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Abstract: The cell division cycle 25 (CDC25) phosphatases include CDC25A, CDC25B 

and CDC25C. These three molecules are important regulators of several steps in the cell 

cycle, including the activation of various cyclin-dependent kinases (CDKs). CDC25s seem 

to have a role in the development of several human malignancies, including acute myeloid 

leukemia (AML); and CDC25 inhibition is therefore considered as a possible anticancer 

strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the 

expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly 

mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell 

cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, 

high CDC25B expression is associated with resistance against the antiproliferative effect of 

PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform 

seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, 

CDC25C seems important for the phenotype of AML cells at least for a subset of patients. 

Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 

isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit 
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several molecular events in the regulation of cell cycle progression and even cytoplasmic 

signaling, including activation of several CDKs, through the use of a single drug. Such 

combined strategies will probably be an advantage in human cancer treatment.  

Keywords: CDC25; cell cycle; kinase; CDC25 inhibitors; anticancer agents; AML 

 

1. Introduction 

Reversible protein phosphorylation is an important molecular mechanism for the regulation of 

protein activity; this is true for many proteins that are essential for the regulation of important cellular 

events like intracellular signaling, cell cycle progression and proliferation, cellular differentiation and 

induction of apoptosis [1]. Protein phosphorylation and dephosphorylation are catalyzed by protein 

kinases and protein phosphatases, respectively [1]. The protein phosphatases can be divided into two 

different subclasses; the first class specifically hydrolyses serine/threonine phosphoesters whereas the 

second class is referred to as tyrosine phosphatases and specifically hydrolyses phosphotyrosine [2]. 

The tyrosine phosphatases also include a family of dual specificity phosphatases that hydrolyze both 

phosphotyrosines and serine/threonine phosphoesters; the cell division cycle 25 (CDC25) phosphatases 

are a subset among these dual specificity phosphatases [2]. This family includes CDC25A, CDC25B and 

CDC25C [3]; these three enzymes are important regulators of several steps in the cell cycle and they 

possibly have a role in the development of a variety of human malignancies [2,4]. CDC25 inhibition is 

therefore considered as a possible therapeutic strategy in cancer treatment.  

Cyclin-dependent kinases (CDKs) are important regulators of cell cycle progression, and CDK 

inhibition can be accomplished through inhibition of activating phosphatases [2]. Several CDKs are 

activated by CDC25A/B/C, and CDK inhibition can therefore be achieved through CDC25  

inhibition [2,5,6]. However, the CDC25s also have additional functions in cell cycle regulation, and 

several CDC25 inhibitors show cross-reactivity among the three CDC25 forms [2,5,6]. Thus, by using 

cross-reactive CDC25 inhibitors it will be possible to target several steps in cell cycle regulation, 

including several cyclin-dependent kinases, through the use of a single therapeutic agent.  

2. CDC25 and the Regulation of Cell Cycle Progression 

2.1. The Structure of CDC25 

CDC25 phosphatases are conserved eukaryotic proteins [7]. The three different human isoforms 

CDC25A/B/C contain 524, 580 and 473 amino acids, respectively, resulting in molecular masses in the 

53–65 kDa range [8]. The proteins consist of two domains: a highly conserved catalytic domain at the 

C-terminal and an N-terminal regularity region. The catalytic domain contains the HCX5R motif 

typically of tyrosine phosphatases [9]. The dipole moment of an adjacent α-helix favors the 

deprotonation of the catalytic cysteine increasing its reactivity towards phosphorylated threonine and 

tyrosine residues [10]. According to the crystal structures of human CDC25A and CDC25B [11,12], 

the isoforms differ in their amino acid arrangements around the catalytic site which supposedly is 

linked to divergences in specificity and activity [13]. As depicted in Figure 1, the two structures have 
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near identical folding in all conserved regions, with the only significant degeneration occurring in the 

extreme C-termini. Whereas the CDC25B C-terminal tail (residues 531–550) folds upon itself, perhaps 

to aid in substrate binding, the CDC25A tail (residues 484–495) is directed away from the active site, 

leaving it largely exposed. In contrast to other phosphatases, the active site of CDC25s is flat and 

shallow, suggesting a broad interaction interface. One of the largest cavities on the surface of CDC25B 

is adjacent to the catalytic pocket and is called the “swimming pool” because of the abundance of  

well-ordered water molecules it contains [14]. It seems as if substrate recognition relies on so-called 

hotspot residues (R488, R492 and Y497 on CDC25B) 20–30 Å apart from the active site [15]. Recent 

identification of a hotspot interaction between CDC25B and its native substrate, the CDK2/cyclin A 

complex, has moved some drug discovery attempts targeting CDC25B from the catalytic pocket to the 

remote hotspot region [16]. The regulatory domain at the N-terminal, on the other hand, contains 

several phosphorylation sites which regulate the activity and stability of the phosphatases, and their 

interaction with other proteins [17]. The domain also has signal peptides (nuclear localization 

sequence, NLS, and nuclear exportation sequence, NES) that determine the intracellular localization of 

the CDC25 proteins [18,19].  

Figure 1. Structures and domains of CDC25A and CDC25B. (A) Surface view of 

CDC25A (palegreen). The catalytic site is indicated in blue marine. The C-terminal tail 

(residues 484-495) is shown in palegreen cartoon. (B) Surface view of CDC25B (blue 

marine). The catalytic site and the adjacent “swimming pool” pocket are indicated in 

palegreen. The water molecules are represented as red spheres. The hotspot residues 

(R488, R492 and Y497), which govern the association with the protein substrate, are 

shown in blue sticks. The remote hotspot region is highlighted in palegreen. The α-helical 

C-terminal tail (residues 531–550) is shown in palegreen cartoon.  

 

2.2. CDC25 in Cell Cycle Regulation 

CDC25 phosphatases function as cell cycle regulators: they activate CDKs by dephosphorylating 

two residues within the ATP-binding loop [20]. The CDC25 isoforms fulfil different tasks throughout 

the cell cycle; this is also demonstrated by their localization as CDC25A predominantly is a nuclear 

(A) (B)
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protein [21] whereas the other two isoforms shuttle in and out the nucleus throughout cell cycle 

progression [22,23]. A simplified overview of the cell cycle regulation is shown in Figure 2. It is 

believed that all three isoforms are essential for the proper execution of the cell cycle, although it has 

been shown that CDC25A alone is sufficient for initiation of each step in the cycle [23,24]. 

Figure 2. An overview of the regulatory function of CDC25s in cell cycle progression. At 

G0-phase, cells that had been quiescent, re-enter the cell cycle after activation of 

CDK3/cyclin C. Dephosphorylation of CDK4/cyclin D, CDK6/cyclin D and CDK2 both in 

complex with cyclin E and cyclin A by CDC25s leads to the transition into the  

DNA-replication phase. At late S-phase, CDC25B activates CDK1/cyclin A. Finally, 

dephosphorylation of CDK1/cyclin B triggers mitotic entry, and in this important step all 

three CDC25 isoforms are involved. At the end of mitosis, both CDK1/cyclin B and the 

CDC25s are degraded and the cycle can start all over again. 

 

The CDK3/cyclin C complex initiates the re-entry of quiescent cells into the cell cycle from  

G0-phase. In middle G1-phase, CDC25A activates CDK4 and CDK6 that are in complex with  

cyclin D [25]. The latter at least partially inhibits retinoblastoma protein (Rb) in the G1/S-transition 

rate-limiting step [26], thus permitting transcription of genes that are required for cell cycle 

progression, including CDC25A and other cyclins [27,28]. CDC25A overexpression accelerates the 

entry into the DNA replication phase by dephosphorylation of CDK2/cyclin E, which additionally 

phosphorylates Rb [25] and mutually activates CDC25A in a feed-forward loop [21,29]. CDC25A 

reaches its highest expression level at late G1-phase, where it together with CDC25B facilitates the 
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transition into S-phase by dephosphorylation of CDK2/cyclin A, which in turn activates DNA 

replicating proteins [30]. CDC25C controls the initiation of the S-phase [31]. At late S-phase, 

CDC25B dephosphorylates CDK1/cyclin A, a less active complex compared to CDK2/cyclin A, which 

persists throughout G2-phase [30]. Dephosphorylation of CDK1/cyclin B by CDC25 is the rate-limiting 

step for the G2 to mitosis transition [32]. Active CDK1/cyclin B, that is inhibited by the Wee1 and 

Myt1 kinases [33], is the main trigger for mitosis. When CDK1 reaches a critical concentration level, it 

gets dephosphorylated by CDC25. At the same time, activated CDK1/cyclin B inactivates its inhibitor 

Wee1, thus resulting in an abrupt transition into mitosis [34]. All three CDC25 isoforms are involved 

in the G2/M-transition but CDC25B appears to take the key role in this process [35]. CDC25B is most 

abundant and active at late G2-phase and during mitosis, and is localized to the centrosome where it 

dephosphorylates CDK1/cyclin B [35,36]. The latter is subsequently translocated to the nucleus, where 

it is completely activated by CDC25C leading to mitotic onset [30]. CBC25B is then phosphorylated 

and this is supposed to be important for the regulation of the mitotic entry [37]. At the end of mitosis, 

both CDK1/cyclin B and the CDC25s are degraded resulting in transition into interphase. The proteins 

are subjected to anaphase promoting complex/cyclosome (APC/C)-dependent ubiquitination leading to 

proteasome-mediated degradation [38]. It also seems as if CDC25s can be inactivated by CDC14 family 

members that dephosphorylate the residues that previously had been phosphorylated by CDK1 [39]. 

Results from mice lacking CDC25B [40], CDC25C [22] or both [23] indicate that these proteins are 

not essential for cell cycle progression or for control of checkpoint responses. Additionally, 

concentration levels of CDC25A were not significantly altered in these models, suggesting that the 

third isoform does not compensate for the loss of the two others [23].  

2.3. Control of CDC25 Expression and Activity 

Because the CDC25s are essential for regulation of the cell cycle, their expression needs to be 

highly controlled. Dysregulation in the case of CDC25A, for example, accelerates the G1/S-phase 

transition [41], whereas an overexpression of CDC25B leads to premature mitotic entry [42]. The 

phosphatases are regulated both prior to transcription and post-translationally. At the transcription level, 

CDC25s are activated by the transcription factors E2F1, E2F2 and E2F3—the antagonists of Rb. Signal 

transducer and activator of transcription 3 (STAT3) usually activates CDC25 gene transcription, but 

through Rb recruitment it can also exhibit an inhibitory effect [43]. At the post-translational level, 

CDC25s are subject to protein modifications, both ubiquitination prior to degradation (described above) 

and phosphorylation. The latter is directed to mainly serines positioned in the N-terminal regulatory 

domain. Phosphorylation can either activate or inhibit the CDC25 phosphatases, leading to alterations 

in their catalytic activity, subcellular localization, substrate recognition and stability [17]. CDKs are 

the most important activators: CDK1/cyclin B mutually activates both CDC25B and CDC25C in a 

feed-forward loop resulting in mitotic entry, whereas CDK2/cyclin E and CDC25A form another  

feed-forward loop leading to DNA replication onset. Two other important kinases positively regulate 

CDC25s and promote mitosis: the polo-like kinase 1 (PLK1) and Aurora kinases. The former activates 

CDC25C both directly and indirectly by CDK1/cyclin B phosphorylation and inhibition of the Wee1-like 

kinase Myt1 [44], in addition to favoring the nuclear import of CDC25C [30,45], whereas the latter 

activates both PLK1 and CDC25s [46,47]. PLK1 also plays a role in mitotic exit, as it is a positive 
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regulator of the APC/C activity [48]. An overview of the most important activation and inhibition 

pathways is shown in Figure 3.  

Figure 3. Molecular interactions that regulate CDC25 activity (for simplicity reasons the 

effects of PI3K-Akt-mTOR signaling are described in the text but not included in the 

figure). The CDC25 activators are shown in red, the upstream inhibitors in blue and the 

downstream regulators in purple. Note that the CDC25s and the CDKs mutually activate 

each other. PLK1 is a key component as it positively regulates CDC25s and two of their 

activators, as well as it inhibits Myt1 and mediates the degradation of claspin. The key 

components for down-regulation of CDC25s are ATR and ATM. CDC25s are also prone to 

degradation by APC/C-dependent ubiquitination and nuclear exclusion by 14-3-3 binding. 

See text for further description.  

 

2.4. Cell Cycle Arrest and CDC25 Inhibition 

Cell cycle progression can be arrested at three stages: before entry into S-phase, during S-phase and 

prior to mitosis. At the G1/S checkpoint, DNA synthesis is inhibited, whereas intra-S phase arrest 

blocks mitotic entry until the S-phase is completed [30]. Finally, at the G2/M checkpoint, damaged cells 

are arrested in order to allow for cell repair or apoptosis [49]. CDC25s are inactivated by checkpoint 

kinases (CHK1 and CHK2) in an ataxia-telangiectasia mutated (ATM) and AT and Rad3-related (ATR) 

kinases-dependent manner. Upon DNA single-strand damage, ATR activates CHK1, whereas ATM 

activates CHK2 and the tumor suppressor protein p53 mainly as a result of double-strand breaks [45,50]. 

APC/C
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Activated CHK1/CHK2 target CDC25 leading to its inhibition or degradation. The checkpoint kinases 

also increase the amount of Wee1 resulting in inactivation of CDKs [50], and the CDC25 activator 

PLK1 appears to be inhibited in an ATM/ATR-CHK1/CHK2-dependent manner. In detail, CHK2 

inhibits CDC25A through p53 [51] resulting in inactivation of CDK4/cyclin D and CDK2/cyclin E, 

thus blocking S-phase entry [51,52]. On the other hand, all three isoforms of CDC25 are 

phosphorylated by CHK1 in order to prevent mitotic onset. Phosphorylated CDC25A/B can no longer 

activate CDK1/cyclin B [53,54], and inactivation of CDC25B/C sequesters the proteins in the 

cytoplasm [37,55]. Also, hyperphosphorylation of CDC25A leads to its degradation [53,56]. The 

checkpoints are silenced after repair or degradation of the damaged cells [49], and the re-entry into 

mitosis upon DNA-damage arrest is controlled by CDC25B upon activation by PLK1 [57]. PLK1 also 

inactivates CHK1 by mediated degradation of Claspin, the adaptor and activating partner of CHK1 [58].  

In addition to the checkpoint kinases, several other proteins are involved in CDC25 inhibition, for 

example protein kinase B (PKB/Akt) and mitogen-activated protein kinases (MAPKs). The latter 

negatively regulate CDC25 upon DNA damage mediated by heat shock, oxidative stress, irradiation, 

feed deprivation and chemotherapy [30,59]. The effects of the PI3K-Akt-mTOR pathway on cell cycle 

progression are not completely understood and conflicting results have been obtained. On one side, 

Akt sequesters CDC25s in the cytoplasm upon binding to protein 14-3-3, thus inhibiting mitosis [60]. 

