
Comparison between Ovalbumin and Ovalbumin
Peptide 323-339 Responses in Allergic Mice: Humoral
and Cellular Aspects

L.-Z. Sun*, S. Elsayed*, T. B. Aasen�, T. Van Do*,�, N. P. Aardal§, E. Florvaag*,�,� & K. Vaali*

Introduction

Hen eggs are an essential ingredient in a variety of pro-
cessed food products and are therefore difficult to elimi-
nate from the diet. The proteins of hen’s egg white, like
ovalbumin (OVA), frequently induce hypersensitivity
symptoms among egg allergic individuals [1, 2].

OVA, which constitutes approximately 58% (w ⁄w) of
the entire hen’s egg white extract, is the most dominant
ingredient of the five major allergens of egg white and is
universally used as the main allergen in establishing dif-
ferent animal models of asthma, food and dermal allergy.
OVA’s allergenic epitopes were mainly determined by
the primary structure and are dependent on a certain
peptide chain length [1, 3, 4]. Among many egg white
proteins, OVA 323-339 and OVA 1-10, as well as intact
OVA, were reported to encompass B-cell epitopes which

were recognized by specific IgE antibodies. The OVA
323-339 sequence was also demonstrated to include
CD4+ T cell epitopes, which were restricted by the MHC
class I-Ad molecule in mice [2, 5, 6], and was considered
to encompass at least one B cell epitope [7, 8]. Further-
more, the OVA-specific T-cell line from hen egg allergic
patients was able to recognize OVA 323-339 presented
by HLA-DR10 [2, 9].

OVA 323-339 has been used extensively to study the
nature of class II MHC-peptide binding and T-cell acti-
vation [10–14]. It has been reported that OVA peptide
323-339 was responsible for 25–35% of the BALB ⁄ c
T-cell response to the intact OVA, and it is highly prob-
able that OVA 323-339 was closely related to the natu-
rally created peptide by the antigen presenting cell
(APC) during OVA processing [4, 5, 8, 15]. However,
Janssen et al. [16] demonstrated that the immunodo-
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Abstract

Ovalbumin (OVA) is widely used in allergy research. OVA peptide 323-339
has been reported to be responsible for 25–35% of isolated BALB ⁄ c mouse
T-cell response to intact OVA. An investigation of whether OVA and OVA
323-339 molecules can induce equivalent in vivo and in vitro immune responses
was conducted. Eight-week-old BALB ⁄ c mice were randomly divided into
three groups: OVA, OVA 323-339 and saline. On days 0, 7, 14, mice were
intraperitoneally injected with 25 lg OVA or OVA 323-339 absorbed on
300 lg Alum, or saline; on days 21–23, all groups were challenged intrana-
sally with either 20 ll of 1% OVA, 1% OVA 323-339 or saline. On day 28,
after killing, splenocytes were isolated and cultured under the stimulus of each
allergen or medium. Evaluated by hematoxylin ⁄ eosin and major basic protein
immunohistochemical stainings, OVA and OVA 323-339 induced similar
lung inflammation. Interestingly, significant serum total IgE and OVA-specific
IgE were observed in OVA mice when compared to saline control. OVA 323-
339 mice showed higher serum OVA-specific IgE, OVA 323-339-specific IgE,
IL-4 and lower IFN-c similar to OVA mice. The proliferative response to
OVA was found in cultured splenocytes of both OVA and OVA 323-339
mice, while the similar proliferative response to OVA 323-339 was only
observed in the splenocytes of OVA 323-339-sensitized and challenged mice.
Although OVA 323-339 induced a Th2-like response in the mouse model as
did OVA, OVA 323-339 has clearly limited immunogenic potency to activate
OVA-sensitized and challenged mice splenocytes, unlike OVA.
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minant epitope of OVA, e.g. OVA 323-339, accounts for
50% of the OVA-specific B-cell response and 60–70% of
the OVA-specific T-cell response. So far, there is only a
small amount of available information on in vivo immune
responses in OVA 323-339-treated animals. Kearney
et al. [17] reported that systemic injection of OVA or
OVA 323-339 in a T-cell transfer model induced a rapid
and strong, but transient DO11.10 T-cell proliferation.
They also described that the induction of more local and
less transient response by the subcutaneous administra-
tion of OVA 323-339 in Freund’s Complete Adjuvant
resulted in a significantly enhanced T-cell response upon
in vitro stimulation with OVA 323-339 [17, 18]. Knowl-
edge on the immunogenicity of allergens is important
and mandatory for establishing modern therapeutic meth-
ods for the treatment of allergy.

