
UNIVERSITY OF OSLO
Department of Informatics

Automatic scaling
of Cassandra
clusters

Master thesis

Tor Andreas

Baakind

April 30, 2013

Automatic scaling of Cassandra clusters

Tor Andreas Baakind

April 30, 2013

ii

Abstract

The purpose of this thesis is to create an automatic scaling implementation
for Cassandra clusters. The automatic scaler should never lower the overall
performance of the cluster in a way that results in a bad user experience.
It should also be able to successfully scale up and down nodes, and the
cluster should continue as if nothing happened. Last but not least, it is
desirable that the automatic scaler performs equally, or better than, the
person who is in charge of administrating the database.

In this thesis we have developed an early version of an autoscaler that
may run alongside a Cassandra instance. The implementation is split into
two separate implementations: a master-, and an agent-implementation.
The master will be deployed to the same server as the application using the
cluster, even though this is not required. The agent implementation will be
deployed to, and run alongside, all nodes that are a part of the cluster.
The agent will monitor the node’s resource usage, and send messages
back to the master if the usage increases above, or decreases below certain
thresholds.

We performed a set of test cases to prove that the implementation works
as intended. The test cases recorded the nodes resource-usage to determine
the impact our implementation makes to the overall performance.

iii

iv

Acknowledgments

I would like to thank my supervisors, Ketil Velle and Dag Langmyhr, for
their guidance and valuable feedback. This thesis would not have been
completed without them. I would also like to thank Jørgen Sørensen for
proofreading the thesis.

I also want to thank my girlfriend Anniken, for being so supportive
and understanding throughout the thesis work. And finally, I would like
to thank my parents for believing in me.

v

vi

Contents

I Introduction 1

1 Introduction 3
1.1 Problem definition . 3
1.2 Contribution . 4
1.3 Outline . 4

II Background 7

2 Motivation 9

3 NoSQL 13
3.1 Database transactions . 13

3.1.1 The ACID sacrifice . 14
3.2 Brewer’s CAP theorem . 16
3.3 NoSQL data stores . 18

3.3.1 Extensible record stores 18
3.3.2 Key-value stores . 20
3.3.3 Document stores . 21
3.3.4 Graph databases . 22
3.3.5 Other known data models that are not covered 22
3.3.6 NoSQL advantages and disadvantages 23

4 Cassandra 27
4.1 Introduction . 27
4.2 Data model . 28
4.3 Node and cluster configuration 30
4.4 The gossip protocol . 31

4.4.1 Hinted handoffs . 33
4.5 Merkle tree . 34
4.6 Stages . 34

4.6.1 Single-threaded stages 34
4.6.2 Multi-threaded stages 35

4.7 NodeTool . 36

vii

5 Related work 39
5.1 Netflix’s Priam . 39

5.1.1 Amazon Web Services 39
5.1.2 Netflix’s motivation 39
5.1.3 Why we did not choose Priam 40

5.2 Hector . 41
5.2.1 Motivation . 41
5.2.2 Why we did not use Hector 42

III The project 43

6 Introduction 45
6.1 Naming the implementation Hecuba 45

7 Goals and methodology 47
7.1 Goals . 47
7.2 Methodology . 47

7.2.1 Kanban . 47
7.2.2 Story points . 49
7.2.3 Velocity track . 49

7.3 Source control . 50
7.4 Summary . 52

8 Failed attempts 53
8.1 Include Hecuba into Cassandra’s source code 53
8.2 Implemented as an extension to existing Java-projects 54
8.3 Summary . 55

9 Hecuba design 57
9.1 Introduction . 57
9.2 Load balance issues . 57

9.2.1 Token range . 59
9.2.2 Token-generation . 60
9.2.3 Load balance differences between Hecuba and Priam 60

9.3 Communication . 60
9.4 Flow . 62
9.5 Summary . 62

10 Hecuba implementation 65
10.1 Introduction . 65
10.2 Code separation . 65

10.2.1 Autoscale . 66
10.2.2 Autoscale-common . 69
10.2.3 Autoscale-agent . 70

10.3 Tools and frameworks . 73
10.3.1 Maven . 73
10.3.2 SigarAPI . 73

10.4 Scaling . 73

viii

10.4.1 Default scaler . 73
10.4.2 The simplicity of the default scaler 74
10.4.3 Implement a custom scaling algorithm 75

10.5 Scripts . 75
10.6 Limitations . 75
10.7 Summary . 76

11 Test results 81
11.1 Introduction . 81

11.1.1 Linode cluster . 82
11.2 Goals and expected results . 82
11.3 Test cases . 85

11.3.1 The simplicity of the tests 87
11.4 Results . 87

11.4.1 No data inserted into the nodes 89
11.4.2 Pre testing, data is inserted into node A, which is

automatically distributed to node B 89
11.4.3 Read data from the cluster 93
11.4.4 Insert data into the cluster 95

11.5 Summary . 98

IV Conclusions 101

12 Assessment of Hecuba 103
12.1 The Design . 103
12.2 The Implementation . 104

13 Test analysis 107
13.1 Comparison . 107
13.2 Discussion . 109

14 Summary 111
14.1 Further work . 112

Appendices 125

ix

x

List of Tables

9.1 Perfectly balanced 4 node cluster. 58
9.2 Perfectly balanced 8 node cluster. 58
9.3 Unbalanced 4 node cluster. 58

10.1 Startup arguments for the Autoscale-master implementation. 78
10.2 The most important configuration-attributes for the Autoscale-

agent implementation. 79

11.1 Node A specifications . 87
11.2 Node B specifications . 88

xi

xii

List of Figures

2.1 Double the cluster-size is recommended when scaling up a
Cassandra cluster . 10

3.1 Positioning of different databases according to the Brewer’s
CAP theorem. 16

3.2 An example of a relational database row, consisting of
multiple columns.. 19

3.3 An example of how extensible record stores split rows and
columns into column groups.. 19

4.1 Cassandra’s data-model . 28
4.2 Cassandra’s data-model with SuperColumns 28
4.3 Content of a Cassandra-column 30
4.4 Yaml-file example . 30

5.1 Abstraction of the thrift interface 41

7.1 Kanban board example. (Screenshot: http://www.agilezen.com/) 48
7.2 Thesis velocity track from August 17, 2012 to April 12, 2013. 50

9.1 Initialization of the cluster. 61

10.1 Visual representation of the Autoscale-master implementation. 68
10.2 Cassandra and the Autoscale-agent running alongside each

other. 70
10.3 Visual representation of the Autoscale-agent implementation. 72

11.1 Memory usage during TC1_H andTC2 90
11.2 Memory usage during during TC1_H compared to TC3_H . 91
11.3 Memory usage during TC4 and TC5_H 94
11.4 Memory usage during TC6 and TC7_H 96

xiii

xiv

Part I

Introduction

1

Chapter 1

Introduction

1.1 Problem definition

As of today it does not exist any implementation able to automatically scale
a Cassandra cluster base on each node’s resources. Netflix has created an
implementation named Priam that among other things are able to efficiently
double the size of the Cassandra cluster by pairing each new node with an
already existing node and share its load[29].

Although Netflix probably has a very efficient implementation for
doubling the size of a cluster, our implementation tries to solve the problem
by inserting each new node at hotspots that occur. A hotspot is a location of
the cluster that has a higher density of data than the rest. When a new node
is inserted into an already existing token range, the token range is shared
equally among the new- and the already existing node. Even though they
shared the token range in-between themselves, the inserted data will not
be distributed equally. It will not be equally distributed since the data is
stored based on the hashed value of the key. The key is the unique identifier
used to identify the data set. Since the outcome of the hashing algorithm
is fairly random, it is hard to prepare the cluster in order for it not being
unbalanced.

Inserting nodes continuously at hotspots that occur will result in an
unbalanced cluster after some time. Hopefully the cluster will not end up
being too unbalanced, and decrease the overall performance. Unlike Priam,
the implementation will be able to scale down when the cluster operates
on too many nodes. The cluster operates on too many nodes when nodes
may be removed without affecting the performance of the cluster or the
applications using it.

Scaling of a Cassandra cluster would most likely require a lot of
resources and bandwidth to transfer data from one node to another. This
will lower the overall performance of the cluster, and weakens the main
focus of Cassandra: extreme performance and scalability. Therefore the
scaling should be triggered at low-peak hours, since the nodes will be
able to handle the scaling combined with the incoming load from external
sources.

3

1.2 Contribution

It would ease the work for the database administrator if the scaling process
where automated. Today the database administrator has to carefully
monitor the nodes current health, and detect deviations from the normal
behavior. Whenever a deviation is detected, the database administrator
have to take care of it, and eventually scale up or down nodes depending
on his or hers decision. There exist tools for easier monitoring of the cluster,
e.g., The OpsCenter from DataStax[13]. The OpsCenter visualize the cluster
and includes information about each node’s current status, and in-depth
monitoring of each nodes performance and load.

By automating the scaling process, the database administrator would
not have to consider if there is necessary to scale up or down nodes in
the cluster. To understand if the cluster should be scaled up or down
may sometimes require domain knowledge. Sometimes there may be
applications that have periods where the read- and write-requests are
very intense, compared to what is usual. In these cases, the database
administrator will need to have domain knowledge in order to scale up
enough nodes ahead of the event, and eventually know when to scale
down. By automating this process, a scale-up may be triggered within
seconds, and a scale down triggers when the event is over. This allows
such events to happen anytime since the automatic scaler will detect the
increase or decrease in traffic, and act accordingly.

For the automatic scaling implementation to be successful, the criteria
would of course be that the implementation performs equally- or better
than the average database administrator is able to perform. It should also
be able to respond quicker, and hopefully provide better performance than
a database administrator will be able to do.

For the community to fully take advantage of the implementation,
it has to be developed even further. Currently it is a very simple and
straightforward implementation that only looks for high/low memory-
and disk usage, and trigger the scaling process based on the provided
thresholds. It currently does not consider if it scales up or down during
peak-hours, which may lead to a sudden drop in performance during
critical periods e.g., releases or sales.

1.3 Outline

The thesis is organized as follows. Part II contains the background material,
and the motivation for the project. It describes the technology that is
necessary to understand in order to develop the implementation. Part II
also contain a brief introduction to the work related to the project. Part III
describes the project, and the work that has been done. It describes the
goals for the thesis work, and the methodology used while working with
the thesis. Part III also describes the design, and implementation work in
detail. The test cases that have been performed are also described, and the
results that were recorded are visualized through graphs with description.

4

Part IV assesses the design, and implementation, of the automatic scaler
developed during the thesis work. It verifies the final result to see if it
satisfies the goals of this thesis. The part also contains an analysis of
the test results, to determine the severity of the impact made to overall
performance of the Cassandra cluster. Finally, it contains a summary
of the thesis, and a list of future work that should be done before the
implementation is deployed to a real cluster.

5

6

Part II

Background

7

Chapter 2

Motivation

Together with the new era of Internet companies like Google, Amazon
and Facebook, came problems and difficulties considering the database
management. They all struggled with one main problem: The huge amount
of data passing through the Internet at a daily basis, which increases every
day. The traditional RDBMS (Relational Database Management Systems)
does not manage to store all the data and provide good performance the
way they are designed[26]. RDBMS were originally built to work on a
single machine, not act as a cluster of servers like the companies needed
for parallelism and fast real-time response

The most important factor for Google, Amazon and Facebook today
would probably be to have their services online at all times, so their
customers never experience any down time. Today almost every internet
user around the world expect any service to be available at any time, and
also respond to any request within a fair amount of milliseconds. Therefore
these companies always have to focus on their performance and response
time to keep up with the increasing amount of data and the current (and
future) requirements from their customers. If e.g., a service delivered by
Amazon experience poor performance, and maybe goes offline, it may
results in a lot of customers leaving, as it is extremely easy to turn away
for another service on the internet. Therefore Google, Facebook, Amazon
and all other companies which delivers real-time services to a large amount
of users cannot afford to sit back and envy the number of users currently
paying for their services, but have to always be up front, handling problems
and always trying to be better.

Since good performance and fast response is what makes up these
companies, and with the incredible large amount of data which they have
to handle every single day, they had to think of new ways to store and
structure the data. The traditional relational database systems were good
at structure smaller amounts of data for e.g., a banking institution. But
when it comes to large and unstructured amounts of data, the RDMS is not
the right choice. The RDMS has to pre-declare schemas that tell which data
to store, how to store it, and what kind of attributes that exists for the data.

Relational database systems also provide ACID-compliant transactions,
which means that what is written is what is retrieved by the next

9

Figure 2.1: Double the cluster-size is recommended when scaling up a
Cassandra cluster

transaction. It locks the data that is currently being manipulated in order
to prevent other transactions from making changes to it. This leads to a
lot of overhead, and may cause write-intensive systems to almost freeze if
multiple users are updating the same data at the same time in the database.

As a result of this, these internet-companies came up with new database
models solving their problems. These database models are often referred
to as NoSQL. NoSQL is a wide acronym for the non-relational databases,
which cannot be labeled as a relational database.

One of the most known NoSQL databases today is Cassandra. Cas-
sandra is a one of the best databases today when it comes to scalability
and high availability without lowering performance [30]. Cassandra sup-
ports ad-hoc scaling, which means that any new nodes may connect to the
cluster by interacting with an already existing node. As Cassandra allows
dynamically scaling of clusters, it opens up the possibility to deliver “infi-
nite” capacity by increasing with n nodes whenever the cluster is about to
run out of space. To prevent the cluster from being unbalanced, it is recom-
mended to always extend with numberO f Nodesx2, where numberO f Nodes
is the number of nodes in the cluster. E.g., if there are 4 active nodes in the
cluster and the cluster scales up, it should scale up to 8 nodes. To prevent
too much data moving across multiple nodes, and to keep the scaling as
isolated as possible to the nodes involved, each new node gets paired with
one of the existing nodes, so that each existing node pairs with 1, and only
1 node as seen in figure 2.1. By default, node E pairs with node B, node F
pairs with node C, node G pairs with node D, and node H pairs with node
A. When the node pairs up, they share the already existing token-range

10

of the existing node, and each node ends up with 50% of the token-range.
Cassandra’s default token-assigner cut the responsible token-range in half,
e.g., if the existing node is responsible for #0000 - #3999, the node will con-
tinue to serve the token-range #2000 - #3999, while the new node will be
responsible for the token range #0000 - #1999 or vice versa.

It is a preferred feature to support ad-hoc scaling while the cluster being
online, since there is never a good idea to bring down an active cluster
to increase or decrease the available space and computing power. Even
though Cassandra supports real-time ad-hoc of new nodes, the operation
has to be performed manually by the database administrator. There is
no solution that automatically keeps track of the cluster’s health and
initiate scaling based on disk-, memory- or CPU-usage over time. Our
implementation is meant to fulfill this need. It monitors each individual
nodes health, and determines if the cluster needs to be scaled up or down
based on the monitored values. It will not initiate scaling directly after a
threshold is breached, as this will result in a lot of up- and downscaling
which will lower performance and increase network traffic more than
necessary. It will monitor the breaches over time, and if the breach occurs
continuously for a given time, the implementation will either scale up- or
down nodes depending on the breach-type.

11

12

Chapter 3

NoSQL

NoSQL is a term that is used to describe database systems which is different
from the traditional relational database systems. The NoSQL term has
not been officially defined yet, although some people think that it means
Not only SQL. Eben Hewitt has his own explanation of what NoSQL is
all about in his book Cassandra: The Definite Guide[20]. Hewitt think that
the NoSQL term should not be used to cover all databases that are not
relational, as they do not share the same implementation, goals, features,
advantages and/or disadvantages. Each database system was designed
for different purposes and has different focus. Hewitt believes that -
“comparing NoSQL to relational is really a shell game”. What he probably
means is that NoSQL cannot be directly compared to a relational database
as it covers many different variants of non-relational databases. Each non-
relational database that is covered by the NoSQL term should be compared
against the relational database for the comparison to be correct.

Since the end of the 21st century there have been designed many
different database solutions that are categorized as NoSQL solutions. The
majority of the databases are inspired by either Google’s BigTable[10]
which is Google’s own database model used for many of their services, or
Amazon Dynamo, which is Amazon’s database model used for handling
their shopping cart functionality[14]. Some solutions are directly related
to one of these, some are a mix of both, while others are something
quite different. To narrow down the jungle of different NoSQL solutions
currently existing they may be grouped into categories according to their
data model. The three most essential categories that will be explained
in this thesis are: Extensible record stores, Key-value stores and Document
stores[9]. This thesis will only cover a brief summary of each of the
categories as well as graph databases, since the main focus of this thesis
is Cassandra.

3.1 Database transactions

We have mentioned that large companies like Facebook, Google and
Amazon were in need of a database model that could handle large amount
of data spread across thousands of servers all over the world, queried

13

million times a day. The amount of data they process and index every day
is rapidly increasing, and the traditional relational database model systems
(RDBMS) are not built for tasks like search engines, social networks etc.

Performance is one of the most important features when dealing with
the amount of data e.g., Google indexes just for their search engine. Since
relational databases would perform badly if set to solve tasks like indexing
documents for a global search engine, they were forced to think new and
create solutions that were able to handle large amount of data each day as
well as the increasing amount of users which were, and still are, using their
services. A criterion they had while designing their new solutions may
have been that the response time of the system could not be lowered due
to the amount of data or the change of database system; it had to be equal,
or even better than before.

The biggest bottleneck of a relational database system is their Acid-
Compliant transactions, which guarantees that the data written to the
database is what is retrieved by the next transaction.

3.1.1 The ACID sacrifice

ACID is an acronym for Atomicity, Consistency, Isolation and Durability
[20], and is one of the key features of a relational database system. The
ACID guarantee ensures that the data written to the database, is the
same data retrieved by the next transaction. To achieve ACID-Compliant
transactions, data has to be locked, and only one transaction may be able
to manipulate each data set at a time. Since a subset of the data is locked
due to manipulation, other transactions will have to wait until the locks
are released. As transactions are queued, it may occasionally lead to
bottlenecks. The database system will use a lot of resources just to apply
and hold the locks as well, which means that there will be less resources
for everything else, and the overall performance will be lowered. The four
transaction rules that are a part of the ACID guarantee are:

• Atomicity - If there is a set of operations to be performed at once,
either all of them occurs, or none. E.g., you only want to update
your database if all user details are stored in the respective tables
for address, contact information, login-details etc. All the insertions,
and possible updates are executed within the same transaction and if
one of them fails, the database is rolled back to its previous state and
nothing is stored or updated.

• Consistency - Make sure the data written to the database follows
a set of pre-defined rules like constraints, data types etc. If
the transaction(s) supposed to be performed were successful, the
database system moves the whole database into a new state with the
new and updated data.

• Isolation - Isolate and lock parts of the database that is manipulated
or in use by the transaction(s). By isolating the data involved, the
transaction manager makes sure that no other transactions updates,

14

or retrieves, the data while it is being updated. By isolating the
data involved, the database system makes sure that at the point of
updating, no one else than the current transaction is able to read
or update the data involved. When the update is successful, the
locks are released and other transactions may read or update the
data. This guarantees that what is stored in the database is what is
retrieved. The complexity of the isolation increases when the system
is distributed, as it will require a lot more resources and coordinating
to perform locking across multiple servers.

One way to increase performance while updating data is to make
snapshots of the data currently being manipulated. If there are
any other transactions trying to access the data being updated, they
may read, but not update, the snapshot instead of waiting for the
transaction manipulating the data to finish.

• Durability - Keeps track of committed transactions to the database. If
a transaction is committed to the database, it should not be lost if e.g.,
the power is cut. The transaction manager performs regular backups
of the data and the transaction logs in case of something unexpected
happens. The transaction logs are used to rollback data if something
went wrong by reversing the operations done, but also continue from
the last successful operation if e.g., the power were cut.

The majority of the NoSQL solutions that exists today have sacrificed
the ACID guarantee in order to achieve sufficient response time. In most
cases, the ACID guarantee may not even be required. It may not be
important if your friends wall post on Facebook shows up in your feed
a second after it was posted, or if your twitter-post does not reach all your
friends at the exact same moment as it was posted. What matters are that
no one has to sit and wait for the news feed to load because the database
system performs badly. The ACID guarantee was sacrificed in order to
achieve the appropriate performance and response time, as it consumes a
lot of the overall processing time.

However there are situations where the ACID guarantee and an Acid-
Compliant database system is required. E.g., a financial institution executes
a bank transaction. As a bank transaction transfer peoples money, it is
extremely important that the data is consistent and nothing goes wrong.
Bank transactions have no rooms for misleading data or inconsistent data
(although companies like Visa have special cases which let users spend
money, even if their account is not accessible at the time of the transaction,
but that is outside the scope of this thesis).

Since most NoSQL solutions sacrifices the ACID guarantee in order
to achieve better performance, they are following another set of rules. A
computer scientists called Eric Brewer [7] came up with a conjecture in
2000, which two years later were proven and established as a theorem,
Brewer’s CAP theorem.

15

Figure 3.1: Positioning of different databases according to the Brewer’s
CAP theorem.

3.2 Brewer’s CAP theorem

Brewer’s CAP theorem is a theorem that groups different database systems
based on their abilities. Since the majority of the NoSQL solutions were
forced to sacrifice the ACID guarantee to focus on more important features
for their particular needs, the CAP theorem were invented to group the
different NoSQL solutions together. There are a lot of different NoSQL
solutions that have been created the last couple of years that serves quite
different needs. Everything from social network feeds like the Facebook
news feed, to people’s relationships to each other, companies etc. like
connections at LinkedIn. CAP is an acronym that stands for[5]:

• Consistency - All nodes connected see the same data at the same time.

• Availability - If a request is sent to the database, it is guaranteed that a
response is received, even if the request were not successful.

• Partition tolerance - The system has no single point of failure. If one
node fails, the data is still accessible from another node, and the
system will run as if nothing happened.

Hewitt states in his book about Cassandra that “Brewer’s theorem
is that in any given system, you can strongly support only two of the
three”[20]. The statement concludes that a system cannot strongly support
Consistency, Availability and Partition tolerance at the same time. A system

16

cannot be 100% consistent and available at any given time if it is distributed
across multiple nodes. If new data is inserted or existing data is updated
at one node, due to physical barriers, there will take a few milliseconds or
seconds to make the newly retrieved data available at the other nodes as
well. That is why the system is called eventual consistent. Hewitt explains
three different levels of consistency in his book about Cassandra[21]:

• Strict consistency - (sometimes called sequential consistency) Re-
quires all data returned from the database to be the most up-to-date
data available. To achieve strict consistency across multiple nodes
throughout multiple data centers around the world, a global timer
mechanism will be required to put a timestamp on the data and
operations applied to the system. Strict consistency may be used by
e.g., financial institutions or e-commerce websites as their data have
to be consistent at all times. The main advantage achieved from strict
consistency is the guarantee that the data returned will always be
valid. On the other side, the main disadvantage is the sacrifice of
performance because the system will have to check multiple nodes
for the most up-to-date data.

• Casual consistency - As Hewitt states, casual consistency is a slightly
weaker condition than strict consistency. To increase performance,
this level of consistency gets rid of the global synchronize clock and
timestamp checking that generates a lot of overhead for systems
using strict consistency.

• Eventual (weak) consistency - All nodes within the system will
eventually have the most up-to-date data and be consistent, but there
is no guarantee for when it happens. Eventual consistency may be
necessary for websites or services that requires fast response and the
most up-to-date data is not necessarily required - e.g., Facebook’s
wall or Google’s search.

Figure 3.1 on the preceding page is a remake of Hewitt’s figure
from his book. The figure visualizes which parts of the Brewer’s CAP
theorem the most known NoSQL solutions support with the out-of-the- box
configuration. As mentioned earlier, it is not possible to support all three
features of the CAP theorem strongly. It is only possible to support two out
of three, while its possible to partially support the third. E.g., Cassandra
supports Availability and Partition tolerance. However, Cassandra also
supports eventual consistency where data is consistency within a reasonable
amount of time.

Some database solutions support the Availability and Partition toler-
ance of the Brewer’s CAP theorem. These database solutions do not sup-
port consistency the same way the relational database systems does, but
they may support eventual consistency were data will be replicated to the
remaining nodes at any given time, as Cassandra does. These systems,
along with the others are mainly focusing on achieving as low latency as
possible combined with as high performance as possible[5].

17

There are other database solutions that focuses on supporting
Consistency and Partition tolerance, and partly supports Availability. Their
partition tolerance may often be obtained by mirroring database clus-
ters between different data centers. The main advantage is the possi-
bility to achieve quicker response by splitting the workload into differ-
ent sub tasks and then executes them simultaneously across all available
nodes/servers[5]. The consistency level may be important for some sys-
tems like a stock market. The stock prices of a stock market and number of
stocks available will always have to be up to date. It is the same principle
for an e-commerce website - it would not be good for the business if the
customer finds out the product is out of stock after he or she submitted the
payment.

Even though different database systems are grouped in figure 3.1 on
page 16, it does not mean this is always the case. The grouping is
based on their default out-of-the-box setup. There are different needs for
different situations, and there may be necessary to change the behavior
for a database system. E.g., how much data to keep in memory before
flushing to disk, strengthen the consistency level for a cluster, and so on.
Figure 3.1 on page 16 is not the golden rule; it is just a visualization of the
initial setup of the solutions, and their out-of-the-box support for the CAP
theorem abilities.

3.3 NoSQL data stores

3.3.1 Extensible record stores

In Cattell’s article there is a brief explanation of what extensible record
stores are[9]. Cattell describes the data model of an Extensible record store
to be almost identical to Google BigTable’s data model since its design is
made up of rows and columns, and its flexibility by splitting both rows
and columns across multiple nodes when scaling. When data is split across
multiple nodes, the data is stored and later retrieved based on a predefined
key. Splitting data from the same key across multiple nodes is called
sharding.

Even though column and rows may be split across multiple nodes
throughout the cluster, the location of the data is not randomly selected.
It is also possible to design the system so that data that is supposed to be
retrieved together, e.g., a user’s username and password is stored together
by combining the columns into a column group. Column groups have to
be predefined before storing data, as it is used to determine the location
of the data. When two or more columns are located in the same column
group, Cassandra will try to store all of them on the same node. Cassandra
will even try to store them as close to each other on disk as possible to
decrease the amount of time used to retrieve the data from disk. The reason
why retrieving data located closer to each other physically on the disk is
faster and does matter, is because how the operating system and the disk is
constructed. The operating system will read blocks of data. A block of data

18

Figure 3.2: An example of a relational database row, consisting of multiple
columns..

Figure 3.3: An example of how extensible record stores split rows and
columns into column groups..

contains n number of bytes, which is a fixed size of bytes predefined by
the OS. The OS will always retrieve at least one block of data, even though
only one byte is needed. If it is possible to read all the data necessary as
one stream, meaning that the hard drive does not have to change location
of its reader head (the original mechanical hard drives) but may continue
to read block by block after each other until all the data is retrieved, the
reading time will be lowered, as moving the reader head takes time.

A traditional relational database row-column illustration with users
password, username and contact information is seen in Figure 3.2. The
figure displays a single row of data made up by seven columns. There
is no way the database system is able to detect that e.g., username- and
password-column are closer related than the username- and address-column.
The relational database system takes for granted that all the columns are
equally related no matter the position within the schema. The relational
database system will also require all fields to have a value, even though it is
null. It has to be allocated space for all columns whenever a row is inserted,
even though only a few values are inserted. E.g., if a table consists of 10.000
columns and data is inserted, the database system must allocate space for
all columns, even though not all columns have a value.

Extensible record stores are more flexible as space is not allocated for
columns that do not have a value. As mentioned earlier, extensible record
stores partition columns into column groups as shown in Figure 3.3. The
figure visualizes the columns that are connected through column groups.
The column groups have to be pre-defined before data is stored, since
they are used to determine the storage-location of the data. They are also
used to determine the storing-order to make sure grouped data is located
physically close when it is flushed to disk. Even though the column groups
must be defined before data is passed on to the extensible record store, the
columns does not have to be defined as there does not exist any pre-defined

19

schema like the relational database systems have for the columns. One row
may contain e.g., username, password and firstname, while another row may
contain username, password, firstname and lastname. The first row is missing
the last name column. This column does not contain a null-value, as it
would have done in a relational database, it does not exist and therefore
will not occupy disk-space. Even though most of the columns within the
same column group will be located at the same node, it may happen that
the data will be split across multiple nodes if there is lack of memory or
disk-space.

The column group-implementation is a very clever and neat way to
handle rows that may be hundreds or even thousands of columns wide.
Even though all the columns within the row logically belong together
at a very high abstraction level, it will most likely never be accessed at
the same time if there are hundreds or thousands of columns. However
parts of the row will “always” be accessed together and therefore allocated
within the same column group. The data, which is not strongly connected,
is located within different column groups, which tells Cassandra that it
is okay to split the row across multiple nodes. Even though the links
between columns within different column groups are weaker than the
link between columns within the same column groups, they may still be
accessed together as they are all subsets of the same data set.

Extensible record stores does not require the columns within a row to be
stored sequentially enabling the possibility to extend column groups with
new columns whenever needed, or omit columns if they are not needed for
the current data set. When adding new rows to a relational database table,
the whole schema has to be changed and each row has to extend the newly
added row. When adding new rows and columns to an extensible record
store, it will never affect the already existing data. Even if there are added
columns to already existing rows, as the new columns will be appended to
the end of the data set. The majority of the implementations are append-
only implementations, meaning that the data which is written to disk, is
always appended, no matter if it is an insert or update. Periodically, the
appended data is read and matched against the already existing data set.
If data that is currently added, also exist within the database, the database
update its local values with the newest version.

Apache Cassandra is one of the most known extensible record stores
today. Other examples of extensible record stores are Apache HBase and
Hypertable.

3.3.2 Key-value stores

Key-value stores do not have the typical pre-defined schema as the
relational database have[20]. A schema is a contract with a detail
description of the tables in the database. All columns and their data types
are also described for each table. This strict structure is replaced by a
more relaxed storage structure where a key represents a set of data like
mentioned for extensible record stores. Hewitt visualizes the data model
of a typical key-value store as a bucket-like data model, were data sets are

20

dropped into a bucket. A bucket may contain many data sets, which may
be picked up based on its key. A bucket is a very good representation as it
is an unstructured container for objects and/or elements. In a relational
database it is possible to retrieve a row by querying for any of the columns
in the row. This is very powerful as it is not necessary to predefine which
columns to index ahead of the insertion to be able to retrieve it again. For
key-value stores, it is only possible to retrieve data based on the unique key
that is assigned to each data set. The index is constructed based on the keys
and therefore it is important to assign a meaningful key, as it will be used
to retrieve the data later on. The key-value model gives the developers
more responsibly of structuring the data in the database. This opens up for
more possibilities when it comes to database-designs, although it puts more
pressure upon the developer to carefully design the database. Since the
rules for designing database models for relational databases are so strict,
it is easier to succeed than when designing a database model for a key-
value store. Since key-value stores does not apply the same strict rules for
their database-design, the developers will have to be more careful while
designing the database in order to make a working database model.

In his paper, Cattell tells us that a key-value store generally provides
some sort of persistence mechanism[9]. The database implementation may
be programmed to either store data directly to disk, which will strengthen
the database-consistency, while the performance will be weakened. The
performance will be weakened since the transactions will have to wait
for the database to successfully write the inserted data to disk in order to
finish. If every transaction will have to wait for the disk to return a message
indicating that the write operation were successful or not, systems that is
very write-intensive will suffer from poor performance and response time.
As mentioned earlier, writing to disk is the most expensive operation for
a computer today, at least if it is a mechanical hard-drive. The data may
also be stored asynchronously to disk. This will weaken the consistency as
it takes time writing to the disk. It will also take some time to transfer the
data to other nodes in the cluster, and make sure that the next read initiated
to any nodes within the cluster retrieves the newly written data. It will
however strengthen the performance as the application(s) will not have
to wait for a successful write-to-disk acknowledge message, and therefore
may continue as soon as the data is sent to disk for storing. A few examples
of the most known key-value stores are Amazon’s Dynamo, Project Voldemort
and Redis.

3.3.3 Document stores

Document stores are related to the daily term document. It may store
documents like e.g., Word-, Excel- or PDF-files. The documents stored
in a document store may also contain other documents, scalar values or
lists. The attributes of each document are defined during runtime and
therefore each document may contain different attributes even if they are
of the same type[9]. Since there is no schema defining the structure of
the documents stored, the document stores is a very flexible database as

21

practically everything may be stored. However it weakens the structure of
the database, and if the design is not done properly, the inserted documents
may be hard, or even impossible, to manage. Therefore it is even more
important now, than with a relational database, to create a database design
that is easy to understand and implement.

Document stores also support secondary indexes. A secondary index is
just another key that may be assigned to the data set. It will be indexed and
possibly used to lookup the data. Examples of known document stores are
Apache CouchDB, MongoDB and Riak.

3.3.4 Graph databases

A graph database is a database that focuses on the relations between objects
e.g., people. Neo4J is a well-known graph database, which is used by 20
of the top 2000 it-companies and hundreds of new startups all over the
world[28]. Relational databases are the preferred data model for handling
financial tasks, reporting etc. Key-value stores is designed for tasks like
handling the shopping carts for an e-commerce site where the number
of elements in the list is unknown, the object type is unknown and there
may be high write throughput. While these data models covers most of
the known areas, there are areas they do not cover and areas they are not
designed for and where their performance will suffer; relationship between
objects or data sets. Key-value stores or relational databases are not very
good at representing relationships and connections between objects and/or
people. Graph databases on the other hand are designed to focus on the
relationships, e.g.:

A person and a car - The person may own the car, he may rent the car,
borrow the car or he may even have stolen the car.

Between two people - They may be friends, lovers, siblings or enemies.

Conferences - Conference talks are often connected with people and
stages/rooms as it is held for someone at a stage or in a room, there
may be another speaker after the current speaker, and there is also a
speaker for the current talk. This list may be expanded depending on
what is interesting.

These are just three simple examples of what a graph database may
be used for. Twitter uses a graph-database on top to connect tweets, your
followers, who you are following etc.[15]. Twitter need to traverse a users
followers as fast as possible to be able to deliver tweets as close to real-
time as possible. Their choice of database had to be able to rapidly lookup
connections between people, as well as handle high write throughput as
new tweets are posted, people follow, and stop following each others etc.

3.3.5 Other known data models that are not covered

Object-oriented databases store objects, which is very similar to the objects
a programmer is familiar with. Distributed object-oriented databases are

22

the same as Object-oriented databases, except that they distributes their
objects across multiple nodes/servers and keep as many objects as possible
in main memory to increase performance, as the response time will be
lowered since there will be less disk-accesses.

To read more about these models, I recommend reading Cattell’s paper
about Scalable databases and NoSQL Data stores[9]. This thesis will not go
into details of these data models.

3.3.6 NoSQL advantages and disadvantages

“NoSQL is a better choice than a relational database for the given task”. Those
who did not take the time to consider the advantages and disadvantages
of NoSQL solutions may hear this statement. There are also many different
NoSQL solutions that exist, and therefore it is not always a better choice
than the traditional relational database. Whether or not a NoSQL solution
is a better choice than the relational database, depends entirely on the
system requirements for each individual system. In some cases, e.g.,
when the database is responsible for people’s finances, we can not tolerate
guessing or eventual consistency, which some NoSQL solutions provide
to increase performance[5]. What would happen if the balance of a bank
account were not accurate at any given time? If the financial systems were
not consistent, it is very certain that the world’s economy would have been
affect in a way that is hard to predict. There should never be any doubt
if the amount of money currently registered to an account is the actual
amount or not. Transactions that are handling money transfers have to
be ACID compliant in order to guarantee that the balance for both the
sender and the receiver is adjusted accordingly whenever the transaction is
complete.

If a system is not required to be ACID compliant, the world of NoSQL
opens up. However, a few of the NoSQL implementations are ACID
compliant e.g., Neo4J and CouchDB. If a system does not require the ACID
guarantee to be applied, it is often because it was sacrificed in order to
achieve a successful implementation. Applications like web analytic tools
and social network feeds are not ACID compliant as it would ruin the
performance, and make the application useless. A web analytics tool will
most likely receive multiple streams of data to be recorded at the same
time, depending on the traffic of the website(s) monitored. To prevent
the analytics tool from loosing data or stacking up too much data before
it is stored, the write performance of the implementation must be high.
A traditional relational database is not able to process the huge amount
of data received at the rate which is required for a web analytics tool
to be functional at all times. The data model of a relational database is
not flexible enough to handle the unknown number of different websites,
recordings etc. which may be stored. The relational database is also
generating a lot of overhead due to it being ACID compliant, which is not
necessary when handling website statistics. In most cases it will not cause
any problems if data is stored a second or so after its originally passed to
the database, or if the stored data is not shown after a few seconds.

23

Performance gains

The biggest advantage of using a NoSQL database depending on the
solution is the query speed, response time, fault tolerance and the
scalability. Most NoSQL solutions perform better than traditional relational
databases when measuring performance since most of them are not ACID-
compliant. As mentioned earlier the ACID guarantee generates a huge
overhead and is the bottleneck of the relational database systems. Each
implementation that is following the CAP theorem is only able to strongly
support two out of three sides (see Figure 3.1 on page 16)[20]. Since the
implementations are not ACID compliant, they are able to achieve goals
that are not possible with a relational database. Different goals may be
achieved depending on which part of the CAP theorem the implementation
supports.

One of the biggest advantages for NoSQL implementations that focus
on Partition tolerance and Availability is the ability to scale in real time
without lowering the performance. Cassandra strongly supports Partition
tolerance and Availability, while it partially supports consistency as it
supports eventually (weak) consistency. Cassandra offers the ability to
replicate data across multiple nodes to keep availability high. If one node
goes down which happens from time to time, the data will still be available
as it is replicated to n other nodes. By increasing the replication factor,
Cassandra also increases the availability. However there are some limits: If
the replication factor is 2, the total size of the cluster will be twice the size of
the actual data, if the replication factor is 3, the total size will be 3 times the
actual data etc. Therefore database administrators and developers have to
find a balance between what is necessary and what is feasible. Cassandra’s
replication factor may be customized for every keyspace, at every data
center. The datacenters.properties file sets the replication factor for
Cassandra.

The replication of data across multiple nodes happens asynchronously
to prevent performance loss. If a transaction has to wait for each node
to successfully store and return a success-message, the benefit of NoSQL
would be lost. When accessing data from a node which stores replicated
data of the desired data set, it may happen that the data retrieved is
old as the newly inserted data is not replicated to the actual node yet,
or the node have not yet stored and compacted its data. This is why
Cassandra’s consistency is called eventual consistency, as it will eventually
be consistent whenever data is replicated and made available to all nodes
that are responsible for the given data set.

Main disadvantage

The biggest drawback for most NoSQL solutions is that they are no longer
ACID compliant. The ACID guarantee provides a well-known and tested
transaction security, which is extremely valuable in some cases. When a
database transaction is ACID compliant, it is ensured that the data stored
is the same data retrieved by anyone accessing the database at any time

24

after the insertion. This is not always the case for the NoSQL solutions,
which replicates its data to other nodes asynchronously.

NoSQL solutions will in most cases also require more disk-space and
computing-power than relational databases. Replicas of the data are stored,
which is why the database will require more disk-space than the actual data
stored. The NoSQL solutions are also used for storing larger amounts of
data than the relational databases as well. E.g., web analytics data, social
network feeds, and search-engine indexes.

When will a relational database management system be a better choice?

If the requirements are not thousands of reads and/or writes per second,
they do not consist of an incredibly large amount of data covering tens-
, hundreds-, or even thousands of columns, or the response time of the
system has to be extremely low, a traditional relational database like
MySQL or PostgreSQL may be a better choice than any NoSQL data
model currently available. The relational database model is well known
and developed. There are a lot of people who knows how to work with
the relational database model, and it provides well known functionality
like the traditional SQL query language, and the ACID guarantee for
its transactions. If the application(s) using the database does not need
anything else than what the traditional relational database may provide,
there is no need implementing anything else either. As mentioned earlier,
it is easier to get competent developers for relational databases as its a well
known data model, as well as the comfort in a data model that have been
around for 20+ years, used by all kinds of applications and still are the
preferred database model in many cases.

25

26

Chapter 4

Cassandra

4.1 Introduction

Lakshman and Malik, two engineers at Facebook, designed Cassandra and
open sourced it in 2008 to the Apache community. They describe Cassandra
as a "distributed storage system for managing very large amounts of structured
data spread across many commodity servers, while providing highly available
service with no single point of failure"[23].

Facebook needed a storage structure that could solve their Inbox search
problem. Inbox search is a feature Facebook developed to let users search
through their inbox recursively[23]. To keep latency as low as possible,
Facebook needed a solution that not only were able to distribute data
across data centers with different geographical locations, but also between
nodes within the same data centers. Facebook began to develop Cassandra,
their solution to the problem, which was inspired by Amazon Dynamo[23].
Even though Cassandra is very similar to Amazon’s Dynamo that is
used for Amazon’s shopping-cart feature, there are some differences as
Cassandra was designed to solve different problems than Dynamo. For
every write operation made to a Dynamo database, a read operation will
be required as well. This would be very limiting for the kind of system
Facebook were developing since it is a very write intensive system. A huge
advantage for Facebook, and probably one of the reasons why Cassandra
is very similar to Dynamo, is that one of its two engineers, Lakshman, were
one of the authors of the Amazon Dynamo-paper[14].

Cassandra is a key-value store, which means that it has a key connected
with every set of data. The key is used to identify the data set when the data
is retrieved. Since the key is the only thing to identify the connected data,
it may happen that there will be stored duplicates of data like postal codes
in the database. This is one of the downsides of the design, although the
flexibility, availability and IO-speed compensate very well. Even though
there will be stored some duplicates, it is normally not an issue as disk
space has become cheaper. Guesses are made that todays database systems
never uses all of their disk space, as the disk space often is extended
whenever needed to an “infinite” number of Megabytes.

The attributes that is often accessed together from a data set and

27

Figure 4.1: Cassandra’s data-model

Figure 4.2: Cassandra’s data-model with SuperColumns

logically “belongs together” based on the application design should be
grouped together in column groups. Cassandra tries to store data from the
same column group at the same node, and preferably as close as possible
on disk.

4.2 Data model

The official Cassandra wiki describes Cassandra’s data model saying it is
“designed for distributed data on a very large scale”[12]. Cassandra operates
in main memory, periodically performs asynchronous storing-operations
to disk and got rid of the ACID guarantee to increase performance and
availability. The structure of Cassandra’s data model is quite different
from the traditional relational databases’ data model. Figure 4.1 displays
the simplest version of its data model. The highest level is called
keyspace. Usually each application has its own keyspace. A keyspace may
be compared with the relational database model. A Cassandra cluster
may consist of multiple keyspaces, which makes it possible for multiple
applications to operate on the same Cassandra cluster.

Below the keyspace-level there is a level of Column families. A column
family is a set of one or more columns that is logically grouped together
based on the database design. Column families are applied as a wrapper to
prevent data often accessed together to be physically located too far apart

28

from each other. Keeping related data physical close to each other increases
the performance. This will lower the lookup-time, as there will be less
disk-reads and data accessed from multiple nodes. If the column family
abstraction is not enough, it is possible to group column families into super
columns. Super columns contain one or more column families and are just
another abstraction like the column families. Super columns are not always
used, but there may be cases were e.g., there is a wide range of data stored
that they may be needed. If the super columns are present, the data model
will look like figure 4.2 on the facing page

Within a column family there will be one or more column(s). A column is
the lowest data-structure within the Cassandra data model. A visualization
of the column data structure is seen in figure 4.3 on the next page. A
column consists of three attributes: name, value and timestamp. The name
represents the column name and is used to identify the column. When
storing data about a user, the names may be: name, email, address, etc.
The value attribute contains the stored value. The timestamp is the actual
time when the column was initially stored. It is used when Cassandra
replicates data across multiple nodes and the actual column already exists
for the other node(s). If the column already exists, Cassandra will compare
the timestamp of the already existing column with the newly retrieved
column and keep the column with the newest timestamp. To successfully
be able to compare timestamps the systems have to be synchronized so
the timestamps will be accurate without taking into consideration where
the servers are located. Since the nodes often may be located in different
time zones the timestamp should be converted into an universal time zone
before applied to the column. Each node should then retrieve its current
time and convert it into a known time zone, e.g., UTC. After the timestamp
is converted into the universal time zone, it may be applied to the column
before its stored and replicated.

A “row” may be compared with a relational database row, as it is a
set of values connected together. However, there are some differences
between the traditional relational database row and a Cassandra row. The
relational database row is static as the number of columns is final, while
a Cassandra row is very dynamic and the number of columns may vary.
One row may contain e.g., 10 columns, the next contains 5, while the last
contains 100 columns. The flexibility of what is possible to store and the
idea that there are not allocated space for columns which are not part of
the current data set is one of the beauties that Cassandra offers. However,
with flexibility comes responsibility for the developer. Since there are no
strict rules for which columns to be stored, it is the developer who decides
how to structure the data that is stored. If this is not done properly, the
database may easily become chaotic, and finding what you are looking
for may be hard. If the data is poorly indexed, the database may become
useless. Distributed database systems with enormous amounts of data do
require a well-structured index in order to provide good performance.

29

Figure 4.3: Content of a Cassandra-column

keyA:
keyB: value
keyC: value

keyD: value

Figure 4.4: Yaml-file example

4.3 Node and cluster configuration

The parameters used to configure nodes in a Cassandra cluster are sepa-
rated from the compiled code in a configuration file named cassandra.yaml.
When configuration parameters are moved to a separate file it is possible
to tune the implementation without having to recompile the source code.
Cassandra uses a file-structure called yaml, which is an acronym for “Yet
another markup language”. The yaml-structure is a key-value structure that
also supports nested values as seen in figure 4.4.

The configuration-file is loaded into memory upon startup by a class
called DatabaseDescriptor. As mentioned earlier the attributes found in
the configuration-file may be changed depending on the needs, and by
restarting the application the new attributes will be read from the file and
used. Some of the attributes found in the configuration-file that is relevant
for this thesis are:

• cluster_name - The cluster name the node is supposed to interact with.
Each cluster should have its own name to make sure each Cassandra-
instance interacts with the correct cluster in case multiple clusters are
running on the same server.

• initial_token - If empty the node will request a token from the cluster
which will assign the node 50% of the token range from the most busy
node in the cluster. If no load information is currently available e.g.,
when a new cluster is initialized, the node will be assigned a random

30

token. As the tokens are assigned randomly there is a chance of the
cluster being unbalanced as there are no data available to calculate
the most busy token range or calculating tokens so that there will be
an even distribution of data across the nodes.

• partitioner - Define the partition to use for distributing rows across
nodes in the cluster based on the key. Custom partitioners may also
be used as long as they exist on the class path and implements the
IPartitioner interface. Out of the box Cassandra provides three par-
titioners: Murmur3Partitioner, RandomPartitioner and ByteOrdedParti-
tioner.

1. RandomPartitioner distribute rows evenly by hashing the keys
using the md5 algorithm.

2. Murmur3Partitioner is similar to RandomPartitioner except that
it uses another hashing algorithm named Murmur3_128.

3. ByteOrdedPartitioner order the rows by an ascending order,
based on the keys. This allows scanning of rows in key order
since the rows will always be sorted.

• data_file_directories - Cassandra’s data-directory. Make sure Cassan-
dra is able to read and write this folder.

• commitlog_directory - Cassandra will store all commit logs in this
folder. Commit logs receives all data written to the Cassandra
database and in case of restart, the commit logs are read to reload
data which are not yet flushed to disk. When data is flushed to disk
it will also be removed from the commit logs.

• listen_address - The IP-address the other Cassandra nodes in the
cluster initiate connection with in order to interact with the node.
If this attribute is left blank the Cassandra-implementation will try
to retrieve the IP-address by using the InetAddress implementation,
which in some cases may be wrong (e.g., if behind a router and the
internal IP-address is returned instead of the external IP-address).

For the automatic scaling implementation it will be necessary to
monitor system variables like the CPU-, memory-, and disk-usage over a
timespan of n seconds. All these thresholds and the number of seconds the
system has to breach the threshold(s) in order to send a scaling message
back to the master will be extracted out of the implementation. They will
be put into a configuration file so they may easily be accessed and to avoid
recompilation of the source code.

4.4 The gossip protocol

The gossip protocol is a communication protocol often used by modern
distributed systems that includes thousands of nodes. The gossip protocol
is inspired by the traditional definition of gossiping with a little twist

31

where the members meet e.g., every nth hour. The first time A tells B
something. The next time A tells C and B tells D the same thing A told
B last time etc. This strategy leads to twice as many people knowing
what have been told after each meeting. Although it is almost like
normal gossiping, the content of the information shared will always be
the same compared to what may happened during traditional gossiping
between people. The reason why the information changes is because
people often tells the story a bit different each time, and after the story
has passed on to n number of people, the information initially shared may
be something completely different than what is currently being shared.
The gossip implementation initiates connection against another random
node that it will share information with. The node will share information
about itself and information retrieved from earlier gossips. By sharing
information retrieved from earlier gossips as well, the information spread
fast throughout large scaled clusters as gossip between two nodes only
shares a small amount of data, and there are multiple nodes gossiping at
once.

The gossip protocol is very robust since the same information may be
passed on from many different nodes. Node A will choose randomly node
B in the cluster to pair up with, and share information about itself and
about others. If node B are struggling with e.g., hardware failures or are
not available for some time, other nodes will pass on their information, as
long as it managed to at least send out the information to one node. If
node A pairs up with node C, which are not responding at all for a certain
amount of time, it will be marked as down and share this information with
other alive nodes in the cluster.

Cassandra is a decentralized system meaning it has no master or single
point of entry, and any node in the cluster is a potential access point.
If an incoming read-/write-request is meant for another node, the node
will forward the request to the correct node. The gossip protocol is very
well suited for a decentralized system as the communication is initiated
from any random node at any given time to another random node. Since
Cassandra does not have a single point of entry, it means it also does not
have a single point of failure. If one node goes down, the database and its
data will still be accessible as a connection may be initiated to any other
node.

The Gossiper-class implements the gossip protocol. The gossiper
manages the message sent and received, and keep lists of currently
live- and dead nodes. A gossip between two nodes is a three-phase
communication, which is periodically triggered every second [20]:

1. Node A sends node B a GossipDigestSyn-message. The message
contains the name of the cluster, the name of the currently used
partitioner and a list of endpoints (nodes) and the largest state they
have generated known to the node sending the message. The number
of generated states is used to determine which message is newest if
received more than one message containing information about the
same node.

32

2. Node B returns a GossipDigestAck-message to node A. The message
is a response to the GissipDigestSyn-message and contains the same
type of list for known nodes as received from node A, except that
the list contains information about the nodes known by node B. It
also contains a map with the current state of each endpoint (node).
The state indicates if the node is alive or not and may contain state-
information about which data center the node is located in, which
rack, its internal IP-address, etc.

3. Node A sends a GossipDigestAck2-message to node B to complete
the gossip-round. This message contains the same map as received
by the GossipDigestAck-message, except it also contains the infor-
mation known to node A.

4.4.1 Hinted handoffs

Hinted handoffs are implemented as an extension to the gossip protocol.
They are initiated if data is written to the cluster through node A when it
is originally supposed to be located at node B, and node B is not currently
available. Since node B is not available, node A have to temporarily store
the data as a side-note in order to pass it onto node B whenever it comes
back up.

In most cases this is a good idea. It prevents the current write-operation
to be put on hold until the responsible node comes back up, and it prevents
loss of data. However, there are some practical problems with hinted
handoffs as well. If a node have been dead for a while and suddenly
comes back online, all nodes who currently holds hinted handoffs for the
node will start streaming data to the node. This may lead to multiple
large streams of data received at the same time, which may overwhelm
the node at the most vulnerable time. The most vulnerable time of a node
is just after it is attached to the cluster/ring and struggles to learn the
topology of the ring. The topology is the top-level structure of a Cassandra
cluster. It consists of the data center(s), racks and nodes, which also is
the physical structure of the cluster. The topology also describes which
racks that exists within each data center, and which nodes that is within
each rack. A line from the topology property-file may look like this:
192.168.0.1:NYC:RAC33. This line tells us that the node 192.168.0.1 is
located within the NYC data center at rack RAC33.

Cassandra provides the possibility to either turn off hinted handoffs
completely or reduce the priority to solve the problem[20]. If hinted
handoffs is turned off, the risk of loosing data is heighten, as there is
a change that all nodes containing the written data is down. Therefore
it is recommended to lower the priority of the hinted handoff, allowing
more important operations to finish before information is streamed to the
responsible node.

33

4.5 Merkle tree

A Merkle tree is a hash tree that contains a summary of the data set.
Cassandra uses Merkle trees during major compactions to avoid sending
unnecessary data across the network. Leaf nodes represent unique
datasets, while nodes further up in the tree represents subsets of the actual
node’s data. The merkle-tree implementation provides Cassandra with the
ability to check one branch of the tree at a time without having to download
the entire data-set as one branch represents the hashed values for one key
including its subsets.

4.6 Stages

Cassandra’s lifecycle is split into multiple stages[38]. Each stage is
responsible for its own area, e.g., the gossip stage is responsible for keeping
track of which nodes is dead or alive in the current cluster as describe in
section 4.4 on page 31. The gossip-stage is single-threaded, as there will only
be one gossiper running at a time. Even though the gossip-stage is single-
threaded, it is not a potential bottleneck if multiple nodes communicate
with the same node at once. The stage continues as soon as a message is
sent or received, meaning that it does not wait for an answer. This allows
node B, C, and D to start gossiping with node A, even though node D is
already gossiping with node A.

The available stages are defined through an enumerator called Stage.
The Stage- enumerator also contains information if the stage is an internal-
or request-stage. An internal-stage is a stage that is performed locally
within the actual node, where other nodes of the cluster are not involved
e.g., flushing local data from memory to disk. Request-stages are stages
requesting information from other nodes within the cluster.

Regardless if the stage is an internal- or request stage, it is either single-
or multi-threaded.

4.6.1 Single-threaded stages

Single-threaded stages run on a single thread, which means that there will
never be more than one instance running at the same time. The single-
threaded stages currently implemented are:

• Stream - The stream stage is initiated when data is moved/streamed
between two nodes in the cluster.

• Gossip - The gossip stage is initiated every second from the Gossiper-
class. The Gossiper will connect with a random node in the cluster
and share known status updates about dead and alive nodes.

• Anti-entropy - The anti-entropy stage matches replicas of data-
chunks against each other and updates all data chunks to the newest
version currently available. Cassandra’s anti-entropy implementa-
tion is based on Dynamo’s, which uses a merkle tree (see section 4.5).

34

• Migration - The migration stage is initiated when data is migrated
from one node to another. It will initiate the stream-stage when
moving data. When the data is successfully moved to the new node,
the stage will remove the data from the initial node.

• Read-repair - The read-repair stage is initiated each time a read
is requested. It will be running in the background comparing all
available replicas of each data set to determine which one is the
newest.

• Tracing - The tracing stage is tracing sessions e.g., a users query
throughout the Cassandra-instance. The stage will record all local
and external events that happen during the current session.

• Misc - The misc stage is all operations that do not match any
other stages. E.g., stream-replies replication-finished and snapshot
messages retrieved.

4.6.2 Multi-threaded stages

Multi-threaded stages are stages that there may be multiple instance of
running at the same time. During the initial startup of Cassandra, these
stages will be assigned n number of threads through a thread pool. The
number of available threads is defined by the concurrent_reads parameter
in the configuration file. A thread pool is a collection of threads that is
currently not in use. A multi-threaded stage may collect an available thread
from the pool to initiate the staging process on. The currently implemented
multi-threaded stages are Mutation, Read, Request-response, Internal-response
and Replicate on write. The reason why stages like the read-stage are multi-
threaded is because Cassandra is supposed to handle multiple reads at a
time to keep performance as good as possible. If the read-stage were single
threaded each new read had to wait for the previous read operation to
finish before it could access the database. Since there may potentially be
hundreds or even thousands of connections at the same time, there cannot
be only one stage active at a time responsible for reading data from the
database. It will weaken the consistency as there is no guarantee all the
read-stages will retrieve the newest version of the data at the same time.
However, Cassandra only supports eventual consistency, which means that
the data will be consistent at some point.

• Mutation - The mutation stage is activated when a node is currently
recording hinted handoffs - data received which is intended for
another node that is currently not available.

• Read - The read stage is initiated each time a read operation is
performed.

• Request-response - The request-response stage is whenever the
current node performs a response to a request received from an
external node.

35

• Internal-response - The internal-response stage is whenever the
current node performs a respond to a request received from an
internal operation.

• Replicate on write - The replicate on write stage is initiated when
data is written to the database. It sends messages to the nodes that
will be replicating the data to initiate a writing-operation as well.

4.7 NodeTool

Nodetool is a tool built into Cassandra which provides a simple command
line utility to interact with Cassandra to monitor the node- and cluster
status as well as managing the cluster by e.g., moving nodes to solve
hotspot-issues[31]. To interact with Cassandra through the nodetool
interface, execute the bin/nodetool -host <IP> -p <port> command. If
no port is provided, nodetool will connect to the host-address through the
default port (8080). Some of the commands available from the nodetool
interface found at the official Cassandra Wiki are listed below[31]:

• Ring - To get an overview of the Cassandra cluster. It tells which
nodes are currently alive and dead, how much storage used for each
node and if the data is evenly distributed or not.