Also, it seems as if CDC25B activity itself is required for the activation of Akt and the p38 MAPK 

kinase [61], thus indicating a mutual regulation of these proteins. On the contrary, several studies have 

shown that Akt acts as an initiator of mitosis [62,63] and inactivation of both CHK1 [64] and CHK2 [65] 

by Akt have been observed, thus circumventing the degradation of CDC25s. Following DNA damage 

for instance, Akt impairs the activation of CHK1 in an ATR-independent manner, thus circumventing 

the cell cycle checkpoint and inhibiting apoptosis [66]. In concordance with this, inhibition of Akt led 

to restored CHK1 activity [67]. 

3. Small Molecule CDC25 Inhibitors 

Over the past few years, several synthetic and natural molecules with different structural features 

targeting CDC25 activity have been reported. Reviews by Lavecchia et al. provide a comprehensive 

overview of the current CDC25 inhibitor development [2,5,68,69]. The majority of the known CDC25 

inhibitors belong to various chemical classes including phosphate bioisosteres, electrophilic entities, and 

quinonoids. These compounds act via reversible inhibition with the active site of CDC25s [70–73], 

irreversible inhibition of CDC25s by electrophilic modification [74,75] or oxidation of the critical 

cysteine residue in the catalytic domain (HCX5R) by reactive oxygen species (ROS) generated in 

cultured cells treated with quinone derivatives [76,77]. This latter mechanism could be consistent with 

the non-selective inhibition of CDC25 isoforms by quinone-type inhibitors. Moreover, ROS may oxidize 

other phosphatases, as well as unrelated cysteine-based enzymes, and therefore quinone-containing 

agents could potentially trigger a range of unrelated events in cells. To date, many of the most potent 

CDC25 inhibitors are quinone-containing compounds which inhibit all three isoforms of CDC25 in an 

unselective manner (Figure 4). 
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Figure 4. Structures of the most active quinone-containing inhibitors of CDC25 phosphatases. 

 

• NSC95397, an unspecific naphthoquinone isoform shows IC50 values in the mid nM range [72], 

significantly inhibits the proliferation of human and murine carcinoma cells and blocks the G2/M 

phase transition of the cell cycle.  

• NSC 663284 is a potent, cell-permeable, and unspecific irreversible CDC25 inhibitor, arrests cells 

in the G1 and G2/M phases and induces significant growth inhibition of human breast cancer cell 

lines [75].  

• The quinone-based compound BN 82685 inhibits all three mammalian CDC25 phosphatases in the 

high nM range in biochemical assays (IC50 = 250, 250, and 170 nM, respectively) and blocks the 

growth of human pancreatic tumor Mia PaCa-2 cells xenografted into athymic nude mice [78]. BN 

82685 was further reported to retain its activity when taken orally. Furthermore, combining low 

concentrations of BN 82685 and paclitaxel (Taxol®), inhibits the proliferation of colon cancer  

cells [79], suggesting that combinations of CDC25 inhibitors with microtubule-targeting agents 

may be of therapeutic interest.  

• The bis-quinonoid IRC-083864 is the most potent CDC25 inhibitor described thus far with an IC50 

value of ~20 nM. It has activity in pancreatic and prostate cancer xenografts [80] and has entered 

into clinical trial under the name of Debio 0931, but no data are available yet. The two quinone 

groups of this large molecule are thought to deactivate the enzyme by covalent bond formation or 

oxidation of the critical active site thiolate anion.  

• Another CDC25 inhibitor, ARQ-501, entered phase I clinical trials in patients with advanced and 

chemotherapy-unresponsive solid tumors, and is undergoing a phase II trial in patients with 

leiomyosarcoma and head and neck cancer, having completed an additional trial in combination 

with the nucleoside analog gemcitabine [81,82]. It is probable, however, that ARQ-501 is not 

directly a CDC25 inhibitor, but rather functions by some other mechanism.  
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• Recently, Lavecchia et al. discovered a new quinonoid CDC25 inhibitor (NSC 119915) with 

micromolar activity by means of a structure-based high-throughput virtual screening [24]. 

Mechanistically, NSC 119915 displays irreversible inhibition kinetics with in vitro Ki values for 

CDC25A and CDC25B of 70 and 80 nM, respectively, generates intracellular ROS in cells, arrests 

cells in the G0/G1 and G2/M phase transitions of the cell cycle, and significantly suppresses the 

growth of human MCF-7 breast, PC-3 prostate, and K562 leukemia cancer cell lines.  

4. Biological Functions of CDC25 in Human AML 

Relatively few studies have investigated the role of CDC25 in human AML. The most important 

studies are presented in detail in Table 1 [49,83–91], but it should be emphasized that several of these 

studies are relatively small, describe observations mainly in AML cell lines or used methodological 

strategies that would not be regarded as optimal today. Thus, knowledge about CDC25 in human AML 

is in our opinion incomplete, but despite this CDC25 should be regarded as a possible therapeutic 

target in human AML. The following main observations have been made in the available studies with 

regard to the various CDC25 isoforms in human AML (Table 1). 

Table 1. The importance of CDC25 in AML; a summary of previous studies. 

CDC25 Isoform [Reference] 

Experimental Model 
Observations (Scientific Background, Observations, Conclusion) 

CDC25A [83] AML cell lines 

(KBM3/Bu250 and OCI-AML3) 

Background: The combination of fludarabine, clofarabine and busulfan has a cytotoxic effect on 

AML cells; the authors investigated the effect of adding the HDAC inhibitor suberoylanilide 

hydroxamic acid (SAHA) to the triple combination. 

Observations: 

1. HDAC inhibition increased the antiproliferative effect together with caspase activation and 

induction of apoptosis. 

2. Additional HDAC inhibition induced an ATM-initiated DNA damage response with activation of 

p53 and CHK2. 

3. The four-drug combination activated the ATM-CHK2-CDC25-CDK1 pathway with increased 

CHK2 phosphorylation, decreased CDC25A levels and thereby increased phosphorylation and 

deactivation of the downstream target CDK1. 

4. Similar observations could be seen in primary human AML cells (only 3 patients examined). 

Conclusion: Decreased CDC25A expression is seen in AML cells following exposure to 

antiproliferative and cytotoxic treatment. 

CDC25A [84] Various cell 

lines, including the HL60 AML 

cell line 

Background: The authors investigated the antiproliferative effects of extracts from the plant 

Acalypha alopecuroidea.  

Observations: 

1. The extract had an antiproliferative and cytotoxic effect. 

2. A DNA damage response was seen with CHK2 phosphorylation/activation subsequently leading 

to inactivation of CDC25A through phosphorylation and finally CDK1 Y15 hyperphosphorylation 

with cell cycle arrest. 

Conclusion: Antiproliferative and cytotoxic effects with cell cycle arrest are associated with 

CDC25A inactivation. 
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Table 1. Cont.  

CDC25 Isoform [Reference] 

Experimental Model 
Observations (Scientific Background, Observations, Conclusion) 

CDC25A [85] HL60 AML cells 

Background: The anticancer-effect of extracts from the plant Scutellaria orientalis was investigated. 

Observations: 

1. The extract had a dose-dependent proapoptotic effect and induced genotoxic stress. 

2. Dose-dependent p21 induction together with dose-dependent CDC25A/cyclin D1 downregulation 

was also observed. 

Conclusion: Genotoxic stress and antiproliferative/proapoptotic effects are associated with 

downregulation of CDC25A. 

CDC25A [86] Various cell 

lines, including AML lines 

Background: The PI3K-Akt-mTOR pathway can be constitutively activated in human AML cells; 

the authors investigated a possible functional link between this pathway and CDC25A expression. 

Observations:  

1. Alk-dependent proliferation was inhibited by RNA interference-mediated downregulation of 

CDC25A. 

2. Pharmacological CDC25 inhibition reduced ALK (anaplastic lymphoma kinase)-dependent 

proliferation.  

3. PI3K-Akt-CDC25 mediated intracellular signaling downstream to the FLT3 growth factor receptor. 

Conclusion: High CDC25 protein levels are important for PI3K-Akt-mediated growth enhancement. 

CDC25A [87] AML cell lines 

(KG1a, U937) 

Background: Interactions with the microenvironment are important for regulation of proliferation 

for many different cells. 

Observations: 

1. Adhesion to fibronectin increased AML cell proliferation through increased S-phase entry; 

differentiated normal progenitors showed a similar effect whereas normal CD34+ cells showed 

decreased proliferation. 

2. The AML cells showed accumulation of CDC25A; pharmacological inhibition or siRNA-mediated 

downregulation of CDC25A impaired adhesion-dependent proliferation. CDC25A accumulation was 

CDH1 dependent and due to modified proteasomal degradation. 

3. The adhesion-induced proliferation and CDC25A upregulation was mediated through activation of 

the PI3K-Akt-mTOR pathway. 

Conclusion: CDC25A upregulation can be mediated by integrin-initiated signaling through PI3K-

Akt-mTOR. 

CDC25B [88] AML cell lines 

but also an immature subset of 

primary human AML cells 

(CD34+, high aldehyde 

dehydrogenase activity) 

Background: The immediate-early response gene 5 (IER5) can function as a regulator of cell 

proliferation in cancer cells; the authors investigated whether IER5 is a regulator of AML cell 

proliferation. 

Observations: 

1. IER5 was constitutively expressed in human AML cells. 

2. Overexpression of IER5 caused a decrease in CDC25B associated with an antiproliferative effect 

and G2/M arrest. 

3. Downregulation of CDC25B mRNA expression was caused by IER5 binding to the promoter and 

mediated through NF-YB and p300. 

Conclusion: IER5-induced growth inhibition of immature AML cells is associated with 

downregulation of CDC25 expression. 
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Table 1. Cont. 

CDC25 Isoform [Reference] 

Experimental Model 
Observations (Scientific Background, Observations, Conclusion) 

CDC25B [49] AML cell 

lines (KG1a, U937) and 

primary human AML cells 

Background: The importance of the G2/M checkpoint for the sensitivity of AML cells to genotoxic 

stress was examined; exposure to etoposide was used as the genotoxic stress. 

Observations: 

1. G2/M checkpoint stringency varied between AML cell lines; U937 cells showed an earlier exit from 

the checkpoint than KG1a cells after exposure to etoposide. Etoposide caused increased 

phosphorylation/activation of CHK1 in both cell lines, but the earlier exit by U937 cells was associated 

with an earlier decrease in CHK1 activation. 

2. CDC25B protein levels increased after etoposide exposure. CDC25B is important for checkpoint 

recovery, and pharmacological as well as siRNA inhibition of CDC25B caused an inhibition of the 

checkpoint recovery and entry into mitosis. 

3. Combination of etoposide + CHK1 inhibition increased the number of mitotic and apoptotic cells. 

Increased cytotoxicity was also seen for primary AML cells when combining etoposide with CHK1 

inhibition, but this potentiating effect differed between patients. 

Conclusion: CDC25 is important for the sensitivity of human AML cells for genotoxic stress.  

CDC25B [89] Primary 

human AML cells 

Background: Is CDC25 important for the antiproliferative effect of PI3K/mTOR inhibitors in primary 

human AML cells? 

Observations: 

1. Resistance to PI3K/mTOR inhibition was associated with increased expression of CDC25B. 

2. Pharmacological CDC25 inhibition has an additive antiproliferative effect to PI3K/mTOR inhibition 

only for certain cell lines and for a subset of patients. 

Conclusion: The effect of CDC25 inhibition differs between patients, additive antiproliferative effects 

to PI3K-mTOR inhibition are seen only for a subset. 

CDC25C [90] AML cell line 

U937 

Background: Does CDC25C associate with cyclin A in human AML cells? 

Observations:  

CDC25C coprecipitated with cyclin A in proliferating cells, this was not seen after apoptosis induction 

through the extrinsic and intrinsic pathways. 

Conclusion: CDC25C contribute to cell cycle regulation in human AML cell lines through complexing 

with cyclin A.  

CDC25C [91] Primary 

human AML cells 

Background: Normal cells show different CDC25C splice variants, is this also true for primary human 

AML cells? 

Observations:  

Several splice variants were detected in primary human AML cells, and the splicing pattern differed 

between AML cells and normal CD34+ hematopoietic cells. 

Conclusion: Aberrant splicing may contribute to the AML cell phenotype and to functional differences 

in cell cycle regulation between patients.  

CDC25 inhibitors can inhibit AML cell proliferation induced by integrin adhesion to  

fibronectin [87]; this integrin-initiated growth enhancement seems to be at least partly mediated 

through activation of PI3K-Akt-mTOR signaling, and its inhibition is thus an additional observation 

suggesting a functional interaction between CDC25 and PI3K/Akt/mTOR. The importance of CDC25 

for Akt-dependent and integrin-initiated proliferation was described for the CDC25A isoform, whereas 

the other isoforms were not examined. However, most CDC25 inhibitors are not specific for CDC25 

isoforms, i.e., there are only quantitative but not qualitative differences in their activity with regard to 
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inhibition of CDC25A/B/C [2] and it cannot be excluded that other isoforms and not only CDC25A 

contribute to the inhibition of Akt-dependent proliferation caused by pharmacological CDC25 

inhibition. To conclude, our knowledge about CDC25 in human AML is incomplete and fragmentary 

but the observations so far suggest that there are functional interactions with both Aurora kinases, 

PLK1, NFκB and PI3K/Akt/mTOR; all these mediators are regarded as important for AML (stem) cell 

proliferation and survival. For this reason the possible role of CDC25s as potential therapeutic targets 

in human AML should be further investigated. 

• CDC25A. Upregulation of CDC25A enhances lymphoma cell proliferation [87]. Its expression 

seems to be controlled through PI3K-Akt-mTOR signaling [87]. Loss of CDC25A is also important 

for cell cycle arrest during the differentiation of malignant hematopoietic cells [92]. This isoform 

seems to be important for the DNA damage response during exposure of human AML cells to 

cytotoxic drugs. It also seems important for Akt-dependent proliferation in AML cells because 

inhibition or knock-down of CDC25A reduces the Akt-dependent AML cell proliferation. The 

FLT3 gene is frequently mutated and thereby encodes a constitutively activated kinase in human 

AML and is an adverse prognostic factor [93]; this FLT3-initiated signaling is mediated through 

different pathways (including PI3K-Akt-mTOR) and CDC25 may thereby mediate or contribute to 

the adverse prognostic impact of this genetic abnormality.  