In this study, our aim was to investigate whether syn-
thetic OVA peptide 323-339 has parallel in vivo immu-
nogenicity with OVA in a BALB ⁄ c mouse allergy model.
In addition, using these OVA or OVA 323-339-sensi-
tized and challenged mice, in vitro splenocyte stimulation
was examined.

Materials and methods

Allergens. Ovalbumin (OVA, electrophoretic purity 99%,
lot 81F-8230) was purchased from Sigma (St. Louis, MO,
USA), and the OVA peptide with the amino acid resi-
dues 323-339 was synthesized using semi-automatic pep-
tide synthesizer (LKB Biochrom, Ltd, Cambridge,
England) as described by Johnsen and Elsayed [4].
Briefly, the solid-phase peptide synthesis of OVA 323-
339 was prepared manually, and the preparations were
cleaved from the resin by the use of HBr and trifluoro-
acetic acid (TFA). The purification of the peptides by gel
filtration chromatography was performed using Biogel P2
column (dimensions 61 · 1 cm) with 200–400 mesh
resin (Bio-Rad, Richmond, CA, USA) and the void vol-
ume peak contained the peptide in question. High-per-
formance liquid chromatography was performed using an
ion-exchange column (Bio Siol TSK DEAE 2-SW,
dimension 250 · 4.6 mm; Bio-Rad) with a routine sol-
vent system (20 mmol ⁄ l Tris ⁄HCl, and 20 mmol ⁄ l
Tris ⁄HCl in 500 mmol ⁄ l NaCl) at pH 6.2, which was
run at a linear gradient ratio for 14 min. Aliquots of
100 lg peptide were originally run, and the absorbance
was monitored at 220 nm. The initial concentration of
the peptides (2 lM) was used in sixfold serial dilutions
for examining their activity.

Animals. Female BALB ⁄ c mice (8-week old) were
obtained from Taconic (4140 Borup, Denmark) and
housed at the Vivarium animal house, Haukeland Uni-
versity Hospital (Bergen, Norway). They were kept in a
conventional animal room with 12-h dark ⁄ light cycles
and received water and pelleted pathogen-free food

(Special Diet Services, Witham, Essex, England) ad libi-
tum. The experimental procedure was approved by the
local Ethical Committee for Animal Experiments in
Bergen, Norway.

In vivo sensitization and challenge of mice. Fifty-one
8-week-old female BALB ⁄ c mice were randomly divided
into three groups: OVA, OVA 323-339 and saline. They
were intraperitoneally injected with 25 lg OVA or OVA
323-339 absorbed on 300 lg Alum (Imject�, lot
E164 107, Pierce Biotechnology Inc., Rockford, IL, USA)
or saline on days 0, 7, 14. On days 21–23, all groups
were challenged intranasally with 20 ll of 1% OVA, 1%
OVA 323-339 and saline, respectively. The protocol is
illustrated in Fig. 1.

Serum and bronchoalveolar lavage fluid (BALF) collec-
tion. On day 28, the mice were given intraperitoneal
injections with 50 mg ⁄kg of Pentothal (Abbott Scandina-
vian AB, Solna, Sweden) and killed by right ventricular
exsanguinations. The blood was collected and left to
coagulate at room temperature for at least 30 min, and
then centrifuged at 1000 g for 10 min. The serum sam-
ples were stored at )20 �C until use. After right ventric-
ular exsanguinations, the trachea was cannulated with a
20G catheter (Vasofix�, B.BRAUN Melsungen AG,
Melsungen, Germany), and the lungs were lavaged three
times with aliquots of 0.5 ml of sterile saline per mouse.
The collected lavage fluid was centrifuged at 400 g, and
the supernatant was stored at )20 �C for cytokine and
antibody analysis.