• Join - Tells the connected node to join the ring. It assumes that the
node was initially started with the -Dcassandra.join_ring=false flag set
as it prevents the node from automatically joining the ring.

• Info - Returns detailed information about the connected node. The
information returned contains e.g., the node’s token, how many bytes
currently stored on the node, the current uptime of the node in
seconds and its current memory usage.

• Cleanup - Remove tokens that no longer belong to the connected
node. This may be a token assigned to another node, or tokens that
are not active anymore, as the node has been moved.

• Decommission - Decommission is the opposite of bootstrap which
is the initial phase during startup. Whenever the decommission
command is initiated the node is instructed to move its data
somewhere else. The communication protocols are shutdown to
prevent new data being written to the node. It may be used before
removing the node from the cluster as it will mark the as being
shutdown, which will prevent other nodes from generating hinted
handoffs and waiting for it to come back up.

• Drain - Stops all writing operations and preventing new data to be
written to the node while it flushes the data from memory to disk.
Even though the write operations are stopped it is still possible to
read data from the node.

36

• Flush - Flush the memory tables to disk without stopping either
reading- or writing operations.

• Removetoken -Removes the node that the provided token is assigned
to from the ring/cluster. The command cannot be initiated directly to
the node, as it should already be dead. Since the node is dead it is
not possible to initiate commands through the nodetool interface and
therefore the command should be initiated to one of the other active
nodes in the cluster.

37

38

Chapter 5

Related work

5.1 Netflix’s Priam

Priam is a tool developed by Netflix to run alongside Cassandra. It
automates some of the database administrator tasks like automatic token
assignment and backup & recovery. Priam is actively developed by Netflix
and has been in use since the middle of 2011. The current implementation
of Priam only works for Amazon Web Services.

5.1.1 Amazon Web Services

Amazon Web Services (AWS) is a service offered by Amazon were anyone
are able to rent anything from physical resources like CPU power, RAM
and disk-space, to applications like a database, a blog, a social network,
etc.[4]. The key feature of cloud computing1 is that there are no up-front
costs by investing in large data centers, hire infrastructure engineers etc.
The capacity rented in the cloud may easily be expanded if e.g., the traffic
or the amount of data suddenly increases, or even scaled down if not
needed anymore. Since the cloud offers a rent-what-you-need model, it
is perfectly suited for e.g., research project where researchers will need a
lot of computing power over a short amount of time.

5.1.2 Netflix’s motivation

Since Netflix moved their infrastructure from servers operated by them-
selves and onto the Amazon cloud in 2010, they were in need of a tool
for managing configuration, provide backup & recovery functionality and
automate token generation both within the same region, but also across re-
gions. To solve this problem, Netflix developed Priam which they open
sourced in February 2012[3, 1].

1Cloud computing is a very broad term that refers to services provided over the
Internet[2]. It may be both renting a simple web server for hosting your blog to renting
hardware in order to produce resource results. Cloud computing enables small and
medium sized companies to produce amazing results, as they do not have to invest in
expensive computer equipment upfront, but rather pay for what they use instead.

39

To have a reliable and stable backup solution is critical whenever a
third party is involved in the process of delivering your services. Therefore
Priam generates a snapshot each day, which is stored to amazons S3 storage
system. Amazons S3 provides a very simple API and allows the application
to access unlimited amounts of data from any of Netflix’s nodes at any
time[1].

Priam uses another Cassandra instance or a SimpleDB-instance to store
meta-data about the nodes, clusters and regions. This information is later
on used when assigning tokens to newly added or moved nodes. New
nodes are added whenever a node fails, which will happen when dealing
with a large number of nodes. Netflix uses an implementation called Chaos
Monkey to create failures on their live clusters to test Priam[1].

Chaos Monkey

Chaos Monkey is an implementation developed by Netflix to generate
failures within their Cassandra clusters[11]. It is open-sourced and may
work on other services running on Amazons Web Services as well. Chaos
Monkey seeks out groups of virtual machines, which is grouped together
in an Auto scaling group2. Chaos Monkey is scheduled to run at low-peak
times, and not during holidays. In most cases the auto-scaling feature
solves the failure by itself, although it may happened that an engineer has
to be involved. In these cases, Netflix want to be sure that the response
time is as low as possible, therefore the tests are only set to run whenever
there are people around.

5.1.3 Why we did not choose Priam

Priam could be used instead of creating another automatic scaling imple-
mentation from scratch. However, Priam is only able to run on the Amazon
Web services. The implementation from this thesis is meant to be as flexible
as possible. It should be able to run on Amazon Web Services, but it should
also be able to run on other cloud services if desired.

Another reason for not using Priam is that Priam does not support an
automated downscaling process like our implementation will do. There
is a reason for Priam to not support automated downscaling- “Scale up
early, scale down slowly”[3]. Netflix would like to be ahead of a possible
performance loss by scaling up whenever breaching a certain resource cap
for n amount of seconds. Our implementation will implement the same
feature, but also have thresholds and timers for scaling down. Priam is not
able to scale down since Netflix wants to be sure that downscaling happen
slowly. Netflix wants downscaling to happen slowly to prevent removing
capacity too fast or reduce an incorrect amount of capacity. If too much
capacity is removed the cluster will be running on less resources than it

2Amazon offers an automatic scaling implementation for services running in the cloud,
which is called Auto scaling group. It groups up virtual machines that will be monitored.
If one of the virtual machines within a group goes down, the auto scaling group service
should bring up a new one.

40

Figure 5.1: Abstraction of the thrift interface

should. When the cluster is running on less resources than it should, the
whole cluster will be slowed down and in worst case data may be lost. Our
implementation should find a way to automatically solve this problem.

5.2 Hector

Hector is a high-level client interface for communicating with Cassandra[18].
Cassandra provides a thrift interface that is command-based to insert or re-
trieve data. It also provides a command-based interface for cluster-, and
node managing. Hector encapsulates all this into an abstraction layer that
makes it easier to perform insertions/deletions against a Cassandra clus-
ter. It also makes it easier to add or remove nodes, and retrieve cluster
information.

5.2.1 Motivation

The provided tools that comes with each Cassandra-instance are pretty
low level compared to the Cassandra implementation that is written in
Java. The advantage of including low level tools which is command-based
is that they may be used by any application written in any language by
implement some kind of adaptor between the application and the thrift-
interface provided as default by Cassandra. Figure 5.1 shows how a simple
insert and retrieve may be abstracted through a java-interface.

Communication through the thrift interface

The insertUser(User user) method takes a User-object as input param-
eter and the adapter converts the User-object into commands, which is
passed onto the command-line. Each at- tribute is represented by a
command-line were the user-id is the unique key representing the row,

41

and the attributes name (first name, last name, age etc.) is used as column-
name. The adapter also needs to know which keyspace to operate on before
insertion. The keyspace is known initially when connecting to the database,
as there is often one keyspace per application. The developers have already
designed the database for the applications needs, and are therefore able to
provide the keyspace necessary to access the data.

An application may also want to retrieve the data stored for a specific
user through the getUser(int userId) method. The method should
connect to the correct key space and ask for a user with userId as key.
If data is found for the given key, the thrift interface will return all columns
associated, one column per line. Each column contains the column name,
the value and the timestamp of the retrieved column as seen in figure 4.3 on
page 30. The Adapter will have to read line-by-line and insert the values
into a User-object. The User-object will be returned when the adapter is
done extracting values from the stream and into the User-object.

Current state of the cluster

Hector also has the ability to retrieve the current state of the cluster. It
uses nodetool to retrieve information about which nodes are currently in the
cluster and creates an abstraction-layer through objects representing each
node. Since the nodes are represented as java objects, they are directly
accessible by any java-application implementing Hector. Since hector
brings the whole Cassandra cluster into java objects, it creates a perfect
foundation for our implementation.

5.2.2 Why we did not use Hector

Hector provides access to any Cassandra cluster through a simple java
interface. The reason why Hector is not used is that our implementation
is supposed to work independently of the database software. Our
implementation is intended to work for any types of cluster, not just
Cassandra clusters.

42

Part III

The project

43

Chapter 6

Introduction

This part gives a detailed description of the project. It contains the goals of
the project, and the design and implementation details. It also describes the
limitations of the current implementation, and the failed implementation
attempts that have consumed a lot of the time that were available for the
thesis work. This part also explains the reason why the implementation has
been named Hecuba.

6.1 Naming the implementation Hecuba

Our implementation is named after Cassandra’s mother, Hecuba[19]. The
Facebook team that designed Cassandra, and open sourced it to the Apache
community in 2008, named it after the Greek prophet Cassandra[31].
Cassandra was the daughter of King Priam and Queen Hecuba of Troy[8].
Netflix, which uses Cassandra as their backbone for their video- streaming
service, have developed a solution called Priam. Priam was Cassandra’s
father from the Greek mythology[32, 33]. There is also a Java-application
that abstracts the communication with Cassandra that is named Hector[18].
Hector was Cassandra’s brother from the Greek mythology.

Since her father, and one of her brothers names was chosen to
create applications that were extensions to Cassandra, the automatic scale
implementation should follow in the same footsteps. Our implementation
was named Hecuba, since her mothers name was not used. A mother is
someone who looks after her children, checking their health from time to
time, putting them to sleep at night, and waking them up in the morning.
A mother may be a very good representation for what the automatic scaler
implementation is supposed to be for the Cassandra cluster it monitors. It is
supposed to monitor the disk-, CPU- and memory usage of each individual
node closely, and depending on the status message received, either scale
up, or scale down the node(s). Our implementation will be running in the
background without lowering the overall performance of the cluster.

45

46

Chapter 7

Goals and methodology

7.1 Goals

The goal of this thesis is to implement an automatic scaler for Cassandra
clusters. Hopefully it will be possible to make a generic implementation,
which may successfully be deployed to any type of cluster, not just
Cassandra clusters. The implementation should monitor the resource
usage of each node within the cluster separately, and scale up, or down
if needed. It should not impact the overall performance of the cluster,
meaning that the resource usage should not increase more than necessary
in order for the implementation to run. The implementation cannot be
deployed to the cluster if the resource usage increases, and the overall
performance are lowered due to the implementation running. If this
happens, the implementation has failed, and the design would have to be
rewritten before new tests are performed.

7.2 Methodology

7.2.1 Kanban

Kanban has been used to keep control and progress of the thesis work.
Kanban is an agile development methodology that is similar to Scrum[6,
34]. The biggest difference between Kanban and Scrum is that Kanban
focus on visualizing the workflow.

Scrum consists of two lists, a product backlog and a sprint backlog. The
product backlog contains all tasks that have to be done throughout the
project. This list may potentially be very large, and the project manager will
extract a portion of these tasks to create the sprint backlog of the current
iteration. The sprint backlog contains the tasks that have to be done during
the current iteration, and the tasks are taken from the product backlog. The
lists should be prioritized in order for the developers to know which tasks
they should pick first.

Unlike Scrum’s product-, and sprint backlog, Kanban let developers
create columns. Each column represents a stage in the development cycle.
Figure 7.1 on the next page is an example of a Kanban board taken from

47

Figure 7.1: Kanban board example. (Screenshot: http://www.agilezen.com/)

the thesis work for this chapter. It has a backlog that is shown on the left
side. The backlog is identical to Scrum’s product backlog. The backlog
consists of all tasks that is created, but not yet ready for development. The
Kanban board consists of three columns in our example; Ready, Working,
and Complete. Most of the time, Kanban does not use iterations. Instead,
Kanban let developers continuously obtain tasks from the ready-column.
A project manager should be responsible for feeding the ready-column
with tasks from the backlog. However, it is possible to use Kanban and
iterations, which I did during the thesis work.

The ready column is the column where tasks are located at the beginning
of the current iterations. They should, but does not have to, be placed
in a prioritized order so developers know which tasks they should
pick. When a developer starts working on a task, he or she moves the
task to the working-column.

The working column consists of tasks that are currently being worked on.
The amount of tasks in the working column should be limited, based
on the number of developers. E.g., during the thesis work when there
was only one working on the project, the limit was set to 1. A limit
of one task was set to make sure that all tasks that were started was
finished before proceeding to the next task.

The complete column is the column where tasks that is completed is
located. Each time a developer completes a task, it is moved to the
complete column. Whenever there is time, the development team
goes through the completed tasks. It may also be a dedicated test-
team who approve or deny the completed tasks. If a task satisfy the
expectations, it is are moved to the archive, or else it is moved back
to the ready column. The archive consists of all tasks that have been
worked on in earlier iterations.

The Kanban board shown in figure 7.1 is just an example. The board

48

may be adapted to any project, not just software development projects. It
may also be extended with more columns to include e.g., a testing phase.
There are no rules that define the number of columns, how to prioritize
the tasks, task colors etc.. However, it is recommended to keep the most
important tasks on top. Kanban has fewer restrictions than Scrum, which
makes Kanban more flexible.

7.2.2 Story points

A number shown in the upper-left corner of each task indexes the tasks
seen in figure 7.1 on the preceding page. On the right side of the index
the estimated size of the task is shown. Each time a new iteration begins,
the team goes together and estimates the size of each task. The size may
be estimated in hours, days, story points etc. Since there is often hard to
determine exactly how many hours a task requires, software developers
tend to use a measure called story points. Story points are a measure
used to indicate the workload of the tasks. Most frequently used are
the Fibonacci numbers[37]: 1, 2, 3, 5, 8, 13, 21, 34, 45, etc. The reason why
the Fibonacci numbers are used is to create an easy-to-use scale for all
developers. Computer programmers are often bad at estimating how much
time it takes to complete a task, especially if all numbers from e.g., 1 to 20
are used. It would be hard to determine if a task should be estimated to
14, 15 or 16. Using the Fibonacci numbers where the distance between
the numbers increases eliminates the problem. E.g., if a task’s workload
is estimated, and the team agrees that the workload required is more than
5 point, it will be estimated to 8 points, as this is the next number in the
Fibonacci sequence.

After estimating tasks for a while using story points, the estimated
values will be reflecting the actual workload better since it takes some time
to get used to. It takes some time to figure out how much time that is
required to complete 1 story point. The workload that is required for each
story point may also vary from project to project, while working-hours does
not. This gives the story points an advantage as they may adapt to any
project of any type without adjusting the number-range used.

7.2.3 Velocity track

Velocity is often used in agile software development, and is calculated by
summarizing the size of all completed tasks from the current iteration.
The velocity is calculated after the iteration is completed in order to find
out how much work that has been done. The velocity may be added to
a list of previously calculated velocities to keep the velocity track of the
development.

A graph showing the velocity track of the thesis work is shown in
figure 7.2 on the following page. The graph shows the velocity track
from August 17, 2012 until April 12, 2013, and each column represents
the average story points completed during each iteration. The reason why
the graph does not show the total amount of story points completed each

49

Figure 7.2: Thesis velocity track from August 17, 2012 to April 12, 2013.

iteration is because the length of the iterations varied. The graph shows
that there was an increase in the workload towards the end, which may
be because other subjects were completed, and my ability to estimate tasks
where strengthen. When calculating the average amount of story points
each iteration, weekends were not subtracted from the amount of days.
This means that the average completed each period were a bit higher than
what is represented by the graph, if we only consider the days used to
work on the thesis. This would also eliminate days that were used on other
subjects as well, which would have incased the amount of story points even
more.

The velocity track of a project may be valuable for investors as it shows
that the development process is still going, even though they have not seen
any changes for a while. Sometimes it may takes weeks, or even months
before investors see the product that is being developed. In these cases, it
may help to see the velocity graph to see that there is ongoing work. It may
also be valuable for the developers as it shows the amount of completed
workload compared to the previously completed iterations, and let the
developers see if they have done enough compared to earlier.

7.3 Source control

Source control is extremely important for software development projects,
at least for medium- and large-size projects. When developing software,
the source code is rapidly changing, and sometimes a small change that
was supposed to solve a small problem can cause a system to break down
since the code that was changed were in use by other modules as well. A
source control system let the developers’ rollback changes as it keeps track

50

of the code-lines that were changed for each commit. A commit is when
developers update and/or insert new source code into the code base, often
called a repository. All files that have been changed are combined with an
optional comment. When this “package” is inserted into the repository, it
will be inserted as one commit. In order to rollback the code, the commits
are assigned a unique id, which is necessary in order to know where the
code should be rolled back. Since the source control system keeps track of
which code-lines that have been changed for every commit, it is capable of
perform a rollback by reversing the content back to the desired commit-id.
It is possible to reverse the complete code-base back to a given commit-id.
However, if you do not want to reverse the whole code-base, most source
control systems allows you to revert the content of just one file as well.

During the thesis work, a source control system called Git has been
used. Git is a source control system developed by Linus Torvalds1, and is
one of the preferred source control systems for software developers[16].
Three other known version control systems that are popular among Java
developers is Subversion, Mercurial, and Bazaar. System developers
around the world also use these version control systems, and Subversion
is the most used one apart from Git. We will not go into details about
Mercurial and Bazaar, since they are not of interest for this thesis.

However, an important difference between Git and Subversion is that
Git supports local commits. Local commits are commits that is committed
to a temporarily repository at the local machine. There may be performed
multiple commits to the local repository, which may be pushed to the main
repository later on. This allows developers to work offline, even though
offline development is not normal these days. If a developer create multiple
local commits, and decides to push the commits to the main repository after
others have made multiple commits, conflicts may occur. A conflict occurs
if the same code-lines have been modified and committed by two or more
developers. Git matches the new line, the old line, and the line that exists
in the repository in order to determine if there is a conflict or not. If the
old line and the line that exists in the repository are identical, the commit is
completed without problems. If all three lines are identical, the line is not
committed since there are no changes made. However if all three lines are
different, someone else committed a change to the same line in-between the
last retrieved source code and the commit. This results in a conflict, which
will often require manual supervision in order to be solved.

The source code for Hecuba is available at my page on GitHub: https:
//github.com/baakind[17]. GitHub is a website that let developers manage
their Git-repositories online. Public repositories do not cost anything,
but they are available for everyone to see and fork. Forking means
that a repository is copied, and the development progress of the fork
does not follow the progress of the main project anymore. GitHub also
let developers create private repositories that are available for invited
developers only. These repositories are meant for companies and others

1Linus Torvalds is a Finnish American software engineer, which is most known as the
creator of the original Linux kernel. He also created the version control system Git[25].

51

who would like to have an online Git-repository available for their
developers, without having to invest in servers, and having someone to
maintain them. GitHub has another nice feature, which is the social part.
They have made coding more social by letting users comment on commits,
code, follow projects etc.

7.4 Summary

The goal of this thesis is to implement an automatic scaler for Cassandra
clusters. It is preferred that the implementation is generic as well, even
though this is not required.

Kanban where used to keep track of the thesis work. The workflow
where visualized for the thesis and the projects, which helped me keep
control of the work, and maintain a high production rate throughout the
thesis work. The work where also estimated to determine the workload of
each task that had to be completed. I used story points to estimate the size
of the tasks, which is a number representing the amount of work that have
to be done. In order to estimate as good as possible, the Fibonacci sequence
was used.

Git where used as a source control system, which prevented us from
loosing valuable data. If changes were made that should not have been
made, we could easily rollback the source to an earlier commit, which
would return an earlier version of the data.

52

Chapter 8

Failed attempts

There were two failed attempts to implementing the autoscaler before I
came up with the final solution. This chapter describes these two attempts,
and why they failed and did not satisfy the goals of this thesis.

8.1 Include Hecuba into Cassandra’s source code

The first attempt was to include the autoscaler directly into the Cassandra
implementation as a separate single-threaded stage. The Cassandra
configuration file was extended with thresholds and breach timers that
were read into memory by Cassandra’s already existing implementation
for reading the cassandra.yaml file. It was supposed to share information
among the other nodes through the gossip protocol as Cassandra already
does, to keep track of whenever to scale down or not. Hecuba would have
been decentralized since there would not be a master collecting messages
and deciding which node to scale up or down.

This implementation were supposed to follow the same set of rules
as Cassandra, where there are no single point of failure, and any node
is likely to initiate the downscaling. In order for the implementation
to successfully work, the gossip protocol had to be extended to share
information whenever a node was scaling up or down. It also had to
share a list of nodes that already were scaled down, and available for
bootstrapping. Hecuba will not extend the gossip protocol, as it is one of
the most important parts of the Cassandra implementation. Therefore, this
implementation-attempt was stopped.

Changing the backbone of an implementation that relies on perfor-
mance and speed where the source code is written to increase performance
rather than being easy to understand is not a good idea, at least if it is not
done properly. I did not want to change the backbone of Cassandra, which
is currently working as intended. If I was going to change the Cassandra
source code, I would have needed a lot more time in order to make sure
the performance of my implementation does not lower the overall perfor-
mance of Cassandra. This idea was dropped after a few weeks, when I
understood that I needed more time than what I had available, in order to
successfully implement the automatic scaler into Cassandra’s source code.

53

Implementing the autoscaler directly into Cassandra’s source code
could have slowed down the Cassandra cluster, as it would have to send a
message to all nodes in the cluster saying the node is about to be scaled
down, and wait for acknowledges from all nodes before it initiate the
downscaling. The node will have to wait in order to prevent downscaling
of all nodes in the cluster, leaving no nodes available and the cluster would
be completely shut down. E.g., There are two nodes left in the cluster. They
decide to scale down at the same time, there has to be a mechanism that
prevents both from scaling down. Therefore, a timestamp would have to
be added to every message sent, and the node that initiated the scaling first
will be allowed to proceed.

It would also require a forked version of the Cassandra implementation,
and therefore it will not be possible to deploy the autoscaler onto an already
running cluster. Each new Cassandra release would have to be modified
with the autoscaler code, and if there are changes made to the Cassandra
source code that affected the autoscaler implementation in any way, it will
be necessary to rewrite the implementation.

8.2 Implemented as an extension to existing Java-
projects

The second attempt became the foundation for the current solution. The
implementation was separated from the Cassandra source code to prevent
it from being dependent on a specific Cassandra version. However, the
implementation was still Cassandra specific as it used Hector for handling
the cluster, nodes and the communication between the nodes and the
implementation. All communication were initiated from the master-
implementation, and the master would ask its agents every nth second for
their current status. This would potentially generate a lot of unnecessary
network traffic, and eventually lower the performance or even block
connections made to the cluster.

The implementation was included into an already existing project
via a Spring-bean. Spring is a java application framework that let
developers focus on the application-specific code rather than all the
different environments, services, data access etc. that are part of the
application[35]. It serves as a foundation for developing applications,
and there currently exists a large amount of extensions for almost
anything. A Spring-bean is an extended java-object, containing metadata,
dependencies, etc[36].

Hecuba would be launched as a separate thread, running alongside
the already existing application. The easiest way was to configure it as
mentioned above, but it was also possible to initiate the autoscaler through
its constructor from any java implementation as long as the autoscaler was
available on the class path.

A lot of time was used to develop an implementation that communi-
cated and were able to share messages between the master and its agents.
However, it made more sense to exclude everything that were Cassandra-

54

specific, and everything that forced the implementation to be included into
a specific type of projects or deployed to a specific platform.

8.3 Summary

In the beginning of the thesis work, I had two failed attempts at
implementing the scaler.

The first attempt was to implement it directly into the Cassandra source
code. The autoscaler did startup within its own thread, and were assigned
a custom stage. However, after some time the implementation were moved
out of the source code and into a separate project to prevent the autoscaler
from being bound to a specific Cassandra version. Each time a new version
is released, which happen quite often, the autoscale source have to be
implemented all over again. The Cassandra- specific code used could be
moved or deprecated, which would lead to Hecuba not working properly.
It also had to be implemented into the gossip protocol, which is a well-
known and efficient protocol in the heart of Cassandra. To change the
gossip protocol too much could lower the overall performance of the
cluster. Too many changes had to be made in order for the autoscaler to
work, and therefore the implementation were moved to a separate project.

The second attempt was closer to the final solution, although all
Cassandra code and communication came from the master, not the local
agent. The master sent messages to all nodes every nth second, asking
for the current status of the CPU-, disk-, and memory-usage. This lead
to a lot of unnecessary network traffic since most of the data sent were
unimportant.

55

56

Chapter 9

Hecuba design

9.1 Introduction

Currently there is no automatic up-, and downscaling implementation
available for Cassandra. Even though Netflix’s Priam is able to double the
size of the cluster, it is not a complete automatic scaling implementation,
as it does not support downscaling of nodes, which Hecuba does. Priam
is also limited to Amazon Web Services, while Hecuba may be deployed
to all major cloud services. Both Priam and Hecuba scales up whenever
the current resource-usage breaches a certain threshold over a predefined
time-period. Netflix excluded downscaling as they are afraid of scaling
down too fast or too much, which may overwhelm the cluster and reduce
the performance.

The current version of Hecuba does not support smart downscaling by
trying to initiate downscaling at low-peak hours were the load is as low
as possible, and scale down as slow as possible to monitor the health of
the cluster correctly, and stop downscaling if it seems like there will be too
few nodes in the cluster. Hecuba does not support downscaling where the
scaling occurs during low-peak hours and when the load is at a minimum.
It does not monitor the cluster health either, which should be monitored
closely so an already initiated scale may be canceled if the performance
drops, and the cluster suddenly run on fewer nodes than needed. However,
Hecuba is intended to support smart downscaling in the future in order to
successfully scale down an active Cassandra cluster.

Hecuba will keep the number of nodes in the Cassandra cluster as few
as possible, without affecting the performance. As mentioned, Priam does
not scale down, and therefore doesn’t take into consideration the number
of nodes currently active in the cluster.

9.2 Load balance issues

One of the biggest problems with the current autoscale implementation is
to keep the ring balanced. The ring is the distribution of tokens between
the active nodes in a Cassandra cluster. When a ring is balanced, the nodes
in the cluster consist of almost the same amount of data, while nodes in

57

Node nr From To Load

1 0000 3FFF 25%

2 4000 7FFF 25%

3 8000 BFFF 25%

4 C000 FFFF 25%

Table 9.1: Perfectly balanced 4 node cluster.

Node nr From To Load

1 0000 1FFF 12.5%

2 2000 3FFF 12.5%

3 4000 5FFF 12.5%

4 6000 7FFF 12.5%

5 8000 9FFF 12.5%

6 A000 BFFF 12.5%

7 C000 DFFF 12.5%

8 E000 FFFF 12.5%

Table 9.2: Perfectly balanced 8 node cluster.

Node nr From To Load

1 0000 3FFF 50%

2 4000 7FFF 23%

3 8000 BFFF 22%

4 C000 FFFF 5%

Table 9.3: Unbalanced 4 node cluster.

58

a perfectly balanced cluster consist of the exact same amount of data. An
example of a perfectly balanced 4-node cluster is seen in table 9.1 on the
preceding page.

Balancing the ring will always be an issue when it comes to automating
the scaling process, unless the load percentage of each node is taken into
consideration when applying new nodes to the cluster. However, the
cluster may end up being unbalanced anyhow, as new data inserted into
the cluster may be inserted into new locations, and splitting token-ranges
will most likely not result in a perfectly balanced cluster. The tokens have
to be recalculated by an external tool, and each node needs to be assigned a
new token in order to perfectly balance a cluster based on the current data.
The cluster will become unbalanced as soon as data is inserted or removed.

9.2.1 Token range

Token range is the range of keys a node is responsible for. A cluster may
have an even distribution of tokens, but the cluster may still be unbalanced,
as data may be located at hotspots around the cluster. A hotspot is a location
of the ring where there is a greater density of data than usual.

Priam tries to solve the load balance problem by doubling the size of
the cluster, were each new node pairs with an existing one[1]. When a
node pairs up with an existing one, it will split the existing node’s token
range in half, and hopefully receive 50% of the data. E.g., if Priam were
supposed to scale up a cluster of nodes seen in table 9.1 on the facing
page, it would hopefully end up as seen in table 9.2 on the preceding page.
Priam keeps streaming data between nodes as isolated as possible to keep
network traffic down. Priam also tries to decrease the amount of time used
to scale up by pairing up nodes instead of bringing nodes down and back
up one by one at different locations.

It is important to know that in the example described above, the tables
shows a ring which is perfectly balanced as the data is always equally
distributed, and the token range is equally distributed. This will almost
never happen as keys are hashed and end up as a random value. Therefore,
it is hard to determine ahead of an insertion were data will be located. As
a result of this, the amount of data within each token range will vary if the
token ranges are evenly distributed. A token range should be calculated
based on an even distribution of data across all nodes in the cluster, which
most likely will result in different length of each nodes token range.

A more realistic example is shown in table 9.3 on the facing page. It is
the same token range distribution as seen in table 9.1 on the preceding page,
although the load balance is different. 50% of the data has been distributed
to the first node, while node 2 and 3 holds most of the remaining data.
Node 4 only received 5% of the data in the cluster. This is a unbalanced
cluster, and the tokens should be recalculated in order achieve a balanced
cluster which is as close to the cluster seen in table 9.1 on the facing page
as possible.

59

9.2.2 Token-generation

Token generation is a crucial part of the token distribution. The cluster
will most likely be unbalanced if not a complete rebalance is performed
on the cluster. However, Hecuba tries to find hotspots instead of focusing
on the overall load balance. Since Hecuba focuses on hotspot, the token
generation will be very simple. If a hotspot is found, the token range of
the responsible node is split in half were 50% is assigned to the new node,
while the remaining 50% is kept by the existing node. By splitting token
ranges this way, most hotspot problems should be solved. Even though the
hotspot will end up at either of the token ranges, the opposite range should
contain at least some load, resulting in a lowered load at the node where
the hotspot occurred.

9.2.3 Load balance differences between Hecuba and Priam

Unlike Priam, Hecuba append and remove one node at a time, which may
lead to an extremely bad token range distribution, and eventually end up
with a unbalanced cluster. Re-balancing the ring is very costly, as it will
require a lot of data to be transferred between nodes across the network.
The re-balance process should never be initiated during peak-hours, as it
will dramatically lower the performance of the cluster. The performance
will decrease as the amount of data increases.

Hecuba will not try to keep the ring balanced, as it focuses on finding
and removing hotspots as they occur. Hecuba will at the same time try
to determine if the cluster consists of more nodes than needed. If it does,
Hecuba will scale down nodes until it is satisfied.

9.3 Communication

The communication between the Autoscale-master and its agents happens
asynchronously. Instead of waiting for a response the application continues,
and creates a separate thread responsible for listening for incoming
messages. Both the master and the agents will fork out a “listening-
thread” to prevent other operations from waiting for one single response.
Although, if a message is received which result in changes to the
application, the thread listening will initiate the changes to all threads, even
if they are currently executing an operation.

The master implementation will initialize the daemon on a master server.
Usually this will be the same server as the application currently using
the Cassandra cluster. The master daemon’s thread will be listening
for incoming messages from the agents. The master daemon will send
messages to the agents through port A, and receive incoming messages at
port B. These ports are currently static, and may not be changed. However,
they could easily be moved to a custom configuration-file in order for
developers to change the in- and outgoing ports to better fulfill their needs
in case these ports collide with other applications.

60

Figure 9.1: Initialization of the cluster.

The master sends an initialization-message to the initial agent first, in
order to start the communication and be able to retrieve a complete list
of nodes in the cluster. When the first agent is started, the master may
retrieve the list, and start initializing the rest of the agents in the cluster. The
master sends out messages containing default configuration values for the
agents to use. This happens every time a new node is added to the cluster
in the current implementation. Since the master sends out configuration
attributes even when the default constructor is used, the attributes pre-
loaded by the agent from its local configuration-file will be overwritten. To
prevent this from happening, the master should be rewritten to prevent
configuration attributes to be added when the default constructor have
been used. The agents are set up to receive incoming connections at port
A, and send breach messages to their master through port B; the opposite
of the master.

Figure 9.1 shows how the initial phase of the implementation works.
Initially, the master sends an initialization-message to the provided agent
as mentioned above. The agent starts up, and the master has the possibility
to ask for a complete list of active nodes. The master should know about all
the nodes in the cluster when the node list is received. It may happen that
the initial node does not know about all the nodes in the cluster. E.g., the
initial node just joined the cluster, and therefore has not been able to gather
information about all nodes yet. Although it is possible that the master
may not receive a complete list of nodes, it will in most cases be complete.
The master should be extended to ask for an updated list of currently active
nodes from a random node in its node list every nth run, in case some nodes
were not returned at the first try, or if the first try failed.

61

9.4 Flow

The application flow is very straight forward, but it requires Cassandra to
be up and running in order to work properly. The flow described below
is the “happy case”, whereas it often deviates because of network failures,
internal problems at a node, messages not received when expected etc. The
flow is just an overview of how the application works from initialization
until it is fully running.

1. The nodes that are part of the cluster startup their Cassandra
instances, and afterwards initializes the autoscale agent that will be
waiting for messages from the master.

2. The master is initiated at the master server, usually the same server
as the application using the Cassandra cluster. It will initially send
out a startup message to the agent node provided upon startup.

3. The master asks the same agent for a list of currently active nodes in
the cluster.

4. As the list of currently available nodes is received, the master will
append everyone to a local list, except the one already known.
Afterwards, the master will initiate every single node’s agent, which
will start monitoring its local node’s resources.

5. Every node will keep monitoring its local resources, and if a breach
occurs over a certain time, the node will send a message to the master
containing information about which breach occurred, the breach
value and which node it occurred on.

6. At a regular basis, the master will collect the received breach mes-
sages into a batch, and perform calculation upon them. The master
will rank different breach messages according to how important they
are, and if they represents a scale up or down.

7. When the calculation is complete, the master will perform scaling
upon no more than one node. If the final score1 of all nodes is zero,
no scaling will occur. If at least one node’s score is either positive or
negative, a scale will occur. The node that scored highest, regardless
of whether the score is positive or negative, will be scaled up or down.

9.5 Summary

Hecuba is designed to automatically scale Cassandra clusters. However,
there are a few minor issues that should be fixed before the design is
complete, and may be used for an implementation that will be deployed

1The scaling-algorithm implemented into our implementation summarize the values
assigned to the messages received from the node. The result of this calculation is called
the node’s score (or weight).

62

to a real cluster. The cluster may easily become unbalanced due to the
implementation removing, and inserting a lot of nodes, while it does not
consider the skewness of the cluster. The design should be extended to
handle token-range sharing that split the amount of data within the token-
range in half instead of the token-range values.

The communication between the master and its agents happens
asynchronously, which is necessary in order to let the master communicate
with multiple nodes without having to wait for potential messages from
the agents, depending on their current status. Initially the master will
contact one of the nodes through its agent, which have to be provided upon
startup. This node will bootstrap, and start monitoring. The current design
does not say that this node should return a list of currently active nodes
as response to the initialization-message, however it should be change to
provide this list in order to be fully automatic. If not, the master will have to
ask the agent again for this list, which have to be manually programmed or
executed afterwards. The master will also have to be redesigned to retrieve
this list from the response, and initiate contact with the rest of the nodes.

The flow of the application is very straightforward. The master is
started, and contact with the initial agent is set up. The agent then
bootstrap, start monitoring, and send a reply back to the master. The master
will have to ask for a list of currently active nodes, which is returned as a
respond from the agent. The master will initiate all the nodes that are not
currently initiated, and listen for incoming messages from the agents. The
master will also collect all received messages at a set interval, and perform
calculations upon them. A message is sent from the master to the respective
node, if the calculation resulted in the node being scaled up or down.

63

64

Chapter 10

Hecuba implementation

10.1 Introduction

The implementation consists of two separate Java applications: a master-
application, and one or more agent-applications. The master is responsible
for collecting statuses from each node in the cluster through the agent,
and initiate up- or downscaling if necessary. The master may be included
into an already running web-application by downloading and building the
project, or as a standalone application.

In order to retrieve data from the systems CPU-, memory- and disk
usage, a third party framework named SigarAPI is used[22]. SigarAPI
creates an abstraction layer, and interfaces the commands used to retrieve
system statistics, since they are specific to each OS. There is not a good idea
to include OS-specific scripts within a Java application, as it should not be
OS dependent.

There are some known bugs and shortcomings in Hecuba, and the
implementation is not ready to be deployed outside a test environment
yet. There were not enough time to fix all the bugs that were found, and
further develop the implementation in order to satisfy the requirements for
a fully working autoscale implementation. Hecuba is open sourced under
the Apache License1, and is currently available at:

• Autoscale: https://github.com/baakind/autoscale

• Autoscale-agent: https://github.com/baakind/autoscale-agent

• Autoscale-common: https://github.com/baakind/autoscale-common

10.2 Code separation

The implementation is divided into three separate projects: Autoscale,
Autoscale-agent and Autoscale-common.

1The Apache License is an open source license that let anyone use or distribute the
software as they like, without having to pay. The only requirement is that the license and
the NOTICE document are distributed together with the software if present. The license
may be found at http://www.apache.org/licenses/LICENSE-2.0

65

• Autoscale - The master implementation. It is responsible for
collecting messages sent from the agent(s), and determines if the
cluster needs to be scaled up or down. The autoscale project depends
on the Autoscale-common project for the communication, and message
objects, that is shared between the master and agent implementation.

• Autoscale-agent - The agent implementation. One agent-instance
will be running alongside each node in the cluster. The agent
will monitor the local node’s resource usage, and send messages
back to the master if a breach occurs over a predefined timespan.
The agent project depends on the Autoscale-common project for the
communication and messages objects.

• Autoscale-common - Contains the objects that the Autoscale and
Autoscale-agent uses. Currently the message-objects and the commu-
nicator is part of this project.

10.2.1 Autoscale

Hecuba’s master-implementation. The autoscale-implementation is re-
sponsible for collecting messages sent by the agent(s). At a certain time
interval, the master will iterate all messages that are currently collected,
and deter- mine if the cluster should remove or append nodes. There are
currently four different types of breach messages2 that may be sent from
the agent(s):

• max_memory_usage -The memory-usage of the node has exceeded a
certain threshold for n seconds, defined by the thresholdBreachLimit
attribute.

• min_memory_usage - The memory-usage of the node has been less
than a certain threshold for n seconds, defined by the thresholdBreach-
Limit attribute.

• max_disk_usage - The disk-usage of the node has exceeded a certain
threshold for n seconds, defined by the thresholdBreachLimit attribute.

• min_disk_usage - The disk-usage of the node has been less than a
certain threshold for n seconds, defined by the thresholdBreachLimit
attribute.

The default scaler class combines each breach-type with a value, saying
if the node should be scaled up or down. The value also represents the
importance of the breach-type. A breach-type indicates that the node
needs to be scaled up if it is assigned a positive value, while it indicates
that the node needs to be scaled down if it is assigned with a negative
value. A higher positive value has higher importance than a lower positive
value for which node to scale up, while a lower negative value has higher

2A breach message is a message sent by an agent, telling the master a certain threshold
has been broken over a given time period.

66

importance for which node to scale down. The values may be found in the
SimpleCassandraScaler class, which may easily be replaced by a custom
implementation.

Apply to your own project

The autoscale master-implementation is a standalone implementation that
may be applied to a project in different ways. It may be implemented as
a spring bean if the project uses the spring framework. The jar may either
be put directly into the project’s class path, or it may be built locally to
append the master implementation to the local maven repository if the
project uses maven. When the master implementation is located in the local
maven repository, it may be included as a dependency for the project that
is going to implement Hecuba, and initiated by creating a new instance of
the Autoscale-class.

The implementation may be initialized by the default constructor,
which does not require any parameters, or by the constructor that require
the most important configuration-attributes as parameters. The parameters
define the thresholds and number of seconds a breach occurs before a
message is sent from an agent to the master. If it is initiated without
parameters, the default parameters will be used both for the master
and the agent(s). By initiating the implementation through the default
constructor, each agent may be initiated with a custom set of thresholds
and timers, as they may be retrieved from the local configuration file
instead of retrieving them from the master initially. In most cases the
nodes should be configured with the same parameters, as they should be
running on the same type of hardware. However, it may happen that one or
more nodes are running on different hardware, and therefore should have
different thresholds. A detailed description of the parameters used for the
constructor is described in table 10.1 on page 78.

The Autoscale-master flow

The master will be initiated through e.g., a spring-bean or directly as a
java object within an application. The implementation should be initiated
from the Autoscale class. The implementation will initiate AutoscaleDaemon
through a thread, running every second. The daemon is the actual
master implementation, while the Autoscale-class only works as a startup
container enabling the daemon to be initiated at a scheduled interval. A
visual representation of the master implementation is seen in figure 10.1 on
the next page.

After the master implementation has been initiated, it will initiate
contact with the initHostname:initPort (described in table 10.1 on
page 78) node. To successfully startup the application, the initial node
should already have a running instance of the agent implementation in
order to receive and respond to messages from the master.

At the same time, the master will initiate two separate threads to
run simultaneously: the AgentListener and the SimpleCassandraScaler. The

67

Figure 10.1: Visual representation of the Autoscale-master implementation.

AgentListener will be scheduled to run each second in order to catch all
received messages. The listener will setup a socket, listening for incoming
messages from the agents. Messages received will be added to a local
message list, and the listener will continue listening for new messages. The
scaler will also be running at a predefined interval, which may be changed
by the initial parameters to determine how often a scale should occur. The
scaler will collect the current list of messages from the listener, and make
sure its empty afterwards in order to prevent reading the same message(s)
twice. The scaler will calculate whenever nodes should be scaled up or
down after the messages is retrieved. The current implementation will
compute weightedScoring for each node. Each node will be assigned a weight
based on the messages received from the node. As mentioned, positive
integers are assigned to messages that indicate a node being scaled up,
while negative integers are assigned to messages that indicate a node being
scaled down. The highest weight will be prioritized when deciding which
node should be scaled up or down.

At this point, the master implementation should be listening for
incoming messages from the agents. If the initial agent started without
any problems, and the incoming and outgoing ports are open, the master
may send a message to the agent asking for a list of available nodes. This
is currently not a part of the implementation, and has to be initiated by the
applications that implement Hecuba. However, each agent should send a
node-list of the currently active nodes in the cluster as a response to the
initial startup-message. The master will match the local list of active nodes
with the received list. Currently, the master’s list only contains the initial
node, as it has no knowledge of the cluster yet. However, the list returned
by the node will contain all nodes in the cluster. In most cases a Cassandra

68

cluster consists of more than a single node, which will result in the master
sending initial startup messages to all new nodes, and at the same time
appending them to its local list of active nodes. It is highly recommended
that all nodes in the cluster are running the agent implementation at this
time, in order for all nodes to receive the initial startup message and start
monitoring and messaging.

10.2.2 Autoscale-common

Contains the common objects for both the master and the agent implemen-
tation. Both projects depend on this in order to make use of code, which
is identical to both projects. It contains the Communicatorclass, which is
used when setting up sockets for sending and listening for messages. The
messages sent by the communicator may be either an AgentMessage or a
BreachMessage. The received objects will be put CommunictorObjectBundle.
The CommunictorObjectBundle object is just a wrapper that wraps in the
message and the senders IP-address.

• AgentMessage - Messages sent between master and agent. If it is sent
from the master to the agent, it contains instructions for the agent,
while it contains a breach message if it is sent the other way. The
message may also contain an optional map of attributes. The different
types of instructions that may be sent are:

– STARTUP_NODE - Initializes the node, startup the agent and
update the local configuration’s if settings provided by the
attribute map. There will not be sent attributes if the master is
started with the default constructor, and the agent will load its
settings from the local configuration file.

– UPDATE - The agent will update its current configurations with
configurations found in the attribute map.

– STOP_AGENT - The agent will stop monitoring and sending breach
messages.

– START_AGENT - The agent will start monitoring and sending
breach messages.

– SHUTDOWN_NODE - The running Cassandra instance is shutdown.
The data will be distributed to other nodes in the cluster
and the node will be decommissioned. After it has been
decommissioned, all data found in the data, commitlogs and
saved_caches would be removed, preparing the node for entering
the cluster at another location. The data directories may be
changed in the agent’s configuration file.

– STATUS - The agent will return a status depending the received
AgentStatus. Currently the only implemented AgentStatus is
live nodes. It returns a list of the current available nodes in the
cluster. However, it may easily be extended if needed.

69

Figure 10.2: Cassandra and the Autoscale-agent running alongside each
other.

– BREACH_MESSAGE - Sent from the agent to the master, indicating
a breach has occurred. If this type of message is received, the
breach-message will be included in the attributes-map.

• BreachMessage - A breach message contains information about a
breach that occurred at one of the nodes in the cluster. The current
breaches are either maximum- or minimum memory-usage, or maximum-
or minimum disk-usage. The message also contains the responsible
value at the time of the message being sent. If there is a memory
breach, it contains the memory-usage percentage, and if there is a
disk breach, it contains the disk usages in Megabytes. The breach
message will be wrapped into an agent message. The agent message’s
type will be set to BREACH_MESSAGE, while the breach message will
be put into the attributes-map. Since the breach-message is put into
the attributes-map, Hecuba is able to send multiple breach messages
at the same time, although this is not implemented in the current
release.

10.2.3 Autoscale-agent

The agent implementation is acting as a slave to the master implementation.
It should be running on all nodes in the Cassandra cluster to monitor it
is current resource usage. The agent will run alongside the Cassandra
implementation as seen in figure 10.2.

70

The agent is responsible for monitoring the local node’s memory and
disk usage. If the values falls below, or exceeds a set of thresholds for a
certain time, a message is sent to the master. The message contains the
agent’s IP address, type of breach, and the readout value as the message
was sent. When a message is sent, the timer is reset, and the agent
continues to monitor and report. It will repeat the process as long as a
breach occurs, or until a message is received from the master asking the
agent to either stop monitoring, or to shut down the node.

How to implement the agent

To adopt the agent implementation and initialize it on a running Cassandra
cluster, download the source code from the links found at page 65. An
archive file is located in the release folder, which contains everything needed
to successfully deploy the agent implementation. However, it is possible to
make changes to the source code by downloading the agent- and common
projects. Make sure to successfully generate the target-folder and having
a copy of the jar files for the common project within the local maven
repository before the agent project is built. If the common project is not
found in the local maven repository when building the agent, it will fail.
The agent depends on the common implementation, which are not found
in the official maven repository at this time.

If the archived file were downloaded, it may be unpacked and
the content moved to a desired location at the respective node. The
agent includes a configuration file found at conf/autoscale-agent.yaml. The
configuration file should be changed before initializing the agent, or else
the implementation will not work properly. A list of the most important
attributes is shown in table 10.2 on page 79.

After changing the attributes to match the node where it has been
deployed, the agent may be initialized. To initialize the agent, go to the
root of the agent-folder, and execute the bin/autoscale script. The agent
may be logging a few messages to the console, depending if the log-settings
were changed in conf/log4j.properties.

If the agent only returns empty values only, or it failed while trying
to read the current system resources, there may be something wrong with
the SigarAPI files provided. All the SigarAPI modules are provided, and
are located in the lib/sigar-n.n.n folder. Try updating the version by
downloading the newest release from http://sourceforge.net/projects/sigar/
files/. Unpack and copy the content into lib/sigar-n.n.n and replace the
existing files. By default libraries for all operating systems is included. All
files except the jars and libraries corresponding to the operating system
where the implementation will be deployed may be removed.

The Autoscale-agent flow

The Autoscale-agent implementation is initialized by a bash-script located
in the bin folder. The script constructs the class path, including all files
found in the lib folder, as the agent uses them all. The script will initiate the

71

Figure 10.3: Visual representation of the Autoscale-agent implementation.

implementation through the AutoscaleAgent class. AutoscaleAgent works
as a wrapper to startup the actual autoscale application. It will retrieve the
interval timer for the agent from the configurations, and initiate the agent-
server as a separate thread. The interval-timer that determines how often
the agent-server will be running cannot be set externally since it is loaded
before any messages or configuration-files are read. A visualization of the
agent implementation is seen in figure 10.3.

The AutoscaleAgentServer class will load the configuration file into
memory and update its local attributes. The AgentServer will initiate
the communicator and start listening for messages. Nothing happens
before a message is received. After the initial START_AGENT message is
received, which is sent from the master, the agent will initialize its daemon,
the AutoscaleAgentDaemon, in a separate thread at the interval set by
the configuration attribute interval_timer. The AutoscaleAgentDaemon
will monitor the disk and memory usage for the local node during each
iteration. If a breach occurs, the counter representing the actual breach is
increased by the interval-time variable.

Whenever the counter exceeds the threshold that is defined, a breach
message is sent to the master. The message contains what type of breach
that occurred, and the readout value corresponding to the breach type
when the message was sent. Each time a message is sent, the respective
timer is reset, and the monitoring continues.

72

10.3 Tools and frameworks

10.3.1 Maven

Maven is a popular project management tool used by software developers[27].
Maven is based on a project object model (POM) which is used to man- age
and structure the project(s). Each project that uses Maven needs to have
a pom.xml located in the root directory. The POM-file contains the “recipe”
maven uses when performing actions upon the project. There is an end-
less number of possible actions to be performed, as there are extensions
available for almost everything. The POM-file must contain information
about the project’s name and version. It must also contain the information
whether the project is a jar (java archive) or a war (web archive). It may
contain one or more dependencies to java libraries that will be included
in the class path, or links to local sub-projects if any. The POM-file may
also contain deployment information, which automates the deployment to
a server if desired. There is an endless list of possibilities that will not be
described in this thesis, as it is outside the scope.

10.3.2 SigarAPI

SigarAPI is an acronym for System Information Gatherer And Reporter
Application Programming Interface[22]. Sigar is developed as a cross platform
solution that works on most known platforms that exist today. The API
provides functionality for gathering detailed information about system
resources like the CPU’s, memory, disk and network usage.

Sigar interfaces the layer between the implementation and the system
specific commands by providing an individual set of instructions written
in C for each operating system, as each OS have their own way of
representing its resource data. There are implementations with bindings
to the instruction sets available in Java, Perl and C#. It is released under the
Apache 2.0 license, and the complete source code is available online.

10.4 Scaling

10.4.1 Default scaler

SimpleCassandraScaler is the default scaler that comes with Hecuba.
The implementation contains a simplified scaling algorithm that collects
the current batch of received breach messages, and performs a simple
calculation. During each iteration, the scaler will retrieve the current
collection of breach messages from the listener. After the list is retrieved,
the scaler will empty the list in order to prevent retrieving duplicates
during the next iteration. The frequency of the iterations should be set a few
times higher than the breach-time limit for the agents. There will not be any
messages to perform calculations upon if the agents have not yet sent them.
If the iteration-frequency is set to e.g., three times the breach-time-limit for
the agents, the scaling-algorithm may at most have three messages from

73

each node to perform calculations upon. I would recommend the iteration-
timer to be at least three times the breach-time-limit, but preferably higher
in order to achieve a more accurate calculation.

When the scaler have copied the collection of breach messages, it will
start generating host weights for each node. The host weight is a score
assigned to each node, indicating if the node should be ignored or scaled
either up or down. The host weight is calculated by iterating the breach
message collection. For each message, the priority of the breach message
is retrieved. The priority is a predefined integer assigned to each message
type that indicates either a scale up or down. If the node already has a
value assigned, the new value is added together with the existing, and the
record is updated with the new value. If the node does not have a value
yet, the value is assigned to the node, and the node is appended to the list
of existing nodes. When the calculation is complete, a list of nodes with a
score representing either a scale up or down is returned.

Afterwards, the scaler selects one of the nodes, which should be scaled
up or down, if there is any. If the weight for all nodes is zero, nothing will
happen, although that will probably not happen, as nodes rarely send a
combination of scale up or down messages at the same time. The scaler
will split up the nodes into two lists, one representing nodes which has a
positive score, while the other list contain nodes which has a negative score.
The scaler will extract the highest positive score, which represents the node
that should be scaled up, and the lowest score, which represents the node
to be scaled down. The lowest score will be converted it into a positive
integer so they can be compared. If the node that are going to be scaled up
have a higher weight-score than, or equal to the negative score of the node
with the lowest score, the node that should be scaled up is prioritized. If the
scale down score is higher than the scale up score, and the scale down list
contains at least one node, the node with the lowest score will be returned.
If there were a node selected to be either scaled up or down, the scaler will
initiate the scaling, and update its internal list of active nodes.

10.4.2 The simplicity of the default scaler

The default scaler is very simple. It does not consider the value returned by
the nodes, just the type of message. E.g., a node that has less than 100MB
of disk space left be prioritized before a node that has 900MB left. This is
a know problem, but it is not a part of the calculation, although the data is
available through the breach message, and may be used by a custom scaler
if necessary.

The scaler does not prevent scaling to occur during peak hours or
holidays. The scaler could have implemented functionality that prevented
scaling to occur at certain timespans, or if the network traffic where too
high. Today the agent does not monitor the network traffic, even though it
may be extended with such functionality in the future.

74

10.4.3 Implement a custom scaling algorithm

It is easy to develop and implement a customized scaling algorithm.
The class has to implement the Scaler interface, which will require you
to implement all the required methods. The scaler is created within
the AutoscaleDaemon class, and not included through either an input
parameter or read from a configuration file. The custom scaler has to
replace the SimpleCassandraScaler within the AutoscaleDaemon class in
order to use the custom scaler.

10.5 Scripts

Some parts of the code are OS-specific, and may not be executed as
java code. It is possible to interface it in the future, but currently the
implementation supports changing the startup- and shutdown command.
The startup command is used to bootstrap the Cassandra instance and
join the ring. The command is executed through the Runtime class
provided by java, which enables execution of commands directly to the
OS. The shutdown command does the opposite, as it decommission and
shutdown the node. Since the Cassandra instance is not a part of the
Hecuba implementation, there does not exist a direct link between them,
even though both are Java programs. Java executes each single instance
in its own sandbox environment. A sandbox environment prevents two
widely different java programs to interact directly. Since there is no easy
way for Hecuba to communicate directly with the running Cassandra
instance through a Java-interface, and still be generic, Hecuba executes the
commands directly to the OS. The OS has knowledge about all processes
currently running, and may therefore terminate or setup the Cassandra
process accordingly.

The startup script for the agent is written as a bash script. There is
currently no solution available for Windows machines. The script initialize
the class path by appending all jars from the lib folder, and all files found
in the lib/sigar-n.n.n folder. The files found in the library folders are used
by the application as third party libraries for retrieving system resource
usage, logging, communicate with Cassandra etc. To be able to use these
libraries, they have to be appended to the class path so the java program
is able to locate them. The script also appends the path to the logging
properties-file, which set the logging- level of the application, and the
location of the output file(s). The output file(s) may be one file, separate
file for each log level, console, etc. After everything is set up and prepared,
the AutoscaleAgent class is executed.

10.6 Limitations

There are a few limitations as the implementation is not completely done,
and some priorities had to be made. The application has not focused on

75

performance or smart solutions as the main focus were to create a working
“alpha version” of an automatic scaler.

At this time, Hecuba only works for Cassandra. Hecuba was originally
not going to be a generic implementation that worked for all major
databases, as well as other kind of distributed software, which was in need
of an autoscaler implementation. Although as the implementation were
developed, it was possible to generalize a lot of the functionality, which
led to an implementation that may be generalized and separated from the
Cassandra-specific code.

The implementation is currently built for Linux. The java code will
work anywhere, but the scripts to e.g., initialize the agent, and shutdown
or startup the Cassandra instance are bash-scripts, which is written
specifically for Linux. The application should be OS independent, and
therefore the scripts should be removed or at least generated for every
major OS.

Hecuba is not able to scale infinitely as Priam may. Priam doubles
the size of the cluster on Amazon Web Services (AWS) as it may execute
commands towards Amazon’s API to setup new Cassandra instances
which will be started, and inserted into the cluster. Hecuba does not have
this opportunity, as it is not built specifically for AWS. Hecuba should
successfully be deployed onto AWS without problems, although it has not
yet been tested and verified. To solve the “infinite” scale-problem, the
database administrator may initialize n number of nodes into the cluster.
After some time, Hecuba will stabilize the cluster by scaling down nodes
that is not needed. For Hecuba to be able to scale down, it is important
to initialize the agent implementation alongside the Cassandra instance
on each node. By firing up enough nodes, Hecuba will keep a list of the
nodes which have been shut down and available to be put into the cluster
whenever hotspots occurs or nodes are overwhelmed with traffic or data.

10.7 Summary

Hecuba is developed to be as generic as possible. Most of the Cassandra-
specific code is interfaces, even though there was not enough time to
completely abstract everything. The main goal of the thesis was to
implement a successful scaler for a Cassandra cluster, however it is
desirable to create a generic implementation that successfully work for all
major database solutions today.

The code is separated into three projects: Autoscale, Autoscale-agent and
Autoscale-common. The autoscale project holds the master implementation,
which is responsible for initializing all the agents, collect breach messages
and scale up or down nodes if needed. The autoscale-agent project
holds the agent implementation, which is responsible for monitoring the
resources for the local node using SigarAPI. SigarAPI interfaces operating
system specific commands for retrieving CPU-, disk-, memory-usage and
network traffic. The node will monitor the resources used at a given time
interval and send breach messages to the master if breaches occurs over a

76

certain time based on pre-defined thresholds. The thresholds may be sent
from the master when initializing or updating the node, or read from a
configuration file located at the agent. The common project contains code
that the master and the agent implementation have in common. Currently
the common project contains the communication code, since this is the only
code both projects have in common.