• CDC25B. High expression is associated with resistance against the antiproliferative effect of  

PI3K-Akt-mTOR inhibitors [89], but the molecular mechanisms behind this effect are not known. 

Inhibition of this isoform seems to reduce AML cell line proliferation through effects on NF-YB 

and p300 [88]; whereas in other cells growth inhibition is seen only with combined Cyclin D1 and 

CDC25B inhibition [84]. These regulatory events thus represent a link between CDC25 and  

the NF-YB system that consist of the three subunits NF-YA, NF-YB and NF-YC; this system seems 

to contribute to carcinogenesis for several human malignancies [94]. Finally, activation of the 

NFκB system is also important for transcriptional regulation, and inhibition of NFκB at G2/M phase 

transition delays mitotic entry and inhibits transcription of G2/M-specific genes, including cyclin B, 

PLK1, and CDC25B [95]. NFκB is important for leukemic stem cell functions and their 

chemosensitivity [96], but it is not known whether this importance of NFκB on AML stem cells is 

mediated through its effects on CDC25B transcription. 

• CDC25C. The molecule is encoded on chromosome 5 and CDC25C seems important for the 

phenotype of AML cells with chromosomal deletions involving this chromosome [97]. Malignant 

myeloid cells seem to express a splicing/isoform profile of CDC25C that is different from normal 

hematopoietic cells [91].  

5. The Molecular Context of CDC25 in Human AML Cells 

Cell cycle progression is a multistep process regulated by an interacting molecular network, and the 

CDC25 family is important at different steps. However, the expression or function of several other 

regulators can also be altered in human AML; leukemia-associated alterations of other important 

regulators will be described below.  
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5.1. Regulation of the G1 Phase of the Cell Cycle in Human AML Cells 

Cells that have exited mitosis can become quiescent, differentiate or progress to another cell 

division cycle; initiation of a new cell cycle can be stimulated by the downstream signaling from 

various growth factor or cytokine receptors and at the same time the transcriptional regulation can be 

altered to suppress differentiation [98]. However, as summarized in Table 2, the various genetic 

abnormalities of the AML cells will differ in their effects on various regulators of G1/S-phase 

progression [98–108]. Regulation of the G1 phase thus seems to differ between patients according to 

their AML-associated genetic abnormalities. 

CDK2 and CDK4/6 activation in G1 can be caused by various molecular mechanisms and not only 

by CDC25, and several of these molecules are regarded as potential therapeutic targets in human 

malignancies. The optimal targeting of G1 progression is therefore likely to differ between patients, 

and the possible therapeutic strategies include p53 activation and inhibition of various receptor 

tyrosine kinases, CXCR4 and CDK4/6 [33,105,107,109,110].  

5.2. Regulation of the S-Phase  

The regulation of S-phase progression is summarized in Figure 2 and the altered regulation of this 

phase in human AML cells is described more in detail in Table 3 [49,98,99,102,111–129]. The 

regulation of S-phase progression can be altered in primary AML cells, and the alterations can be both 

upstream and downstream to CDC25. This cell cycle phase is targeted by the antileukemic drugs 

cytarabine, clofarabine and anthracyclines [130–133]. Finally, the histone modifier MLL is affected by 

the various 11q23-involving translocations; MLL functions as a cell cycle regulator through its effects 

on CDC45 and the function of CDC45 in cell cycle regulation seems to be altered especially in the 

patient subset with these translocations [102].  

5.3. Regulation of the G2 Phase  

Table 4 gives an overview of important regulators of the G2 phase that ends up with CDC25 

mediated activation of CDK1/cyclin B; the described abnormalities of G2 regulation in primary human 

AML cells are summarized in the table [95,127–129,134–140]. Similar to the G1 phase, the molecular 

context of CDC25 varies between patients also for this phase, but in contrast to the G1 phase where the 

heterogeneity is mainly due to the direct effects of AML-associated genetic abnormalities, the 

heterogeneity of G2 regulation is mainly determined by differences in expression levels (BRCA1, 

PP2A, PLK1, cyclin B) or isoform profiles (p53, PP2A).  

5.4. Regulation of Mitosis  

CDC25 is not an important mediator in regulation of the mitotic step that includes the spindle 

assembly checkpoint members together with the Aurora kinases and PLK1 [98]. However, several of 

these regulators can be altered in human AML, the most important being listed below: 
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Table 2. The molecular environment of CDC25—altered regulation of the G1 phase in human AML (← stimulation; ┴ inhibition). 

Signaling Cascade Effects on Cell Cycle Regulation—Effects of Genetic Abnormalities  

Receptor ligation 

or mutations 

↓ 

STATs 

MAP kinases 

PLC 

↓ 

CDK4/6 

Cyclin D 

↓ 

 

↓ 

 

CDK2 

Cyclin E 

 

↓ 

 

↓ 

 

Entering of  

S-phase 

 

 

←  RTK 

 

 

          ↓ 

 

 

←  PIM kinases 

 

          ┴ 

├    CKIs 

 

 

├  p53/p21 

← E2F 

 

 

 

 

 

 

 

 

Receptor ligation and mutations of growth factor receptor tyrosine kinases: Proliferation of primary AML cells is increased by 

receptor ligation [103]; receptor tyrosine kinase (RTK) mutations (e.g., c-kit mutations, FLT3-mutations) can cause constitutive 

signaling [98]. High CXCR4 levels is seen for a minority of patients and is associated with adverse prognosis [105]. 

CDK4/6: These mediators stimulate G1 progression and bind/sequester CDK inhibitors (CKI), e.g., p14, p16, p27 [98]. p14 and p27 

can show increased expression in AML, p16 may show low expression [106].  

PIM kinases: These kinases are activated by the upstream receptor ligation together with STAT/MAP kinases and thereafter 

increase CDK4 activation [98]. They also decrease the effects of the CKIs, and PIM1 activates CDC25 directly (see Table 4). 

CKI (CDK inhibitors): High p27 levels seem to be predictive of complete remission after intensive induction chemotherapy [102]. 

Phospholipase Cβ 1 (PLC): The nuclear form of this enzyme is an important checkpoint that controls progression through the G1 

phase, its activation depends on type 1 insulin-like receptor (IGF-R) and monoallelic deletions seem to be associated with 

aggressive disease both for patients with AML and patients with preleukemic myelodysplastic syndromes [108]. 

CDK2 activation: The upstream receptor-initiated signaling activates CDK2 through CDK4/6 dephosphorylation.  

Cyclin E: The expression varies between AML patients, high expression is seen in one third of the patients [99].  

p53 and p21—different p53 isoforms associated with FLT3-ITD and NPM1 mutations: p53 inhibits G1 progression through p2 

induction. p53 is mutated only in a minority of AML patients; but the balance between various isoforms differ between patients, 

e.g., between patients with adverse prognosis FLT3-ITD and NPM1 mutations [107]. 

E2F: Inactivation of the Rb gene by CDK4/6 releases the E2F transcription factor that increase transcription of cyclin E; aberrant 

expression of a variant E2F can be seen in human AML [100,101]. 

TET2 mutations: These loss-of-function mutations are detected in 10-20% of AML patients, loss of TET activity leads to increased 

proliferation and is associated with adverse prognosis [104]. 

MLL fusion proteins—11q23 translocations: The wild-type MLL protein cause histone methylation; its expression normally 

peaks at the G1/S boundary but the fusion protein shows stable expression and therefore seems to abrogate checkpoint control and 

increase the expression of homeobox transcription factors as described in detail by [98].  
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Table 3. The molecular environment of CDC25 during the S-phase of the cell cycle (← stimulation; ┴ inhibition). 

Signaling 

Pathway 

Additional 

Regulator 
Normal Molecular Function Abnormality in Human AML 

DNA damage 

Replication 

checkpoint 

↓ 

ATR 

↓ 

CHK1 

┴ 

CDC25 

Claspin 

ATR: a serine-threonine kinase activated by DNA damage [98]. 

Claspin: activated by ATR through phosphorylation, initiates 

DNA repair and enhances this DNA damage response through 

stimulation of CHK1 [120,123]. 

CHK1: a serine/threonine kinase that inhibits CDC25 through 

addition of inhibitory phosphate groups. Differentially expressed 

in AML cell lines [111]. 

Clinical relevance: MLL-fusion proteins caused by 11q23 

translocations can inhibit the MLL-ATR interaction, causing 

MLL degradation and continued replication [115]. 

ATR: stabilizes the chromatin-remodeller MLL (see below), this ability is lost for MLL-fusion 

proteins encoded by 11q23 translocations [98]. 

Claspin: differentially expressed in AML cell lines [49] 

CHK1: experimental and clinical studies suggest that CHK1 inhibition has antileukemic effects 

[112,114].  

Chemotherapy: cytarabine and clofarabine cause S-phase/replication arrest and CHK1 and 

CHK2-mediated inhibitory phosphorylation of CDC25 [98]. 

Double-strand 

break 

Intra-S phase 

Checkpoint 

↓ 

ATM 

↓ 

CHK2 

┴ 

CDC25 

RAD51C 

PIM kinase 1 

FLT3-ITD 

ATM: a serine/threonine kinase activated by DNA double 

strand breaks. 

CHK2: a serine/threonine kinase that adds inhibitory phosphate 

to CDC25 and thereby inhibits CDK2. 

RAD15C: Involved in ATM-dependent binding to DNA 

double-strand breaks required for CHK2 phosphorylation [122]. 

PIM kinase 1: this serine/threonine kinase transduces cytokine-

initiated mitogenic signals; it phosphorylates CDC25A directly 

and this phosphorylation increases the phosphatase activity of 

CDC25A [126]. 

ATM: genetic variants of ATM influence treatment outcome, heterozygous ATM 4138C>T is 

associated with an inferior treatment outcome after intensive chemotherapy [121]. Missense 

mutations have been detected in AML [118]. 

CHK2: can be mutated in human AML, but this is uncommon [111].  

RAD51C: polymorphisms do not influence risk of AML or outcome after chemotherapy [116]. 

FLT3-ITD: this is a common AML mutation associated with chemoresistance and reduced 

AML-free survival. It shows constitutive signaling and causes activation of CDC25. Normal 

myeloid differentiation requires activation of the transcription factor C/EBPα; constitutively 

activated FLT3-ITD causes an inhibitory phosphorylation and thereby a block of differentiation 

mediated either by ERK1/2 or by CDK1 (see description of the G2 phase, Table 4) [127–129]. 

Chemotherapy: topoisomerase inhibitors (etoposide, anthracyclines) favor DNA strand breaks 

and provoke a checkpoint response involving ATM [98]. 

CDC25 

↓ 

↓ 

CDK2 

Cyclin A 

Cyclin C 

↓ 

↓ 

CDC45 

 

CDK2: a serine/threonine kinase activated by cyclin A and 

cyclin C and inactivated by p21 and p27. 

Cyclin A: regulates S-phase progression, interact with  

c-Myb [113,117,124]. 

Cyclin E: regulates G1/S transition 

CDC45: regulator of replication, regulated by wild-type MLL 

[102]. 

p21: inhibitor of CDK2 and CDK4 

p27: inhibitor of CDK2 and CDK4 

CDK2: high activity with fast progression through S-phase has been described in AML [102]. 

Cyclin A: high activity with fast progression through S-phase has been described 

[113,117,124].  

Cyclin E: high activity with fast progression through S-phase has been described in human 

AML [99]. 

CDC45: altered regulation in 11q23 AML [102]. 

p21: deficiency cooperates in t(8;21) variants of AML [119]. 

p27: downregulated in AML, faster S-phase progression [125]. 
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Table 4. The molecular environment of CDC25‒altered regulation of the G2 checkpoint in human AML (← stimulation; ┴ inhibition). 

Signaling Cascade Effects on Cell Cycle Regulation—Effects of AML-Associated Abnormalities  

 

DNA-damage 

 

↓ 

 

ATR-ATM 

CHK1-CHK2 

 

┴ 

CDC25 

 

↓ 

 

CDK1 

Cyclin B 

 

↓ 

 

Mitosis 

 

γ-H2Ax, 
BRAC1 

 

SET  

┴ 

← PP2A 

 

 

 

← PLK1 

← 
FOXM1 

 

 

 

├ p53/p21 

NFκB and cell cycle regulation:  
Activation of the NFκB system is important for transcriptional regulation, and inhibition of NFκB delays mitotic entry and 
inhibits transcription of G2/M-specific genes, including cyclin B, PLK1, and CDC25B [95]. NFκB is important for AML 
stem cell functions and their chemosensitivity [96], but it is not known whether its effect on leukemic stem cells is mediated 
through altered CDC25B expression. 

The DNA damage response: 
γ-H2Ax: Phosphorylation of this histone is an indication of a DNA damage response, the AML cell level after treatment 
shows considerable variation between patients [135]. 
BRCA1/2: DNA repair is closely linked to cell cycle regulation; reduced BRCA1 gene expression is seen for a minority of 
de novo AML but for a majority of secondary AMLs [138]. 

SET: an endogenous inhibitor of PP2A [134].  
PP2A: Inactivation through phosphorylation is seen in primary AML cells for a majority of patients; this inactivation can be 
caused by either deregulated expression of endogenous PP2A inhibitors (e.g., SET, see above), overexpression of SETBP1 or 
downregulation of PP2A subunits [134].  

PLK1: This kinase is overexpressed in primary AML cells for a majority of patients [137,139]. 
FOXM1:  This transcription factor seems to be overexpressed in primary AML cells for most patients; decreased expression 
is associated with G2-arrest and reduced levels of Aurora kinase B, cyclin B1 and CDC25B together with increased levels of 
p21 and p27 at the protein level [136]. 

Cyclin B: Cyclin B1 is commonly expressed in primary AML cells, but the expression pattern (cytoplasmic versus nuclear) 
varies between patients [140]. The expression is controlled by FOXM1, see above [136]. 
p53/p21: See Tables 2 and 3  

CDK1 and FLT3 mutations: 
An alternative pathway for activation of CDK1 is the constitutive activation by FLT3-ITD; this signaling can activate both 
ERK1/2 and CDK1 and these kinases can then phosphorylate the transcription factor C/EBPα; this phosphorylation will 
inhibit its transcriptional activity and thereby contribute to the differentiation block in these AML cells [127–129]. 
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• The mitotic checkpoint. Several regulators of the mitotic checkpoint show decreased levels in 

primary human AML cells and this weakens the mitotic checkpoint response [141–143]. Blinkin 

can also be a fusion partner with MLL in 11q23 translocations; this fusion molecule seems to cause 

a dominant negative effect over the wild type protein.  

