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Abstract

In the present study, we have isolated leucocytes from peripheral blood, head kidney and spleen from lumpsucker
(Cyclopterus lumpus L.), and performed functional studies like phagocytosis and respiratory burst, as well as morphological
and cytochemical analyses. Different leucocytes were identified, such as lymphocytes, monocytes/macrophages and
polymorphonuclear cells with bean shaped or bilobed nuclei. In addition, cells with similar morphology as described for
dendritic cells in trout were abundant among the isolated leucocytes. Flow cytometry was successfully used for measuring
phagocytosis and respiratory burst activity. The phagocytic capacity and ability were very high, and cells with different
morphology in all three leucocyte preparations phagocytised beads rapidly. Due to lack of available cell markers, the
identity of the phagocytic cells could not be determined. The potent non-specific phagocytosis was in accordance with
a high number of cells positive for myeloperoxidase, an enzyme involved in oxygen-dependent killing mechanism present
in phagocytic cells. Further, high respiratory burst activity was present in the leucocytes samples, verifying a potent oxygen-
dependent degradation. At present, the specific antibody immune response could not be measured, as immunoglobulin or
B-cells have not yet been isolated. Therefore, analyses of the specific immune response in this fish species await further
clarification. The present study presents the first analyses of lumpsucker immunity and also the first within the order
Scopaeniformes.

Citation: Haugland GT, Jakobsen RA, Vestvik N, Ulven K, Stokka L, et al. (2012) Phagocytosis and Respiratory Burst Activity in Lumpsucker (Cyclopterus lumpus L.)
Leucocytes Analysed by Flow Cytometry. PLoS ONE 7(10): e47909. doi:10.1371/journal.pone.0047909

Editor: Gernot Zissel, University Medical Center Freiburg, Germany

Received July 12, 2012; Accepted September 17, 2012; Published October 24, 2012

Copyright: � 2012 Haugland et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project is funded by University of Bergen, Norway [http://www.uib.no]. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: NV is employed by Aqua Kompetanse AS. This company offers services for environmental and general fish health management to
regional farmers and regulatory authorities. They are not involved in lumpsucker production, but perform general supervision of salmon farms using lumpsucker
as cleaner fish as part of their general activities. Recently, NV graduated as master in aquamedicine in the group of Professor HIW at UiB. His employment is not
related to any companies’ consultancy, patents and products in development or marketed products, and as such, this does not alter the authors’ adherence to all
the PLOS ONE policies on sharing data and materials.

* E-mail: gyri.haugland@bio.uib.no

Introduction

In teleosts, innate immunity is of vital importance as their

adaptive immune system is considered to be less developed than in

mammals. Phagocytosis, which is engulfment of particles, is an

essential mechanism of the innate immune system and the first line

of defence against invading pathogens in all eukaryotic organisms.

In addition to macrophages, which are the main phagocytes in

fish, fish B-cells and granulocytes have also potent phagocytic

ability [1–11]. The three types of granulocytes; neutrophils,

eosinophils and basophils, have been identified in fish, but their

presence and morphology vary between fish species [12–15].

Further, due to confusion regarding granulocyte subset terminol-

ogy and lack of cell specific surface markers, it is unclear which

subtype who function as the main phagocytes in fish [16,17,18].

The functions of dendritic cells in fish are not yet known, as such

cells have just recently been identified and isolated in a few fish

species like salmon, zebrafish, medaka and trout [19–23].

Phagocytic cells are activated in vivo by a range of pathogen-

associated molecular patterns, as well as by humoral components.

In vitro, they are activated by various stimulants that also bind to

their pattern recognition receptors [24–27]. However, for verte-

brates and invertebrates a receptor independent activator, Phorbol

12-myristate 13-acetate (PMA), has been used in measurements of

respiratory burst activity. We have earlier provided flow cytometry

protocols for analyses of respiratory burst in cod and salmon using

PMA as activator [28]. Respiratory burst is a potent oxygen-

dependent killing mechanism in phagocytic cells, like monocytes/

macrophages and neutrophils and is regarded as a highly efficient

non-specific cellular defence mechanism. In some fish species, such

non-specific mechanism might be crucial and provide the most

significant immunity against pathogens. One example is cod that

has low response of specific antibodies [29] and lack the gene

encoding MHC II [30,31]. However, cod might have other, yet

unexplored mechanisms to provide specific protection.