The default scaler that is implemented is relatively simple. If a scale up
is initiated and there are available nodes, the scaler will startup the new
node at the token range that currently have the heaviest load. The location
of the node is automatically found by Cassandra, but may be overridden
by implementing a custom scaler. To implement a custom scaler the scaler
interface has to be implemented, and the SimpleCassandraScaler code from
the AutoscaleDaemon class have to be changed to the custom scaler.

77

Argument Description

intervallTimerAgent Interval-timer that tells how many seconds there should
be between each time the agent monitors its resources.

intervallTimerScaler How many seconds between each time the scaling algo-
rithm should collect messages. The timer should be set to
at least the same as thresholdBreachLimit to be able to
collect all messages. It is recommended that the attribute
is set to at least three times higher for the algorithm to per-
form calculation upon more than just a few messages. Too
few messages may result in incorrect calculations.

thresholdBreachLimit Tells how many seconds a breach should occur before a
message is sent from an agent to the master. This is used
to prevent spamming messages to the master if e.g., the
memory is filled up just before a compaction, and goes
back to normal after a few seconds.

minNumberOfNodes The master should never scale down the cluster below this
number, as this is the absolute minimum number of nodes
that should be up and running at any given time.

minMemoryUsage Minimum allowed memory-usage as percentage for the
node. If the memory-usage is below this threshold for n
seconds, a message is sent to the master.

maxMemoryUsage Maximum allowed memory-usage as percentage of the
node. If the memory-usage is above this threshold for n
seconds, a message is sent to the master.

minUsedDiskSpace Minimum used disk-space in Megabytes. If below this
threshold for n seconds, a message is sent to the master.
The message tells the master that the node which sent the
message is using less disk-space than the node is set to
use, and should be scaled down if possible.

maxUsedDiskSpace Maximum used disk-space in Megabytes for the node. If
above this threshold for n seconds, the node is running
out of available disk space. It may be fatal if nothing is
done, and data is inserted into the cluster. This message
should be prioritized to prevent loss of data. Another
node should be inserted into the cluster at the token-range
for the actual node to relieve it.

initHostname The hostname or IP-address for the agent that will be used
during the initial startup of the implementation. The other
agents will automatically be appended if the master asks
for active hosts from the agent.

initPort Port-number used in combination with initHostname to
make the initial connection..

Table 10.1: Startup arguments for the Autoscale-master implementation.

78

Attribute Description

root The complete path to Cassandra’s root-directory.

startup_command The command executed directly to the operating
system to startup the Cassandra instance.

shutdown_command The command executed directly to the operating
system to shutdown the Cassandra instance.

clear_directories Directories that will be emptied whenever the Cas-
sandra instance is successfully shutdown:

• data: Hold the data inserted into the cluster,
which the local node is responsible for.

• commitlog: All commits made to the node.
Data is removed from the commit logs after it
has been flushed to disk, and included into the
local data set.

• saved_caches: Temporarily cached data for the
node

node_address Used to connect to the local node-command interface.

node_port Connection-port used in combination with the argu-
ment above.

input_port Port where data is received from the master.

output_port Port used to send data to the master.

Table 10.2: The most important configuration-attributes for the Autoscale-
agent implementation.

79

80

Chapter 11

Test results

11.1 Introduction

This chapter describes the tests performed to prove that the implemen-
tation works. In order to determine the severity of the impact made by
Hecuba, the tests have been performed with, and without Hecuba running.
The test cases were not supposed to prove efficiency or performance, but
rather demonstrate that the implementation actually works. There is a lot
of work to be done before the implementation may be deployed to a live
cluster, although the basics of an autoscale-implementation are complete.

The test cases recorded results using the logging script: bin/logging.
The logs were extracted from both nodes, and converted into CSV files
(comma separated values). The CSV files were used as a foundation to
generate the graphs visualizing the test results. Each test (except test 3) was
performed twice, one time with-, and one time without Hecuba running.
This was done in order to prove that Hecuba has little or no impact on the
performance of the cluster.

The network traffic was not logged during the test cases. It could have
provided valuable data to be analyzed since it would have shown the
amount of data transferred between the nodes while the implementation
was running, compared to the transferred data while the implementation
was not running.

The test results focuses on the memory-usage of the nodes in order to
determine how well Hecuba performs. The CPU-, and disk-usage was also
monitored, but the results were not interesting enough to be described in
details. Cassandra tries to keep as much data as possible in main memory
in order to increase the response time. Hecuba does not keep anything
stored on disk, and runs solely from main memory. Since Cassandra and
Hecuba keeps most of their data within main memory, visualizing the
memory-usage will give a good understanding of how they work, and
impact the performance of the nodes and the cluster.

The logs that were recorded from all tests are found in the appendices
at the end of this thesis. These logs consists of the memory-, CPU-, and
disk- usage that were recorded every fifth second from both nodes, during
all seven tests cases.

81

11.1.1 Linode cluster

The tests were performed on a cluster provided by a cloud service named
Linode[24]. Linode is a cloud service that let users rent virtual servers in
the cloud. They currently let you choose from six different data centers
located all over the world, which gives you the freedom and opportunity
to locate the data as close to your customers as possible. The user will have
full root access to the operating system, and access to the servers’ statistics
like network traffic, CPU usage and disk IO operations. The user may also
deploy any Linux distribution they like from a pre-defined list, consisting
of all the major distributions currently available. Linode does not support
any other operating systems, since it is a Linux-only service.

The test cases were performed on two nodes located in New Jersey,
USA and London, England. They was meant to demonstrate that the
scaling occurred, and Hecuba’s impact on the overall performance. As it
was only two nodes running, the tests would also end up scaling down to
the minimum number of nodes allowed in a cluster, which would prove
if the implemented functionality for keeping a minimum number of nodes
in the cluster worked. Both nodes used for all test cases were running on
Ubuntu1.

11.2 Goals and expected results

The goals of the test cases was to provide a “proof of concept” that the
implementation actually works, and that it does not impact the node’s
resources in a negative way. The tests will prove that the performance is
not lowered due to the automatic scaler running in the background, which
will be best seen by looking at the memory usage of the nodes. The cluster
holds as much data in main memory as possible, and since there are not
much data available in the cluster during these tests, the memory usage
will be a good representation of the node’s workload, and to see if the
scaler makes an impact or not. By comparing the memory-usage when the
autoscaler is running, against the memory-usage when it is not running,
will give information about the severity of the impact made by Hecuba.
We expect Hecuba to have some impact, since it requires memory to run.
It will also be responsible for initiate downscaling of nodes, although the
usage should not deviate from what is normal.

The scaling should occur

Our main goal of the test cases is of course that the scaling occurs, or
else the implementation will be useless. The scaling process should be
triggered based on a set of attributes provided by either the constructor
or a configuration file. If the attributes are retrieved from the configuration
file, each node may be set up to trigger at different thresholds and different

1Ubuntu is one of the most popular Linux distributions available. More information
may be found at their official website http://www.ubuntu.com/.

82

time intervals. Since the configuration attributes may be set separately for
each individual node, the implementation is way more flexible than if the
master set the attributes. The reason why some nodes may require different
trigger-threshold than others may be because some of the nodes have e.g.,
larger disk- or memory-capacity than the rest. Even though it may happen
that nodes in the cluster are composed of a variety of different hardware,
this rarely happens for cloud services as all nodes are often composed by
the same commodity hardware.

However, it may happen that some of the nodes are running other
applications simultaneously as they run Cassandra. If there are nodes that
run multiple applications, they may be scaled up prior to nodes which
only run a Cassandra instance and the autoscaler to prevent lowering
performance of the other applications running. Nodes that have other
applications running at the same time will most likely be scaled up first,
at least if the specifications for all nodes in the cluster is the same. They
will be scaled up earlier because the maximum-memory usage threshold is
reached earlier than nodes without other applications running.

Makes little or no impact to the cluster

We expect that the cluster will continue to perform as if Hecuba were not
running at all, or at least continue to run without any greater impact to
the performance of the cluster. Hecuba will of course have some impact
to the memory- and CPU-usage of the node, but hopefully the impact
from Hecuba will not affect Cassandra’s performance. The main idea
for Hecuba is that the implementation will be an extension to Cassandra
that may be deployed to both existing- and new clusters. The users and
the administrators should not notice any performance loss due to Hecuba
running.

The current implementation may trigger the scaling process during
peak hours, which may result in performance loss. This is an issue that
should be prioritized for future deployments of Hecuba. If a scale occurs
during peak hours, nodes that are currently interacting with users may be
scaled down and cause unknown errors. There will also be an increase in
the amount of data transferred between nodes, and all nodes in the cluster
will have to adjust their token-ring information in order to direct traffic to
the correct nodes after the scale occurred. All this will require processing
time and bandwidth, which occasionally will affect the user experience and
the overall performance.

Therefore, it is highly recommended to implement a time-window
where the scaler may or may not be triggered. The implementation should
also be further extended with a module that detect, and prevent scaling to
occur whenever there are upcoming peak hours.

The cluster should not be inefficient due to the scaling

We expect that the cluster will not loose performance or be inefficient
due to the unbalanced ring. After a certain time, the ring will end up

83

being unbalanced due to the removal- and insertion of nodes. Nodes will
be removed from the token-ranges that have the lowest amount of data
and traffic, while nodes will be inserted into the token-ranges where a
hotspot occurs. A hotspot is a location in the ring where there is a greater
density of data than elsewhere. Hopefully the cluster will not suffer due to
the unbalanced removal and insertion of nodes, although this is likely to
happen after a while. Hecuba does not have the functionality to detect an
unbalanced cluster, although it would be a good idea to implement such
functionality. Hecuba should be extended with functionality for detecting
whenever a cluster have become too skew, and trigger some sort of re-
balancing process that is triggered during low peak hours.

If three nodes hold an equally large amount of the total keyspace (ring)
of a given cluster, they are responsible for 33.3% of the overall amount
of data each. Data inserted into the cluster may or may not be equally
distributed among the nodes, as the key is hashed, and therefore ends up
at a random position in the cluster, based on the hashing algorithm. As the
positioning of the inserted data is hard to determine ahead of the insertion
due to the randomness of the generated hash, it is impossible to pre-define
a token-range distribution that will keep a perfectly balanced cluster at
all times. Therefore, it is recommended to always rebalance the cluster
periodically in order to keep the cluster as balanced as possible.

Even though the cluster will end up being unbalanced faster when
Hecuba is running than if it was not, it will hopefully not result in a
noticeable performance loss, or nodes ending up being responsible for the
majority of the data. As mentioned earlier, Hecuba may solve this by
periodically recalculate tokens for all nodes in the cluster. This will move
nodes to new locations, and data will be re-distributed among the nodes.
Each time a cluster is re-balanced, the cluster will spend a lot of resources
transferring data between the nodes. As the nodes will be busy reading-,
exchanging- and compacting data, they will not perform as good as they
should if they have to serve hundreds or even thousand of requests at
the same time. If the skewness of the cluster, and the module responsible
for re-balancing the cluster, leads to performance-losses which lowers the
overall user experience and the response time, Hecuba would have to be
re-programmed.

Hecuba may be re-programmed to work the same way as Priam does,
which efficiently double the size of the cluster by pairing each new node
with an existing one[32]. However, Hecuba will also have to halve the size
of the cluster each time a scaled down occur, which Priam does not support.
It may potentially lead to a huge performance loss, since the performance
may drop below what is required.

Should give an indication of whether Hecuba is a potential success or
not

The test cases should indicate if Hecuba might be a potential success or not.
The test cases will be performed on a small cluster consisting of two Linux
nodes, with a small amount of data inserted into the cluster. The tests will

84

only run for 15 minutes, as it should be enough to determine if the basic
implementation works or not. The tests will only record results just before,
when, and after a scale occurred, if it occurred at all. Since the tests are very
simple and performed over a short period of time, they do not provide the
results necessary to create a final conclusion whether the implementation is
a success or not. However, the test cases will indicate if the implementation
may work, and if Hecuba should be further developed.

The preferred testing environment would have been a larger cluster
consisting of at least 10 - 20 nodes, with a larger amount of data available,
and the tests were running longer. This would put the implementation
through a more realistic test case, and would prove if the implementation
works over time, and not only the moment when the scaling occurs. It
would also test all the other factors that have to be tested, like the network
traffic, organizing large amounts of received data, scaling while hundred
of connections are made etc. The data will be shuffled around between
the nodes, and would potentially be hard to retrieve. These tests would
have been preferred, but it was not possible to perform such tests with the
current implementation, as the implementation is not ready yet and there
were only two nodes available for testing.

Even though more advanced tests were performed, the tests performed
should prove that the basic functionality of the implementation works, and
may be further developed by others. They may extend Hecuba with e.g.,
detecting peak hours, closely monitor performance while scaling down,
better communication between master and agents etc. Hopefully one
day, Hecuba will solve the monitoring and scaling of multiple Cassandra-
clusters better and faster than todays database administrators.

11.3 Test cases

Seven test cases will be performed in order to prove that the implemen-
tation works as intended. They will also verify that Hecuba have little or
no impact on the overall performance of the cluster. In order to do this,
the pre-defined test cases are set up to record the resource usage with, and
without, Hecuba running. A logger script will record the resource-usage of
the nodes. The recorded results from the test cases where Hecuba is run-
ning will be compared against the test cases where Hecuba is not running.
The results from the comparison will prove if Hecuba works as intended,
and if the impact to the overall performance of the cluster is little enough
to be accepted. The test cases are assigned a unique id to identify the test
when referring to it. An “H” at the end of the name identifies the test cases
where Hecuba is running.

TC1_H: No data inserted into the nodes

No data is inserted into the Cassandra cluster in order to record the
resource-usage of an empty cluster. This test will record the impact made
by Hecuba to the resource usage of the nodes, while the cluster is empty.

85

The test will also check if there is any bugs that could cause memory-leaks,
or any other deviations that could potentially lower the performance, or
prevent the Cassandra instance from running as normal.

TC2: No data inserted into the nodes

This test case is almost identical to TC1_H, since it is based on the same
preconditions where no data is inserted into the Cassandra cluster. The
only difference between TC2 and TC1_H is that Hecuba is not running
during TC2. Hecuba will not be running during TC2 in order to record
the resource-usage of the nodes when Hecuba is not present. The recorded
results from TC2 and TC1_H will be compared in order to determine if
Hecuba have an impact on the overall performance or not.

TC3_H: Pre testing, data is inserted into node A, which is automatically
distributed to node B

Before the test case will be performed, 1.000.000 writes will be written to
node A, which automatically distributes data to node B by Cassandra’s
built-in functionality. The data will not be equally distributed, as the
randomly generated rows will most likely result in a higher density of keys
being stored to either of the nodes. Since the insertion and distribution
of the data will be performed before the test case is initiated, it will not
interfere with the recorded results, and the results will show the node’s
resource-usage while there is data in the cluster, compared to TC1_H and
TC2, where the nodes will be empty. Hecuba will be running during this
test, and the results will be compared against the results from TC1_H,
since the only difference between TC1_H and TC3_H is that the cluster will
contain data during TC3_H.

TC4: Read data from the cluster

Data will be read from the cluster while the logger script records the
resource-usage. The goal of this test case is to record the resource usage
made by Cassandra while data is read from the cluster. There will be only
one client reading data from the cluster, and the recorded results will most
likely be different if there are multiple clients reading at the same time.

TC5_H: Read data from the cluster

This test case is almost identical to TC4. The only difference is that Hecuba
will be running. Hecuba will be running to be able to record the resource-
usage of the nodes with Hecuba active, and later on compare the results
against the recorded results from TC4. The comparison will prove if
Hecuba has an impact to the performance while data being read from the
cluster.

86

TC6: Insert data into the cluster

During this test, 1.000.000 writes will be written to the cluster. The test
will be performed while the resource-usage is logged to see how many
resources that are used by Cassandra. The data will be written to the cluster
while the test case is performed. The test case is very similar to TC3_H,
except that the data will be written to the cluster while the test is performed.

TC7_H: Insert data into the cluster

This test case is almost identical to TC6, except that Hecuba will be active.
The resource-usage will be recorded, and compared against the recorded
results from TC6. The comparison will prove if Hecuba makes an impact
to the overall performance when data is inserted to the node.

11.3.1 The simplicity of the tests

As mentioned above, the tests performed were very simple, and did not
last very long. The main reason why the tests were so simple was because
the thesis had to be delivered in a few weeks. The current implementation
has a lot of small bugs, which prevent heavier and more advanced tests to
be performed. A lot of time has been spent understanding the Cassandra
code base and try to find the best way to implement the autoscaler. A fair
amount of weeks was spent on failed attempts, and when the development
of the current implementation started, there was fewer weeks left than
expected. A lot of new technology had to be learned as well, which is
another reason why the implementation is not completely ready to be
deployed to a real cluster. The implementation works even though it is
not complete, and may be developed even further for more advanced tests
to be performed, and eventually be deployed to a real cluster.

11.4 Results

Linode server 1

Plan Linode 2048

Location New Jersey, USA

Ram 2 GB

Number of CPU’s 8*

Storage 48 GB

*The exact amount of CPU-power provided is unknown, as the specification-data
was retrieved after the Linode-plans were canceled. The provided data is retrieved
from the official Linode website: http://www.linode.com/ .

Table 11.1: Node A specifications

87

Linode server 1

Plan Linode 1024

Location London, England

Ram 1 GB

Number of CPU’s 8*

Storage 24 GB

*The exact amount of CPU-power provided is unknown, as the specification-data
was retrieved after the Linode-plans were canceled. The provided data is retrieved
from the official Linode website: http://www.linode.com/ .

Table 11.2: Node B specifications

The test-results were retrieved from two nodes over a time period of 15
minutes. Node A’s specifications are shown in table 11.1 on the preceding
page, and node B’s specifications are shown in table 11.2. The nodes were
located on different continents, node A in USA, and node B in England.
There is a time difference of 5 hours between London and New Jersey,
which have to be taken into consideration when reading the log-results
found in the appendices. After the test cases were completed, the test-result
graphs generated, and the node-rental canceled, I noticed that the system
clocks were not correctly adjusted. The time difference was 4 hours and
34 minutes, not 5 hours as I first expected. This is not a major issue, even
though it is important to remember when reading the appendices.

The logging script that was running did record the node’s CPU-, disk-
, and memory-usage every fifth second. The logging-script is a separate
script found at bin/logging, and it is initiated before Hecuba is started. The
recorded results showed that the CPU-usage remained very stable during
all the test cases. The disk-usage also remained stable, except when a node
was scaled up or down. It was not interesting to generate graphs, and go
into details about the CPU-, and disk-usage, since it remained very stable,
and did not deviate from what is expected when a node is taken down, or
brought up. However, if the CPU-, and disk-usage may be of interest, it is
found in the appendices at the end of this thesis.

The graphs that visualize the memory-usage of the nodes during
the test cases, represents the memory-usage as kilobytes (kB). Since the
memory-usage is shown as kilobytes, it will look like the memory usage,
drops, and increases, are very high, even though they are not. In most
cases it would be better to represent the memory-usage as megabytes, but
not when representing the results from our test cases. The impact made
to the memory-usage is very little, and therefore it would be hard to show
any impact at all if the graphs showed the memory-usage as megabytes.

The y-axis value differs between the different comparisons. If I did
not change the kilobyte-scale between the test cases, there would not
be possible to describe any changes made to the memory-usage for any

88

tests except TC6 and TC_7, where the memory-usage were highest. Even
though the scale differs between the comparisons, the scale will remain the
same for both graphs representing node A and B, in order to preserve the
consistency of the comparison. If not, the visual result could have shown
something quite different than what was the reality as minor changes could
have been represented as huge changes and vice versa.

11.4.1 No data inserted into the nodes

TC1_H & TC2: Two tests, TC1_H and TC2, were performed to record
resource statistics from both nodes in order to determine if Hecuba has an
impact on the overall performance. The two nodes were empty during both
test cases to determine how the cluster behaves initially with, and without,
Hecuba running. The tests also gathered more precise recordings of the
actual impact from Hecuba, as there were not any interference from third
party sources or unnecessary communication between the nodes other than
what was necessary. The CPU- and disk-usage was unchanged throughout
the tests, while the memory usage was increasing as seen in figure 11.1 on
the following page. Figure 11.1a on the next page shows the memory usage
of node A during TC1_H and TC2, while figure 11.1b on the following page
shows the memory usage of node B during the same tests. Hecuba was
running during TC1_H, while it was shut down during TC2.

Both graphs show that the memory usage is approximately 20MB
higher when Hecuba is running, since Hecuba consumes memory in order
to run. The sudden spike at the beginning of test 1 was a result of
Hecuba being bootstrapped. The logging was initiated before Hecuba, and
recorded the bootstrapping as a result of this.

The memory-usage increases steadily throughout both tests, proving
that the Hecuba is not responsible for the increasing memory-usage since it
increased at the same rate when the implementation was not running. It is
hard to determine what generated the memory increase, but it may have
been a result of Cassandra executing background processes. Cassandra
periodically compact data and keeps as much data as possible in main
memory for faster access. Even though the cluster was “empty”, there
were still a few Kilobytes of meta-data in the cluster that most likely are
positioned main memory.

The results prove that Hecuba does not impact the node other than
consuming the expected amount of memory in order to run. It is important
to remember that the tests are executed on an empty cluster, and the results
may be quite different if data is inserted into the cluster or the number of
nodes is increased.

11.4.2 Pre testing, data is inserted into node A, which is automat-
ically distributed to node B

TC1_H & TC3_H: During TC3_H, data was inserted into node A, and
Cassandra automatically distributed the data to node B. The data was
inserted using Cassandra’s built-in stress-test tool that randomly generated

89

(a) Node A

(b) Node B

Figure 11.1: Memory usage during TC1_H andTC2

90

(a) Node A

(b) Node B

Figure 11.2: Memory usage during during TC1_H compared to TC3_H

91

rows that was inserted. By default there will be inserted 1.000.000 rows
into the node, but it is possible to raise or lower the number of inserts by
applying the -n <number-of-writes> flag to the stress-test tool.

The data-insertion happened before the tests were started, so it did not
interfere with the resource logging. It also had to be inserted into the cluster
before the test started to be able to detect how the nodes act when there are
data in the cluster, compared to test 1 where there was no data in the cluster.

Figure 11.2 on the previous page shows the memory usage of node A
and B during TC3_H compared to TC1_H. In figure 11.2a on the preceding
page, node A’s memory usage is shown. There was a steady increase in
the memory consumption when there was no data available at the node for
TC1_H, compared to TC3_H when the node contained 315MB of data. A
rapid increase in the memory consumption is shown at the beginning of the
test, which happened because the logger-script was started before Hecuba
was initiated.

Hecuba was running during both tests, which makes them comparable.
The only difference between the test cases is that during TC1_H there was
no data present in the cluster, while during TC3_3 there was approximately
510MB of data present, shared between node A and B. There was
approximately 315MB of data located at node A, and 196MB of data
located at node B. The reason why the amount of data is approximate, and
why the amount inserted into each node looks very random, is because
we used Cassandra’s stress-test tool to insert the data. The stress test tool
generates random rows, with random lengths, which means that the size
of the data inserted may vary, even though the number of writes are the
same.

Another interesting observation which is worth mentioning is seen
in figure 11.2a on the previous page. The memory usage for TC1_H
is initially lower than TC3_H, which is obvious as the cluster was
empty during TC1_H. However, when TC3_H’s memory-usage stabilizes,
TC1_H’s memory-usage continues to increase. As seen in figure 11.2a on
the preceding page, the memory-usage during both test cases is almost the
same. At about 560 seconds, TC1_H uses more memory than TC3_H, even
though this is hard to tell from the graphs. This happens even though test
1 does not contain any data other than a few Kilobytes. It is an interesting
observation, although there is currently no good explanation for why. It has
nothing to do with Hecuba, as TC1_H and TC2’s memory-usage increases
at the same rate as seen in figure 11.1a on page 90. It was either some
external processes or an internal process initiated by Cassandra. Since
a third party process may have interfered with the test results, the tests
should have been initiated more than once, and an average of the results
should have been calculated. Due to the lack of time, the tests were only
initiated once, and therefore the results may contain some external “noise”.

Figure 11.2b on the preceding page shows the memory usage of node B
during TC3_H compared to TC1_H. Both tests show that the memory usage
was very stable with, and without, Hecuba running. The only difference
is that during TC3_H, the memory usage was higher. The reason why the
memory usage was higher during this test is because there was data present

92

in the cluster that was present in memory as well. Cassandra tries to hold
as much data as possible present in main memory in order to keep the
performance as high as possible. Since TC3_H only inserted about 510MB
of data, Cassandra did not have problems keeping all of it in main memory.
Since all data was kept in main memory, the memory usage increased. If
the data was written to disk, and the memory flushed, the memory-usage
would have decreased.

Apart from the memory consumption, the disk- and CPU-usage was
very stable during both tests. Since there were not any huge deviations,
the disk- and CPU-usage for these tests will not be further explained. The
CPU-, and disk-usage may be found in the appendices for the appropriate
tests.

11.4.3 Read data from the cluster

TC4 & TC5_H: During these tests, node A contained approximately
315MB of data, while node B contained approximately 196MB of data.
The data present is the same data that was inserted into the cluster before
TC3_H was performed. TC4 was executed without Hecuba running.
Hecuba was shut down to make sure both nodes stayed active within
the cluster, and to see the resource-usage made by Cassandra, without
Hecuba interfering. Hecuba was running during TC5_H, to see if the
implementation caused any performance loss or not compared to TC4.
TC5_H had the minimum disk usage set to 200MB, which lead to node
B being scaled down while the test was running.

Figure 11.3 on the next page shows the memory usage of node A and
B during TC4 and TC5_H. The only difference between the tests was that
Hecuba was not running during TC4, while it was running during TC5_H.
Figure 11.3a on the following page shows the memory usage for node A,
while the tests were running. At the beginning of the tests, the logger
recorded the initial startup of Hecuba, shown as a minor increase in the
memory-usage for TC4. The memory-usage continued to increase, which
was a result of the read-requests that was directed to the node. After
about 280 seconds, the memory-usage drops, and stabilizes. This happened
because the read-requests finished.

The memory usage during TC5_H was a bit unstable at the beginning
of the test, compared to TC4. It was also a bit higher for TC5_H than TC4,
which was because Hecuba was running. A downscale of node B was
also initiated at the beginning of TC5_H. The scale down may be seen in
figure 11.3b on the next page. As shown in the graph, the memory-usage
stabilizes when the data received from node B has been transferred and
committed locally. When the memory usage was stabilized during TC5_H,
it did not continue to slowly increase as shown for TC4. This probably did
not happen because there was only one active node in the cluster, which
leads to no communication with other nodes in the cluster. There were two
active nodes that communicated and shared meta-data during TC4, which
may have generated the increase in memory-usage. It may also have been
external processes that were running on the nodes, even though this minor

93

(a) Node A

(b) Node B

Figure 11.3: Memory usage during TC4 and TC5_H

94

increase is not important for the final result.
Node B’s memory usage during TC4 and TC5_H is shown in fig-

ure 11.3b on the facing page. The memory-usage increases at the same rate
for both tests at the beginning. The reason why TC5_H’s memory-usage is
a bit higher is because Hecuba is running. After 70 seconds, the memory-
usage for TC4 stabilizes, while it stabilizes after approximately 105 seconds
for TC5_H. It took longer time for TC5_H to stabilize because the node was
scaling down, which require some extra memory-capacity.

Since the majority of the data were located at node A, the majority
of the read-requests were also directed to node A. This lead to fewer
read-requests, and less activity for node B, which is the reason why there
is no visible activity for this node. By looking at TC5_H, the memory
usage clearly shows when the node was scaled down. The memory usage
increased at the same rate for both tests at the beginning, which probably
was a result of the data being read from the cluster. The read-requests
ended early in TC5_H, which is shown by the memory usage stabilizing.
After 105 seconds, the memory usage for this test experienced a memory-
usage drop at node B. This is a result of the node been decommissioned,
and removed from the cluster. The memory-usage stabilizes directly after
the drop. The Cassandra instance is not running anymore, which is the
reason why the memory-usage during TC5_H at node B is a bit lower than
during TC4.

The test results are very similar, except that node B was scaled down.
The beginning of the test is almost identical, and when the memory usage
stabilize, the usage follows the same pattern with, and without Hecuba
running, which proves that the implementation does not have an impact
on the cluster while data being read.

The CPU- and disk-usage did not deviate from the expected results, and
therefore they will not be described in detail. The disk usage of node A had
a huge increase during TC5_H, which is a result of node B being shut down,
and data moved from node B to node A. For detailed information about the
CPU-, and disk-usage, see the appendices for the appropriate tests.

11.4.4 Insert data into the cluster

TC6 & TC7_H: Figure 11.4 on the next page shows the memory usage
of node A and B during TC6 and TC7_H. Hecuba’s impact on the cluster
while data being inserted into the cluster was tested in order to see if
there was any deviations from the normal behavior that could lower the
overall performance. Hecuba was shut down during TC6, and running
during TC7_H to see the difference of the resource usage with, and without
Hecuba running.

Node A’s memory usage during both tests is shown in figure 11.4a on
the following page. The data was inserted through the Cassandra stress test
script at node A. The script inserted data until for 700 seconds. It is hard to
determine exactly when the insertion ended, as the graph drops after 595
seconds for node B, and 735 seconds for node A during TC6. The memory-
usage drops around 385 seconds for TC7_H, which happened because the

95

(a) Node A

(b) Node B

Figure 11.4: Memory usage during TC6 and TC7_H

96

insert-script stopped, node B were scaled down, and the data received
from node B was stored locally. TC6 shows that there was an increase
in the memory-usage at the beginning of the test. The memory-increase
experienced memory-spikes, which is a result of data being inserted into
the node. Data-insertion requires the node to calculate the position in the
ring for the inserted data set, and place it at the correct location. The
location in the ring may be at node B, which requires node A to transfer
the data set to node B. There were memory-spikes until approximately 700
seconds, when the memory usage dropped and stabilized compared too
earlier in the test. The memory usage dropped because the insert script
ended. Hecuba was not running during TC6, which is the reason why no
signs of a scale up or down at either of the nodes is shown.

Hecuba was running during TC7_H. Figure 11.4a on the preceding page
shows the memory usage for node A during TC6 and TC7_H. It had a
bit higher memory-usage than TC6, which is a result of Hecuba running.
Around 175 seconds, both test cases uses the same amount of memory,
and follows the same memory-spike pattern. Since both test cases follow
the same spike-pattern, we can be very certain about the spikes coming
from the insertion-script, and is not a result of Hecuba running. TC7_H’s
memory consumption dropped when the test had been running for 385
seconds. This probably happened because the insertion script ended, and
node B scaled down. The results from node B seen in figure 11.4b on the
facing page shows that the memory-usage for TC7_H dropped 385� 245 =
140 seconds later for node A, compared to node B, where it dropped after
245 seconds.

Compared to the results from node B, seen figure 11.4b on the preceding
page, it scaled down a bit earlier than the memory drop at node A. When
the memory dropped at node B, the data was already transferred to node A.
Node A continued to experience memory-spikes since the insertion script
was still running, and data was received from node B. The data that were
received was reorganized at node A before it could be stored. Since node A
reorganized about 480MB of data from node B, the spikes continued after
the insertion script ended. When the data was successfully included into
the existing data at node A, the memory usage dropped and stabilized.
By looking at the graphs for node A and B, the memory-usage seems to
keep increasing when TC6 ended. The insertion-script had ended, so the
memory-increase probably occurred because Cassandra was sharing data
and replicas between the nodes.

Node B’s memory usage is shown in figure 11.4b on the facing page.
The graph shows less memory-spikes than for node A, which may be a
result of node B receiving less data than node A. Node A was responsible
for a larger amount of the overall data during the tests than node B,
and therefore most of the activity happened at node A. TC6’s memory
usage increased steadily until about 735 seconds. Then the usage dropped,
because the insert-script ended before the test was completed. There are
not any visible spikes in the overall memory usage at node B, which may
be a result of the majority of the data being sent directly to node A.

It is easy to see when node B was scaled down during TC7_H, as there

97

were a huge drop in the memory usage after 245 seconds. The memory
usage for TC7_H is higher at the beginning than for TC6, which probably
were because Hecuba was running and sending messages to the master.
When TC6 had been running for 245 seconds, the memory-usage dropped
as the node was scaled down. The memory-usage stabilizes after the
memory-drop, since Cassandra was shut down and the memory used by
Cassandra were freed. Hecuba continued to send breach messages, since
the current implementation does not stop sending messages when the node
is scaled down. A future release of the implementation should prevent the
agent from sending breach messages when the node is scaled down.

Hecuba does not have a noticeable effect on the overall performance
since it is running when the node is scaled down, and the memory usage is
stabilized as seen for test in figure 11.4b on page 96. It is worth mentioning
that the implementation have been tested with simple test cases, and that
the result may be quite different if there is more data in the cluster, more
nodes, more complicated tests performed etc.

There are no deviations in the results for either the disk- or the CPU-
usage. The CPU-usage stays stable during both tests, and only deviates 1%
from the start to the beginning of the test, which is seen in the appendices
for TC6 and TC7_H. The disk usage for both nodes steadily increases
until node B is scaled down. The disk space for node A continues to
increase after the disk space dropped for node B, as data is being received.
The newly received data also has to be compacted and inserted into the
database, which generates extra Meta-data and possible duplicates. The
amount of data at node A also decreases after a while, as unnecessary data-
duplicates and meta-data is removed. It took 145 seconds from when node
B removed its 535MB of data, until the data amount stabilized at 911MB at
node A. Node A was containing more than 911MB of data at some point,
as there were probably duplicates of data received from node B that had to
be taken care of.

There have not been generated any graphs from the disk-, or CPU-
usage, since the recorded results does not deviate from what was expected.
However, the data is found in the appendices for TC6 and TC7_H at the
end of this thesis.

11.5 Summary

Seven tests have been executed to prove that Hecuba works as intended.
They have tested that Hecuba does not impact the overall performance
of the nodes when there is data, and where there is no data, available in
the cluster. The tests have also verified that Hecuba does not impact the
performance while data is being inserted into, and read from, the cluster.
There have been performed two tests to verify that Hecuba does not impact
the nodes: one test where Hecuba is running, and another test where
Hecuba is not running.

The tests were performed without anything-unexpected happening.
The results satisfies the initial goals for the test cases; that Hecuba should

98

not impact the overall performance of the cluster, and the cluster should be
running as if Hecuba did not exist. Even though there was performed a set
of simple test cases, they proved that our implementation of an automatic
scaler for Cassandra works, and it may potentially be a success if it is
developed even further.

99

100

Part IV

Conclusions

101

Chapter 12

Assessment of Hecuba

12.1 The Design

I think that Hecuba is a success so far, considering the limited amount of
time available for such a large project. There are some faults that maybe
should have been taken care of, but the overall result satisfies my goal
for this thesis. Hecuba’s current design was not my only idea of how to
implement the automatic scaler.

Firstly I developed a design that was supposed to be implemented
directly into Cassandra’s source code. In the beginning, when I did not
have enough knowledge of how Cassandra was built, I thought this was
a very good idea. The idea was to implement Hecuba as a standalone
daemon that launched together with the Cassandra daemon. It would also
take advantage of the gossip protocol in order to communicate with the
other nodes. The design could have become a very good solution, where it
would not be necessary to install any third party extension to Cassandra. It
would have taken advantage of the already existing gossip protocol, which
is already implemented into Cassandra’s. However, I did not think of the
maintenance-work that would follow if I modified Cassandra’s code base.
I would have to re-implement the autoscaler every time a new version of
Cassandra was released, if not the developer-team for Cassandra merged
Hecuba into the official releases. However, this would most likely never
happen. I should have foreseen that modifying Cassandra’s code base
would require a lot of maintenance work, and probably was not the best
solution, as already existing clusters would have to be re-deployed with
the modified Cassandra version.

The second attempt was similar to the final result, except the majority
of the functionality were located at the master, and it was very tightened to
Cassandra. The daemon that monitored the resource-usage were located
at the master, which means that the master were sending messages to
its agents every nth second, asking for their disk-, CPU-, and memory-
usage. This happened even if there were no breaches occurring. This
required a high amount of data to be sent forth and back between the
master and its agents. More data sent across the Internet means that the
master would have to wait for messages to be received, since it takes time

103

to send messages across the Internet. There will also be a higher change of
failures to occur. The majority of the resource-values are not of interest to
the master, as the master is only interested in the resource-values when a
breach occurs. The constant flow of messages being sent across the Internet
is the main reason why the second attempt experienced major changes.
I moved the monitoring from the master to the agents, and the agents
would only send messages to the master if a breach occurs. By doing this,
I lowered the amount of messages being sent from each agent. If I set the
monitor to check the resource-values every second, and send a message to
the master if a breach occur more than ten times in a row, I would have
lowered the network traffic between the master and its agents by 90%.

Towards the end of my work with the final solution, I came up with
many new ideas that would have improved Hecuba. Among other things,
I wished to implement smarter node-insertion, automatically re- balancing
of the cluster, and automatically receive the list of current active nodes
upon agent-initialization. Since the deadline of this thesis was closing in,
I had to finish my current solution in order to perform tests proving that
my implementation worked. I started to develop Hecuba from scratch,
without any knowledge of distributed systems, Cassandra, or automatic
scaling. I have described my ideas of what may be done to further develop
Hecuba, since I did not manage to do it all myself. I hope these ideas may
be of help to anyone wanting to continue my work for an automatic scaler
implementation.

In my current solution, there are a few design-issues that I wish I had
time to correct. The Autoscale-agent continues to send breach-messages
to the master after it has been scaled down. The master will collect the
messages, and include the nodes into the calculation of which node that
should be scaled up or down. The outcome of the scaling-algorithm may
become a node that is already scaled down, that is told to scale down again.
This will not result in an immediate problem, but it may become a problem
if the node that should have been removed is not. However, since it is
scaling down, it is not as urgent as if it were scaling up. On the other hand,
if the scaling-algorithm resulted in a node being scaled up, that already
were scaled up, the outcome would have been quite different. It could
have resulted in the cluster loosing data if it runs out of disk-space. Users
could also experience poor performance, since the cluster does not have the
necessary resources available.

12.2 The Implementation

I am satisfied with the final result. I am glad I did not implement it directly
into Cassandra’s code-base, since it would have been a lot of maintenance
work. I have not performed any tests proving that the implementation
works over a longer period of time, meaning it cannot be deployed to a
live cluster yet. Even though I did not manage to perform such tests, I
managed to develop an implementation that runs, and where the scaling
occurs. There are a lot of improvements that I would have liked to do

104

before Hecuba is released. Most importantly, I would like to prevent the
agents from sending breach messages to the master after the agent has been
scaled down. This should not be a lot of work, although I noticed this after
the tests were completed. If I were to make changes to the source code, I
would have to perform the tests all over again, in order for the results to
match the current implementation. I could also have encountered different
obstacles, which could have consumed a lot of the remaining time for this
thesis. Apart from this, I think that the implementation may potentially
work if it were deployed to a real cluster, however I would not recommend
anyone doing it before Hecuba is fully tested.

The resource-usage of the current implementation is very low. It
requires approximately 20MB of RAM, which may be seen in the test-
results by comparing e.g., TC1_H and TC2 (see appendices). This is not
much at all, and is only the amount of ram necessary for Hecuba to run.
Hecuba does not affect the overall performance of the nodes, which is what
I expected. However, it may generate a lot of memory-, and CPU-usage if
there is a lot of data within the cluster, and if there are nodes that are being
scaled up and down frequently. I have not yet tested this, but the Cassandra
instance will have to move data between the nodes in the cluster when
nodes new nodes are inserted, and existing nodes are removed. This is
expensive operation, as data first have to be transferred across the Internet,
before it have to be compacted, reorganized and indexed at the new node.
The reason why I did not test this was because I did not have the necessary
amount of nodes available, and I also suspect the implementation to fail if it
is put to such test. Hecuba does not wait for nodes to successfully scale up
or down, meaning that it may potentially tell a node to scale down before it
has been completely scaled up. I do not know what will happen then, but I
am afraid that data may be lost, and the overall performance of the cluster
will probably suffer.

Hecuba was not straightforward to implement. I had a lot of “try-
and-fail” attempts, as I had never developed a Java-application that was
split into several different projects, where the applications communicated
together. I had also never accessed the local resources of the machine where
the applications are running. I had to use most of the time to understand
how this was done. I had also never developed a Java-application that was
launched from a script, as Cassandra is. Even though I had never created
that kind of script before, I looked at Cassandra’s startup-script, which I
used as inspiration to create Hecuba’s startup-script.

I mean that the current implementation works, as the scaling is
triggered and successfully performed. However, it does not work properly,
as there are known bugs that have to be fixed before it is officially released.
If the bugs are fixed, and the implementation is further developed, the
test cases that are performed should also be further developed. There
should also be developed a test-suite, containing the tests that should be
performed, any data that is required for the tests to run, and the execution-
order of the tests. There should be developed tests that runs for a longer
time than the tests I performed. There should also be developed tests
that are triggered from multiple nodes, triggering up and downscaling

105

randomly. Least but not last, tests should be developed that generate
incoming traffic to the nodes in order to see how the implementation
performs when there are activity within the cluster.

The current implementation stops working if the cluster demands new
nodes, and the list of inactive nodes are empty. This is a known issue,
which may be solved by e.g., the database administrator initializing new
nodes into the cluster manually, or extending the implementation with a
script that initialize nodes at e.g., Amazon Web Services. I did not think
of this while working with the implementation, as I never encountered
the problem. If the increase of nodes comes from a temporarily increase,
which will stabilize and go back to normal again, it should be enough if
the database administrator fires up new nodes whenever needed. If the
increase comes from a sudden increase of interest for your product, it may
be desirable that a script is executed, which triggers initialization of new
nodes at e.g., Amazon Web Services. Amazon Web Services have an API
that allows such scripts to be performed. However, I think that this may
not be necessary, as most of the clusters that are available today should
have the necessary amount of nodes available. Hecuba will stabilize the
number of active nodes in the cluster, in order for the cluster to run as
few nodes as possible, without lowering the performance. This means that
Hecuba may scale down a few nodes directly after it has been deployed,
but it will stabilize when it reaches a certain point. When it stabilized, it
will wait for an increase or drop in the memory-, CPU-, or disk-usage. If
the database administrator are afraid that there is too few nodes available
for Hecuba, he or she should initialize a couple of extra nodes to make
sure that the implementation will not run out of nodes. Hecuba should
implement functionality to alert the database administrator whenever there
are fewer than n number of nodes left in the list of available nodes, e.g., 1
node available for insertion.

106

Chapter 13

Test analysis

The test cases I performed were simple and short, and are therefore not
enough to determine if Hecuba is robust and stable. There should be
performed more advanced test cases that consist of a larger amount of data,
and randomly generated network-traffic towards the cluster. The test cases
should also run for a longer time, and consists of a higher number of nodes.

The main reason why the test cases were so simple was because I did
not have enough time to further develop Hecuba, and create the test cases.
As soon as Hecuba were ready for testing, there was not enough time
left for developing more advanced test cases that I knew would generate
useful statistics. However, I think that the test cases performed prove
that the implementation are capable of scaling, and does not impact the
performance. The test cases were also performed on two nodes. It does
not reflect a real cluster, but I think it is enough to prove that the scaling
occurs. I do not think the outcome would have been any different if there
were more nodes in the cluster.

13.1 Comparison

We have performed seven test cases in order to verify that Hecuba works,
and that it does not impact the overall performance of a Cassandra cluster
by consuming too many resources. All tests may not be compared directly
against each other, since they have different pre- conditions. However,
some of the tests have been performed with the same pre-conditions, where
the only difference was that Hecuba was running for one of the tests, while
it was shut down for the other. This was done in order to determine if
Hecuba had an impact on the resource-usage, and the overall performance.

The first two tests, TC1_H and TC2, proved that Hecuba did not have
an impact on the performance if the cluster was empty. As shown in
figure 11.1 on page 90, the memory usage was not very different for the two
tests, except that the amount of memory used was a bit higher for TC1_H
than TC2. TC1_H used a bit more memory than TC2 since Hecuba was
running. Other than that, the steady increase of memory usage was very
similar for both tests. The CPU- and disk-usage was monitored as well, but
the recorded values are not of interest, as they did not change throughout

107

the tests.
The third test, TC3_H, proved that Hecuba did not affect the overall

performance while there was data available in the cluster. Data were
inserted into node A, which automatically distributed the data to node B,
before the test case was initiated. The memory usage is very stable for
node B, but it is a bit higher than for node A. It is higher because Cassandra
holds the local data in main memory for faster access. Node A shows that
the memory usage is more stabilized for TC3_H than TC1_H, even though
the cluster was empty during TC1_H and contained data during TC3_H.
The memory usage at the end of TC1_H is even higher than at the end of
TC3_H. It is not easy to say what generated the steady increase of memory
usage for TC1_H. Even though we do not have an answer to the memory
increase of this test, it cannot be Hecuba. The memory-usage increases at
the same rate with, and without, Hecuba running as seen in the figures 11.2
on page 91.

TC4 and TC5_H proved that Hecuba did not have an affect on the
overall performance while data was read from the cluster. The data
inserted for TC3_H was still in the cluster during these tests, because the
tests should be performed on a cluster containing data. The Cassandra
stress test tool was used to generate random reads from the cluster while
the tests was running. Figure 11.3 on page 94 shows the memory usage
of TC4 and TC5_H. Hecuba was running during TC5_H, and shut down
during TC4. Both tests have an increase in the initial memory usage at
node B. A few seconds after the test started, the memory usage stabilize for
TC4, and stays stable throughout the test. This probably happened because
Hecuba was not running, and the data-insertion had stopped. TC5_H
shows that directly after the memory usage stabilized, there was a drop in
the overall memory usage. Since Cassandra was shut down, the data held
in main memory was removed. As the Cassandra instance and its data
were removed from main memory, the overall memory usage decreased as
shown in figure 11.3b on page 94.

The memory-usage for TC4 increased rapidly at the beginning, but
stabilized when the read-script ended after 280 seconds. TC5_H had a bit
higher memory consumption, even though it was more stable than for TC4.
It is not clear when the read script ended, as the first part of the test contain
both read-requests and data received from node B. Data was received from
node B since it was scaled down. After the read script ended and the data
from node B was organized and stored, the memory usage stabilized at
higher level than for TC4, which was because our implementation were
running.

The sixth and seventh tests, TC6 and TC7_H, were the last tests that
I performed, and the memory usage is shown in figure 11.4 on page 96.
Data was inserted into the cluster while these tests was running in order
to see if Hecuba have an impact on the performance while data is being
inserted into the cluster. Hecuba was not running during TC6, and the
insert-script was running until the test was almost complete. The majority
of the inserted data was inserted into node A. Figure 11.4a on page 96
shows the memory usage of node A, and there is a lot more activity at

108

this node than node B which is shown in figure 11.4b on page 96.
Hecuba was running during TC7_H, where node B was scaled down

after the test had been running for approximately 245 seconds. The
memory usage of node B drops a few seconds before it drops at node A.
This may be because node A needs some time to reorganize the received
data, but it may also be that the insert-script was not finished. After node B
was completely scaled down, and the data reorganized and stored at node
A, the memory usage of both nodes were sustained throughout the rest of
the test.

As for the previous test results, the CPU-, and disk-usage did not
deviate enough to be of interest. The disk-space was the only attribute that
did change, and is worth mentioning, even though it changed as expected
according to the downscaling. Since there was not much to say about
these changes, there was not generated any graphs to visualize the results.
The results that were logged may be found in the appendices for TC6 and
TC7_H.

13.2 Discussion

The focus of the tests has been to make a “proof of concept” that Hecuba
work, without interfering with the already existing Cassandra implemen-
tation. Even though the tests were simple, they did prove that Hecuba is
initialized, and successfully completes a downscale without affecting the
cluster’s performance. The results may have been different if there was
more data or more nodes involved, although this was not the goal of these
tests as they was supposed to prove that Hecuba initiate the scaling pro-
cess.

We have been focusing on the memory usage of the nodes as it best
showed the different happenings throughout the tests. Cassandra holds
as much data as possible in memory to respond to requests fast. It also
performs its calculations and reorganizing in memory, which is shown in
some of the recorded results. It also made sense to focus on the memory
usage since Cassandra works mainly in memory, and any operations or
deviations by Cassandra would be reflected to the recorded results and
shown in the graphs.

It is not possible to conclude if the implementation is a success or not,
since the tests did not test any real scenarios. The tests were not performed
on a realistic cluster, and they were only running for a short period of time.
In order to come up with a conclusion if the implementation is a success
or not, it should be further developed with functionality to detect low-
peak hours for scaling, more controlled scale-down of nodes, stop sending
messages if the node is scaled down etc. The bugs that exist should also be
fixed, and Hecuba should be put to test by more complex tests. The tests
should last longer, in order to see how Hecuba acts when multiple scales
occurs.

Even though it is hard to say if the implementation is a success or not,
it is clearly a good start. The tests prove that the implementation is able to

109

scale and continue running. The tests also show that the implementation
does not affect the resource usage more than necessary in order to run.

110

Chapter 14

Summary

The idea of this thesis was to develop an implementation that was able to
automatically scale Cassandra clusters. There have been several changes
to the original design, which resulted in the implementation as it is today.
It was originally supposed to be implemented directly into Cassandra’s
source code, and take advantage of the already existing gossip protocol.
This design-idea changed during the thesis work, since we learned more
about the technology used, and found better solutions to the problems that
occurred. The final result ended up as a standalone implementation where
there are only a few references to Cassandra itself. Another factor that led
us towards a standalone implementation is that we did not have to develop,
and update our own fork of Cassandra’s source code. This would result in
a lot of work in order to keep up with new releases, which would most
likely result in our Cassandra-version being old and outdated.

We performed proof-of-concept tests in order to prove that the scaling
occurs, and that it is triggered based on a set of pre-defined values.
Most of the test cases were performed twice where the implementation
was shut down during one of them in order to determine the impact of
the implementation to the local node’s resources. Different actions were
performed while the test cases were monitoring the resource-usage in order
to see if the implementation could potentially lower the performance. If the
implementation lowered the overall performance of the Cassandra-cluster,
it would be useless and could not be deployed to a real cluster. The tests
monitored the resources while the cluster was empty, consisted of data,
data was read, and written.

The test cases performed are not enough to be able to come up with
a final conclusion if the implementation works or not. However, the tests
prove that Hecuba’s currently developed functionally work as intended.
There are some bugs that still exist, but the implementation still works.
They also indicates that Hecuba does not acquire more resources than
necessary in order to run, which means that Hecuba may be deployed to
an already existing cluster without affecting the overall performance too
much. The only problem is that the scaling-algorithm may trigger the
scaling-process too often, resulting in a lot of extra activity in the cluster.
Apart from the known bugs, the implementation may become a success if

111

it is further developed to handle e.g., peak-hours, controlled down scaling,
and more intelligent up scaling, where the inserted nodes tries to balance
the cluster as much as possible to prevent skewness by calculating a more
suitable location in the ring.

Today the implementation is immature and a working in progress.
There are still bugs that have to be fixed and important functionality to
implement before the implementation is ready to be deployed to a real
cluster. There is uncertainty about the test results since there was not
performed more complex tests. More complex tests should have tested how
the implementation react to multiple active connections made to the cluster,
peak-hours, a larger amount of nodes, and more data in the cluster. Such
tests were not performed because there was not enough time left of the
thesis work. The implementation is not mature enough yet, which would
result in a lot of bug fixing and developing in order to perform the tests.

Hecuba has some known problems that may prevent more complex
tests to be performed. It does not stop sending breach messages after a
node has been scaled down. This is not an important bug, but it may cause
problems when e.g., the master marks the node to be scaled down the 2nd,
3rd, or 4th time. A node with high resource-activity that is already scaled
down will also prevent active nodes from being scaled up or down, which
may potentially prevent important scale- ups to occur. A more important
bug is that the shutdown command does not completely kill the Cassandra
process at this point. The same command that is written to the command
line in order to kill the running Cassandra process is executed, but the
instance is still running. Even though the Cassandra instance is running,
the node is decommissioned and removed from the cluster, and the content
of the data-folder is removed. Since the tests performed was so simple, and
did not trigger both scale up and down, it is hard to say if this could cause
problems if a node is shut down, and brought up again later on.

Even though we cannot give a final conclusion whether the implemen-
tation is a success or not if it were deployed to a real cluster, we think it will
be if it is further developed. We feel that Hecuba may compete with Priam
one day since it solves the scaling-problem differently, as well as proving
functionality that is not available in Priam. On the other hand, Priam pro-
vides functionality that is not available in Hecuba. Since both solutions
provide functionality the other does not, we think that Hecuba may be a
success in its own area: if someone is in need of both up-, and downscal-
ing. A lot of work have been put into completing the implementation on
time, and provide the desired functionality. It may currently be used for
testing purposes, and we encourage others to create different test cases in
order to get a broader set of results that hopefully will result in improve-
ments to the implementation.

14.1 Further work

The outcome of this thesis is a simple automatic scaler for Cassandra-
clusters, named Hecuba. It does not consider low-peak times, controlled

112

up- or downscaling, smart insertion of nodes etc. A more advanced,
and complete implementation is required in order to fully satisfy the
requirements of an automatic scaler. The test-results have shown that
it may potentially be a success, however it is hard to predict how the
implementation behaves when a cluster consists of more data, a higher
number of nodes, multiple up- and downscales occurring etc. It would
be interesting to see how the implementation would perform on a more
realistic scenario e.g., a cloned version of one of Netflix’s Cassandra
clusters[29].

In the following subsections we summarize different areas applicable
for further work.

A more generic implementation

The current implementation is partly generalized. There are still a few
places within the source code where Cassandra-specific code can be found.
The AutoscaleDaemon class’ init-method initiates the CassandraHostMan-
ager class. The CassandraHostManager implements the HostManager
interface, which interfaces all the required methods. It should be an
easy task to move the HostManager implementation-path that are be-
ing used to e.g., a separate configuration file. Currently the master-
implementation does not have a configuration-file. Therefore, it has to be
extended with both a configuration file, and a reader-implementation to
successfully load the attributes from the file into memory. When we have
successfully created the properties-file, and the reader-implementation,
an attribute for the HostManager may be added, e.g., host_manager =
no.uio.master.autoscale.host.CassandraHostManager. The reader will
create a java-object from the path provided. This is achieved by execut-
ing the Class.forName(String className) method, which would return a
Cassandra- HostManager object (It must be casted to HostManager). This
way, another HostManager may be applied to the implementation by ap-
pending it to the class path, change the value of the host_manager attribute,
and restart the application.

The implementation is currently designed to run on Linux-machines
only. Linux-specific commands are executed while starting and shutting
down the Cassandra instance. These commands should be replaced by
Java-code if possible, or a set of commands for all major operating systems
should be provided. Which command-set the implementation are using
should be automatically detected in order for the users to deploy Hecuba
to machines without having to know which Operating System that is
currently running.

Infinite number of available nodes

The number of nodes available are currently limited by the actual number
of nodes that have been initiated to the cluster. E.g., if there is only initiated
five nodes to a cluster, the cluster will not be able to scale up to more than
five nodes. This means that the database administrator have to initialize

113

all nodes that should, or may be, a part of the cluster. The autoscaler will
downscale the cluster to a minimum number of nodes required in order
to provide good performance, but not less than the minimum number of
nodes set by the configuration property min_number_of_nodes.

All nodes that are supposed to be a part of the cluster do not have to
be initialized during startup. The master should occasionally ask a random
agent for a list of currently active nodes, which will include any new nodes
that have been added to the cluster after the initial startup. The current
implementation does not have this functionality, even though it is highly
recommended for an automatic scaler in order to be fully automatic. The
master implementation will initiate an agent-implementation on each new
node, which will lead to the node’s agent starting to monitor, and sending
feedback to the master. The current implementation will not be able to
initiate new nodes if the list of currently inactive nodes is empty. If the
traffic and the amount of data continue to increase, the agents will continue
to send breach-messages to the master, without the master being able to do
anything.

If this happens, and the database administrator is not available, the
implementation will run into problems. The current implementation does
not handle this. A solution to this may either be to alert the database
administrator through Email, SMS, etc., or to solve the problem without
human interaction, even though this is not preferred. To exclude all
necessities of human interaction, Hecuba may be extended to support
“infinite” number of nodes. This will only be possible if the cluster is
running on, or have access to, a service like Amazon Web Service (AWS)[4].
Hecuba may initialize a node through AWS’s API if the number of available
nodes is zero, and the scaling-algorithm results in the need of extra nodes
to the cluster. It is important to remember that such extension needs to
be tested very carefully before it is applied to an implementation that is
currently in use, as it may potentially cost a lot of money if something goes
wrong.