• Chromatin modeling. 11q23 translocations resulting in a fusion protein with septin cause disturbed 

chromatin remodeling [144]. The chromatin-modifying enzyme MLL5 can also be deleted [145,146] 

thereby altering the mitotic entry.  

• Aurora kinases and PLK1. The Aurora kinases [147–149] as well as PLK1 [137,139,150] can all be 

overexpressed in primary human AML cells and contribute to disturbances in mitotic entry, 

progression and/or exit.  

• The t(8;21) abnormality. This AML-associated abnormality can also disturb this step through 

downregulation of securin. Furthermore, cyclin B is involved in regulation of mitosis and can be 

downregulated by the fusion protein encoded by the t(8;21) fusion gene [141]. 

• CDK1 and FLT3 mutations. An alternative pathway for activation of CDK1 is constitutive 

activation of FLT3-initiated signaling by FLT3-ITD; this signaling can activate both ERK1/2 and 

CDK1 and these kinases then phosphorylate the transcription factor C/EBPα; this phosphorylation 

will inhibit its transcriptional activity and thereby contribute to the differentiation block in these 

AML cells [127–129]. Whether this phosphorylation is mediated by ERK1/2 or CDK1 seems to 

differ between patients [127,151], and this difference between FLT3-ITD patients may depend on 

the large variation of the ITDs between patients [152]. Thus, the FLT3-ITD abnormalities can alter 

both differentiation and cell cycle regulation through their effects on CDK1. 

5.5. Conclusions—Patients are Heterogeneous with Regard to Cell Cycle Regulation of the AML Cells  

The summaries given above and the data presented in Tables 2–4 clearly illustrate the patient 

heterogeneity with regard to cell cycle regulation in their AML cells. This heterogeneity is caused both 

by direct effects of the AML-associated genetic abnormalities (e.g., fusion proteins), but also by 

altered intracellular levels of important cell cycle regulators. Thus, the biological context of CDC25 in 

primary AML cells will differ between patients. These observations further support our hypothesis that 

the effect of CDC25 inhibition in primary human AML cells will differ between patients, and future 

biological as well as clinical studies therefore have to address the question whether CDC25 inhibition 

is effective for most or only a subset of AML patients.  

6. CDC25 Inhibition in the Treatment of Human AML 

6.1. CDC25 and the Anticancer Effects of mTOR Inhibition 

Inhibition of the PI3K-Akt-mTOR pathway is now considered for the treatment of human  

AML [89]. However, a recent study described that the mTOR inhibitor rapamycin affected the 

phosphorylation status of 250 phosphorylation sites in 161 cellular proteins, including several kinases 

and phosphatases [61]. These authors described that rapamycin-induced activation/phosphorylation of 

both CDC25B and Akt; silencing of the CDC25 phosphatase through mutation of the phosphorylation 

site then blocked the activation of Akt in various cancer cell lines. This last observation indicates that 
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phosphorylation of CDC25B is critical for the rapamycin-induced activation of Akt and eIF4E 

pathways while still suppressing the phosphorylation of the downstream mTOR targets p70S6K and 

4E-BPI [153]. The CDC25B-mediated activation of Akt/eIF4E may then represent a resistance 

mechanism against therapeutic inhibition of mTOR, and combined inhibition of PI3K-Akt-mTOR and 

CDC25 may then be a strategy to increase the anticancer effect of PI3K-Akt-mTOR inhibition. To the 

best of our knowledge these effects have only been described for rapamycin, and it is not known 

whether similar effects are seen for other mTOR inhibitors or for inhibitors targeting other members of 

this pathway. 

Our recent observation that resistance against PI3K/mTOR inhibitors in primary human AML cells 

was associated with increased mRNA expression of CDC25B also supports the hypothesis that CDC25 

inhibition will increase the anticancer effects of PI3K/mTOR inhibition, but at least for AML this 

combined strategy showed an increased efficiency only for certain patients [89].  

To summarize, the PI3K-Akt-mTOR pathway seems to be closely linked to CDC25, especially the 

CDC25A and CDC25B isoforms in human AML (Table 1), but our present knowledge is fragmentary 

and cannot explain all the experimental observations. CDC25A seems necessary for Akt-dependent 

and integrin-initiated proliferation (only examined in a limited number of cell lines), but at the same 

time signaling through this pathway can inhibit CDC25 through its sequestering in the cytoplasm. On 

the other hand, high constitutive CDC25B expression has been associated with resistance to PI3K and 

mTOR inhibitors in primary AML cells. Possible explanations for these apparent discrepancies could 

be that: (i) PI3K-Akt-mTOR signaling can be modulated by the crosstalk with other pathways; (ii) the 

final effect of CDC25 in primary human AML cells depends on the CDC25 level; and (iii) the 

observed effects in a limited number of AML cell lines may not be representative for primary human 

AML cells in general.  

6.2. CDC25 and Induction of Differentiation in AML Cells 

AML is characterized by accumulation of immature leukemia cells; these cells have a block in their 

differentiation but for some patients morphological signs of differentiation can be seen [154]. The 

function of CDC25 also seems to be affected by AML cell differentiation, i.e., to differ between AML 

cells with no signs of differentiation and cells showing monocytic differentiation [49]. Similarly, 

CDC25 is downregulated when the monocytic AML cell line ML-1 is stimulated to differentiate 

towards granulocytes in vitro [155]. However, it is not known whether the limited signs of 

differentiation seen for primary AML cells will have any major impact on the level of CDC25 or the 

effects of CDC25 inhibition in vivo.  

7. The Possible Use of CDC25 Inhibitors in the Treatment of human AML 

7.1. AML is a Heterogeneous Disease—the Possible Use of CDC25 Inhibitors Only in Subsets  

of Patients 

AML patients are classified according to the recently published WHO classification [154], and this 

classification is based on differences in morphology, predisposition (AML secondary to 

myelodysplastic syndromes (MDS) or chemotherapy), and the detection of defined genetic 
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abnormalities. Even by using only this limited number of parameters it is possible to classify the 

patients into a wide range of subsets that only reflects a part of the biological heterogeneity in human 

AML. Firstly, even though AML is generally defined as a disease with at least 20% leukemic blasts 

among bone marrow nucleated cells, there are exceptions from this definition, the most important 

being that patients with certain low-risk genetic abnormalities (i.e., inv(16), t(16;16), t(8;21)) are 

defined to have AML even when the number of blasts is <20%. Secondly, the age of the patient seems 

to reflect biological differences independent of the WHO classification. Thirdly, both the cytogenetic 

and molecular genetic abnormalities show a much more extensive heterogeneity than reflected in the 

WHO classification. Finally, a large number of differences at the protein level has also been  

detected [107,156,157]. In our opinion it would not be surprising if CDC25 inhibitors would be 

effective only for a subset of these highly heterogeneous patients. Future studies should therefore try to 

identify biomarkers for susceptibility to CDC25 inhibition.  

7.2. Combined Targeting of Cell Cycle Regulation—the Possible Combination of CDC25 Inhibition 

with Inhibitors of PLKs, AURORA Kinases or CDK Inhibitors 

Targeting of cell cycle regulation is already considered for the treatment of human AML, and 

especially inhibition of Aurora kinases or PLK1 has been studied in clinical trials as described in detail 

in a recent review [139]. These clinical studies have included hundreds of patients and both specific 

and multikinase inhibitors have been tried. The inhibitors are effective and partial responses or stable 

disease have been observed even for patients with advanced or multiresistant AML. Both PLK1 and 

Aurora B interact and activate CDC25 (Figure 3), and the clinical experience with these alternative cell 

cycle inhibitors suggests that CDC25 inhibition is effective in human AML.  

The 11q23 chromosomal abnormalities involving the H3K4 methyltransferase MLL give rise to an 

aggressive subtype of AML [154]. A recent study described that AML cells driven by MLL-AF9 

derived from t(9;11) are exceptionally reliant on CDK6 but not its functional homolog CDK4, and that 

the growth inhibition induced by CDK6 depletion is mediated through enhanced myeloid 

differentiation [158]. CDK6 seems to have a similar function also for other translocations involving 

11q23. The same seems to be true in acute lymphoblastic leukemia with 11q23 fusion genes [159]. 

CDK6 inhibition by the combined CDK4/6-inhibitor PD0332991 seems to have similar effects [159]. 

CDC25 is a regulator of the CDK4/CDK6/cyclin D complex (Figure 2), and the possible use of CDC25 

inhibitors alone or in combination with CDK targeting treatment should therefore be further explored.  

The sulfonamide derivative E7070/indisulam [160–162] inhibits carbonic anhydrases I, II, IV and 

IX [160]. This agent was originally identified as an antitumor agent due to its inhibitory effects on cell 

cycle progression in human cancer cell lines, including (i) suppression of cyclin E expression;  

(ii) reduced protein expression of cyclin A, cyclin B, CDK1 and CDK2; (iii) inhibition of CDK2 and 

Rb phosphorylation; and (iv) induction of p53 and p21 [160]. E7070 thereby disrupted cell cycle 

progression at different steps including G1/S and G2/M transitions. Combination of E7070 and CDC25 

inhibition would thus represent an extensive inhibition of several steps in the cell cycle together with 

inhibition of adaptation to the hypoxic bone marrow microenvironment of human AML [163–165].  

E7070 has been investigated in a recently reported clinical trial [166]. The study included 20 

patients with advanced or chemoresistant AML; patients were initially treated with E7070 alone and, if 
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no response, they received E7070 plus idarubicin and cytarabine. No patient responded to E7070 

alone, but eight patients achieved hematological remission after combination therapy. Two patients 

had prolonged marrow hypoplasia exceeding 42 days, the only grade ≥3 nonhematological toxicity 

was hyperbilirubinemia. The results are encouraging, but this was only an interim analysis and one has 

to await the final report. 

7.3. Combination of CDC25 Inhibitors with Conventional Chemotherapy 

PLK/Aurora kinase inhibitors seem to enhance the antileukemic effect of several cytotoxic drugs 

used in the clinical treatment of human AML, including cytarabine, daunorubicin and etoposide [139]. 

Furthermore, many cell cycle inhibitors show minimal cross-resistance with conventional anticancer 

agents [139]. This may also be true for CDC25 inhibitors, and the possibility to combine CDC25 

inhibitors with conventional antileukemic drugs should be further investigated in experimental studies 

and, eventually, in later clinical studies. 

One possibility would be to combine CDC25 inhibitors with intensive chemotherapy to increase the 

antileukemic effect and thereby improve the long-term AML-free survival. However, an alternative 

strategy could be to combine CDC25 inhibitors with low-toxicity disease-stabilizing strategies in patients 

that are unfit for the intensive and potentially curative treatment. If this last strategy is considered, 

CDC25 inhibitors may be combined with all-trans-retinoic acid (ATRA) plus valproic acid [167],  

low-dose cytarabine [168], hydroxyurea and/or 6-mercaptopurine [167–171].  

7.4. Toxicity versus Antileukemic Efficiency 

Several side effects have been observed with other pharmacological agents targeting cell cycle 

regulation [139]. Hematological toxicity with neutropenia (eventually febrile neutropenia) and 

thrombocytopenia seems to be relatively common for Aurora kinase and PLK1 inhibitors. The 

preliminary experience also for other cell cycle inhibitors including ARQ-501 [81,82] is that anemia 

and eventually other signs of bone marrow toxicity are relatively common. Combination of different 

cell cycle-targeting strategies or cell cycle targeting together with intensive chemotherapy will 

possibly lead to more severe cytopenias. This problem may be less severe if CDC25 inhibition is tried 

as a part of the post-remission/consolidation treatment when disease-induced bone marrow failure is 

not present. Gastrointestinal toxicity due to severe mucositis is another severe problem in conventional 

AML treatment and such toxicity is also common and can even be dose-limiting for PLK/Aurora 

kinase inhibitors [139]. Gastrointestinal toxicity may also become a problem if conventional AML 

chemotherapy is combined with CDC25 inhibition. Thus, the toxicity has to be carefully evaluated if 

CDC25 inhibition is combined either with other cell cycle-targeting strategies or with conventional 

chemotherapy, even for low-dose disease-stabilizing chemotherapy.  

7.5. Inhibition of Several Therapeutic Targets through the Use of a Single CDC25 Inhibitor 

Most CDC25 inhibitors inhibit all three CDC25 isoforms, but the relative strength of inhibition for 

each of the three isoforms varies between inhibitory agents [5]. Further studies are needed to clarify 

whether any of the three isoforms is of particular biological importance in human AML.  
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CDC25 has its own network of interacting kinases (Table 5) [21,25,29,30,32,33,44,47,48,50,60–65,172]. 

Its activity is modulated by various kinases and at the same time CDC25 regulates the activity of 

several kinases. CDC25 inhibition thereby offers the possibility to target several intracellular 

regulators through inhibition of a single molecule. As described above, CDC25 even seems to 

contribute to the regulation of cytoplasmic signaling pathways. Only future studies can clarify whether 

this represents a possibility for enhanced antileukemic activity rather than a risk of severe toxicity, and 

studies in AML animal models will then be important [173,174].  

Table 5. CDC25 and the most important members of its interacting kinase network—an 

overview of kinases that activate CDC25 and kinases that are activated by  

CDC25 dephosphorylation. 

Upstream Events Affecting CDC25 Activation (See Also Figure 3) 

Akt/PKB [60,62–65] 
This pathway can be an upstream inhibitor of CDC25 through sequestering it in the 

cytoplasm, but at the same time CDC25A is necessary for Akt-initiated proliferation.  

MAP kinases [30] Negative regulator during cellular stress.  

CDK1/cyclin B [44] Activates CDC25B and CDC25C in a positive feedback loop. 

CDK2/cyclin E [21,29] Activates CDC25A in a positive feedback loop. 

PLK1 [44] Activates CDC25 and promotes mitosis; both direct and indirect activating effects. 

Aurora kinases [47,48] 
Activate CDC25s and promote mitosis; both direct and indirect activating effects via 

activation of PLK1.  

Wee1 and Myt1 kinases [33] Inhibition of CDC25s. 

CHK1 [50,172] 
Inactivates all three isoforms of CDC25; it also inhibits CDC25s indirectly, e.g., 

through PLK1 inhibition.  

CHK2 [50,172] 
Inactivates all three isoforms of CDC25; it also inhibits CDC25s indirectly, e.g., 

through PLK1 inhibition. 

CDK1 [30,32] 
CDK1/cyclin A is dephosphorylated by CDC25B in late S-phase. Dephosphorylation 

of CDK1/cyclin B by CDC25 is a rate-limiting step for transition from G2 to mitosis. 

CDK2 [25,30] 
Activated during several steps in the cell cycle. Associates with cyclin E during G1/S 

transition and cyclin A during S-phase. 

