and T2. The only difference

between those two is that figure 4 gives us a closer look at what other template classes a class

consists of. The final class in figure 4 consists of a copy of A1, a copy of what was added to

A1 and what is added to A2. This is also the case for figure 3, but it shows a simpler version

by just including the final name of a class.

Added to A1

A copy of A1

14

When we in the class A3 want to use a variable or a method that is defined in the class A1, we

can access it directly (with the new name if it is renamed). When a variable or a method is not

declared in a adds part, PT will first search for a declaration in the tsuperclasses before

superclasses (and its tsuperclasses). So if we in B3 want to use a variable that is declared in

B2 and A3, the variable that will be used is the one that is declared in B2.

2.7 Super- and tsuper calls

Calling methods defined in superclasses in Java is normally done by a direct call to that

method. If the class and its superclass have methods with the same name, the class doing a

call on one of those methods will not be a call on a method from the superclass, but instead its

own. Therefore we have to use the super-statement, which lets us explicitly call on methods

from the superclass.

Below is an example of a standard Java super call with classes from template T1.

class A1 {
 int a1;
 void print () {
 System.out.print(a1);
 }
}

class B1 extends A1 {
 int b1;
 void print () { //overrides print method in A1
 super.print();
 System.out.print(b1);
 }
}

We will next look at how we can call methods defined in a tsuperclasses, when we, in an

addition class have a method declaration with the same name and parameters. Similar to Javas

“super”-statement, PT has a “tsuper”-statement to call methods in tsuperclasse. This is done

by using keyword “tsuper” followed by the name of the method with the necessary parameters

you want to pass. This type of call is possible because the renamed class is just a copy of a

class from an instantiated template.

Example below uses the “tsuper”-statement:

15

template T2 {
 inst T1 A1 => A2, B1 => B2, C1 => C2;
 class A2 adds {
 int a2;
 void print () { //overrides print() from T1’s class A1
 tsuper.print(); // call print in A1
 System.out.print(a2);
 }
 }
 class B2 adds {
 int b2;
 void print() {
 super.print(); // calls print in A2
 System.out.print(b2);
 }
 }
 class C2 adds { … }
}

Here, after the class B1 from template T1 is renamed to B2, we add a method print which will

override print method in B1. Since B1 is the subclass of A1, then B2 can make a super call on

print method in A2. The class A2 also has a print method, which overrides the one from class

A1 in template T1 and calls print method in A1 with tsuper.print(). If we try to run the print

method in B2, it will print out the variables a1, a2 and b2 respectively.

2.8 Multiple tsuperclasses

In the two previous chapters we have been looking at classes in templates and packages

having a single tsuperclass. But unlike superclasses in Java, where a class can have only one

superclass, a class in Package Template can have multiple tsuperclasses. This is because of a

merging where the classes that were merged are the tsuperclasses of the merged class.

Below is a typical example of a class having multiple tsuperclasses:

16

template T1 {
 class A1 { … }
 class B1 extends A1 { … }
}

template T2 {
 class A2 { … }
 class B2 extends A2 { … }
}

template T3 {
 inst T1 with A1 => A3, B2 => B3;
 inst T2 with A2 => A3, B2 => B3;
 class C3 extends B3 { … }
}

package P1 {
 inst T3 with A3 => A4, B3 => B4, C3 => C4;
 class A4 adds { … }
 class B4 adds { … }
 class C4 adds { … }
}

This program can be visualized as in Figure 5:

Figure 5 Example of multiple tsuppeclasses

17

Figure 5 shows three templates and one package. The package P1 makes an instantiation of

T3, and T3 makes an instantiation of templates T1 and T2. The classes A1 and A2 are

renamed to A3, which makes A1 and A2 the tsuperclasses of A3. This is shown in the figure

above, where the class A3 has a blue arrow to A1 in template T1 and a similar arrow to A2 in

template T2. The classes B1 and B2 in templates T1 and T2 were both renamed to B3 and

therefore are B3’s tsuperclasses.

In this situation the tsuper calls described in the previous chapter will no longer work, since

PT can’t know what tsuperclass the call is meant for. Therefore the tsuper call has to be

changed so that we can tell PT what class it should be searching in. To take care of such cases

the tsuper call can be done with “tsuper[classname].m()”. The class name in the call is the

name of the class that has the method we want to call on. In the special cases when multiple

classes have the same name, we have to specify what template the class that we are calling

comes from. This is done by adding template name followed by the name of the class in that

template: “tsuper[T.C].m()”, where T is the template name and C is the class. An alternate

way of solving this problem is by giving an instantiation a name:

t1: inst T with …

“t1” is the name of an instantiation of template T1. When making a tsuper call to a class in T,

instead of writing “tsuper[T.C].m()”, we can use “tsuper[t1.C].m()”. Since no instantiation

can have the same name, PT will know exactly what tsuperclass the program is trying to call.

Below is extended code for the classes A1 and A2 from templates T1 and T2:

class A1 {
 int a1;
 void print () {
 System.out.print(a1);
 }
}

class A2 {
 int a2;
 void print () {
 System.out.print(a2);
 }
}

18

Both classes were extended with print methods that print their local variables. The next we

want to do is to merge these classes and try calling each print method from classes A1 and A2

from the merged class:

template T3 {
 inst T1 with A1 => A3 (print -> print_A1);
 inst T2 with A2 => A3 (print -> print_A2);

 class A3 adds {
 int a3;
 void print () {
 tsuper[A1].print();
 tsuper[A2].print();
 System.out.print(a3);
 }
 }
}

An alternative to the “tsuper” calls in the code above is to call on “print_A1” and “print_A2”.

But if either “print_A1” or “print_A3” is overridden, then we have to use the “tsuper…”

notation to call on the original “print” method in A1 or A2.

When working with multiple inheritances in Package Templates, we have to make sure that a

class won’t get multiple superclasses. If we only merge two or more subclasses and not merge

their superclasses, the merge class will inherit the class hierarchy from the templates that were

used. But since several classes might have different superclasses, the merged class will end up

with multiple superclasses. Since a class in Java can’t have multiple superclasses, we

therefore have to merge all the superclasses of the subclasses that are merged.

2.9 Constructors in Package Templates

Classes in templates can have constructors, and they are called so that, when an object is

generated, exactly one constructor is called in each template class and each adds-class (if we

disregard this-calls). Calling a constructor in Java is done with “this(parameter list)” (if we

want to call on a constructor in the same class) or with “super(parameter list)” (if we want to

call on a constructor in the superclass). When working with template hierarchies, we can call

the constructors of a tsuperclass. The syntax for calling constructors is similar to superclasses.

Instead of calling “super(…)” with parameters inside the parentheses, we need to call tsuper().

19

Since a class after a merge can have multiple tsupperclasses we have to specify what class the

call is made for with tsuper[classname]().

The code below is an example of tsuper calls on constructors:

template T1 {
 class A1 {
 int a1;
 A1(){
 a1 = 1;
 }
 }
}

template T2 {
 class A2{
 int a2;
 A2(){
 a2 = 2;
 }
 }
}

package P1 {
 inst T1 with A1 => A3;
 inst T2 with A2 => A3;

 class A3 adds {
 A3(int p){…}

 void test_constructor(){
 tsuper[A1]();
 tsuper[A2]();
 }
 }
}

The rules for declaring constructors in template classes are that every constructor of a

template class must make calls to a constructor in each of its tsupperclasses (and if there are

multiple, one must always use the notation "tsuper [....](...)"). But you're not allowed to use

"super (...)" in template classes. The package-classes works in a similar way, but it also need

to call a constructor of its superclass with "super(...)". Then we need, if it is neccessary, call

"tsuper (...)" or "tsuper[...](…)" for all tsuper-classes, in any order we want. In the end, a

constructor will be called only once in each package and each template class.

20

2.10 Required types

Required types in PT are types that can, during an instantiation, be given a concrete type that

will at least provide the same methods that are included in the definition of the required type

[1]. In this paper we will refer to this process as concretization, where the required type can

be concretized with a template class. For the concretization to be legal the methods in the

class and required type need to have the same name and number of parameters. The return

type and the types of parameters for each method also need to match. With this mechanism a

template can create objects of a type and call on its methods without these methods being yet

implemented. Since these required types can be concretized with other classes, every method

that we call on in that type can have many different implementations. The benefit that comes

with required types is that we can reuse the same code for many different classes, instead of

writing a piece of code that only uses a single class. Below is a notation of how to define a

required type:

template T1 {

required type R{
 void print();

}

class B {
 void test(){
 new R().print();

}
}

}

Inside a template we can define a required type with the keywords “required type”, followed

by the type’s name. Inside of its brackets we can include multiple method declaration without

an implementation (similar to Javas interfaces). Other classes in the same template as the

required type can make objects of R and call any of its methods, knowing that this type will

later be given an actual class type with the same methods.

Below is an example of how to merge a required type with a class (for this we use the

example from above):

21

template T2 {
 inst T1 with R <= A;

 class A {
 int a;
 void print() { System.out.println(a); }

}
}

After the “with” keyword in an instantiation we can do a merge. This is done by writing the

name of the require type, follow by “<=” and the class that you want to concretize the type

with.

Like with Java and template classes, required types can also extend other classes and

implement interfaces. The superclasses and interfaces need to be visible in the template that

the required type was declared in. A class that is concretized with a required type that extends

another class needs to also have the same superclass, else the merge won’t be legal. Required

type can also be merged with other required types which are done within the same way we

merge template classes. Like with template classes there can be no name collision, so we

therefore have to do some renaming if there is a case of name collision. Adding to a required

type can also be done with “adds” statement. The class that is concretized with a required type

will need to implement the added methods as well.

Java includes a similar mechanism known as generics, that doesn’t restrict a piece of code to

just one type, but instead each time you create an object of a generic class you have to send a

type as an actual parameter. Generics also are present in PT. Below is an example of generics

and templates.

template T < E > { … }

In the example in the code above, E is a type parameter and during the instantiations you can

give a class as an argument. Even though both generics and require types are similar, we will

use required types, since they can be expanded after instantiation.

2.11 Subtemplates and templates as parameters

Templates in PT can have other templates as parameters, where during an instantiation we can

send another template as an argument, which is also instantiated during the initial

22

instantiation. Even though template parameters allow us to send different templates as

arguments, we still want formal parameter to have some specific classes that we can add to or

call on their methods. Therefore we are able to restrict what template can be given as an

argument. The syntax for template parameters is “template T < P bound T2> {…}”, where P

is the name of the formal template parameter. Following P is a restriction that limits P to be

the template T2 or any other template that instantiates T2.

To find what template makes an instantiation of another, PT doesn’t look at what other

templates instantiate inside the template clauses, but instead make one template to be a

subtemplate of another template (that we will call a supertemplate). When instantiating a

template that is a subtemplate of another the supertemplate gets instantiated as well. A

subtemplate instantiation is made by writing the “subof” statement after the template name,

followed by the name of the supertemplate. Below is an example [2] of a subtemplate:

template Vehicles {
 class Vehicle { … }
 class Car extends Vehicle { … }
 class Truck extends Vehicle { … }
}

template VehiclesWithWeight subof Vehicles{
 class Vehicle adds {
 int weight;
 void print(){ System.out.println(weight); }

}
 class Car adds { … }
 class Truck adds { … }
}

VehicleWithWeight makes a subtemplate of the template Vehicles and is able to add to the

template classes of Vehicles. The next template that we will look at is RentalVehicles [2] that

takes in a template parameter:

23

template RentalVehicles <template E bound Vehicles>{
 ...
}

package VehiclePackage{
 inst RentalVehicles<VehiclesWithWeight>;

 class Vehicle adds { ... }
 ...
}

RentalVehicles takes a formal template parameter E and instantiates it. In this case the

template parameter E must either be Vehicles or a template that is a subtemplate of Vehicles.

In package VehiclePackage we make an instantiation of RentalVehicles and send

VehiclesWithWeight as argument. Since VehiclesWithWeight is a subtemplate of Vehicles, this

instantiation is legal.

Template parameters can also be useful in cases when we need to instantiate a group of

templates, where at least two of them instantiating the same template. This will be a problem,

since the same template is instantiated more than once and we therefore get multiple copies of

the same classes and its members. The paper “Challenges in the Design of the Package

Template Mechanism” [2] describes a case where templates PrintExpressions,

MultExpressions and ValueExpressions make their own instantiation of the template

Expressions. Each of these template make their own changes to the template classes from

Expressions and in the end we want to make to combine all templates together in a package

CombinedExpression.

Below is an example that solves the problem of multiple instantiations of the same template:

24

template Expressions {}

template PrintExpressions <template E bound Expressions> subof E {...}

template ValueExpressions <template E bound Expressions> subof E {...}

template MultExpressions <template E bound Expressions> subof E {...}

package CombinedExpressions {

inst MultExpressions<ValueExpressions
<PrintExpressions<Expressions>>>;

}

The instantiation in the package CombineExpressions will start by giving MultExpressions the

template ValueExpressions as an argument and with the “subof” statement becomes a

subtemplate of ValueExpressions. ValueExpressions becomes a subtemplate of

PrintExpressions and PrinExpressions of Expressions. Since Expressions is instantiated other

templates that need its classes can now add to Expressions without having to instantiate it

themselves. The order of how the templates are combined together determents where a tsuper

call will go.