Intelligent node insertion

The current version of Hecuba only initializes the new nodes, and let
Cassandra handle the insertion point within the cluster. Cassandra has
built-in functionality that determines which token range that has the
highest load, and share this token range evenly between the new- and
existing node. Since Hecuba may potentially insert and remove a lot of
nodes, the cluster may end up being unbalanced. An unbalanced cluster
leads to certain nodes being responsible for a larger amount of the overall
data set. If a node contains more data than the rest, it may potentially
receive the majority of the requests made to the cluster. When one node
receives the majority of the connections, and holds the majority of the
data within the cluster, the whole idea and the advantages of distributed
systems are lost.

To prevent this skewness, a smarter token generator should be imple-
mented. Newly inserted nodes should continue to find hotspots within the

114

cluster, to prevent nodes from being overloaded. But instead of splitting the
token-range evenly between the existing, and the new node, the amount of
data available at the existing node should be evenly shared instead. As the
data is most likely not spread out evenly throughout the token-range, this
would in most cases lead to one of the nodes being responsible for a larger
amount of the token-range. Even though one of the nodes will have a larger
token-range than the other, the amount of data is evenly shared, meaning
that they should potentially receive an even amount of requests. An im-
portant thing to remember is that the cluster may be unbalanced again as
soon as new data is inserted.

Automatically detect if the cluster is “too unbalanced”

As mentioned for intelligent node insertion, the cluster may end up being
unbalanced at some point. This will always happen, not just as a result
of intelligent node insertion. When the cluster becomes unbalanced, the
performance may potentially be lowered, as there may be a higher amount
of traffic directed to certain nodes.

To solve this, Hecuba should implement a daemon that runs in the
background, detecting whenever the cluster reaches a certain point of
skewness. This may be achieved by monitoring the load balance of the
nodes in the cluster, and if the load-difference between two nodes is high,
the token-ranges should be recalculated in order to balance the cluster
based on the data that are currently within the cluster. The daemon
should not be triggered too often, as rebalancing a cluster is very resource-
intensive. It is very important that the daemon also consider peak-hours
to prevent balancing the cluster while it is being actively used during e.g.,
holidays.

Consider data-center and rack when scaling

Hecuba does not consider the geographical location of the nodes when
deciding where to insert or remove nodes. Transferring data between
nodes that is located in different continents will take longer, and be more
vulnerable against data-loss than transferring data between nodes that
is located in the same country. Almost everything online, located all
over the globe, is accessible through everyone’s web-browser nowadays.
This has resulted in the geographical distances being blurred out. Even
though the distances have been blurred out, they will always make some
impact. Retrieving data from the other side of the globe takes a few more
milliseconds than retrieving data from a server located in your own town.
Taken into consideration that both servers have the same incoming, and
outgoing, bandwidth.

To compensate with the large amount of data traffic generated by
Cassandra while moving data, Hecuba may take into consideration the
data-center, and possibly the rack where each node is located. By doing
this, the implementation will be able to take advantage of initializing nodes
that is physically located closer to each other. Since the nodes are physically

115

located close, the data will be transferred across a shorter geographical
distance, which will decrease the amount of time it takes to completely
transfer all the data. It will also eliminate a lot of possible failures, as there
are fewer external sources between the origin and the destination.

The data-center and rack information is available through Cassandra’s
nodetool utility by executing the info command. Hecuba should imple-
ment a way to retrieve this information for each node, and include this
when scaling up or down nodes. At least it should consider the geograph-
ical location when it scales up. This is achieved by scanning through the
list of available nodes, and selects the node that is closest to the node it is
going to share token-range with. This would of course require the imple-
mentation to be extended with such meta-data for each node.

Initialization of agents should return a list of currently active nodes

The agent implementation does not include a list of currently active nodes
in the initialization response to the master. The master will have to ask
the agent for a list after it has been initiated. Including this list in the
initial response from the agent, and rewrite the master-implementation to
handle the received list should not be a lot of work. This was not done
because there was not much time left for the thesis work when it was
detected, and chaining this would delay the thesis since the tests should
have been performed again. Even though we did not manage to implement
this, it should be prioritized in a future release in order to achieve a fully
automatic implementation.

When the agent receives the initialization-message from the master, it
has to startup Cassandra if it is not already running. Furthermore it will
have to ask Cassandra for a list of currently available nodes. The list may
not be complete at once, which may require the implementation to sleep
a second or so in order to make sure Cassandra updated its local list of
nodes. When the list is retrieved, it will have to be put into the attributes-
map of the message sent back to the master. The master listen for messages
sent from the agents, and will read the response as soon as it arrives. The
master should read the list of currently active nodes from the attribute-
map. If there is a node in the list that was not already in the masters’ local
list of active nodes, an initialization-message will be sent in order to start
monitoring these nodes as well. The master should also ask a random node
for an updated list of currently active nodes at a regular basis, in order to
update the local list, in case new nodes are added or removed manually.

By rewriting the implementation to handle this automatically, the
autoscale implementation will be able to initialize, detect all nodes, and
start working as intended without any supervision or input from database
administrators.

116

Prevent the master from sending configuration-attributes if default
constructor is used

The implementation appends the configuration attributes from the master
to every new node that is initialized, except the initial node, which does not
follow the normal initialization-flow. In a future release, the master should
exclude the configuration attributes if the default constructor is used. The
intension of the default constructor is that every agent may be configured
differently through a local configuration-file. However, if there is included
any configuration attributes to the initialization message sent by the master,
the agent’s local configurations will be overwritten. Therefore, the master
implementation should be changed in order to exclude the configuration
attributes if the default constructor is used.

The configuration attributes is included into the message by the
CassandraHostManager.addHostToCluster()method. This method should
be able to determine if the master implementation was initiated by the de-
fault constructor or not, and include or exclude the configuration attributes
accordingly.

Stop monitoring when the node is scaled down

The node should stop monitoring when the node is scaled down. Today
the nodes continue to monitor the local resource usage, and send breach-
messages to the master if breaches occur after the node has been scaled
down.

Whenever the agent receives a STOP_AGENT message from the master,
the agent should decommission the node, kill the Cassandra process, wipe
the local data and temporarily stop the resource monitoring. It should
continue to listen for incoming messages, since the master may re-initialize
the node later on. Currently, the only thing that is missing is to prevent the
agent from monitoring its resources when the node is scaled down. The
master may register the node as active since it receives breach-messages,
which may result in the master trying to scale the node either up or down,
which may result in inconsistency when it comes to the master’s local lists
of active-, and inactive-nodes.

Prevent downscaling to occur during peak-hours

Hecuba does not consider if there is heavy traffic or not when scaling
down. This may be an issue if a downscaling is initiated while a lot of
users are accessing the database. A downscale will occupy a lot of the local
resources, which may prevent other processes from finishing e.g., users
trying to retrieve data. This may result in poor user-experience for the
users that are accessing the database as it may take longer time to retrieve
data. Since Cassandra is built in order to provide good performance,
the implementation should be further developed in order to prevent
downscaling during peak hours.

Downscaling should not be triggered during periods when there are

117

possibilities that the cluster will be actively used, e.g., during holidays or
bigger events. If the cluster will be used during a football match, it should
never perform a scale down while the match is being played, in order to
prevent users from experience longer response-time, and maybe even bring
down the whole cluster.

118

Bibliography

[1] The netflix tech blog: Announcing priam. http://techblog.netflix.com/
2012/02/announcing-priam.html. [Online; accessed 20-February-2013].

[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50–58, April 2010.

[3] The netflix tech blog: Auto scaling in the amazon cloud. http:
//techblog.netflix.com/2012/01/auto-scaling-in-amazon-cloud.html. [On-
line; accessed 20-February-2013].

[4] Amazon web services, cloud computing: Compute, storage, database.
http://aws.amazon.com/. [Online; accessed 20-February-2013].

[5] Daniel Bartholomew. Sql vs. nosql. Linux J., 2010, July 2010.

[6] Jim Benson. Personal kanban; mapping work, navigating life. Modus
Cooperandi Press, Seattle, WA, 2011.

[7] Cap theorem - wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/CAP_theorem. [Online; accessed 07-february-2013].

[8] Cassandra - wikipedia, the free encyclopaedia. http://en.wikipedia.org/
wiki/Cassandra. [Online; accessed 06-February-2013].

[9] Rick Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39:12–
27, May 2011.

[10] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes,
and Robert E. Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst., 26:4:1–4:26, June 2008.

[11] The netflix tech blog: Chaos monkey released into the wild. http:
//techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html.
[Online; accessed 20-February-2013].

[12] Datamodel - cassandra wiki. http://wiki.apache.org/cassandra/
DataModel. [Online; accessed 27-August-2012].

[13] Datastax opscenter : Datastax. http://www.datastax.com/products/
opscenter. [Online; accessed 27-March-2013].

119

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s
highly available key-value store. SIGOPS Oper. Syst. Rev., 41:205–220,
October 2007.

[15] Twitter engineering: Introducing flockdb. http://engineering.twitter.
com/2010/05/introducing-flockdb.html. [Online; accessed 14-February-
2013].

[16] Git - official website. http://git-scm.com/. [Online; accessed 18-
October-2012].

[17] Github. https://github.com/. [Online; accessed 18-October-2012].

[18] Hector - java client for cassandra. http://hector-client.github.com/
hector/build/html/index.html. [Online; accessed 17-September-2012].

[19] Hecuba - wikipedia, the free encyclopedia. http://en.wikipedia.org/
wiki/Hecuba. [Online; accessed 14-December-2012].

[20] Eben Hewitt. Cassandra: The Definitive Guide. O’Reilly Media, Inc., 1
edition, 2010.

[21] Eben Hewitt. Cassandra: The Definitive Guide, chapter Appendix, pages
17–19. O’Reilly Media, Inc., 1 edition, 2010.

[22] Sigar api (system information gatherer and reporter) | hyperic. http:
//www.hyperic.com/products/sigar. [Online; accessed 06-March-2013].

[23] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44:35–40, April
2010.

[24] Linode - xen vps hosting. [Online; accessed 14-March-2013].

[25] Linus thorvalds - wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/Linus_Torvalds. [Online; accessed 26-March-2013].

[26] Mike Loukides. The nosql movement - o’reilly radar. http://
radar.oreilly.com/2012/02/nosql-non-relational-database.html. [Online;
accessed 13-February-2012].

[27] Maven - welcome to apache maven. http://maven.apache.org/. [On-
line; accessed 04-March-2013].

[28] Learn, develop, participate - neo4j: The world’s leading graph
database. http://www.neo4j.org/. [Online; accessed 14-February-2013].

[29] Benchmarking cassandra scalability on aws - over a mil-
lion writes per second. http://techblog.netflix.com/2011/11/
benchmarking-cassandra-scalability-on.html. [Online; accessed 13-
December.2012].

120

[30] The apache cassandra project. http://cassandra.apache.org/. [Online;
accessed 02-January-2013].

[31] Cassandra wiki. http://wiki.apache.org/cassandra/. [Online; accessed
11-March-2012].

[32] Netflix/priam - github. https://github.com/Netflix/Priam/wiki. [On-
line; accessed 14-December-2012].

[33] Priam - wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/
Priam. [Online; accessed 02-January-2013].

[34] Scrum (development) - wikipedia, the free encyclopedia. http:
//en.wikipedia.org/wiki/Scrum_(development). [Online; accessed 14-
December-2012].

[35] Springsource.org. http://www.springsource.org/. [Online; accessed 27-
February-2013].

[36] Spring bean definition. http://www.tutorialspoint.com/spring/spring_
bean_definition.htm. [Online; accessed 22-April-2013].

[37] What is a story point ? | agilefaq. http://agilefaq.wordpress.com/2007/
11/13/what-is-a-story-point/. [Online; accessed 22-April-2013].

[38] Ran Tavory. Understanding cassandra code base | prettyprint.me.
http://prettyprint.me/2010/05/02/understanding-cassandra-code-base/.
[Online; accessed 11-March-2012].

121

122

Appendices

123

TC1_H,'Node'A'
'TIMESTAMP''''''''''''''''''DISK'USAGE'''''''''MEMORY'USAGE'''''''CPU'USAGE'
=='
'2013=01=24'15:44:21'''''''''''''''72K''''''''''''553708'kB'''''''''''0.07%'
'2013=01=24'15:44:27'''''''''''''''72K''''''''''''563956'kB'''''''''''0.07%'
'2013=01=24'15:44:32'''''''''''''''72K''''''''''''564848'kB'''''''''''0.07%'
'2013=01=24'15:44:37'''''''''''''''72K''''''''''''564964'kB'''''''''''0.07%'
'2013=01=24'15:44:42'''''''''''''''72K''''''''''''565220'kB'''''''''''0.07%'
'2013=01=24'15:44:47'''''''''''''''72K''''''''''''565320'kB'''''''''''0.07%'
'2013=01=24'15:44:52'''''''''''''''72K''''''''''''565452'kB'''''''''''0.07%'
'2013=01=24'15:44:57'''''''''''''''72K''''''''''''565428'kB'''''''''''0.07%'
'2013=01=24'15:45:02'''''''''''''''72K''''''''''''565560'kB'''''''''''0.07%'
'2013=01=24'15:45:07'''''''''''''''72K''''''''''''565436'kB'''''''''''0.07%'
'2013=01=24'15:45:12'''''''''''''''72K''''''''''''565816'kB'''''''''''0.07%'
'2013=01=24'15:45:17'''''''''''''''72K''''''''''''565940'kB'''''''''''0.07%'
'2013=01=24'15:45:22'''''''''''''''72K''''''''''''566676'kB'''''''''''0.07%'
'2013=01=24'15:45:27'''''''''''''''72K''''''''''''566792'kB'''''''''''0.07%'
'2013=01=24'15:45:32'''''''''''''''72K''''''''''''566940'kB'''''''''''0.07%'
'2013=01=24'15:45:37'''''''''''''''72K''''''''''''567064'kB'''''''''''0.07%'
'2013=01=24'15:45:42'''''''''''''''72K''''''''''''567188'kB'''''''''''0.07%'
'2013=01=24'15:45:47'''''''''''''''72K''''''''''''567056'kB'''''''''''0.07%'
'2013=01=24'15:45:52'''''''''''''''72K''''''''''''567172'kB'''''''''''0.07%'
'2013=01=24'15:45:57'''''''''''''''72K''''''''''''567684'kB'''''''''''0.07%'
'2013=01=24'15:46:02'''''''''''''''72K''''''''''''567676'kB'''''''''''0.07%'
'2013=01=24'15:46:07'''''''''''''''72K''''''''''''567792'kB'''''''''''0.07%'
'2013=01=24'15:46:12'''''''''''''''72K''''''''''''567924'kB'''''''''''0.07%'
'2013=01=24'15:46:17'''''''''''''''72K''''''''''''568164'kB'''''''''''0.07%'
'2013=01=24'15:46:22'''''''''''''''72K''''''''''''568164'kB'''''''''''0.07%'
'2013=01=24'15:46:27'''''''''''''''72K''''''''''''568288'kB'''''''''''0.07%'
'2013=01=24'15:46:32'''''''''''''''72K''''''''''''568420'kB'''''''''''0.07%'
'2013=01=24'15:46:37'''''''''''''''72K''''''''''''568668'kB'''''''''''0.07%'
'2013=01=24'15:46:42'''''''''''''''72K''''''''''''568652'kB'''''''''''0.07%'
'2013=01=24'15:46:47'''''''''''''''72K''''''''''''568908'kB'''''''''''0.07%'
'2013=01=24'15:46:53'''''''''''''''72K''''''''''''569040'kB'''''''''''0.07%'
'2013=01=24'15:46:58'''''''''''''''72K''''''''''''569172'kB'''''''''''0.07%'
'2013=01=24'15:47:03'''''''''''''''72K''''''''''''569296'kB'''''''''''0.07%'
'2013=01=24'15:47:08'''''''''''''''72K''''''''''''569156'kB'''''''''''0.07%'
'2013=01=24'15:47:13'''''''''''''''72K''''''''''''569568'kB'''''''''''0.07%'
'2013=01=24'15:47:18'''''''''''''''72K''''''''''''569444'kB'''''''''''0.07%'
'2013=01=24'15:47:23'''''''''''''''72K''''''''''''569816'kB'''''''''''0.07%'
'2013=01=24'15:47:28'''''''''''''''72K''''''''''''569676'kB'''''''''''0.07%'
'2013=01=24'15:47:33'''''''''''''''72K''''''''''''569816'kB'''''''''''0.07%'
'2013=01=24'15:47:38'''''''''''''''72K''''''''''''569948'kB'''''''''''0.07%'
'2013=01=24'15:47:43'''''''''''''''72K''''''''''''570048'kB'''''''''''0.07%'

'2013=01=24'15:47:48'''''''''''''''72K''''''''''''570196'kB'''''''''''0.07%'
'2013=01=24'15:47:53'''''''''''''''72K''''''''''''570196'kB'''''''''''0.07%'
'2013=01=24'15:47:58'''''''''''''''72K''''''''''''570312'kB'''''''''''0.07%'
'2013=01=24'15:48:03'''''''''''''''72K''''''''''''570428'kB'''''''''''0.07%'
'2013=01=24'15:48:08'''''''''''''''72K''''''''''''570684'kB'''''''''''0.07%'
'2013=01=24'15:48:13'''''''''''''''72K''''''''''''571156'kB'''''''''''0.07%'
'2013=01=24'15:48:18'''''''''''''''72K''''''''''''571000'kB'''''''''''0.07%'
'2013=01=24'15:48:23'''''''''''''''72K''''''''''''571016'kB'''''''''''0.07%'
'2013=01=24'15:48:28'''''''''''''''72K''''''''''''571272'kB'''''''''''0.07%'
'2013=01=24'15:48:33'''''''''''''''72K''''''''''''571388'kB'''''''''''0.07%'
'2013=01=24'15:48:38'''''''''''''''72K''''''''''''571644'kB'''''''''''0.07%'
'2013=01=24'15:48:43'''''''''''''''72K''''''''''''571760'kB'''''''''''0.07%'
'2013=01=24'15:48:48'''''''''''''''72K''''''''''''571644'kB'''''''''''0.07%'
'2013=01=24'15:48:53'''''''''''''''72K''''''''''''571652'kB'''''''''''0.07%'
'2013=01=24'15:48:58'''''''''''''''72K''''''''''''572008'kB'''''''''''0.07%'
'2013=01=24'15:49:03'''''''''''''''72K''''''''''''571776'kB'''''''''''0.07%'
'2013=01=24'15:49:08'''''''''''''''72K''''''''''''571884'kB'''''''''''0.07%'
'2013=01=24'15:49:14'''''''''''''''72K''''''''''''571992'kB'''''''''''0.07%'
'2013=01=24'15:49:19'''''''''''''''72K''''''''''''572132'kB'''''''''''0.07%'
'2013=01=24'15:49:24'''''''''''''''72K''''''''''''572388'kB'''''''''''0.07%'
'2013=01=24'15:49:29'''''''''''''''72K''''''''''''572512'kB'''''''''''0.07%'
'2013=01=24'15:49:34'''''''''''''''72K''''''''''''572636'kB'''''''''''0.07%'
'2013=01=24'15:49:39'''''''''''''''72K''''''''''''572728'kB'''''''''''0.07%'
'2013=01=24'15:49:44'''''''''''''''72K''''''''''''573504'kB'''''''''''0.07%'
'2013=01=24'15:49:49'''''''''''''''72K''''''''''''573496'kB'''''''''''0.07%'
'2013=01=24'15:49:54'''''''''''''''72K''''''''''''573752'kB'''''''''''0.07%'
'2013=01=24'15:49:59'''''''''''''''72K''''''''''''573876'kB'''''''''''0.07%'
'2013=01=24'15:50:04'''''''''''''''72K''''''''''''574124'kB'''''''''''0.07%'
'2013=01=24'15:50:09'''''''''''''''72K''''''''''''574240'kB'''''''''''0.07%'
'2013=01=24'15:50:14'''''''''''''''72K''''''''''''574348'kB'''''''''''0.07%'
'2013=01=24'15:50:19'''''''''''''''72K''''''''''''574472'kB'''''''''''0.07%'
'2013=01=24'15:50:24'''''''''''''''72K''''''''''''574744'kB'''''''''''0.07%'
'2013=01=24'15:50:29'''''''''''''''72K''''''''''''574860'kB'''''''''''0.07%'
'2013=01=24'15:50:34'''''''''''''''72K''''''''''''575116'kB'''''''''''0.07%'
'2013=01=24'15:50:39'''''''''''''''72K''''''''''''575224'kB'''''''''''0.07%'
'2013=01=24'15:50:44'''''''''''''''72K''''''''''''575480'kB'''''''''''0.07%'
'2013=01=24'15:50:49'''''''''''''''72K''''''''''''575976'kB'''''''''''0.07%'
'2013=01=24'15:50:54'''''''''''''''72K''''''''''''575852'kB'''''''''''0.07%'
'2013=01=24'15:50:59'''''''''''''''72K''''''''''''575984'kB'''''''''''0.07%'
'2013=01=24'15:51:04'''''''''''''''72K''''''''''''576224'kB'''''''''''0.07%'
'2013=01=24'15:51:09'''''''''''''''72K''''''''''''576216'kB'''''''''''0.07%'
'2013=01=24'15:51:14'''''''''''''''72K''''''''''''576356'kB'''''''''''0.07%'
'2013=01=24'15:51:19'''''''''''''''72K''''''''''''576332'kB'''''''''''0.07%'

'2013=01=24'15:51:24'''''''''''''''72K''''''''''''576456'kB'''''''''''0.07%'
'2013=01=24'15:51:30'''''''''''''''72K''''''''''''576588'kB'''''''''''0.07%'
'2013=01=24'15:51:35'''''''''''''''72K''''''''''''576844'kB'''''''''''0.07%'
'2013=01=24'15:51:40'''''''''''''''72K''''''''''''576976'kB'''''''''''0.07%'
'2013=01=24'15:51:45'''''''''''''''72K''''''''''''577340'kB'''''''''''0.07%'
'2013=01=24'15:51:50'''''''''''''''72K''''''''''''577324'kB'''''''''''0.07%'
'2013=01=24'15:51:55'''''''''''''''72K''''''''''''577464'kB'''''''''''0.07%'
'2013=01=24'15:52:00'''''''''''''''72K''''''''''''577712'kB'''''''''''0.07%'
'2013=01=24'15:52:05'''''''''''''''72K''''''''''''577844'kB'''''''''''0.07%'
'2013=01=24'15:52:10'''''''''''''''72K''''''''''''577844'kB'''''''''''0.07%'
'2013=01=24'15:52:15'''''''''''''''72K''''''''''''578068'kB'''''''''''0.07%'
'2013=01=24'15:52:20'''''''''''''''72K''''''''''''578084'kB'''''''''''0.07%'
'2013=01=24'15:52:25'''''''''''''''72K''''''''''''578340'kB'''''''''''0.07%'
'2013=01=24'15:52:30'''''''''''''''72K''''''''''''578472'kB'''''''''''0.07%'
'2013=01=24'15:52:35'''''''''''''''72K''''''''''''578828'kB'''''''''''0.07%'
'2013=01=24'15:52:40'''''''''''''''72K''''''''''''578688'kB'''''''''''0.07%'
'2013=01=24'15:52:45'''''''''''''''72K''''''''''''579084'kB'''''''''''0.07%'
'2013=01=24'15:52:50'''''''''''''''72K''''''''''''579084'kB'''''''''''0.07%'
'2013=01=24'15:52:55'''''''''''''''72K''''''''''''579208'kB'''''''''''0.07%'
'2013=01=24'15:53:00'''''''''''''''72K''''''''''''579192'kB'''''''''''0.07%'
'2013=01=24'15:53:05'''''''''''''''72K''''''''''''579580'kB'''''''''''0.07%'
'2013=01=24'15:53:10'''''''''''''''72K''''''''''''579828'kB'''''''''''0.07%'
'2013=01=24'15:53:15'''''''''''''''72K''''''''''''579960'kB'''''''''''0.07%'
'2013=01=24'15:53:20'''''''''''''''72K''''''''''''580208'kB'''''''''''0.07%'
'2013=01=24'15:53:25'''''''''''''''72K''''''''''''580324'kB'''''''''''0.07%'
'2013=01=24'15:53:30'''''''''''''''72K''''''''''''580448'kB'''''''''''0.07%'
'2013=01=24'15:53:35'''''''''''''''72K''''''''''''580704'kB'''''''''''0.07%'
'2013=01=24'15:53:40'''''''''''''''72K''''''''''''580952'kB'''''''''''0.07%'
'2013=01=24'15:53:46'''''''''''''''72K''''''''''''581060'kB'''''''''''0.07%'
'2013=01=24'15:53:51'''''''''''''''72K''''''''''''581192'kB'''''''''''0.07%'
'2013=01=24'15:53:56'''''''''''''''72K''''''''''''581448'kB'''''''''''0.07%'
'2013=01=24'15:54:01'''''''''''''''72K''''''''''''581200'kB'''''''''''0.07%'
'2013=01=24'15:54:06'''''''''''''''72K''''''''''''581464'kB'''''''''''0.07%'
'2013=01=24'15:54:11'''''''''''''''72K''''''''''''581556'kB'''''''''''0.07%'
'2013=01=24'15:54:16'''''''''''''''72K''''''''''''581680'kB'''''''''''0.07%'
'2013=01=24'15:54:21'''''''''''''''72K''''''''''''581936'kB'''''''''''0.07%'
'2013=01=24'15:54:26'''''''''''''''72K''''''''''''582060'kB'''''''''''0.07%'
'2013=01=24'15:54:31'''''''''''''''72K''''''''''''582316'kB'''''''''''0.07%'
'2013=01=24'15:54:36'''''''''''''''72K''''''''''''582432'kB'''''''''''0.07%'
'2013=01=24'15:54:41'''''''''''''''72K''''''''''''582556'kB'''''''''''0.07%'
'2013=01=24'15:54:46'''''''''''''''72K''''''''''''582804'kB'''''''''''0.07%'
'2013=01=24'15:54:51'''''''''''''''72K''''''''''''582664'kB'''''''''''0.07%'
'2013=01=24'15:54:56'''''''''''''''72K''''''''''''583028'kB'''''''''''0.07%'
'2013=01=24'15:55:01'''''''''''''''72K''''''''''''583176'kB'''''''''''0.07%'
'2013=01=24'15:55:06'''''''''''''''72K''''''''''''583168'kB'''''''''''0.07%'
'2013=01=24'15:55:11'''''''''''''''72K''''''''''''583424'kB'''''''''''0.07%'
'2013=01=24'15:55:16'''''''''''''''72K''''''''''''583820'kB'''''''''''0.07%'
'2013=01=24'15:55:21'''''''''''''''72K''''''''''''583952'kB'''''''''''0.07%'
'2013=01=24'15:55:26'''''''''''''''72K''''''''''''584192'kB'''''''''''0.07%'
'2013=01=24'15:55:31'''''''''''''''72K''''''''''''584200'kB'''''''''''0.07%'

'2013=01=24'15:55:36'''''''''''''''72K''''''''''''584448'kB'''''''''''0.07%'
'2013=01=24'15:55:41'''''''''''''''72K''''''''''''584804'kB'''''''''''0.07%'
'2013=01=24'15:55:46'''''''''''''''72K''''''''''''584936'kB'''''''''''0.07%'
'2013=01=24'15:55:51'''''''''''''''72K''''''''''''585052'kB'''''''''''0.07%'
'2013=01=24'15:55:56'''''''''''''''72K''''''''''''585060'kB'''''''''''0.07%'
'2013=01=24'15:56:01'''''''''''''''72K''''''''''''585168'kB'''''''''''0.07%'
'2013=01=24'15:56:06'''''''''''''''72K''''''''''''585160'kB'''''''''''0.07%'
'2013=01=24'15:56:12'''''''''''''''72K''''''''''''585424'kB'''''''''''0.07%'
'2013=01=24'15:56:17'''''''''''''''72K''''''''''''585664'kB'''''''''''0.07%'
'2013=01=24'15:56:22'''''''''''''''72K''''''''''''585896'kB'''''''''''0.07%'
'2013=01=24'15:56:27'''''''''''''''72K''''''''''''585896'kB'''''''''''0.07%'
'2013=01=24'15:56:32'''''''''''''''72K''''''''''''586028'kB'''''''''''0.07%'
'2013=01=24'15:56:37'''''''''''''''72K''''''''''''586268'kB'''''''''''0.07%'
'2013=01=24'15:56:42'''''''''''''''72K''''''''''''586268'kB'''''''''''0.07%'
'2013=01=24'15:56:47'''''''''''''''72K''''''''''''586392'kB'''''''''''0.07%'
'2013=01=24'15:56:52'''''''''''''''72K''''''''''''586640'kB'''''''''''0.07%'
'2013=01=24'15:56:57'''''''''''''''72K''''''''''''586764'kB'''''''''''0.07%'
'2013=01=24'15:57:02'''''''''''''''72K''''''''''''586904'kB'''''''''''0.07%'
'2013=01=24'15:57:07'''''''''''''''72K''''''''''''587020'kB'''''''''''0.07%'
'2013=01=24'15:57:12'''''''''''''''72K''''''''''''587144'kB'''''''''''0.07%'
'2013=01=24'15:57:17'''''''''''''''72K''''''''''''587368'kB'''''''''''0.07%'
'2013=01=24'15:57:22'''''''''''''''72K''''''''''''587508'kB'''''''''''0.07%'
'2013=01=24'15:57:27'''''''''''''''72K''''''''''''587516'kB'''''''''''0.07%'
'2013=01=24'15:57:32'''''''''''''''72K''''''''''''587764'kB'''''''''''0.07%'
'2013=01=24'15:57:37'''''''''''''''72K''''''''''''587912'kB'''''''''''0.07%'
'2013=01=24'15:57:42'''''''''''''''72K''''''''''''587872'kB'''''''''''0.07%'
'2013=01=24'15:57:47'''''''''''''''72K''''''''''''587880'kB'''''''''''0.07%'
'2013=01=24'15:57:52'''''''''''''''72K''''''''''''588136'kB'''''''''''0.07%'
'2013=01=24'15:57:57'''''''''''''''72K''''''''''''588384'kB'''''''''''0.07%'
'2013=01=24'15:58:02'''''''''''''''72K''''''''''''588508'kB'''''''''''0.07%'
'2013=01=24'15:58:07'''''''''''''''72K''''''''''''588632'kB'''''''''''0.07%'
'2013=01=24'15:58:12'''''''''''''''72K''''''''''''588880'kB'''''''''''0.07%'
'2013=01=24'15:58:17'''''''''''''''72K''''''''''''588748'kB'''''''''''0.07%'
'2013=01=24'15:58:22'''''''''''''''72K''''''''''''589012'kB'''''''''''0.07%'
'2013=01=24'15:58:27'''''''''''''''72K''''''''''''589368'kB'''''''''''0.07%'
'2013=01=24'15:58:33'''''''''''''''72K''''''''''''589500'kB'''''''''''0.07%'
'2013=01=24'15:58:38'''''''''''''''72K''''''''''''589624'kB'''''''''''0.07%'
'2013=01=24'15:58:43'''''''''''''''72K''''''''''''589880'kB'''''''''''0.07%'
'2013=01=24'15:58:48'''''''''''''''72K''''''''''''590120'kB'''''''''''0.07%'
'2013=01=24'15:58:53'''''''''''''''72K''''''''''''590220'kB'''''''''''0.07%'
'2013=01=24'15:58:58'''''''''''''''72K''''''''''''590080'kB'''''''''''0.07%'
'2013=01=24'15:59:03'''''''''''''''72K''''''''''''590120'kB'''''''''''0.07%'
'2013=01=24'15:59:08'''''''''''''''72K''''''''''''590236'kB'''''''''''0.07%'
'2013=01=24'15:59:13'''''''''''''''72K''''''''''''590492'kB'''''''''''0.07%'
'2013=01=24'15:59:18'''''''''''''''72K''''''''''''590600'kB'''''''''''0.07%'
'2013=01=24'15:59:23'''''''''''''''72K''''''''''''590864'kB'''''''''''0.07%'
'2013=01=24'15:59:28'''''''''''''''72K''''''''''''591112'kB'''''''''''0.07%'
'

TC1_H,'Node'B
'TIMESTAMP''''''''''''''''''DISK'USAGE'''''''''MEMORY'USAGE'''''''CPU'USAGE'
=='
'2013>01>24'11:10:24'''''''''''''''72K''''''''''''770388'kB''''''''''19.55%'
'2013>01>24'11:10:29'''''''''''''''72K''''''''''''782208'kB''''''''''19.55%'
'2013>01>24'11:10:34'''''''''''''''72K''''''''''''782820'kB''''''''''19.55%'
'2013>01>24'11:10:39'''''''''''''''72K''''''''''''783208'kB''''''''''19.55%'
'2013>01>24'11:10:44'''''''''''''''72K''''''''''''783456'kB''''''''''19.55%'
'2013>01>24'11:10:49'''''''''''''''72K''''''''''''783952'kB''''''''''19.55%'
'2013>01>24'11:10:54'''''''''''''''72K''''''''''''783936'kB''''''''''19.55%'
'2013>01>24'11:10:59'''''''''''''''72K''''''''''''783952'kB''''''''''19.55%'
'2013>01>24'11:11:04'''''''''''''''72K''''''''''''783984'kB''''''''''19.55%'
'2013>01>24'11:11:09'''''''''''''''72K''''''''''''784380'kB''''''''''19.55%'
'2013>01>24'11:11:14'''''''''''''''72K''''''''''''784224'kB''''''''''19.55%'
'2013>01>24'11:11:19'''''''''''''''72K''''''''''''784480'kB''''''''''19.55%'
'2013>01>24'11:11:24'''''''''''''''72K''''''''''''784728'kB''''''''''19.55%'
'2013>01>24'11:11:29'''''''''''''''72K''''''''''''784728'kB''''''''''19.55%'
'2013>01>24'11:11:34'''''''''''''''72K''''''''''''784952'kB''''''''''19.55%'
'2013>01>24'11:11:39'''''''''''''''72K''''''''''''785076'kB''''''''''19.55%'
'2013>01>24'11:11:44'''''''''''''''72K''''''''''''784952'kB''''''''''19.55%'
'2013>01>24'11:11:49'''''''''''''''72K''''''''''''785324'kB''''''''''19.55%'
'2013>01>24'11:11:54'''''''''''''''72K''''''''''''785564'kB''''''''''19.55%'
'2013>01>24'11:11:59'''''''''''''''72K''''''''''''785456'kB''''''''''19.55%'
'2013>01>24'11:12:04'''''''''''''''72K''''''''''''786116'kB''''''''''19.55%'
'2013>01>24'11:12:09'''''''''''''''72K''''''''''''786116'kB''''''''''19.55%'
'2013>01>24'11:12:14'''''''''''''''72K''''''''''''786076'kB''''''''''19.55%'
'2013>01>24'11:12:19'''''''''''''''72K''''''''''''786448'kB''''''''''19.55%'
'2013>01>24'11:12:24'''''''''''''''72K''''''''''''786332'kB''''''''''19.55%'
'2013>01>24'11:12:29'''''''''''''''72K''''''''''''786580'kB''''''''''19.55%'
'2013>01>24'11:12:34'''''''''''''''72K''''''''''''786548'kB''''''''''19.55%'
'2013>01>24'11:12:39'''''''''''''''72K''''''''''''786432'kB''''''''''19.55%'
'2013>01>24'11:12:44'''''''''''''''72K''''''''''''786432'kB''''''''''19.55%'
'2013>01>24'11:12:49'''''''''''''''72K''''''''''''787068'kB''''''''''19.55%'
'2013>01>24'11:12:54'''''''''''''''72K''''''''''''786912'kB''''''''''19.55%'
'2013>01>24'11:12:59'''''''''''''''72K''''''''''''787308'kB''''''''''19.55%'
'2013>01>24'11:13:04'''''''''''''''72K''''''''''''787936'kB''''''''''19.55%'
'2013>01>24'11:13:09'''''''''''''''72K''''''''''''788076'kB''''''''''19.55%'
'2013>01>24'11:13:14'''''''''''''''72K''''''''''''788200'kB''''''''''19.55%'
'2013>01>24'11:13:19'''''''''''''''72K''''''''''''788324'kB''''''''''19.55%'
'2013>01>24'11:13:24'''''''''''''''72K''''''''''''788572'kB''''''''''19.55%'
'2013>01>24'11:13:29'''''''''''''''72K''''''''''''788720'kB''''''''''19.55%'
'2013>01>24'11:13:34'''''''''''''''72K''''''''''''789084'kB''''''''''19.55%'
'2013>01>24'11:13:39'''''''''''''''72K''''''''''''788960'kB''''''''''19.55%'
'2013>01>24'11:13:44'''''''''''''''72K''''''''''''788712'kB''''''''''19.55%'
'2013>01>24'11:13:49'''''''''''''''72K''''''''''''789332'kB''''''''''19.55%'

'2013>01>24'11:13:54'''''''''''''''72K''''''''''''789424'kB''''''''''19.55%'
'2013>01>24'11:13:59'''''''''''''''72K''''''''''''789688'kB''''''''''19.55%'
'2013>01>24'11:14:05'''''''''''''''72K''''''''''''789860'kB''''''''''19.55%'
'2013>01>24'11:14:10'''''''''''''''72K''''''''''''789852'kB''''''''''19.55%'
'2013>01>24'11:14:15'''''''''''''''72K''''''''''''789928'kB''''''''''19.55%'
'2013>01>24'11:14:20'''''''''''''''72K''''''''''''790052'kB''''''''''19.55%'
'2013>01>24'11:14:25'''''''''''''''72K''''''''''''790192'kB''''''''''19.55%'
'2013>01>24'11:14:30'''''''''''''''72K''''''''''''790564'kB''''''''''19.55%'
'2013>01>24'11:14:35'''''''''''''''72K''''''''''''790656'kB''''''''''19.55%'
'2013>01>24'11:14:40'''''''''''''''72K''''''''''''790804'kB''''''''''19.55%'
'2013>01>24'11:14:45'''''''''''''''72K''''''''''''791044'kB''''''''''19.55%'
'2013>01>24'11:14:50'''''''''''''''72K''''''''''''791060'kB''''''''''19.55%'
'2013>01>24'11:14:55'''''''''''''''72K''''''''''''791292'kB''''''''''19.55%'
'2013>01>24'11:15:00'''''''''''''''72K''''''''''''791540'kB''''''''''19.55%'
'2013>01>24'11:15:05'''''''''''''''72K''''''''''''791920'kB''''''''''19.55%'
'2013>01>24'11:15:10'''''''''''''''72K''''''''''''792044'kB''''''''''19.55%'
'2013>01>24'11:15:15'''''''''''''''72K''''''''''''791888'kB''''''''''19.55%'
'2013>01>24'11:15:20'''''''''''''''72K''''''''''''792036'kB''''''''''19.55%'
'2013>01>24'11:15:25'''''''''''''''72K''''''''''''792168'kB''''''''''19.55%'
'2013>01>24'11:15:30'''''''''''''''72K''''''''''''792168'kB''''''''''19.55%'
'2013>01>24'11:15:35'''''''''''''''72K''''''''''''792384'kB''''''''''19.55%'
'2013>01>24'11:15:40'''''''''''''''72K''''''''''''792756'kB''''''''''19.55%'
'2013>01>24'11:15:45'''''''''''''''72K''''''''''''792756'kB''''''''''19.55%'
'2013>01>24'11:15:50'''''''''''''''72K''''''''''''792880'kB''''''''''19.55%'
'2013>01>24'11:15:55'''''''''''''''72K''''''''''''792896'kB''''''''''19.55%'
'2013>01>24'11:16:00'''''''''''''''72K''''''''''''793044'kB''''''''''19.55%'
'2013>01>24'11:16:05'''''''''''''''72K''''''''''''793680'kB''''''''''19.55%'
'2013>01>24'11:16:10'''''''''''''''72K''''''''''''793516'kB''''''''''19.55%'
'2013>01>24'11:16:15'''''''''''''''72K''''''''''''793756'kB''''''''''19.55%'
'2013>01>24'11:16:20'''''''''''''''72K''''''''''''793756'kB''''''''''19.55%'
'2013>01>24'11:16:25'''''''''''''''72K''''''''''''793772'kB''''''''''19.55%'
'2013>01>24'11:16:30'''''''''''''''72K''''''''''''793996'kB''''''''''19.55%'
'2013>01>24'11:16:35'''''''''''''''72K''''''''''''794012'kB''''''''''19.55%'
'2013>01>24'11:16:40'''''''''''''''72K''''''''''''794144'kB''''''''''19.55%'
'2013>01>24'11:16:45'''''''''''''''72K''''''''''''794268'kB''''''''''19.55%'
'2013>01>24'11:16:50'''''''''''''''72K''''''''''''794608'kB''''''''''19.55%'
'2013>01>24'11:16:55'''''''''''''''72K''''''''''''794872'kB''''''''''19.55%'
'2013>01>24'11:17:00'''''''''''''''72K''''''''''''795376'kB''''''''''19.55%'
'2013>01>24'11:17:05'''''''''''''''72K''''''''''''795500'kB''''''''''19.55%'
'2013>01>24'11:17:10'''''''''''''''72K''''''''''''795344'kB''''''''''19.55%'
'2013>01>24'11:17:15'''''''''''''''72K''''''''''''795476'kB''''''''''19.55%'
'2013>01>24'11:17:20'''''''''''''''72K''''''''''''796112'kB''''''''''19.55%'
'2013>01>24'11:17:25'''''''''''''''72K''''''''''''796252'kB''''''''''19.55%'
'2013>01>24'11:17:30'''''''''''''''72K''''''''''''796244'kB''''''''''19.55%'

'2013>01>24'11:17:35'''''''''''''''72K''''''''''''796368'kB''''''''''19.55%'
'2013>01>24'11:17:40'''''''''''''''72K''''''''''''796740'kB''''''''''19.55%'
'2013>01>24'11:17:45'''''''''''''''72K''''''''''''796748'kB''''''''''19.55%'
'2013>01>24'11:17:50'''''''''''''''72K''''''''''''796988'kB''''''''''19.55%'
'2013>01>24'11:17:55'''''''''''''''72K''''''''''''796740'kB''''''''''19.55%'
'2013>01>24'11:18:00'''''''''''''''72K''''''''''''796996'kB''''''''''19.55%'
'2013>01>24'11:18:05'''''''''''''''72K''''''''''''797516'kB''''''''''19.55%'
'2013>01>24'11:18:10'''''''''''''''72K''''''''''''797352'kB''''''''''19.55%'
'2013>01>24'11:18:15'''''''''''''''72K''''''''''''797600'kB''''''''''19.55%'
'2013>01>24'11:18:20'''''''''''''''72K''''''''''''797600'kB''''''''''19.55%'
'2013>01>24'11:18:26'''''''''''''''72K''''''''''''797600'kB''''''''''19.55%'
'2013>01>24'11:18:31'''''''''''''''72K''''''''''''797700'kB''''''''''19.55%'
'2013>01>24'11:18:36'''''''''''''''72K''''''''''''797716'kB''''''''''19.55%'
'2013>01>24'11:18:41'''''''''''''''72K''''''''''''798492'kB''''''''''19.55%'
'2013>01>24'11:18:46'''''''''''''''72K''''''''''''798616'kB''''''''''19.55%'
'2013>01>24'11:18:51'''''''''''''''72K''''''''''''798832'kB''''''''''19.55%'
'2013>01>24'11:18:56'''''''''''''''72K''''''''''''799096'kB''''''''''19.55%'
'2013>01>24'11:19:01'''''''''''''''72K''''''''''''798972'kB''''''''''19.55%'
'2013>01>24'11:19:06'''''''''''''''72K''''''''''''799344'kB''''''''''19.55%'
'2013>01>24'11:19:11'''''''''''''''72K''''''''''''799312'kB''''''''''19.55%'
'2013>01>24'11:19:16'''''''''''''''72K''''''''''''799452'kB''''''''''19.55%'
'2013>01>24'11:19:21'''''''''''''''72K''''''''''''799460'kB''''''''''19.55%'
'2013>01>24'11:19:26'''''''''''''''72K''''''''''''799708'kB''''''''''19.55%'
'2013>01>24'11:19:31'''''''''''''''72K''''''''''''800312'kB''''''''''19.55%'
'2013>01>24'11:19:36'''''''''''''''72K''''''''''''800336'kB''''''''''19.55%'
'2013>01>24'11:19:41'''''''''''''''72K''''''''''''800460'kB''''''''''19.54%'
'2013>01>24'11:19:46'''''''''''''''72K''''''''''''801104'kB''''''''''19.54%'
'2013>01>24'11:19:51'''''''''''''''72K''''''''''''801344'kB''''''''''19.54%'
'2013>01>24'11:19:56'''''''''''''''72K''''''''''''801344'kB''''''''''19.54%'
'2013>01>24'11:20:01'''''''''''''''72K''''''''''''801352'kB''''''''''19.54%'
'2013>01>24'11:20:06'''''''''''''''72K''''''''''''801236'kB''''''''''19.54%'
'2013>01>24'11:20:11'''''''''''''''72K''''''''''''801444'kB''''''''''19.54%'
'2013>01>24'11:20:16'''''''''''''''72K''''''''''''801560'kB''''''''''19.54%'
'2013>01>24'11:20:21'''''''''''''''72K''''''''''''801560'kB''''''''''19.54%'
'2013>01>24'11:20:26'''''''''''''''72K''''''''''''801808'kB''''''''''19.54%'
'2013>01>24'11:20:31'''''''''''''''72K''''''''''''801924'kB''''''''''19.54%'
'2013>01>24'11:20:36'''''''''''''''72K''''''''''''801940'kB''''''''''19.54%'
'2013>01>24'11:20:41'''''''''''''''72K''''''''''''802460'kB''''''''''19.54%'
'2013>01>24'11:20:46'''''''''''''''72K''''''''''''802832'kB''''''''''19.54%'
'2013>01>24'11:20:51'''''''''''''''72K''''''''''''802800'kB''''''''''19.54%'
'2013>01>24'11:20:56'''''''''''''''72K''''''''''''803296'kB''''''''''19.54%'
'2013>01>24'11:21:01'''''''''''''''72K''''''''''''803296'kB''''''''''19.54%'
'2013>01>24'11:21:06'''''''''''''''72K''''''''''''803180'kB''''''''''19.54%'
'2013>01>24'11:21:11'''''''''''''''72K''''''''''''803304'kB''''''''''19.54%'
'2013>01>24'11:21:16'''''''''''''''72K''''''''''''803304'kB''''''''''19.54%'
'2013>01>24'11:21:21'''''''''''''''72K''''''''''''803428'kB''''''''''19.54%'
'2013>01>24'11:21:26'''''''''''''''72K''''''''''''803924'kB''''''''''19.54%'
'2013>01>24'11:21:31'''''''''''''''72K''''''''''''803784'kB''''''''''19.54%'
'2013>01>24'11:21:36'''''''''''''''72K''''''''''''804056'kB''''''''''19.54%'
'2013>01>24'11:21:41'''''''''''''''72K''''''''''''804304'kB''''''''''19.54%'

'2013>01>24'11:21:46'''''''''''''''72K''''''''''''804528'kB''''''''''19.54%'
'2013>01>24'11:21:51'''''''''''''''72K''''''''''''804660'kB''''''''''19.54%'
'2013>01>24'11:21:56'''''''''''''''72K''''''''''''804668'kB''''''''''19.54%'
'2013>01>24'11:22:01'''''''''''''''72K''''''''''''805304'kB''''''''''19.54%'
'2013>01>24'11:22:06'''''''''''''''72K''''''''''''805196'kB''''''''''19.54%'
'2013>01>24'11:22:11'''''''''''''''72K''''''''''''805064'kB''''''''''19.54%'
'2013>01>24'11:22:16'''''''''''''''72K''''''''''''805444'kB''''''''''19.54%'
'2013>01>24'11:22:21'''''''''''''''72K''''''''''''805940'kB''''''''''19.54%'
'2013>01>24'11:22:26'''''''''''''''72K''''''''''''805660'kB''''''''''19.54%'
'2013>01>24'11:22:31'''''''''''''''72K''''''''''''805792'kB''''''''''19.54%'
'2013>01>24'11:22:37'''''''''''''''72K''''''''''''805916'kB''''''''''19.54%'
'2013>01>24'11:22:42'''''''''''''''72K''''''''''''805916'kB''''''''''19.54%'
'2013>01>24'11:22:47'''''''''''''''72K''''''''''''806388'kB''''''''''19.54%'
'2013>01>24'11:22:52'''''''''''''''72K''''''''''''806388'kB''''''''''19.54%'
'2013>01>24'11:22:57'''''''''''''''72K''''''''''''806636'kB''''''''''19.54%'
'2013>01>24'11:23:02'''''''''''''''72K''''''''''''806760'kB''''''''''19.54%'
'2013>01>24'11:23:07'''''''''''''''72K''''''''''''806884'kB''''''''''19.54%'
'2013>01>24'11:23:12'''''''''''''''72K''''''''''''807412'kB''''''''''19.54%'
'2013>01>24'11:23:17'''''''''''''''72K''''''''''''807056'kB''''''''''19.54%'
'2013>01>24'11:23:22'''''''''''''''72K''''''''''''807304'kB''''''''''19.54%'
'2013>01>24'11:23:27'''''''''''''''72K''''''''''''807768'kB''''''''''19.54%'
'2013>01>24'11:23:32'''''''''''''''72K''''''''''''807396'kB''''''''''19.54%'
'2013>01>24'11:23:37'''''''''''''''72K''''''''''''807784'kB''''''''''19.54%'
'2013>01>24'11:23:42'''''''''''''''72K''''''''''''807916'kB''''''''''19.54%'
'2013>01>24'11:23:47'''''''''''''''72K''''''''''''809760'kB''''''''''19.54%'
'2013>01>24'11:23:52'''''''''''''''72K''''''''''''808520'kB''''''''''19.54%'
'2013>01>24'11:23:57'''''''''''''''72K''''''''''''808520'kB''''''''''19.54%'
'2013>01>24'11:24:02'''''''''''''''72K''''''''''''809412'kB''''''''''19.54%'
'2013>01>24'11:24:07'''''''''''''''72K''''''''''''809140'kB''''''''''19.54%'
'2013>01>24'11:24:12'''''''''''''''72K''''''''''''809272'kB''''''''''19.54%'
'2013>01>24'11:24:17'''''''''''''''72K''''''''''''809388'kB''''''''''19.54%'
'2013>01>24'11:24:22'''''''''''''''72K''''''''''''809760'kB''''''''''19.54%'
'2013>01>24'11:24:27'''''''''''''''72K''''''''''''809628'kB''''''''''19.54%'
'2013>01>24'11:24:32'''''''''''''''72K''''''''''''809768'kB''''''''''19.54%'
'2013>01>24'11:24:37'''''''''''''''72K''''''''''''810016'kB''''''''''19.54%'
'2013>01>24'11:24:42'''''''''''''''72K''''''''''''810140'kB''''''''''19.54%'
'2013>01>24'11:24:47'''''''''''''''72K''''''''''''810232'kB''''''''''19.54%'
'2013>01>24'11:24:52'''''''''''''''72K''''''''''''810496'kB''''''''''19.54%'
'2013>01>24'11:24:57'''''''''''''''72K''''''''''''810868'kB''''''''''19.54%'
'2013>01>24'11:25:02'''''''''''''''72K''''''''''''810868'kB''''''''''19.54%'
'2013>01>24'11:25:07'''''''''''''''72K''''''''''''811216'kB''''''''''19.54%'
'2013>01>24'11:25:12'''''''''''''''72K''''''''''''811092'kB''''''''''19.54%'
'2013>01>24'11:25:17'''''''''''''''72K''''''''''''811744'kB''''''''''19.54%'
'2013>01>24'11:25:22'''''''''''''''72K''''''''''''811644'kB''''''''''19.54%'
'2013>01>24'11:25:27'''''''''''''''72K''''''''''''811612'kB''''''''''19.54%'
'

TC2,%Node%A
%TIMESTAMP%%%%%%%%%%%%%%%%%%DISK%USAGE%%%%%%%%%MEMORY%USAGE%%%%%%%CPU%USAGE%
==%
%2013;01;25%09:44:06%%%%%%%%%%%%%%144K%%%%%%%%%%%%545636%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:44:11%%%%%%%%%%%%%%144K%%%%%%%%%%%%545900%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:44:16%%%%%%%%%%%%%%144K%%%%%%%%%%%%546412%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:44:21%%%%%%%%%%%%%%144K%%%%%%%%%%%%546008%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:44:26%%%%%%%%%%%%%%144K%%%%%%%%%%%%546404%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:44:31%%%%%%%%%%%%%%144K%%%%%%%%%%%%546280%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:44:36%%%%%%%%%%%%%%144K%%%%%%%%%%%%546256%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:44:41%%%%%%%%%%%%%%144K%%%%%%%%%%%%546528%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:44:46%%%%%%%%%%%%%%144K%%%%%%%%%%%%546776%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:44:51%%%%%%%%%%%%%%144K%%%%%%%%%%%%546768%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:44:56%%%%%%%%%%%%%%144K%%%%%%%%%%%%546776%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:01%%%%%%%%%%%%%%144K%%%%%%%%%%%%546892%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:06%%%%%%%%%%%%%%144K%%%%%%%%%%%%547148%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:11%%%%%%%%%%%%%%144K%%%%%%%%%%%%547016%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:16%%%%%%%%%%%%%%144K%%%%%%%%%%%%547024%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:21%%%%%%%%%%%%%%144K%%%%%%%%%%%%547412%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:27%%%%%%%%%%%%%%144K%%%%%%%%%%%%547536%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:32%%%%%%%%%%%%%%144K%%%%%%%%%%%%547520%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:37%%%%%%%%%%%%%%144K%%%%%%%%%%%%547768%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:42%%%%%%%%%%%%%%144K%%%%%%%%%%%%547652%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:47%%%%%%%%%%%%%%144K%%%%%%%%%%%%547768%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:52%%%%%%%%%%%%%%144K%%%%%%%%%%%%547776%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:45:57%%%%%%%%%%%%%%144K%%%%%%%%%%%%547900%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:02%%%%%%%%%%%%%%144K%%%%%%%%%%%%548024%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:07%%%%%%%%%%%%%%144K%%%%%%%%%%%%548148%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:12%%%%%%%%%%%%%%144K%%%%%%%%%%%%548008%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:17%%%%%%%%%%%%%%144K%%%%%%%%%%%%548264%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:22%%%%%%%%%%%%%%144K%%%%%%%%%%%%548264%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:27%%%%%%%%%%%%%%144K%%%%%%%%%%%%548388%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:32%%%%%%%%%%%%%%144K%%%%%%%%%%%%548512%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:37%%%%%%%%%%%%%%144K%%%%%%%%%%%%548636%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:42%%%%%%%%%%%%%%144K%%%%%%%%%%%%548636%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:47%%%%%%%%%%%%%%144K%%%%%%%%%%%%548860%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:52%%%%%%%%%%%%%%144K%%%%%%%%%%%%549124%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:46:57%%%%%%%%%%%%%%144K%%%%%%%%%%%%549116%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:47:02%%%%%%%%%%%%%%144K%%%%%%%%%%%%549232%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:47:07%%%%%%%%%%%%%%144K%%%%%%%%%%%%549464%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:47:12%%%%%%%%%%%%%%144K%%%%%%%%%%%%549660%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:47:17%%%%%%%%%%%%%%144K%%%%%%%%%%%%549908%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:47:22%%%%%%%%%%%%%%144K%%%%%%%%%%%%549644%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:47:27%%%%%%%%%%%%%%144K%%%%%%%%%%%%549636%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:47:32%%%%%%%%%%%%%%144K%%%%%%%%%%%%549884%kB%%%%%%%%%%%0.07%%