In this study, we have performed morphological and functional

studies of leucocytes isolated from lymphoid tissues and peripheral

blood from lumpsucker. We have used a strategy based on flow

cytometry to investigate functional mechanisms of innate immu-

nity, which are possible without known genome sequence and cell
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markers. Such approaches might also be useful for others, who

work with organisms where genome sequence is not yet available.

The flow cytometry analyses provided accurate data from

individual cells on phagocytic ability and capacity, and identified

potent respiratory burst activity in lumpsucker leucocytes.

Materials and Methods

The present work with lumpsucker has been conducted

according to the approved national guidelines and performed

according to prevailing animal welfare regulation. Rearing of fish

under normal, optimal conditions does not require ethical

approval under Norwegian law (FOR 1996-01-15 nr 23). All

work in the presented manuscript has been done on cells isolated

from dead fish. Fish were sacrificed with a sharp blow to the head,

which is an appropriate procedure under Norwegian law.

Fish
Lumpsucker (Cyclopterus lumpus L.) males, at a weight between

700 to 1000 g, from a group of wild caught fish intended for use as

broodstock, were used. The fish was provided by Norsk

Oppdrettservice in Flekkefjord, Norway. The fish (n = 40) were

kept in two separate 500 l tanks in the rearing facilities at Bergen

High-Technology Centre under normal optimal rearing condi-

tions at a temperature of 6uC, salinity of 34 % and 12:12 hour

light:dark. These facilities are approved by the Norwegian Animal

Research Authority for rearing of fish. The water flow was 1000 l

per hour and the fish were fed with the commercial dry feed

Amber Neptune, marine feed for gadoid, obtained from Skretting,

Norway. There were no signs of infection and no mortality in the

fish.

Sampling Procedure and Isolation of Leucocytes
Lumpsucker were randomly sampled for the experiments. The

fish were quickly netted and killed by a sharp blow to the head.

Peripheral blood (0.7 ml), collected from vena caudalis of the fish,

was transferred to heparinised containers and diluted to a total

volume of 5 ml in Leibovitz L-15+ (L-15 media without L-

Glutamine adjusted to 370 mOsm by adding 5% (v/v) of a solution

consisting of 0.41 M NaCl, 0.33 M NaHCO3 and 0.66% (w/v) D-

glucose), supplemented with 100 mg ml21 gentamicin sulphate

(Lonza Biowhittaker Verviers, Belgium), 2 mM L-glutamine

(Lonza Biowhittaker Verviers, Belgium), 10 U ml21 heparin

(Sigma-Aldrich, St. Louis, USA) and 15 mM HEPES (Sigma-

Aldrich, St. Louis, USA)). Whole spleen was used for leucocyte

isolation. The head kidney (HK) sample from lumpsucker was

isolated from the left cranial HK lobe (Fig. 1). Tissue samples for

leucocyte isolation were placed in 2 ml L-15+, and HK and spleen

cell suspensions were obtained by gently forcing the tissue trough

a cell strainer (Falcon, 100 mm (BD Biosciences Discovery

Labware, Bedford, USA) using additional 3 ml L-15+. Leucocytes
were isolated as previously described for cod [28]; the cell

suspensions were placed on discontinuous Percoll gradients 3 ml

1.070 g ml21 overlaid with 2.5 ml 1.050 g ml21 and centrifuged

40 min at 4006g and 4uC. The leucocyte fraction was collected

from the interface of the two Percoll densities including the

downward density layer, and washed by diluting the suspension in

L-15+ and centrifuged at 2006g for 10 min at 4uC. The cells were
resuspended in 0.5 ml L-15+ and counted using a CASY Cell

CounterTM (Innovatis AG, Mannheim, Germany). In addition,

viability and aggregation factor for all isolated cell suspensions was

determined using the CASY according to the manufacturer’s

procedure. Leucocytes showed viability of 95% or above and the

cell aggregation factor was below 2.0 for cell samples used in the

analyses.

Cytospin Preparations
Cytospin preparations of isolated leucocytes were prepared by

centrifugation of 100 ml of cell suspension of 16106 cells ml21 at

1000 rpm, medium acceleration for 3 min, using a Shandon

Cytospin III cytocentrifuge (Shandon Scientific Ltd, Runcorn,

England). The cytospin preparations were air dried for 20 h at

room temperature.