Histology. The lung was inflated with similar volume
of phosphate-buffered 10% formaldehyde (600 ll) at a
constant pressure and then immediately soaked in the
same solution for approximately 24 h. Longitudinally ori-
ented trachea, a horizontal slice from the middle zone of
the single left lobe of the lung was then embedded in
paraffin, 5-lm sections were cut and stained with hema-
toxylin and eosin (Sigma-Aldrich, St. Louis, MO, USA).
Bronchial airway wall thickness was measured with the
method described previously [19].

Day 0 7 14 21 22 23 27
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Figure 1 Protocols of the in vitro and in vivo studies. Mice were sensi-

tized with intraperitoneal injection (IP) and then challenged with the

respective allergens or saline intranasally (IN). Three different study

groups were used: Pep (mice sensitized and challenged with OVA 323-

339), OVA and saline, The Pep group is presented as an example to

explain the protocols.
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Immunohistochemistry. For the detection of extracellular
major basic protein (MBP) in tissues, rabbit polyclonal
antiserum to mouse MBP was used, which was kindly
provided by Dr. James Lee (Mayo Clinic, Scottsdale, AZ,
USA). Anti-MBP was diluted 1:300 in antibody dilution
buffer (DakoCytomation, CA, USA) and incubated for
1 h with 5-lm paraffin sections at room temperature.
Cross-reactivity was blocked with HP-block (DakoCyto-
mation), followed by a reaction with horseradish peroxi-
dase (HRP)-linked swine anti-rabbit diluted 1:500, and
then the antibody-captured cells were detected with 3,
3¢-diaminobenzidine (DAB). Sections were counterstained
with hematoxylin.

Quantification of total IgE. Total IgE was measured by
mouse ELISA quantification kits (Bethyl Laboratories,
Montgomery, TX, USA) as previously described [19].
In brief, the plates were coated with affinity-purified
goat anti-mouse IgE overnight at 4 �C and then
blocked with bovine serum albumin in 10-mM phos-
phate-buffered saline (PBS) at pH 7.4. The threefold
diluted serum samples or undiluted BALF samples and
appropriate dilutions of a standard IgE preparation
were used. The bound IgE was detected with poly-
clonal goat anti-IgE antibody (incubation for 1 h at
37 �C), followed by HRP-conjugated goat anti-mouse
antibody.

The plates were developed by the addition of tetra-
methylbenzidine (TMB) and read with an ELISA plate
reader (Labsystem Multiskan Bichromatic, Helsinki,
Finland) at a wavelength of 450 nm. The kit detection
range was 3.9–250 ng ⁄ml.

Detection of OVA- ⁄OVA 323-339-specific IgE, IgG1 and
IgG2A in serum. Specific immunoglobulin were assayed by
in-housed ELISA as previously described [20]. In brief,
microtitre plates were coated with OVA (fraction V,
Sigma, 2 lg ⁄ml) or OVA 323-339 in 0.05 M NaHCO3
buffer pH 9.6, and the serum samples were diluted 1:5
for OVA-specific IgE, 1:10 for IgG2A and 1:200 for IgG1

in 10-mM phosphate buffer solution. Commercially avail-
able biotin-labelled anti-mouse isotype-specific secondary
antibodies were then diluted to 2 lg ⁄ml (BD Pharmin-
gen, San Jose, CA, USA).

As for the detection of specific IgE to OVA 323-339,
microtitre plates were coated with rat anti-mouse IgE
(clone R35-72, 2 lg ⁄ml), and the serum samples were
diluted 1:10 in 10 mM phosphate-buffered saline. Bioti-
nylated OVA 323-339-BSA conjugate was then applied.
The biotinylations were performed according to the man-
ufacturer’s instructions (EZ-Link NHHS-PEO4-Biotiny-
lation Kit; Pierce, Biotechnology, Rockford, IL, USA)
[3, 20].

Streptavidin-horseradish peroxidase was diluted into
1:4000 (BD Pharmingen), and peroxidase substrate
reagents (Kirkegaard & Perry Laboratories, Gaithersburg,
MD, USA) were used for immunodetection.

The results were measured at 405 nm wavelength
(Spectra max plus, Sunnyvale, CA, USA) and expressed as
optical density (OD).