2.12 Visibility

Java includes multiple options for modifying access ability for variables, methods and classes.

These options include public, private, protected or no modifier. Currently the PT-compiler

hasn’t implemented any visibility regulation for the template mechanism, but after certain

templates have been instantiated in a package, the final classes and their members will have

the same visibility as in Java. We will here look into some of the possible rules for visibility

regulation in PT that are sketched in the paper Challenges in the Design of the Package

Template Mechanism [2].

The private modifier in Java reduces the visibility of a variable or method to only that class.

This means that this member can’t be accessed from any other Package, not even from

subclasses in the same package. Something similar was proposed for PT as well. Any member

of a class inside a template that has a private modifier would only be visible inside that

template.

For classes or members of a class in a template that have a public modifier, we could make

them visible to any template or package that instantiate them. When it comes to classes or

25

members that have no visibility modification, we could make them only visible inside the

template they were declared in.

The protected modifier could have the same rules as in Java with packages, and make

protected members in classes not visible outside the template that is was declared in, with the

exception of subclasses (of the class that has this member) in any template or package.

Additionally we could also include the “adds”-mechanism to one of the exceptions, so that a

protected member can also be accessed from a “adds” part in another template. Since

protected modifier will increase visibility to both subclasses and “adds” parts, it was proposed

that we could create additional modifiers that would allow “adds” part to have access to a

member on not subclasses, and vice versa. One of these modifiers is “aprotected”, which

makes a member only visible inside the template were it was declared and the “adds” part in

other templates. The second modifier is “eprotected”, which gives access to a member to

subclasses, but not “adds” parts.

Another way we could regulate visibility, is to use a public or private modifier on an

instantiation of a template. During a private instantiation the classes and their members could

then be visible inside the template that makes that instantiation, but not visible in further

instantiations. A public instantiation of a template will make the classes and its members

visible to all templates that make further instantiations.

26

Chapter 3

General consideration for evaluation

This master thesis will be about evaluating how helpful the PT mechanisms can be in larger

scale programming. In this chapter we will look, more generally, at what such an evaluation

will include. We will describe different aspects of what is meant by saying that including PT

in an OO-language is an advantage, how we will approach each test case in terms of

programming, what PT mechanism we should look at and finally what we wish PT can help

us achieve. The three cases that we will look at later will be discussed in chapters 4, 5 and 6.

Each chapter will give a short description of the purpose of the program, before going into

how it was programmed.

3.1 The programming process

In each of the cases we will look at will try to incorporate as many different PT mechanics as

possible (but only where it makes sense to use them), so that we get to test and evaluate all the

important parts of PT. Some PT mechanisms will be used in multiple cases, since a single

case might not be enough to try to determine wherever a mechanism works as it supposed to

and how useful it can be.

Since we are using Java with PT for all of the cases, all code will be placed inside either a

template or a package. The different parts of the code will be split into multiple templates so

that we, hopefully, obtain better separation of the code. We will try to use PT so that each

template can be instantiated and also used in other programs that need the same

functionalities. Like with all of the examples from the previous chapter, all the code will be

written in Java extended with PT. For most of the examples, they will also be written in

regular Java (without the use of any of PT’s mechanisms) to be able to compare with the

structure and flexibility of the two versions obtained with PT.

27

3.2 Special aspects of PT

In this section we will look at certain aspects of PT that can make things problematic. We will

therefore describe and discuss my experience from the use of the different implementations,

and try to indicate where, and in what sense the PT mechanisms made the implementation

better or easier (or the opposite). In the cases where I found that PT could make the job easier,

we will try to describe in what sort of cases this is true. In cases where PT does not help (or,

in fact get in the way) we will look for improvements to PT so that we avoid these type of

problems. We will also try to pint out some possible ways to work around these problems in

cases where there is no good improvement or fix available. If it was difficult to develop, the

reasons for that might include bugs in compiler or maybe a PT mechanism that might need a

certain feature that can help make the developing process easier.

Some mechanisms described in chapter 2 (like template parameters), are planned, but haven’t

been implemented yet in the compiler. However, we will generally assume that these

mechanisms are fully implemented and that they work as described in the previous chapter.

If a mechanism doesn’t work as well as we had hoped, we will also discuss some possible

improvements or changes that could potentially make this mechanism better. Some of the

mechanisms obviously might be more useful in some situations than in others, so these

situations should be pointed out and discussed.

3.2.1 Visibility regulation

Currently the PT-compiler doesn’t have an implemented visibility regulation for templates.

The type of regulations that we will describe will include the protected, private and public

modifiers and for each of them discuss if the already proposed regulation for these modifiers

are good enough for larger programs. If not, I will try to create rules for visibility regulation

that, at least, fill the needs of the cases that we look into in the next three chapters. Then for

each rule try point out advantages and disadvantages for that rule. As part of this we will

discuss if the is any need to distinguish between the two modifiers aprotected and eprotected

or if the old protected modifier is enough. In the end of the visibility discussion we will talk

about the private and public instantiations, and if they have any use as additional visibility

regulations.

28

3.2.2 Issue with superclasses

Another problem that we might run into is when classes that you want to merge, both have

their own superclass. When classes are merged the resulting class has all the code from all of

its tsuperclasses. Additionally then the resulting class will also end up with more than one

superclass. Since the resulting class is not legal in Java, the superclasses will have to be

merged as well. If the superclasses can be merged without any conflict, then the resulting

class will be legal in Java. In some situations the merge of superclasses won’t be possible and

therefore the resulting class will not be legal. We will try to point out these situations where

this merge problem occurs. Another aspect of merge of superclasses that we will discuss is

what happens to the subclasses and their functionalities after that merge.

3.2.3 Java with PT

We will also be looking into what Java mechanisms work well in PT and what don’t. There

are certain aspects of Java that is currently not introduced in PT, e.g. nested classes. We will

therefore look at nested classes and other Java mechanisms, and check if they are translated

well into PT. For mechanism like nested classes we discuss if they should they be

implemented properly or just ignored because we really don’t have any need for them in our

programs.

3.3 What makes PT good

Since we are looking at different mechanism to see if they make PT better or not, we should

also take a look into the different aspects of what can make PT more useful when

programming larger programs.

For one, the program that we are developing with PT should first of all be correct. It should be

fully functional and work the way it was intended to. If there are any aspects of PT that

prevent us from achieving this, then we should definitely be looking into how PT can be

improved.

When writing code for different programs, we would like the process of doing so be as easy

as possible. This should also be true when programming using PT. Though a steep learning

curve will always be expected when starting to use a new mechanisms/language like PT, it

should still be accessible and easy to use. For example the problem that occurs with

superclasses mentioned earlier could cause some issues with the coding process. If we have

problems with merging of superclasses, we might have problem with completing the program

29

or have a hard time with finding other ways to get around this problem. The same problem

can also occur with missing mechanism like template parameters.

The introduction of a new concept into a language will always in one sense make using the

language more complex. This might also be the case for PT. Introducing PT could e.g. be

good for writing flexible separate modules, but it might be bad in the sense that it introducing

yet another concept into the set of OO-concepts, making it harder to choose the right concept

to use.

Another aspect of PT that important for the quality of a module system is reusability. Since

we with PT can make instantiations of multiple different templates, we are therefore able to

construct many different programs using the same code multiple times through instantiations,

renaming and additions. In cases where none of the existing PT mechanisms will help us with

reusability or maybe even make it harder. We will examine an option of using regular Java

subclasses instead. If using subclasses instead of PT might give the same flexibility as with

the use PT, then would definitely need to do some more work on PT for it be an par or better

than just using subclasses.

Efficiency can be an important factor that we should be looking into, since efficiency can also

make PT be useful to program with. One of the things that we will discuss when it comes to

efficiency is runtime and if or how PT can make the runtime faster than with just the use of

regular subclasses.

30

Chapter 4

A simulation package in PT

As our first case we shall look at a framework for discrete event simulation in PT, with a

suitable modularization of the framework into templates. The idea is to write a framework

based on a discrete event simulation framework in the Simula language called Simulation.

The concept that corresponds to a Java package in the Simula language is a class with local

(nested) classes. The outer class then corresponds to the package as such, while the inner

classes correspond to the classes of the package. To be able to use the inner classes of a

Simula package, the program should have the form: “package_name begin . . . end”, where

the inner class of package_name now become directly accessible from within the “begin . . .

end” part. The Simula version of the simulation framework uses two such Simula packages:

Simset and Simulation. In addition Simula has a coroutine mechanism (more about coroutines

in chapter 4.2.2) built into the language. This is not the case for Java (with or without PT), so

that we will have to provide such mechanism, preferably as a template in the PT version.

However, it turns out that the danish professor, Keld Helsgaun, has already written a “copy”

of Simulas simulation package [3] in pure Java, including a Java package for the coroutine

mechanism. We will build our PT version upon Helsgauns version, and will thus make it

easier to see whether we can get any benefits from using PT instead of pure Java. .

The next sections will describe what a discrete event simulation is, Helsgaun’s

implementation of the Simulation framework in Java, PT version of Simulation and visibility

regulation for templates.

4.1 Discrete event simulation in Java

Discrete event simulation typically contains a group of entities (usually processes) that have

some sequence of actions they want to perform, and where the next action for one process

31

may depend on the state if the rest of the system. Every action in a simulation will take

different or the same amount of time to complete. Because in this type of simulation where

only one action can be executed at a time, processes have to wait in a set/list until another

process is done executing its action or is interrupted. When a process is next to execute its

action, this process is removed from the list and gets resumed. After that process is done, it

will either we terminated (because the process has completed all of its actions) or suspended

and put back into the list, waiting to be able to perform the next action.

4.2 Helsgaun’s version

4.2.1 Simset, a two way circular list

Simula has a package called Simset that implements a two-way linked list where each element

has a pointer to the next and previous element in the list. The package Simset contains a class

Linkage and the subclasses Link and Head. This is meant as a utility mechanism to be used in

programs needing a list. This mechanism is used twice in the Simula simulation framework

(more about this in chapter 4.2.3). Helsgaun has a package Simset in Java with the same

classes and methods.

Objects of the class Linkage have pointers to the next and the previous element in the linked

list. These pointers are called SUC and PRED, and are of the type Linkage and are not

accessible from outside Linkage. The methods offered by Linkage, Link and Head will ensure

that we, at runtime, always have a number of circular double linked lists, each with exactly

one Head object and the rest are Link objects (more about Link and Head classes later). An

empty list consists of a single Head object, with SUC and PRED pointing to itself.

class Linkage {
 Linkage SUC, PRED;
 public final Link pred() {
 return PRED instanceof Link ? (Link) PRED : null;

}

 public final Link suc(){
 return SUC instanceof Link ? (Link) SUC : null;
 }
}

Creation or deletion of a connection between two elements is done in the class Link, which is

a subclass of Linkage. Link includes methods out, follow, precede and into (as shown below).

32

class Link extends Linkage {
 public final void out(){…}
 public final void follow(Linkage ptr){...}
 public final void precede(Linkage ptr) {...}
 public final void into(Head s) {...}
}

Method “out” takes an element from the linked list by creating a link between an element’s

predecessor and successor. The method follow will insert this object as successor to the

Linkage pointer that is given as a parameter, while the method precede will insert this object

as a predecessor. The method into will insert this Linkage object in the end of a list.

All versions of Simset also have a class Head that is a subclass of Linkage. Head has pointers

to the first and last element in the list, which are the SUC and PRED pointers in Linkage.

class Head extends Linkage {

public Head() {

 PRED = SUC = this;
 }

public final Link first() {
return suc();

}
public final Link last() {

return pred();
}
public final boolean empty() {…}
public final int cardinal() {…}

public final void clear() {

 while (first() != null)
 first().out();
 }
}

The methods first and last return the first and last element in the list (and null if the list is

empty). The first element is Head’s successor while the last node is its predecessor. The

method empty returns true if the list is empty. The last two methods are cardinal, which finds

the number of nodes in the list, and clear that removes all Link-objects from the list and set

their SUC and PRED pointers to null. To create a circular list we need to create a Head object,

so that the method into in Link will connect the first element and last element in the list.

33

When the list is empty (no Link objects in the list) the methods suc and pred in Linkage will

return null if the pointers are null or of type Head.