Cytochemistry
Cytochemical staining procedures were performed on isolated

leucocytes in cytospin preparations as described above. Human

control was own blood smear. Control salmon leucocytes for

identification of neutrophil cells were isolated as described

previously [32]. Cytospin preparations of cells were stained using

Colorrapid-set from Lucerna-Chem (Lucerne, Switzerland).

Myeloperoxidase (MPO) Staining
Staining of cell preparations for MPO was done mainly as

described by Ganassin et al. [33]. The preparations were incubated

in freshly prepared fixative solution (10% (v/v) 37% formalde-

hyde, 90% (v/v) 95% ethanol) for 30 s, washed in gently running

tap water and air dried in the dark for 10 min. The preparations

were then incubated with diaminobenzidine (DAB) staining

solution prepared from SIGMAFAST DAB tablets (Sigma-Aldrich,

Figure 1. Lumpsucker kidney used for isolation of leucocytes. Dissected kidney where the section used for isolation of leucocytes from the
left cranial lobe is marked.
doi:10.1371/journal.pone.0047909.g001
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St. Louis, USA) for 30 min in the dark, rinsed in tap water and

mounted in Dako Faramount Aqueous mounting medium (Dako,

Carpinteria, USA). Staining was performed at room temperature.

Periodic Acid Schiff (PAS) Staining
Staining was performed as described earlier for salmon cells

[34]. Briefly, cell preparations were fixed in methanol for 10 min,

rinsed in running tap water for 15 min and air dried. The

preparations were then incubated with 0.044 M periodic acid for

10 min, rinsed in tap water and air dried, before incubation in

Shiff’s reagent (Sigma-Aldrich, St. Louis, USA) for 10 min. After

gentle rinsing in tap water, the preparations were counterstained

for 20–30 min in filtered Mayer’s hematoxylin solution (Sigma-

Aldrich, St.Louis, USA), rinsed in tap water and mounted in Dako

Figure 2. Morphological and cytochemical analyses of leucocytes isolated from peripheral blood, head kidney and spleen. Cytospin
preparations of PBL, HKL, SL stained with Colorrapid (CR) (A), PAS (B) and MPO stained cells (C). The overview photos in A (left) and representative
single cells (right), captured 6306magnifications. i= lymphocytes, ii=monocytes/macrophages, iii=polymorphonucear cells and iv=dendritic-like
cells. The inset at top (right) in (A) show a polymorphonucleated cell (neutrophil) isolated from Atlantic salmon for comparison. In (B) and (C),
representative single cells of isolated PBL, HKL and SL shown are captured at 6306. Representative cells from human blood smears are shown as
controls (6306). Note that PAS staining (B) was highly variable and the two negative cells shown for PBL and HKL might be considered weak positive.
In (C), overview of MPO stained SL and PBL, captured at 4006, show positive and negative leucocytes. Erythrocytes stain MPO positive. Scale
bars = 5 mm.
doi:10.1371/journal.pone.0047909.g002

Figure 3. Flow cytometry analyses of leucocytes isolated from peripheral blood, head kidney and spleen. Representative size/
granularity (FSC/SSC) dot plots, show different sub populations among PBL, HKL and SL. The regions used in the analyses, representing the live cells,
are delimited in each panel.
doi:10.1371/journal.pone.0047909.g003
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Figure 4. Isolated leucocytes have potent phagocytic ability. Proportions of phagocytic leucocytes of total PBL, HKL and SL after 1, 4 and 8
hours ingestion of fluorescent beads measured by flow cytometry (mean, bars indicate SD, N= 6).
doi:10.1371/journal.pone.0047909.g004

Figure 5. The phagocytic capacity of isolated leucocytes is high. FL1 (green bead fluorescence) histograms (left) showing phagocytic
capacity of PBL (A), HKL (B) and SL (C) incubated with fluorescent beads (1 mm) for 4 h. Increased peak fluorescence indicates an increased number of
ingested beads. Picture insets show cells stained with Colorrapid from PBL, HKL and SL samples that have ingested various numbers of beads. The left
dot plots show cells in the red (cells with 1 bead) blue (cells with two beads) and green (cells with 3 or more beads) and black (non-phagocytic cells)
regions; cells with a higher number of ingested beads have a higher granularity (SSC-value). The dot plots to the right show the light scatter
properties of the cells incubated without beads at the instrument settings used for the phagocytosis assay.
doi:10.1371/journal.pone.0047909.g005
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Faramount Aqueous mounting medium (Dako, Carpinteria,

USA).