Determination of cytokine levels. IL-4 and IFN-c in
serum and BALF samples were measured with commer-
cial ELISA kits (R&D systems, Minneapolis, MN, USA)
according to the manufacturer’s protocols [19].

Cell culture. The spleens were minced into small
pieces, splenocytes were dissected free and then collected
from interface after Ficoll-paque (GE Healthcare, Uppsal-
a, Sweden) centrifugation. The viability of the collected
cells was ‡95% by the use of trypan blue exclusion
method. Separated splenocytes were cultured on 24-well
cell culture clusters with 100 ll or 200 ll of saline or
allergens (10 lg ⁄ml or 20 lg ⁄ml) in RPMI-1640 (Gibco
BRL, Paisley, UK) at 37 �C 5% CO2, final volume of
2 ml. Three days after initiating the culture, 100 ll of
recombinant IL-2 (rIL-2) (1 lg ⁄ml) was added to each
well. On day 4, 200 ll of cells (2.5 · 106 cells ⁄well) in
duplicate were cultured in 96-wells overnight by adding
20 ll of 0.05 mCi ⁄ml [methyl-3H] thymidine.

Measurement of splenocyte proliferation. Following stimu-
lation, the cultures were investigated for primary prolifer-
ation responses as measured by 3H-thymidine uptake.
The cultured well contents were then harvested onto
filter mats using a cell harvester. The discs representing
each well were transferred from the filter mats into 5-ml
volumes of scintillation fluid, and the incorporation of
[3H] thymidine into the cultured cells was measured
using standard scintillation counting procedures by 1414
liquid scintillation counter (Wallac, Turku, Finland).
The results were expressed as counts per minute (cpm)
and stimulation index (SI).

Statistics. Data were presented as mean ± SD. Statisti-
cal analyses were performed with ANOVA using saline
as a reference category, and followed by post hoc tests with
adjustments for multiple testing by the approach of Dun-
net’s T3 where equal variances within groups are not
assumed. Overall values P < 0.05 were considered signifi-
cant. All tests were two-tailed, and the data were analy-
sed with SPSS statistical software (SPSS Inc., Chicago, IL,
USA).

Results

Local inflammatory cell infiltration and airway wall

remodelling

The saline control mice demonstrated normal lung
morphology. In contrast, an eosinophil-dominant inflam-
matory cell infiltration including macrophages, a few neu-
trophils and lymphocytes were mainly observed around
bronchi and vessels in the OVA- and OVA 323-339-trea-
ted mice. The hypertrophia of cells lining the airways
was also shown in lung tissues with hematoxylin-eosin
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staining. The eosinophil-dominant inflammation was
clearly visualized by MBP immunohistochemical stain-
ing. Furthermore, thickenings of the bronchial airway
walls and increased mucus production were found in the
OVA 323-339 mice, as well as the OVA mice (Figs 2
and 3).

IL-4 and IFN-c profiles

An altered balance in the levels of inflammatory cyto-
kines is an indicator of systemic, but not local inflamma-
tory status; therefore, we measured both serum and
BALF IL-4 and IFN- c levels. In serum we found
increased IL-4 levels in both the OVA and OVA 323-
339-treated mice (37.3 ± 47.9 pg ⁄ml and 71.9 ±
93.9 pg ⁄ml, respectively) versus non-detectable levels in

the control mice (Fig. 4A). Serum IFN-c levels were
under the detection limit in all samples of the three mice
groups. In BALF samples, IFN-c, IL-4 and total IgE all
levels were equally under the detection limits.

Total IgE, OVA and OVA 323-339-specific IgE ⁄ IgG1 ⁄ IgG2A

levels in serum and BALF

Allergen-specific IgE antibodies will increase after sensiti-
zation, whereas different subclasses of IgG antibodies can
be studied for an evaluation of immune tolerance. We
detected higher serum total IgE levels (91.3 ±
9.2 ng ⁄ml) in the OVA-treated mice than that in the
control (8.7 ± 7.3 ng ⁄ml). Also in support of this, we
observed a significant increase in OVA-specific IgE in
OVA-treated mice (0.39 ± 0.44 OD) when compared to

B A C 

Figure 2 Photomicrographs of the lung tissues in hematoxylin-eosin staining. A: mice sensitized and challenged with peptide OVA 323-339; B: mice

sensitized and challenged with OVA; C: saline-treated control mice. OVA and OVA 323-339 mice showed eosinophil-dominant inflammatory cells

infiltration and an increased airway thickness. Original magnification: 200·.
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Figure 4 Cytokine and IgE levels in serum.