CDK4 [25] Important for entry into S phase. Associates with cyclin D. 

CDK6 [25] Important for entry into S phase. Associates with cyclin D. 

Akt/protein kinase B [61] Its phosphorylation can be regulated by CDC25B. 

8. Final Comments 

As outlined above, CDC25 inhibition can be achieved directly and indirectly through inhibition of 

its upstream signaling pathways or its interacting molecules. The direct inhibitors have not been 

investigated in clinical trials (or are in the early stages of clinical trials) and their pharmacokinetic 

properties have to be better characterized, but despite this they should be regarded as promising 

therapeutic agents in human AML because they offer the possibility to target several proteins, 

including various CDC25 isoforms as well as several kinases, through the administration of single 

pharmacological agents. Their possible use in AML treatment either as single drugs or in combination 

with other drugs should therefore be further investigated. The first step will then be a further 

characterization of the effects at the cellular level and especially in primary human AML cells and this 
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should be followed by studies in AML animal models [173,174] as a basis for the design of further 

clinical studies. 

Acknowledgments 

This work was supported by the Norwegian Cancer Society and the Solveig and Ove  

Lundes Foundation. 

Author Contributions 

AKB, HK, AL and ØB wrote the paper. All authors read and approved the final manuscript.  

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Hunter, T. Protein kinases and phosphatases: The yin and yang of protein phosphorylation and 

signaling. Cell 1995, 80, 225–236. 

2. Lavecchia, A.; di Giovanni, C.; Novellino, E. Inhibitors of Cdc25 phosphatases as anticancer 

agents: A patent review. Expert Opin. Ther. Pat. 2010, 20, 405–425. 

3. Galaktionov, K.; Beach, D. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: 

Evidence for multiple roles of mitotic cyclins. Cell 1991, 67, 1181–1194. 

4. Kristjansdottir, K.; Rudolph, J. Cdc25 phosphatases and cancer. Chem. Biol. 2004, 11, 1043–1051. 

5. Lavecchia, A.; Di Giovanni, C.; Novellino, E. CDC25 phosphatase inhibitors: An update.  

Mini Rev. Med. Chem. 2012, 12, 62–73. 

6. Johnston, P.A.; Foster, C.A.; Tierno, M.B.; Shun, T.Y.; Shinde, S.N.; Paquette, W.D.; 

Brummond, K.M.; Wipf, P.; Lazo, J.S. Cdc25B dual-specificity phosphatase inhibitors identified 

in a high-throughput screen of the NIH compound library. Assay Drug Dev. Technol. 2009, 7, 

250–265. 

7. Boudolf, V.; Inze, D.; de Veylder, L. What if higher plants lack a CDC25 phosphatase?  

Trends Plant. Sci. 2006, 11, 474–479. 

8. Obtained from the NCBI protein database. Available online: http://www.ncbi.nlm.nih.gov/protein 

(accessed on 7 November 2014). 

9. Keyse, S.M.; Ginsburg, M. Amino acid sequence similarity between CL100, a dual-specificity 

MAP kinase phosphatase and cdc25. Trends Biochem. Sci. 1993, 18, 377–378. 

10. Dillet, V.; van Etten, R.L.; Bashford, D. Stabilization of charges and protonation states in the 

active site of the protein tyrosine phosphatases: A computational study. J. Phys. Chem. B 2000, 

104, 11321–11333. 

11. Fauman, E.B.; Cogswell, J.P.; Lovejoy, B.; Rocque, W.J.; Holmes, W.; Montana, V.G.;  

Piwnica-Worms, H.; Rink, M.J.; Saper, M.A. Crystal structure of the catalytic domain of the 

human cell cycle control phosphatase, Cdc25A. Cell 1998, 93, 617–625. 



Molecules 2014, 19 18436 

 

 

12. Reynolds, R.A.; Yem, A.W.; Wolfe, C.L.; Deibel, M.R., Jr.; Chidester, C.G.; Watenpaugh, K.D. 

Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell 

cycle. J. Mol. Biol. 1999, 293, 559–568. 

13. Gabrielli, B.G.; Clark, J.M.; McCormack, A.K.; Ellem, K.A. Hyperphosphorylation of the  

N-terminal domain of Cdc25 regulates activity toward cyclin B1/Cdc2 but not cyclin A/Cdk2.  

J. Biol. Chem. 1997, 272, 28607–28614. 

14. Rudolph, J. Targeting the neighbor’s pool. Mol. Pharmacol. 2004, 66, 780–782. 

15. Rudolph, J. Cdc25 phosphatases: Structure, specificity, and mechanism. Biochemistry 2007, 46, 

3595–3604. 

16. Sohn, J.; Kristjansdottir, K.; Safi, A.; Parker, B.; Kiburz, B.; Rudolph, J. Remote hot spots 

mediate protein substrate recognition for the Cdc25 phosphatase. Proc. Natl. Acad. Sci. USA 

2004, 101, 16437–16441. 

17. Boutros, R.; Dozier, C.; Ducommun, B. The when and wheres of CDC25 phosphatases.  

Curr. Opin. Cell Biol. 2006, 18, 185–191. 

18. Kallstrøm, H.; Lindqvist, A.; Pospisil, V.; Lundgren, A.; Rosenthal, C.K. Cdc25A localisation 

and shuttling: Characterisation of sequences mediating nuclear export and import. Exp. Cell Res. 

2005, 303, 89–100. 

19. Muslin, A.J.; Xing, H. 14–3-3 proteins: Regulation of subcellular localization by molecular 

interference. Cell Signal. 2000, 12, 703–709. 

20. Malumbres, M.; Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 2005, 

30, 630–641. 

21. Hoffmann, I.; Draetta, G.; Karsenti, E. Activation of the phosphatase activity of human cdc25A 

by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J. 1994, 13,  

4302–4310. 

22. Chen, M.S.; Hurov, J.; White, L.S.; Woodford-Thomas, T.; Piwnica-Worms, H. Absence of 

apparent phenotype in mice lacking Cdc25C protein phosphatase. Mol. Cell. Biol. 2001, 21, 

3853–3861. 

23. Ferguson, A.M.; White, L.S.; Donovan, P.J.; Piwnica-Worms, H. Normal cell cycle and 

checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases.  

Mol. Cell. Biol. 2005, 25, 2853–2860. 

24. Lavecchia, A.; di Giovanni, C.; Pesapane, A.; Montuori, N.; Ragno, P.; Martucci, N.M.;  

Masullo, M.; de Vendittis, E.; Novellino, E. Discovery of new inhibitors of Cdc25B dual 

specificity phosphatases by structure-based virtual screening. J. Med. Chem. 2012, 55, 4142–4158. 

25. Ren, S.; Rollins, B.J. Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 2004, 117, 239–251. 

26. Resnitzky, D.; Reed, S.I. Different roles for cyclins D1 and E in regulation of the G1-to-S 

transition. Mol. Cell. Biol. 1995, 15, 3463–3469. 

27. Shen, T.; Huang, S. The role of Cdc25A in the regulation of cell proliferation and apoptosis. 

Anticancer Agents Med. Chem. 2012, 12, 631–639. 

28. Sherr, C.J.; Roberts, J.M. CDK inhibitors: Positive and negative regulators of G1-phase 

progression. Genes Dev. 1999, 13, 1501–1512. 



Molecules 2014, 19 18437 

 

 

29. Blomberg, I.; Hoffmann, I. Ectopic expression of Cdc25A accelerates the G(1)/S transition and 

leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol. Cell. Biol. 1999, 

19, 6183–6194. 

30. Frazer, C.; Young, P.G. Phosphorylation mediated regulation of Cdc25 activity, localization and 

stability. In Protein Phosphorylation in Human Health; Huang, C., Ed.; InTech: Rijeka, Croatia, 

2012; pp. 395–436. 

31. Turowski, P.; Franckhauser, C.; Morris, M.C.; Vaglio, P.; Fernandez, A.; Lamb, N.J. Functional 

cdc25C dual-specificity phosphatase is required for S-phase entry in human cells. Mol. Biol. Cell 

2003, 14, 2984–2998. 

32. Mailand, N.; Podtelejnikov, A.V.; Groth, A.; Mann, M.; Bartek, J.; Lukas, J. Regulation of 

G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. 

EMBO J. 2002, 21, 5911–5920. 

33. Wang, Y.; Ji, P.; Liu, J.; Broaddus, R.R.; Xue, F.; Zhang, W. Centrosome-associated regulators 

of the G(2)/M checkpoint as targets for cancer therapy. Mol. Cancer 2009, 8, 8. 

34. Domingo-Sananes, M.R.; Kapuy, O.; Hunt, T.; Novak, B. Switches and latches: A biochemical 

tug-of-war between the kinases and phosphatases that control mitosis. Philos. Trans. R. Soc. 

Lond. B Biol. Sci. 2011, 366, 3584–3594. 

35. Gabrielli, B.G.; de Souza, C.P.; Tonks, I.D.; Clark, J.M.; Hayward, N.K.; Ellem, K.A. 

Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule 

nucleation in HeLa cells. J. Cell Sci. 1996, 109, 1081–1093. 

36. Lindqvist, A.; Kallstrøm, H.; Lundgren, A.; Barsoum, E.; Rosenthal, C.K. Cdc25B cooperates 

with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the 

centrosome. J. Cell Biol. 2005, 171, 35–45. 

37. Schmitt, E.; Boutros, R.; Froment, C.; Monsarrat, B.; Ducommun, B.; Dozier, C. CHK1 

phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J. Cell Sci. 2006, 

119, 4269–4275. 

38. Donzelli, M.; Squatrito, M.; Ganoth, D.; Hershko, A.; Pagano, M.; Draetta, G.F. Dual mode of 

degradation of Cdc25 A phosphatase. EMBO J. 2002, 21, 4875–4884. 

39. Tumurbaatar, I.; Cizmecioglu, O.; Hoffmann, I.; Grummt, I.; Voit, R. Human Cdc14B promotes 

progression through mitosis by dephosphorylating Cdc25 and regulating Cdk1/cyclin B activity. 

PLoS One 2011, 6, e14711. 

40. Lincoln, A.J.; Wickramasinghe, D.; Stein, P.; Schultz, R.M.; Palko, M.E.; de Miguel, M.P.; 

Tessarollo, L.; Donovan, P.J. Cdc25b phosphatase is required for resumption of meiosis during 

oocyte maturation. Nat. Genet. 2002, 30, 446–449. 

41. Feng, X.; Wang, L.N.; Zhou, Y.Y.; Yu, H.P.; Shen, Q.; Zang, Y.; Zhou, Y.B.; Li, J.Y.;  

Zhang, H. X.; Li, J. Discovery and characterization of a novel inhibitor of CDC25B, LGH00045. 

Acta. Pharmacol. Sin. 2008, 29, 1268–1274. 

42. Bugler, B.; Quaranta, M.; Aressy, B.; Brezak, M.C.; Prevost, G.; Ducommun, B. Genotoxic-activated 

G2-M checkpoint exit is dependent on CDC25B phosphatase expression. Mol. Cancer Ther. 

2006, 5, 1446–1451. 

43. Barre, B.; Vigneron, A.; Coqueret, O. The STAT3 transcription factor is a target for the Myc and 

riboblastoma proteins on the Cdc25A promoter. J. Biol. Chem. 2005, 280, 15673–15681. 



Molecules 2014, 19 18438 

 

 

44. Salaun, P.; Rannou, Y.; Prigent, C. Cdk1, Plks, Auroras, and Neks: The mitotic bodyguards.  

Adv. Exp. Med. Biol. 2008, 617, 41–56. 

45. Boutros, R.; Lobjois, V.; Ducommun, B. CDC25 phosphatases in cancer cells: Key players? 

Good targets? Nat. Rev. Cancer 2007, 7, 495–507. 

46. Macůrek, L.; Lindqvist, A.; Medema, R.H. Aurora-A and hBora join the game of Polo.  

Cancer Res. 2009, 69, 4555–4558. 

47. Seki, A.; Coppinger, J.A.; Jang, C.Y.; Yates, J.R.; Fang, G. Bora and the kinase Aurora a 

cooperatively activate the kinase Plk1 and control mitotic entry. Science 2008, 320, 1655–1658. 

48. Kotani, S.; Tugendreich, S.; Fujii, M.; Jørgensen, P.M.; Watanabe, N.; Hoog, C.; Hieter, P.; 

Todokoro, K. PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex 

activity and mitosis progression. Mol. Cell 1998, 1, 371–380. 

49. Didier, C.; Cavelier, C.; Quaranta, M.; Galcera, M.O.; Demur, C.; Laurent, G.; Manenti, S.; 

Ducommun, B. G2/M checkpoint stringency is a key parameter in the sensitivity of AML cells to 

genotoxic stress. Oncogene 2008, 27, 3811–3820. 

50. Reinhardt, H.C.; Yaffe, M.B. Kinases that control the cell cycle in response to DNA damage: 

Chk1, Chk2, and MK2. Curr. Opin. Cell Biol. 2009, 21, 245–255. 

51. Niida, H.; Nakanishi, M. DNA damage checkpoints in mammals. Mutagenesis 2006, 21, 3–9. 

52. Falck, J.; Mailand, N.; Syljuåsen, R.G.; Bartek, J.; Lukas, J. The ATM-Chk2-Cdc25A checkpoint 

pathway guards against radioresistant DNA synthesis. Nature 2001, 410, 842–847. 

53. Uto, K.; Inoue, D.; Shimuta, K.; Nakajo, N.; Sagata, N. Chk1, but not Chk2, inhibits Cdc25 

phosphatases by a novel common mechanism. EMBO J. 2004, 23, 3386–3396. 

54. Krämer, A.; Mailand, N.; Lukas, C.; Syljuåsen, R.G.; Wilkinson, C.J.; Nigg, E.A.; Bartek, J.; 

Lukas, J. Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. 

Nat. Cell Biol. 2004, 6, 884–891. 

55. Yarden, R.I.; Pardo-Reoyo, S.; Sgagias, M.; Cowan, K.H.; Brody, L.C. BRCA1 regulates the 

G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat. Genet. 2002, 30, 285–289. 

56. Busino, L.; Chiesa, M.; Draetta, G.F.; Donzelli, M. Cdc25A phosphatase: Combinatorial 

phosphorylation, ubiquitylation and proteolysis. Oncogene 2004, 23, 2050–2056. 

57. Smits, V.A.; Klompmaker, R.; Arnaud, L.; Rijksen, G.; Nigg, E.A.; Medema, R.H. Polo-like 

kinase-1 is a target of the DNA damage checkpoint. Nat. Cell Biol. 2000, 2, 672–676. 