%2013;01;25%09:47:37%%%%%%%%%%%%%%144K%%%%%%%%%%%%550148%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:47:42%%%%%%%%%%%%%%144K%%%%%%%%%%%%550404%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:47:47%%%%%%%%%%%%%%144K%%%%%%%%%%%%550396%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:47:53%%%%%%%%%%%%%%144K%%%%%%%%%%%%550784%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:47:58%%%%%%%%%%%%%%144K%%%%%%%%%%%%550908%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:03%%%%%%%%%%%%%%144K%%%%%%%%%%%%551024%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:08%%%%%%%%%%%%%%144K%%%%%%%%%%%%551272%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:13%%%%%%%%%%%%%%144K%%%%%%%%%%%%551264%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:18%%%%%%%%%%%%%%144K%%%%%%%%%%%%551224%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:23%%%%%%%%%%%%%%144K%%%%%%%%%%%%551472%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:28%%%%%%%%%%%%%%144K%%%%%%%%%%%%551480%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:33%%%%%%%%%%%%%%144K%%%%%%%%%%%%551728%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:38%%%%%%%%%%%%%%144K%%%%%%%%%%%%551860%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:43%%%%%%%%%%%%%%144K%%%%%%%%%%%%551984%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:48%%%%%%%%%%%%%%144K%%%%%%%%%%%%551984%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:53%%%%%%%%%%%%%%144K%%%%%%%%%%%%552108%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:48:58%%%%%%%%%%%%%%144K%%%%%%%%%%%%552100%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:03%%%%%%%%%%%%%%144K%%%%%%%%%%%%552340%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:08%%%%%%%%%%%%%%144K%%%%%%%%%%%%552356%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:13%%%%%%%%%%%%%%144K%%%%%%%%%%%%552488%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:18%%%%%%%%%%%%%%144K%%%%%%%%%%%%552852%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:23%%%%%%%%%%%%%%144K%%%%%%%%%%%%552828%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:28%%%%%%%%%%%%%%144K%%%%%%%%%%%%552936%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:33%%%%%%%%%%%%%%144K%%%%%%%%%%%%552968%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:38%%%%%%%%%%%%%%144K%%%%%%%%%%%%553224%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:43%%%%%%%%%%%%%%144K%%%%%%%%%%%%553348%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:48%%%%%%%%%%%%%%144K%%%%%%%%%%%%553480%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:53%%%%%%%%%%%%%%144K%%%%%%%%%%%%553456%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:49:58%%%%%%%%%%%%%%144K%%%%%%%%%%%%553596%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:03%%%%%%%%%%%%%%144K%%%%%%%%%%%%553712%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:08%%%%%%%%%%%%%%144K%%%%%%%%%%%%553844%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:13%%%%%%%%%%%%%%144K%%%%%%%%%%%%554232%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:19%%%%%%%%%%%%%%144K%%%%%%%%%%%%554240%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:24%%%%%%%%%%%%%%144K%%%%%%%%%%%%554488%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:29%%%%%%%%%%%%%%144K%%%%%%%%%%%%554588%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:34%%%%%%%%%%%%%%144K%%%%%%%%%%%%554728%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:39%%%%%%%%%%%%%%144K%%%%%%%%%%%%554588%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:44%%%%%%%%%%%%%%144K%%%%%%%%%%%%554588%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:49%%%%%%%%%%%%%%144K%%%%%%%%%%%%554984%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:54%%%%%%%%%%%%%%144K%%%%%%%%%%%%554596%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:50:59%%%%%%%%%%%%%%144K%%%%%%%%%%%%554588%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:51:04%%%%%%%%%%%%%%144K%%%%%%%%%%%%554860%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:51:09%%%%%%%%%%%%%%144K%%%%%%%%%%%%554836%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:51:14%%%%%%%%%%%%%%144K%%%%%%%%%%%%554952%kB%%%%%%%%%%%0.07%%

%2013;01;25%09:51:19%%%%%%%%%%%%%%144K%%%%%%%%%%%%554960%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:51:24%%%%%%%%%%%%%%144K%%%%%%%%%%%%555084%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:51:29%%%%%%%%%%%%%%144K%%%%%%%%%%%%555332%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:51:34%%%%%%%%%%%%%%144K%%%%%%%%%%%%555456%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:51:39%%%%%%%%%%%%%%144K%%%%%%%%%%%%555580%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:51:44%%%%%%%%%%%%%%144K%%%%%%%%%%%%555440%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:51:49%%%%%%%%%%%%%%144K%%%%%%%%%%%%555696%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:51:54%%%%%%%%%%%%%%144K%%%%%%%%%%%%555696%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:51:59%%%%%%%%%%%%%%144K%%%%%%%%%%%%555812%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:52:04%%%%%%%%%%%%%%144K%%%%%%%%%%%%555828%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:52:09%%%%%%%%%%%%%%144K%%%%%%%%%%%%555952%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:52:14%%%%%%%%%%%%%%144K%%%%%%%%%%%%556208%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:52:19%%%%%%%%%%%%%%144K%%%%%%%%%%%%556324%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:52:24%%%%%%%%%%%%%%144K%%%%%%%%%%%%556448%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:52:29%%%%%%%%%%%%%%144K%%%%%%%%%%%%556580%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:52:34%%%%%%%%%%%%%%144K%%%%%%%%%%%%556696%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:52:39%%%%%%%%%%%%%%144K%%%%%%%%%%%%556424%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:52:44%%%%%%%%%%%%%%144K%%%%%%%%%%%%556820%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:52:50%%%%%%%%%%%%%%144K%%%%%%%%%%%%556812%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:52:55%%%%%%%%%%%%%%144K%%%%%%%%%%%%557192%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:00%%%%%%%%%%%%%%144K%%%%%%%%%%%%557440%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:05%%%%%%%%%%%%%%144K%%%%%%%%%%%%557176%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:10%%%%%%%%%%%%%%144K%%%%%%%%%%%%557152%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:15%%%%%%%%%%%%%%144K%%%%%%%%%%%%557432%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:20%%%%%%%%%%%%%%144K%%%%%%%%%%%%557688%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:25%%%%%%%%%%%%%%144K%%%%%%%%%%%%557688%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:30%%%%%%%%%%%%%%144K%%%%%%%%%%%%557928%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:35%%%%%%%%%%%%%%144K%%%%%%%%%%%%557928%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:40%%%%%%%%%%%%%%144K%%%%%%%%%%%%557920%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:45%%%%%%%%%%%%%%144K%%%%%%%%%%%%558184%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:50%%%%%%%%%%%%%%144K%%%%%%%%%%%%558432%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:53:55%%%%%%%%%%%%%%144K%%%%%%%%%%%%558556%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:00%%%%%%%%%%%%%%144K%%%%%%%%%%%%558936%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:05%%%%%%%%%%%%%%144K%%%%%%%%%%%%558524%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:10%%%%%%%%%%%%%%144K%%%%%%%%%%%%558796%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:15%%%%%%%%%%%%%%144K%%%%%%%%%%%%559052%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:20%%%%%%%%%%%%%%144K%%%%%%%%%%%%559160%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:25%%%%%%%%%%%%%%144K%%%%%%%%%%%%559424%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:30%%%%%%%%%%%%%%144K%%%%%%%%%%%%559540%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:35%%%%%%%%%%%%%%144K%%%%%%%%%%%%559672%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:40%%%%%%%%%%%%%%144K%%%%%%%%%%%%559920%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:45%%%%%%%%%%%%%%144K%%%%%%%%%%%%559912%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:50%%%%%%%%%%%%%%144K%%%%%%%%%%%%560036%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:54:55%%%%%%%%%%%%%%144K%%%%%%%%%%%%560168%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:55:00%%%%%%%%%%%%%%144K%%%%%%%%%%%%560416%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:55:05%%%%%%%%%%%%%%144K%%%%%%%%%%%%560664%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:55:10%%%%%%%%%%%%%%144K%%%%%%%%%%%%560540%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:55:16%%%%%%%%%%%%%%144K%%%%%%%%%%%%560664%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:55:21%%%%%%%%%%%%%%144K%%%%%%%%%%%%560920%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:55:26%%%%%%%%%%%%%%144K%%%%%%%%%%%%561168%kB%%%%%%%%%%%0.07%%

%2013;01;25%09:55:31%%%%%%%%%%%%%%144K%%%%%%%%%%%%561424%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:55:36%%%%%%%%%%%%%%144K%%%%%%%%%%%%561424%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:55:41%%%%%%%%%%%%%%144K%%%%%%%%%%%%561920%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:55:46%%%%%%%%%%%%%%144K%%%%%%%%%%%%561748%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:55:51%%%%%%%%%%%%%%144K%%%%%%%%%%%%562036%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:55:56%%%%%%%%%%%%%%144K%%%%%%%%%%%%562160%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:01%%%%%%%%%%%%%%144K%%%%%%%%%%%%562160%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:06%%%%%%%%%%%%%%144K%%%%%%%%%%%%562268%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:11%%%%%%%%%%%%%%144K%%%%%%%%%%%%562392%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:16%%%%%%%%%%%%%%144K%%%%%%%%%%%%562640%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:21%%%%%%%%%%%%%%144K%%%%%%%%%%%%562788%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:26%%%%%%%%%%%%%%144K%%%%%%%%%%%%562756%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:31%%%%%%%%%%%%%%144K%%%%%%%%%%%%562888%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:36%%%%%%%%%%%%%%144K%%%%%%%%%%%%563152%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:41%%%%%%%%%%%%%%144K%%%%%%%%%%%%563268%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:46%%%%%%%%%%%%%%144K%%%%%%%%%%%%563516%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:51%%%%%%%%%%%%%%144K%%%%%%%%%%%%563764%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:56:56%%%%%%%%%%%%%%144K%%%%%%%%%%%%563880%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:01%%%%%%%%%%%%%%144K%%%%%%%%%%%%563864%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:06%%%%%%%%%%%%%%144K%%%%%%%%%%%%564120%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:11%%%%%%%%%%%%%%144K%%%%%%%%%%%%564260%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:16%%%%%%%%%%%%%%144K%%%%%%%%%%%%564508%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:21%%%%%%%%%%%%%%144K%%%%%%%%%%%%564748%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:26%%%%%%%%%%%%%%144K%%%%%%%%%%%%564880%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:31%%%%%%%%%%%%%%144K%%%%%%%%%%%%565120%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:36%%%%%%%%%%%%%%144K%%%%%%%%%%%%565252%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:42%%%%%%%%%%%%%%144K%%%%%%%%%%%%565384%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:47%%%%%%%%%%%%%%144K%%%%%%%%%%%%565368%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:52%%%%%%%%%%%%%%144K%%%%%%%%%%%%565748%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:57:57%%%%%%%%%%%%%%144K%%%%%%%%%%%%565880%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:02%%%%%%%%%%%%%%144K%%%%%%%%%%%%566004%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:07%%%%%%%%%%%%%%144K%%%%%%%%%%%%565980%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:12%%%%%%%%%%%%%%144K%%%%%%%%%%%%566120%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:17%%%%%%%%%%%%%%144K%%%%%%%%%%%%566492%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:22%%%%%%%%%%%%%%144K%%%%%%%%%%%%566632%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:27%%%%%%%%%%%%%%144K%%%%%%%%%%%%566848%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:32%%%%%%%%%%%%%%144K%%%%%%%%%%%%566864%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:37%%%%%%%%%%%%%%144K%%%%%%%%%%%%567112%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:42%%%%%%%%%%%%%%144K%%%%%%%%%%%%567220%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:47%%%%%%%%%%%%%%144K%%%%%%%%%%%%567352%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:52%%%%%%%%%%%%%%144K%%%%%%%%%%%%567244%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:58:57%%%%%%%%%%%%%%144K%%%%%%%%%%%%567360%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:59:02%%%%%%%%%%%%%%144K%%%%%%%%%%%%567732%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:59:07%%%%%%%%%%%%%%144K%%%%%%%%%%%%567856%kB%%%%%%%%%%%0.07%%
%2013;01;25%09:59:12%%%%%%%%%%%%%%144K%%%%%%%%%%%%567848%kB%%%%%%%%%%%0.07%%
%

TC2,%Node%B
%TIMESTAMP%%%%%%%%%%%%%%%%%%DISK%USAGE%%%%%%%%%MEMORY%USAGE%%%%%%%CPU%USAGE%
==%
%2013<01<25%05:10:07%%%%%%%%%%%%%%144K%%%%%%%%%%%%767688%kB%%%%%%%%%%19.19%%
%2013<01<25%05:10:12%%%%%%%%%%%%%%144K%%%%%%%%%%%%768084%kB%%%%%%%%%%19.19%%
%2013<01<25%05:10:17%%%%%%%%%%%%%%144K%%%%%%%%%%%%768456%kB%%%%%%%%%%19.19%%
%2013<01<25%05:10:22%%%%%%%%%%%%%%144K%%%%%%%%%%%%768232%kB%%%%%%%%%%19.19%%
%2013<01<25%05:10:27%%%%%%%%%%%%%%144K%%%%%%%%%%%%768480%kB%%%%%%%%%%19.19%%
%2013<01<25%05:10:32%%%%%%%%%%%%%%144K%%%%%%%%%%%%768728%kB%%%%%%%%%%19.19%%
%2013<01<25%05:10:37%%%%%%%%%%%%%%144K%%%%%%%%%%%%770060%kB%%%%%%%%%%19.19%%
%2013<01<25%05:10:42%%%%%%%%%%%%%%144K%%%%%%%%%%%%769192%kB%%%%%%%%%%19.19%%
%2013<01<25%05:10:47%%%%%%%%%%%%%%144K%%%%%%%%%%%%769812%kB%%%%%%%%%%19.19%%
%2013<01<25%05:10:52%%%%%%%%%%%%%%144K%%%%%%%%%%%%769796%kB%%%%%%%%%%19.19%%
%2013<01<25%05:10:57%%%%%%%%%%%%%%144K%%%%%%%%%%%%769672%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:02%%%%%%%%%%%%%%144K%%%%%%%%%%%%769688%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:07%%%%%%%%%%%%%%144K%%%%%%%%%%%%769836%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:12%%%%%%%%%%%%%%144K%%%%%%%%%%%%770076%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:17%%%%%%%%%%%%%%144K%%%%%%%%%%%%770200%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:22%%%%%%%%%%%%%%144K%%%%%%%%%%%%769952%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:27%%%%%%%%%%%%%%144K%%%%%%%%%%%%769828%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:32%%%%%%%%%%%%%%144K%%%%%%%%%%%%770540%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:37%%%%%%%%%%%%%%144K%%%%%%%%%%%%770696%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:42%%%%%%%%%%%%%%144K%%%%%%%%%%%%770944%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:47%%%%%%%%%%%%%%144K%%%%%%%%%%%%771316%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:52%%%%%%%%%%%%%%144K%%%%%%%%%%%%771284%kB%%%%%%%%%%19.19%%
%2013<01<25%05:11:57%%%%%%%%%%%%%%144K%%%%%%%%%%%%771672%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:02%%%%%%%%%%%%%%144K%%%%%%%%%%%%771812%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:07%%%%%%%%%%%%%%144K%%%%%%%%%%%%771812%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:12%%%%%%%%%%%%%%144K%%%%%%%%%%%%771764%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:17%%%%%%%%%%%%%%144K%%%%%%%%%%%%772044%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:22%%%%%%%%%%%%%%144K%%%%%%%%%%%%772168%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:27%%%%%%%%%%%%%%144K%%%%%%%%%%%%772548%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:32%%%%%%%%%%%%%%144K%%%%%%%%%%%%772400%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:37%%%%%%%%%%%%%%144K%%%%%%%%%%%%772780%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:42%%%%%%%%%%%%%%144K%%%%%%%%%%%%772780%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:47%%%%%%%%%%%%%%144K%%%%%%%%%%%%773292%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:53%%%%%%%%%%%%%%144K%%%%%%%%%%%%773392%kB%%%%%%%%%%19.19%%
%2013<01<25%05:12:58%%%%%%%%%%%%%%144K%%%%%%%%%%%%773400%kB%%%%%%%%%%19.19%%
%2013<01<25%05:13:03%%%%%%%%%%%%%%144K%%%%%%%%%%%%773664%kB%%%%%%%%%%19.19%%
%2013<01<25%05:13:08%%%%%%%%%%%%%%144K%%%%%%%%%%%%774036%kB%%%%%%%%%%19.19%%
%2013<01<25%05:13:13%%%%%%%%%%%%%%144K%%%%%%%%%%%%774036%kB%%%%%%%%%%19.19%%
%2013<01<25%05:13:18%%%%%%%%%%%%%%144K%%%%%%%%%%%%774168%kB%%%%%%%%%%19.19%%
%2013<01<25%05:13:23%%%%%%%%%%%%%%144K%%%%%%%%%%%%774176%kB%%%%%%%%%%19.19%%
%2013<01<25%05:13:28%%%%%%%%%%%%%%144K%%%%%%%%%%%%774556%kB%%%%%%%%%%19.19%%
%2013<01<25%05:13:33%%%%%%%%%%%%%%144K%%%%%%%%%%%%774648%kB%%%%%%%%%%19.19%%

%2013<01<25%05:13:38%%%%%%%%%%%%%%144K%%%%%%%%%%%%774920%kB%%%%%%%%%%19.19%%
%2013<01<25%05:13:43%%%%%%%%%%%%%%144K%%%%%%%%%%%%774920%kB%%%%%%%%%%19.19%%
%2013<01<25%05:13:48%%%%%%%%%%%%%%144K%%%%%%%%%%%%775176%kB%%%%%%%%%%19.19%%
%2013<01<25%05:13:53%%%%%%%%%%%%%%144K%%%%%%%%%%%%775664%kB%%%%%%%%%%19.19%%
%2013<01<25%05:13:58%%%%%%%%%%%%%%144K%%%%%%%%%%%%775548%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:03%%%%%%%%%%%%%%144K%%%%%%%%%%%%776068%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:08%%%%%%%%%%%%%%144K%%%%%%%%%%%%775688%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:13%%%%%%%%%%%%%%144K%%%%%%%%%%%%776152%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:18%%%%%%%%%%%%%%144K%%%%%%%%%%%%776308%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:23%%%%%%%%%%%%%%144K%%%%%%%%%%%%776440%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:28%%%%%%%%%%%%%%144K%%%%%%%%%%%%776160%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:33%%%%%%%%%%%%%%144K%%%%%%%%%%%%776748%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:38%%%%%%%%%%%%%%144K%%%%%%%%%%%%777492%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:43%%%%%%%%%%%%%%144K%%%%%%%%%%%%777996%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:48%%%%%%%%%%%%%%144K%%%%%%%%%%%%778344%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:53%%%%%%%%%%%%%%144K%%%%%%%%%%%%778724%kB%%%%%%%%%%19.19%%
%2013<01<25%05:14:58%%%%%%%%%%%%%%144K%%%%%%%%%%%%777128%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:03%%%%%%%%%%%%%%144K%%%%%%%%%%%%777276%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:08%%%%%%%%%%%%%%144K%%%%%%%%%%%%777500%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:13%%%%%%%%%%%%%%144K%%%%%%%%%%%%778128%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:18%%%%%%%%%%%%%%144K%%%%%%%%%%%%778260%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:23%%%%%%%%%%%%%%144K%%%%%%%%%%%%778260%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:28%%%%%%%%%%%%%%144K%%%%%%%%%%%%778228%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:33%%%%%%%%%%%%%%144K%%%%%%%%%%%%778236%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:38%%%%%%%%%%%%%%144K%%%%%%%%%%%%778980%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:43%%%%%%%%%%%%%%144K%%%%%%%%%%%%778608%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:48%%%%%%%%%%%%%%144K%%%%%%%%%%%%778840%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:53%%%%%%%%%%%%%%144K%%%%%%%%%%%%779220%kB%%%%%%%%%%19.19%%
%2013<01<25%05:15:58%%%%%%%%%%%%%%144K%%%%%%%%%%%%779616%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:03%%%%%%%%%%%%%%144K%%%%%%%%%%%%779912%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:08%%%%%%%%%%%%%%144K%%%%%%%%%%%%779872%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:13%%%%%%%%%%%%%%144K%%%%%%%%%%%%779740%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:18%%%%%%%%%%%%%%144K%%%%%%%%%%%%780260%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:23%%%%%%%%%%%%%%144K%%%%%%%%%%%%780508%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:28%%%%%%%%%%%%%%144K%%%%%%%%%%%%780600%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:33%%%%%%%%%%%%%%144K%%%%%%%%%%%%780624%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:38%%%%%%%%%%%%%%144K%%%%%%%%%%%%781244%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:43%%%%%%%%%%%%%%144K%%%%%%%%%%%%780996%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:48%%%%%%%%%%%%%%144K%%%%%%%%%%%%780964%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:54%%%%%%%%%%%%%%144K%%%%%%%%%%%%781352%kB%%%%%%%%%%19.19%%
%2013<01<25%05:16:59%%%%%%%%%%%%%%144K%%%%%%%%%%%%781252%kB%%%%%%%%%%19.19%%
%2013<01<25%05:17:04%%%%%%%%%%%%%%144K%%%%%%%%%%%%781376%kB%%%%%%%%%%19.19%%
%2013<01<25%05:17:09%%%%%%%%%%%%%%144K%%%%%%%%%%%%781716%kB%%%%%%%%%%19.19%%
%2013<01<25%05:17:14%%%%%%%%%%%%%%144K%%%%%%%%%%%%781716%kB%%%%%%%%%%19.19%%

%2013<01<25%05:17:19%%%%%%%%%%%%%%144K%%%%%%%%%%%%782104%kB%%%%%%%%%%19.19%%
%2013<01<25%05:17:24%%%%%%%%%%%%%%144K%%%%%%%%%%%%782756%kB%%%%%%%%%%19.19%%
%2013<01<25%05:17:29%%%%%%%%%%%%%%144K%%%%%%%%%%%%782352%kB%%%%%%%%%%19.19%%
%2013<01<25%05:17:34%%%%%%%%%%%%%%144K%%%%%%%%%%%%782476%kB%%%%%%%%%%19.19%%
%2013<01<25%05:17:39%%%%%%%%%%%%%%144K%%%%%%%%%%%%782600%kB%%%%%%%%%%19.19%%
%2013<01<25%05:17:44%%%%%%%%%%%%%%144K%%%%%%%%%%%%782848%kB%%%%%%%%%%19.19%%
%2013<01<25%05:17:49%%%%%%%%%%%%%%144K%%%%%%%%%%%%783072%kB%%%%%%%%%%19.19%%
%2013<01<25%05:17:54%%%%%%%%%%%%%%144K%%%%%%%%%%%%783212%kB%%%%%%%%%%19.19%%
%2013<01<25%05:17:59%%%%%%%%%%%%%%144K%%%%%%%%%%%%783212%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:04%%%%%%%%%%%%%%144K%%%%%%%%%%%%783716%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:09%%%%%%%%%%%%%%144K%%%%%%%%%%%%783616%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:14%%%%%%%%%%%%%%144K%%%%%%%%%%%%784120%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:19%%%%%%%%%%%%%%144K%%%%%%%%%%%%783616%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:24%%%%%%%%%%%%%%144K%%%%%%%%%%%%783600%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:29%%%%%%%%%%%%%%144K%%%%%%%%%%%%783692%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:34%%%%%%%%%%%%%%144K%%%%%%%%%%%%783692%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:39%%%%%%%%%%%%%%144K%%%%%%%%%%%%783940%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:44%%%%%%%%%%%%%%144K%%%%%%%%%%%%784296%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:49%%%%%%%%%%%%%%144K%%%%%%%%%%%%784428%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:54%%%%%%%%%%%%%%144K%%%%%%%%%%%%784700%kB%%%%%%%%%%19.19%%
%2013<01<25%05:18:59%%%%%%%%%%%%%%144K%%%%%%%%%%%%784832%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:04%%%%%%%%%%%%%%144K%%%%%%%%%%%%784924%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:09%%%%%%%%%%%%%%144K%%%%%%%%%%%%785056%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:14%%%%%%%%%%%%%%144K%%%%%%%%%%%%785180%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:19%%%%%%%%%%%%%%144K%%%%%%%%%%%%785560%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:24%%%%%%%%%%%%%%144K%%%%%%%%%%%%785676%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:29%%%%%%%%%%%%%%144K%%%%%%%%%%%%786304%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:34%%%%%%%%%%%%%%144K%%%%%%%%%%%%785932%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:39%%%%%%%%%%%%%%144K%%%%%%%%%%%%786180%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:44%%%%%%%%%%%%%%144K%%%%%%%%%%%%786528%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:49%%%%%%%%%%%%%%144K%%%%%%%%%%%%786676%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:54%%%%%%%%%%%%%%144K%%%%%%%%%%%%786800%kB%%%%%%%%%%19.19%%
%2013<01<25%05:19:59%%%%%%%%%%%%%%144K%%%%%%%%%%%%786676%kB%%%%%%%%%%19.19%%
%2013<01<25%05:20:04%%%%%%%%%%%%%%144K%%%%%%%%%%%%787288%kB%%%%%%%%%%19.19%%
%2013<01<25%05:20:09%%%%%%%%%%%%%%144K%%%%%%%%%%%%787040%kB%%%%%%%%%%19.19%%
%2013<01<25%05:20:14%%%%%%%%%%%%%%144K%%%%%%%%%%%%787048%kB%%%%%%%%%%19.19%%
%2013<01<25%05:20:19%%%%%%%%%%%%%%144K%%%%%%%%%%%%787048%kB%%%%%%%%%%19.18%%
%2013<01<25%05:20:24%%%%%%%%%%%%%%144K%%%%%%%%%%%%787164%kB%%%%%%%%%%19.18%%
%2013<01<25%05:20:29%%%%%%%%%%%%%%144K%%%%%%%%%%%%787180%kB%%%%%%%%%%19.18%%
%2013<01<25%05:20:34%%%%%%%%%%%%%%144K%%%%%%%%%%%%788072%kB%%%%%%%%%%19.18%%
%2013<01<25%05:20:39%%%%%%%%%%%%%%144K%%%%%%%%%%%%787824%kB%%%%%%%%%%19.18%%
%2013<01<25%05:20:44%%%%%%%%%%%%%%144K%%%%%%%%%%%%787916%kB%%%%%%%%%%19.18%%
%2013<01<25%05:20:49%%%%%%%%%%%%%%144K%%%%%%%%%%%%788040%kB%%%%%%%%%%19.18%%
%2013<01<25%05:20:55%%%%%%%%%%%%%%144K%%%%%%%%%%%%788164%kB%%%%%%%%%%19.18%%
%2013<01<25%05:21:00%%%%%%%%%%%%%%144K%%%%%%%%%%%%788412%kB%%%%%%%%%%19.18%%
%2013<01<25%05:21:05%%%%%%%%%%%%%%144K%%%%%%%%%%%%788504%kB%%%%%%%%%%19.18%%
%2013<01<25%05:21:10%%%%%%%%%%%%%%144K%%%%%%%%%%%%789016%kB%%%%%%%%%%19.18%%
%2013<01<25%05:21:15%%%%%%%%%%%%%%144K%%%%%%%%%%%%788900%kB%%%%%%%%%%19.18%%
%2013<01<25%05:21:20%%%%%%%%%%%%%%144K%%%%%%%%%%%%789024%kB%%%%%%%%%%19.18%%
%2013<01<25%05:21:25%%%%%%%%%%%%%%144K%%%%%%%%%%%%789124%kB%%%%%%%%%%19.18%%

%2013<01<25%05:21:30%%%%%%%%%%%%%%144K%%%%%%%%%%%%789140%kB%%%%%%%%%%19.18%%
%2013<01<25%05:21:35%%%%%%%%%%%%%%144K%%%%%%%%%%%%789140%kB%%%%%%%%%%19.18%%
%2013<01<25%05:21:40%%%%%%%%%%%%%%144K%%%%%%%%%%%%789396%kB%%%%%%%%%%19.18%%
%2013<01<25%05:21:45%%%%%%%%%%%%%%144K%%%%%%%%%%%%789512%kB%%%%%%%%%%19.18%%
%2013<01<25%05:21:50%%%%%%%%%%%%%%144K%%%%%%%%%%%%789644%kB%%%%%%%%%%19.18%%
%2013<01<25%05:21:55%%%%%%%%%%%%%%144K%%%%%%%%%%%%789660%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:00%%%%%%%%%%%%%%144K%%%%%%%%%%%%790156%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:05%%%%%%%%%%%%%%144K%%%%%%%%%%%%790380%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:10%%%%%%%%%%%%%%144K%%%%%%%%%%%%790388%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:15%%%%%%%%%%%%%%144K%%%%%%%%%%%%790264%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:20%%%%%%%%%%%%%%144K%%%%%%%%%%%%790636%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:25%%%%%%%%%%%%%%144K%%%%%%%%%%%%790992%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:30%%%%%%%%%%%%%%144K%%%%%%%%%%%%791140%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:35%%%%%%%%%%%%%%144K%%%%%%%%%%%%791264%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:40%%%%%%%%%%%%%%144K%%%%%%%%%%%%792008%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:45%%%%%%%%%%%%%%144K%%%%%%%%%%%%792396%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:50%%%%%%%%%%%%%%144K%%%%%%%%%%%%791900%kB%%%%%%%%%%19.18%%
%2013<01<25%05:22:55%%%%%%%%%%%%%%144K%%%%%%%%%%%%792148%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:00%%%%%%%%%%%%%%144K%%%%%%%%%%%%792124%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:05%%%%%%%%%%%%%%144K%%%%%%%%%%%%792148%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:10%%%%%%%%%%%%%%144K%%%%%%%%%%%%792644%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:15%%%%%%%%%%%%%%144K%%%%%%%%%%%%792784%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:20%%%%%%%%%%%%%%144K%%%%%%%%%%%%792992%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:25%%%%%%%%%%%%%%144K%%%%%%%%%%%%792744%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:30%%%%%%%%%%%%%%144K%%%%%%%%%%%%792752%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:35%%%%%%%%%%%%%%144K%%%%%%%%%%%%794752%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:40%%%%%%%%%%%%%%144K%%%%%%%%%%%%795000%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:45%%%%%%%%%%%%%%144K%%%%%%%%%%%%795496%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:50%%%%%%%%%%%%%%144K%%%%%%%%%%%%795496%kB%%%%%%%%%%19.18%%
%2013<01<25%05:23:55%%%%%%%%%%%%%%144K%%%%%%%%%%%%795868%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:00%%%%%%%%%%%%%%144K%%%%%%%%%%%%795852%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:05%%%%%%%%%%%%%%144K%%%%%%%%%%%%796752%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:10%%%%%%%%%%%%%%144K%%%%%%%%%%%%796488%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:15%%%%%%%%%%%%%%144K%%%%%%%%%%%%796612%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:20%%%%%%%%%%%%%%144K%%%%%%%%%%%%796456%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:25%%%%%%%%%%%%%%144K%%%%%%%%%%%%796704%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:30%%%%%%%%%%%%%%144K%%%%%%%%%%%%796588%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:35%%%%%%%%%%%%%%144K%%%%%%%%%%%%796588%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:40%%%%%%%%%%%%%%144K%%%%%%%%%%%%796960%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:45%%%%%%%%%%%%%%144K%%%%%%%%%%%%797332%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:51%%%%%%%%%%%%%%144K%%%%%%%%%%%%797340%kB%%%%%%%%%%19.18%%
%2013<01<25%05:24:56%%%%%%%%%%%%%%144K%%%%%%%%%%%%797092%kB%%%%%%%%%%19.18%%
%2013<01<25%05:25:01%%%%%%%%%%%%%%144K%%%%%%%%%%%%797580%kB%%%%%%%%%%19.18%%
%2013<01<25%05:25:06%%%%%%%%%%%%%%144K%%%%%%%%%%%%798084%kB%%%%%%%%%%19.18%%
%2013<01<25%05:25:11%%%%%%%%%%%%%%144K%%%%%%%%%%%%797852%kB%%%%%%%%%%19.18%%
%

TC3_H,'Node'A
'TIMESTAMP''''''''''''''''''DISK'USAGE'''''''''MEMORY'USAGE'''''''CPU'USAGE'
=='
'2013=01=25'10:31:48''''''''''''''317M''''''''''''562792'kB'''''''''''0.07%'
'2013=01=25'10:31:53''''''''''''''317M''''''''''''577160'kB'''''''''''0.07%'
'2013=01=25'10:31:58''''''''''''''317M''''''''''''578228'kB'''''''''''0.07%'
'2013=01=25'10:32:03''''''''''''''317M''''''''''''578256'kB'''''''''''0.07%'
'2013=01=25'10:32:08''''''''''''''317M''''''''''''578332'kB'''''''''''0.07%'
'2013=01=25'10:32:13''''''''''''''317M''''''''''''578368'kB'''''''''''0.07%'
'2013=01=25'10:32:18''''''''''''''317M''''''''''''578144'kB'''''''''''0.07%'
'2013=01=25'10:32:23''''''''''''''317M''''''''''''578308'kB'''''''''''0.07%'
'2013=01=25'10:32:28''''''''''''''317M''''''''''''578116'kB'''''''''''0.07%'
'2013=01=25'10:32:33''''''''''''''317M''''''''''''578232'kB'''''''''''0.07%'
'2013=01=25'10:32:38''''''''''''''317M''''''''''''578344'kB'''''''''''0.07%'
'2013=01=25'10:32:43''''''''''''''317M''''''''''''578572'kB'''''''''''0.07%'
'2013=01=25'10:32:48''''''''''''''317M''''''''''''579276'kB'''''''''''0.07%'
'2013=01=25'10:32:53''''''''''''''317M''''''''''''579420'kB'''''''''''0.07%'
'2013=01=25'10:32:58''''''''''''''317M''''''''''''579300'kB'''''''''''0.07%'
'2013=01=25'10:33:03''''''''''''''317M''''''''''''579336'kB'''''''''''0.07%'
'2013=01=25'10:33:08''''''''''''''317M''''''''''''579136'kB'''''''''''0.07%'
'2013=01=25'10:33:13''''''''''''''317M''''''''''''579432'kB'''''''''''0.07%'
'2013=01=25'10:33:18''''''''''''''317M''''''''''''579336'kB'''''''''''0.07%'
'2013=01=25'10:33:24''''''''''''''317M''''''''''''579188'kB'''''''''''0.07%'
'2013=01=25'10:33:29''''''''''''''317M''''''''''''579100'kB'''''''''''0.07%'
'2013=01=25'10:33:34''''''''''''''317M''''''''''''579224'kB'''''''''''0.07%'
'2013=01=25'10:33:39''''''''''''''317M''''''''''''579248'kB'''''''''''0.07%'
'2013=01=25'10:33:44''''''''''''''317M''''''''''''579068'kB'''''''''''0.07%'
'2013=01=25'10:33:49''''''''''''''317M''''''''''''579248'kB'''''''''''0.07%'
'2013=01=25'10:33:54''''''''''''''317M''''''''''''579044'kB'''''''''''0.07%'
'2013=01=25'10:33:59''''''''''''''317M''''''''''''579172'kB'''''''''''0.07%'
'2013=01=25'10:34:04''''''''''''''317M''''''''''''579056'kB'''''''''''0.07%'
'2013=01=25'10:34:09''''''''''''''317M''''''''''''579380'kB'''''''''''0.07%'
'2013=01=25'10:34:14''''''''''''''317M''''''''''''579432'kB'''''''''''0.07%'
'2013=01=25'10:34:19''''''''''''''317M''''''''''''579372'kB'''''''''''0.07%'
'2013=01=25'10:34:24''''''''''''''317M''''''''''''579296'kB'''''''''''0.07%'
'2013=01=25'10:34:29''''''''''''''317M''''''''''''579236'kB'''''''''''0.07%'
'2013=01=25'10:34:34''''''''''''''317M''''''''''''579216'kB'''''''''''0.07%'
'2013=01=25'10:34:39''''''''''''''317M''''''''''''579328'kB'''''''''''0.07%'
'2013=01=25'10:34:44''''''''''''''317M''''''''''''579248'kB'''''''''''0.07%'
'2013=01=25'10:34:49''''''''''''''317M''''''''''''578992'kB'''''''''''0.07%'
'2013=01=25'10:34:54''''''''''''''317M''''''''''''579388'kB'''''''''''0.07%'
'2013=01=25'10:34:59''''''''''''''317M''''''''''''579360'kB'''''''''''0.07%'
'2013=01=25'10:35:04''''''''''''''317M''''''''''''579520'kB'''''''''''0.07%'
'2013=01=25'10:35:09''''''''''''''317M''''''''''''579636'kB'''''''''''0.07%'
'2013=01=25'10:35:14''''''''''''''317M''''''''''''579488'kB'''''''''''0.07%'

'2013=01=25'10:35:20''''''''''''''317M''''''''''''579108'kB'''''''''''0.07%'
'2013=01=25'10:35:25''''''''''''''317M''''''''''''579220'kB'''''''''''0.07%'
'2013=01=25'10:35:30''''''''''''''317M''''''''''''579332'kB'''''''''''0.07%'
'2013=01=25'10:35:35''''''''''''''317M''''''''''''579436'kB'''''''''''0.07%'
'2013=01=25'10:35:40''''''''''''''317M''''''''''''579404'kB'''''''''''0.07%'
'2013=01=25'10:35:45''''''''''''''317M''''''''''''579216'kB'''''''''''0.07%'
'2013=01=25'10:35:50''''''''''''''317M''''''''''''579588'kB'''''''''''0.07%'
'2013=01=25'10:35:55''''''''''''''317M''''''''''''579076'kB'''''''''''0.07%'
'2013=01=25'10:36:00''''''''''''''317M''''''''''''579464'kB'''''''''''0.07%'
'2013=01=25'10:36:05''''''''''''''317M''''''''''''579344'kB'''''''''''0.07%'
'2013=01=25'10:36:10''''''''''''''317M''''''''''''579480'kB'''''''''''0.07%'
'2013=01=25'10:36:15''''''''''''''317M''''''''''''579108'kB'''''''''''0.07%'
'2013=01=25'10:36:20''''''''''''''317M''''''''''''578868'kB'''''''''''0.07%'
'2013=01=25'10:36:25''''''''''''''317M''''''''''''579048'kB'''''''''''0.07%'
'2013=01=25'10:36:30''''''''''''''317M''''''''''''579020'kB'''''''''''0.07%'
'2013=01=25'10:36:35''''''''''''''317M''''''''''''579324'kB'''''''''''0.07%'
'2013=01=25'10:36:40''''''''''''''317M''''''''''''579224'kB'''''''''''0.07%'
'2013=01=25'10:36:45''''''''''''''317M''''''''''''579456'kB'''''''''''0.07%'
'2013=01=25'10:36:50''''''''''''''317M''''''''''''579300'kB'''''''''''0.07%'
'2013=01=25'10:36:55''''''''''''''317M''''''''''''579516'kB'''''''''''0.07%'
'2013=01=25'10:37:00''''''''''''''317M''''''''''''579532'kB'''''''''''0.07%'
'2013=01=25'10:37:05''''''''''''''317M''''''''''''579448'kB'''''''''''0.07%'
'2013=01=25'10:37:10''''''''''''''317M''''''''''''579424'kB'''''''''''0.07%'
'2013=01=25'10:37:15''''''''''''''317M''''''''''''579484'kB'''''''''''0.07%'
'2013=01=25'10:37:20''''''''''''''317M''''''''''''579544'kB'''''''''''0.07%'
'2013=01=25'10:37:25''''''''''''''317M''''''''''''579656'kB'''''''''''0.07%'
'2013=01=25'10:37:31''''''''''''''317M''''''''''''579700'kB'''''''''''0.07%'
'2013=01=25'10:37:36''''''''''''''317M''''''''''''579596'kB'''''''''''0.07%'
'2013=01=25'10:37:41''''''''''''''317M''''''''''''579352'kB'''''''''''0.07%'
'2013=01=25'10:37:46''''''''''''''317M''''''''''''579644'kB'''''''''''0.07%'
'2013=01=25'10:37:51''''''''''''''317M''''''''''''579508'kB'''''''''''0.07%'
'2013=01=25'10:37:56''''''''''''''317M''''''''''''579716'kB'''''''''''0.07%'
'2013=01=25'10:38:01''''''''''''''317M''''''''''''579584'kB'''''''''''0.07%'
'2013=01=25'10:38:06''''''''''''''317M''''''''''''579728'kB'''''''''''0.07%'
'2013=01=25'10:38:11''''''''''''''317M''''''''''''579552'kB'''''''''''0.07%'
'2013=01=25'10:38:16''''''''''''''317M''''''''''''579552'kB'''''''''''0.07%'
'2013=01=25'10:38:21''''''''''''''317M''''''''''''579960'kB'''''''''''0.07%'
'2013=01=25'10:38:26''''''''''''''317M''''''''''''579880'kB'''''''''''0.07%'
'2013=01=25'10:38:31''''''''''''''317M''''''''''''579744'kB'''''''''''0.07%'
'2013=01=25'10:38:36''''''''''''''317M''''''''''''579940'kB'''''''''''0.07%'
'2013=01=25'10:38:41''''''''''''''317M''''''''''''579672'kB'''''''''''0.07%'
'2013=01=25'10:38:46''''''''''''''317M''''''''''''579820'kB'''''''''''0.07%'
'2013=01=25'10:38:51''''''''''''''317M''''''''''''579756'kB'''''''''''0.07%'
'2013=01=25'10:38:56''''''''''''''317M''''''''''''579604'kB'''''''''''0.07%'

'2013=01=25'10:39:01''''''''''''''317M''''''''''''579864'kB'''''''''''0.07%'
'2013=01=25'10:39:06''''''''''''''317M''''''''''''580068'kB'''''''''''0.07%'
'2013=01=25'10:39:11''''''''''''''317M''''''''''''580268'kB'''''''''''0.07%'
'2013=01=25'10:39:16''''''''''''''317M''''''''''''580376'kB'''''''''''0.07%'
'2013=01=25'10:39:21''''''''''''''317M''''''''''''580056'kB'''''''''''0.07%'
'2013=01=25'10:39:26''''''''''''''317M''''''''''''580140'kB'''''''''''0.07%'
'2013=01=25'10:39:31''''''''''''''317M''''''''''''580200'kB'''''''''''0.07%'
'2013=01=25'10:39:36''''''''''''''317M''''''''''''580032'kB'''''''''''0.07%'
'2013=01=25'10:39:42''''''''''''''317M''''''''''''580040'kB'''''''''''0.07%'
'2013=01=25'10:39:47''''''''''''''317M''''''''''''580076'kB'''''''''''0.07%'
'2013=01=25'10:39:52''''''''''''''317M''''''''''''580128'kB'''''''''''0.07%'
'2013=01=25'10:39:57''''''''''''''317M''''''''''''580292'kB'''''''''''0.07%'
'2013=01=25'10:40:02''''''''''''''317M''''''''''''580192'kB'''''''''''0.07%'
'2013=01=25'10:40:07''''''''''''''317M''''''''''''580328'kB'''''''''''0.07%'
'2013=01=25'10:40:12''''''''''''''317M''''''''''''580328'kB'''''''''''0.07%'
'2013=01=25'10:40:17''''''''''''''317M''''''''''''580512'kB'''''''''''0.07%'
'2013=01=25'10:40:22''''''''''''''317M''''''''''''579880'kB'''''''''''0.07%'
'2013=01=25'10:40:27''''''''''''''317M''''''''''''580432'kB'''''''''''0.07%'
'2013=01=25'10:40:32''''''''''''''317M''''''''''''580300'kB'''''''''''0.07%'
'2013=01=25'10:40:37''''''''''''''317M''''''''''''580024'kB'''''''''''0.07%'
'2013=01=25'10:40:42''''''''''''''317M''''''''''''580128'kB'''''''''''0.07%'
'2013=01=25'10:40:47''''''''''''''317M''''''''''''580268'kB'''''''''''0.07%'
'2013=01=25'10:40:52''''''''''''''317M''''''''''''579712'kB'''''''''''0.07%'
'2013=01=25'10:40:57''''''''''''''317M''''''''''''580244'kB'''''''''''0.07%'
'2013=01=25'10:41:02''''''''''''''317M''''''''''''580032'kB'''''''''''0.07%'
'2013=01=25'10:41:07''''''''''''''317M''''''''''''580160'kB'''''''''''0.07%'
'2013=01=25'10:41:12''''''''''''''317M''''''''''''580352'kB'''''''''''0.07%'
'2013=01=25'10:41:17''''''''''''''317M''''''''''''580600'kB'''''''''''0.07%'
'2013=01=25'10:41:22''''''''''''''317M''''''''''''580500'kB'''''''''''0.07%'
'2013=01=25'10:41:27''''''''''''''317M''''''''''''580456'kB'''''''''''0.07%'
'2013=01=25'10:41:32''''''''''''''317M''''''''''''580632'kB'''''''''''0.07%'
'2013=01=25'10:41:37''''''''''''''317M''''''''''''580644'kB'''''''''''0.07%'
'2013=01=25'10:41:42''''''''''''''317M''''''''''''580820'kB'''''''''''0.07%'
'2013=01=25'10:41:47''''''''''''''317M''''''''''''580576'kB'''''''''''0.07%'
'2013=01=25'10:41:53''''''''''''''317M''''''''''''580392'kB'''''''''''0.07%'
'2013=01=25'10:41:58''''''''''''''317M''''''''''''580564'kB'''''''''''0.07%'
'2013=01=25'10:42:03''''''''''''''317M''''''''''''580076'kB'''''''''''0.07%'
'2013=01=25'10:42:08''''''''''''''317M''''''''''''580276'kB'''''''''''0.07%'
'2013=01=25'10:42:13''''''''''''''317M''''''''''''580384'kB'''''''''''0.07%'
'2013=01=25'10:42:18''''''''''''''317M''''''''''''580828'kB'''''''''''0.07%'
'2013=01=25'10:42:23''''''''''''''317M''''''''''''580700'kB'''''''''''0.07%'
'2013=01=25'10:42:28''''''''''''''317M''''''''''''580700'kB'''''''''''0.07%'
'2013=01=25'10:42:33''''''''''''''317M''''''''''''580460'kB'''''''''''0.07%'
'2013=01=25'10:42:38''''''''''''''317M''''''''''''580460'kB'''''''''''0.07%'
'2013=01=25'10:42:43''''''''''''''317M''''''''''''580408'kB'''''''''''0.07%'
'2013=01=25'10:42:48''''''''''''''317M''''''''''''580080'kB'''''''''''0.07%'
'2013=01=25'10:42:53''''''''''''''317M''''''''''''580548'kB'''''''''''0.07%'
'2013=01=25'10:42:58''''''''''''''317M''''''''''''580376'kB'''''''''''0.07%'
'2013=01=25'10:43:03''''''''''''''317M''''''''''''580408'kB'''''''''''0.07%'
'2013=01=25'10:43:08''''''''''''''317M''''''''''''580400'kB'''''''''''0.07%'

'2013=01=25'10:43:13''''''''''''''317M''''''''''''580460'kB'''''''''''0.07%'
'2013=01=25'10:43:18''''''''''''''317M''''''''''''580544'kB'''''''''''0.07%'
'2013=01=25'10:43:23''''''''''''''317M''''''''''''580460'kB'''''''''''0.07%'
'2013=01=25'10:43:28''''''''''''''317M''''''''''''580376'kB'''''''''''0.07%'
'2013=01=25'10:43:33''''''''''''''317M''''''''''''580488'kB'''''''''''0.07%'
'2013=01=25'10:43:38''''''''''''''317M''''''''''''580564'kB'''''''''''0.07%'
'2013=01=25'10:43:43''''''''''''''317M''''''''''''580552'kB'''''''''''0.07%'
'2013=01=25'10:43:48''''''''''''''317M''''''''''''580416'kB'''''''''''0.07%'
'2013=01=25'10:43:53''''''''''''''317M''''''''''''580388'kB'''''''''''0.07%'
'2013=01=25'10:43:59''''''''''''''317M''''''''''''580856'kB'''''''''''0.07%'
'2013=01=25'10:44:04''''''''''''''317M''''''''''''580664'kB'''''''''''0.07%'
'2013=01=25'10:44:09''''''''''''''317M''''''''''''580520'kB'''''''''''0.07%'
'2013=01=25'10:44:14''''''''''''''317M''''''''''''580848'kB'''''''''''0.07%'
'2013=01=25'10:44:19''''''''''''''317M''''''''''''580668'kB'''''''''''0.07%'
'2013=01=25'10:44:24''''''''''''''317M''''''''''''580640'kB'''''''''''0.07%'
'2013=01=25'10:44:29''''''''''''''317M''''''''''''580924'kB'''''''''''0.07%'
'2013=01=25'10:44:34''''''''''''''317M''''''''''''580716'kB'''''''''''0.07%'
'2013=01=25'10:44:39''''''''''''''317M''''''''''''580760'kB'''''''''''0.07%'
'2013=01=25'10:44:44''''''''''''''317M''''''''''''580944'kB'''''''''''0.07%'
'2013=01=25'10:44:49''''''''''''''317M''''''''''''580692'kB'''''''''''0.07%'
'2013=01=25'10:44:54''''''''''''''317M''''''''''''580500'kB'''''''''''0.07%'
'2013=01=25'10:44:59''''''''''''''317M''''''''''''580804'kB'''''''''''0.07%'
'2013=01=25'10:45:04''''''''''''''317M''''''''''''580752'kB'''''''''''0.07%'
'2013=01=25'10:45:09''''''''''''''317M''''''''''''580932'kB'''''''''''0.07%'
'2013=01=25'10:45:14''''''''''''''317M''''''''''''581036'kB'''''''''''0.07%'
'2013=01=25'10:45:19''''''''''''''317M''''''''''''580944'kB'''''''''''0.07%'
'2013=01=25'10:45:24''''''''''''''317M''''''''''''580932'kB'''''''''''0.07%'
'2013=01=25'10:45:29''''''''''''''317M''''''''''''580768'kB'''''''''''0.07%'
'2013=01=25'10:45:34''''''''''''''317M''''''''''''581028'kB'''''''''''0.07%'
'2013=01=25'10:45:39''''''''''''''317M''''''''''''580920'kB'''''''''''0.07%'
'2013=01=25'10:45:44''''''''''''''317M''''''''''''580852'kB'''''''''''0.07%'
'2013=01=25'10:45:49''''''''''''''317M''''''''''''581096'kB'''''''''''0.07%'
'2013=01=25'10:45:54''''''''''''''317M''''''''''''580992'kB'''''''''''0.07%'
'2013=01=25'10:45:59''''''''''''''317M''''''''''''580980'kB'''''''''''0.07%'
'2013=01=25'10:46:04''''''''''''''317M''''''''''''580804'kB'''''''''''0.07%'
'2013=01=25'10:46:10''''''''''''''317M''''''''''''581080'kB'''''''''''0.07%'
'2013=01=25'10:46:15''''''''''''''317M''''''''''''580876'kB'''''''''''0.07%'
'2013=01=25'10:46:20''''''''''''''317M''''''''''''581008'kB'''''''''''0.07%'
'2013=01=25'10:46:25''''''''''''''317M''''''''''''580996'kB'''''''''''0.07%'
'2013=01=25'10:46:30''''''''''''''317M''''''''''''580880'kB'''''''''''0.07%'
'2013=01=25'10:46:35''''''''''''''317M''''''''''''580876'kB'''''''''''0.07%'
'2013=01=25'10:46:40''''''''''''''317M''''''''''''580760'kB'''''''''''0.07%'
'2013=01=25'10:46:45''''''''''''''317M''''''''''''580624'kB'''''''''''0.07%'
'2013=01=25'10:46:50''''''''''''''317M''''''''''''580840'kB'''''''''''0.07%'
'2013=01=25'10:46:55''''''''''''''317M''''''''''''580932'kB'''''''''''0.07%'
'

TC3_H,'Node'B
'TIMESTAMP''''''''''''''''''DISK'USAGE'''''''''MEMORY'USAGE'''''''CPU'USAGE'
=='
'2013>01>25'05:57:49''''''''''''''197M'''''''''''1184128'kB''''''''''18.11%'
'2013>01>25'05:57:54''''''''''''''197M'''''''''''1197096'kB''''''''''18.11%'
'2013>01>25'05:57:59''''''''''''''197M'''''''''''1197220'kB''''''''''18.11%'
'2013>01>25'05:58:04''''''''''''''197M'''''''''''1198120'kB''''''''''18.11%'
'2013>01>25'05:58:09''''''''''''''197M'''''''''''1197872'kB''''''''''18.11%'
'2013>01>25'05:58:14''''''''''''''197M'''''''''''1197856'kB''''''''''18.11%'
'2013>01>25'05:58:19''''''''''''''197M'''''''''''1197112'kB''''''''''18.11%'
'2013>01>25'05:58:24''''''''''''''197M'''''''''''1197468'kB''''''''''18.11%'
'2013>01>25'05:58:29''''''''''''''197M'''''''''''1197468'kB''''''''''18.11%'
'2013>01>25'05:58:34''''''''''''''197M'''''''''''1197112'kB''''''''''18.11%'
'2013>01>25'05:58:39''''''''''''''197M'''''''''''1197128'kB''''''''''18.11%'
'2013>01>25'05:58:44''''''''''''''197M'''''''''''1197096'kB''''''''''18.11%'
'2013>01>25'05:58:49''''''''''''''197M'''''''''''1197344'kB''''''''''18.11%'
'2013>01>25'05:58:55''''''''''''''197M'''''''''''1197236'kB''''''''''18.11%'
'2013>01>25'05:59:00''''''''''''''197M'''''''''''1197236'kB''''''''''18.11%'
'2013>01>25'05:59:05''''''''''''''197M'''''''''''1196840'kB''''''''''18.11%'
'2013>01>25'05:59:10''''''''''''''197M'''''''''''1196600'kB''''''''''18.11%'
'2013>01>25'05:59:15''''''''''''''197M'''''''''''1197096'kB''''''''''18.11%'
'2013>01>25'05:59:20''''''''''''''197M'''''''''''1196972'kB''''''''''18.11%'
'2013>01>25'05:59:25''''''''''''''197M'''''''''''1197344'kB''''''''''18.11%'
'2013>01>25'05:59:30''''''''''''''197M'''''''''''1197120'kB''''''''''18.11%'
'2013>01>25'05:59:35''''''''''''''197M'''''''''''1197104'kB''''''''''18.11%'
'2013>01>25'05:59:40''''''''''''''197M'''''''''''1197244'kB''''''''''18.11%'
'2013>01>25'05:59:45''''''''''''''197M'''''''''''1196592'kB''''''''''18.11%'
'2013>01>25'05:59:50''''''''''''''197M'''''''''''1196980'kB''''''''''18.11%'
'2013>01>25'05:59:55''''''''''''''197M'''''''''''1196856'kB''''''''''18.11%'
'2013>01>25'06:00:00''''''''''''''197M'''''''''''1197104'kB''''''''''18.11%'
'2013>01>25'06:00:05''''''''''''''197M'''''''''''1196740'kB''''''''''18.11%'
'2013>01>25'06:00:10''''''''''''''197M'''''''''''1197004'kB''''''''''18.11%'
'2013>01>25'06:00:15''''''''''''''197M'''''''''''1196880'kB''''''''''18.11%'
'2013>01>25'06:00:20''''''''''''''197M'''''''''''1196764'kB''''''''''18.11%'
'2013>01>25'06:00:25''''''''''''''197M'''''''''''1196732'kB''''''''''18.11%'
'2013>01>25'06:00:30''''''''''''''197M'''''''''''1196856'kB''''''''''18.11%'
'2013>01>25'06:00:35''''''''''''''197M'''''''''''1196608'kB''''''''''18.11%'
'2013>01>25'06:00:40''''''''''''''197M'''''''''''1197104'kB''''''''''18.11%'
'2013>01>25'06:00:45''''''''''''''197M'''''''''''1196972'kB''''''''''18.11%'
'2013>01>25'06:00:50''''''''''''''197M'''''''''''1196864'kB''''''''''18.11%'
'2013>01>25'06:00:55''''''''''''''197M'''''''''''1196492'kB''''''''''18.11%'
'2013>01>25'06:01:00''''''''''''''197M'''''''''''1197020'kB''''''''''18.11%'
'2013>01>25'06:01:05''''''''''''''197M'''''''''''1197120'kB''''''''''18.11%'
'2013>01>25'06:01:10''''''''''''''197M'''''''''''1197144'kB''''''''''18.11%'
'2013>01>25'06:01:15''''''''''''''197M'''''''''''1197392'kB''''''''''18.11%'