A: IL-4, B: total IgE, C: OVA-specific IgE

and D: OVA 323-339-specific IgE. OVA:

mice were sensitized and challenged with

ovalbumin; Pep: mice were sensitized and

challenged with OVA 323-339; saline: mice

were saline sham-sensitized and challenged

with physiological saline. Statistical signifi-

cance is presented with *P < 0.01,
#P < 0.05.

B A C

Figure 3 Sections of airways stained immunohistochemically with major basic protein (MBP)-antibody. The MBP-positive cells are stained in brown

in the airways of the allergen or saline-treated mice. A: OVA 323-339-treated mice; B: OVA-treated mice; C: saline-treated control mice. After kill-

ing, lung tissues were inflated with buffered formalin and lung sections were stained with anti-MBP. Note the increased density of eosinophils in the

parenchyma in which MBP staining shows apical surfaces of respiratory epithelial cells in the bronchiole of OVA mice and OVA 323-339 mice. In

contrast, significantly fewer eosinophils were present in saline-treated control animals in which no MBP-positive cells were detected in the airways.

The figure is representative of five animals per group. Original magnification: 200·.

332 Humoral and Cellular Aspects of OVA and OVA 323-339 L.-Z. Sun et al.
..................................................................................................................................................................

� 2010 The Authors

Journal compilation � 2010 Blackwell Publishing Ltd. Scandinavian Journal of Immunology 71, 329–335



the control mice (0.15 ± 0.96 OD), (Fig. 4B, C). Unfor-
tunately, only an insignificant total IgE production
(7.9 ± 7.1 ng ⁄ml) in OVA 323-339 mice was developed
when compared to the control (8.7 ± 7.3 ng ⁄ml). Impor-
tantly, we also found a significantly increased OVA-
specific-IgE level in the OVA 323-339 mice
(0.29 ± 0.25 OD) when compared to the control group
(0.15 ± 0.96 OD), (Fig. 4C). Similarly, increased OVA
323-339-specific IgE (0.35 ± 0.95 OD) was measured in
the OVA 323-339-treated mice versus the controls
(0.28 ± 0.03 OD), but significantly increased OVA 323-
339-specific IgE was not observed in the OVA mice
group (0.27 ± 0.02 OD, P > 0.05) (Fig. 4D). No signifi-
cant increase in the serum levels of OVA-specific IgG1

and IgG2A, OVA 323-339-specific IgG1 and IgG2A were
found when compared with the control group levels
(Table.1).

In BALF, total IgE levels were under the detection
limit.

The OVA and OVA 323-339-specific proliferation assay: OVA

323-339 epitope cannot activate OVA-sensitized and

challenged mice splenocytes

To evaluate whether these allergen structures could acti-
vate T cells in cell culture, we isolated the splenocytes of
each group and stimulated them with OVA or OVA 323-
339. Splenocytes of both the OVA- and OVA 323-339-
treated mice displayed a strong proliferative response after
stimulation by OVA (5312 ± 1886 cpm and 7792 ±
5451 cpm, P < 0.05) when compared to the saline-treated
control mice splenocyte response to OVA (2704 ±
2472 cpm). Medium as a control stimulant did not cause
any significant difference in response between allergen-
treated groups and saline-treated groups (OVA 1231 ±
86 cpm and OVA 323-339 group 2737 ± 1664 cpm vs.
saline-treated control mice 1582 ± 1334 cpm, P > 0.05,
respectively). Stronger proliferative responses were induced
by OVA 323-339 stimulation in splenocytes of OVA

323-339-treated mice (14343 ± 11232 cpm versus saline-
treated control mice splenocyte response to OVA 323-339
1926 ± 1678 cpm, P < 0.01).