4.2.2 The Coroutines package

A coroutine mechanism allows us to suspend execution of a task and give control over to

another task. When the control is then passed to a task that was suspended, the execution of

that task is resumed from where it left off. This type of execution is known as quasiparallel

execution (of a set of coroutines). Below is a class Coroutine (from Helsgauns Coroutines

package) that includes code for suspension and resumption.

abstract class Coroutine implements Runnable {

private Coroutine caller, callee;
private static Coroutine current, main;
protected boolean terminated;
private Thread myThread;

final public void run() {

 body();
 if (!terminated) {
 terminated = true;
 detach();
 }
 }

 abstract protected void body();
 public static final void resume(Coroutine next) {…}
 public static final void detach() {…}
 public static final Coroutine currentCoroutine() {…}
 public static final Coroutine mainCoroutine() {…}

private void enter() {…}
}

The class Coroutine implements the interface Runnable so that each object of Coroutine can,

at the outset, run as a thread in parallel to other Coroutine objects. However, these threads are

controlled so that only one of the threads can run at a time. To start or to resume a coroutine

we call the method resume and give it a pointer (as an argument) to the coroutine we want to

start or resume. Inside that object, the method resume we will call on the method enter to

either wake up a coroutine. To make the coroutine mechanism work with threads, we will use

the methods start and notify. These are methods from the class Thread. The method start will

start the execution of a thread by calling the threads run method. The notify method is also

34

from class Thread and is used to wake up a waiting thread. A thread will go into a waiting

state when the Thread’s wait method is called.

The method “body” should be overridden with a method that describes what this coroutine

should do during its execution. While in the body method, a coroutine can be suspended and

when it is resumed by another Coroutine object (or the main program) it continues from

where it left off. Since the class Coroutine implements Runnable, it needs to implement a run

method as well, where it calls the method body.

4.2.3 The Simulation package

The final class in Helsgaun’s simulation framework is the class Process. This class includes

all the fields and methods needed for managing event time, which is needed to decide when a

process needs to be resumed. The Process class in both versions has the class Link as its

superclass. The objects of the class Process in both Simula’s and Helsgaun’s versions can be

inserted into a Simset list and removed from the same list. This is meant as a utility feature, so

the writers of simulation programs can keep track of their different processes, by having them

in sets/lists.

In Simula’s version there is an additional class called Event. This class extends the class Link

and there is one Event object for each active process object. Each Event object holds

information of the event time for a single process. By using the Simset mechanism, the Event

objects form an event list sorted on event time and inform the Process class when to resume

or suspend its execution. Since the Process class also extends Link, the Process objects can

form a secondary list. In Helsgaun’s version (see code below for more information) there is

no Event class, but instead he has additional members in the Process class to create an event

list. For this purpose he had to write almost the same code as found in Linkage, Link and

Head classes.

35

public abstract class Process extends Link {
 private final Coroutine myCoroutine = new Coroutine() {
 protected void body() {...}
 };

private Process PRED, SUC; // previous and next element in a event list
 private final static Process SQS; // head of a event list

 public final Process nextEv() { //
 ... // identical to suc() from Linkage class
 }

 private final void cancel(){

... // identical to out() method from the Link class
 }

 ... // additional methods
}

Helsgaun’s version of the Process class has an anonymous inner class (a nameless local class

that has access to members of the outer class) of Coroutine. Simula’s version of the

simulation program doesn’t include a Coroutine class, since coroutines are built in to the

Simula language.

4.3 Simulation with PT

In this section we will present a PT version of Helsgauns simulation framework. The way we

are going to split the classes into template is by taking every package in Helsgaun’s version

and create similar classes from those packages in templates. The Simset package with classes

Linkage, Link and Head will be placed in the template Simset, while the class Coroutine will

be placed in the template Coroutines. With this approach we will keep these utility

mechanisms separate from each other so that they can be instantiated without instantiating the

other templates. So when we need the coroutine mechanism, then we can just instantiate the

Coroutines template without the Simset list.

In our case we would like to instantiate both of these templates in a new template called

Simulation where we will define the Process class that will use both the list and coroutines.

Our implementation of all of these classes is very similar to Helsgaun’s version, but with

some essential differences.

Though creating an anonymous inner class of Coroutine works in Helsgaun’s program, using

these anonymous classes does have some drawbacks. The outer class that the anonymous

36

class is located in cannot access any of the members defined in the anonymous class.

Therefore in certain situations it is better to create a proper subclass instead, since we get the

ability to define additional methods in the subclass that can be called by other classes. In the

PT version we can’t use anonymous inner classes as this mechanism has not been

implemented yet in PT compiler. One way to get around this is for the Process class to have

Coroutine class as a superclass. Using this approach, the Process class will inherit the

coroutine mechanism and can directly call the methods from the Coroutine class.

Using this subclass approach can reduce the code we need to write, since we won’t need to

create objects of another class and manage these pointers. Thus, we get a proper

communication between the class Process and its superclass Coroutine.

Programming a similar framework where the Process inherits, in the subclass sense, from

both Link and Coroutine classes is not possible with Java. However, in the PT version we can

instantiate the templates Coroutines and Simset in the template Simulation. During the

instantiations we can merge the classes Link and Coroutine into one single class with the

merging mechanism. This way the class Process only needs to extend a single class instead of

two.

An alternative solution (and what we will be using in this case) is to merge the classes Link

and Coroutine, and then use the adds statement to add to the merged class all the methods and

variables that the Process class requires. The additions that are made to the Process class are

similar the members of the class from Helsgaun’s version.

The figure and the code below shows the instantiations of the different templates and the

changes made to their classes. Note that in this PT version we will use the instantiated Simset

list as an event list and the second utility list in PT will be described in the next section. This

way we can easier describe how the main parts of the Process class work together, before

moving how we will implement into additional utility lists.

37

Figure 6 A visual representation of Java Simulation program with templates

template Simulation {
 inst Simset with Link => Process,
 Head => SQSHead, Linkage => SQSLinkage;
 inst Coroutines with Coroutine => Process;

 class Process adds{...} //see the code below
}

The names classes Head and Linkage were changed to SQSHead and SQSLinkage, so that we

can ensure that our instantiation of Simset won’t interfere (caused by a name collision) with

another instantiation of Simset in either Simulation or other templates/packages. All the

pointers of type Link and Coroutine in template Simulation will be changed to type Process.

This change will also be made in other classes in the Simulation template and not just in the

Process class. The methods suc and pred in Linkage that returned pointers SUC and PRED of

type Link will now return pointers of type Process.

After the merge, we should add variables and methods for managing processes:

38

class Process adds {
 private final static SQSHead SQS = new SQSHead();

private double EVTIME;
 private boolean TERMINATED;
 private static Process MAIN;

 protected void body() {...}
 abstract protected void actions();
 public static final void hold(double t) {...}

public static final Process current() {
 return SQS.suc(); // returns first element in the event list
}
static final void activat(boolean reac, Process x,

 double t, Process y) {}
public static final void activate(Process p) {

 activat(false, p, 0, null);
 }

final static void resumeCurrent() {
 resume(SQS.suc());
 }
}

The process class will include a pointer to a SQSHead object called SQS. This variable is

static so that all processes use the same SQSHead object. Each process has a variable

EVTIME which is the event-time and TERMINATED which is state of the process. The value

is set to “true” when a process has executed its code.

The method “actions” includes the code for what this process needs to do and should be

overridden by a subclass of the class Process. To start execution of a process-object we need

to call the method activate with the Process object that we want to start. Helsgaun had in his

code multiple versions of “activate” were each takes in multiple parameters which let us

decide from the beginning of the life cycle of a process when it should start to execute its

code. In our implementation we decided to make things simpler and use only one version,

where we set the EVTIME variable to the current time and the process is inserted into the

right place in the list based on the event-time. activat is the method that inserts the a process

into the Simset list and is called by activate. Below is an implementation of the method

activat:

39

static final void activat(boolean reac, Process x,
 double t, Process y) {
 Process current = SQS.suc(), p = null;
 double now = time();
 if (x == current) // a Process can’t activate itself
 return;
 t = now; p = SQS.suc();
 if (x.suc() != null) // if a process is not in the list,
 x.out(); // take it out

if (p != null) {
 for (p = SQS.pred(); p.EVTIME > t; p = p.pred())

;// finds the right spot in the list
 x.EVTIME = t;
 x.follow(p);
 }else{
 x.EVTIME = t;
 x.into(SQS);
 }
 if (SQS.suc() != current)
 resumeCurrent();
}

Before we can insert a process into our list, it first needs to be removed from it. This is done

in the second “if” statement. Since the Process class gets a copy of all members from Link, we

can call the method “out” to take a process out of the list by using a Process pointer. The

same goes for all other methods that Process inherits through addition. If the list is empty

(aside from the main program) we set the EVTIME variable to current time and set this

process into the beginning of the list by calling “x.into(SQS)”. If the list is not empty, then we

insert the process at the right spot in the list by calling “x.follow(p)”.

The class Process will override the method body from Coroutine. Therefore when a new

thread is created, the run method will call body which contains the code that each process

needs to execute. The overridden body will call the method actions and then remove itself

from the list and resume another process by calling resume (which Process inherited from

Coroutine) with the next process that waits to start or continue executing. A process can also

suspend itself by calling the method hold with the amount of time it wants to wait before

continuing execution. This process is taken out of the list with out and puts itself another

place with the method follow. Finally it will resume the next process that is waiting in the list.

40

4.3.1 Second utility list

So far we have written a simulation framework where processes can be inserted into an event

list, but we would also like for our PT version to have a secondary list that processes that be

inserted into. Using Simula’s or Helsgaun’s approaches would require us to write code for a

list that we already have the code for (which is the Simset list). The secondary list could have

been much easier to code if the Process class could inherit from the Simset list a second time.

That is of course not possible, since Process class can’t extend two classes, not even if they

are the same class. PT on the other hand allows us to rename classes (therefore creating new

copies of the original class), merging of superclasses and being able to have several copies of

the same class. We will now try to use all of these mechanisms to create a version of the

Process class that is able to inherit from two Simset lists.

To create the secondary list, we need to instantiate the template Simset once more. We will do

this instantiation in a new template. Since we want to add the second Simset list to our

simulation program, we will instantiate the Simulation template as well. What we want to do

next is for the Process class to inherit from SQSLinkage and Linkage (from the newly

instantiated Simset template). For the Process class to only have one superclass, we have to

merge the classes SQSLinkage and Linkage. This merge will cause a name collsion, since all

the members from both classes have the same name. To resolve this name conflict, one of

copies of the variables and methods need to be renamed. So if we change the name of the

variables SUC and PRED during the instantiate of Simulation and rename them to SQSSUC

and SQSPRED, then these variable we help us create an event list, while SUC and PRED

from Simset will work as a secondary utility list.

So that a process can create a link between itself and other processes, we will merge the class

Link with the class Process. All the members from Link will also need to be renamed, which

we will need to do so that we can avoid a name collision and have separate methods for both

lists. The new copy of the Head class doesn’t need to be merged with any other class. An

object of SQSHead will be the head of the event list, while an object of the class Head works

as the head of the secondary list.

The code and figure below shows what we want to achieve from the instantiations:

41

template UtilitySimulation{
 inst Simulation with SQSLinkage => Linkage (SUC->SQSSUC,
 PRED ->SQSPRED, ...)
 Process => Process (follow(*) -> SQSfollow, ...);
 inst Simset with Link => Process;
}

When compiling a template that does renaming there is a bug that results to a compiler error.

This is because renaming of members is not done in all classes in the template. But when

fixed, the instantiations above should be legal. From the code above we can see that writing

the second utility Simset list in PT doesn’t require a lot of new code. Instead, using PT’s

renaming and merging mechanisms allows us to use the Simset list twice. This benefits us,

since PT makes our code more reusable.

4.4 Visibility regulation

In our simulation framework, many of the variables and methods have some kind of visibility

modifier. Since no visibility regulation for templates is defined in PT, what members a

template can access from other templates is determined by visibility regulation in the Java

language. However, this turns out to not be sufficient for a good visibility regulation in a

system like the PT version of Simulation.

Once we merge the classes Coroutine and Link, all the private variables from the Coroutine

class will be visible in the Process class. In the “adds” part of our implementation we can now

42

access any of the private members that were previously located in Coroutine. In case we don’t

want the Process class to have access to Coroutine’s private members, we would need those

members stay only visible to the Coroutine part of the code. So just like with Java packages,

where private members are “package-private”, we could make private members inside

template classes to not visible outside the template they were declared in.

The protected modifier in Java reduces the access level to only the class and it subclasses.

Any class from other package cannot access these protected members. In our example we add

to Process class, code for overriding the method body. This method is set as protected in

Coroutine, so that only Coroutine or it subclasses have access to it. But since we now can

override methods from adds classes, we should also have a visibility regulation for adds

classes as well.

Using the proposed visibly regulation from [2], we could increase the access level for the

protected modifier to include adds in other templates. With this change the protected modifier

in templates will work similar to how they work in packages, with the exception that we are

now able to access protected members during addition to a class. In this case we could have

used aprotected (“additions protected”) modifier on the body method, since it’s not

used/overridden by any subclasses. This would make the method body only visible inside a

template and the adds part of other templates. But since we would like the Coroutine class to

be instantiated and used in other programs, we want subclasses from other templates to have

access to Coroutine’s protected members.

For members of a class that are set as public should work as with packages, so that they be

visible from any template or class.

Class members with no modifier in Java are by default package-private. So members of a

class or a class itself are visible to all other classes in the same package, but not visible from

any other package. When choosing how no-modifier will change the visibility for template we

should look at what other visibility regulations we already have. Making no-modifier work as

any of the other modifiers will have little use for us, since we could just use that modifier.