'2013>01>25'06:01:20''''''''''''''197M'''''''''''1197484'kB''''''''''18.11%'
'2013>01>25'06:01:25''''''''''''''197M'''''''''''1197368'kB''''''''''18.11%'
'2013>01>25'06:01:30''''''''''''''197M'''''''''''1197352'kB''''''''''18.11%'
'2013>01>25'06:01:35''''''''''''''197M'''''''''''1197260'kB''''''''''18.11%'
'2013>01>25'06:01:40''''''''''''''197M'''''''''''1197128'kB''''''''''18.11%'
'2013>01>25'06:01:45''''''''''''''197M'''''''''''1199120'kB''''''''''18.11%'
'2013>01>25'06:01:50''''''''''''''197M'''''''''''1198384'kB''''''''''18.11%'
'2013>01>25'06:01:55''''''''''''''197M'''''''''''1198880'kB''''''''''18.11%'
'2013>01>25'06:02:00''''''''''''''197M'''''''''''1198724'kB''''''''''18.11%'
'2013>01>25'06:02:05''''''''''''''197M'''''''''''1198732'kB'''''''''''18.1%'
'2013>01>25'06:02:10''''''''''''''197M'''''''''''1198832'kB'''''''''''18.1%'
'2013>01>25'06:02:15''''''''''''''197M'''''''''''1198732'kB'''''''''''18.1%'
'2013>01>25'06:02:20''''''''''''''197M'''''''''''1198824'kB'''''''''''18.1%'
'2013>01>25'06:02:25''''''''''''''197M'''''''''''1198832'kB'''''''''''18.1%'
'2013>01>25'06:02:30''''''''''''''197M'''''''''''1198600'kB'''''''''''18.1%'
'2013>01>25'06:02:35''''''''''''''197M'''''''''''1198476'kB'''''''''''18.1%'
'2013>01>25'06:02:40''''''''''''''197M'''''''''''1198368'kB'''''''''''18.1%'
'2013>01>25'06:02:45''''''''''''''197M'''''''''''1198740'kB'''''''''''18.1%'
'2013>01>25'06:02:50''''''''''''''197M'''''''''''1198616'kB'''''''''''18.1%'
'2013>01>25'06:02:56''''''''''''''197M'''''''''''1198616'kB'''''''''''18.1%'
'2013>01>25'06:03:01''''''''''''''197M'''''''''''1198832'kB'''''''''''18.1%'
'2013>01>25'06:03:06''''''''''''''197M'''''''''''1198832'kB'''''''''''18.1%'
'2013>01>25'06:03:11''''''''''''''197M'''''''''''1198824'kB'''''''''''18.1%'
'2013>01>25'06:03:16''''''''''''''197M'''''''''''1199088'kB'''''''''''18.1%'
'2013>01>25'06:03:21''''''''''''''197M'''''''''''1198444'kB'''''''''''18.1%'
'2013>01>25'06:03:26''''''''''''''197M'''''''''''1199080'kB'''''''''''18.1%'
'2013>01>25'06:03:31''''''''''''''197M'''''''''''1200700'kB'''''''''''18.1%'
'2013>01>25'06:03:36''''''''''''''197M'''''''''''1199352'kB'''''''''''18.1%'
'2013>01>25'06:03:41''''''''''''''197M'''''''''''1199328'kB'''''''''''18.1%'
'2013>01>25'06:03:46''''''''''''''197M'''''''''''1199452'kB'''''''''''18.1%'
'2013>01>25'06:03:51''''''''''''''197M'''''''''''1199328'kB'''''''''''18.1%'
'2013>01>25'06:03:56''''''''''''''197M'''''''''''1199080'kB'''''''''''18.1%'
'2013>01>25'06:04:01''''''''''''''197M'''''''''''1199584'kB'''''''''''18.1%'
'2013>01>25'06:04:06''''''''''''''197M'''''''''''1199492'kB'''''''''''18.1%'
'2013>01>25'06:04:11''''''''''''''197M'''''''''''1199468'kB'''''''''''18.1%'
'2013>01>25'06:04:16''''''''''''''197M'''''''''''1199252'kB'''''''''''18.1%'
'2013>01>25'06:04:21''''''''''''''197M'''''''''''1199220'kB'''''''''''18.1%'
'2013>01>25'06:04:26''''''''''''''197M'''''''''''1199616'kB'''''''''''18.1%'
'2013>01>25'06:04:31''''''''''''''197M'''''''''''1199616'kB'''''''''''18.1%'
'2013>01>25'06:04:36''''''''''''''197M'''''''''''1199368'kB'''''''''''18.1%'
'2013>01>25'06:04:41''''''''''''''197M'''''''''''1199088'kB'''''''''''18.1%'
'2013>01>25'06:04:46''''''''''''''197M'''''''''''1199608'kB'''''''''''18.1%'
'2013>01>25'06:04:51''''''''''''''197M'''''''''''1199128'kB'''''''''''18.1%'
'2013>01>25'06:04:56''''''''''''''197M'''''''''''1199128'kB'''''''''''18.1%'

'2013>01>25'06:05:01''''''''''''''197M'''''''''''1199220'kB'''''''''''18.1%'
'2013>01>25'06:05:06''''''''''''''197M'''''''''''1199344'kB'''''''''''18.1%'
'2013>01>25'06:05:11''''''''''''''197M'''''''''''1199080'kB'''''''''''18.1%'
'2013>01>25'06:05:16''''''''''''''197M'''''''''''1199088'kB'''''''''''18.1%'
'2013>01>25'06:05:21''''''''''''''197M'''''''''''1199220'kB'''''''''''18.1%'
'2013>01>25'06:05:26''''''''''''''197M'''''''''''1198856'kB'''''''''''18.1%'
'2013>01>25'06:05:31''''''''''''''197M'''''''''''1199476'kB'''''''''''18.1%'
'2013>01>25'06:05:36''''''''''''''197M'''''''''''1199196'kB'''''''''''18.1%'
'2013>01>25'06:05:41''''''''''''''197M'''''''''''1198988'kB'''''''''''18.1%'
'2013>01>25'06:05:46''''''''''''''197M'''''''''''1199484'kB'''''''''''18.1%'
'2013>01>25'06:05:51''''''''''''''197M'''''''''''1199376'kB'''''''''''18.1%'
'2013>01>25'06:05:56''''''''''''''197M'''''''''''1199096'kB'''''''''''18.1%'
'2013>01>25'06:06:01''''''''''''''197M'''''''''''1199740'kB'''''''''''18.1%'
'2013>01>25'06:06:06''''''''''''''197M'''''''''''1199492'kB'''''''''''18.1%'
'2013>01>25'06:06:11''''''''''''''197M'''''''''''1199104'kB'''''''''''18.1%'
'2013>01>25'06:06:16''''''''''''''197M'''''''''''1198948'kB'''''''''''18.1%'
'2013>01>25'06:06:21''''''''''''''197M'''''''''''1199444'kB'''''''''''18.1%'
'2013>01>25'06:06:26''''''''''''''197M'''''''''''1199568'kB'''''''''''18.1%'
'2013>01>25'06:06:31''''''''''''''197M'''''''''''1199220'kB'''''''''''18.1%'
'2013>01>25'06:06:36''''''''''''''197M'''''''''''1199320'kB'''''''''''18.1%'
'2013>01>25'06:06:41''''''''''''''197M'''''''''''1199072'kB'''''''''''18.1%'
'2013>01>25'06:06:46''''''''''''''197M'''''''''''1199220'kB'''''''''''18.1%'
'2013>01>25'06:06:52''''''''''''''197M'''''''''''1199368'kB'''''''''''18.1%'
'2013>01>25'06:06:57''''''''''''''197M'''''''''''1198964'kB'''''''''''18.1%'
'2013>01>25'06:07:02''''''''''''''197M'''''''''''1199088'kB'''''''''''18.1%'
'2013>01>25'06:07:07''''''''''''''197M'''''''''''1199468'kB'''''''''''18.1%'
'2013>01>25'06:07:12''''''''''''''197M'''''''''''1199220'kB'''''''''''18.1%'
'2013>01>25'06:07:17''''''''''''''197M'''''''''''1199188'kB'''''''''''18.1%'
'2013>01>25'06:07:22''''''''''''''197M'''''''''''1199832'kB'''''''''''18.1%'
'2013>01>25'06:07:27''''''''''''''197M'''''''''''1199336'kB'''''''''''18.1%'
'2013>01>25'06:07:32''''''''''''''197M'''''''''''1199212'kB'''''''''''18.1%'
'2013>01>25'06:07:37''''''''''''''197M'''''''''''1199328'kB'''''''''''18.1%'
'2013>01>25'06:07:42''''''''''''''197M'''''''''''1199080'kB'''''''''''18.1%'
'2013>01>25'06:07:47''''''''''''''197M'''''''''''1199328'kB'''''''''''18.1%'
'2013>01>25'06:07:52''''''''''''''197M'''''''''''1199460'kB'''''''''''18.1%'
'2013>01>25'06:07:57''''''''''''''197M'''''''''''1199676'kB'''''''''''18.1%'
'2013>01>25'06:08:02''''''''''''''197M'''''''''''1199832'kB'''''''''''18.1%'
'2013>01>25'06:08:07''''''''''''''197M'''''''''''1199352'kB'''''''''''18.1%'
'2013>01>25'06:08:12''''''''''''''197M'''''''''''1199336'kB'''''''''''18.1%'
'2013>01>25'06:08:17''''''''''''''197M'''''''''''1199552'kB'''''''''''18.1%'
'2013>01>25'06:08:22''''''''''''''197M'''''''''''1199320'kB'''''''''''18.1%'
'2013>01>25'06:08:27''''''''''''''197M'''''''''''1199452'kB'''''''''''18.1%'
'2013>01>25'06:08:32''''''''''''''197M'''''''''''1199452'kB'''''''''''18.1%'
'2013>01>25'06:08:37''''''''''''''197M'''''''''''1199560'kB''''''''''18.09%'
'2013>01>25'06:08:42''''''''''''''197M'''''''''''1199560'kB''''''''''18.09%'
'2013>01>25'06:08:47''''''''''''''197M'''''''''''1199312'kB''''''''''18.09%'
'2013>01>25'06:08:52''''''''''''''197M'''''''''''1199436'kB''''''''''18.09%'
'2013>01>25'06:08:57''''''''''''''197M'''''''''''1199528'kB''''''''''18.09%'
'2013>01>25'06:09:02''''''''''''''197M'''''''''''1199172'kB''''''''''18.09%'
'2013>01>25'06:09:07''''''''''''''197M'''''''''''1199668'kB''''''''''18.09%'

'2013>01>25'06:09:12''''''''''''''197M'''''''''''1199768'kB''''''''''18.09%'
'2013>01>25'06:09:17''''''''''''''197M'''''''''''1199784'kB''''''''''18.09%'
'2013>01>25'06:09:22''''''''''''''197M'''''''''''1199668'kB''''''''''18.09%'
'2013>01>25'06:09:27''''''''''''''197M'''''''''''1199420'kB''''''''''18.09%'
'2013>01>25'06:09:32''''''''''''''197M'''''''''''1199436'kB''''''''''18.09%'
'2013>01>25'06:09:37''''''''''''''197M'''''''''''1199652'kB''''''''''18.09%'
'2013>01>25'06:09:42''''''''''''''197M'''''''''''1199304'kB''''''''''18.09%'
'2013>01>25'06:09:47''''''''''''''197M'''''''''''1199056'kB''''''''''18.09%'
'2013>01>25'06:09:52''''''''''''''197M'''''''''''1199196'kB''''''''''18.09%'
'2013>01>25'06:09:57''''''''''''''197M'''''''''''1199164'kB''''''''''18.09%'
'2013>01>25'06:10:02''''''''''''''197M'''''''''''1200080'kB''''''''''18.09%'
'2013>01>25'06:10:07''''''''''''''197M'''''''''''1199716'kB''''''''''18.09%'
'2013>01>25'06:10:12''''''''''''''197M'''''''''''1199824'kB''''''''''18.09%'
'2013>01>25'06:10:17''''''''''''''197M'''''''''''1199552'kB''''''''''18.09%'
'2013>01>25'06:10:22''''''''''''''197M'''''''''''1199444'kB''''''''''18.09%'
'2013>01>25'06:10:27''''''''''''''197M'''''''''''1199444'kB''''''''''18.09%'
'2013>01>25'06:10:32''''''''''''''197M'''''''''''1199708'kB''''''''''18.09%'
'2013>01>25'06:10:37''''''''''''''197M'''''''''''1199948'kB''''''''''18.09%'
'2013>01>25'06:10:42''''''''''''''197M'''''''''''1200072'kB''''''''''18.09%'
'2013>01>25'06:10:47''''''''''''''197M'''''''''''1199956'kB''''''''''18.09%'
'2013>01>25'06:10:53''''''''''''''197M'''''''''''1199956'kB''''''''''18.09%'
'2013>01>25'06:10:58''''''''''''''197M'''''''''''1199304'kB''''''''''18.09%'
'2013>01>25'06:11:03''''''''''''''197M'''''''''''1199428'kB''''''''''18.09%'
'2013>01>25'06:11:08''''''''''''''197M'''''''''''1199808'kB''''''''''18.09%'
'2013>01>25'06:11:13''''''''''''''197M'''''''''''1199808'kB''''''''''18.09%'
'2013>01>25'06:11:18''''''''''''''197M'''''''''''1199900'kB''''''''''18.09%'
'2013>01>25'06:11:23''''''''''''''197M'''''''''''1199528'kB''''''''''18.09%'
'2013>01>25'06:11:28''''''''''''''197M'''''''''''1199900'kB''''''''''18.09%'
'2013>01>25'06:11:33''''''''''''''197M'''''''''''1200148'kB''''''''''18.09%'
'2013>01>25'06:11:38''''''''''''''197M'''''''''''1199536'kB''''''''''18.09%'
'2013>01>25'06:11:43''''''''''''''197M'''''''''''1200056'kB''''''''''18.09%'
'2013>01>25'06:11:48''''''''''''''197M'''''''''''1200080'kB''''''''''18.09%'
'2013>01>25'06:11:53''''''''''''''197M'''''''''''1200048'kB''''''''''18.09%'
'2013>01>25'06:11:58''''''''''''''197M'''''''''''1199948'kB''''''''''18.09%'
'2013>01>25'06:12:03''''''''''''''197M'''''''''''1200468'kB''''''''''18.09%'
'2013>01>25'06:12:08''''''''''''''197M'''''''''''1200244'kB''''''''''18.09%'
'2013>01>25'06:12:13''''''''''''''197M'''''''''''1200196'kB''''''''''18.09%'
'2013>01>25'06:12:18''''''''''''''197M'''''''''''1199948'kB''''''''''18.09%'
'2013>01>25'06:12:23''''''''''''''197M'''''''''''1200072'kB''''''''''18.09%'
'2013>01>25'06:12:28''''''''''''''197M'''''''''''1199948'kB''''''''''18.09%'
'2013>01>25'06:12:33''''''''''''''197M'''''''''''1199916'kB''''''''''18.09%'
'2013>01>25'06:12:38''''''''''''''197M'''''''''''1200056'kB''''''''''18.09%'
'2013>01>25'06:12:43''''''''''''''197M'''''''''''1200180'kB''''''''''18.09%'
'2013>01>25'06:12:48''''''''''''''197M'''''''''''1200196'kB''''''''''18.09%'
'2013>01>25'06:12:53''''''''''''''197M'''''''''''1200040'kB''''''''''18.09%'
'

TC4,%Node%A
%TIMESTAMP%%%%%%%%%%%%%%%%%%DISK%USAGE%%%%%%%%%MEMORY%USAGE%%%%%%%CPU%USAGE%
==%
%2013<01<25%10:55:32%%%%%%%%%%%%%%317M%%%%%%%%%%%%777316%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:55:37%%%%%%%%%%%%%%317M%%%%%%%%%%%%783772%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:55:42%%%%%%%%%%%%%%317M%%%%%%%%%%%%843256%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:55:47%%%%%%%%%%%%%%317M%%%%%%%%%%%%878208%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:55:53%%%%%%%%%%%%%%317M%%%%%%%%%%%%877596%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:55:58%%%%%%%%%%%%%%317M%%%%%%%%%%%%875916%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:56:03%%%%%%%%%%%%%%317M%%%%%%%%%%%%879240%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:56:09%%%%%%%%%%%%%%317M%%%%%%%%%%%%882092%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:56:14%%%%%%%%%%%%%%317M%%%%%%%%%%%%885416%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:56:19%%%%%%%%%%%%%%317M%%%%%%%%%%%%888516%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:56:24%%%%%%%%%%%%%%317M%%%%%%%%%%%%891872%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:56:29%%%%%%%%%%%%%%317M%%%%%%%%%%%%894492%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:56:35%%%%%%%%%%%%%%317M%%%%%%%%%%%%897576%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:56:40%%%%%%%%%%%%%%317M%%%%%%%%%%%%900460%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:56:45%%%%%%%%%%%%%%317M%%%%%%%%%%%%903280%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:56:50%%%%%%%%%%%%%%317M%%%%%%%%%%%%906016%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:56:56%%%%%%%%%%%%%%317M%%%%%%%%%%%%909108%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:01%%%%%%%%%%%%%%317M%%%%%%%%%%%%913556%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:06%%%%%%%%%%%%%%317M%%%%%%%%%%%%916416%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:11%%%%%%%%%%%%%%317M%%%%%%%%%%%%919300%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:16%%%%%%%%%%%%%%317M%%%%%%%%%%%%922088%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:22%%%%%%%%%%%%%%317M%%%%%%%%%%%%924096%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:27%%%%%%%%%%%%%%317M%%%%%%%%%%%%926468%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:32%%%%%%%%%%%%%%317M%%%%%%%%%%%%929452%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:38%%%%%%%%%%%%%%317M%%%%%%%%%%%%932048%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:43%%%%%%%%%%%%%%317M%%%%%%%%%%%%933900%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:48%%%%%%%%%%%%%%317M%%%%%%%%%%%%936132%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:53%%%%%%%%%%%%%%317M%%%%%%%%%%%%938340%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:57:58%%%%%%%%%%%%%%317M%%%%%%%%%%%%941488%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:58:03%%%%%%%%%%%%%%317M%%%%%%%%%%%%943704%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:58:08%%%%%%%%%%%%%%317M%%%%%%%%%%%%946076%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:58:14%%%%%%%%%%%%%%317M%%%%%%%%%%%%947920%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:58:19%%%%%%%%%%%%%%317M%%%%%%%%%%%%949516%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:58:24%%%%%%%%%%%%%%317M%%%%%%%%%%%%952144%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:58:29%%%%%%%%%%%%%%317M%%%%%%%%%%%%954368%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:58:34%%%%%%%%%%%%%%317M%%%%%%%%%%%%955964%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:58:39%%%%%%%%%%%%%%317M%%%%%%%%%%%%957824%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:58:45%%%%%%%%%%%%%%317M%%%%%%%%%%%%959436%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:58:50%%%%%%%%%%%%%%317M%%%%%%%%%%%%961420%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:58:55%%%%%%%%%%%%%%317M%%%%%%%%%%%%962908%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:59:00%%%%%%%%%%%%%%317M%%%%%%%%%%%%964760%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:59:05%%%%%%%%%%%%%%317M%%%%%%%%%%%%966636%kB%%%%%%%%%%%0.07%%

%2013<01<25%10:59:10%%%%%%%%%%%%%%317M%%%%%%%%%%%%968984%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:59:15%%%%%%%%%%%%%%317M%%%%%%%%%%%%970836%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:59:21%%%%%%%%%%%%%%317M%%%%%%%%%%%%973208%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:59:26%%%%%%%%%%%%%%317M%%%%%%%%%%%%975068%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:59:31%%%%%%%%%%%%%%317M%%%%%%%%%%%%977184%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:59:36%%%%%%%%%%%%%%317M%%%%%%%%%%%%979128%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:59:41%%%%%%%%%%%%%%317M%%%%%%%%%%%%981508%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:59:46%%%%%%%%%%%%%%317M%%%%%%%%%%%%983624%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:59:52%%%%%%%%%%%%%%317M%%%%%%%%%%%%986080%kB%%%%%%%%%%%0.07%%
%2013<01<25%10:59:57%%%%%%%%%%%%%%317M%%%%%%%%%%%%988072%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:02%%%%%%%%%%%%%%317M%%%%%%%%%%%%990180%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:07%%%%%%%%%%%%%%317M%%%%%%%%%%%%991552%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:12%%%%%%%%%%%%%%317M%%%%%%%%%%%%993420%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:18%%%%%%%%%%%%%%317M%%%%%%%%%%%%995148%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:23%%%%%%%%%%%%%%317M%%%%%%%%%%%%935728%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:28%%%%%%%%%%%%%%317M%%%%%%%%%%%%935860%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:33%%%%%%%%%%%%%%317M%%%%%%%%%%%%936044%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:38%%%%%%%%%%%%%%317M%%%%%%%%%%%%936408%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:43%%%%%%%%%%%%%%317M%%%%%%%%%%%%936548%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:48%%%%%%%%%%%%%%317M%%%%%%%%%%%%936896%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:53%%%%%%%%%%%%%%317M%%%%%%%%%%%%937028%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:00:58%%%%%%%%%%%%%%317M%%%%%%%%%%%%937004%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:03%%%%%%%%%%%%%%317M%%%%%%%%%%%%937152%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:08%%%%%%%%%%%%%%317M%%%%%%%%%%%%937136%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:13%%%%%%%%%%%%%%317M%%%%%%%%%%%%937384%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:18%%%%%%%%%%%%%%317M%%%%%%%%%%%%937748%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:23%%%%%%%%%%%%%%317M%%%%%%%%%%%%937460%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:28%%%%%%%%%%%%%%317M%%%%%%%%%%%%937684%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:33%%%%%%%%%%%%%%317M%%%%%%%%%%%%937816%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:38%%%%%%%%%%%%%%317M%%%%%%%%%%%%938180%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:43%%%%%%%%%%%%%%317M%%%%%%%%%%%%938288%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:48%%%%%%%%%%%%%%317M%%%%%%%%%%%%938396%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:53%%%%%%%%%%%%%%317M%%%%%%%%%%%%938552%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:01:58%%%%%%%%%%%%%%317M%%%%%%%%%%%%939180%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:02:03%%%%%%%%%%%%%%317M%%%%%%%%%%%%939420%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:02:08%%%%%%%%%%%%%%317M%%%%%%%%%%%%939428%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:02:14%%%%%%%%%%%%%%317M%%%%%%%%%%%%939668%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:02:19%%%%%%%%%%%%%%317M%%%%%%%%%%%%939924%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:02:24%%%%%%%%%%%%%%317M%%%%%%%%%%%%940040%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:02:29%%%%%%%%%%%%%%317M%%%%%%%%%%%%940024%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:02:34%%%%%%%%%%%%%%317M%%%%%%%%%%%%940660%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:02:39%%%%%%%%%%%%%%317M%%%%%%%%%%%%941048%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:02:44%%%%%%%%%%%%%%317M%%%%%%%%%%%%940752%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:02:49%%%%%%%%%%%%%%317M%%%%%%%%%%%%941272%kB%%%%%%%%%%%0.07%%

%2013<01<25%11:02:54%%%%%%%%%%%%%%317M%%%%%%%%%%%%941140%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:02:59%%%%%%%%%%%%%%317M%%%%%%%%%%%%941692%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:04%%%%%%%%%%%%%%317M%%%%%%%%%%%%941916%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:09%%%%%%%%%%%%%%317M%%%%%%%%%%%%942156%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:14%%%%%%%%%%%%%%317M%%%%%%%%%%%%942528%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:19%%%%%%%%%%%%%%317M%%%%%%%%%%%%942652%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:24%%%%%%%%%%%%%%317M%%%%%%%%%%%%942876%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:29%%%%%%%%%%%%%%317M%%%%%%%%%%%%942892%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:34%%%%%%%%%%%%%%317M%%%%%%%%%%%%943000%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:39%%%%%%%%%%%%%%317M%%%%%%%%%%%%943636%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:44%%%%%%%%%%%%%%317M%%%%%%%%%%%%943876%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:49%%%%%%%%%%%%%%317M%%%%%%%%%%%%944776%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:54%%%%%%%%%%%%%%317M%%%%%%%%%%%%945132%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:03:59%%%%%%%%%%%%%%317M%%%%%%%%%%%%945248%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:04:04%%%%%%%%%%%%%%317M%%%%%%%%%%%%945248%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:04:09%%%%%%%%%%%%%%317M%%%%%%%%%%%%945628%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:04:14%%%%%%%%%%%%%%317M%%%%%%%%%%%%945992%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:04:19%%%%%%%%%%%%%%317M%%%%%%%%%%%%946240%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:04:25%%%%%%%%%%%%%%317M%%%%%%%%%%%%946604%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:04:30%%%%%%%%%%%%%%317M%%%%%%%%%%%%947488%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:04:35%%%%%%%%%%%%%%317M%%%%%%%%%%%%947744%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:04:40%%%%%%%%%%%%%%317M%%%%%%%%%%%%947868%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:04:45%%%%%%%%%%%%%%317M%%%%%%%%%%%%948124%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:04:50%%%%%%%%%%%%%%317M%%%%%%%%%%%%948248%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:04:55%%%%%%%%%%%%%%317M%%%%%%%%%%%%948876%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:00%%%%%%%%%%%%%%317M%%%%%%%%%%%%949108%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:05%%%%%%%%%%%%%%317M%%%%%%%%%%%%949264%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:10%%%%%%%%%%%%%%317M%%%%%%%%%%%%949240%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:15%%%%%%%%%%%%%%317M%%%%%%%%%%%%949108%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:20%%%%%%%%%%%%%%317M%%%%%%%%%%%%949976%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:25%%%%%%%%%%%%%%317M%%%%%%%%%%%%950248%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:30%%%%%%%%%%%%%%317M%%%%%%%%%%%%949820%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:35%%%%%%%%%%%%%%317M%%%%%%%%%%%%950340%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:40%%%%%%%%%%%%%%317M%%%%%%%%%%%%950216%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:45%%%%%%%%%%%%%%317M%%%%%%%%%%%%950720%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:50%%%%%%%%%%%%%%317M%%%%%%%%%%%%950472%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:05:55%%%%%%%%%%%%%%317M%%%%%%%%%%%%950588%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:00%%%%%%%%%%%%%%317M%%%%%%%%%%%%951224%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:05%%%%%%%%%%%%%%317M%%%%%%%%%%%%951572%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:10%%%%%%%%%%%%%%317M%%%%%%%%%%%%951696%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:15%%%%%%%%%%%%%%317M%%%%%%%%%%%%952192%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:20%%%%%%%%%%%%%%317M%%%%%%%%%%%%952152%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:25%%%%%%%%%%%%%%317M%%%%%%%%%%%%952316%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:31%%%%%%%%%%%%%%317M%%%%%%%%%%%%952656%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:36%%%%%%%%%%%%%%317M%%%%%%%%%%%%952812%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:41%%%%%%%%%%%%%%317M%%%%%%%%%%%%953052%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:46%%%%%%%%%%%%%%317M%%%%%%%%%%%%953184%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:51%%%%%%%%%%%%%%317M%%%%%%%%%%%%953556%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:06:56%%%%%%%%%%%%%%317M%%%%%%%%%%%%953704%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:07:01%%%%%%%%%%%%%%317M%%%%%%%%%%%%953936%kB%%%%%%%%%%%0.07%%

%2013<01<25%11:07:06%%%%%%%%%%%%%%317M%%%%%%%%%%%%954060%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:07:11%%%%%%%%%%%%%%317M%%%%%%%%%%%%954424%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:07:16%%%%%%%%%%%%%%317M%%%%%%%%%%%%954564%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:07:21%%%%%%%%%%%%%%317M%%%%%%%%%%%%954920%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:07:26%%%%%%%%%%%%%%317M%%%%%%%%%%%%954772%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:07:31%%%%%%%%%%%%%%317M%%%%%%%%%%%%955556%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:07:36%%%%%%%%%%%%%%317M%%%%%%%%%%%%955688%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:07:41%%%%%%%%%%%%%%317M%%%%%%%%%%%%955780%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:07:46%%%%%%%%%%%%%%317M%%%%%%%%%%%%955912%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:07:51%%%%%%%%%%%%%%317M%%%%%%%%%%%%955920%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:07:56%%%%%%%%%%%%%%317M%%%%%%%%%%%%956292%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:01%%%%%%%%%%%%%%317M%%%%%%%%%%%%956384%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:06%%%%%%%%%%%%%%317M%%%%%%%%%%%%957028%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:11%%%%%%%%%%%%%%317M%%%%%%%%%%%%957144%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:16%%%%%%%%%%%%%%317M%%%%%%%%%%%%957152%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:21%%%%%%%%%%%%%%317M%%%%%%%%%%%%957532%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:26%%%%%%%%%%%%%%317M%%%%%%%%%%%%957516%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:31%%%%%%%%%%%%%%317M%%%%%%%%%%%%957772%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:36%%%%%%%%%%%%%%317M%%%%%%%%%%%%957896%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:41%%%%%%%%%%%%%%317M%%%%%%%%%%%%957888%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:47%%%%%%%%%%%%%%317M%%%%%%%%%%%%958260%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:52%%%%%%%%%%%%%%317M%%%%%%%%%%%%958656%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:08:57%%%%%%%%%%%%%%317M%%%%%%%%%%%%958384%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:02%%%%%%%%%%%%%%317M%%%%%%%%%%%%958516%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:07%%%%%%%%%%%%%%317M%%%%%%%%%%%%959004%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:12%%%%%%%%%%%%%%317M%%%%%%%%%%%%959012%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:17%%%%%%%%%%%%%%317M%%%%%%%%%%%%959400%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:22%%%%%%%%%%%%%%317M%%%%%%%%%%%%959244%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:27%%%%%%%%%%%%%%317M%%%%%%%%%%%%959516%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:32%%%%%%%%%%%%%%317M%%%%%%%%%%%%959632%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:37%%%%%%%%%%%%%%317M%%%%%%%%%%%%959896%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:42%%%%%%%%%%%%%%317M%%%%%%%%%%%%960260%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:47%%%%%%%%%%%%%%317M%%%%%%%%%%%%960392%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:52%%%%%%%%%%%%%%317M%%%%%%%%%%%%960508%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:09:57%%%%%%%%%%%%%%317M%%%%%%%%%%%%960764%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:10:02%%%%%%%%%%%%%%317M%%%%%%%%%%%%960740%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:10:07%%%%%%%%%%%%%%317M%%%%%%%%%%%%961128%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:10:12%%%%%%%%%%%%%%317M%%%%%%%%%%%%960988%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:10:17%%%%%%%%%%%%%%317M%%%%%%%%%%%%961136%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:10:22%%%%%%%%%%%%%%317M%%%%%%%%%%%%961368%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:10:27%%%%%%%%%%%%%%317M%%%%%%%%%%%%961740%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:10:32%%%%%%%%%%%%%%317M%%%%%%%%%%%%962004%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:10:37%%%%%%%%%%%%%%317M%%%%%%%%%%%%962120%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:10:42%%%%%%%%%%%%%%317M%%%%%%%%%%%%962252%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:10:47%%%%%%%%%%%%%%317M%%%%%%%%%%%%962228%kB%%%%%%%%%%%0.07%%
%

TC4,%Node%B
%TIMESTAMP%%%%%%%%%%%%%%%%%%DISK%USAGE%%%%%%%%%MEMORY%USAGE%%%%%%%CPU%USAGE%
==%
%2013=01=25%06:21:36%%%%%%%%%%%%%%197M%%%%%%%%%%%1203816%kB%%%%%%%%%%18.08%%
%2013=01=25%06:21:41%%%%%%%%%%%%%%197M%%%%%%%%%%%1222100%kB%%%%%%%%%%18.07%%
%2013=01=25%06:21:46%%%%%%%%%%%%%%197M%%%%%%%%%%%1234416%kB%%%%%%%%%%18.07%%
%2013=01=25%06:21:51%%%%%%%%%%%%%%197M%%%%%%%%%%%1236664%kB%%%%%%%%%%18.06%%
%2013=01=25%06:21:56%%%%%%%%%%%%%%197M%%%%%%%%%%%1238176%kB%%%%%%%%%%18.06%%
%2013=01=25%06:22:01%%%%%%%%%%%%%%197M%%%%%%%%%%%1246940%kB%%%%%%%%%%18.05%%
%2013=01=25%06:22:06%%%%%%%%%%%%%%197M%%%%%%%%%%%1253452%kB%%%%%%%%%%18.05%%
%2013=01=25%06:22:11%%%%%%%%%%%%%%197M%%%%%%%%%%%1253760%kB%%%%%%%%%%18.04%%
%2013=01=25%06:22:16%%%%%%%%%%%%%%197M%%%%%%%%%%%1254272%kB%%%%%%%%%%18.04%%
%2013=01=25%06:22:21%%%%%%%%%%%%%%197M%%%%%%%%%%%1254452%kB%%%%%%%%%%18.03%%
%2013=01=25%06:22:26%%%%%%%%%%%%%%197M%%%%%%%%%%%1255420%kB%%%%%%%%%%18.03%%
%2013=01=25%06:22:31%%%%%%%%%%%%%%197M%%%%%%%%%%%1264936%kB%%%%%%%%%%18.02%%
%2013=01=25%06:22:36%%%%%%%%%%%%%%197M%%%%%%%%%%%1276592%kB%%%%%%%%%%18.01%%
%2013=01=25%06:22:41%%%%%%%%%%%%%%197M%%%%%%%%%%%1278320%kB%%%%%%%%%%18.01%%
%2013=01=25%06:22:46%%%%%%%%%%%%%%197M%%%%%%%%%%%1278840%kB%%%%%%%%%%%%%18%%
%2013=01=25%06:22:51%%%%%%%%%%%%%%197M%%%%%%%%%%%1279236%kB%%%%%%%%%%%%%18%%
%2013=01=25%06:22:56%%%%%%%%%%%%%%197M%%%%%%%%%%%1279692%kB%%%%%%%%%%17.99%%
%2013=01=25%06:23:01%%%%%%%%%%%%%%197M%%%%%%%%%%%1280228%kB%%%%%%%%%%17.98%%
%2013=01=25%06:23:06%%%%%%%%%%%%%%197M%%%%%%%%%%%1280684%kB%%%%%%%%%%17.98%%
%2013=01=25%06:23:11%%%%%%%%%%%%%%197M%%%%%%%%%%%1280692%kB%%%%%%%%%%17.97%%
%2013=01=25%06:23:16%%%%%%%%%%%%%%197M%%%%%%%%%%%1281080%kB%%%%%%%%%%17.96%%
%2013=01=25%06:23:21%%%%%%%%%%%%%%197M%%%%%%%%%%%1280948%kB%%%%%%%%%%17.96%%
%2013=01=25%06:23:26%%%%%%%%%%%%%%197M%%%%%%%%%%%1281368%kB%%%%%%%%%%17.95%%
%2013=01=25%06:23:31%%%%%%%%%%%%%%197M%%%%%%%%%%%1281784%kB%%%%%%%%%%17.94%%
%2013=01=25%06:23:36%%%%%%%%%%%%%%197M%%%%%%%%%%%1281684%kB%%%%%%%%%%17.94%%
%2013=01=25%06:23:41%%%%%%%%%%%%%%197M%%%%%%%%%%%1281808%kB%%%%%%%%%%17.93%%
%2013=01=25%06:23:46%%%%%%%%%%%%%%197M%%%%%%%%%%%1282296%kB%%%%%%%%%%17.93%%
%2013=01=25%06:23:51%%%%%%%%%%%%%%197M%%%%%%%%%%%1282412%kB%%%%%%%%%%17.92%%
%2013=01=25%06:23:56%%%%%%%%%%%%%%197M%%%%%%%%%%%1282180%kB%%%%%%%%%%17.91%%
%2013=01=25%06:24:01%%%%%%%%%%%%%%197M%%%%%%%%%%%1285484%kB%%%%%%%%%%17.91%%
%2013=01=25%06:24:06%%%%%%%%%%%%%%197M%%%%%%%%%%%1285288%kB%%%%%%%%%%%17.9%%
%2013=01=25%06:24:11%%%%%%%%%%%%%%197M%%%%%%%%%%%1285716%kB%%%%%%%%%%17.89%%
%2013=01=25%06:24:16%%%%%%%%%%%%%%197M%%%%%%%%%%%1285552%kB%%%%%%%%%%17.89%%
%2013=01=25%06:24:21%%%%%%%%%%%%%%197M%%%%%%%%%%%1285280%kB%%%%%%%%%%17.88%%
%2013=01=25%06:24:27%%%%%%%%%%%%%%197M%%%%%%%%%%%1285280%kB%%%%%%%%%%17.88%%
%2013=01=25%06:24:32%%%%%%%%%%%%%%197M%%%%%%%%%%%1285800%kB%%%%%%%%%%17.87%%
%2013=01=25%06:24:37%%%%%%%%%%%%%%197M%%%%%%%%%%%1285924%kB%%%%%%%%%%17.86%%
%2013=01=25%06:24:42%%%%%%%%%%%%%%197M%%%%%%%%%%%1286032%kB%%%%%%%%%%17.86%%
%2013=01=25%06:24:47%%%%%%%%%%%%%%197M%%%%%%%%%%%1286312%kB%%%%%%%%%%17.85%%
%2013=01=25%06:24:52%%%%%%%%%%%%%%197M%%%%%%%%%%%1286404%kB%%%%%%%%%%17.85%%
%2013=01=25%06:24:57%%%%%%%%%%%%%%197M%%%%%%%%%%%1286676%kB%%%%%%%%%%17.84%%
%2013=01=25%06:25:02%%%%%%%%%%%%%%197M%%%%%%%%%%%1288700%kB%%%%%%%%%%17.84%%

%2013=01=25%06:25:07%%%%%%%%%%%%%%197M%%%%%%%%%%%1287420%kB%%%%%%%%%%17.83%%
%2013=01=25%06:25:12%%%%%%%%%%%%%%197M%%%%%%%%%%%1287360%kB%%%%%%%%%%17.82%%
%2013=01=25%06:25:17%%%%%%%%%%%%%%197M%%%%%%%%%%%1287892%kB%%%%%%%%%%17.82%%
%2013=01=25%06:25:22%%%%%%%%%%%%%%197M%%%%%%%%%%%1288568%kB%%%%%%%%%%17.81%%
%2013=01=25%06:25:27%%%%%%%%%%%%%%197M%%%%%%%%%%%1288064%kB%%%%%%%%%%17.81%%
%2013=01=25%06:25:32%%%%%%%%%%%%%%197M%%%%%%%%%%%1288196%kB%%%%%%%%%%%17.8%%
%2013=01=25%06:25:37%%%%%%%%%%%%%%197M%%%%%%%%%%%1288172%kB%%%%%%%%%%17.79%%
%2013=01=25%06:25:42%%%%%%%%%%%%%%197M%%%%%%%%%%%1288172%kB%%%%%%%%%%17.78%%
%2013=01=25%06:25:47%%%%%%%%%%%%%%197M%%%%%%%%%%%1288512%kB%%%%%%%%%%17.78%%
%2013=01=25%06:25:52%%%%%%%%%%%%%%197M%%%%%%%%%%%1288420%kB%%%%%%%%%%17.77%%
%2013=01=25%06:25:57%%%%%%%%%%%%%%197M%%%%%%%%%%%1288492%kB%%%%%%%%%%17.76%%
%2013=01=25%06:26:02%%%%%%%%%%%%%%197M%%%%%%%%%%%1289048%kB%%%%%%%%%%17.76%%
%2013=01=25%06:26:07%%%%%%%%%%%%%%197M%%%%%%%%%%%1289188%kB%%%%%%%%%%17.75%%
%2013=01=25%06:26:12%%%%%%%%%%%%%%197M%%%%%%%%%%%1289792%kB%%%%%%%%%%17.74%%
%2013=01=25%06:26:17%%%%%%%%%%%%%%197M%%%%%%%%%%%1289552%kB%%%%%%%%%%17.74%%
%2013=01=25%06:26:22%%%%%%%%%%%%%%197M%%%%%%%%%%%1289304%kB%%%%%%%%%%17.73%%
%2013=01=25%06:26:27%%%%%%%%%%%%%%197M%%%%%%%%%%%1289156%kB%%%%%%%%%%17.73%%
%2013=01=25%06:26:32%%%%%%%%%%%%%%197M%%%%%%%%%%%1289256%kB%%%%%%%%%%17.72%%
%2013=01=25%06:26:37%%%%%%%%%%%%%%197M%%%%%%%%%%%1289304%kB%%%%%%%%%%17.71%%
%2013=01=25%06:26:42%%%%%%%%%%%%%%197M%%%%%%%%%%%1289660%kB%%%%%%%%%%17.71%%
%2013=01=25%06:26:47%%%%%%%%%%%%%%197M%%%%%%%%%%%1290032%kB%%%%%%%%%%%17.7%%
%2013=01=25%06:26:52%%%%%%%%%%%%%%197M%%%%%%%%%%%1290412%kB%%%%%%%%%%%17.7%%
%2013=01=25%06:26:57%%%%%%%%%%%%%%197M%%%%%%%%%%%1290404%kB%%%%%%%%%%17.69%%
%2013=01=25%06:27:02%%%%%%%%%%%%%%197M%%%%%%%%%%%1290140%kB%%%%%%%%%%17.68%%
%2013=01=25%06:27:07%%%%%%%%%%%%%%197M%%%%%%%%%%%1290064%kB%%%%%%%%%%17.68%%
%2013=01=25%06:27:12%%%%%%%%%%%%%%197M%%%%%%%%%%%1290008%kB%%%%%%%%%%17.67%%
%2013=01=25%06:27:17%%%%%%%%%%%%%%197M%%%%%%%%%%%1290396%kB%%%%%%%%%%17.67%%
%2013=01=25%06:27:22%%%%%%%%%%%%%%197M%%%%%%%%%%%1290372%kB%%%%%%%%%%17.66%%
%2013=01=25%06:27:27%%%%%%%%%%%%%%197M%%%%%%%%%%%1290404%kB%%%%%%%%%%17.65%%
%2013=01=25%06:27:32%%%%%%%%%%%%%%197M%%%%%%%%%%%1290156%kB%%%%%%%%%%17.65%%
%2013=01=25%06:27:37%%%%%%%%%%%%%%197M%%%%%%%%%%%1289876%kB%%%%%%%%%%17.64%%
%2013=01=25%06:27:42%%%%%%%%%%%%%%197M%%%%%%%%%%%1290652%kB%%%%%%%%%%17.63%%
%2013=01=25%06:27:47%%%%%%%%%%%%%%197M%%%%%%%%%%%1290584%kB%%%%%%%%%%17.63%%
%2013=01=25%06:27:52%%%%%%%%%%%%%%197M%%%%%%%%%%%1290964%kB%%%%%%%%%%17.62%%
%2013=01=25%06:27:57%%%%%%%%%%%%%%197M%%%%%%%%%%%1290892%kB%%%%%%%%%%17.61%%
%2013=01=25%06:28:02%%%%%%%%%%%%%%197M%%%%%%%%%%%1290972%kB%%%%%%%%%%17.61%%
%2013=01=25%06:28:08%%%%%%%%%%%%%%197M%%%%%%%%%%%1291024%kB%%%%%%%%%%%17.6%%
%2013=01=25%06:28:13%%%%%%%%%%%%%%197M%%%%%%%%%%%1291256%kB%%%%%%%%%%%17.6%%
%2013=01=25%06:28:18%%%%%%%%%%%%%%197M%%%%%%%%%%%1291560%kB%%%%%%%%%%17.59%%
%2013=01=25%06:28:23%%%%%%%%%%%%%%197M%%%%%%%%%%%1291188%kB%%%%%%%%%%17.59%%
%2013=01=25%06:28:28%%%%%%%%%%%%%%197M%%%%%%%%%%%1291356%kB%%%%%%%%%%17.58%%
%2013=01=25%06:28:33%%%%%%%%%%%%%%197M%%%%%%%%%%%1291760%kB%%%%%%%%%%17.58%%
%2013=01=25%06:28:38%%%%%%%%%%%%%%197M%%%%%%%%%%%1291380%kB%%%%%%%%%%17.57%%
%2013=01=25%06:28:43%%%%%%%%%%%%%%197M%%%%%%%%%%%1291504%kB%%%%%%%%%%17.56%%

%2013=01=25%06:28:48%%%%%%%%%%%%%%197M%%%%%%%%%%%1291868%kB%%%%%%%%%%17.56%%
%2013=01=25%06:28:53%%%%%%%%%%%%%%197M%%%%%%%%%%%1292256%kB%%%%%%%%%%17.55%%
%2013=01=25%06:28:58%%%%%%%%%%%%%%197M%%%%%%%%%%%1292000%kB%%%%%%%%%%17.55%%
%2013=01=25%06:29:03%%%%%%%%%%%%%%197M%%%%%%%%%%%1292024%kB%%%%%%%%%%17.54%%
%2013=01=25%06:29:08%%%%%%%%%%%%%%197M%%%%%%%%%%%1291984%kB%%%%%%%%%%17.54%%
%2013=01=25%06:29:13%%%%%%%%%%%%%%197M%%%%%%%%%%%1292024%kB%%%%%%%%%%17.53%%
%2013=01=25%06:29:18%%%%%%%%%%%%%%197M%%%%%%%%%%%1292628%kB%%%%%%%%%%17.53%%
%2013=01=25%06:29:23%%%%%%%%%%%%%%197M%%%%%%%%%%%1292612%kB%%%%%%%%%%17.52%%
%2013=01=25%06:29:28%%%%%%%%%%%%%%197M%%%%%%%%%%%1292612%kB%%%%%%%%%%17.51%%
%2013=01=25%06:29:33%%%%%%%%%%%%%%197M%%%%%%%%%%%1292984%kB%%%%%%%%%%17.51%%
%2013=01=25%06:29:38%%%%%%%%%%%%%%197M%%%%%%%%%%%1292876%kB%%%%%%%%%%%17.5%%
%2013=01=25%06:29:43%%%%%%%%%%%%%%197M%%%%%%%%%%%1292848%kB%%%%%%%%%%%17.5%%
%2013=01=25%06:29:48%%%%%%%%%%%%%%197M%%%%%%%%%%%1293860%kB%%%%%%%%%%17.49%%
%2013=01=25%06:29:53%%%%%%%%%%%%%%197M%%%%%%%%%%%1293868%kB%%%%%%%%%%17.48%%
%2013=01=25%06:29:58%%%%%%%%%%%%%%197M%%%%%%%%%%%1293488%kB%%%%%%%%%%17.48%%
%2013=01=25%06:30:03%%%%%%%%%%%%%%197M%%%%%%%%%%%1294660%kB%%%%%%%%%%17.47%%
%2013=01=25%06:30:08%%%%%%%%%%%%%%197M%%%%%%%%%%%1294008%kB%%%%%%%%%%17.47%%
%2013=01=25%06:30:13%%%%%%%%%%%%%%197M%%%%%%%%%%%1293768%kB%%%%%%%%%%17.46%%
%2013=01=25%06:30:18%%%%%%%%%%%%%%197M%%%%%%%%%%%1293396%kB%%%%%%%%%%17.46%%
%2013=01=25%06:30:23%%%%%%%%%%%%%%197M%%%%%%%%%%%1293644%kB%%%%%%%%%%17.45%%
%2013=01=25%06:30:28%%%%%%%%%%%%%%197M%%%%%%%%%%%1293884%kB%%%%%%%%%%17.45%%
%2013=01=25%06:30:33%%%%%%%%%%%%%%197M%%%%%%%%%%%1294056%kB%%%%%%%%%%17.44%%
%2013=01=25%06:30:38%%%%%%%%%%%%%%197M%%%%%%%%%%%1294768%kB%%%%%%%%%%17.44%%
%2013=01=25%06:30:43%%%%%%%%%%%%%%197M%%%%%%%%%%%1295504%kB%%%%%%%%%%17.43%%
%2013=01=25%06:30:48%%%%%%%%%%%%%%197M%%%%%%%%%%%1295744%kB%%%%%%%%%%17.43%%
%2013=01=25%06:30:53%%%%%%%%%%%%%%197M%%%%%%%%%%%1296100%kB%%%%%%%%%%17.42%%
%2013=01=25%06:30:58%%%%%%%%%%%%%%197M%%%%%%%%%%%1296108%kB%%%%%%%%%%17.41%%
%2013=01=25%06:31:03%%%%%%%%%%%%%%197M%%%%%%%%%%%1296332%kB%%%%%%%%%%17.41%%
%2013=01=25%06:31:08%%%%%%%%%%%%%%197M%%%%%%%%%%%1296704%kB%%%%%%%%%%%17.4%%
%2013=01=25%06:31:13%%%%%%%%%%%%%%197M%%%%%%%%%%%1296472%kB%%%%%%%%%%17.39%%
%2013=01=25%06:31:18%%%%%%%%%%%%%%197M%%%%%%%%%%%1296092%kB%%%%%%%%%%17.39%%
%2013=01=25%06:31:23%%%%%%%%%%%%%%197M%%%%%%%%%%%1296596%kB%%%%%%%%%%17.38%%
%2013=01=25%06:31:28%%%%%%%%%%%%%%197M%%%%%%%%%%%1297000%kB%%%%%%%%%%17.38%%
%2013=01=25%06:31:33%%%%%%%%%%%%%%197M%%%%%%%%%%%1296696%kB%%%%%%%%%%17.37%%
%2013=01=25%06:31:38%%%%%%%%%%%%%%197M%%%%%%%%%%%1297188%kB%%%%%%%%%%17.37%%
%2013=01=25%06:31:44%%%%%%%%%%%%%%197M%%%%%%%%%%%1297140%kB%%%%%%%%%%17.36%%
%2013=01=25%06:31:49%%%%%%%%%%%%%%197M%%%%%%%%%%%1296596%kB%%%%%%%%%%17.35%%
%2013=01=25%06:31:54%%%%%%%%%%%%%%197M%%%%%%%%%%%1297008%kB%%%%%%%%%%17.35%%
%2013=01=25%06:31:59%%%%%%%%%%%%%%197M%%%%%%%%%%%1297472%kB%%%%%%%%%%17.34%%
%2013=01=25%06:32:04%%%%%%%%%%%%%%197M%%%%%%%%%%%1298216%kB%%%%%%%%%%17.34%%
%2013=01=25%06:32:09%%%%%%%%%%%%%%197M%%%%%%%%%%%1298084%kB%%%%%%%%%%17.33%%
%2013=01=25%06:32:14%%%%%%%%%%%%%%197M%%%%%%%%%%%1297944%kB%%%%%%%%%%17.33%%
%2013=01=25%06:32:19%%%%%%%%%%%%%%197M%%%%%%%%%%%1298040%kB%%%%%%%%%%17.32%%
%2013=01=25%06:32:24%%%%%%%%%%%%%%197M%%%%%%%%%%%1297580%kB%%%%%%%%%%17.31%%
%2013=01=25%06:32:29%%%%%%%%%%%%%%197M%%%%%%%%%%%1297728%kB%%%%%%%%%%17.31%%
%2013=01=25%06:32:34%%%%%%%%%%%%%%197M%%%%%%%%%%%1297704%kB%%%%%%%%%%%17.3%%
%2013=01=25%06:32:39%%%%%%%%%%%%%%197M%%%%%%%%%%%1297960%kB%%%%%%%%%%%17.3%%
%2013=01=25%06:32:44%%%%%%%%%%%%%%197M%%%%%%%%%%%1298232%kB%%%%%%%%%%17.29%%
%2013=01=25%06:32:49%%%%%%%%%%%%%%197M%%%%%%%%%%%1298216%kB%%%%%%%%%%17.29%%
%2013=01=25%06:32:54%%%%%%%%%%%%%%197M%%%%%%%%%%%1298264%kB%%%%%%%%%%17.28%%

%2013=01=25%06:32:59%%%%%%%%%%%%%%197M%%%%%%%%%%%1298580%kB%%%%%%%%%%17.28%%
%2013=01=25%06:33:04%%%%%%%%%%%%%%197M%%%%%%%%%%%1298976%kB%%%%%%%%%%17.27%%
%2013=01=25%06:33:09%%%%%%%%%%%%%%197M%%%%%%%%%%%1299084%kB%%%%%%%%%%17.26%%
%2013=01=25%06:33:14%%%%%%%%%%%%%%197M%%%%%%%%%%%1298960%kB%%%%%%%%%%17.26%%
%2013=01=25%06:33:19%%%%%%%%%%%%%%197M%%%%%%%%%%%1298944%kB%%%%%%%%%%17.25%%
%2013=01=25%06:33:24%%%%%%%%%%%%%%197M%%%%%%%%%%%1298984%kB%%%%%%%%%%17.25%%
%2013=01=25%06:33:29%%%%%%%%%%%%%%197M%%%%%%%%%%%1299216%kB%%%%%%%%%%17.24%%
%2013=01=25%06:33:34%%%%%%%%%%%%%%197M%%%%%%%%%%%1299216%kB%%%%%%%%%%17.23%%
%2013=01=25%06:33:39%%%%%%%%%%%%%%197M%%%%%%%%%%%1299620%kB%%%%%%%%%%17.23%%
%2013=01=25%06:33:44%%%%%%%%%%%%%%197M%%%%%%%%%%%1299620%kB%%%%%%%%%%17.22%%
%2013=01=25%06:33:49%%%%%%%%%%%%%%197M%%%%%%%%%%%1299736%kB%%%%%%%%%%17.22%%
%2013=01=25%06:33:54%%%%%%%%%%%%%%197M%%%%%%%%%%%1299496%kB%%%%%%%%%%17.21%%
%2013=01=25%06:33:59%%%%%%%%%%%%%%197M%%%%%%%%%%%1299440%kB%%%%%%%%%%17.21%%
%2013=01=25%06:34:04%%%%%%%%%%%%%%197M%%%%%%%%%%%1300488%kB%%%%%%%%%%%17.2%%
%2013=01=25%06:34:09%%%%%%%%%%%%%%197M%%%%%%%%%%%1300092%kB%%%%%%%%%%17.19%%
%2013=01=25%06:34:14%%%%%%%%%%%%%%197M%%%%%%%%%%%1299944%kB%%%%%%%%%%17.19%%
%2013=01=25%06:34:19%%%%%%%%%%%%%%197M%%%%%%%%%%%1300068%kB%%%%%%%%%%17.18%%
%2013=01=25%06:34:24%%%%%%%%%%%%%%197M%%%%%%%%%%%1300100%kB%%%%%%%%%%17.18%%
%2013=01=25%06:34:29%%%%%%%%%%%%%%197M%%%%%%%%%%%1300024%kB%%%%%%%%%%17.17%%
%2013=01=25%06:34:34%%%%%%%%%%%%%%197M%%%%%%%%%%%1300192%kB%%%%%%%%%%17.17%%
%2013=01=25%06:34:39%%%%%%%%%%%%%%197M%%%%%%%%%%%1300356%kB%%%%%%%%%%17.16%%
%2013=01=25%06:34:44%%%%%%%%%%%%%%197M%%%%%%%%%%%1300124%kB%%%%%%%%%%17.15%%
%2013=01=25%06:34:49%%%%%%%%%%%%%%197M%%%%%%%%%%%1300440%kB%%%%%%%%%%17.15%%
%2013=01=25%06:34:54%%%%%%%%%%%%%%197M%%%%%%%%%%%1300572%kB%%%%%%%%%%17.14%%
%2013=01=25%06:34:59%%%%%%%%%%%%%%197M%%%%%%%%%%%1300704%kB%%%%%%%%%%17.14%%
%2013=01=25%06:35:04%%%%%%%%%%%%%%197M%%%%%%%%%%%1300844%kB%%%%%%%%%%17.13%%
%2013=01=25%06:35:09%%%%%%%%%%%%%%197M%%%%%%%%%%%1301572%kB%%%%%%%%%%17.13%%
%2013=01=25%06:35:14%%%%%%%%%%%%%%197M%%%%%%%%%%%1301356%kB%%%%%%%%%%17.12%%
%2013=01=25%06:35:19%%%%%%%%%%%%%%197M%%%%%%%%%%%1301596%kB%%%%%%%%%%17.12%%
%2013=01=25%06:35:25%%%%%%%%%%%%%%197M%%%%%%%%%%%1301440%kB%%%%%%%%%%17.11%%
%2013=01=25%06:35:30%%%%%%%%%%%%%%197M%%%%%%%%%%%1301356%kB%%%%%%%%%%17.11%%
%2013=01=25%06:35:35%%%%%%%%%%%%%%197M%%%%%%%%%%%1301316%kB%%%%%%%%%%%17.1%%
%2013=01=25%06:35:40%%%%%%%%%%%%%%197M%%%%%%%%%%%1301696%kB%%%%%%%%%%17.09%%
%2013=01=25%06:35:45%%%%%%%%%%%%%%197M%%%%%%%%%%%1301648%kB%%%%%%%%%%17.09%%
%2013=01=25%06:35:50%%%%%%%%%%%%%%197M%%%%%%%%%%%1301424%kB%%%%%%%%%%17.08%%
%2013=01=25%06:35:55%%%%%%%%%%%%%%197M%%%%%%%%%%%1301564%kB%%%%%%%%%%17.07%%
%2013=01=25%06:36:00%%%%%%%%%%%%%%197M%%%%%%%%%%%1301184%kB%%%%%%%%%%17.07%%
%2013=01=25%06:36:05%%%%%%%%%%%%%%197M%%%%%%%%%%%1301788%kB%%%%%%%%%%17.06%%
%2013=01=25%06:36:10%%%%%%%%%%%%%%197M%%%%%%%%%%%1301664%kB%%%%%%%%%%17.06%%
%2013=01=25%06:36:15%%%%%%%%%%%%%%197M%%%%%%%%%%%1302060%kB%%%%%%%%%%17.05%%
%2013=01=25%06:36:20%%%%%%%%%%%%%%197M%%%%%%%%%%%1302184%kB%%%%%%%%%%17.05%%
%2013=01=25%06:36:25%%%%%%%%%%%%%%197M%%%%%%%%%%%1301920%kB%%%%%%%%%%17.04%%
%2013=01=25%06:36:30%%%%%%%%%%%%%%197M%%%%%%%%%%%1302044%kB%%%%%%%%%%17.04%%
%2013=01=25%06:36:35%%%%%%%%%%%%%%197M%%%%%%%%%%%1301920%kB%%%%%%%%%%17.03%%
%2013=01=25%06:36:40%%%%%%%%%%%%%%197M%%%%%%%%%%%1302176%kB%%%%%%%%%%17.02%%
%