58. Kumagai, A.; Dunphy, W.G. Claspin, a novel protein required for the activation of Chk1 during 

a DNA replication checkpoint response in Xenopus egg extracts. Mol. Cell 2000, 6, 839–849. 

59. Reinhardt, H.C.; Aslanian, A.S.; Lees, J.A.; Yaffe, M.B. p53-deficient cells rely on ATM- and 

ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after 

DNA damage. Cancer Cell 2007, 11, 175–189. 

60. Zeng, Y.; Piwnica-Worms, H. DNA damage and replication checkpoints in fission yeast require 

nuclear exclusion of the Cdc25 phosphatase via 14–3-3 binding. Mol. Cell. Biol. 1999, 19,  

7410–7419. 

61. Chen, R.-Q.; Yang, Q.-K.; Lu, B.-W.; Yi, W.; Cantin, G.; Chen, Y.-L.; Fearns, C.;  

Yates, J.R., III; Lee, J.-D. CDC25B Mediates Rapamycin-induced Oncogenic Responses in 

Cancer Cells. Cancer Res. 2009, 69, 2663–2668. 



Molecules 2014, 19 18439 

 

 

62. Li, G.Y.; Jung, K.H.; Lee, H.; Son, M.K.; Seo, J.; Hong, S.W.; Jeong, Y.; Hong, S.; Hong, S.S.  

A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and 

represses angiogenesis by targeting the PI3K/mTOR pathway. Cancer Lett. 2013, 329, 59–67. 

63. Liang, J.; Slingerland, J.M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle 

progression. Cell Cycle 2003, 2, 339–345. 

64. Puc, J.; Keniry, M.; Li, H.S.; Pandita, T.K.; Choudhury, A.D.; Memeo, L.; Mansukhani, M.; 

Murty, V.V.; Gaciong, Z.; Meek, S.E.; et al. Lack of PTEN sequesters CHK1 and initiates 

genetic instability. Cancer Cell 2005, 7, 193–204. 

65. Hirose, Y.; Katayama, M.; Mirzoeva, O.K.; Berger, M.S.; Pieper, R.O. Akt activation suppresses 

Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced 

mitotic catastrophe and cellular senescence. Cancer Res. 2005, 65, 4861–4869. 

66. Tonic, I.; Yu, W.N.; Park, Y.; Chen, C.C.; Hay, N. Akt activation emulates Chk1 inhibition  

and Bcl2 overexpression and abrogates G2 cell cycle checkpoint by inhibiting BRCA1 foci.  

J. Biol. Chem. 2010, 285, 23790–23798. 

67. Xu, N.; Hegarat, N.; Black, E.J.; Scott, M.T.; Hochegger, H.; Gillespie, D.A. Akt/PKB 

suppresses DNA damage processing and checkpoint activation in late G2. J. Cell Biol. 2010, 

190, 297–305. 

68. Lavecchia, A.; Coluccia, A.; di Giovanni, C.; Novellino, E. Cdc25B phosphatase inhibitors in 

cancer therapy: Latest developments, trends and medicinal chemistry perspective. Anticancer Agents 

Med. Chem. 2008, 8, 843–856. 

69. Lavecchia, A.; di Giovanni, C.; Novellino, E. CDC25A and B dual-specificity phosphatase 

inhibitors: Potential agents for cancer therapy. Curr. Med. Chem. 2009, 16, 1831–1849. 

70. Kolb, S.; Mondesert, O.; Goddard, M.L.; Jullien, D.; Villoutreix, B.O.; Ducommun, B.;  

Garbay, C.; Braud, E. Development of novel thiazolopyrimidines as CDC25B phosphatase 

inhibitors. ChemMedChem 2009, 4, 633–648. 

71. Lavecchia, A.; Cosconati, S.; Limongelli, V.; Novellino, E. Modeling of Cdc25B dual specifity 

protein phosphatase inhibitors: Docking of ligands and enzymatic inhibition mechanism. 

ChemMedChem 2006, 1, 540–550. 

72. Lazo, J.S.; Nemoto, K.; Pestell, K.E.; Cooley, K.; Southwick, E.C.; Mitchell, D.A.; Furey, W.; 

Gussio, R.; Zaharevitz, D.W.; Joo, B.; et al. Identification of a potent and selective pharmacophore 

for Cdc25 dual specificity phosphatase inhibitors. Mol. Pharmacol. 2002, 61, 720–728. 

73. Park, H.; Li, M.; Choi, J.; Cho, H.; Ham, S.W. Structure-based virtual screening approach to 

identify novel classes of Cdc25B phosphatase inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 

4372–4375. 

74. Kar, S.; Lefterov, I.M.; Wang, M.; Lazo, J.S.; Scott, C.N.; Wilcox, C.S.; Carr, B.I. Binding and 

inhibition of Cdc25 phosphatases by vitamin K analogues. Biochemistry 2003, 42, 10490–10497. 

75. Pu, L.; Amoscato, A.A.; Bier, M.E.; Lazo, J.S. Dual G1 and G2 phase inhibition by a novel, 

selective Cdc25 inhibitor 6-chloro-7-[corrected](2-morpholin-4-ylethylamino)-quinoline-5,8-dione. 

J. Biol. Chem. 2002, 277, 46877–46885. 

76. Brisson, M.; Nguyen, T.; Wipf, P.; Joo, B.; Day, B.W.; Skoko, J.S.; Schreiber, E.M.; Foster, C.; 

Bansal, P.; Lazo, J.S. Redox regulation of Cdc25B by cell-active quinolinediones. Mol. Pharmacol. 

2005, 68, 1810–1820. 



Molecules 2014, 19 18440 

 

 

77. Zhou, Y.B.; Feng, X.; Wang, L.N.; Du, J.Q.; Zhou, Y.Y.; Yu, H.P.; Zang, Y.; Li, J.Y.; Li, J. 

LGH00031, a novel ortho-quinonoid inhibitor of cell division cycle 25B, inhibits human cancer 

cells via ROS generation. Acta. Pharmacol. Sin. 2009, 30, 1359–1368. 

78. Brezak, M.C.; Quaranta, M.; Contour-Galcera, M.O.; Lavergne, O.; Mondesert, O.; Auvray, P.; 

Kasprzyk, P.G.; Prevost, G.P.; Ducommun, B. Inhibition of human tumor cell growth in vivo by 

an orally bioavailable inhibitor of CDC25 phosphatases. Mol. Cancer Ther. 2005, 4, 1378–1387. 

79. Cazales, M.; Boutros, R.; Brezak, M.C.; Chaumeron, S.; Prevost, G.; Ducommun, B. 

Pharmacologic inhibition of CDC25 phosphatases impairs interphase microtubule dynamics and 

mitotic spindle assembly. Mol. Cancer Ther. 2007, 6, 318–325. 

80. Brezak, M.C.; Valette, A.; Quaranta, M.; Contour-Galcera, M.O.; Julien, D.; Lavergne, O.; 

Frongia, C.; Bigg, D.; Kasprzyk, P.G.; Prevost, G.P.; et al. IRC-083864, a novel bis quinone 

inhibitor of CDC25 phosphatases active against human cancer cells. Int. J. Cancer 2009, 124, 

1449–1456. 

81. Hartner, L.P.; Rosen, L.; Hensley, M.; Mendelson, D.; Staddon, A.P.; Chow, W.; Kovalyov, O.; 

Ruka, W.; Skladowski, K.; Jagiello-Gruszfeld, A.; et al. Phase 2 dose multi-center, open-label 

study of ARQ 501, a checkpoint activator, in adult patients with persistent, recurrent or 

metastatic leiomyosarcoma (LMS). ASCO Meeting Abstracts 2007, 25 (Suppl. 18), 20521. 

82. Khong, H.T.; Dreisbach, L.; Kindler, H.L.; Trent, D.F.; Jeziorski, K.G.; Bonderenko, I.;  

Popiela, T.; Yagovane, D.M.; Dombal, G. A phase 2 study of ARQ 501 in combination with 

gemcitabine in adult patients with treatment naive, unresectable pancreatic adenocarcinoma. 

ASCO Meeting Abstracts 2007, 25 (Suppl. 18), 15017. 

83. Song, G.; Valdez, B.C.; Li, Y.; Dominguez, J.R.; Corn, P.; Champlin, R.E.; Andersson, B.S. The 

histone deacetylase inhibitor SAHA sensitizes acute myeloid leukemia cells to a combination of 

nucleoside analogs and the DNA-alkylating agent busulfan. Leuk. Lymphoma 2014, 55, 1625–1634. 

84. Madlener, S.; Svacinova, J.; Kitner, M.; Kopecky, J.; Eytner, R.; Lackner, A.; Vo, T.P.;  

Frisch, R.; Grusch, M.; de Martin, R.; et al. In vitro anti-inflammatory and anticancer activities 

of extracts of Acalypha alopecuroidea (Euphorbiaceae). Int. J. Oncol. 2009, 35, 881–891. 

85. Ozmen, A.; Madlener, S.; Bauer, S.; Krasteva, S.; Vonach, C.; Giessrigl, B.; Gridling, M.;  

Viola, K.; Stark, N.; Saiko, P.; et al. In vitro anti-leukemic activity of the ethno-pharmacological 

plant Scutellaria orientalis ssp. carica endemic to western Turkey. Phytomedicine 2010, 17, 55–62. 

86. Fernandez-Vidal, A.; Mazars, A.; Gautier, E.F.; Prevost, G.; Payrastre, B.; Manenti, S. 

Upregulation of the CDC25A phosphatase down-stream of the NPM/ALK oncogene participates 

to anaplastic large cell lymphoma enhanced proliferation. Cell Cycle 2009, 8, 1373–1379. 

87. Fernandez-Vidal, A.; Ysebaert, L.; Didier, C.; Betous, R.; de Toni, F.; Prade-Houdellier, N.; 

Demur, C.; Contour-Galcera, M.O.; Prevost, G.P.; Ducommun, B.; et al. Cell adhesion regulates 

CDC25A expression and proliferation in acute myeloid leukemia. Cancer Res. 2006, 66,  

7128–7135. 

88. Nakamura, S.; Nagata, Y.; Tan, L.; Takemura, T.; Shibata, K.; Fujie, M.; Fujisawa, S.;  

Tanaka, Y.; Toda, M.; Makita, R.; et al. Transcriptional repression of Cdc25B by IER5 inhibits 

the proliferation of leukemic progenitor cells through NF-YB and p300 in acute myeloid 

leukemia. PLoS One 2011, 6, e28011. 



Molecules 2014, 19 18441 

 

 

89. Reikvam, H.; Tamburini, J.; Skrede, S.; Holdhus, R.; Poulain, L.; Ersvær, E.; Hatfield, K.J.; 

Bruserud, Ø. Antileukaemic effect of PI3K-mTOR inhibitors in acute myeloid leukaemia-gene 

expression profiles reveal CDC25B expression as determinate of pharmacological effect.  

Br. J. Haematol. 2014, 164, 200–211. 

90. Ekberg, J.; Persson, J.L. Post-translational modification of cyclin A1 is associated with staurosporine 

and TNFalpha induced apoptosis in leukemic cells. Mol. Cell. Biochem. 2009, 320, 115–124. 

91. Caudill, J.S.; Porcher, J.C.; Steensma, D.P. Aberrant pre-mRNA splicing of a highly conserved 

cell cycle regulator, CDC25C, in myelodysplastic syndromes. Leuk. Lymphoma 2008, 49,  

989–993. 

92. Tamir, A.; Petrocelli, T.; Stetler, K.; Chu, W.; Howard, J.; Croix, B.S.; Slingerland, J.;  

Ben-David, Y. Stem cell factor inhibits erythroid differentiation by modulating the activity of 

G1-cyclin-dependent kinase complexes: A role for p27 in erythroid differentiation coupled G1 

arrest. Cell Growth Differ. 2000, 11, 269–277. 

93. Levis, M.; Small, D. FLT3: ITDoes matter in leukemia. Leukemia 2003, 17, 1738–1752. 

94. Dolfini, D.; Gatta, R.; Mantovani, R. NF-Y and the transcriptional activation of CCAAT 

promoters. Crit. Rev. Biochem. Mol. Biol. 2012, 47, 29–49. 

95. Cude, K.; Wang, Y.; Choi, H. J.; Hsuan, S.L.; Zhang, H.; Wang, C.Y.; Xia, Z. Regulation of the 

G2-M cell cycle progression by the ERK5-NFkappaB signaling pathway. J. Cell Biol. 2007, 177, 

253–264. 

96. Reikvam, H.; Olsnes, A.M.; Gjertsen, B.T.; Ersvar, E.; Bruserud, Ø. Nuclear factor-kappaB 

signaling: A contributor in leukemogenesis and a target for pharmacological intervention in 

human acute myelogenous leukemia. Crit. Rev. Oncog. 2009, 15, 1–41. 

97. Wei, S.; Chen, X.; Rocha, K.; Epling-Burnette, P.K.; Djeu, J.Y.; Liu, Q.; Byrd, J.; Sokol, L.; 

Lawrence, N.; Pireddu, R.; et al. A critical role for phosphatase haplodeficiency in the selective 

suppression of deletion 5q MDS by lenalidomide. Proc. Natl. Acad. Sci. USA 2009, 106,  

12974–12979. 

98. Schnerch, D.; Yalcintepe, J.; Schmidts, A.; Becker, H.; Follo, M.; Engelhardt, M.; Wasch, R. 

Cell cycle control in acute myeloid leukemia. Am. J. Cancer Res. 2012, 2, 508–528. 

99. Iida, H.; Towatari, M.; Tanimoto, M.; Morishita, Y.; Kodera, Y.; Saito, H. Overexpression of 

cyclin E in acute myelogenous leukemia. Blood 1997, 90, 3707–3713. 

100. Paggi, M.G.; de Fabritiis, P.; Bonetto, F.; Amadio, L.; Santarelli, G.; Spadea, A.; Gentile, F.P.; 

Floridi, A.; Felsani, A. The retinoblastoma gene product in acute myeloid leukemia: A possible 

involvement in promyelocytic leukemia. Cancer Res. 1995, 55, 4552–4556. 

101. Pulikkan, J.A.; Dengler, V.; Peramangalam, P.S.; Peer Zada, A.A.; Müller-Tidow, C.;  

Bohlander, S.K.; Tenen, D.G.; Behre, G. Cell-cycle regulator E2F1 and microRNA-223 

comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 2010, 115, 

1768–1778. 

102. Radosevic, N.; Delmer, A.; Tang, R.; Marie, J.P.; Ajchenbaum-Cymbalista, F. Cell cycle 

regulatory protein expression in fresh acute myeloid leukemia cells and after drug exposure. 