Making the no-modifier work in a similar way as how it works in Java will give us an

additional way to regulate our classes and their members. We can therefore make no-modifier

to be template-private, so that a class or its members are visible in the template they are

declared in, but not outside that template.

43

Next we will discuss other possible use of public and private instantiations in our Simulation

program. The templates Coroutines and Simset are the templates that we could make a private

instantiate on. This way we can protect all the classes and their members from being accessed

from any other template that will instantiate Simulation. If there are any classes in

Couroutines or Simset that are set as public, the visibility of that class would still be limited to

the template that made the private instantiation. The same goes for protected modifier and

obviously private modifier as well. So having this visibility regulation could be helpful in

some cases.

4.5 Evaluation

During the programming part of this example I came across very few challenges. Since I used

Keld Helsgaun’s code for coroutines and Simset list for Java, the biggest challenge was to

make his code work with PT. Helsgaun used multiple nested classes in his implementation,

but since PT doesn’t yet allow nested classes, I had to change those classes by placing them

outside the class in which they were declared in and add multiple pointers to the former outer

class. Helsgaun’s code also included a static initialization block that created a single Head

object for the Simset list. When compiling the code, PT looked at this block as a nested class

and therefore resulted in a compiler error. But the fix for this problem was quite simple, since

all I had to do was to replace this block with a static method. None of this was really a big

issue, since the code could easily be tweaked to make it work with PT.

Aside from a few changes to the code, everything else worked really well with PT. Since this

was the first time I wrote a program using PT, I wasn’t really sure how well the compiler

actually worked. In this example we get to use several main PT features, like renaming,

addition and merging, and all of them worked like they were supposed to. What I was most

interested in was the resulting class of the merge of Link and Coroutine. Since Link was a

subclass of Linkage and the class Coroutine implemented an interface Runnable, the resulting

class Process ended up with implementing Runnable as well as having Linkage as its

superclass. So overall the transition from Java to PT was quite simple, since most of the code

we used for the Java version could also be used in the PT version as well.

4.5.1 Multiple superclasses

After studying this example, it seems that not having a superclass is beneficial when using the

merging mechanism. If we made Coroutine a subclass of Thread (from Java’s library) instead

of implementing the interface Runnable, we wouldn’t be able to merge the classes Link and

44

Coroutine. This is because both Link and Coroutine now have superclasses and to make the

merge possible we would need to merge the superclasses as well. Since the class Thread

doesn’t exist in any template, but instead is part of Java package, we wouldn’t be able to

merge this class with any other class.

There is a particular problem that we can get when merging two superclasses. If we in this

example could merge Thread with Linkage, this could create another problem, because Head

would now inherit from Thread as well as Linkage, which is not what we want in this

example.

A possible solution (but that currently wouldn’t work with PT) for using Thread (and possibly

other superclasses for other cases) is to make a nested class inside Coroutine that extends

Thread. All variables and methods that have to do with suspension and resuming will be

included in the Coroutine class, while the Thread methods will be moved to Coroutine’s inner

class. Below is an example of Coroutine with such an inner class:

public class Coroutine {

//same variables as before
 private Runner myRunner;

static Runner firstFree;

 protected void body(){...}
 public static final void resume(Coroutine next) {...}
 ...

private void enter() {...}

class Runner extends external Thread {

 Coroutine myCoroutine; // The target coroutine
 Runner nextFree; // Next Runner in the free list

Runner() {…}
 void setCoroutine(Coroutine c){
 myCoroutine = c;

}
...
public synchronized void run() {...}
synchronized void go() {...}

}
}

The method “enter” in Coroutine will now create a new object of class Runner and set the

myRunner variable to point to that object. Every time a Coroutine object needs to start,

resume or suspend, it can use this pointer to call on the method go in Runner. The class

45

Runner has the method run, which like previously, calls on body and then be removed by

calling detach in the Coroutine class.

Though the approach above could help us with merging of superclasses, it wouldn’t work

with our PT version because inner classes have not been implemented yet. So an alternative

solution and one that works with PT is to move the Runner class outside the Coroutine class

(but inside the template Coroutines). The code for Runner needs to be changes since it can no

longer access Coroutine’s variables and methods without using additional pointers.

Although this solution works with PT, it creates another problem. Coroutine has multiple

variables that are set to private or protected. When Runner was inside the class Coroutine, it

could access Coroutine’s private members. But when we move Runner outside Coroutine (but

still in the same template), Runner will no longer have access to those variables. Therefore we

would need to remove the private” and protected keywords from all variables that are used by

Runner. Now any class that makes an object of Coroutine is able to change the variables that

were previously private and protected, which ruins the purpose of restricting the access level

in the first place. This makes the nested solution better, since we can keep the same access

level as the original file.

Since nested classes were not implemented yet into PT, we will try to come up with another

solution that will help achieve some of same results as with the use of nested classes. For one

we want to keep the same visibility regulation for the class Coroutine and at the same time

make all the members that are used by the Runner class accessible. If we decide to make the

no-modifier to be template-private, we can use this modifier on the methods and variables

(that were previously set as private) in class Coroutine that is used by Runner. With this we

would achieve the same result as with nested classes. Members with no-modifier will not be

visible for any other template, the same as with their previous private modifier. At the same

time the Runner class will have access to all of Coroutine’s members, since they are no longer

private and are visible in the template they were declared in.

A Java package might include several other classes (in addition to classes and have nested

classes). The class with the nested class still keeps the same visibility regulation with other

classes present and the same should also be true for template classes as well. We will continue

with the same solutions for alternative for nested classes from previous paragraph. Let’s say

that that we have other classes in the same template as Coroutine and Runner. Because of the

46

modifiers that we used, the members of the classes Runner and Coroutine would no longer

work in the same way as a nested class. This is because the variables previously defined as

private in these classes have now no longer a modifier, so other classes have now access to

these members. We would still like for these classes not to have access to these members. We

can achieve this by having the additional classes in a separate template. Then we can

instantiate that template and Coroutines in a new template. This way all the members with no

modifier will work as private for any other class in the new template, the same way as we

would in a regular Java package and nested classes.

4.5.2 Java library as templates

At this moment we are able to get access to the Java library by importing the package in our

program. But we could imagine that the entire Java library will be located in separate

templates. If we needed to a class like Thread we could, instead of importing that package,

make an instantiation of the template that has the class Thread. Being able to instantiate a

class from the Java library, means that we could we could do renaming on its members, as

well as making additions to that class (which can replace the use of subclasses). Most import

benefit that we get to use for this example, we would be able to merge the class Thread with

the class Linkage (since it’s not possible in the current version).

Aside from getting the ability to do more with the classes from Java’s library, nothing else

really changes. The programmer can still use these classes as with the import option.

Therefore having Java’s library in templates doesn’t have any drawbacks and we get plenty of

benefits by using this solution.

47

Chapter 5

Compiler

For my second case I will look at how we can write a typical compiler program using PT. The

purpose of this example is to try to make a working compiler and find possible benefits

writing it with PT rather than with pure Java. The source language for this compiler is rather

simple, in that it was based on the mandatory assignment for the course Inf5110 at University

of Oslo and was called Oblila[4] the year I took the course, but in this thesis we will not go

further into this language. The next section describes how this compiler will be implemented

and what parts we will focus on.

5.1 Structure of our compiler

To be able to compile a program in a certain language we need a scanner and a parser that can

handle this language. The scanner will read from a source file and create tokens for every

string that was read. Tokens in a compiler are generally names of classes, types, variables and

more, or some kind of symbol like a plus sign or a bracket. The parser will take these tokens

and create objects of a corresponding class. If for example the scanner reads the keywords

“void method_name” from the source file, then it will create a token for that method name.

The parser then takes this token and creates an object of a class that is used to represent and

store information about a method. To differentiate the different methods from each other, that

class could take a name as a formal parameter. Since a method can include formal parameters

and instructions in the method body, the method class can also include pointers to classes that

represent these parts.

While making these objects, we might find that one object has one or more pointers to other

objects created by the parser. In our language, variables are declared in a class or a method, so

that an object that represents a method will have pointers to objects that represent variables.

Using this approach we create a type of tree structure also known as an abstract syntax tree,

48

where the root of the tree is the program itself and its children (leave nodes) are the classes

and methods. This is helpful when, after all nodes are created, we can traverse all objects to

do some additional work on the source code. An example of this is that after the abstract

syntax tree is built, a compiler can create bytecode for the source code and make a semantic

analysis of the source code represented by the abstract syntax tree. Through this semantic

analysis the compiler will find the correctness of a program. This could include type

checking, no double declaration of variables in the same scope. For this case we will focus on

the abstract syntax tree, semantic analysis and bytecode generator. The next three sections

describe the implementation of each of these parts with the use of PT. To get flexibility with

this implementation, each part will have a separate template.

5.2 Additional tools

For the scanner and parser, we have decided to use the tools called JFlex and Cup

respectively. For our compiler to work, we will need to create additional Java classes that are

not part of the abstract syntax tree. These classes will use the parser and scanner to read the

tokens in the source file and create the necessary object in the syntax tree. In this thesis will

focus on the abstract syntax tree and not the parser, and scanner classes. Although we have

decided to use regular Java versions of the parser and scanner classes in our PT

implementation of the compiler, one could also write them using PT.

5.3 The template Syntax

The first template that we will talk about is the template Syntax. This syntax tree is

represented by nodes which are objects of classes created for each. All the classes that are

used for nodes in the syntax tree are present in the template Syntax.

Below is the implementation of template Syntax with some of the classes needed for the

syntax tree.

49

template Syntax{
 class Program{
 List<Decl> decls;
 public Program(List<Decl> decls){
 this.decls = decls;
 }
 }

 abstract class Decl{
 public Decl(){}
 }

class ClassDecl extends Decl{
 String name;
 List<Decl> decls;
 Type tType = new Type();
 public ClassDecl(List<Decl> decls, String name){
 this.decls = decls;
 this.name = name;
 tType.setType(name);
 }
 }
 ...
}

The class Decl is declared abstract, because in later templates in our case it will include

methods that we want other similar classes to implement. ClassDecl is one of these classes

and is therefore a subclass of Decl. Other subclasses include ProcDecl (a class that has the

name of the procedure and information on all operations inside that procedure) and VarDecl

(a class that represents a variable in the source language). Program’s constructor takes in a

list of Decl pointers, where each pointer will either be of type ClassDecl, ProcDecl or

VarDecl. ClassDecl also takes in a list of Decl pointers as a parameter, since a class in our

language can include multiple variables.

When our compiler reads a piece of code, it will (depending on the symbol) create an object

of one the classes include in the template. For example, if the compiler reads finds the symbol

“class” in the code, then the next symbol must be the name of the class. Therefore our

compiler creates an object of ClassDecl and sends the name of the class and all the

declarations inside that class as an argument to the constructor.

5.4 The template Semantic

This section describes the template called Semantic that does semantic analysis on the source

code. To make this analysis easier we will need a symbol table, which is a data structure that

50

keeps information on all scopes in the program. All declared variables and their scope must be

added to this symbol table. When a variable is used in a procedure, the compiler has to a

lookup operation on this variable, to check if this variable is declared and is visible from the

scope that it is used in. The symbol table data structure will be defined in a class

SymbolTable.

For the template Semantics to get access to the syntax tree we have to instantiate this

template. Most classes from Syntax would also need to be expanded to include this analysis.

Below is the implementation of template Semantic with some of the classes needed for the

semantic analysis.

template Semantics {
 inst Syntax;

 class Decl adds{
 abstract protected boolean checkCorrect();
 abstract protected Type getType();
 abstract protected String getName();
 abstract protected void setTable(SymbolTable st);
 }

 class SymbolTable{...}
}

Since all subclasses of Decl require some sort of semantic check and update of symbol table,

we want to expand Decl by adding additional methods. These methods are declared abstract

so that at least the leaf subclasses of Decl will have to implement them.

Below is an implantation of ClassDecl in template Semantic:

51

class ClassDecl adds{
 SymbolTable SYMBOL_TABLE;

 public ClassDecl(List<Decl> decls, String name){
 tsuper(st, name);
 }

public void setTable(SymbolTable st){
 SYMBOL_TABLE = st;
 }

protected boolean checkCorrect(){
 boolean ok = addToTable();
 // checks correctness on all of its variables
 }

 // adds all declarations into a symbol table
 protected boolean addToTable(){
 if(decls!= null){
 for (Decl d : decls){
 boolean ok = SYMBOL_TABLE.insert(d);
 if(!ok) return false;
 }
 }
 return true;
 }
}

Since ClassDecl is a subclass of Decl it would need to implement all of the abstract methods

if Decl. By using the adds statement we give ClassDecl a pointer to a SymbolTable object and

the method setTable will set that pointer. The added methods checkCorrect and addToTable

are used for semantic check.

5.5 The template GenerateCode

For the last part of this case we want our compiler to generate a sort of bytecode for a source

program. The bytecode that we will be using is a version that was written and is used in the

compiler course Inf5110 at University of Oslo. For generating bytecode we will use the

syntax tree with all the additions done by the template Semantic. After the tree has been

generated and the semantic analysis found the program to be semantically correct, the

compiler can start to generate bytecode.