TC5_H,'Node'A
'TIMESTAMP''''''''''''''''''DISK'USAGE'''''''''MEMORY'USAGE'''''''CPU'USAGE'
=='
'2013>01>25'11:28:43''''''''''''''317M''''''''''''946164'kB'''''''''''0.07%'
'2013>01>25'11:28:48''''''''''''''317M''''''''''''956468'kB'''''''''''0.07%'
'2013>01>25'11:28:53''''''''''''''317M''''''''''''956312'kB'''''''''''0.07%'
'2013>01>25'11:28:58''''''''''''''317M''''''''''''977344'kB'''''''''''0.07%'
'2013>01>25'11:29:03''''''''''''''317M''''''''''''978724'kB'''''''''''0.07%'
'2013>01>25'11:29:08''''''''''''''317M''''''''''''980476'kB'''''''''''0.07%'
'2013>01>25'11:29:13''''''''''''''317M''''''''''''980584'kB'''''''''''0.07%'
'2013>01>25'11:29:19''''''''''''''317M''''''''''''981732'kB'''''''''''0.07%'
'2013>01>25'11:29:24''''''''''''''317M''''''''''''986940'kB'''''''''''0.07%'
'2013>01>25'11:29:29''''''''''''''317M''''''''''''993536'kB'''''''''''0.07%'
'2013>01>25'11:29:34''''''''''''''317M''''''''''''994404'kB'''''''''''0.07%'
'2013>01>25'11:29:39''''''''''''''317M''''''''''''995776'kB'''''''''''0.07%'
'2013>01>25'11:29:45''''''''''''''317M''''''''''''997016'kB'''''''''''0.07%'
'2013>01>25'11:29:50''''''''''''''317M''''''''''''998016'kB'''''''''''0.07%'
'2013>01>25'11:29:55''''''''''''''319M'''''''''''1003076'kB'''''''''''0.07%'
'2013>01>25'11:30:00''''''''''''''333M'''''''''''1010400'kB'''''''''''0.07%'
'2013>01>25'11:30:06''''''''''''''343M'''''''''''1010344'kB'''''''''''0.07%'
'2013>01>25'11:30:11''''''''''''''353M'''''''''''1008536'kB'''''''''''0.07%'
'2013>01>25'11:30:16''''''''''''''362M'''''''''''1010556'kB'''''''''''0.07%'
'2013>01>25'11:30:22''''''''''''''324M''''''''''''978648'kB'''''''''''0.07%'
'2013>01>25'11:30:27''''''''''''''324M''''''''''''979316'kB'''''''''''0.07%'
'2013>01>25'11:30:32''''''''''''''324M''''''''''''980436'kB'''''''''''0.07%'
'2013>01>25'11:30:37''''''''''''''324M''''''''''''981636'kB'''''''''''0.07%'
'2013>01>25'11:30:42''''''''''''''324M''''''''''''982416'kB'''''''''''0.07%'
'2013>01>25'11:30:48''''''''''''''324M''''''''''''983256'kB'''''''''''0.07%'
'2013>01>25'11:30:53''''''''''''''324M''''''''''''984128'kB'''''''''''0.07%'
'2013>01>25'11:30:58''''''''''''''324M''''''''''''985052'kB'''''''''''0.07%'
'2013>01>25'11:31:03''''''''''''''324M''''''''''''985376'kB'''''''''''0.07%'
'2013>01>25'11:31:08''''''''''''''324M''''''''''''986764'kB'''''''''''0.07%'
'2013>01>25'11:31:13''''''''''''''324M''''''''''''987352'kB'''''''''''0.07%'
'2013>01>25'11:31:18''''''''''''''324M''''''''''''988476'kB'''''''''''0.07%'
'2013>01>25'11:31:24''''''''''''''324M''''''''''''989576'kB'''''''''''0.07%'
'2013>01>25'11:31:29''''''''''''''324M''''''''''''990420'kB'''''''''''0.07%'
'2013>01>25'11:31:34''''''''''''''324M''''''''''''991032'kB'''''''''''0.07%'
'2013>01>25'11:31:39''''''''''''''324M''''''''''''992048'kB'''''''''''0.07%'
'2013>01>25'11:31:44''''''''''''''324M''''''''''''992908'kB'''''''''''0.07%'
'2013>01>25'11:31:49''''''''''''''324M''''''''''''994264'kB'''''''''''0.07%'
'2013>01>25'11:31:54''''''''''''''324M''''''''''''995264'kB'''''''''''0.07%'
'2013>01>25'11:32:00''''''''''''''324M''''''''''''995784'kB'''''''''''0.07%'
'2013>01>25'11:32:05''''''''''''''324M''''''''''''996744'kB'''''''''''0.07%'
'2013>01>25'11:32:10''''''''''''''324M''''''''''''997480'kB'''''''''''0.07%'
'2013>01>25'11:32:15''''''''''''''324M''''''''''''998224'kB'''''''''''0.07%'

'2013>01>25'11:32:20''''''''''''''324M''''''''''''998836'kB'''''''''''0.07%'
'2013>01>25'11:32:25''''''''''''''324M'''''''''''1000100'kB'''''''''''0.07%'
'2013>01>25'11:32:30''''''''''''''324M'''''''''''1000968'kB'''''''''''0.07%'
'2013>01>25'11:32:35''''''''''''''324M'''''''''''1002324'kB'''''''''''0.07%'
'2013>01>25'11:32:40''''''''''''''324M''''''''''''983800'kB'''''''''''0.07%'
'2013>01>25'11:32:45''''''''''''''324M''''''''''''983648'kB'''''''''''0.07%'
'2013>01>25'11:32:51''''''''''''''324M''''''''''''983668'kB'''''''''''0.07%'
'2013>01>25'11:32:56''''''''''''''324M''''''''''''983492'kB'''''''''''0.07%'
'2013>01>25'11:33:01''''''''''''''324M''''''''''''983596'kB'''''''''''0.07%'
'2013>01>25'11:33:06''''''''''''''324M''''''''''''983472'kB'''''''''''0.07%'
'2013>01>25'11:33:11''''''''''''''324M''''''''''''983332'kB'''''''''''0.07%'
'2013>01>25'11:33:16''''''''''''''324M''''''''''''983352'kB'''''''''''0.07%'
'2013>01>25'11:33:21''''''''''''''324M''''''''''''983456'kB'''''''''''0.07%'
'2013>01>25'11:33:26''''''''''''''324M''''''''''''983480'kB'''''''''''0.07%'
'2013>01>25'11:33:31''''''''''''''324M''''''''''''983512'kB'''''''''''0.07%'
'2013>01>25'11:33:36''''''''''''''324M''''''''''''983300'kB'''''''''''0.07%'
'2013>01>25'11:33:41''''''''''''''324M''''''''''''982504'kB'''''''''''0.07%'
'2013>01>25'11:33:46''''''''''''''324M''''''''''''982720'kB'''''''''''0.07%'
'2013>01>25'11:33:51''''''''''''''324M''''''''''''982596'kB'''''''''''0.07%'
'2013>01>25'11:33:56''''''''''''''324M''''''''''''982544'kB'''''''''''0.07%'
'2013>01>25'11:34:01''''''''''''''324M''''''''''''982348'kB'''''''''''0.07%'
'2013>01>25'11:34:06''''''''''''''324M''''''''''''982448'kB'''''''''''0.07%'
'2013>01>25'11:34:11''''''''''''''324M''''''''''''982644'kB'''''''''''0.07%'
'2013>01>25'11:34:16''''''''''''''324M''''''''''''982592'kB'''''''''''0.07%'
'2013>01>25'11:34:21''''''''''''''324M''''''''''''982444'kB'''''''''''0.07%'
'2013>01>25'11:34:26''''''''''''''324M''''''''''''982556'kB'''''''''''0.07%'
'2013>01>25'11:34:31''''''''''''''324M''''''''''''982568'kB'''''''''''0.07%'
'2013>01>25'11:34:36''''''''''''''324M''''''''''''982452'kB'''''''''''0.07%'
'2013>01>25'11:34:41''''''''''''''324M''''''''''''982124'kB'''''''''''0.07%'
'2013>01>25'11:34:46''''''''''''''324M''''''''''''982188'kB'''''''''''0.07%'
'2013>01>25'11:34:51''''''''''''''324M''''''''''''982124'kB'''''''''''0.07%'
'2013>01>25'11:34:57''''''''''''''324M''''''''''''982100'kB'''''''''''0.07%'
'2013>01>25'11:35:02''''''''''''''324M''''''''''''982524'kB'''''''''''0.07%'
'2013>01>25'11:35:07''''''''''''''324M''''''''''''982636'kB'''''''''''0.07%'
'2013>01>25'11:35:12''''''''''''''324M''''''''''''982420'kB'''''''''''0.07%'
'2013>01>25'11:35:17''''''''''''''324M''''''''''''982660'kB'''''''''''0.07%'
'2013>01>25'11:35:22''''''''''''''324M''''''''''''982896'kB'''''''''''0.07%'
'2013>01>25'11:35:27''''''''''''''324M''''''''''''982668'kB'''''''''''0.07%'
'2013>01>25'11:35:32''''''''''''''324M''''''''''''982752'kB'''''''''''0.07%'
'2013>01>25'11:35:37''''''''''''''324M''''''''''''982764'kB'''''''''''0.07%'
'2013>01>25'11:35:42''''''''''''''324M''''''''''''982448'kB'''''''''''0.07%'
'2013>01>25'11:35:47''''''''''''''324M''''''''''''982380'kB'''''''''''0.07%'
'2013>01>25'11:35:52''''''''''''''324M''''''''''''982164'kB'''''''''''0.07%'
'2013>01>25'11:35:57''''''''''''''324M''''''''''''982180'kB'''''''''''0.07%'

'2013>01>25'11:36:02''''''''''''''324M''''''''''''982260'kB'''''''''''0.07%'
'2013>01>25'11:36:07''''''''''''''324M''''''''''''982500'kB'''''''''''0.07%'
'2013>01>25'11:36:12''''''''''''''324M''''''''''''982356'kB'''''''''''0.07%'
'2013>01>25'11:36:17''''''''''''''324M''''''''''''982364'kB'''''''''''0.07%'
'2013>01>25'11:36:22''''''''''''''324M''''''''''''982372'kB'''''''''''0.07%'
'2013>01>25'11:36:27''''''''''''''324M''''''''''''982460'kB'''''''''''0.07%'
'2013>01>25'11:36:32''''''''''''''324M''''''''''''982620'kB'''''''''''0.07%'
'2013>01>25'11:36:37''''''''''''''324M''''''''''''982680'kB'''''''''''0.07%'
'2013>01>25'11:36:42''''''''''''''324M''''''''''''982784'kB'''''''''''0.07%'
'2013>01>25'11:36:47''''''''''''''324M''''''''''''983028'kB'''''''''''0.07%'
'2013>01>25'11:36:52''''''''''''''324M''''''''''''983244'kB'''''''''''0.07%'
'2013>01>25'11:36:57''''''''''''''324M''''''''''''983052'kB'''''''''''0.07%'
'2013>01>25'11:37:02''''''''''''''324M''''''''''''983020'kB'''''''''''0.07%'
'2013>01>25'11:37:07''''''''''''''324M''''''''''''982984'kB'''''''''''0.07%'
'2013>01>25'11:37:13''''''''''''''324M''''''''''''983368'kB'''''''''''0.07%'
'2013>01>25'11:37:18''''''''''''''324M''''''''''''983092'kB'''''''''''0.07%'
'2013>01>25'11:37:23''''''''''''''324M''''''''''''983360'kB'''''''''''0.07%'
'2013>01>25'11:37:28''''''''''''''324M''''''''''''983264'kB'''''''''''0.07%'
'2013>01>25'11:37:33''''''''''''''324M''''''''''''983124'kB'''''''''''0.07%'
'2013>01>25'11:37:38''''''''''''''324M''''''''''''983620'kB'''''''''''0.07%'
'2013>01>25'11:37:43''''''''''''''324M''''''''''''983160'kB'''''''''''0.07%'
'2013>01>25'11:37:48''''''''''''''324M''''''''''''983320'kB'''''''''''0.07%'
'2013>01>25'11:37:53''''''''''''''324M''''''''''''983516'kB'''''''''''0.07%'
'2013>01>25'11:37:58''''''''''''''324M''''''''''''983312'kB'''''''''''0.07%'
'2013>01>25'11:38:03''''''''''''''324M''''''''''''983244'kB'''''''''''0.07%'
'2013>01>25'11:38:08''''''''''''''324M''''''''''''983300'kB'''''''''''0.07%'
'2013>01>25'11:38:13''''''''''''''324M''''''''''''983300'kB'''''''''''0.07%'
'2013>01>25'11:38:18''''''''''''''324M''''''''''''983268'kB'''''''''''0.07%'
'2013>01>25'11:38:23''''''''''''''324M''''''''''''983200'kB'''''''''''0.07%'
'2013>01>25'11:38:28''''''''''''''324M''''''''''''983268'kB'''''''''''0.07%'
'2013>01>25'11:38:33''''''''''''''324M''''''''''''983164'kB'''''''''''0.07%'
'2013>01>25'11:38:38''''''''''''''324M''''''''''''983268'kB'''''''''''0.07%'
'2013>01>25'11:38:43''''''''''''''324M''''''''''''983224'kB'''''''''''0.07%'
'2013>01>25'11:38:48''''''''''''''324M''''''''''''982964'kB'''''''''''0.07%'
'2013>01>25'11:38:53''''''''''''''324M''''''''''''983348'kB'''''''''''0.07%'
'2013>01>25'11:38:58''''''''''''''324M''''''''''''983200'kB'''''''''''0.07%'
'2013>01>25'11:39:03''''''''''''''324M''''''''''''983084'kB'''''''''''0.07%'
'2013>01>25'11:39:08''''''''''''''324M''''''''''''983332'kB'''''''''''0.07%'
'2013>01>25'11:39:13''''''''''''''324M''''''''''''983304'kB'''''''''''0.07%'
'2013>01>25'11:39:18''''''''''''''324M''''''''''''983420'kB'''''''''''0.07%'
'2013>01>25'11:39:24''''''''''''''324M''''''''''''983284'kB'''''''''''0.07%'
'2013>01>25'11:39:29''''''''''''''324M''''''''''''983528'kB'''''''''''0.07%'
'2013>01>25'11:39:34''''''''''''''324M''''''''''''983656'kB'''''''''''0.07%'
'2013>01>25'11:39:39''''''''''''''324M''''''''''''985088'kB'''''''''''0.07%'
'2013>01>25'11:39:44''''''''''''''324M''''''''''''984212'kB'''''''''''0.07%'
'2013>01>25'11:39:49''''''''''''''324M''''''''''''984112'kB'''''''''''0.07%'
'2013>01>25'11:39:54''''''''''''''324M''''''''''''984132'kB'''''''''''0.07%'
'2013>01>25'11:39:59''''''''''''''324M''''''''''''984000'kB'''''''''''0.07%'
'2013>01>25'11:40:04''''''''''''''324M''''''''''''983924'kB'''''''''''0.07%'
'2013>01>25'11:40:09''''''''''''''324M''''''''''''984136'kB'''''''''''0.07%'

'2013>01>25'11:40:14''''''''''''''324M''''''''''''984052'kB'''''''''''0.07%'
'2013>01>25'11:40:19''''''''''''''324M''''''''''''984144'kB'''''''''''0.07%'
'2013>01>25'11:40:24''''''''''''''324M''''''''''''984136'kB'''''''''''0.07%'
'2013>01>25'11:40:29''''''''''''''324M''''''''''''984176'kB'''''''''''0.07%'
'2013>01>25'11:40:34''''''''''''''324M''''''''''''984224'kB'''''''''''0.07%'
'2013>01>25'11:40:39''''''''''''''324M''''''''''''984144'kB'''''''''''0.07%'
'2013>01>25'11:40:44''''''''''''''324M''''''''''''983984'kB'''''''''''0.07%'
'2013>01>25'11:40:49''''''''''''''324M''''''''''''984016'kB'''''''''''0.07%'
'2013>01>25'11:40:54''''''''''''''324M''''''''''''984016'kB'''''''''''0.07%'
'2013>01>25'11:40:59''''''''''''''324M''''''''''''984016'kB'''''''''''0.07%'
'2013>01>25'11:41:04''''''''''''''324M''''''''''''984060'kB'''''''''''0.07%'
'2013>01>25'11:41:09''''''''''''''324M''''''''''''984276'kB'''''''''''0.07%'
'2013>01>25'11:41:14''''''''''''''324M''''''''''''984076'kB'''''''''''0.07%'
'2013>01>25'11:41:19''''''''''''''324M''''''''''''984128'kB'''''''''''0.07%'
'2013>01>25'11:41:24''''''''''''''324M''''''''''''984248'kB'''''''''''0.07%'
'2013>01>25'11:41:29''''''''''''''324M''''''''''''984180'kB'''''''''''0.07%'
'2013>01>25'11:41:34''''''''''''''324M''''''''''''984372'kB'''''''''''0.07%'
'2013>01>25'11:41:40''''''''''''''324M''''''''''''984124'kB'''''''''''0.07%'
'2013>01>25'11:41:45''''''''''''''324M''''''''''''983952'kB'''''''''''0.07%'
'2013>01>25'11:41:50''''''''''''''324M''''''''''''984108'kB'''''''''''0.07%'
'2013>01>25'11:41:55''''''''''''''324M''''''''''''984428'kB'''''''''''0.07%'
'2013>01>25'11:42:00''''''''''''''324M''''''''''''984452'kB'''''''''''0.07%'
'2013>01>25'11:42:05''''''''''''''324M''''''''''''984048'kB'''''''''''0.07%'
'2013>01>25'11:42:10''''''''''''''324M''''''''''''984332'kB'''''''''''0.07%'
'2013>01>25'11:42:15''''''''''''''324M''''''''''''983908'kB'''''''''''0.07%'
'2013>01>25'11:42:20''''''''''''''324M''''''''''''984408'kB'''''''''''0.07%'
'2013>01>25'11:42:25''''''''''''''324M''''''''''''984220'kB'''''''''''0.07%'
'2013>01>25'11:42:30''''''''''''''324M''''''''''''984200'kB'''''''''''0.07%'
'2013>01>25'11:42:35''''''''''''''324M''''''''''''984224'kB'''''''''''0.07%'
'2013>01>25'11:42:40''''''''''''''324M''''''''''''984364'kB'''''''''''0.07%'
'2013>01>25'11:42:45''''''''''''''324M''''''''''''984356'kB'''''''''''0.07%'
'2013>01>25'11:42:50''''''''''''''324M''''''''''''984448'kB'''''''''''0.07%'
'2013>01>25'11:42:55''''''''''''''324M''''''''''''984188'kB'''''''''''0.07%'
'2013>01>25'11:43:00''''''''''''''324M''''''''''''984476'kB'''''''''''0.07%'
'2013>01>25'11:43:05''''''''''''''324M''''''''''''984156'kB'''''''''''0.07%'
'2013>01>25'11:43:10''''''''''''''324M''''''''''''984176'kB'''''''''''0.07%'
'2013>01>25'11:43:15''''''''''''''324M''''''''''''984352'kB'''''''''''0.07%'
'2013>01>25'11:43:20''''''''''''''324M''''''''''''984428'kB'''''''''''0.07%'
'2013>01>25'11:43:25''''''''''''''324M''''''''''''984040'kB'''''''''''0.07%'
'2013>01>25'11:43:30''''''''''''''324M''''''''''''984176'kB'''''''''''0.07%'
'2013>01>25'11:43:35''''''''''''''324M''''''''''''984144'kB'''''''''''0.07%'
'2013>01>25'11:43:40''''''''''''''324M''''''''''''983960'kB'''''''''''0.07%'
'2013>01>25'11:43:45''''''''''''''324M''''''''''''983708'kB'''''''''''0.07%'
'2013>01>25'11:43:50''''''''''''''324M''''''''''''983784'kB'''''''''''0.07%'
'2013>01>25'11:43:56''''''''''''''324M''''''''''''983912'kB'''''''''''0.07%'
'

TC5_H,'Node'B
'TIMESTAMP''''''''''''''''''DISK'USAGE'''''''''MEMORY'USAGE'''''''CPU'USAGE'
=='
'2013?01?25'06:54:46''''''''''''''197M'''''''''''1224312'kB''''''''''16.68%'
'2013?01?25'06:54:51''''''''''''''197M'''''''''''1236248'kB''''''''''16.68%'
'2013?01?25'06:54:56''''''''''''''197M'''''''''''1236784'kB''''''''''16.68%'
'2013?01?25'06:55:01''''''''''''''197M'''''''''''1255848'kB''''''''''16.68%'
'2013?01?25'06:55:06''''''''''''''197M'''''''''''1261752'kB''''''''''16.67%'
'2013?01?25'06:55:11''''''''''''''197M'''''''''''1265016'kB''''''''''16.66%'
'2013?01?25'06:55:16''''''''''''''197M'''''''''''1266636'kB''''''''''16.66%'
'2013?01?25'06:55:22''''''''''''''197M'''''''''''1278748'kB''''''''''16.65%'
'2013?01?25'06:55:27''''''''''''''197M'''''''''''1284020'kB''''''''''16.64%'
'2013?01?25'06:55:32''''''''''''''197M'''''''''''1284704'kB''''''''''16.64%'
'2013?01?25'06:55:37''''''''''''''197M'''''''''''1285332'kB''''''''''16.63%'
'2013?01?25'06:55:42''''''''''''''197M'''''''''''1285548'kB''''''''''16.62%'
'2013?01?25'06:55:47''''''''''''''197M'''''''''''1297336'kB''''''''''16.62%'
'2013?01?25'06:55:52''''''''''''''197M'''''''''''1308356'kB''''''''''16.61%'
'2013?01?25'06:55:57''''''''''''''197M'''''''''''1309016'kB'''''''''''16.6%'
'2013?01?25'06:56:02''''''''''''''197M'''''''''''1312340'kB''''''''''16.59%'
'2013?01?25'06:56:07''''''''''''''197M'''''''''''1310952'kB''''''''''16.59%'
'2013?01?25'06:56:12''''''''''''''197M'''''''''''1311100'kB''''''''''16.59%'
'2013?01?25'06:56:17''''''''''''''197M'''''''''''1311192'kB''''''''''16.58%'
'2013?01?25'06:56:22''''''''''''''197M'''''''''''1311076'kB''''''''''16.58%'
'2013?01?25'06:56:27''''''''''''''197M'''''''''''1311208'kB''''''''''16.57%'
'2013?01?25'06:56:32''''''''''''''197M'''''''''''1246312'kB''''''''''16.57%'
'2013?01?25'06:56:37''''''''''''''4.0K''''''''''''707020'kB''''''''''16.57%'
'2013?01?25'06:56:42''''''''''''''4.0K''''''''''''706824'kB''''''''''16.57%'
'2013?01?25'06:56:47''''''''''''''4.0K''''''''''''706464'kB''''''''''16.57%'
'2013?01?25'06:56:52''''''''''''''4.0K''''''''''''706096'kB''''''''''16.57%'
'2013?01?25'06:56:57''''''''''''''4.0K''''''''''''706048'kB''''''''''16.57%'
'2013?01?25'06:57:02''''''''''''''4.0K''''''''''''706008'kB''''''''''16.57%'
'2013?01?25'06:57:07''''''''''''''4.0K''''''''''''706008'kB''''''''''16.57%'
'2013?01?25'06:57:12''''''''''''''4.0K''''''''''''706256'kB''''''''''16.57%'
'2013?01?25'06:57:17''''''''''''''4.0K''''''''''''706256'kB''''''''''16.57%'
'2013?01?25'06:57:22''''''''''''''4.0K''''''''''''706248'kB''''''''''16.57%'
'2013?01?25'06:57:27''''''''''''''4.0K''''''''''''706016'kB''''''''''16.57%'
'2013?01?25'06:57:32''''''''''''''4.0K''''''''''''706272'kB''''''''''16.57%'
'2013?01?25'06:57:37''''''''''''''4.0K''''''''''''706272'kB''''''''''16.57%'
'2013?01?25'06:57:42''''''''''''''4.0K''''''''''''706364'kB''''''''''16.57%'
'2013?01?25'06:57:47''''''''''''''4.0K''''''''''''706240'kB''''''''''16.57%'
'2013?01?25'06:57:52''''''''''''''4.0K''''''''''''706000'kB''''''''''16.57%'
'2013?01?25'06:57:57''''''''''''''4.0K''''''''''''705876'kB''''''''''16.57%'
'2013?01?25'06:58:02''''''''''''''4.0K''''''''''''706148'kB''''''''''16.57%'
'2013?01?25'06:58:07''''''''''''''4.0K''''''''''''706280'kB''''''''''16.57%'
'2013?01?25'06:58:12''''''''''''''4.0K''''''''''''706148'kB''''''''''16.57%'

'2013?01?25'06:58:17''''''''''''''4.0K''''''''''''706148'kB''''''''''16.57%'
'2013?01?25'06:58:22''''''''''''''4.0K''''''''''''706116'kB''''''''''16.57%'
'2013?01?25'06:58:27''''''''''''''4.0K''''''''''''706140'kB''''''''''16.57%'
'2013?01?25'06:58:32''''''''''''''4.0K''''''''''''706040'kB''''''''''16.57%'
'2013?01?25'06:58:37''''''''''''''4.0K''''''''''''706412'kB''''''''''16.57%'
'2013?01?25'06:58:42''''''''''''''4.0K''''''''''''705760'kB''''''''''16.57%'
'2013?01?25'06:58:47''''''''''''''4.0K''''''''''''705760'kB''''''''''16.57%'
'2013?01?25'06:58:52''''''''''''''4.0K''''''''''''705884'kB''''''''''16.57%'
'2013?01?25'06:58:57''''''''''''''4.0K''''''''''''706124'kB''''''''''16.57%'
'2013?01?25'06:59:02''''''''''''''4.0K''''''''''''705892'kB''''''''''16.57%'
'2013?01?25'06:59:07''''''''''''''4.0K''''''''''''705892'kB''''''''''16.57%'
'2013?01?25'06:59:12''''''''''''''4.0K''''''''''''706140'kB''''''''''16.57%'
'2013?01?25'06:59:17''''''''''''''4.0K''''''''''''705860'kB''''''''''16.57%'
'2013?01?25'06:59:23''''''''''''''4.0K''''''''''''706008'kB''''''''''16.57%'
'2013?01?25'06:59:28''''''''''''''4.0K''''''''''''705908'kB''''''''''16.57%'
'2013?01?25'06:59:33''''''''''''''4.0K''''''''''''705908'kB''''''''''16.57%'
'2013?01?25'06:59:38''''''''''''''4.0K''''''''''''705884'kB''''''''''16.57%'
'2013?01?25'06:59:43''''''''''''''4.0K''''''''''''705768'kB''''''''''16.57%'
'2013?01?25'06:59:48''''''''''''''4.0K''''''''''''705900'kB''''''''''16.57%'
'2013?01?25'06:59:53''''''''''''''4.0K''''''''''''705652'kB''''''''''16.57%'
'2013?01?25'06:59:58''''''''''''''4.0K''''''''''''705620'kB''''''''''16.57%'
'2013?01?25'07:00:03''''''''''''''4.0K''''''''''''706172'kB''''''''''16.57%'
'2013?01?25'07:00:08''''''''''''''4.0K''''''''''''706196'kB''''''''''16.57%'
'2013?01?25'07:00:13''''''''''''''4.0K''''''''''''706056'kB''''''''''16.57%'
'2013?01?25'07:00:18''''''''''''''4.0K''''''''''''705776'kB''''''''''16.57%'
'2013?01?25'07:00:23''''''''''''''4.0K''''''''''''705776'kB''''''''''16.57%'
'2013?01?25'07:00:28''''''''''''''4.0K''''''''''''705644'kB''''''''''16.57%'
'2013?01?25'07:00:33''''''''''''''4.0K''''''''''''705784'kB''''''''''16.57%'
'2013?01?25'07:00:38''''''''''''''4.0K''''''''''''705380'kB''''''''''16.57%'
'2013?01?25'07:00:43''''''''''''''4.0K''''''''''''710108'kB''''''''''16.57%'
'2013?01?25'07:00:48''''''''''''''4.0K''''''''''''710108'kB''''''''''16.57%'
'2013?01?25'07:00:53''''''''''''''4.0K''''''''''''710232'kB''''''''''16.57%'
'2013?01?25'07:00:58''''''''''''''4.0K''''''''''''710092'kB''''''''''16.57%'
'2013?01?25'07:01:03''''''''''''''4.0K''''''''''''709984'kB''''''''''16.57%'
'2013?01?25'07:01:08''''''''''''''4.0K''''''''''''709984'kB''''''''''16.57%'
'2013?01?25'07:01:13''''''''''''''4.0K''''''''''''709736'kB''''''''''16.57%'
'2013?01?25'07:01:18''''''''''''''4.0K''''''''''''710332'kB''''''''''16.57%'
'2013?01?25'07:01:23''''''''''''''4.0K''''''''''''710084'kB''''''''''16.57%'
'2013?01?25'07:01:28''''''''''''''4.0K''''''''''''710232'kB''''''''''16.57%'
'2013?01?25'07:01:33''''''''''''''4.0K''''''''''''710124'kB''''''''''16.57%'
'2013?01?25'07:01:38''''''''''''''4.0K''''''''''''710348'kB''''''''''16.57%'
'2013?01?25'07:01:43''''''''''''''4.0K''''''''''''710248'kB''''''''''16.57%'
'2013?01?25'07:01:48''''''''''''''4.0K''''''''''''710364'kB''''''''''16.57%'
'2013?01?25'07:01:53''''''''''''''4.0K''''''''''''710116'kB''''''''''16.57%'

'2013?01?25'07:01:58''''''''''''''4.0K''''''''''''710084'kB''''''''''16.57%'
'2013?01?25'07:02:03''''''''''''''4.0K''''''''''''710916'kB''''''''''16.57%'
'2013?01?25'07:02:08''''''''''''''4.0K''''''''''''710388'kB''''''''''16.57%'
'2013?01?25'07:02:13''''''''''''''4.0K''''''''''''709636'kB''''''''''16.57%'
'2013?01?25'07:02:18''''''''''''''4.0K''''''''''''709480'kB''''''''''16.57%'
'2013?01?25'07:02:23''''''''''''''4.0K''''''''''''709356'kB''''''''''16.57%'
'2013?01?25'07:02:28''''''''''''''4.0K''''''''''''709232'kB''''''''''16.57%'
'2013?01?25'07:02:33''''''''''''''4.0K''''''''''''709108'kB''''''''''16.57%'
'2013?01?25'07:02:38''''''''''''''4.0K''''''''''''708952'kB''''''''''16.57%'
'2013?01?25'07:02:43''''''''''''''4.0K''''''''''''708960'kB''''''''''16.57%'
'2013?01?25'07:02:48''''''''''''''4.0K''''''''''''709216'kB''''''''''16.57%'
'2013?01?25'07:02:53''''''''''''''4.0K''''''''''''709216'kB''''''''''16.57%'
'2013?01?25'07:02:58''''''''''''''4.0K''''''''''''708944'kB''''''''''16.57%'
'2013?01?25'07:03:03''''''''''''''4.0K''''''''''''708728'kB''''''''''16.57%'
'2013?01?25'07:03:08''''''''''''''4.0K''''''''''''708868'kB''''''''''16.57%'
'2013?01?25'07:03:13''''''''''''''4.0K''''''''''''708960'kB''''''''''16.57%'
'2013?01?25'07:03:18''''''''''''''4.0K''''''''''''708960'kB''''''''''16.57%'
'2013?01?25'07:03:23''''''''''''''4.0K''''''''''''709216'kB''''''''''16.57%'
'2013?01?25'07:03:28''''''''''''''4.0K''''''''''''709836'kB''''''''''16.57%'
'2013?01?25'07:03:34''''''''''''''4.0K''''''''''''709572'kB''''''''''16.57%'
'2013?01?25'07:03:39''''''''''''''4.0K''''''''''''709364'kB''''''''''16.57%'
'2013?01?25'07:03:44''''''''''''''4.0K''''''''''''709844'kB''''''''''16.57%'
'2013?01?25'07:03:49''''''''''''''4.0K''''''''''''709348'kB''''''''''16.57%'
'2013?01?25'07:03:54''''''''''''''4.0K''''''''''''709440'kB''''''''''16.57%'
'2013?01?25'07:03:59''''''''''''''4.0K''''''''''''709464'kB''''''''''16.57%'
'2013?01?25'07:04:04''''''''''''''4.0K''''''''''''709224'kB''''''''''16.57%'
'2013?01?25'07:04:09''''''''''''''4.0K''''''''''''709216'kB''''''''''16.57%'
'2013?01?25'07:04:14''''''''''''''4.0K''''''''''''709192'kB''''''''''16.57%'
'2013?01?25'07:04:19''''''''''''''4.0K''''''''''''709084'kB''''''''''16.57%'
'2013?01?25'07:04:24''''''''''''''4.0K''''''''''''708712'kB''''''''''16.57%'
'2013?01?25'07:04:29''''''''''''''4.0K''''''''''''709100'kB''''''''''16.57%'
'2013?01?25'07:04:34''''''''''''''4.0K''''''''''''709084'kB''''''''''16.57%'
'2013?01?25'07:04:39''''''''''''''4.0K''''''''''''709208'kB''''''''''16.57%'
'2013?01?25'07:04:44''''''''''''''4.0K''''''''''''709208'kB''''''''''16.57%'
'2013?01?25'07:04:49''''''''''''''4.0K''''''''''''709100'kB''''''''''16.57%'
'2013?01?25'07:04:54''''''''''''''4.0K''''''''''''709192'kB''''''''''16.57%'
'2013?01?25'07:04:59''''''''''''''4.0K''''''''''''708984'kB''''''''''16.57%'
'2013?01?25'07:05:04''''''''''''''4.0K''''''''''''709000'kB''''''''''16.57%'
'2013?01?25'07:05:09''''''''''''''4.0K''''''''''''708876'kB''''''''''16.57%'
'2013?01?25'07:05:14''''''''''''''4.0K''''''''''''709100'kB''''''''''16.57%'
'2013?01?25'07:05:19''''''''''''''4.0K''''''''''''708868'kB''''''''''16.57%'
'2013?01?25'07:05:24''''''''''''''4.0K''''''''''''708992'kB''''''''''16.57%'
'2013?01?25'07:05:29''''''''''''''4.0K''''''''''''709116'kB''''''''''16.57%'
'2013?01?25'07:05:34''''''''''''''4.0K''''''''''''708960'kB''''''''''16.57%'
'2013?01?25'07:05:39''''''''''''''4.0K''''''''''''709208'kB''''''''''16.57%'
'2013?01?25'07:05:44''''''''''''''4.0K''''''''''''709464'kB''''''''''16.57%'
'2013?01?25'07:05:49''''''''''''''4.0K''''''''''''709604'kB''''''''''16.57%'
'2013?01?25'07:05:54''''''''''''''4.0K''''''''''''709448'kB''''''''''16.57%'
'2013?01?25'07:05:59''''''''''''''4.0K''''''''''''709092'kB''''''''''16.57%'
'2013?01?25'07:06:04''''''''''''''4.0K''''''''''''709728'kB''''''''''16.57%'

'2013?01?25'07:06:09''''''''''''''4.0K''''''''''''709720'kB''''''''''16.57%'
'2013?01?25'07:06:14''''''''''''''4.0K''''''''''''709812'kB''''''''''16.57%'
'2013?01?25'07:06:19''''''''''''''4.0K''''''''''''709580'kB''''''''''16.57%'
'2013?01?25'07:06:24''''''''''''''4.0K''''''''''''709712'kB''''''''''16.57%'
'2013?01?25'07:06:29''''''''''''''4.0K''''''''''''709712'kB''''''''''16.57%'
'2013?01?25'07:06:34''''''''''''''4.0K''''''''''''709688'kB''''''''''16.57%'
'2013?01?25'07:06:39''''''''''''''4.0K''''''''''''709580'kB''''''''''16.57%'
'2013?01?25'07:06:44''''''''''''''4.0K''''''''''''709712'kB''''''''''16.57%'
'2013?01?25'07:06:49''''''''''''''4.0K''''''''''''709712'kB''''''''''16.57%'
'2013?01?25'07:06:54''''''''''''''4.0K''''''''''''709076'kB''''''''''16.57%'
'2013?01?25'07:06:59''''''''''''''4.0K''''''''''''709076'kB''''''''''16.57%'
'2013?01?25'07:07:04''''''''''''''4.0K''''''''''''708828'kB''''''''''16.57%'
'2013?01?25'07:07:09''''''''''''''4.0K''''''''''''708680'kB''''''''''16.57%'
'2013?01?25'07:07:14''''''''''''''4.0K''''''''''''708952'kB''''''''''16.57%'
'2013?01?25'07:07:19''''''''''''''4.0K''''''''''''709076'kB''''''''''16.57%'
'2013?01?25'07:07:24''''''''''''''4.0K''''''''''''709448'kB''''''''''16.57%'
'2013?01?25'07:07:29''''''''''''''4.0K''''''''''''709168'kB''''''''''16.57%'
'2013?01?25'07:07:34''''''''''''''4.0K''''''''''''709068'kB''''''''''16.57%'
'2013?01?25'07:07:40''''''''''''''4.0K''''''''''''708960'kB''''''''''16.57%'
'2013?01?25'07:07:45''''''''''''''4.0K''''''''''''708976'kB''''''''''16.57%'
'2013?01?25'07:07:50''''''''''''''4.0K''''''''''''709192'kB''''''''''16.57%'
'2013?01?25'07:07:55''''''''''''''4.0K''''''''''''708960'kB''''''''''16.57%'
'2013?01?25'07:08:00''''''''''''''4.0K''''''''''''709084'kB''''''''''16.57%'
'2013?01?25'07:08:05''''''''''''''4.0K''''''''''''709372'kB''''''''''16.57%'
'2013?01?25'07:08:10''''''''''''''4.0K''''''''''''709224'kB''''''''''16.57%'
'2013?01?25'07:08:15''''''''''''''4.0K''''''''''''709092'kB''''''''''16.57%'
'2013?01?25'07:08:20''''''''''''''4.0K''''''''''''709092'kB''''''''''16.57%'
'2013?01?25'07:08:25''''''''''''''4.0K''''''''''''709108'kB''''''''''16.57%'
'2013?01?25'07:08:30''''''''''''''4.0K''''''''''''709200'kB''''''''''16.57%'
'2013?01?25'07:08:35''''''''''''''4.0K''''''''''''709200'kB''''''''''16.57%'
'2013?01?25'07:08:40''''''''''''''4.0K''''''''''''709092'kB''''''''''16.57%'
'2013?01?25'07:08:45''''''''''''''4.0K''''''''''''709340'kB''''''''''16.57%'
'2013?01?25'07:08:50''''''''''''''4.0K''''''''''''709308'kB''''''''''16.57%'
'2013?01?25'07:08:55''''''''''''''4.0K''''''''''''709200'kB''''''''''16.57%'
'2013?01?25'07:09:00''''''''''''''4.0K''''''''''''709208'kB''''''''''16.57%'
'2013?01?25'07:09:05''''''''''''''4.0K''''''''''''709092'kB''''''''''16.57%'
'2013?01?25'07:09:10''''''''''''''4.0K''''''''''''709308'kB''''''''''16.57%'
'2013?01?25'07:09:15''''''''''''''4.0K''''''''''''709076'kB''''''''''16.57%'
'2013?01?25'07:09:20''''''''''''''4.0K''''''''''''709464'kB''''''''''16.57%'
'2013?01?25'07:09:25''''''''''''''4.0K''''''''''''709720'kB''''''''''16.57%'
'2013?01?25'07:09:30''''''''''''''4.0K''''''''''''709828'kB''''''''''16.57%'
'2013?01?25'07:09:35''''''''''''''4.0K''''''''''''709828'kB''''''''''16.57%'
'2013?01?25'07:09:40''''''''''''''4.0K''''''''''''709828'kB''''''''''16.57%'
'2013?01?25'07:09:45''''''''''''''4.0K''''''''''''709712'kB''''''''''16.57%'
'2013?01?25'07:09:50''''''''''''''4.0K''''''''''''709704'kB''''''''''16.57%'
'

TC6,%Node%A
%TIMESTAMP%%%%%%%%%%%%%%%%%%DISK%USAGE%%%%%%%%%MEMORY%USAGE%%%%%%%CPU%USAGE%
==%
%2013<01<25%11:55:44%%%%%%%%%%%%%%329M%%%%%%%%%%%%743344%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:55:49%%%%%%%%%%%%%%329M%%%%%%%%%%%%771512%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:55:54%%%%%%%%%%%%%%329M%%%%%%%%%%%%786656%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:55:59%%%%%%%%%%%%%%350M%%%%%%%%%%%%818044%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:04%%%%%%%%%%%%%%330M%%%%%%%%%%%%801948%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:09%%%%%%%%%%%%%%333M%%%%%%%%%%%%808388%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:14%%%%%%%%%%%%%%333M%%%%%%%%%%%%810404%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:19%%%%%%%%%%%%%%335M%%%%%%%%%%%%824476%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:24%%%%%%%%%%%%%%335M%%%%%%%%%%%%826352%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:29%%%%%%%%%%%%%%357M%%%%%%%%%%%%876084%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:34%%%%%%%%%%%%%%333M%%%%%%%%%%%%855832%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:39%%%%%%%%%%%%%%333M%%%%%%%%%%%%860204%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:44%%%%%%%%%%%%%%335M%%%%%%%%%%%%864404%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:49%%%%%%%%%%%%%%335M%%%%%%%%%%%%868496%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:54%%%%%%%%%%%%%%365M%%%%%%%%%%%%906036%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:56:59%%%%%%%%%%%%%%337M%%%%%%%%%%%%881192%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:57:04%%%%%%%%%%%%%%337M%%%%%%%%%%%%885548%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:57:09%%%%%%%%%%%%%%340M%%%%%%%%%%%%893600%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:57:14%%%%%%%%%%%%%%340M%%%%%%%%%%%%894824%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:57:19%%%%%%%%%%%%%%369M%%%%%%%%%%%%897872%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:57:25%%%%%%%%%%%%%%342M%%%%%%%%%%%%877724%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:57:30%%%%%%%%%%%%%%342M%%%%%%%%%%%%879352%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:57:35%%%%%%%%%%%%%%344M%%%%%%%%%%%%888900%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:57:40%%%%%%%%%%%%%%346M%%%%%%%%%%%%903740%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:57:45%%%%%%%%%%%%%%374M%%%%%%%%%%%%947560%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:57:50%%%%%%%%%%%%%%402M%%%%%%%%%%%%983356%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:57:55%%%%%%%%%%%%%%346M%%%%%%%%%%%%932268%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:00%%%%%%%%%%%%%%349M%%%%%%%%%%%%935860%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:05%%%%%%%%%%%%%%352M%%%%%%%%%%%%946052%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:10%%%%%%%%%%%%%%380M%%%%%%%%%%%%985344%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:15%%%%%%%%%%%%%%409M%%%%%%%%%%%1011100%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:20%%%%%%%%%%%%%%351M%%%%%%%%%%%%954332%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:25%%%%%%%%%%%%%%353M%%%%%%%%%%%%963012%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:30%%%%%%%%%%%%%%356M%%%%%%%%%%%%974800%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:35%%%%%%%%%%%%%%356M%%%%%%%%%%%%976156%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:40%%%%%%%%%%%%%%368M%%%%%%%%%%%%997468%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:45%%%%%%%%%%%%%%359M%%%%%%%%%%%%999784%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:51%%%%%%%%%%%%%%361M%%%%%%%%%%%1004240%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:58:56%%%%%%%%%%%%%%364M%%%%%%%%%%%1010232%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:59:01%%%%%%%%%%%%%%364M%%%%%%%%%%%1008532%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:59:06%%%%%%%%%%%%%%382M%%%%%%%%%%%%993632%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:59:11%%%%%%%%%%%%%%368M%%%%%%%%%%%%982404%kB%%%%%%%%%%%0.07%%

%2013<01<25%11:59:16%%%%%%%%%%%%%%368M%%%%%%%%%%%%985620%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:59:21%%%%%%%%%%%%%%371M%%%%%%%%%%%%997416%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:59:26%%%%%%%%%%%%%%371M%%%%%%%%%%%%998896%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:59:31%%%%%%%%%%%%%%389M%%%%%%%%%%%%998140%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:59:36%%%%%%%%%%%%%%372M%%%%%%%%%%%%982752%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:59:41%%%%%%%%%%%%%%374M%%%%%%%%%%%%990624%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:59:46%%%%%%%%%%%%%%374M%%%%%%%%%%%%998320%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:59:51%%%%%%%%%%%%%%377M%%%%%%%%%%%1002784%kB%%%%%%%%%%%0.07%%
%2013<01<25%11:59:56%%%%%%%%%%%%%%387M%%%%%%%%%%%1010196%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:01%%%%%%%%%%%%%%376M%%%%%%%%%%%%978932%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:06%%%%%%%%%%%%%%379M%%%%%%%%%%%%983324%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:11%%%%%%%%%%%%%%379M%%%%%%%%%%%%986912%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:16%%%%%%%%%%%%%%381M%%%%%%%%%%%%997468%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:21%%%%%%%%%%%%%%387M%%%%%%%%%%%1004388%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:26%%%%%%%%%%%%%%414M%%%%%%%%%%%1008876%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:31%%%%%%%%%%%%%%383M%%%%%%%%%%%%978964%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:37%%%%%%%%%%%%%%383M%%%%%%%%%%%%985532%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:42%%%%%%%%%%%%%%386M%%%%%%%%%%%%989616%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:47%%%%%%%%%%%%%%398M%%%%%%%%%%%1006952%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:52%%%%%%%%%%%%%%427M%%%%%%%%%%%1008824%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:00:57%%%%%%%%%%%%%%387M%%%%%%%%%%%%948772%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:02%%%%%%%%%%%%%%390M%%%%%%%%%%%%952636%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:07%%%%%%%%%%%%%%390M%%%%%%%%%%%%955364%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:12%%%%%%%%%%%%%%416M%%%%%%%%%%%%993448%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:17%%%%%%%%%%%%%%392M%%%%%%%%%%%%966900%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:22%%%%%%%%%%%%%%392M%%%%%%%%%%%%968272%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:27%%%%%%%%%%%%%%395M%%%%%%%%%%%%972364%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:32%%%%%%%%%%%%%%400M%%%%%%%%%%%%979060%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:37%%%%%%%%%%%%%%426M%%%%%%%%%%%1007092%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:42%%%%%%%%%%%%%%397M%%%%%%%%%%%%959780%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:47%%%%%%%%%%%%%%397M%%%%%%%%%%%%961112%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:53%%%%%%%%%%%%%%399M%%%%%%%%%%%%965220%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:01:58%%%%%%%%%%%%%%405M%%%%%%%%%%%%972908%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:02:03%%%%%%%%%%%%%%432M%%%%%%%%%%%1002296%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:02:08%%%%%%%%%%%%%%401M%%%%%%%%%%%%955828%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:02:13%%%%%%%%%%%%%%401M%%%%%%%%%%%%957364%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:02:18%%%%%%%%%%%%%%404M%%%%%%%%%%%%961312%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:02:23%%%%%%%%%%%%%%411M%%%%%%%%%%%%970380%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:02:28%%%%%%%%%%%%%%439M%%%%%%%%%%%1000900%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:02:33%%%%%%%%%%%%%%406M%%%%%%%%%%%%949816%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:02:38%%%%%%%%%%%%%%406M%%%%%%%%%%%%951152%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:02:43%%%%%%%%%%%%%%408M%%%%%%%%%%%%922780%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:02:48%%%%%%%%%%%%%%411M%%%%%%%%%%%%926976%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:02:53%%%%%%%%%%%%%%411M%%%%%%%%%%%%928736%kB%%%%%%%%%%%0.07%%

%2013<01<25%12:02:58%%%%%%%%%%%%%%413M%%%%%%%%%%%%933068%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:03%%%%%%%%%%%%%%416M%%%%%%%%%%%%937004%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:08%%%%%%%%%%%%%%416M%%%%%%%%%%%%938712%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:13%%%%%%%%%%%%%%418M%%%%%%%%%%%%942772%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:18%%%%%%%%%%%%%%418M%%%%%%%%%%%%944260%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:23%%%%%%%%%%%%%%421M%%%%%%%%%%%%948832%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:28%%%%%%%%%%%%%%423M%%%%%%%%%%%%952892%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:33%%%%%%%%%%%%%%423M%%%%%%%%%%%%954148%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:38%%%%%%%%%%%%%%426M%%%%%%%%%%%%958308%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:43%%%%%%%%%%%%%%426M%%%%%%%%%%%%959672%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:48%%%%%%%%%%%%%%453M%%%%%%%%%%%%989604%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:54%%%%%%%%%%%%%%431M%%%%%%%%%%%%968996%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:03:59%%%%%%%%%%%%%%431M%%%%%%%%%%%%970516%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:04%%%%%%%%%%%%%%433M%%%%%%%%%%%%974236%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:09%%%%%%%%%%%%%%434M%%%%%%%%%%%%975972%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:14%%%%%%%%%%%%%%458M%%%%%%%%%%%1003236%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:19%%%%%%%%%%%%%%438M%%%%%%%%%%%%980260%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:24%%%%%%%%%%%%%%439M%%%%%%%%%%%%982684%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:29%%%%%%%%%%%%%%441M%%%%%%%%%%%%953464%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:34%%%%%%%%%%%%%%441M%%%%%%%%%%%%954824%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:39%%%%%%%%%%%%%%463M%%%%%%%%%%%%979104%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:44%%%%%%%%%%%%%%446M%%%%%%%%%%%%963800%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:49%%%%%%%%%%%%%%446M%%%%%%%%%%%%965076%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:54%%%%%%%%%%%%%%449M%%%%%%%%%%%%969112%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:04:59%%%%%%%%%%%%%%449M%%%%%%%%%%%%970624%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:05:04%%%%%%%%%%%%%%468M%%%%%%%%%%%%991696%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:05:09%%%%%%%%%%%%%%494M%%%%%%%%%%%1010548%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:05:15%%%%%%%%%%%%%%454M%%%%%%%%%%%%958332%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:05:20%%%%%%%%%%%%%%456M%%%%%%%%%%%%962728%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:05:25%%%%%%%%%%%%%%456M%%%%%%%%%%%%964400%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:05:30%%%%%%%%%%%%%%473M%%%%%%%%%%%%983336%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:05:35%%%%%%%%%%%%%%503M%%%%%%%%%%%1010596%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:05:40%%%%%%%%%%%%%%461M%%%%%%%%%%%%947836%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:05:45%%%%%%%%%%%%%%464M%%%%%%%%%%%%951996%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:05:50%%%%%%%%%%%%%%464M%%%%%%%%%%%%953412%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:05:55%%%%%%%%%%%%%%466M%%%%%%%%%%%%957604%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:00%%%%%%%%%%%%%%474M%%%%%%%%%%%%967488%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:05%%%%%%%%%%%%%%469M%%%%%%%%%%%%963096%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:10%%%%%%%%%%%%%%471M%%%%%%%%%%%%967744%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:15%%%%%%%%%%%%%%471M%%%%%%%%%%%%969076%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:20%%%%%%%%%%%%%%474M%%%%%%%%%%%%940604%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:25%%%%%%%%%%%%%%482M%%%%%%%%%%%%950868%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:30%%%%%%%%%%%%%%476M%%%%%%%%%%%%946512%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:35%%%%%%%%%%%%%%479M%%%%%%%%%%%%950296%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:40%%%%%%%%%%%%%%481M%%%%%%%%%%%%954748%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:45%%%%%%%%%%%%%%481M%%%%%%%%%%%%956352%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:50%%%%%%%%%%%%%%498M%%%%%%%%%%%%975092%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:06:55%%%%%%%%%%%%%%484M%%%%%%%%%%%%961668%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:07:00%%%%%%%%%%%%%%486M%%%%%%%%%%%%965768%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:07:06%%%%%%%%%%%%%%488M%%%%%%%%%%%%969904%kB%%%%%%%%%%%0.07%%

%2013<01<25%12:07:11%%%%%%%%%%%%%%488M%%%%%%%%%%%%971592%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:07:16%%%%%%%%%%%%%%506M%%%%%%%%%%%%990952%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:07:21%%%%%%%%%%%%%%491M%%%%%%%%%%%%978324%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:07:26%%%%%%%%%%%%%%494M%%%%%%%%%%%%981920%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:07:31%%%%%%%%%%%%%%496M%%%%%%%%%%%%986368%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:07:36%%%%%%%%%%%%%%496M%%%%%%%%%%%%991560%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:07:41%%%%%%%%%%%%%%508M%%%%%%%%%%%1004828%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:07:46%%%%%%%%%%%%%%538M%%%%%%%%%%%1011020%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:07:51%%%%%%%%%%%%%%520M%%%%%%%%%%%1008508%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:07:56%%%%%%%%%%%%%%544M%%%%%%%%%%%1009108%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:01%%%%%%%%%%%%%%570M%%%%%%%%%%%%993176%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:06%%%%%%%%%%%%%%593M%%%%%%%%%%%1008600%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:11%%%%%%%%%%%%%%617M%%%%%%%%%%%1009556%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:17%%%%%%%%%%%%%%640M%%%%%%%%%%%1012144%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:22%%%%%%%%%%%%%%449M%%%%%%%%%%%%898844%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:27%%%%%%%%%%%%%%449M%%%%%%%%%%%%899132%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:32%%%%%%%%%%%%%%449M%%%%%%%%%%%%899576%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:37%%%%%%%%%%%%%%451M%%%%%%%%%%%%902436%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:42%%%%%%%%%%%%%%452M%%%%%%%%%%%%874508%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:47%%%%%%%%%%%%%%452M%%%%%%%%%%%%874900%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:52%%%%%%%%%%%%%%452M%%%%%%%%%%%%875136%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:08:57%%%%%%%%%%%%%%452M%%%%%%%%%%%%875688%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:02%%%%%%%%%%%%%%454M%%%%%%%%%%%%878844%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:07%%%%%%%%%%%%%%454M%%%%%%%%%%%%879720%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:12%%%%%%%%%%%%%%454M%%%%%%%%%%%%880436%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:17%%%%%%%%%%%%%%454M%%%%%%%%%%%%881044%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:22%%%%%%%%%%%%%%457M%%%%%%%%%%%%884468%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:27%%%%%%%%%%%%%%457M%%%%%%%%%%%%884808%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:32%%%%%%%%%%%%%%457M%%%%%%%%%%%%885292%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:37%%%%%%%%%%%%%%457M%%%%%%%%%%%%886004%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:43%%%%%%%%%%%%%%459M%%%%%%%%%%%%889532%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:48%%%%%%%%%%%%%%459M%%%%%%%%%%%%890184%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:53%%%%%%%%%%%%%%459M%%%%%%%%%%%%890528%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:09:58%%%%%%%%%%%%%%459M%%%%%%%%%%%%891328%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:10:03%%%%%%%%%%%%%%461M%%%%%%%%%%%%894440%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:10:08%%%%%%%%%%%%%%461M%%%%%%%%%%%%895188%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:10:13%%%%%%%%%%%%%%461M%%%%%%%%%%%%895908%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:10:18%%%%%%%%%%%%%%461M%%%%%%%%%%%%896244%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:10:23%%%%%%%%%%%%%%464M%%%%%%%%%%%%899900%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:10:28%%%%%%%%%%%%%%464M%%%%%%%%%%%%900532%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:10:33%%%%%%%%%%%%%%464M%%%%%%%%%%%%901152%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:10:38%%%%%%%%%%%%%%465M%%%%%%%%%%%%902984%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:10:43%%%%%%%%%%%%%%466M%%%%%%%%%%%%905248%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:10:48%%%%%%%%%%%%%%466M%%%%%%%%%%%%905780%kB%%%%%%%%%%%0.07%%
%2013<01<25%12:10:53%%%%%%%%%%%%%%466M%%%%%%%%%%%%906580%kB%%%%%%%%%%%0.07%%
%