Leukemia 2001, 15, 559–566. 
  



Molecules 2014, 19 18442 

 

 

103. Reikvam, H.; Oyan, A.M.; Kalland, K.H.; Hovland, R.; Hatfield, K.J.; Bruserud, Ø. Differences 

in proliferative capacity of primary human acute myelogenous leukaemia cells are associated 

with altered gene expression profiles and can be used for subclassification of patients. Cell Prolif. 

2013, 46, 554–562. 

104. Sanders, M.A.; Valk, P.J. The evolving molecular genetic landscape in acute myeloid leukaemia. 

Curr. Opin. Hematol. 2013, 20, 79–85. 

105. Spoo, A.C.; Lubbert, M.; Wierda, W.G.; Burger, J.A. CXCR4 is a prognostic marker in acute 

myelogenous leukemia. Blood 2007, 109, 786–791. 

106. Zolota, V.; Sirinian, C.; Melachrinou, M.; Symeonidis, A.; Bonikos, D.S. Expression of the 

regulatory cell cycle proteins p21, p27, p14, p16, p53, mdm2, and cyclin E in bone marrow 

biopsies with acute myeloid leukemia. Correlation with patients’ survival. Pathol. Res. Pract. 

2007, 203, 199–207. 

107. Ånensen, N.; Haaland, I.; D’Santos, C.; van Belle, W.; Gjertsen, B.T. Proteomics of p53 in 

diagnostics and therapy of acute myeloid leukemia. Curr. Pharm. Biotechnol. 2006, 7, 199–207. 

108. Cocco, L.; Manzoli, L.; Palka, G.; Martelli, A.M. Nuclear phospholipase C beta1, regulation of 

the cell cycle and progression of acute myeloid leukemia. Adv. Enzym. Regul. 2005, 45, 126–135. 

109. Haaland, I.; Opsahl, J.A.; Berven, F.S.; Reikvam, H.; Fredly, H.K.; Haugse, R.; Thiede, B.; 

McCormack, E.; Lain, S.; Bruserud, Ø.; et al. Molecular mechanisms of nutlin-3 involve 

acetylation of p53, histones and heat shock proteins in acute myeloid leukemia. Mol. Cancer 

2014, 13, 116. 

110. McCormack, E.; Haaland, I.; Venas, G.; Forthun, R.B.; Huseby, S.; Gausdal, G.; Knappskog, S.; 

Micklem, D.R.; Lorens, J.B.; Bruserud, Ø.; et al. Synergistic induction of p53 mediated 

apoptosis by valproic acid and nutlin-3 in acute myeloid leukemia. Leukemia 2012, 26, 910–917. 

111. Aktas, D.; Arno, M.J.; Rassool, F.; Mufti, G.J. Analysis of CHK2 in patients with 

myelodysplastic syndromes. Leuk. Res. 2002, 26, 985–987. 

112. Cavelier, C.; Didier, C.; Prade, N.; Mansat-De Mas, V.; Manenti, S.; Recher, C.; Demur, C.; 

Ducommun, B. Constitutive activation of the DNA damage signaling pathway in acute myeloid 

leukemia with complex karyotype: Potential importance for checkpoint targeting therapy.  

Cancer Res. 2009, 69, 8652–8661. 

113. Ekberg, J.; Landberg, G.; Holm, C.; Richter, J.; Wolgemuth, D.J.; Persson, J.L. Regulation of the 

cyclin A1 protein is associated with its differential subcellular localization in hematopoietic and 

leukemic cells. Oncogene 2004, 23, 9082–9089. 

114. Karp, J.E.; Thomas, B.M.; Greer, J.M.; Sorge, C.; Gore, S.D.; Pratz, K.W.; Smith, B.D.;  

Flatten, K.S.; Peterson, K.; Schneider, P.; et al. Phase I and pharmacologic trial of cytosine 

arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias. 

Clin. Cancer Res. 2012, 18, 6723–6731. 

115. Liu, H.; Takeda, S.; Kumar, R.; Westergard, T.D.; Brown, E.J.; Pandita, T.K.; Cheng, E.H.; 

Hsieh, J.J. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase 

checkpoint. Nature 2010, 467, 343–346. 

116. Liu, L.; Yang, L.; Mi, Y.; Wang, J.; Li, J.; Zhang, Y.; Ma, X.; Qin, T.; Xu, Z.; Xiao, Z. RAD51 

and XRCC3 polymorphisms: Impact on the risk and treatment outcomes of de novo inv(16) or 

t(16;16)/CBFbeta-MYH11(+) acute myeloid leukemia. Leuk. Res. 2011, 35, 1020–1026. 



Molecules 2014, 19 18443 

 

 

117. Müller-Tidow, C.; Wang, W.; Idos, G.E.; Diederichs, S.; Yang, R.; Readhead, C.; Berdel, W.E.; 

Serve, H.; Saville, M.; Watson, R.; et al. Cyclin A1 directly interacts with B-myb and cyclin 

A1/cdk2 phosphorylate B-myb at functionally important serine and threonine residues:  

Tissue-specific regulation of B-myb function. Blood 2001, 97, 2091–2097. 

118. Oguchi, K.; Takagi, M.; Tsuchida, R.; Taya, Y.; Ito, E.; Isoyama, K.; Ishii, E.; Zannini, L.;  

Delia, D.; Mizutani, S. Missense mutation and defective function of ATM in a childhood acute 

leukemia patient with MLL gene rearrangement. Blood 2003, 101, 3622–3627. 

119. Peterson, L.F.; Yan, M.; Zhang, D.E. The p21Waf1 pathway is involved in blocking 

leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood 2007, 109, 4392–4398. 

120. Segurado, M.; Tercero, J. A. The S-phase checkpoint: Targeting the replication fork. Biol. Cell 

2009, 101, 617–627. 

121. Shi, J.Y.; Ren, Z.H.; Jiao, B.; Xiao, R.; Yun, H.Y.; Chen, B.; Zhao, W.L.; Zhu, Q.; Chen, Z.; 

Chen, S.J. Genetic variations of DNA repair genes and their prognostic significance in patients 

with acute myeloid leukemia. Int. J. Cancer 2011, 128, 233–238. 

122. Somyajit, K.; Subramanya, S.; Nagaraju, G. RAD51C: A novel cancer susceptibility gene is 

linked to Fanconi anemia and breast cancer. Carcinogenesis 2010, 31, 2031–2038. 

123. Tanaka, K. Multiple functions of the S-phase checkpoint mediator. Biosci. Biotechnol. Biochem. 

2010, 74, 2367–2373. 

124. Yang, R.; Nakamaki, T.; Lubbert, M.; Said, J.; Sakashita, A.; Freyaldenhoven, B.S.; Spira, S.; 

Huynh, V.; Muller, C.; Koeffler, H.P. Cyclin A1 expression in leukemia and normal 

hematopoietic cells. Blood 1999, 93, 2067–2074. 

125. Yokozawa, T.; Towatari, M.; Iida, H.; Takeyama, K.; Tanimoto, M.; Kiyoi, H.; Motoji, T.;  

Asou, N.; Saito, K.; Takeuchi, M.; et al. Prognostic significance of the cell cycle inhibitor 

p27Kip1 in acute myeloid leukemia. Leukemia 2000, 14, 28–33. 

126. Mochizuki, T.; Kitanaka, C.; Noguchi, K.; Muramatsu, T.; Asai, A.; Kuchino, Y. Physical and 

functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the  

Pim-1-mediated activation of the c-Myc signaling pathway. J. Biol. Chem. 1999, 274, 18659–18666. 

127. Radomska, H.S.; Alberich-Jorda, M.; Will, B.; Gonzalez, D.; Delwel, R.; Tenen, D.G. Targeting 

CDK1 promotes FLT3-activated acute myeloid leukemia differentiation through C/EBPalpha.  

J. Clin. Investig. 2012, 122, 2955–2966. 

128. Radomska, H.S.; Basseres, D.S.; Zheng, R.; Zhang, P.; Dayaram, T.; Yamamoto, Y.;  

Sternberg, D.W.; Lokker, N.; Giese, N.A.; Bohlander, S.K.; et al. Block of C/EBP alpha function 

by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J. Exp. Med. 

2006, 203, 371–381. 

129. Zheng, R.; Friedman, A.D.; Levis, M.; Li, L.; Weir, E.G.; Small, D. Internal tandem duplication 

mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. 

Blood 2004, 103, 1883–1890. 

130. Mesa, R.A.; Loegering, D.; Powell, H.L.; Flatten, K.; Arlander, S.J.; Dai, N.T.; Heldebrandt, M.P.; 

Vroman, B.T.; Smith, B.D.; Karp, J.E.; et al. Heat shock protein 90 inhibition sensitizes acute 

myelogenous leukemia cells to cytarabine. Blood 2005, 106, 318–327. 

131. Montecucco, A.; Biamonti, G. Cellular response to etoposide treatment. Cancer Lett. 2007, 252, 

9–18. 



Molecules 2014, 19 18444 

 

 

132. Rossi, R.; Lidonnici, M.R.; Soza, S.; Biamonti, G.; Montecucco, A. The dispersal of replication 

proteins after Etoposide treatment requires the cooperation of Nbs1 with the ataxia telangiectasia 

Rad3-related/Chk1 pathway. Cancer Res. 2006, 66, 1675–1683. 

133. Seedhouse, C.; Grundy, M.; Shang, S.; Ronan, J.; Pimblett, H.; Russell, N.; Pallis, M. Impaired 

S-phase arrest in acute myeloid leukemia cells with a FLT3 internal tandem duplication treated 

with clofarabine. Clin. Cancer Res. 2009, 15, 7291–7298. 

134. Cristobal, I.; Garcia-Orti, L.; Cirauqui, C.; Alonso, M.M.; Calasanz, M.J.; Odero, M.D. PP2A 

impaired activity is a common event in acute myeloid leukemia and its activation by forskolin 

has a potent anti-leukemic effect. Leukemia 2011, 25, 606–614. 

135. Halicka, H.D.; Ozkaynak, M.F.; Levendoglu-Tugal, O.; Sandoval, C.; Seiter, K.; Kajstura, M.; 

Traganos, F.; Jayabose, S.; Darzynkiewicz, Z. DNA damage response as a biomarker in 

treatment of leukemias. Cell Cycle 2009, 8, 1720–1724. 

136. Nakamura, S.; Hirano, I.; Okinaka, K.; Takemura, T.; Yokota, D.; Ono, T.; Shigeno, K.;  

Shibata, K.; Fujisawa, S.; Ohnishi, K. The FOXM1 transcriptional factor promotes the 

proliferation of leukemia cells through modulation of cell cycle progression in acute myeloid 

leukemia. Carcinogenesis 2010, 31, 2012–2021. 

137. Renner, A.G.; Dos Santos, C.; Recher, C.; Bailly, C.; Creancier, L.; Kruczynski, A.;  

Payrastre, B.; Manenti, S. Polo-like kinase 1 is overexpressed in acute myeloid leukemia and its 

inhibition preferentially targets the proliferation of leukemic cells. Blood 2009, 114, 659–662. 

138. Scardocci, A.; Guidi, F.; D'Alo, F.; Gumiero, D.; Fabiani, E.; Diruscio, A.; Martini, M.;  

Larocca, L.M.; Zollino, M.; Hohaus, S.; et al. Reduced BRCA1 expression due to promoter 

hypermethylation in therapy-related acute myeloid leukaemia. Br. J. Cancer 2006, 95, 1108–1113. 

139. Tsykunova, G.; Reikvam, H.; Ahmed, A.B.; Nepstad, I.; Gjertsen, B.T.; Bruserud, Ø. Targeting 

of polo-like kinases and their cross talk with Aurora kinases--possible therapeutic strategies in 

human acute myeloid leukemia? Expert Opin. Investig. Drugs 2012, 21, 587–603. 

140. Ersvær, E.; Zhang, J.Y.; McCormack, E.; Olsnes, A.; Ånensen, N.; Tan, E.M.; Gjertsen, B.T.; 

Bruserud, Ø. Cyclin B1 is commonly expressed in the cytoplasm of primary human acute 

myelogenous leukemia cells and serves as a leukemia-associated antigen associated with 

autoantibody response in a subset of patients. Eur. J. Haematol. 2007, 79, 210–225. 

141. Boyapati, A.; Yan, M.; Peterson, L.F.; Biggs, J.R.; le Beau, M.M.; Zhang, D.E. A leukemia 

fusion protein attenuates the spindle checkpoint and promotes aneuploidy. Blood 2007, 109, 

3963–3971. 

142. Kiyomitsu, T.; Obuse, C.; Yanagida, M. Human Blinkin/AF15q14 is required for chromosome 

alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev. Cell 

2007, 13, 663–676. 

143. Lin, S.F.; Lin, P.M.; Yang, M.C.; Liu, T.C.; Chang, J.G.; Sue, Y.C.; Chen, T.P. Expression of 

hBUB1 in acute myeloid leukemia. Leuk. Lymphoma 2002, 43, 385–391. 

144. Cerveira, N.; Correia, C.; Bizarro, S.; Pinto, C.; Lisboa, S.; Mariz, J.M.; Marques, M.;  

Teixeira, M.R. SEPT2 is a new fusion partner of MLL in acute myeloid leukemia with 

t(2;11)(q37;q23). Oncogene 2006, 25, 6147–6152. 



Molecules 2014, 19 18445 

 

 

145. Damm, F.; Oberacker, T.; Thol, F.; Surdziel, E.; Wagner, K.; Chaturvedi, A.; Morgan, M.; 

Bomm, K.; Gohring, G.; Lubbert, M.; et al. Prognostic importance of histone methyltransferase 

MLL5 expression in acute myeloid leukemia. J. Clin. Oncol. 2011, 29, 682–689. 

146. Liu, J.; Wang, X.N.; Cheng, F.; Liou, Y.C.; Deng, L.W. Phosphorylation of mixed lineage 

leukemia 5 by CDC2 affects its cellular distribution and is required for mitotic entry. J. Biol. Chem. 

2010, 285, 20904–20914. 

147. Lucena-Araujo, A.R.; de Oliveira, F.M.; Leite-Cueva, S.D.; dos Santos, G.A.; Falcao, R.P.; 

Rego, E.M. High expression of AURKA and AURKB is associated with unfavorable cytogenetic 

abnormalities and high white blood cell count in patients with acute myeloid leukemia. Leuk. Res. 

2011, 35, 260–264. 

148. Ricke, R.M.; Jeganathan, K.B.; van Deursen, J.M. Bub1 overexpression induces aneuploidy and 

tumor formation through Aurora B kinase hyperactivation. J. Cell Biol. 2011, 193, 1049–1064. 