We also studied whether the readily processed
epitope of OVA 323-339 could activate OVA or saline-
treated mice splenocytes in culture. There was no signif-
icantly increased response to OVA 323-339 stimulus in
the OVA-treated mice (2879 ± 1049 cpm, P > 0.05)
versus saline-treated mice control (1926 ± 1678 cpm).
In addition, there were no obvious differences observed
in the cpm values between 100 ll or 200 ll of aller-
gens which were used to stimulate the isolated spleno-
cytes (Fig. 5.).

Discussion

The isolated splenocytes from OVA 323-339 or OVA-
sensitized and challenged mice groups, when stimulated
in cell culture with their respective allergens did demon-
strate T-cell proliferation. However, unlike OVA, OVA
323-339 could not stimulate T-cell division of OVA-sen-
sitized and challenged mice. Our in vivo results showed
that after repeated intranasal challenge, both OVA 323-
339 and OVA-treated mice groups developed a signifi-
cantly increased inflammatory response in the target
organ, which in this model is the airway. The specific
IgE immunoglobulin levels were likewise increased by a
significant difference when compared to the control.

Table 1 Serum-specific IgG antibody levels in the studied research

groups.

OVA

OVA

323-339

Saline

control n

OVA sp. IgG1 0.90 ± 1.21 1.25 ± 1.41 0.82 ± 1.20 17

OVA sp. IgG2A 0.69 ± 0.67 0.50 ± 0.44 0.45 ± 0.24 17

OVA 323-339 sp. IgG1 1.04 ± 0.60 0.76 ± 0.62 0.80 ± 0.47 17

OVA 323-339 sp. IgG2A 0.35 ± 0.45 0.32 ± 0.34 0.28 ± 0.11 17

The results are expressed in optical density values (OD) of the

means ± standard deviations (SD). ANOVA was performed for the data

analyses, and the comparisons were studied between allergens groups

and saline-treated control group, P < 0.05 was considered as significant

difference. No difference was found in antibody levels between the

groups. Sp., specific; Saline, saline-treated control group; n, the number

of individuals.

Medium OVA 100 μμl OVA 200 μμl Pep 100 μμl Pep 200 μμl
0

10,000

20,000

30,000

saline
OVA
OVA 323–339

Mice groups:

Stimulation allergens

C
P

M

Figure 5 Proliferative response of splenocytes to different allergens at

different doses. After the isolation of splenocytes from all the study

groups, mononuclear splenocytes (2 · 10)6 ⁄ml) in the presence of rIL-2

were stimulated with 100 ll or 200 ll (10 lg ⁄ml) of OVA 323-339,

100 ll or 200 ll (10 lg ⁄ml) ⁄well of OVA and 100 ll medium per

well, respectively, in the presence of rIL-2. On day 4, splenocytes were

incubated with 20 ll of 3H-labelled thymidine overnight, and incorpo-

ration of 3H was measured in cpm as the indicator of the T-cell-stimu-

lating growth. Spleen mononuclear cells from OVA or OVA 323-339

mice showed higher cpm values after stimulation with OVA or OVA

323-339 when compared to the medium stimulation. On the x-axis, the
medium or allergens that were used in the in vitro stimulations are pre-

sented in each of the in vivo study groups, respectively.
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A similar expression of morphology such as an
increased eosinophil-dominant inflammation around the
bronchi and vessels, and thickenings of bronchial walls
and mucus over-secretion, was found in both OVA and
OVA 323-339-sensitized and challenged mice in lung
tissue histology and MBP immunohistochemistry. Aug-
mented serum IL-4 production levels in mice treated
with OVA and OVA 323-339 were also observed.
Although no IFN-c production could be detected in
serum or BALF samples. Our results suggest that both
OVA and OVA 323-339 were in vivo capable of produc-
ing cytokine-induced systemic and local inflammation.
OVA-treated mice illustrated an increased total and
OVA-specific IgE production, while OVA 323-339 mice
only showed a significant increase in the production of
OVA 323-339-specific IgE. A possible explanation for
the decline of total IgE production using the peptide is
that the entire OVA with multi immunogenic structures
could display stronger immunogenicity than its peptides.
However, higher OVA-specific IgE was also observed in
OVA 323-339-treated mice and, in contrast, OVA
323-339-specific IgE level in OVA mice was much lower
than that in OVA 323-339 mice, and no difference was
found when compared to that of the control. An in vivo
molar ratio between OVA 323-339 and OVA is more
than 20:1. This may suggest that the production of pep-
tide-specific cross-antibody to OVA could be a dose-
dependent process which requires a certain threshold
amount of the immunogen (in other words, a high dose
of OVA may be needed) to get the target peptide
sequence of intact OVA presented and expressed on the
surface of APC cells to induce a detectable IgE produc-
tion. Other structures from intact OVA may be consid-
ered to be dominant immunogenic structures, e.g. OVA
1-10. Of course, the impact of species variation or strain
difference in the production of epitope-specific antibod-
ies, of course, could not be ignored [19].