52

For this part we will create an additional template called GenerateCode. Each class from

Semantic template will be further expanded with methods and variables that will be used for

generating bytecode.

Below is a figure of all instantiations made to complete this compiler and implementation of

some of the classes in CodeGenerate.

Figure 7 Visual representation of CodeGenerate

template GenerateCode{
 inst Semantic;

class Decl adds{
 abstract protected void generateCode();
 }

class VarDecl adds{
 public VarDecl(String name){
 tsuper(name);
 }

 protected void generateCode(CodeFile sp){
 // adds bytecode for variables with name and type
 if((tType.t).equals("float"))
 ... // update variable
 else if((tType.t).equals("int"))
 ...
 }
 }
}

53

We add to Decl an abstract method generateCode so that all subclasses of Decl will have their

own implementation for bytecode generation. Then for each class that requires bytecode

generation we override generateCode method from their superclass and give the proper

implementation.

5.6 Evaluation

Since this compiler was first devolved in a master course, we didn’t use PT during our

programming process. The entire Oblila compiler was therefore written in regular Java and

primarily used subclasses and no splitting of the syntax tree, semantic analysis etc into

different classes. Rewriting the code so that it works with PT wasn’t particularly difficult. In

the beginning of the coding with PT I could just copy the entire java code of the compiler and

place it in a template with any major problem. After that the code needed to be split into

different templates and with the use of instantiation, combined to form a working program.

All of the PT mechanics need to achieve that, like instantiation and additions, worked like

they were supposed to, and I didn’t have any problem accessing the classes and their

members. So, all the basic mechanisms of PT seem to work really well for this particular case

So, for building our compiler as three separate and more or less independent parts, PT works

very well. However, we will now assume that we want to extend or change the compiler in

different ways, and discuss to what extent PT can help us with the expansion.

5.6.1 Making changes to the compiler

Since we split our compiler into three different templates, we would like that each of these

can be expanded separately. If we were to use our syntax tree, but wanted to add an additional

class or change already existing class, we could make an instantiation of the template Syntax

and then make the necessary changes. Or if we wanted to use the same structure for the syntax

tree and semantic analysis, but use a different generator for bytecode, then we could we make

an instantiation of Semantic in a new template for generation of bytecode.

While trying to find how we can further expand our compiler through new templates and

instantiations, I experienced some challenges with PT that, in certain cases, makes it harder

for us to reuse template classes. To show these challenges and how we might solve them we

will use the previous three declared templates Syntax, Semantic and GenerateCode.

54

If we want to add additional grammar to the source language of our compiler, we could make

and instantiation of template Syntax and add the necessary classes. We make this instantiation

in a new template Syntax_A.

Since we introduced a new grammar to our language, we would also need to do a semantic

analysis for this part. To not have to rewrite the entire Semantic template, we would like to

use Semantic and expand the semantic analysis on the new classes or create additional

analysis on the old classes. To do so, we want to expand the template Semantic by making an

instantiation of it in a new template called Semantic_A. Since we want to do semantic analysis

on the new syntax tree, Semantic_A needs also to instantiate Syntax_A. We will do a similar

thing for generation of bytecode as well. A new template GenerateCode_A will make an

instantiation of templates GenerateCode and Semantic_A and add the necessary code for

generating bytecode.

The code and figure below shows all the new templates and instantiations.

template Syntax_A{
 inst Syntax;
 ...
}

template Semantic_A{
 inst Semantic;
 inst Syntax_A;

...
}

template GenerateCode_A{
 inst GenerateCode;
 inst Semantic_A;
 ...
}

55

Figure 8 Visual representation of our the code above

The problem with this implementation is that we get multiple instantiations of the same

template. If we look at the template Syntax, this template gets instantiated more than once.

One of these instantiations is made by the template Semantic, which is again instantiated by

template Semantic_A. Another instantiation is made by Syntax_A, which is also instantiated

by Semantic_A. This creates a name collision between both instantiations of the template

Syntax, because the template Semantic_A gets two copies of Syntax with exact same variables

and methods. To make our compiler program work with PT we would need to do a lot of

renaming. But the result of renaming would be that we would get two different syntax trees,

which is not what we want for this case.

Ways to work around this problem is to instantiate Syntax_A in a new template (that doesn’t

instantiates Semantics) and write a completely new semantic analysis in that template. The

problem with this solution is that we won’t get to use the already written semantic analysis in

the Semantics template. In this case generating bytecode would also need to be rewritten

again.

Another solution would be not to make the additions after instantiating GenerateCode. This

way we could create new classes for the syntax tree, semantic analysis and generating

bytecode in one instantiation. But this solution is also not ideal. The addition to the compiler

56

is done on the last of our main three templates. That would make it hard for us to use just one

part of the compiler. So if we wanted to just use the syntax tree and, not semantic analysis and

bytecode from the new compiler, we wouldn’t be able to do that. This particular problem

occurs when we instantiate multiple templates which at some point instantiate the same

template and we therefore get name collision and instances of the same class.

The next section will try to use template parameters to solve our problem with multiple copies

of the same class.

5.6.2 Template parameters

A way to solve our problem with multiple instantiations of the template is to use template

parameters (see chapter 2.11). We can do this by changing some of our initial templates and

adding additional code for template parameters. What we want to achieve with template

parameters is for our main three templates to be able to make instantiations of other templates

that themselves insatiate the main three templates. So that if the template Semantic_A

instantiates both the templates Syntax_A and Syntax, it will only get one copy of the classes

from the template Syntax.

The template Semantic expands on the template Syntax, so we can make the template

Semantic be a subtemplate of Syntax. This will also let the template Semantic be passed as a

argument to other template which formal parameter requires an instantiation of the template

Syntax. For the template GenerateCode we will do a similar change, where we make this

template a subtemplate of Semantic. Below are the changes described in this paragraph and a

package that will combine all the parts:

template Syntax {...}

template Semantic subof Syntax {...}

template GenerateCode subof Semantic{...}

package Compiler{
 inst GenerateCode;
}

Below are some of the changes that are made to the new templates:

57

template Syntax_A subof Syntax{...}

template Semantic_A <template S bound Syntax> subof S{...}

template GenerateCode_A <template S bound Semantic> subof S{...}

The template Semantic_A takes a formal template parameter that is either the template Syntax

or a subtemplate of Syntax. In our case we can pass the template Syntax_A as an argument to

Semantic_A. Instantiation of all six templates is done like this:

package Compiler_A{
 inst CodegenerateCode_A<GenerateCode

<Semantic_A<Semantic<Syntax_A<Syntax>>>>>;
}

With this instantiation we will only get one copy of each class from the template Syntax. This

is because the only template that instantiates Syntax is the template Syntax_A. The template

Semantic_A will in this case just instantiate the template Syntax_A. The instantiations above is

visualized in the figure below:

Figure 9 A visual representation of our expanded compiler using template parameters

Though using template parameters fixes our problem, we wouldn’t be able to do any type of

renaming in templates that are sent as arguments. This could be problematic since in programs

that we need to do a merge of classes we will no longer be able to do so.

58

5.6.3 Tabstarct template instantiation

While I was working with this thesis an alternative mechanism for PT was being developed.

This mechanism is called tabstract template instantiation and works in a similar way as

required types. It will allow us to concretize the template given as “default” in tabstract

instantiation with a subtemplate of the instantiated template. This could simplify the compiler

templates as follows: The template Semantic could instantiate the template Syntax and when

another template instantiates Semantic it could concretize the instantiation of the template

Syntax with instantiation of a subtemplate of Syntax. The code below shows a version of our

main three templates using tabstract templates:

template Syntax {

// classes for the abstract syntax tree
}

template Semantic{

tabstract inst Syn default Syntax;
 //additions to the classes from the template Syntax
}

template GenerateCode {

tabstract inst Sem default Semantic;
 //additions to the classes from the template Semantic
}

package Compiler{
 inst GenerateCode;
}

We can see that, while the template Syntax will stay the same, the other templates will have

some changes. For the template Semantic it will now make a tabstract instantiation of the

template Syntax by adding the keyword tabstact before the inst statement. Then the

instantiation is given a name, which in this case is Syn which will eventually be set to the

default value Syntax if nothing more specific is said in later instantiations. Similar changes are

made to the template GenerateCode as well.

When we want to expand the existing compiler like we did in the previous section, we can

give a new default, which must be a subtemplate of the previous default. Below is an

implementation of such expansions.

59

template Syntax_A subof Syntax {...}

template Semantic_A subof Semantic {

tabstract inst Syn default Syntax_A;
...

}

template Codegenerate_A subof CodeGenerate {

tabstract inst Sem default Semantic_A;
 ...
}

package Compiler_A{
 inst GenerateCode_A;
}

In the additions the three main templates are as in the case with template parameters are

subtemplate. In this case they will again make a tabstact instantiation, but the only difference

from the previous code example is that they will now replace the previous tabstract

instantiation with a new default template that they will instantiate. The template Semantic_A

will now instantiate the template Syntax_A (the new default template) instead of the template

Syntax. Suing the abstract template mechanism will also avoid getting multiple copies of the

same classes from the template Syntax, since it is only instantiated by the template Syntax_A.

Another way we can use abstract templates is to concretize them like we do with required

types (see code below). In the second tier of additions to the compiler, we have the template

Semantic_B which is a subtemplate of the template Semantic_A. Later in a package

Compiler_B we can instantite GenerateCode_B and concretize the instantiation with the name

Sem with the template Semnatic_B. The template Semantic_A is still instantiated, but the

instantiation is only done by Semantic_B.

template Semantic_B subof Semantic_A{...}

package Compiler_B{
 inst GenerateCode_A with Sem <= Semantic_B;
}

5.6.4 Subclasses as a option

Now we will look at how similar additions can be done with regular Java subclasses and

which of the methods is easier to use. With subclasses we have multiple ways for us to write a

60

compiler. One way we can do this, is to create classes for each unique templates class in all of

our main templates. So that for example, ClassDecl in this version will contain all the code

for syntax, semantic check and bytecode generator in one single Java class. If we then want to

add something to the compiler, we can make a subclass of the class we want to add to.

This subclass will then include all the additions. Since a class can have many subclasses, we

can make many different versions of a specific compiler. The disadvantage with this solution

is that every class consists of all three parts (syntax, semantic and code generation), so that it

would be difficult for us to implement a compiler where we for example want to use the

semantic part of one of ClassDecl subclasses and bytecode generation from another. If we for

example want to add to the syntax part of one version of a class and then add to the semantic

part of another version, then we wouldn’t be able to combine these two since the combined

subclass will have multiple superclasses, which we don’t want to merge.

Another way we can represent our compiler is for every template class in our Syntax template

to have their own local class. Then each of these classes will have a subclass that includes the

code for semantic analysis. The same is done for the generation of bytecode. Even though this

lets us add to different part of a compiler (syntax, semantic or generating code), but we get a

problem with multiple superclasses. This is demonstrated in the figure below with an example

of additions with subclasses.

Figure 10 Expanding a compiler using subclasses

61

Here VarSyn_A and VarSem_A are additions to VarSyn and VarSem respectively. Since

VarSem_A also wants to use the new syntax from VarSyn_A, it will end up with two

superclasses.

For this example, it seems that using PT is easier than just using Java’s subclasses. Using

template parameters we are able to avoid the problem of having multiple superclasses like we

did with Java’s subclass solution.

5.6.5 Visibility regulation

Finally we will also look at visibility regulation. Since our compiler has many subclasses, we

decided to use the protected modifier on many of the methods and variables, so that these

members in Java classes can only be seen from the package in which the class was declared

and from subclasses of that class inside other packages. Using aprotected modifier has not

much use in this case, since certain parts of our program require subclasses. For example, the

Program class has a list of different declarations in the source program and is of type Decl. So

that objects of classes ProgDecl and ClassDecl can be inserted into that list, these classes

would need to be subclasses of the class Decl.

The eprotected modifier can be used in cases where one doesn’t want certain members to be

accessible from add parts and therefore limit the additions that can be made to a compiler. In

our compiler we have little use eprotected, since we want it to be added to from other

templates. So the protected modifier that works for both the subclasses and the adds classes

seems more appropriate in our case, because we want that “adds” class to have accessibility to

the protected members.

62

Chapter 6

Graphical User Interface

In this chapter we shall look at the use of PT in two cases connected with GUI programming.

Both of them will center on the Java GUI libraries Swing and AWT. In the first case we will

assume that Swing and AWT are as they are now (as collections of Java packages), and look

at whether PT can be of any help in implementing a specific GUI design.

The other case will look at what would happen if we decide to rewrite the whole Java GUI

library so that it, at least to the user, appears to consist of a set of templates. And try to do this

in a way that will make the library more easy and flexible to use than the current version. We

will then discuss whether, and in what sense, we have obtained this.

But before we start looking at these cases, we will give an overview of the parts of

Swing/AWT that we will use.

6.1 AWT and Swing

Our aim in the first study is to write a program that uses the existing version of Java’s AWT

(Abstract Window Toolkit) and Swing libraries. AWT is a collection of classes that provides

us with some basic GUI mechanisms, which includes operations for creating buttons, 2D

shapes and much more. Like AWT, Swing is also used for GUI programming. The Swing

library builds on AWT, but provides additional features that are not present in AWT. For this

reason Swing components can also use operations from the AWT’s library and in our study

we will mostly be using Swing with a few classes from AWT.