Flow Cytometry Assay of Phagocytosis
Phagocytosis was studied using fluorescent latex beads and flow

cytometry as described earlier [7] with some modifications. Two

hundred and fifty ml cell suspensions (16107 cells ml21) were

mixed with FluoresbriteH YG carboxylate microspheres (Poly-

sciences Inc., Warrington, USA), 1 mm in diameter, at a cell/bead

ratio of 1:25 per well in 48 well cell culture plates (Nunc, Roskilde,

Denmark), and incubated for 1, 4 and 8 h at 12uC. Wells

containing cell suspension without beads were used as negative

controls. Following incubation with beads the cell suspensions

were removed and the wells were washed twice, first with 250 ml
L-15+ medium and thereby 250 ml PBS 380 mOsm (PBS 380).

Adherent cells were loosened by trypsination for 5 min using

250 ml per well of trypsin-EDTA (Lonza Biowhittaker, Verviers,

Belgium), and gentle scraping. To remove non–ingested beads, the

cell suspension was placed on top of a cushion consisting of 3 ml

phosphate-buffered saline (PBS), pH 7.3, with 3% (w/v) bovine

serum albumin (Sigma, St. Louis, USA) and 4.5% (w/v) D-

glucose, centrifuged at 1006g for 10 min at 4uC, washed once

with 1 ml PBS+E (PBS containing 1% (w/v) BSA, 0.1% (w/v)

sodium azide and 25 mM EDTA) and resuspended in 500 ml
PBS+E prior to flow cytometry analyses.

Using flow cytometry, cells were analysed for forward scatter

(FSC) and sideward scatter (SSC) patterns, representing the size

and granularity of the cells, respectively, and for green bead

fluorescence (detected with 530/30 nm bandpass filter; FL1).

Dead cells were detected by staining the cells with 2 mg ml21

propidium iodide (PI) (Sigma, St. Louis, USA) (using the 585/

42 nm bandpass filter; FL2) and these cells were excluded from

subsequent analyses by gating. The analyses were performed on

a BD FACSCalibur flow cytometer (BD biosciences, San Jose,

USA) equipped with a 15 mV 488 nm argon-ion laser using Cell

Quest version 3.1 software (Becton Dickinson) recording 10 000

cells in each sample. Further data analyses were done using FCS

express 3 (De Novo Software). Phagocytic ability was expressed as

the percentage of total leucocytes with ingested beads, while the

phagocytic capacity was expressed as the proportion of phagocytic

cells that had ingested one, two, three or more beads.

Flow Cytometry Assay of Respiratory Burst
The flow cytometry analyses of respiratory burst is based on

previous established protocols for measurements of respiratory

burst in cod and salmon where dihydrorhodamine 123 (DHR) is

oxidised to the fluorescent rhodamine 123 (RHO) [28]. From

a leucocyte concentration of 2.56106 ml21, 200 ml was trans-

ferred to 5 ml polystyrene tube (Falcon, Becton Dickinson,

Franklin lakes, USA) and incubated at 18uC for 10 min with

gentle tilting. Respiratory burst was activated in leucocytes by

PMA (Sigma, St. Louis, USA) using a concentration of 0.1 and

1 mg ml21 PMA in the tube and incubated for 10 min at 18uC
before addition of DHR. The PMA stock solution was made of

1 mg PMA in 1 ml DMSO (CH3)2SO, (Sigma, St. Louis, USA)

and was stored at 220uC and further diluted in PBS 380

containing heparin (PBS 380 h). Five ml of 206 mM DHR,

resulting in a total concentration of 5 mM per sample tube was

added. The samples were mixed and incubated by gentle tilting for

15 min. Prior to flow cytometry analyses 300 ml PBS 380 h was

added to each tube and the cells were carefully suspended using

a vortex mixer. Two parallels per variable from 5 fish were used

throughout all analyses.