Immune responses to protein antigens are strongly
influenced by the nature of the helper T lymphocytes
(Th) subsets involved. Th1 cells can evoke cell-dependent
immunity by IFN-c production and inhibit the produc-
tion of IL-4 by Th2 cells and Th2 cell proliferation
in vitro [21]. Th1 cells also promote immunoglobulin
class switching from specific IgG1 to specific IgG2A [22],
which is dependent on the presence of activating Fcc
receptors [23, 24]. Therefore, it is not surprising that the
in vivo serum levels of specific IgG2A did not show an
increase when compared to the control mice as quite low
IFN-c levels were developed in our model.

Th2 cells have been recognized to induce bronchial
inflammation as a result of enhanced secretion of Th2
cytokines [25–29]. IL-4 is the exclusive IgE isotype
switching factor, responsible for the over-production of
IgE, and can promote immunoglobulin class switching to
IgE and IgG1 [22]. In our experiment, an increased IgE

without paralleled IgG1 production was possibly because
of the short-term experiment protocol.

IgE has the capacity to bind high-affinity receptors
(FceRI) on mast cells and basophils, in addition to low-
affinity receptors (FceRII) on lymphocytes and other
inflammatory cells such as eosinophils, monocytes and
platelets [3, 30]. The number of IgE binding epitopes var-
ies in different allergens. Although the minimal require-
ments of an allergenic peptide were demonstrated to be
four amino acids, a molecular size of 12–15 amino acids
may be necessary for antibody binding which may be
related to a requirement for helical conformation [7, 31].
OVA 323-339 is composed of 17 amino acids, which as
expected, induced higher OVA 323-339-specific IgE [3].

Splenocyte stimulation with OVA induced an
increased proliferative response as observed in both OVA
and OVA 323-339-sensitized and challenged mice, while
proliferation to OVA 323-339 only occurred in spleno-
cytes of the OVA 323-339 mice and not in the OVA
mice. Accordingly, cells stimulated with control culture
medium demonstrated very low thymidine incorporation
when compared with the responses to OVA and OVA
323-339 stimulation. The presented proliferative results
are consistent with the results of Janssen et al. [32] who
demonstrated that OVA 323-339 induced a proliferative
response in cell cultures from OVA-challenged animals.
From Figure 4, we can find no significant difference in
proliferative responses between using 100 ll and 200 ll
of allergens when cells were stimulated with identical
allergens. This could imply that the in vitro proliferative
response to OVA or OVA 323-339 is not dose dependent
or our doses have already reached the upper limit for full
splenocyte response.

The proliferative response assay demonstrated that
OVA 323-339 in vitro stimulation did lead to splenocyte
proliferation and activation in cultivated cells. This could
suggest that small peptides such as OVA 323-339 can
play their role by being presented and expressed on the
membrane surface of activated splenocytes in the same
way as OVA, which is consistent with previous ideas:
OVA and OVA 323-339 share at least one common epi-
tope structure [7, 8]. Importantly, the cellular prolifera-
tive responses to allergens were accompanied by increased
humoral allergen-specific IgE antibody production, which
strongly suggested that the splenocyte proliferative
responses most probably were IgE-related.

To conclude, we suggest that OVA 323-339 can
induce Th2-dominant immune responses, and that the
splenocyte proliferative response to OVA323-339 is pos-
sibly IgE-related much like that of OVA.
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