The historical relation between Swing and AWT is that AWT was the first GUI library for

Java. However, with experience the creators saw that they needed more powerful and flexible

components and a library that would have the same look no matter what platform you run it

on (which was not necessarily the case for AWT). Thus, they created a new library, Swing,

that included these ideas. However the relationship between the two became somewhat

confusing as the old classes from AWT are still there in Swing, and partly has duplicate

classes of those in AWT (with the same names, only preceded by a “J”).

63

All of these Swing classes are extensions if similar classes in AWT. For example, JFrame is

an extension to the AWT class Frame. Among the classes that Swing provides, there are

several top-level containers[5]. Such container classes are essential in a Java GUI program,

since all other GUI components need to be added (through a method) to the object of that

class. Therefore every GUI program needs to have at least one top-level container, because

without them no component will show up on the screen. For the cases that are described in

this chapter we will use the top-level container class JFrame. Objects of the class JFrame

appears on the screen as a graphical window that will show all the other components that we

inserted into it. Components can be added to the window with the method add(…). This class

also has several methods (that we will use in the first study) to set up or change the

appearance of a window (e.g. by changing the size of the window, background color). A

typical GUI program using Swing is shown in the figure below.

Figure 11 How a typical GUI program looks like

64

The component and container elements in the figure are object of the subclasses of the

component and container classes respectively. By adding component to containers or

container to containers, we get a tree like structure to our GUI program where the top-level

container is the root element.

One of the main component classes in Swing is the abstract class JComponent[6]. Subclass of

this class will inherit different functionalities like painting (with the method

paintComponent), resizing, binding a component to a key and much more. One important

class that extends JComponent is JPanel. Unlike many other classes in Swing, JPanel works

both as a container and a component[7], and can be added as a component to container. One

of the benefits of using other containers like JPanel, is that we can place multiple components

into that container and then if we need to change e.g. the position of all of these component

we only are need to move the container, instead of moving each component individually.

The class JButton is also extends JComponent. The JButton class includes methods for

creating GUI buttons[8]. To make sure that a button actually performes an action when

pressed, a class (that typically creates JButton objects) will need to implement the interface

ActionListener and its method actionPerformed(...). Since a button needs to be added to a

container, the container class can create a listener for each of its buttons. What this listener

does is that it listens to a specific button (one can create multiple listener, one for each button)

and if the button was pressed, the method actionPerformed is called. In actionPerformed we

can determine (with the help of e.g. formal parameters) what button was pressed, and perform

the appropriate actions.

From the AWT library we shall use the class BorderLayout[9]. This class helps a container

with organize components by offering five ways of placing the components in the window.

6.2 Design of a specific GUI

For a first case we will implement a GUI program using PT. But before going into an

implementation part of the program, we will first describe the look of a specific GUI. When

the program is run we want it to display a graphical window with several other graphical

components that are displayed in that window. One of the components that we want to show

in the window is a button that we have two functions when it’s pressed. One these functions

will be to change shape of a geometric figure and the other is to increase a numeric value.

Both the figure and the numeric value will be displayed in the window. Then we would like

65

for the figure to change color based on user input. So for this we would to have several

buttons, where each buttons is assigned a specific color and will change the figure to that

color. Below is a sketch of how we want our GUI to look:

 Figure 12 An example of the GUI program we want to program in the first case

6.3 Implementing a specific GUI

In this section we will continue with the GUI presented in previous section and discuss how

we will implement this GUI. The classes from Swing that we will use in this program are

JFrame, JButton, JPanel and JComponent. For our GUI window we will need to use a top-

level container and for that we will use the class JFrame, so that we are able to display

graphical window and add components to that window. The geometric figure and the numeric

value will both extend the Swing class JComponent. All the buttons that are displayed in the

window are subclasses of JButton. Since we want all the color buttons to be placed near each

other, we can put all the buttons inside a container, since it makes it easier to move them all at

once, painting borders etc.

Before starting with the implementation of the GUI program with PT, I made a Java version

of the same program. This is so that I had a working version that will be the basis for my PT

implementation and also have something to compare the PT version to. When deciding how

this program should be split up in template to achieve better flexibility (for this and similar

GUI-design), I tried looking at what parts of the program that naturally belong together and

place them in their own template. For example, the part of the program that draws the

different figures could be placed inside its own template. In the next section we will describe

the PT implementation of the same GUI program.

66

6.3.1 The template Frames

This section describes the template Frames and the class MainFrame, and how this class

creates our main graphical window (se the program below). Since we decided that our

program shall include a menu, we could already in this template place that component

somewhere in the window. Since we want our program to be as flexible as possible, we won’t

include the code for the menu in this template. Instead we will use a required type called

Menu that will be concretized with a class during an instantiation of Frames and provide us

with a menu that satisfies a criteria specified in the required type.

A class that can be concretized with the required type Menu must extend JPanel (so that the

menu works as a container for buttons) and implement the interface ActionListerner as well as

having a constructor that takes a Mainframe object as a formal parameter. This ensures that

the menu class will be able to access the other component (when they eventually will be

added to the MainFrame) by using the MainFrame pointer. Below is the code of the template

Frames:

template Frames{

 required type Menu extends JPanel implements ActionListener{
 Menu(MainFrame mf);
 }

 public class MainFrame extends external JFrame{

 Menu m1 = new Menu(this);
 CenterComponent c1;
 MainFrame(){
 ...
 add(m1, BorderLayout.NORTH); //place on top of the frame
 }
 }
}

Since MainFrame can make an object of any visible required type, we can already make an

object of Menu and place the object at the top of the window (and this will be an object if the

final version of Menu, not yet fully defined).

67

6.3.2 The template Menu

For the menu part of our program we will create a separate template called ColorMenu (se the

program below). Here we create a class ColorOptions that extends the class JPanel. Since we

have decided that the menu is a container that is to be placed inside a window, the class

ColorOptions will then be used together with the MainFrame class. We will therefore

instantiate the Frames template.

We wrote the template Menu to be able to change color of a component in the window. We

therefore need the class that represents those figures to have a method that can change the

color of components. Since that class is not yet visible from the template ColorMenu, we can

again use required types. The required type FigureComponent can set a color for its figure,

we write a constructor that takes a Color object as a formal parameter (initial color) and a

method “setColor(Color r)” that sets the color of that figure.

The code below shows some the parts of ColorMenu template:

template ColorMenu {
 inst Frames with Menu <= ColorButtons;

 required type FigureComponent extends JComponent{
 FigureComponent(Color c);

 public void setColor(Color c);

public void paintComponent(Graphics g);
 }

public class ColorButtons extends external JPanel implements
ActionListener{

...
 }

 class MainFrame adds{
 ...
 void changeColor(Color r){...}

}
}

6.3.3 The templates PaintFigures and PaintNumbers

The templates PaintFigures will include a class RandomFigures that can display random

geometric figures (based on an integer generated by a random number generator). Objects of

this class will need to be inserted into a window. Therefore the class RandomFigures is a

68

subclass of the class JComponent and includes the methods setColor (to set current color of

the figure) and paintComponent. We will also add to the class MainFrame a method that

creates a RandomFigures object, as well as insert it into our window and set the size of the

figure.

For the template that includes the class that paints a numeric number in a window, we will do

a similar thing as we did with PaintFigures. The template PaintNumbers make an

instantiation of Frames and includes the class IncNumbers. As with the class RandomFigures,

we add to MainFrame a method that creates an object of IncNumbers and put it into the

window. To change the number in the window, we will also add a button to our window, that

when pressed will increase the number and repaint the window to show that new number.

Below is a part of the implementation of PaintFigure (PaintNumbers looks very similar to

this):

template PaintFigures{

 inst Frames;

 class RandomFigures extends external JComponent{
 // draws random figure

}

MainFrame adds{
 MainFrame(){tsuper; addToCenter();}

 void addToCenter(){...}

}
}

6.3.4 template MainGUI

In the end we want to combine all templates together in a template to create a functional GUI

program. We will place this program in a template instead of a package, so that the joined

program can be further added to. The person who wants to run the program, can instantiate

MainGUI in a package. Below is the code for the template MainGUI and the figure that shows

all the final instantiations. However, these instantiations will result in a compiler error,

because the templates PaintFigures, PaintNumbers and ColorOptions each make their own

instantiation of the template Frames. This will result in us getting three copies (as

69

instantiations) of class MainFrame and a name collision between all the members of the

different copies of MainFrame.

template MainGUI{

inst NumberFigures;
 inst PaintFigures;
 inst ColorOptions with FigureComponent <= RandomFigures;

class MainFrame adds{
MainFrame(){

 tsuper();
 super("GUI example for master thesis");
 }
 }
}

Figure 13 Visual representation of our GUI-program

70

6.3.5 GUI program with templates parameters

To try to get around the instantiation problem from last section we can again try to use PT’s

template parameters. Like in the previous case and chapter 2, we will try to use template

parameters to reduce the number of instantiations we make of a specific template.

By letting templates that need to instantiate Frames have a formal template parameter that is a

subtemplate of Frames, we can instantiate these templates together and make just a single

instantiation of MainFrame. Each of these templates should also be a subtemplate of the

formal template parameter, so to make sure that they can also be sent as arguments to other

templates. The code for the new templates is below, as well as a figure that shows how each

resulting instantiation will look like. The code only shows ColorOptions and MainGUI, since

PaintFigures and PaintNumbers have the same changes done to them as ColorOptions.

template ColorOptions <template F bound Frames> subof F{
 ...
}

template MainGUI{
 inst ColorMenu<PaintFigures<PaintNumbers<Frames>>>;
}

Figure 14 Visual representation of our GUI-program using template parameters

71

Even though we can resolve the problem with multiple unwonted instantiation of a single

template, we will instead get a new problem if we use template parameters for this case.

When a template is instantiated, through subtemplate instantiations or when it’s sent as an

argument, we aren’t able to rename any of the classes and their members. Since we can’t do

any renaming, then we wouldn’t be able to concretize the required types with a class in most

of the templates. This will result to that we won’t be able to compile the program, since our

implementation has multiple required types.

To get around this problem we could avoid using required types. So instead of adding a

method that changes the color of the figure to MainFrame in ColorOptions template, we

could wait with that until we actually combine the templates together (since the template

PaintFigures hasn’t been instantiated yet). Then in the template MainGUI, we can add code

for the class MainFrame that calls on the method setColor and changes the color of a figure.

The problem with this implementation is that we have to postpone writing implementation for

certain parts of the code and leave it all to the programmer that makes the final instantiation of

these templates. This can make it more difficult for the programmers, since they may have to

spend time to get themselves familiarized with the original classes to finish the code for that

class.

6.4 Evaluation

After working with this example I found required types to be quite useful. For one, we obtain

the ability to write code when a certain class hasn’t been defined yet, which is what we did

with the Frames template. There we could start writing code for placing a menu in a window,

before we had a class with an implementation. This is helpful, because if the original

programmer of a template uses required types, the programmer can already there write an

implementation of the program using these required types. A new programmer that makes an

instantiation of that template would only need to concretize the required types with the new

classes and avoid spending time to understate every line of code in the instantiated template to

complete the it’s code so that it works with the new classes.

Another benefit that we get with this case is that we can concretize a required type with many

different classes. So for the ColorOptions template, which requires a class with specific

methods, it isn’t bound to just a single class that draws figures. Instead required types allow

us to create many different classes that have their own unique implementation of painting

figures and still use the same menu, without having to write a new frame/menu class for every

72

new figure painting class. Both of these benefits can be useful to make a good flexible and

reusable program, and therefore we should try to make them available for template parameters

as well.

6.4.1 Solutions for required types

Since the problem we have with required types has to do with not being able to rename them,

we will try to look into different ways to either get around this problem or propose a change

to some of the mechanics that could help us with renaming.

We can start by looking at what we can do with template parameters so that we are able to

concretize the required types with a class. Since a template can take another template as an

argument, an instantiation of the template is made. Depending on the future implementation

of template parameters, instantiation is made implicitly when a parameter is passed or

instantiation of the argument has to be made inside the template body. If the instantiation has

to be made inside the templates body, then we could make renaming the same way we would

do renaming during regular instantiations. If the case is that instantiation is made when a

template is sent as a parameter, we could do renaming in the same statement as the definition

of the template parameter. Templates can also make subtemplate instantiations that is not

made inside the template body, but the same statement as the template name. We could

therefore allow renaming to be done after subof statement.

Below is a proposed renaming with formal parameter and explicit instantiation:

73

template M {
 required type R{...}
}

template T < template n bound M with R <= F > {

n: with R <= F;
 class F {...}
}

template T2 subof M with R <= G {
 class G {...}
}

package P {
 inst T2;
 inst T<M>;
}

Here we have three templates M, T and T2, where only M has a required type R. In the

template T we concretize the class F (defined in the template body) with the required type R

in the angle brackets of the template parameter statement. The template T2 makes the same

type of renaming during the explicit instantiation of M.