The flow cytometry analyses and data analyses were performed

as described above. RHO fluorescence was detected with 530/

30 nm bandpass filter; FL1.

Several controls were included in the respiratory burst analyses.

Untreated leucocytes control without PMA and DHR for

detection of any possible auto fluorescence from the leucocytes.

A PMA stimulated samples without DHR were analysed to test for

presence of fluorescence not caused by oxidation of DHR. A non-

Figure 6. Phagocytic cells ingest beads rapidly. Proportions of
phagocytic cells with various numbers of ingested beads in PBL, HKL
and SL after incubation with fluorescent beads (1 mm) for 1, 4 or 8 h
detected by flow cytometry (mean, bars indicate SD, N= 6 in all analysis
except for SL 4 h where N= 5).
doi:10.1371/journal.pone.0047909.g006
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stimulated sample added DHR was used to define the region of

respiratory burst negative cells and this control was included

throughout the experiments. A limit of 2% RHO positive non-

stimulated leucocytes was defined. To verify that DHR was

oxidized to RHO by H2O2, which is produced in respiratory burst,

H2O2 was added to leucocytes using 5 ml of 30% H2O2. Also,

a H2O2 control without DHR was included. Samples were

analysed with instrument settings both for non-treated leucocytes

Figure 7. Isolated leucocytes show strong respiratory burst activity upon stimulation with PMA. Flow cytometry of respiratory burst in
leucocytes from PBL (A), HKL (B) and SL (C). FL1 (green fluorescence) histograms show RHO fluorescence after PMA stimulation. Stimulated cells:
0.1 mg ml21 of PMA, red line and 1 mg ml21 of PMA, blue line. Controls: Non-stimulated cells without PMA and with DHR (grey filled peak), used for
determination of limit between RHO positive and negative cells. Positive control for oxidation of DHR by H2O2 to RHO (grey line). Other negative
controls: without PMA and DHR (aqua line), with PMA and without DHR (green line) and with H2O2, but without PMA and DHR (yellow line). These
negative controls without DHR have low fluorescent intensity. Horisontal bars indicate RHO positive cells. The corresponding size/granularity (FCS/
SSC) dot plots of PBL, HKL and SL show RHO positive cells (red) for PMA (1 mg ml21) stimulated cells.
doi:10.1371/journal.pone.0047909.g007
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and for DHR treated leucocytes, and compared with cells from the

same fish.

Microscopy of Cells
Cytospin cell preparations and blood smears were examined

using Zeiss Axioskop 2 plus microscope (Carl Zeiss, Germany).

Cell suspensions prepared for analyses of respiratory burst activity

in flow cytometry were studied by fluorescence microscopy.

Cytospin preparations were made by centrifugation of 100 ml cell
suspension for 3 min at 1000 rpm in a Shandon Cytospin III

cytocentrifuge onto conventional glass slides. Preparations were

immediately examined using fluorescence microscope Zeiss

Axioskop 2 plus. Photos were prepared using Adobe photoshop

CS5 (Adobe Systems Incorporated, San Jose, USA).

Results

Leucocyte Morphology and Enzyme Cytochemistry
Leucocytes from peripheral blood (PBL), head kidney (HKL)

and spleen (SL) could be isolated, using the same densities of

Percoll gradient as used for isolation of cod leucocytes. The

leucocytes were present in one clear band at the interface between

the two densities. In cytospin preparations of leucocytes, stained

with Colorrapid (Fig. 2A), the cells appeared to be highly

heterogeneous with respect to cell size and also the cell and

nucleus morphology were highly variable. Lymphocytes, neutro-

phils and monocytes/macrophages were identified, and some of

the cells contained many granules. Many large cells with irregular

morphology and nucleus were abundant among PBL, HKL and

SL. PAS positive cells were found among PBL and HKL, and a few

clearly positive cells were also found among SL (Fig. 2B). The PAS

reaction was highly variable, and many cells were weakly stained

and could not easily be evaluated (Fig. 2B). When staining for

MPO, numerous positive cells were found among PBL and HKL

and the cells varied in shape and size as shown in Figure 2C. Also

among SL, MPO positive cells were present, but not as many as

among HKL and PBL (Fig. 2C).

Flow Cytometry Revealed Cells with Different Sizes and
Granularity
Flow cytometry analyses of PBL, HKL and SL confirmed

heterogeneous cell populations. The distribution of cells in dot

plots, presenting cell size versus granularity, is shown in Figure 3.