149. Ye, D.; Garcia-Manero, G.; Kantarjian, H.M.; Xiao, L.; Vadhan-Raj, S.; Fernandez, M.H.; 

Nguyen, M.H.; Medeiros, L.J.; Bueso-Ramos, C.E. Analysis of Aurora kinase A expression in 

CD34(+) blast cells isolated from patients with myelodysplastic syndromes and acute myeloid 

leukemia. J. Hematop. 2009, 2, 2–8. 

150. Mundt, K.E.; Golsteyn, R.M.; Lane, H.A.; Nigg, E.A. On the regulation and function of human 

polo-like kinase 1 (PLK1): Effects of overexpression on cell cycle progression. Biochem. Biophys. 

Res. Commun. 1997, 239, 377–385. 

151. O’Farrell, A.M.; Foran, J.M.; Fiedler, W.; Serve, H.; Paquette, R.L.; Cooper, M.A.; Yuen, H.A.; 

Louie, S.G.; Kim, H.; Nicholas, S.; et al. An innovative phase I clinical study demonstrates inhibition 

of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin. Cancer Res. 

2003, 9, 5465–5476. 

152. Hatfield, K.J.; Hovland, R.; Oyan, A.M.; Kalland, K.H.; Ryningen, A.; Gjertsen, B.T.;  

Bruserud, Ø. Release of angiopoietin-1 by primary human acute myelogenous leukemia cells is 

associated with mutations of nucleophosmin, increased by bone marrow stromal cells and 

possibly antagonized by high systemic angiopoietin-2 levels. Leukemia 2008, 22, 287–293. 

153. Sun, S.Y.; Rosenberg, L.M.; Wang, X.R.; Zhou, Z.M.; Yue, P.; Fu, H.; Khuri, F.R. Activation of 

Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin 

inhibition. Cancer Res. 2005, 65, 7052–7058. 

154. Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; 

Vardiman, J.W. WHO classification of tumours of haemotopoietic and lymphoid tissues, 4th ed.; 

IARC Press: Lyon, France, 2008. 

155. Shimizu, T.; Oka, Y.; Awai, N.; Takeda, K. Hypophosphorylation of pRB and repression of 

cyclin D3 and cdc25A during the granulocytic differentiation of human myeloblastic leukemia 

ML-1 cells. Leukemia Res. 1999, 23, 901–907. 

156. Irish, J.M.; Ånensen, N.; Hovland, R.; Skavland, J.; Borresen-Dale, A.L.; Bruserud, Ø.;  

Nolan, G.P.; Gjertsen, B.T. Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute 

myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood 2007, 109, 

2589–2596. 



Molecules 2014, 19 18446 

 

 

157. Irish, J.M.; Hovland, R.; Krutzik, P.O.; Perez, O.D.; Bruserud, Ø.; Gjertsen, B.T.; Nolan, G.P. 

Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 2004, 118, 

217–228. 

158. Placke, T.; Faber, K.; Nonami, A.; Putwain, S.L.; Salih, H.R.; Heidel, F.H.; Kramer, A.;  

Root, D.E.; Barbie, D.A.; Kvitsov, A.V.; et al. Requirement for CDK6 in MLL-rearranged acute 

myeloid leukemia. Blood 2014, 124, 13–23. 

159. Van der Linden, M.H.; Willekes, M.; van Roon, E.; Seslija, L.; Schneider, P.; Pieters, R.;  

Stam, R.W. MLL fusion-driven activation of CDK6 potentiates proliferation in MLL-rearranged 

infant ALL. Cell Cycle 2014, 13, 834–844. 

160. Abbate, F.; Casini, A.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: X-ray 

crystallographic structure of the adduct of human isozyme II with a topically acting antiglaucoma 

sulfonamide. Bioorg. Med. Chem. Lett. 2004, 14, 2357–2361. 

161. Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N.H.; Nagasu, T.; 

Koyanagi, N.; Kitoh, K. Discovery of novel antitumor sulfonamides targeting G1 phase of the 

cell cycle. J. Med. Chem. 1999, 42, 3789–3799. 

162. Ozawa, Y.; Kusano, K.; Owa, T.; Yokoi, A.; Asada, M.; Yoshimatsu, K. Therapeutic potential 

and molecular mechanism of a novel sulfonamide anticancer drug, indisulam (E7070) in 

combination with CPT-11 for cancer treatment. Cancer Chemother. Pharmacol. 2012, 69,  

1353–1362. 

163. Chow, D.C.; Wenning, L.A.; Miller, W.M.; Papoutsakis, E.T. Modeling pO(2) distributions in 

the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys. J. 2001, 

81, 685–696. 

164. Chow, D.C.; Wenning, L.A.; Miller, W.M.; Papoutsakis, E.T. Modeling pO(2) distributions in 

the bone marrow hematopoietic compartment. I. Krogh’s model. Biophys. J. 2001, 81, 675–684. 

165. Hatfield, K.J.; Bedringsaas, S.L.; Ryningen, A.; Gjertsen, B.T.; Bruserud, Ø. Hypoxia increases 

HIF-1alpha expression and constitutive cytokine release by primary human acute myeloid 

leukaemia cells. Eur. Cytokine Netw. 2010, 21, 154–164. 

166. Borthakur, G.; Cortes, J.E.; Kadia, T.M.; Pemmaraju, N.; Jabbour, E.; Jain, N.; Daver, N.; 

Kantarjian, H. Phase 2, open-label study of E7070, idarubicin and cytarabine in patients with 

relapsed or refractory acute myeloid leukemia and high-risk myelodisplastic syndrome. 

Haematologica 2014, 99, 34. 

167. Fredly, H.; Gjertsen, B.T.; Bruserud, Ø. Histone deacetylase inhibition in the treatment of acute 

myeloid leukemia: The effects of valproic acid on leukemic cells, and the clinical and experimental 

evidence for combining valproic acid with other antileukemic agents. Clin. Epigenetics 2013, 5, 12. 

168. Fredly, H.; Ersvær, E.; Kittang, A.O.; Tsykunova, G.; Gjertsen, B.T.; Bruserud, Ø. The 

combination of valproic acid, all-trans retinoic acid and low-dose cytarabine as disease-stabilizing 

treatment in acute myeloid leukemia. Clin. Epigenetics 2013, 5, 13. 

169. Fredly, H.; Stapnes Bjørnsen, C.; Gjertsen, B.T.; Bruserud, Ø. Combination of the histone 

deacetylase inhibitor valproic acid with oral hydroxyurea or 6-mercaptopurin can be safe and 

effective in patients with advanced acute myeloid leukaemia-a report of five cases. Hematology 

2010, 15, 338–343. 



Molecules 2014, 19 18447 

 

 

170. Bruserud, Ø.; Liseth, K.; Stamnesfet, S.; Cacic, D.L.; Melve, G.; Kristoffersen, E.; Hervig, T.; 

Reikvam, H. Hyperleukocytosis and leukocytapheresis in acute leukaemias: Experience from a 

single centre and review of the literature of leukocytapheresis in acute myeloid leukaemia. 

Transfus Med. 2013, 23, 397–406. 

171. Petti, M.C.; Tafuri, A.; Latagliata, R.; Aloe Spiriti, M.A.; Montefusco, E.; Mancini, M.;  

Meloni, G.; Petrucci, M.T.; Spaeda, A.; Redi, R.; et al. High-dose hydroxyurea in the treatment 

of poor-risk myeloid leukemias. Ann. Hematol 2003, 82, 476–480. 

172. Ma, H.T.; Poon, R.Y. How protein kinases co-ordinate mitosis in animal cells. Biochem. J. 2011, 

435, 17–31. 

173. McCormack, E.; Bruserud, Ø.; Gjertsen, B.T. Animal models of acute myelogenous  

leukaemia-development, application and future perspectives. Leukemia 2005, 19, 687–706. 

174. McCormack, E.; Bruserud, Ø.; Gjertsen, B.T. Review: Genetic models of acute myeloid 

leukaemia. Oncogene 2008, 27, 3765–3779. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 15%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue true
  /ColorSettingsFile (Europe Prepress)
  /AlwaysEmbed [ true
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Aharoni-Bold
    /Algerian
    /Andalus
    /AngsanaNew
    /AngsanaNew-Bold
    /AngsanaNew-BoldItalic
    /AngsanaNew-Italic
    /AngsanaUPC
    /AngsanaUPC-Bold
    /AngsanaUPC-BoldItalic
    /AngsanaUPC-Italic
    /Aparajita
    /Aparajita-Bold
    /Aparajita-BoldItalic
    /Aparajita-Italic
    /ArabicTypesetting
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /BatangChe
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrowalliaNew
    /BrowalliaNew-Bold
    /BrowalliaNew-BoldItalic
    /BrowalliaNew-Italic
    /BrowalliaUPC
    /BrowalliaUPC-Bold
    /BrowalliaUPC-BoldItalic
    /BrowalliaUPC-Italic
    /BrushScriptMT
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /Calibri-Light
    /Calibri-LightItalic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CordiaNew
    /CordiaNew-Bold
    /CordiaNew-BoldItalic
    /CordiaNew-Italic
    /CordiaUPC
    /CordiaUPC-Bold
    /CordiaUPC-BoldItalic
    /CordiaUPC-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CurlzMT
    /DaunPenh
    /David
    /David-Bold
    /DFKaiShu-SB-Estd-BF
    /DilleniaUPC
    /DilleniaUPCBold
    /DilleniaUPCBoldItalic
    /DilleniaUPCItalic
    /DokChampa
    /Dotum
    /DotumChe
    /Ebrima
    /Ebrima-Bold
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EucrosiaUPC
    /EucrosiaUPCBold
    /EucrosiaUPCBoldItalic
    /EucrosiaUPCItalic
    /EuphemiaCAS
    /FangSong
    /FelixTitlingMT
    /FencesPlain
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FrankRuehl
    /FreesiaUPC
    /FreesiaUPCBold
    /FreesiaUPCBoldItalic
    /FreesiaUPCItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Gabriola
    /Gadugi
    /Gadugi-Bold
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Gautami-Bold
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /Gisha
    /Gisha-Bold
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Gulim
    /GulimChe
    /Gungsuh
    /GungsuhChe
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /IrisUPC
    /IrisUPCBold
    /IrisUPCBoldItalic
    /IrisUPCItalic
    /IskoolaPota
    /IskoolaPota-Bold
    /JasmineUPC
    /JasmineUPCBold
    /JasmineUPCBoldItalic
    /JasmineUPCItalic
    /Jokerman-Regular
    /JuiceITC-Regular
    /KaiTi
    /Kalinga
    /Kalinga-Bold
    /Kartika
    /Kartika-Bold
    /KhmerUI
    /KhmerUI-Bold
    /KodchiangUPC
    /KodchiangUPCBold
    /KodchiangUPCBoldItalic
    /KodchiangUPCItalic
    /Kokila
    /Kokila-Bold
    /Kokila-BoldItalic
    /Kokila-Italic
    /KristenITC-Regular
    /KunstlerScript
    /LaoUI
    /LaoUI-Bold
    /Latha
    /Latha-Bold
    /LatinWide
    /Leelawadee
    /LeelawadeeBold
    /Leelawadee-Bold
    /LevenimMT
    /LevenimMT-Bold
    /LilyUPC
    /LilyUPCBold
    /LilyUPCBoldItalic
    /LilyUPCItalic
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /MalgunGothic
    /MalgunGothicBold
    /MalgunGothicRegular
    /Mangal
    /Mangal-Bold
    /Marlett
    /MaturaMTScriptCapitals
    /Meiryo
    /Meiryo-Bold
    /Meiryo-BoldItalic
    /Meiryo-Italic
    /MeiryoUI
    /MeiryoUI-Bold
    /MeiryoUI-BoldItalic
    /MeiryoUI-Italic
    /MicrosoftHimalaya
    /MicrosoftJhengHeiBold
    /MicrosoftJhengHeiRegular
    /MicrosoftJhengHeiUIBold
    /MicrosoftJhengHeiUIRegular
    /MicrosoftNewTaiLue
    /MicrosoftNewTaiLue-Bold
    /MicrosoftPhagsPa
    /MicrosoftPhagsPa-Bold
    /MicrosoftSansSerif
    /MicrosoftTaiLe
    /MicrosoftTaiLe-Bold
    /MicrosoftUighur
    /MicrosoftUighur-Bold
    /MicrosoftYaHei
    /MicrosoftYaHei-Bold
    /MicrosoftYaHeiUI
    /MicrosoftYaHeiUI-Bold
    /Microsoft-Yi-Baiti
    /MingLiU
    /MingLiU-ExtB
    /Ming-Lt-HKSCS-ExtB
    /Ming-Lt-HKSCS-UNI-H
    /Miriam
    /MiriamFixed
    /Mistral
    /Modern-Regular
    /MongolianBaiti
    /MonotypeCorsiva
    /MoolBoran
    /MS-Gothic
    /MS-Mincho
    /MS-PGothic
    /MS-PMincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MS-UIGothic
    /MT-Extra
    /MTExtraTiger
    /MVBoli
    /Narkisim
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NirmalaUI
    /NirmalaUI-Bold
    /NSimSun
    /Nyala-Regular
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /PlantagenetCherokee
    /Playbill
    /PMingLiU
    /PMingLiU-ExtB
    /PoorRichard-Regular
    /Pristina-Regular
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /Rod
    /SakkalMajalla
    /SakkalMajallaBold
    /ScriptMTBold
    /SegoePrint
    /SegoePrint-Bold
    /SegoeScript
    /SegoeScript-Bold
    /SegoeUI
    /SegoeUI-Bold
    /SegoeUI-BoldItalic
    /SegoeUI-Italic
    /SegoeUI-Light
    /SegoeUI-SemiBold
    /SegoeUI-Semilight
    /SegoeUISymbol
    /ShonarBangla
    /ShonarBangla-Bold
    /ShowcardGothic-Reg
    /Shruti
    /Shruti-Bold
    /SimHei
    /SimplifiedArabic
    /SimplifiedArabic-Bold
    /SimplifiedArabicFixed
    /SimSun
    /SimSun-ExtB
    /SnapITC-Regular
    /Stencil
    /Sylfaen
    /SymbolMT
    /SymbolTiger
    /SymbolTigerExpert
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /Tiger
    /TigerExpert
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /TraditionalArabic
    /TraditionalArabic-Bold
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga
    /Tunga-Bold
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Utsaah
    /Utsaah-Bold
    /Utsaah-BoldItalic
    /Utsaah-Italic
    /Vani
    /Vani-Bold
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vijaya
    /Vijaya-Bold
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Vrinda-Bold
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 841.680]
>> setpagedevice