6.4.2 Challenges with renaming using template parameters

Though allowing renaming with template parameters or the redirecting mechanism is really

helpful to us, but implementing renaming will also bring some challenges. To show this we

shall look at our GUI example that is using template parameters. When ColorOptions gets

Frames as a formal template parameter, it might want to rename a couple of variables and

methods. Then PaintFigures gets ColorOptions as formal template parameter. Since

PaintFigures is doing an addition to MainFrame, this template expects that class to have

variables and methods with specific name.

If the template ColorOptions has renamed one of MainFrame’s members that PaintFigures

requires, we will get an error while compiling the PT program since the necessary member no

longer exists. Avoid or fixing this problem will not be patricianly easy. We can’t exactly

know what kind of renaming the templates have done before the template that is currently

trying to do its own instantiations. For now we could consider looking into allowing merging

of required types for template parameter instantiations and explicit instantiations, and try to

find a way to avoid the program described in this paragraph. If this is possible, we can make

74

sure that the templates can expect the correct classes and their members and at the same time

fix the problem we had with required types.

The problem with letting renaming to be done by templates is that they will be instantiated

later, and the renaming might cause problems in other templates. Unlike templates, packages

in PT on the other hand don’t instantiated. So letting packages do renaming won’t be as

problematic as doing the same for template, since this renaming will be the last one that is

done for this program. No other template or package will require this package to have any of

the classes, required types etc. that they need. So letting package de some renaming could

also help us with the problem of not being able to rename require types and the same time not

cause any problems for other templates and packages.

6.4.3 Alternative instantiations

So far we have looked at how we can expand other existing and new mechanism to allow

renaming to be done in different situations. In this section we will discuss how we can avoid

this problem all together by using the mechanisms that are currently available, as well as

different ways we could instantiate templates.

In the implementation of our GUI program, multiple templates needed to instantiate the

template Frames, since Frames is the template that included the top-level component and

most other templates in our program do additions to MainFrame to add their component to the

window.

One example of instantiation we can make is always instantiate GUI program in a specific

order. An example of this type of instantiation is after the template ColorOptions has

instantiated Frames, the template PaintFigures will instantiate ColorOptions and

PaintNumbers will instantiate PaintFigures. This creates a specific order of how the different

parts are added together and therefore only have a single instantiation of the template Frames.

The disadvantage with this solution is that it makes it difficult to add to the different

templates, since they might instantiate other templates that we don’t want to use. Therefore if

we wanted to instantiate PaintNumbers, we would also get the classes from ColorOptions,

even though we wanted to use a different template for our menu. This is because we are

instantiating a specific template, unlike with template parameter, where we can instantiate

different templates in any order we like. Therefore having some templates be separate from

each other makes them easier to expand upon later.

75

Another way we can instantiate our GUI program is by not having templates with component

classes, instantiate the template Frames. The figure below shows a different way the different

templates can be instantiated.

Figure 15 Visual representation of our GUI-program with an alternate instantiation

Where previously the templates ColorOptions, PaintNumbers and PaintFigures each

instantiated the template Frames, in this version these templates won’t be instantiating

anything. Instead, the PaintNumbers and PaintFigures will just include the classes needed for

painting their components. Both of these templates don’t instantiate Frames, because we will

instead make additions to the class MainFrame in another template. The template

ColorOptions on the other hand need to have a pointer to a MainFrame object, since it will

need to change the color of the figures and therefore call on of MainFrame’s methods. To not

instantiate Frames, it will instead include a required type, that has the same methods as

MainFrame that are needed by the classes in ColorOptions.

76

While Frames template will stay the same, we will create two additional templates that will

expand on the MainFrame class. The first of the new templates is FramesWithFig, which

instantiates Frames. The additions that it makes to MainFrame, are the same addition that we

made in the previous version of the template PaintFigures, which is to create a component (in

this case random figures) and add it to the frame. The next template is

FramesWithFigAndNum. Here we instantiate FramsWithFig and create a new required type

that will be concretized with the class IncNumbers and includes the methods that are needed

by MainFrame. In the end, the templates FramesWithFigAndNum, PaintFigures,

PaintNumbers and ColorOptions are instantiated in a package/template and then all the

required types are concretized with the compatible classes.

In this type of instantiation of templates, we will try to avoid instantiated the same templates

more times than we need to. For the classes that we need to create objects of or call on their

methods, we instead create required types. In cases where we need to add to a class (like in a

previous example of PaintFigures where we added to MainFrame), we could create a new

template (the template FramesWithFig) that instantiate the template that we want to add to (in

this case Frames) and make the additions in that template.

Using required type will in a way replace the necessity of instantiating certain templates,

since that type has all the methods that we need. This also reduces the need to use template

parameters for prevention of multiple instantiations of the same templates.

6.4.4 Subclasses and type parameters as an option

Now we will look at how we could program the same GUI program with similar additions

without using PT. The additions to any of the parts in our GUI program can be done by

making a subclass. The class MainFrame needs to be changed so that it would be able to take

in different components and add them to the window. For adding component, we can create

several methods that each takes in different objects as formal parameters. For example a

method “addPanel(JPanel p)” will take in an JPanel object at a formal parameter and add it

to the window. This allows us to send any object that is a subclass of JPanel as an argument.

The same thing can also be done for classes that extend JComponent. So that a method works

with many different objects, we can use type parameters. A method “void <T extends

JComponent> addToFrame(T t)” can take any object that extends JComponent, which in our

example could be the menu that extends JPanel (which is a subclass of JComponent) or even

the class RandomFigure (which extends JComponent).

77

The benefits we get from using required types, is that we can concretize them with many

different classes that meet the criteria of that type. As seen in the previous paragraph the same

benefits can be achieved by using type parameters. By using type parameters we can also

create additional restrictions to the type parameter by making that parameter extend a class or

implement an interface. What we can do with required type, but not with type parameter is

expanding the restrictions for what class can be concretized with a required type. Below is an

example of code that tries to add additional restrictions to a type parameter, but fails because

it breaks the rules that are set for overriding methods. In this example A, B and C are classes,

while D is an interface:

class A{

public <T extends C> void print(T t){...}

}

class B extends A{
 ...
 public <T extends C & D> void print(T t){
 super.print(t);
 ...
 }
}

In chapter 2 we discussed what Java requires from a method that supposed to override one

from a superclass. In addition to that, the type parameters must also have the same bounds.

This is not the case in the example above. Class B tries to override “print” and at the same

time add an additional bound to type parameter T. This is not possible in Java, since the type

parameter needs to have the same bound in both versions.

With required types we don’t have this type of restriction. Instead we can add to required

types additional methods and interfaces, and extend classes (if the required type doesn’t have

a superclass or the superclasses can be merging with another class). This gives us a lot of

flexibility which can be helpful when doing additions to a class, since the methods and classes

will change over time and will require additional properties from other classes and types

(parameter types for Java and required types for PT).

A lot of the benefits we want to achieve in GUI example by using PT can also be achieved

with regular subclasses and type parameters. Most of the additions we have done in PT for

78

this example can also be done with subclasses. Type parameters, like required types, can

represent multiple different classes. But there are also some additional benefits from using PT.

There are some types of additions that are just not possible with using just subclasses. Like

the cases where we want to use code from many different classes, but since a class can’t have

multiple superclasses, the addition can’t be made. This is similar to the problem we had in the

compiler example.

6.4.5 Visibility regulation for required types

Since we allow classes to have public or private visibility regulation, we can also look at

required types and if they need a similar modifier. Since required types need be concretized

with other classes, giving them a private modifier, so that the required type will not be visible

outside the template that it was declared in would be pointless. Putting private modifier on a

required type will only make that type visible inside the template it was declared in and can

therefore never be concretized with other classes. If we have no real use for private modifier,

do we then need a public modifier? Since the required types need to be seen for any other

template for it to be concretized, then we wouldn’t really have any need for a public modifier,

but instead make required types public by default.

Another way we could use the private and public modifiers is for them to work as additional

restriction for what classes can concretize with a required type. For example, if a required

type has a private modifier, then it can only be concretized with a class that has all the same

methods as the required type and the class has the private modifier. The same case can be

made for the public modifier.

If we allow private and public instantiations to be made, we will also need to discuss what

this can do for the required types. All the classes we get through a private instantiation of

templates will make these classes only visible in the template that made the private

instantiation. The other templates will have no access to any of these classes. But we also

need to choose what happens to required types in that type of instantiation. If we choose to

make these required types private to a template, this will mean that no other template will able

to concretize it with another class. Therefore that required type need to be concretized in that

template and not in other template. Else it will never be concretized with a class, since no

other template is able to see it.

79

To make sure that a required type gets concretized with a class, we can put a requirement that

says that if a private instantiation is made then a required type must be concretized with a

class in the same template. If the programmer doesn’t do the concretization on a required type

that is used in another class, then this should then lead to a compiler error, since the class

won’t have the right requirements set by the compiler.

For a public instantiation of templates, the required types (like template classes) should be

visible from all templates that get copies of that type from instantiation. In this case we won’t

get the same issue as with private instantiations, since the content of the publicly instantiated

template is visible to other templates. Another solution could is letting required types ignore

the private and public instantiations all together. Even though a private instantiation has been

made, all the required types unlike in previous paragraph will still be visible to other

templates. In this approach required types will always be public.

When required types get concretized with class, the class might have a visibility modifier.

The default public modifier for that required type should then be ignored, so that if the class is

set as private that still will be the case of the concretized with the required type. This is also

the case for the public and no modifier.

6.4.6 Visibility regulation for template classes and their members

Now we will look at regular template classes and what effect will the different visibility

modifier have on them. We will start by looking at the public modifier first. Letting the public

modifier for template classes make them visible for all templates that get these classes as

copies still seems reasonable for this example as well. This is especially true when we look at

what we would like for other modifiers to do. Since none of the other modifiers grant full

visibility, having one that gives us this option can be useful. An example of where we can use

the public modifier at is to make the class MainFrame public. Since it is own main class (top

level container), we would like to have this class to visible from many different templates so

that they can add themselves to the window.

The next modifier that we shall look at is the private modifier. Since the public modifier

makes the class and their members to all templates, it’s only logical to have something similar

for keeping the visibility away from other templates. For example, the MainFrame object in

IncNumbers could be set as private so that no other class in other packages will be able to

modify it. Having the same mechanism for templates, so that the same object won’t be

80

accessed by any other template inside the same template and template classes in other

templates can be beneficial.

Since having both public and private modifiers can have their use in PT, and then we might

also need to have a mechanism in the middle of these two visibility regulations. Having the

protected modifier work for templates as well as regular Java packages might be useful for

cases where want to expand the visibility for the updated sub- and adds classes. Again we

could take a look at the different versions of protected to see if they are useful in this

particular example. Since most of our additions are made through the adds classes, we could

have used the aprotected modifier instead of the regular protected modifier. This modifier is

useful in this example, since we want to avoid doing any additions with subclasses, but

instead focus on the visibility for the PT mechanism. Though not in this example, eprotected

can have a similar use. In cases where we don’t want to use PT’s adds mechanism and only

want the additions to be made by creating subclasses, then we could use eprotected. The

situations where these two special modifiers might be needed might not come as often, since

one modifier will prevent the additions for being made in a different way than the modifier

allows.

Since the different component in our GUI program a quite small and meant to be expanded

upon, then making private instantiations of any of the components will have little use. But in

the template MainGUI, where we make the instantiations of different parts of the program to

combine them into a working program, we could make private instantiations of some of the

templates. This way no further modifications can be done to any of the parts of the GUI, since

this template is supposed to be an almost complete version of our program. We can still make

instantiations of MainGUI, but the additions and the modifications of all variable of the

private components will no longer be allowed.

We could also use a public instantiation on Frames template, so that this part is visible for

further additions to our programs. If we have both public and private instantiation, we need to

look at the default case, which is a default instantiation without any modifiers. For this case,

there aren’t many different options available. If the default case is to make the instantiation

public, then that would make the public instantiation with a public modifier be pointless.

If in the default case the instantiations of templates are private, then there is no need for a

private modifier. Since our choices are quite limited for visibility regulation, we could just go

81

with making the normal instantiation public. This is because the template they biggest benefit

for using templates is the reusability, so if someone wants to a different instantiation they

could just add a private modifier. But whatever we choose the default case to be, we can

easily use a modifier that achieves the opposite effect. Overall, private and public

instantiations gives us another way we can regular visibility that can’t be done with other

modifier discussed in this section.

6.4.7 Merging of classes

In this section we will be looking, by using this GUI case, into the multiple superclasses issue

described in chapter 3. We will try to use the merging mechanism and try to find out what

kind of benefits and problem we can encountered during our tests. For this we are going to

use the classes RandomFigures and IncFigures. Originally the class RandomFigures was

painting a random figure from the click of the button. Now we want that class to paint a

specific figure depending on how many times the button was clicked. We could create an

entirely new class that has a method that is called by the class MainFrame when the button is

pressed or we can use some of our existing code.

The class IncNumbers already has all of the methods and variables need to increment its

counter for number of click on the button from MainFrame. So we going to try to merge the

classes IncNumbers and RandomFigures, and use the counter variable from IncNumbers to

determine what figure we should be painting in the window.