Among PBL three clusters of cells were consistently observed,

representing cells with different size and granularity, and all three

clusters contained high numbers of cells. Among HKL large cells

with high granularity were dominating and rather few small cells

were present, while among SL small cells with low granularity

were most frequent, although various sized larger cells with high

and variable granularity were also found among the SL.

Leucocytes Isolated from Blood, Spleen and Head Kidney
have Potent Phagocytic Activity and Capacity
Potent phagocytic activity was observed for leucocytes both

from blood, head kidney and spleen using flow cytometry (Fig. 4

and Fig. 5). The highest per cent phagocytic cells of the total

number of leucocytes were measured in HKL for all time points; 1

hour (43.2%), 4 hours (57.9%) and 8 hours (65%). Among PBL,

the percentages phagocytic cells were slightly lower, 39.9% (1

hour), 47.6% (4 hours) and 54.2% (8 hours), while leucocytes from

spleen had lowest phagocytic activity with 25.8%, 30.4% and 34%

phagocytic cells after 1, 4 and 8 hours, respectively.

Representative samples of PBL, HKL and SL incubated with

fluorescent beads are shown in Figure 5. Potent phagocytic

capacity, measured by number of beads each cell ingests, is shown

in both histograms and scatter plots (Fig. 5). Cells containing beads

varied in size, morphology and numerous beads ingested, as

shown by microscopy of Colorrapid stained cytospin preparations

of cells prepared for flow cytometry analyses. The phagocytic

capacity over time, with the proportions of phagocytic cells

containing one, two or more beads, are shown in Figure 6. Already

after one hour exposure to beads, a high proportion of cells

contain three or more beads, PBL (80.1%), HKL (68.4%) and SL

(74.1%). From 1 to 8 hours there was only a slight increase, 3.3–

5.5% in PBL and SL with 3 or more beads, while the proportion of

cell in HKL increased by 12.9%. The proportions of cells with one

or two beads were low, ranging in PBL, HKL and SL from 18.3%

(HKL, 1 h) to 6.1% (PBL, 8 h). The highest percentages of cells

with one and two beads were found after one hour and lowest after

8 h, and there was a slight decrease at 4 and 8 hours compared to

1 hour.

Isolated Leucocytes have Strong Respiratory Burst
Activity
PMA specifically stimulated respiratory burst activity in

lumpsucker leucocytes. There was little difference in activity using

0.1 or 1 mg ml21 PMA, and only slightly higher proportions of

RHO positive cells were measured for 1 mg ml21 as shown in

Table 1 and Figure 7. The geometric mean fluorescence intensities

(GMFI) of RHO positive cells are included in Table 1. Note that

a fraction of leucocytes from blood and spleen had strong

fluorescence intensity (Fig. 7), indicating high respiratory burst

activity. Among PBL, both small cells (low FSC) with low

granularity (low SSC), and larger cells with high granularity, had

respiratory burst activity (Fig. 7). In HKL, RHO positive cells

were typically large with high granularity, while positive cells

isolated from spleen varied in size and granularity as shown in the

dot plot (Fig. 7). The specificity of PMA for priming respiratory

burst activity was confirmed by several controls included in the

assay (Fig. 7). All negative controls had low fluorescent intensity, as

Table 1. The proportions of RHO-positive cells and geometric mean fluorescence intensity (GMFI) of PMA stimulated PBL, HKL and
SL from lumpsucker analysed by flow cytometry.

PBLa HKLb SLa

PMA (mg ml21) % RHO-pos GMFI % RHO-pos GMFI % RHO-pos GMFI

– 2.0 12.262.7 2.0 23.2612.5 2.0 18.464.0

0.1 16.269.8 25.9616.7 18.866.6 40.6613.6 23.4611.7 49.9624.1

1.0 17.4611.1 27.1618.1 24.266.9 45.1618.7 25.5611.17 50.6622.2

aN= 4, bN = 5
doi:10.1371/journal.pone.0047909.t001
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shown in the histogram, while the positive control, containing

H2O2, stimulated to high RHO production. Performing fluores-

cence microscopy of cytospun PMA stimulated cells, RHO

positive cells appeared green, and the frequent occurrence among

PBL, HKL and SL confirmed the results obtained using flow

cytometry (data not shown).

Autofluorescence in some of the PBL Samples
Interestingly, some PBL samples showed high yellow–orange

autofluorescence, as shown in Figure 8C. This autofluorescence,

observed in large cells with high granularity, was only found in fish

with purple serum color from brown/red fish (Fig. 8A) providing

sera no. 6–8 (Fig. 8B).

Discussion

This is the first description of lumpsucker leucocytes and

immune functions. Accordingly, no pre-existing protocols were

available for isolation and functional studies. In this study, we have

isolated lumpsucker leucocytes and performed functional studies of

the essential non-specific immune mechanisms; phagocytosis and

respiratory burst using flow cytometry.

The specific subtypes of leucocytes in lumpsucker could not

easily be identified, including B-cells, as reagents for identification

do not yet exist. However, based on morphological and

cytochemical studies, using Colorrapid staining, PAS and MPO,

various cell types were identified. Cytospin preparations revealed

cells with heterogeneity in size and morphology among PBL, HKL

and SL, and the cells were more similar to zebrafish, trout and cod

leucocytes, than those in salmon. The most striking observation

was large cells with irregular nuclei and cell morphology, similarly

to enriched DCs from rainbow trout [20]. Also some very small

leucocytes were observed among lumpsucker leucocytes, as found

in cod [13]. The polymorphonucleated neutrophils are easily

identified among the salmon leucocytes, but for lumpsucker, as for

cod, this is not the case [13,35,36]. Some lumpsucker leucocytes

with two lobes were, however, similar to neutrophils in zebrafish

[23]. The neutrophils are granulocytes that are MPO positive and

such cells have been verified in many fish species like more

recently in Murray cod [37]. High proportions of cod and salmon

neutrophils have been found both among PBL and HKL [7] and

in lumpsucker numerous strongly MPO positive cells were present.

Also among the SL, many MPO positive cells were observed,

similarly to cod leucocytes [13]. The variable morphology of the

MPO positive cells in lumpsucker can indicate different cell types,

or different developmental stages as well as activation status of the

cells. Other cells of the myeloid linage like monocytes can also be

among the MPO positive cells. If lumpsucker B-cells are

phagocytic and have oxygen-dependent killing capacities, which

include myeloperoxidase, such cells can also be present as MPO

positive small cells, but as most MPO cells seemed to be larger cells

this might not be very likely. Cells that stained strongly positive for

PAS were less frequent. PAS positive cells were observed among

PBL, HKL and SL, but these could not easily be compared with

MPO positive cells as the PAS staining intensity was highly

variable and the discrimination between positive and negative cells

was not clear. Normally there is an increase in polysaccharides

during cell maturation, and the variations in PAS staining can

therefore be ascribed to different maturation stages of cells. The

neutrophils/heterophils are shown to be PAS positive in many fish

species [37,38,39,40] and one would expect that PAS positive cells

were more frequently observed.

Myeloperoxidase production takes place in the phagolysosome,

and is an important part of the anti-bacterial defence system of

phagocytic cells. Therefore, the presence of numerous MPO

positive cells indicated that professional phagocytic cells were

present in the leucocyte preparations both from blood, head

kidney and spleen. The results of the phagocytic ability and

capacity analyses showed that, indeed, the phagocytic capacity of

the cells to take up beads was very high. Almost maximum

phagocytic capacity were obtained after one hour exposure to

beads and at that time about 68 to 80% of the phagocytic cells had

ingested three or more beads. The cytospin preparations of cells

with ingested beads verified that cells of different sizes were

phagocytic, both medium and large sized PBL, HKL and SL

contained high numbers of beads. In addition, the diversity of the

phagocytic cells was striking in all three cell preparations and the

nature of the smallest cells is not known, being phagocytic they

might belong to the myeloid linage. There was an increase in total

phagocytic ability (mean values) from 1 to 8 hour in both PBL,

HKL and SL and if one compare with similar analyses it is at least

as high in PBL and HKL as for cod and higher than found in

salmon [7].