The first thing we can start with is instantiating the needed templates and merge the two

classes. The class RandomFigures has a method “paint(Graphics g)” that calls on the method

“getNumber()” to get a random number. When the template PaintFigures instantiated, we are

going to override “getNumber()” (from the class RandomFigures) method to now return the

variable curNum (from the class IncNumbers) that is increased when the certain button is

pressed. Though this piece of code could be solved with creating an object of the class

IncNumbers and get the variable curNum with the help of a pointer, we going to continue with

the merging solution to check what kind of problems we could encounter when we want to

merge classes.

Since both the classes RandomFigures and IncNumbers have superclasses, when they are

merged, the resulting class will end up with two superclasses. Typically we aren’t able to

merge superclasses from the external Java library, but in this case the merge is possible. If

82

both superclasses are the same class, then they can be merged to create a single superclass. In

this example both superclasses are the class JComponent. This means that when merging

RandomFigures and IncNumbers, the resulting class will have only one superclass, which is

JComponent. Being able to make this type of instantiation gives us flexibility in how we want

to expand or change the different classes in our program.

Another thing we could consider when it comes to merging is that the classes from the Java

library might have superclasses themselves. Let’s look at an example where we want to merge

two classes that both have external superclasses. Unlike previous paragraph, in this example

the superclasses are different. The figure below shows an example of a merge with what we

want the resulting class to look as in the template on the right side of the figure, while the

templates that are merged are on the left.

Figure 16 An example of a possible merge of superclasses

In the figure above we have three templates. Template T1 includes a class A that has a

superclass JComponent. Another template T2 has a class B that extends the class JPanel from

Java’s library. Templates T1 and T2 are instantiated and the classes A and B are merged. This

type of merge is not legal, since the resulting class C will end up with not one but two

superclasses. Unlike previous example, these superclasses are not the same class and therefore

can’t be merged. Both of these superclasses come from Swing’s library and in fact

83

JComponent is the superclass of JPanel. Therefore JPanel already inherited all the methods

and variables from JComponent.

Since JPanel’s superclass is the same class that we would like to merge JPanel with, we

could, like in the previous example, allow the merger between the classes A and B. Of the

issue here is how we get information on the class hierarchy of either class A or B. If the PT

compiler allows this, we could traverse the superclass hierarchy until we find a match on

either of the classes we want to merge. Since this type of cases might not occur too often,

there might not need to implement this type of merge. But having another way to extend and

combine classes gives PT an additional advantage over superclasses, since this type of

addition is not possible with just the use of superclasses.

6.5 A new version of Swing/AWT using PT

So far in this thesis, we have looked at cases where we used classes from Java’s library. To

get access to these classes we need to import the package with library. Now we will take a

look at a case where Java’s library is programmed as templates and what kind benefits we can

get through that.

We will start by looking into how to program these libraries (presented as Java packages) with

templates. One way we can do this is to create template classes of the regular Java classes we

find the different packages. Since a lot of these packages require classes/interfaces from other

packages, they would need for this case, to instantiate other templates that have classes or

interfaces that it needs for its own classes.

For example, a template that includes the class JPanel will need to instantiate the template

that has the class JComponent, because JPanel would need to extend JComponent and

therefore need this class to be visible for JPanel. Because in this case all libraries use PT,

programmers who want to use these classes could take advantage of the many benefits that

comes from using PT. Any of these classes could be added to or used in a merge unlike the

current state of PT where what additional things we can do with external classes are limited.

Another way we could put the Java’s library into templates is to use the adds mechanic on all

classes. Each class will be programmed and placed in a template. Since some classes, like

JPanel, requires a superclass, the template that includes JPanel needs to instantiate the

template that includes JComponent. But unlike in previous paragraph, where JPanel extended

JComponent, extending a class will not be needed. Instead we will, during the instantiation,

84

change the name JComponent to JPanel and then add to the new JPanel class all the

necessary additions to create exactly the same class as that you will find Java’s library. With

this approach JPanel will no longer have a superclass. This will be done on all classes in

Java’s library, so that no or few of these classes have a superclass.

In our case from chapter 6.2 we had classes RandomFigures and IncNumbers extends other

classes. By using the approach described in the paragraph above, we can make those classes

even more flexible. For this we will use the adds keyword to create our classes. The template

PaintFigures will instantiate the template that includes the class JPanel and rename it to

RandomFigures. Then we add to RandomFigures the same members as it had in the previous

cases. After this process the class RandomFigures will still behave in the same way as before.

The only difference in this case is that RandomFigures no longer has a superclass. This

approach can be very beneficial for a class, since it no longer needs to extend any of Java’s

library classes and can now extend another class. This will in a way let a single class extend

multiple classes and therefore achieve more reusability than just using Java’s subclasses.

Using the same approach as above can also lead to some drawbacks. With subclasses we get

the benefits of subtyping. If we have three classes A,B and C, where B and C are subclasses of

A, then a variable of type A can be made to point to an object of type B or C. If you use the

approach from the previous two paragraphs, the class A will no longer exist, since it is now

part of classes B and C. We will no longer we able to substitute a variable with either B or C,

because they no longer have a common superclass. This approach is therefore not always

ideal. In some cases we might need for superclasses to be their own classes, while in other

cases we would like to avoid having superclasses.

85

Chapter 7

Conclusion

In this chapter we will go over the evaluation made in the previous three chapters and discuss

whether PT is a useful mechanism or not based on these cases. When deciding the overall

usefulness of PT, we will base the discussion around some of the topic brought up in chapter

3.

7.1 Did we get a better implementation with PT?

An important part of mechanism is that it actually works. In case for PT, it should create a

working Java program. For all of the cases in this thesis that were coded using PT, the PT

compiler generated a working Java program. All the changes that were made to the different

classes that were made through additions, merge etc. were present in the new generated Java

classes (after the template classes were instantiated in a package). Therefore when it comes to

correctness of the generated program, PT does what it is supposed to do.

Next we will discuss whether PT can be useful in larger scale program, specially focusing on

reusability. Since most of the Java code works the PT compiler, this means that all the

reusability that we get for subclasses (and other Java mechanisms) can also be achieved using

PT. If we didn’t want to use any of PT mechanisms, we could still create reusable classes with

the help of subclasses. If we wanted, we could also use the “adds” mechanism to achieve the

reusability as with subclasses.

It is also important to look at if PT-specific mechanics can make our implementation better.

As we have seen from the first three cases is that whenever we want for a class to inherit

properties from more than one class, we can’t achieve this with only subclasses. In our PT

version Java Simulation program, we had the class Process to inherit from classes Link and

Coroutine. With the use of PT we ended up with the program we initially wanted to create.

We could of course have one superclass and a pointer to an object to another, but that might

86

not always lead to the desired result and might require more code than we would have with

the PT version. Using the merge mechanism simplifies the coding process, as the programmer

won’t need to go through many hoops to get the desired program.

In the case of the compiler program from chapter 5, we wanted to do smaller additions to the

different parts of the compiler. Here we again needed a class to inherit for two different

classes. But unlike the Java simulation case, in this case we couldn’t fix our problem with a

simple merge. This was because the instantiations that were needed caused a template to have

two copies of the same class, which resulted in a name collision. To avoid doing instantiations

on the same template more than once, we instead tried to template parameters for our

implementation.

When trying to do similar additions in chapter 6 with the first GUI case, we ended up with the

same limitations. Trying to make more additions to our GUI program will, like in the previous

paragraph, result in multiple instantiations of the same template. And just like in the previous

paragraph the problem can be avoided with the use of template parameters, where only one

single instantiation will be made of the template that we had a problem with. Since template

parameters have not been implemented yet, it does limit how we currently can instantiate

templates and thus might prevent the programmer from reusing code in cases like those

described in chapter 5 and 6. Therefore there could be some incentive to have a mechanism

like template parameters present in PT, since it can make PT better when it comes to making

the programming process easier.

Another useful feature is required types. As we have seen in chapter 6, as with type

parameters in regular Java, required types can be useful for programs that we want to work

with many different classes. Since we can also make additions to and merge required types,

we can further change the requirements for what classes that can be concretized with the

required type. This can be useful, since our programs can get expanded further and over time

the programmer might need these additional restrictions to make the program that they want.

With the GUI case, using required types can also make certain instantiation easier to make.

Instead of instantiating a template with certain classes, we create required types that would

have the same methods as these classes. With this approach we can avoid certain issues that

can occur during an instantiation, like the case with multiple instantiations of the same

template. Required types can therefore be very useful for certain programs.

87

Even though there are some benefits to using PT, there are still some limitations when it

comes to reusability. Since no renaming can be done when using template parameters, we

wouldn’t be able to do renaming and concretize required types. This will prevent us from

being able to compiler the PT program if a template is using both template parameters and

required types, and because we can no longer do renaming, we won’t be able to merge

classes.

But the lack of renaming and concretization with template parameters doesn’t necessary mean

that PT is any less useful than previously discussed. I one of the mechanism can’t be used

with another, we can still get all the benefits of the mechanism that we can use. If we require

merging to be done on certain templates, then those templates can’t have template parameters.

So we therefore have to choose what is most important for us in each case.

The process of writing PT code is quite simple. Programmers who are familiar with Java

should have little problem getting into PT, since using the different PT mechanisms require

little amount of additional code. Moving a program written in pure Java over to templates in

most cases will be easy, since majority of the code will be understood by the PT compiler. But

in certain cases, like if the Java code includes multiple inner classes, we wouldn’t be able to

recreate the same code. Introducing inner classes and other missing Java mechanism to PT

will make PT even easier to use.

After working with the cases presented in this thesis, I found the rules proposed in previous

work regarding visibility regulation really good. These rules will cover a lot of different ways

a programmer might want to regulate the visibility of the code.

Overall, I found that programming with PT gives some useful advantages when it comes to

reusability of our code. Though PT is not without some flaws, a programmer will still get very

few disadvantages when using PT. The disadvantages that it has (like lack of inner classes),

can be fixed by further developing PT and introduce the missing Java mechanics, making PT

even easier to use and port your code to. One important PT mechanism that we should focus

on is template parameters or tabstract template instantiation, since they can provide the

programmer with a lot of flexibility when it comes to instantiation of templates.

88

Bibliography

1. Axelsen, E.W. and S. Krogdahl. Adaptable generic programming with required type

specifications and package templates. in Proceedings of the 11th annual international

conference on Aspect-oriented Software Development. 2012. ACM.

2. Axelsen, E.W., et al., Challenges in the design of the package template mechanism.

Transactions on Aspect-Oriented Programming, 2012.

3. Helsgaun, K., Discrete event simulation in java. 2000: Roskilde Universitetscenter,

Datalogisk afdeling.

4. Beskrivelse av programmeringsspråket Oblila 2013; Available from:

http://www.uio.no/studier/emner/matnat/ifi/INF5110/v13/oblig1/inf5110-

9110_oblila.pdf.

5. Oracle. Using Top-Level Containers. Available from:

http://docs.oracle.com/javase/tutorial/uiswing/components/toplevel.html.

6. Oracle. The JComponent Class. Available from:

http://docs.oracle.com/javase/tutorial/uiswing/components/jcomponent.html.

7. Oracle. How to Use Panels. Available from:

http://docs.oracle.com/javase/tutorial/uiswing/components/panel.html.

8. Oracle. How to Use Buttons, Check Boxes, and Radio Buttons. Available from:

http://docs.oracle.com/javase/tutorial/uiswing/components/button.html.

9. Brunnland, A., et al., Rett på Java: Inføring i objektorientert programmering. 2005:

Universitetsforlaget.

http://www.uio.no/studier/emner/matnat/ifi/INF5110/v13/oblig1/inf5110-9110_oblila.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5110/v13/oblig1/inf5110-9110_oblila.pdf
http://docs.oracle.com/javase/tutorial/uiswing/components/toplevel.html
http://docs.oracle.com/javase/tutorial/uiswing/components/jcomponent.html
http://docs.oracle.com/javase/tutorial/uiswing/components/panel.html
http://docs.oracle.com/javase/tutorial/uiswing/components/button.html

89

Appendix A List of figures

Figure 1 Visual representation of code above .. 2

Figure 2 Added subclasses to Figure 1 ... 3

Figure 3 Visual representation of a template hierarchy from example above.......................... 12

Figure 4 A Closer look at classes after instantiations .. 13

Figur 5 Example of multiple tsuppeclasses .. 16

Figure 6 A visual representation of Java Simulation program with templates 37

Figure 7 Visual representation of CodeGenerate ... 52

Figure 8 Visual representation of our the code above .. 55

Figure 9 A visual representation of our expanded compiler using template parameters 57

Figure 10 Expanding a compiler using subclasses ... 60

Figure 11 How a typical GUI program looks like .. 63

Figure 12 An example of the GUI program we want to program in the first case 65

Figure 13 Visual representation of our GUI-program .. 69

Figure 14 Visual representation of our GUI-program using template parameters 70

Figure 15 Visual representation of our GUI-program with an alternate instantiation 75

Figure 16 An example of a possible merge of superclasses ... 82