The respiratory burst was measured using an assay where the

oxidation of DHR by H2O2 is dependent on being catalysed by

myeloperoxidase, cytochrome C or Fe++ [41]. H2O2 is regarded as

a reliable component to quantify as it is the most stable oxygen

reactive intermediate. PMA was found to activate the NADPH

oxidase enzyme in lumpsucker cells and no negative effects on cell

viability were observed as was seen for cod leucocytes when the

highest concentration of 1 mg ml21 was used. Thus, the

concentration of PMA could be as used for activation of

respiratory burst in salmon [28]. The RHO fluorescent cells were

also easily in cytospin preparations as shown earlier for cod and

salmon [28]. It is important that the fraction of dead cells is low

after stimulation and in particular for lumpsucker, as in some fish,

there was a high yellow-orange autofluorescence. We noticed that

the autofluorescent was found in fish that had purple serum. The

colour spectrum seen in sera from lumpsucker males has been

observed and studied earlier [42]. While the blue/green colour has

been described to biliverdin the component giving rise to the

purple colour has not been identified, but it could be phycoer-

ythrin [43,44]. The absorbance of the various pigments in

lumpsuker serum has been studied and the red pigment in male

serum had a peak at 536 nm [44] which is in the absorbance range

of PI, and also the emission ranges are overlapping. It was

therefore particularly important for the flow cytometry analyses in

these fish that few cells died due to PMA stimulation, or during the

respiratory burst assay. Since proportion of dead cells was low in

PBL in the present study there was no problem with the gating of

cells in respiratory burst assay as can be seen from the dot plots of

PI treated PBL. The various chromophores present in samples

from lumpsucker might cause problems with autofluorescence in

Figure 8. PBL samples from fish with purple/red serum give yellow-orange autofluorescence in flow analyses. The lumpsuckers varied
in color from green to brown and red (A). Samples of serum from different fish (B). Histograms and dot plots (insets) when PI is added to leucocytes
(C). In histogram: Gray without PI and black with PI. Horisontal bars show PI positive cells. This sample is used for gating of live cells to exclude dead
cells from the analyses. The left figure in C shows PI positive cells (red dots) in dot plot for PBL from the green lumpsucker giving serum no 3, while
the right figure shows the same results for the brown/red fish giving serum no 7. Note the difference in the yellow-orange fluorescence (red dots in
C) for these two PBL samples.
doi:10.1371/journal.pone.0047909.g008

Functional Study of Immune Cells in Lumpsucker

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e47909



assays, for example using fluoro marked reagents like phycoery-

thrin. The chromophore registered in this study can be normally

present in the cells, or present due to phagocytised material in

phagocytic cells. Being detected in larger and more granulated

cells and since no autofluorescence were found among HKL and

SL, phagocytosis seems plausible.

The percentages of RHO positive cells in PBL and HKL were

in the range observed for cod and salmon [28]. In the present

study, respiratory burst was also analysed for spleen cells and these

had the highest percentage of positive cells and GMFI values.

Individual variations among SL, as among PBL and HKL, are

similar to measurements in cod and salmon. Presently, fish

immunology studies include the species Atlantic salmon and

rainbow trout (order Salmoniformes), zebrafish (order Cyprini-

formes), channel catfish (order Siluroformes), Atlantic cod (order

Gadidae), medaka (order Beloniformes), seabass, seabeam and

Murray cod (order Perciformes) and fugu (order Tetraodonti-

formes). These studies have revealed that considerable differences

in the immune components are present within the teleosts, such as

lack of MHCII in cod [30,31]. As such, this study of immune cells

in lumpsucker (order Scopaeniformes), contribute to broaden our

knowledge of immunity in teleosts. In addition, lumpsucker is

becoming important for the aquaculture industry as it is now used

as cleaner fish for sea lice on Atlantic salmon. However, farming of

this species is challenging as it is susceptible to infections itself, and

therefore knowledge of its immunity is required. Our findings of

high activity of the most important non-specific defence mechan-

isms, phagocytosis and respiratory burst, show that immunosti-

mulation of these mechanisms is crucial in early rearing stages to

prevent bacterial infections. As such, the first steps in antigen

presentation route are highly active, but it remains to see if the

specific antibody response and MHC pattern resembles that of cod

resulting in low specific antibody levels after stimulation [30] or if

the lumpsuckers have good humoral immune response such as

salmon. Thus, further exploration of adaptive immunity in

lumpsucker and the effects of vaccines await further clarification.
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