TC6,%Node%B
%TIMESTAMP%%%%%%%%%%%%%%%%%%DISK%USAGE%%%%%%%%%MEMORY%USAGE%%%%%%%CPU%USAGE%
==%
%2013=01=25%07:21:45%%%%%%%%%%%%%%204M%%%%%%%%%%%1238036%kB%%%%%%%%%%16.49%%
%2013=01=25%07:21:50%%%%%%%%%%%%%%204M%%%%%%%%%%%1238060%kB%%%%%%%%%%16.49%%
%2013=01=25%07:21:55%%%%%%%%%%%%%%204M%%%%%%%%%%%1281440%kB%%%%%%%%%%16.48%%
%2013=01=25%07:22:00%%%%%%%%%%%%%%204M%%%%%%%%%%%1282144%kB%%%%%%%%%%16.47%%
%2013=01=25%07:22:05%%%%%%%%%%%%%%204M%%%%%%%%%%%1293716%kB%%%%%%%%%%16.45%%
%2013=01=25%07:22:10%%%%%%%%%%%%%%204M%%%%%%%%%%%1295680%kB%%%%%%%%%%16.44%%
%2013=01=25%07:22:15%%%%%%%%%%%%%%204M%%%%%%%%%%%1309232%kB%%%%%%%%%%16.42%%
%2013=01=25%07:22:20%%%%%%%%%%%%%%204M%%%%%%%%%%%1332116%kB%%%%%%%%%%16.41%%
%2013=01=25%07:22:25%%%%%%%%%%%%%%204M%%%%%%%%%%%1334688%kB%%%%%%%%%%16.39%%
%2013=01=25%07:22:30%%%%%%%%%%%%%%214M%%%%%%%%%%%1347188%kB%%%%%%%%%%16.38%%
%2013=01=25%07:22:35%%%%%%%%%%%%%%214M%%%%%%%%%%%1350080%kB%%%%%%%%%%16.37%%
%2013=01=25%07:22:40%%%%%%%%%%%%%%214M%%%%%%%%%%%1373156%kB%%%%%%%%%%16.35%%
%2013=01=25%07:22:45%%%%%%%%%%%%%%214M%%%%%%%%%%%1375820%kB%%%%%%%%%%16.34%%
%2013=01=25%07:22:50%%%%%%%%%%%%%%214M%%%%%%%%%%%1378376%kB%%%%%%%%%%16.32%%
%2013=01=25%07:22:55%%%%%%%%%%%%%%237M%%%%%%%%%%%1454492%kB%%%%%%%%%%16.31%%
%2013=01=25%07:23:00%%%%%%%%%%%%%%210M%%%%%%%%%%%1439468%kB%%%%%%%%%%%16.3%%
%2013=01=25%07:23:05%%%%%%%%%%%%%%216M%%%%%%%%%%%1426884%kB%%%%%%%%%%16.28%%
%2013=01=25%07:23:10%%%%%%%%%%%%%%216M%%%%%%%%%%%1427680%kB%%%%%%%%%%16.27%%
%2013=01=25%07:23:15%%%%%%%%%%%%%%216M%%%%%%%%%%%1427764%kB%%%%%%%%%%16.26%%
%2013=01=25%07:23:20%%%%%%%%%%%%%%216M%%%%%%%%%%%1427464%kB%%%%%%%%%%16.24%%
%2013=01=25%07:23:25%%%%%%%%%%%%%%216M%%%%%%%%%%%1439072%kB%%%%%%%%%%16.23%%
%2013=01=25%07:23:30%%%%%%%%%%%%%%225M%%%%%%%%%%%1451072%kB%%%%%%%%%%16.21%%
%2013=01=25%07:23:35%%%%%%%%%%%%%%225M%%%%%%%%%%%1476048%kB%%%%%%%%%%%16.2%%
%2013=01=25%07:23:40%%%%%%%%%%%%%%225M%%%%%%%%%%%1478624%kB%%%%%%%%%%16.19%%
%2013=01=25%07:23:45%%%%%%%%%%%%%%225M%%%%%%%%%%%1480952%kB%%%%%%%%%%16.17%%
%2013=01=25%07:23:50%%%%%%%%%%%%%%245M%%%%%%%%%%%1530792%kB%%%%%%%%%%16.16%%
%2013=01=25%07:23:55%%%%%%%%%%%%%%225M%%%%%%%%%%%1549232%kB%%%%%%%%%%16.15%%
%2013=01=25%07:24:00%%%%%%%%%%%%%%225M%%%%%%%%%%%1550892%kB%%%%%%%%%%16.13%%
%2013=01=25%07:24:05%%%%%%%%%%%%%%225M%%%%%%%%%%%1553000%kB%%%%%%%%%%16.12%%
%2013=01=25%07:24:10%%%%%%%%%%%%%%225M%%%%%%%%%%%1558832%kB%%%%%%%%%%%16.1%%
%2013=01=25%07:24:15%%%%%%%%%%%%%%235M%%%%%%%%%%%1570552%kB%%%%%%%%%%16.09%%
%2013=01=25%07:24:21%%%%%%%%%%%%%%238M%%%%%%%%%%%1565320%kB%%%%%%%%%%16.08%%
%2013=01=25%07:24:26%%%%%%%%%%%%%%238M%%%%%%%%%%%1568240%kB%%%%%%%%%%16.07%%
%2013=01=25%07:24:31%%%%%%%%%%%%%%238M%%%%%%%%%%%1569768%kB%%%%%%%%%%16.05%%
%2013=01=25%07:24:36%%%%%%%%%%%%%%238M%%%%%%%%%%%1583600%kB%%%%%%%%%%16.04%%
%2013=01=25%07:24:41%%%%%%%%%%%%%%238M%%%%%%%%%%%1617488%kB%%%%%%%%%%16.03%%
%2013=01=25%07:24:46%%%%%%%%%%%%%%248M%%%%%%%%%%%1630096%kB%%%%%%%%%%16.01%%
%2013=01=25%07:24:51%%%%%%%%%%%%%%248M%%%%%%%%%%%1632304%kB%%%%%%%%%%%%%16%%
%2013=01=25%07:24:56%%%%%%%%%%%%%%248M%%%%%%%%%%%1637056%kB%%%%%%%%%%15.99%%
%2013=01=25%07:25:01%%%%%%%%%%%%%%248M%%%%%%%%%%%1638880%kB%%%%%%%%%%15.97%%
%2013=01=25%07:25:06%%%%%%%%%%%%%%269M%%%%%%%%%%%1688512%kB%%%%%%%%%%15.96%%
%2013=01=25%07:25:11%%%%%%%%%%%%%%255M%%%%%%%%%%%1699212%kB%%%%%%%%%%15.94%%

%2013=01=25%07:25:16%%%%%%%%%%%%%%255M%%%%%%%%%%%1700712%kB%%%%%%%%%%15.93%%
%2013=01=25%07:25:21%%%%%%%%%%%%%%255M%%%%%%%%%%%1711444%kB%%%%%%%%%%15.91%%
%2013=01=25%07:25:26%%%%%%%%%%%%%%255M%%%%%%%%%%%1713400%kB%%%%%%%%%%%15.9%%
%2013=01=25%07:25:31%%%%%%%%%%%%%%265M%%%%%%%%%%%1723984%kB%%%%%%%%%%15.89%%
%2013=01=25%07:25:36%%%%%%%%%%%%%%268M%%%%%%%%%%%1717660%kB%%%%%%%%%%15.88%%
%2013=01=25%07:25:41%%%%%%%%%%%%%%268M%%%%%%%%%%%1719976%kB%%%%%%%%%%15.86%%
%2013=01=25%07:25:46%%%%%%%%%%%%%%268M%%%%%%%%%%%1721856%kB%%%%%%%%%%15.85%%
%2013=01=25%07:25:51%%%%%%%%%%%%%%268M%%%%%%%%%%%1737484%kB%%%%%%%%%%15.84%%
%2013=01=25%07:25:56%%%%%%%%%%%%%%268M%%%%%%%%%%%1740540%kB%%%%%%%%%%15.82%%
%2013=01=25%07:26:01%%%%%%%%%%%%%%309M%%%%%%%%%%%1813620%kB%%%%%%%%%%15.81%%
%2013=01=25%07:26:06%%%%%%%%%%%%%%268M%%%%%%%%%%%1775900%kB%%%%%%%%%%%15.8%%
%2013=01=25%07:26:11%%%%%%%%%%%%%%268M%%%%%%%%%%%1780596%kB%%%%%%%%%%15.78%%
%2013=01=25%07:26:16%%%%%%%%%%%%%%268M%%%%%%%%%%%1782620%kB%%%%%%%%%%15.77%%
%2013=01=25%07:26:21%%%%%%%%%%%%%%278M%%%%%%%%%%%1807144%kB%%%%%%%%%%15.76%%
%2013=01=25%07:26:26%%%%%%%%%%%%%%278M%%%%%%%%%%%1809816%kB%%%%%%%%%%15.74%%
%2013=01=25%07:26:31%%%%%%%%%%%%%%278M%%%%%%%%%%%1811412%kB%%%%%%%%%%15.73%%
%2013=01=25%07:26:36%%%%%%%%%%%%%%278M%%%%%%%%%%%1837820%kB%%%%%%%%%%15.71%%
%2013=01=25%07:26:41%%%%%%%%%%%%%%278M%%%%%%%%%%%1840236%kB%%%%%%%%%%%15.7%%
%2013=01=25%07:26:46%%%%%%%%%%%%%%288M%%%%%%%%%%%1872936%kB%%%%%%%%%%15.68%%
%2013=01=25%07:26:51%%%%%%%%%%%%%%308M%%%%%%%%%%%1880728%kB%%%%%%%%%%15.67%%
%2013=01=25%07:26:56%%%%%%%%%%%%%%282M%%%%%%%%%%%1867740%kB%%%%%%%%%%15.66%%
%2013=01=25%07:27:01%%%%%%%%%%%%%%282M%%%%%%%%%%%1869140%kB%%%%%%%%%%15.64%%
%2013=01=25%07:27:06%%%%%%%%%%%%%%282M%%%%%%%%%%%1876540%kB%%%%%%%%%%15.63%%
%2013=01=25%07:27:11%%%%%%%%%%%%%%292M%%%%%%%%%%%1888632%kB%%%%%%%%%%15.61%%
%2013=01=25%07:27:16%%%%%%%%%%%%%%292M%%%%%%%%%%%1905136%kB%%%%%%%%%%%15.6%%
%2013=01=25%07:27:21%%%%%%%%%%%%%%292M%%%%%%%%%%%1907244%kB%%%%%%%%%%15.59%%
%2013=01=25%07:27:26%%%%%%%%%%%%%%292M%%%%%%%%%%%1909188%kB%%%%%%%%%%15.57%%
%2013=01=25%07:27:31%%%%%%%%%%%%%%292M%%%%%%%%%%%1934912%kB%%%%%%%%%%15.56%%
%2013=01=25%07:27:36%%%%%%%%%%%%%%302M%%%%%%%%%%%1947716%kB%%%%%%%%%%15.55%%
%2013=01=25%07:27:42%%%%%%%%%%%%%%302M%%%%%%%%%%%1976504%kB%%%%%%%%%%15.53%%
%2013=01=25%07:27:47%%%%%%%%%%%%%%302M%%%%%%%%%%%2003388%kB%%%%%%%%%%15.52%%
%2013=01=25%07:27:52%%%%%%%%%%%%%%302M%%%%%%%%%%%2004860%kB%%%%%%%%%%15.51%%
%2013=01=25%07:27:57%%%%%%%%%%%%%%311M%%%%%%%%%%%2017568%kB%%%%%%%%%%15.49%%
%2013=01=25%07:28:02%%%%%%%%%%%%%%311M%%%%%%%%%%%2020388%kB%%%%%%%%%%15.48%%
%2013=01=25%07:28:07%%%%%%%%%%%%%%315M%%%%%%%%%%%1993340%kB%%%%%%%%%%15.47%%
%2013=01=25%07:28:12%%%%%%%%%%%%%%315M%%%%%%%%%%%1995628%kB%%%%%%%%%%15.45%%
%2013=01=25%07:28:17%%%%%%%%%%%%%%315M%%%%%%%%%%%1997388%kB%%%%%%%%%%15.44%%
%2013=01=25%07:28:22%%%%%%%%%%%%%%315M%%%%%%%%%%%1999232%kB%%%%%%%%%%15.43%%
%2013=01=25%07:28:27%%%%%%%%%%%%%%325M%%%%%%%%%%%2011108%kB%%%%%%%%%%15.41%%
%2013=01=25%07:28:32%%%%%%%%%%%%%%325M%%%%%%%%%%%2013520%kB%%%%%%%%%%%15.4%%
%2013=01=25%07:28:37%%%%%%%%%%%%%%325M%%%%%%%%%%%2016124%kB%%%%%%%%%%15.38%%
%2013=01=25%07:28:42%%%%%%%%%%%%%%325M%%%%%%%%%%%2018188%kB%%%%%%%%%%15.37%%
%2013=01=25%07:28:47%%%%%%%%%%%%%%330M%%%%%%%%%%%2026332%kB%%%%%%%%%%15.36%%
%2013=01=25%07:28:52%%%%%%%%%%%%%%335M%%%%%%%%%%%2032800%kB%%%%%%%%%%15.34%%

%2013=01=25%07:28:57%%%%%%%%%%%%%%335M%%%%%%%%%%%2035256%kB%%%%%%%%%%15.33%%
%2013=01=25%07:29:02%%%%%%%%%%%%%%335M%%%%%%%%%%%2036952%kB%%%%%%%%%%15.31%%
%2013=01=25%07:29:07%%%%%%%%%%%%%%335M%%%%%%%%%%%2039712%kB%%%%%%%%%%%15.3%%
%2013=01=25%07:29:12%%%%%%%%%%%%%%372M%%%%%%%%%%%2039752%kB%%%%%%%%%%15.28%%
%2013=01=25%07:29:17%%%%%%%%%%%%%%348M%%%%%%%%%%%1946272%kB%%%%%%%%%%15.27%%
%2013=01=25%07:29:22%%%%%%%%%%%%%%348M%%%%%%%%%%%1948060%kB%%%%%%%%%%15.26%%
%2013=01=25%07:29:27%%%%%%%%%%%%%%348M%%%%%%%%%%%1950584%kB%%%%%%%%%%15.24%%
%2013=01=25%07:29:32%%%%%%%%%%%%%%348M%%%%%%%%%%%1951996%kB%%%%%%%%%%15.23%%
%2013=01=25%07:29:37%%%%%%%%%%%%%%348M%%%%%%%%%%%1953980%kB%%%%%%%%%%15.21%%
%2013=01=25%07:29:42%%%%%%%%%%%%%%357M%%%%%%%%%%%1965580%kB%%%%%%%%%%%15.2%%
%2013=01=25%07:29:47%%%%%%%%%%%%%%357M%%%%%%%%%%%1967244%kB%%%%%%%%%%15.18%%
%2013=01=25%07:29:52%%%%%%%%%%%%%%357M%%%%%%%%%%%1969312%kB%%%%%%%%%%15.17%%
%2013=01=25%07:29:57%%%%%%%%%%%%%%357M%%%%%%%%%%%1972056%kB%%%%%%%%%%15.16%%
%2013=01=25%07:30:02%%%%%%%%%%%%%%367M%%%%%%%%%%%1985560%kB%%%%%%%%%%15.14%%
%2013=01=25%07:30:07%%%%%%%%%%%%%%367M%%%%%%%%%%%1987612%kB%%%%%%%%%%15.13%%
%2013=01=25%07:30:12%%%%%%%%%%%%%%367M%%%%%%%%%%%1989156%kB%%%%%%%%%%15.11%%
%2013=01=25%07:30:17%%%%%%%%%%%%%%367M%%%%%%%%%%%1990996%kB%%%%%%%%%%15.11%%
%2013=01=25%07:30:22%%%%%%%%%%%%%%367M%%%%%%%%%%%1992884%kB%%%%%%%%%%%15.1%%
%2013=01=25%07:30:27%%%%%%%%%%%%%%377M%%%%%%%%%%%2007872%kB%%%%%%%%%%15.08%%
%2013=01=25%07:30:32%%%%%%%%%%%%%%380M%%%%%%%%%%%1980748%kB%%%%%%%%%%15.07%%
%2013=01=25%07:30:37%%%%%%%%%%%%%%380M%%%%%%%%%%%1982268%kB%%%%%%%%%%15.05%%
%2013=01=25%07:30:42%%%%%%%%%%%%%%380M%%%%%%%%%%%1983600%kB%%%%%%%%%%15.04%%
%2013=01=25%07:30:47%%%%%%%%%%%%%%380M%%%%%%%%%%%1984888%kB%%%%%%%%%%15.03%%
%2013=01=25%07:30:52%%%%%%%%%%%%%%380M%%%%%%%%%%%1987084%kB%%%%%%%%%%15.02%%
%2013=01=25%07:30:57%%%%%%%%%%%%%%390M%%%%%%%%%%%1999500%kB%%%%%%%%%%15.01%%
%2013=01=25%07:31:02%%%%%%%%%%%%%%390M%%%%%%%%%%%2001200%kB%%%%%%%%%%14.99%%
%2013=01=25%07:31:08%%%%%%%%%%%%%%390M%%%%%%%%%%%2003332%kB%%%%%%%%%%14.98%%
%2013=01=25%07:31:13%%%%%%%%%%%%%%390M%%%%%%%%%%%2005412%kB%%%%%%%%%%14.97%%
%2013=01=25%07:31:18%%%%%%%%%%%%%%400M%%%%%%%%%%%2018604%kB%%%%%%%%%%14.96%%
%2013=01=25%07:31:23%%%%%%%%%%%%%%448M%%%%%%%%%%%2040368%kB%%%%%%%%%%14.95%%
%2013=01=25%07:31:28%%%%%%%%%%%%%%438M%%%%%%%%%%%2024696%kB%%%%%%%%%%14.93%%
%2013=01=25%07:31:33%%%%%%%%%%%%%%482M%%%%%%%%%%%2038928%kB%%%%%%%%%%14.92%%
%2013=01=25%07:31:38%%%%%%%%%%%%%%524M%%%%%%%%%%%2038248%kB%%%%%%%%%%%14.9%%
%2013=01=25%07:31:43%%%%%%%%%%%%%%575M%%%%%%%%%%%2040264%kB%%%%%%%%%%14.89%%
%2013=01=25%07:31:48%%%%%%%%%%%%%%351M%%%%%%%%%%%1776100%kB%%%%%%%%%%14.87%%
%2013=01=25%07:31:53%%%%%%%%%%%%%%351M%%%%%%%%%%%1778776%kB%%%%%%%%%%14.86%%
%2013=01=25%07:31:58%%%%%%%%%%%%%%351M%%%%%%%%%%%1780504%kB%%%%%%%%%%14.84%%
%2013=01=25%07:32:03%%%%%%%%%%%%%%351M%%%%%%%%%%%1783328%kB%%%%%%%%%%14.83%%
%2013=01=25%07:32:08%%%%%%%%%%%%%%351M%%%%%%%%%%%1784980%kB%%%%%%%%%%14.81%%
%2013=01=25%07:32:13%%%%%%%%%%%%%%361M%%%%%%%%%%%1796528%kB%%%%%%%%%%%14.8%%
%2013=01=25%07:32:18%%%%%%%%%%%%%%361M%%%%%%%%%%%1799184%kB%%%%%%%%%%14.78%%
%2013=01=25%07:32:23%%%%%%%%%%%%%%361M%%%%%%%%%%%1801692%kB%%%%%%%%%%14.77%%
%2013=01=25%07:32:28%%%%%%%%%%%%%%361M%%%%%%%%%%%1803392%kB%%%%%%%%%%14.76%%
%2013=01=25%07:32:33%%%%%%%%%%%%%%393M%%%%%%%%%%%1839436%kB%%%%%%%%%%14.74%%
%2013=01=25%07:32:38%%%%%%%%%%%%%%371M%%%%%%%%%%%1819104%kB%%%%%%%%%%14.73%%
%2013=01=25%07:32:43%%%%%%%%%%%%%%371M%%%%%%%%%%%1820904%kB%%%%%%%%%%14.71%%
%2013=01=25%07:32:48%%%%%%%%%%%%%%371M%%%%%%%%%%%1823124%kB%%%%%%%%%%%14.7%%
%2013=01=25%07:32:53%%%%%%%%%%%%%%381M%%%%%%%%%%%1835236%kB%%%%%%%%%%14.68%%
%2013=01=25%07:32:58%%%%%%%%%%%%%%381M%%%%%%%%%%%1837536%kB%%%%%%%%%%14.67%%
%2013=01=25%07:33:03%%%%%%%%%%%%%%384M%%%%%%%%%%%1810724%kB%%%%%%%%%%14.66%%

%2013=01=25%07:33:08%%%%%%%%%%%%%%384M%%%%%%%%%%%1824448%kB%%%%%%%%%%14.64%%
%2013=01=25%07:33:13%%%%%%%%%%%%%%384M%%%%%%%%%%%1827400%kB%%%%%%%%%%14.63%%
%2013=01=25%07:33:18%%%%%%%%%%%%%%384M%%%%%%%%%%%1829348%kB%%%%%%%%%%14.62%%
%2013=01=25%07:33:23%%%%%%%%%%%%%%407M%%%%%%%%%%%1853384%kB%%%%%%%%%%%14.6%%
%2013=01=25%07:33:28%%%%%%%%%%%%%%393M%%%%%%%%%%%1841764%kB%%%%%%%%%%14.59%%
%2013=01=25%07:33:33%%%%%%%%%%%%%%393M%%%%%%%%%%%1843912%kB%%%%%%%%%%14.57%%
%2013=01=25%07:33:38%%%%%%%%%%%%%%393M%%%%%%%%%%%1845736%kB%%%%%%%%%%14.56%%
%2013=01=25%07:33:43%%%%%%%%%%%%%%393M%%%%%%%%%%%1847156%kB%%%%%%%%%%14.55%%
%2013=01=25%07:33:48%%%%%%%%%%%%%%403M%%%%%%%%%%%1857440%kB%%%%%%%%%%14.55%%
%2013=01=25%07:33:53%%%%%%%%%%%%%%403M%%%%%%%%%%%1827148%kB%%%%%%%%%%14.54%%
%2013=01=25%07:33:58%%%%%%%%%%%%%%403M%%%%%%%%%%%1827764%kB%%%%%%%%%%14.53%%
%2013=01=25%07:34:03%%%%%%%%%%%%%%403M%%%%%%%%%%%1828524%kB%%%%%%%%%%14.53%%
%2013=01=25%07:34:08%%%%%%%%%%%%%%403M%%%%%%%%%%%1829316%kB%%%%%%%%%%14.53%%
%2013=01=25%07:34:13%%%%%%%%%%%%%%403M%%%%%%%%%%%1830144%kB%%%%%%%%%%14.52%%
%2013=01=25%07:34:18%%%%%%%%%%%%%%403M%%%%%%%%%%%1830764%kB%%%%%%%%%%14.52%%
%2013=01=25%07:34:23%%%%%%%%%%%%%%403M%%%%%%%%%%%1831416%kB%%%%%%%%%%14.51%%
%2013=01=25%07:34:28%%%%%%%%%%%%%%403M%%%%%%%%%%%1832316%kB%%%%%%%%%%14.51%%
%2013=01=25%07:34:34%%%%%%%%%%%%%%403M%%%%%%%%%%%1833588%kB%%%%%%%%%%%14.5%%
%2013=01=25%07:34:39%%%%%%%%%%%%%%403M%%%%%%%%%%%1834520%kB%%%%%%%%%%%14.5%%
%2013=01=25%07:34:44%%%%%%%%%%%%%%412M%%%%%%%%%%%1844044%kB%%%%%%%%%%14.49%%
%2013=01=25%07:34:49%%%%%%%%%%%%%%412M%%%%%%%%%%%1845208%kB%%%%%%%%%%14.49%%
%2013=01=25%07:34:54%%%%%%%%%%%%%%412M%%%%%%%%%%%1845764%kB%%%%%%%%%%14.48%%
%2013=01=25%07:34:59%%%%%%%%%%%%%%412M%%%%%%%%%%%1846716%kB%%%%%%%%%%14.48%%
%2013=01=25%07:35:04%%%%%%%%%%%%%%417M%%%%%%%%%%%1819008%kB%%%%%%%%%%14.47%%
%2013=01=25%07:35:09%%%%%%%%%%%%%%417M%%%%%%%%%%%1819832%kB%%%%%%%%%%14.47%%
%2013=01=25%07:35:14%%%%%%%%%%%%%%417M%%%%%%%%%%%1820552%kB%%%%%%%%%%14.46%%
%2013=01=25%07:35:19%%%%%%%%%%%%%%417M%%%%%%%%%%%1821512%kB%%%%%%%%%%14.46%%
%2013=01=25%07:35:24%%%%%%%%%%%%%%417M%%%%%%%%%%%1822588%kB%%%%%%%%%%14.45%%
%2013=01=25%07:35:29%%%%%%%%%%%%%%417M%%%%%%%%%%%1823364%kB%%%%%%%%%%14.45%%
%2013=01=25%07:35:34%%%%%%%%%%%%%%417M%%%%%%%%%%%1824232%kB%%%%%%%%%%14.44%%
%2013=01=25%07:35:39%%%%%%%%%%%%%%417M%%%%%%%%%%%1825380%kB%%%%%%%%%%14.44%%
%2013=01=25%07:35:44%%%%%%%%%%%%%%417M%%%%%%%%%%%1825848%kB%%%%%%%%%%14.43%%
%2013=01=25%07:35:49%%%%%%%%%%%%%%417M%%%%%%%%%%%1826932%kB%%%%%%%%%%14.43%%
%2013=01=25%07:35:54%%%%%%%%%%%%%%417M%%%%%%%%%%%1827552%kB%%%%%%%%%%14.42%%
%2013=01=25%07:35:59%%%%%%%%%%%%%%426M%%%%%%%%%%%1839032%kB%%%%%%%%%%14.42%%
%2013=01=25%07:36:04%%%%%%%%%%%%%%426M%%%%%%%%%%%1840220%kB%%%%%%%%%%14.41%%
%2013=01=25%07:36:09%%%%%%%%%%%%%%426M%%%%%%%%%%%1840988%kB%%%%%%%%%%%14.4%%
%2013=01=25%07:36:14%%%%%%%%%%%%%%426M%%%%%%%%%%%1841708%kB%%%%%%%%%%%14.4%%
%2013=01=25%07:36:19%%%%%%%%%%%%%%426M%%%%%%%%%%%1841800%kB%%%%%%%%%%14.39%%
%2013=01=25%07:36:24%%%%%%%%%%%%%%426M%%%%%%%%%%%1842848%kB%%%%%%%%%%14.39%%
%2013=01=25%07:36:29%%%%%%%%%%%%%%426M%%%%%%%%%%%1843996%kB%%%%%%%%%%14.38%%
%2013=01=25%07:36:34%%%%%%%%%%%%%%426M%%%%%%%%%%%1844740%kB%%%%%%%%%%14.38%%
%2013=01=25%07:36:39%%%%%%%%%%%%%%426M%%%%%%%%%%%1845700%kB%%%%%%%%%%14.37%%
%2013=01=25%07:36:44%%%%%%%%%%%%%%426M%%%%%%%%%%%1847112%kB%%%%%%%%%%14.37%%
%2013=01=25%07:36:49%%%%%%%%%%%%%%435M%%%%%%%%%%%1857516%kB%%%%%%%%%%14.36%%
%

TC7_H,'Node'A
'TIMESTAMP''''''''''''''''''DISK'USAGE'''''''''MEMORY'USAGE'''''''CPU'USAGE'
=='
'2013>01>25'12:19:19''''''''''''''484M''''''''''''896744'kB'''''''''''0.07%'
'2013>01>25'12:19:24''''''''''''''484M''''''''''''924940'kB'''''''''''0.07%'
'2013>01>25'12:19:29''''''''''''''484M''''''''''''958528'kB'''''''''''0.07%'
'2013>01>25'12:19:34''''''''''''''495M''''''''''''975292'kB'''''''''''0.07%'
'2013>01>25'12:19:39''''''''''''''524M'''''''''''1006184'kB'''''''''''0.07%'
'2013>01>25'12:19:44''''''''''''''487M''''''''''''967260'kB'''''''''''0.07%'
'2013>01>25'12:19:49''''''''''''''489M''''''''''''971092'kB'''''''''''0.07%'
'2013>01>25'12:19:54''''''''''''''490M''''''''''''978308'kB'''''''''''0.07%'
'2013>01>25'12:19:59''''''''''''''507M'''''''''''1009828'kB'''''''''''0.07%'
'2013>01>25'12:20:04''''''''''''''530M'''''''''''1009396'kB'''''''''''0.07%'
'2013>01>25'12:20:10''''''''''''''558M''''''''''''991032'kB'''''''''''0.07%'
'2013>01>25'12:20:15''''''''''''''570M'''''''''''1010836'kB'''''''''''0.07%'
'2013>01>25'12:20:20''''''''''''''527M''''''''''''952164'kB'''''''''''0.07%'
'2013>01>25'12:20:25''''''''''''''553M''''''''''''988676'kB'''''''''''0.07%'
'2013>01>25'12:20:31''''''''''''''592M'''''''''''1010132'kB'''''''''''0.07%'
'2013>01>25'12:20:36''''''''''''''640M'''''''''''1010268'kB'''''''''''0.07%'
'2013>01>25'12:20:42''''''''''''''640M'''''''''''1005408'kB'''''''''''0.07%'
'2013>01>25'12:20:47''''''''''''''688M'''''''''''1006460'kB'''''''''''0.07%'
'2013>01>25'12:20:52''''''''''''''663M''''''''''''957020'kB'''''''''''0.07%'
'2013>01>25'12:20:57''''''''''''''704M''''''''''''994144'kB'''''''''''0.07%'
'2013>01>25'12:21:03''''''''''''''756M'''''''''''1009656'kB'''''''''''0.07%'
'2013>01>25'12:21:08''''''''''''''731M''''''''''''989820'kB'''''''''''0.07%'
'2013>01>25'12:21:14''''''''''''''772M'''''''''''1008036'kB'''''''''''0.07%'
'2013>01>25'12:21:19''''''''''''''819M''''''''''''987652'kB'''''''''''0.07%'
'2013>01>25'12:21:25''''''''''''''862M'''''''''''1008608'kB'''''''''''0.07%'
'2013>01>25'12:21:30''''''''''''''887M'''''''''''1009064'kB'''''''''''0.07%'
'2013>01>25'12:21:35''''''''''''''886M''''''''''''978624'kB'''''''''''0.07%'
'2013>01>25'12:21:41''''''''''''''898M'''''''''''1007264'kB'''''''''''0.07%'
'2013>01>25'12:21:46''''''''''''''944M''''''''''''992488'kB'''''''''''0.07%'
'2013>01>25'12:21:52''''''''''''''956M'''''''''''1008184'kB'''''''''''0.07%'
'2013>01>25'12:21:57'''''''''''''1013M'''''''''''1009800'kB'''''''''''0.07%'
'2013>01>25'12:22:02''''''''''''''1.1G'''''''''''1009252'kB'''''''''''0.07%'
'2013>01>25'12:22:08''''''''''''''1.1G'''''''''''1010856'kB'''''''''''0.07%'
'2013>01>25'12:22:13''''''''''''''1.1G''''''''''''953960'kB'''''''''''0.07%'
'2013>01>25'12:22:18''''''''''''''1.1G''''''''''''988616'kB'''''''''''0.07%'
'2013>01>25'12:22:23''''''''''''''1.1G''''''''''''995800'kB'''''''''''0.07%'
'2013>01>25'12:22:29''''''''''''''1.2G'''''''''''1010448'kB'''''''''''0.07%'
'2013>01>25'12:22:34''''''''''''''1.2G'''''''''''1008748'kB'''''''''''0.07%'
'2013>01>25'12:22:39''''''''''''''1.2G'''''''''''1009832'kB'''''''''''0.07%'
'2013>01>25'12:22:45''''''''''''''1.3G'''''''''''1009784'kB'''''''''''0.07%'
'2013>01>25'12:22:50''''''''''''''1.3G'''''''''''1010704'kB'''''''''''0.07%'
'2013>01>25'12:22:56''''''''''''''1.4G'''''''''''1011020'kB'''''''''''0.07%'

'2013>01>25'12:23:01''''''''''''''1.3G''''''''''''944136'kB'''''''''''0.07%'
'2013>01>25'12:23:06''''''''''''''1.4G'''''''''''1010104'kB'''''''''''0.07%'
'2013>01>25'12:23:12''''''''''''''1.4G'''''''''''1009144'kB'''''''''''0.07%'
'2013>01>25'12:23:17''''''''''''''1.3G''''''''''''973880'kB'''''''''''0.07%'
'2013>01>25'12:23:22''''''''''''''1.4G'''''''''''1009856'kB'''''''''''0.07%'
'2013>01>25'12:23:27''''''''''''''1.4G'''''''''''1011004'kB'''''''''''0.07%'
'2013>01>25'12:23:33''''''''''''''1.4G'''''''''''1000624'kB'''''''''''0.07%'
'2013>01>25'12:23:38''''''''''''''1.4G'''''''''''1008932'kB'''''''''''0.07%'
'2013>01>25'12:23:43''''''''''''''1.5G'''''''''''1010780'kB'''''''''''0.07%'
'2013>01>25'12:23:49''''''''''''''1.5G'''''''''''1000064'kB'''''''''''0.07%'
'2013>01>25'12:23:54''''''''''''''1.5G'''''''''''1011044'kB'''''''''''0.07%'
'2013>01>25'12:23:59''''''''''''''1.5G'''''''''''1010020'kB'''''''''''0.07%'
'2013>01>25'12:24:04''''''''''''''1.6G'''''''''''1011220'kB'''''''''''0.07%'
'2013>01>25'12:24:09''''''''''''''1.5G''''''''''''984856'kB'''''''''''0.07%'
'2013>01>25'12:24:15''''''''''''''1.5G''''''''''''926152'kB'''''''''''0.07%'
'2013>01>25'12:24:20''''''''''''''1.5G''''''''''''987080'kB'''''''''''0.07%'
'2013>01>25'12:24:25''''''''''''''1.6G'''''''''''1010184'kB'''''''''''0.07%'
'2013>01>25'12:24:30''''''''''''''1.6G'''''''''''1008644'kB'''''''''''0.07%'
'2013>01>25'12:24:36''''''''''''''1.4G''''''''''''950932'kB'''''''''''0.07%'
'2013>01>25'12:24:41''''''''''''''1.4G''''''''''''944040'kB'''''''''''0.07%'
'2013>01>25'12:24:46''''''''''''''1.4G'''''''''''1009680'kB'''''''''''0.07%'
'2013>01>25'12:24:51''''''''''''''1.4G''''''''''''980664'kB'''''''''''0.07%'
'2013>01>25'12:24:56''''''''''''''1.4G'''''''''''1010240'kB'''''''''''0.07%'
'2013>01>25'12:25:01''''''''''''''1.5G'''''''''''1009392'kB'''''''''''0.07%'
'2013>01>25'12:25:06''''''''''''''1.5G'''''''''''1008776'kB'''''''''''0.07%'
'2013>01>25'12:25:11''''''''''''''1.5G'''''''''''1009712'kB'''''''''''0.07%'
'2013>01>25'12:25:17''''''''''''''1.6G'''''''''''1010556'kB'''''''''''0.07%'
'2013>01>25'12:25:22''''''''''''''1.6G'''''''''''1011060'kB'''''''''''0.07%'
'2013>01>25'12:25:27''''''''''''''1.7G'''''''''''1010424'kB'''''''''''0.07%'
'2013>01>25'12:25:32''''''''''''''1.5G''''''''''''890976'kB'''''''''''0.07%'
'2013>01>25'12:25:37''''''''''''''1.5G''''''''''''953784'kB'''''''''''0.07%'
'2013>01>25'12:25:42''''''''''''''1.5G'''''''''''1009220'kB'''''''''''0.07%'
'2013>01>25'12:25:47''''''''''''''1.6G'''''''''''1009828'kB'''''''''''0.07%'
'2013>01>25'12:25:52''''''''''''''1.6G'''''''''''1010628'kB'''''''''''0.07%'
'2013>01>25'12:25:57''''''''''''''1.6G'''''''''''1010480'kB'''''''''''0.07%'
'2013>01>25'12:26:02''''''''''''''1.6G'''''''''''1010256'kB'''''''''''0.07%'
'2013>01>25'12:26:07''''''''''''''911M''''''''''''784860'kB'''''''''''0.07%'
'2013>01>25'12:26:12''''''''''''''911M''''''''''''784336'kB'''''''''''0.07%'
'2013>01>25'12:26:17''''''''''''''911M''''''''''''784500'kB'''''''''''0.07%'
'2013>01>25'12:26:22''''''''''''''911M''''''''''''784224'kB'''''''''''0.07%'
'2013>01>25'12:26:27''''''''''''''911M''''''''''''784188'kB'''''''''''0.07%'
'2013>01>25'12:26:32''''''''''''''911M''''''''''''784400'kB'''''''''''0.07%'
'2013>01>25'12:26:37''''''''''''''911M''''''''''''784400'kB'''''''''''0.07%'
'2013>01>25'12:26:43''''''''''''''911M''''''''''''784520'kB'''''''''''0.07%'

'2013>01>25'12:26:48''''''''''''''911M''''''''''''784256'kB'''''''''''0.07%'
'2013>01>25'12:26:53''''''''''''''911M''''''''''''784268'kB'''''''''''0.07%'
'2013>01>25'12:26:58''''''''''''''911M''''''''''''784244'kB'''''''''''0.07%'
'2013>01>25'12:27:03''''''''''''''911M''''''''''''784340'kB'''''''''''0.07%'
'2013>01>25'12:27:08''''''''''''''911M''''''''''''784408'kB'''''''''''0.07%'
'2013>01>25'12:27:13''''''''''''''911M''''''''''''784324'kB'''''''''''0.07%'
'2013>01>25'12:27:18''''''''''''''911M''''''''''''784188'kB'''''''''''0.07%'
'2013>01>25'12:27:23''''''''''''''911M''''''''''''784240'kB'''''''''''0.07%'
'2013>01>25'12:27:28''''''''''''''911M''''''''''''784284'kB'''''''''''0.07%'
'2013>01>25'12:27:33''''''''''''''911M''''''''''''784252'kB'''''''''''0.07%'
'2013>01>25'12:27:38''''''''''''''911M''''''''''''784384'kB'''''''''''0.07%'
'2013>01>25'12:27:43''''''''''''''911M''''''''''''784288'kB'''''''''''0.07%'
'2013>01>25'12:27:48''''''''''''''911M''''''''''''784488'kB'''''''''''0.07%'
'2013>01>25'12:27:53''''''''''''''911M''''''''''''784288'kB'''''''''''0.07%'
'2013>01>25'12:27:58''''''''''''''911M''''''''''''784296'kB'''''''''''0.07%'
'2013>01>25'12:28:03''''''''''''''911M''''''''''''784280'kB'''''''''''0.07%'
'2013>01>25'12:28:08''''''''''''''911M''''''''''''784320'kB'''''''''''0.07%'
'2013>01>25'12:28:13''''''''''''''911M''''''''''''784624'kB'''''''''''0.07%'
'2013>01>25'12:28:18''''''''''''''911M''''''''''''784376'kB'''''''''''0.07%'
'2013>01>25'12:28:23''''''''''''''911M''''''''''''784360'kB'''''''''''0.07%'
'2013>01>25'12:28:28''''''''''''''911M''''''''''''784368'kB'''''''''''0.07%'
'2013>01>25'12:28:33''''''''''''''911M''''''''''''784212'kB'''''''''''0.07%'
'2013>01>25'12:28:38''''''''''''''911M''''''''''''784816'kB'''''''''''0.07%'
'2013>01>25'12:28:43''''''''''''''911M''''''''''''784404'kB'''''''''''0.07%'
'2013>01>25'12:28:48''''''''''''''911M''''''''''''784500'kB'''''''''''0.07%'
'2013>01>25'12:28:54''''''''''''''911M''''''''''''784720'kB'''''''''''0.07%'
'2013>01>25'12:28:59''''''''''''''911M''''''''''''784572'kB'''''''''''0.07%'
'2013>01>25'12:29:04''''''''''''''911M''''''''''''784596'kB'''''''''''0.07%'
'2013>01>25'12:29:09''''''''''''''911M''''''''''''784740'kB'''''''''''0.07%'
'2013>01>25'12:29:14''''''''''''''911M''''''''''''784288'kB'''''''''''0.07%'
'2013>01>25'12:29:19''''''''''''''911M''''''''''''784564'kB'''''''''''0.07%'
'2013>01>25'12:29:24''''''''''''''911M''''''''''''785180'kB'''''''''''0.07%'
'2013>01>25'12:29:29''''''''''''''911M''''''''''''785304'kB'''''''''''0.07%'
'2013>01>25'12:29:34''''''''''''''911M''''''''''''785096'kB'''''''''''0.07%'
'2013>01>25'12:29:39''''''''''''''911M''''''''''''785260'kB'''''''''''0.07%'
'2013>01>25'12:29:44''''''''''''''911M''''''''''''785180'kB'''''''''''0.07%'
'2013>01>25'12:29:49''''''''''''''911M''''''''''''784968'kB'''''''''''0.07%'
'2013>01>25'12:29:54''''''''''''''911M''''''''''''784900'kB'''''''''''0.07%'
'2013>01>25'12:29:59''''''''''''''911M''''''''''''785236'kB'''''''''''0.07%'
'2013>01>25'12:30:04''''''''''''''911M''''''''''''785220'kB'''''''''''0.07%'
'2013>01>25'12:30:09''''''''''''''911M''''''''''''785236'kB'''''''''''0.07%'
'2013>01>25'12:30:14''''''''''''''911M''''''''''''785980'kB'''''''''''0.07%'
'2013>01>25'12:30:19''''''''''''''911M''''''''''''785908'kB'''''''''''0.07%'
'2013>01>25'12:30:24''''''''''''''911M''''''''''''785824'kB'''''''''''0.07%'
'2013>01>25'12:30:29''''''''''''''911M''''''''''''786128'kB'''''''''''0.07%'
'2013>01>25'12:30:34''''''''''''''911M''''''''''''786104'kB'''''''''''0.07%'
'2013>01>25'12:30:39''''''''''''''911M''''''''''''786220'kB'''''''''''0.07%'
'2013>01>25'12:30:44''''''''''''''911M''''''''''''786536'kB'''''''''''0.07%'
'2013>01>25'12:30:49''''''''''''''911M''''''''''''786396'kB'''''''''''0.07%'
'2013>01>25'12:30:54''''''''''''''911M''''''''''''786220'kB'''''''''''0.07%'

'2013>01>25'12:30:59''''''''''''''911M''''''''''''786372'kB'''''''''''0.07%'
'2013>01>25'12:31:05''''''''''''''911M''''''''''''786452'kB'''''''''''0.07%'
'2013>01>25'12:31:10''''''''''''''911M''''''''''''802120'kB'''''''''''0.07%'
'2013>01>25'12:31:15''''''''''''''911M''''''''''''802320'kB'''''''''''0.07%'
'2013>01>25'12:31:20''''''''''''''911M''''''''''''802344'kB'''''''''''0.07%'
'2013>01>25'12:31:25''''''''''''''911M''''''''''''802416'kB'''''''''''0.07%'
'2013>01>25'12:31:30''''''''''''''911M''''''''''''802404'kB'''''''''''0.07%'
'2013>01>25'12:31:35''''''''''''''911M''''''''''''802380'kB'''''''''''0.07%'
'2013>01>25'12:31:40''''''''''''''911M''''''''''''802232'kB'''''''''''0.07%'
'2013>01>25'12:31:45''''''''''''''911M''''''''''''802012'kB'''''''''''0.07%'
'2013>01>25'12:31:50''''''''''''''911M''''''''''''802352'kB'''''''''''0.07%'
'2013>01>25'12:31:55''''''''''''''911M''''''''''''802500'kB'''''''''''0.07%'
'2013>01>25'12:32:00''''''''''''''911M''''''''''''802636'kB'''''''''''0.07%'
'2013>01>25'12:32:05''''''''''''''911M''''''''''''802676'kB'''''''''''0.07%'
'2013>01>25'12:32:10''''''''''''''911M''''''''''''802944'kB'''''''''''0.07%'
'2013>01>25'12:32:15''''''''''''''911M''''''''''''802744'kB'''''''''''0.07%'
'2013>01>25'12:32:20''''''''''''''911M''''''''''''803000'kB'''''''''''0.07%'
'2013>01>25'12:32:25''''''''''''''911M''''''''''''802836'kB'''''''''''0.07%'
'2013>01>25'12:32:30''''''''''''''911M''''''''''''802876'kB'''''''''''0.07%'
'2013>01>25'12:32:35''''''''''''''911M''''''''''''802816'kB'''''''''''0.07%'
'2013>01>25'12:32:40''''''''''''''911M''''''''''''802900'kB'''''''''''0.07%'
'2013>01>25'12:32:45''''''''''''''911M''''''''''''802992'kB'''''''''''0.07%'
'2013>01>25'12:32:50''''''''''''''911M''''''''''''802780'kB'''''''''''0.07%'
'2013>01>25'12:32:55''''''''''''''911M''''''''''''802868'kB'''''''''''0.07%'
'2013>01>25'12:33:00''''''''''''''911M''''''''''''802800'kB'''''''''''0.07%'
'2013>01>25'12:33:05''''''''''''''911M''''''''''''802688'kB'''''''''''0.07%'
'2013>01>25'12:33:10''''''''''''''911M''''''''''''802884'kB'''''''''''0.07%'
'2013>01>25'12:33:16''''''''''''''911M''''''''''''802864'kB'''''''''''0.07%'
'2013>01>25'12:33:21''''''''''''''911M''''''''''''802840'kB'''''''''''0.07%'
'2013>01>25'12:33:26''''''''''''''911M''''''''''''803008'kB'''''''''''0.07%'
'2013>01>25'12:33:31''''''''''''''911M''''''''''''802976'kB'''''''''''0.07%'
'2013>01>25'12:33:36''''''''''''''911M''''''''''''803040'kB'''''''''''0.07%'
'2013>01>25'12:33:41''''''''''''''911M''''''''''''803068'kB'''''''''''0.07%'
'2013>01>25'12:33:46''''''''''''''911M''''''''''''803052'kB'''''''''''0.07%'
'2013>01>25'12:33:51''''''''''''''911M''''''''''''802948'kB'''''''''''0.07%'
'2013>01>25'12:33:56''''''''''''''911M''''''''''''803028'kB'''''''''''0.07%'
'2013>01>25'12:34:01''''''''''''''911M''''''''''''802888'kB'''''''''''0.07%'
'2013>01>25'12:34:06''''''''''''''911M''''''''''''802728'kB'''''''''''0.07%'
'2013>01>25'12:34:11''''''''''''''911M''''''''''''803988'kB'''''''''''0.07%'
'2013>01>25'12:34:16''''''''''''''911M''''''''''''804040'kB'''''''''''0.07%'
'2013>01>25'12:34:21''''''''''''''911M''''''''''''803604'kB'''''''''''0.07%'
'2013>01>25'12:34:26''''''''''''''911M''''''''''''803792'kB'''''''''''0.07%'
'2013>01>25'12:34:31''''''''''''''911M''''''''''''803836'kB'''''''''''0.07%'
'2013>01>25'12:34:36''''''''''''''911M''''''''''''803948'kB'''''''''''0.07%'
'2013>01>25'12:34:41''''''''''''''911M''''''''''''803592'kB'''''''''''0.07%'
'

TC7_H,'Node'B
'TIMESTAMP''''''''''''''''''DISK'USAGE'''''''''MEMORY'USAGE'''''''CPU'USAGE'
=='
'2013?01?25'07:45:23''''''''''''''459M'''''''''''1876564'kB'''''''''''14.2%'
'2013?01?25'07:45:28''''''''''''''459M'''''''''''1888268'kB'''''''''''14.2%'
'2013?01?25'07:45:33''''''''''''''459M'''''''''''1926020'kB'''''''''''14.2%'
'2013?01?25'07:45:38''''''''''''''459M'''''''''''1940704'kB''''''''''14.18%'
'2013?01?25'07:45:43''''''''''''''459M'''''''''''1943692'kB''''''''''14.17%'
'2013?01?25'07:45:48''''''''''''''459M'''''''''''1946220'kB''''''''''14.15%'
'2013?01?25'07:45:53''''''''''''''468M'''''''''''1958384'kB''''''''''14.14%'
'2013?01?25'07:45:58''''''''''''''468M'''''''''''1965876'kB''''''''''14.12%'
'2013?01?25'07:46:03''''''''''''''472M'''''''''''1975704'kB''''''''''14.11%'
'2013?01?25'07:46:08''''''''''''''475M'''''''''''1952144'kB''''''''''14.09%'
'2013?01?25'07:46:13''''''''''''''475M'''''''''''1954752'kB''''''''''14.08%'
'2013?01?25'07:46:19''''''''''''''504M'''''''''''1988272'kB''''''''''14.06%'
'2013?01?25'07:46:24''''''''''''''481M'''''''''''1970312'kB''''''''''14.05%'
'2013?01?25'07:46:29''''''''''''''491M'''''''''''1984080'kB''''''''''14.03%'
'2013?01?25'07:46:34''''''''''''''491M'''''''''''1996192'kB''''''''''14.01%'
'2013?01?25'07:46:39''''''''''''''491M'''''''''''1999916'kB'''''''''''''14%'
'2013?01?25'07:46:44''''''''''''''513M'''''''''''1993004'kB''''''''''13.98%'
'2013?01?25'07:46:49''''''''''''''530M'''''''''''2015648'kB''''''''''13.96%'
'2013?01?25'07:46:54''''''''''''''530M'''''''''''2020304'kB''''''''''13.95%'
'2013?01?25'07:46:59''''''''''''''539M'''''''''''2034676'kB''''''''''13.93%'
'2013?01?25'07:47:04''''''''''''''539M'''''''''''2037972'kB''''''''''13.91%'
'2013?01?25'07:47:09''''''''''''''549M'''''''''''2038476'kB'''''''''''13.9%'
'2013?01?25'07:47:14''''''''''''''549M'''''''''''2040644'kB''''''''''13.88%'
'2013?01?25'07:47:19''''''''''''''562M'''''''''''2038056'kB''''''''''13.86%'
'2013?01?25'07:47:24''''''''''''''610M'''''''''''2023744'kB''''''''''13.85%'
'2013?01?25'07:47:29''''''''''''''554M'''''''''''1960592'kB''''''''''13.84%'
'2013?01?25'07:47:34''''''''''''''522M'''''''''''1930868'kB''''''''''13.82%'
'2013?01?25'07:47:39''''''''''''''532M'''''''''''1944560'kB''''''''''13.81%'
'2013?01?25'07:47:44''''''''''''''532M'''''''''''1948512'kB''''''''''13.79%'
'2013?01?25'07:47:49''''''''''''''532M'''''''''''1951464'kB''''''''''13.78%'
'2013?01?25'07:47:54''''''''''''''542M'''''''''''1984696'kB''''''''''13.76%'
'2013?01?25'07:47:59''''''''''''''542M'''''''''''2009056'kB''''''''''13.75%'
'2013?01?25'07:48:04''''''''''''''564M'''''''''''2037128'kB''''''''''13.73%'
'2013?01?25'07:48:09''''''''''''''555M'''''''''''1985596'kB''''''''''13.72%'
'2013?01?25'07:48:14''''''''''''''555M'''''''''''2003856'kB''''''''''13.71%'
'2013?01?25'07:48:19''''''''''''''555M'''''''''''2022180'kB'''''''''''13.7%'
'2013?01?25'07:48:24''''''''''''''565M'''''''''''2041080'kB''''''''''13.68%'
'2013?01?25'07:48:29''''''''''''''565M'''''''''''2038492'kB''''''''''13.66%'
'2013?01?25'07:48:34''''''''''''''589M'''''''''''2039644'kB''''''''''13.65%'
'2013?01?25'07:48:39''''''''''''''579M'''''''''''1987152'kB''''''''''13.63%'
'2013?01?25'07:48:44''''''''''''''625M'''''''''''2036880'kB''''''''''13.61%'
'2013?01?25'07:48:49''''''''''''''679M'''''''''''2013284'kB'''''''''''13.6%'

'2013?01?25'07:48:54''''''''''''''722M'''''''''''2039456'kB''''''''''13.58%'
'2013?01?25'07:48:59''''''''''''''767M'''''''''''2038984'kB''''''''''13.56%'
'2013?01?25'07:49:04''''''''''''''535M'''''''''''1801040'kB''''''''''13.56%'
'2013?01?25'07:49:09''''''''''''''535M'''''''''''1800676'kB''''''''''13.56%'
'2013?01?25'07:49:15''''''''''''''535M'''''''''''1800436'kB''''''''''13.55%'
'2013?01?25'07:49:20''''''''''''''535M'''''''''''1800164'kB''''''''''13.55%'
'2013?01?25'07:49:25''''''''''''''535M'''''''''''1799684'kB''''''''''13.55%'
'2013?01?25'07:49:30''''''''''''''4.0K''''''''''''234596'kB''''''''''13.55%'
'2013?01?25'07:49:35''''''''''''''4.0K''''''''''''233800'kB''''''''''13.55%'
'2013?01?25'07:49:40''''''''''''''4.0K''''''''''''233364'kB''''''''''13.55%'
'2013?01?25'07:49:45''''''''''''''4.0K''''''''''''233368'kB''''''''''13.55%'
'2013?01?25'07:49:50''''''''''''''4.0K''''''''''''232776'kB''''''''''13.55%'
'2013?01?25'07:49:55''''''''''''''4.0K''''''''''''232728'kB''''''''''13.55%'
'2013?01?25'07:50:00''''''''''''''4.0K''''''''''''232844'kB''''''''''13.55%'
'2013?01?25'07:50:05''''''''''''''4.0K''''''''''''233424'kB''''''''''13.55%'
'2013?01?25'07:50:10''''''''''''''4.0K''''''''''''233260'kB''''''''''13.55%'
'2013?01?25'07:50:15''''''''''''''4.0K''''''''''''233392'kB''''''''''13.55%'
'2013?01?25'07:50:20''''''''''''''4.0K''''''''''''233144'kB''''''''''13.55%'
'2013?01?25'07:50:25''''''''''''''4.0K''''''''''''232772'kB''''''''''13.55%'
'2013?01?25'07:50:30''''''''''''''4.0K''''''''''''232740'kB''''''''''13.55%'
'2013?01?25'07:50:35''''''''''''''4.0K''''''''''''232616'kB''''''''''13.55%'
'2013?01?25'07:50:40''''''''''''''4.0K''''''''''''232616'kB''''''''''13.55%'
'2013?01?25'07:50:45''''''''''''''4.0K''''''''''''232136'kB''''''''''13.55%'
'2013?01?25'07:50:50''''''''''''''4.0K''''''''''''231888'kB''''''''''13.55%'
'2013?01?25'07:50:55''''''''''''''4.0K''''''''''''231888'kB''''''''''13.55%'
'2013?01?25'07:51:00''''''''''''''4.0K''''''''''''231888'kB''''''''''13.55%'
'2013?01?25'07:51:05''''''''''''''4.0K''''''''''''231904'kB''''''''''13.55%'
'2013?01?25'07:51:10''''''''''''''4.0K''''''''''''236600'kB''''''''''13.55%'
'2013?01?25'07:51:15''''''''''''''4.0K''''''''''''236740'kB''''''''''13.55%'
'2013?01?25'07:51:20''''''''''''''4.0K''''''''''''236740'kB''''''''''13.55%'
'2013?01?25'07:51:25''''''''''''''4.0K''''''''''''236740'kB''''''''''13.55%'
'2013?01?25'07:51:30''''''''''''''4.0K''''''''''''236584'kB''''''''''13.55%'
'2013?01?25'07:51:35''''''''''''''4.0K''''''''''''236592'kB''''''''''13.55%'
'2013?01?25'07:51:40''''''''''''''4.0K''''''''''''236608'kB''''''''''13.55%'
'2013?01?25'07:51:45''''''''''''''4.0K''''''''''''236368'kB''''''''''13.55%'
'2013?01?25'07:51:50''''''''''''''4.0K''''''''''''236212'kB''''''''''13.55%'
'2013?01?25'07:51:55''''''''''''''4.0K''''''''''''236476'kB''''''''''13.55%'
'2013?01?25'07:52:00''''''''''''''4.0K''''''''''''236608'kB''''''''''13.55%'
'2013?01?25'07:52:05''''''''''''''4.0K''''''''''''237136'kB''''''''''13.55%'
'2013?01?25'07:52:10''''''''''''''4.0K''''''''''''236740'kB''''''''''13.55%'
'2013?01?25'07:52:15''''''''''''''4.0K''''''''''''236476'kB''''''''''13.55%'
'2013?01?25'07:52:20''''''''''''''4.0K''''''''''''236236'kB''''''''''13.55%'
'2013?01?25'07:52:25''''''''''''''4.0K''''''''''''236608'kB''''''''''13.55%'
'2013?01?25'07:52:30''''''''''''''4.0K''''''''''''236576'kB''''''''''13.55%'

'2013?01?25'07:52:35''''''''''''''4.0K''''''''''''236476'kB''''''''''13.55%'
'2013?01?25'07:52:40''''''''''''''4.0K''''''''''''236352'kB''''''''''13.55%'
'2013?01?25'07:52:45''''''''''''''4.0K''''''''''''236352'kB''''''''''13.55%'
'2013?01?25'07:52:50''''''''''''''4.0K''''''''''''236328'kB''''''''''13.55%'
'2013?01?25'07:52:55''''''''''''''4.0K''''''''''''236716'kB''''''''''13.55%'
'2013?01?25'07:53:00''''''''''''''4.0K''''''''''''236476'kB''''''''''13.55%'
'2013?01?25'07:53:05''''''''''''''4.0K''''''''''''236228'kB''''''''''13.55%'
'2013?01?25'07:53:10''''''''''''''4.0K''''''''''''236212'kB''''''''''13.55%'
'2013?01?25'07:53:15''''''''''''''4.0K''''''''''''236352'kB''''''''''13.55%'
'2013?01?25'07:53:21''''''''''''''4.0K''''''''''''236640'kB''''''''''13.55%'
'2013?01?25'07:53:26''''''''''''''4.0K''''''''''''236872'kB''''''''''13.55%'
'2013?01?25'07:53:31''''''''''''''4.0K''''''''''''236716'kB''''''''''13.55%'
'2013?01?25'07:53:36''''''''''''''4.0K''''''''''''236732'kB''''''''''13.55%'
'2013?01?25'07:53:41''''''''''''''4.0K''''''''''''236616'kB''''''''''13.55%'
'2013?01?25'07:53:46''''''''''''''4.0K''''''''''''236880'kB''''''''''13.55%'
'2013?01?25'07:53:51''''''''''''''4.0K''''''''''''236856'kB''''''''''13.55%'
'2013?01?25'07:53:56''''''''''''''4.0K''''''''''''237004'kB''''''''''13.55%'
'2013?01?25'07:54:01''''''''''''''4.0K''''''''''''237012'kB''''''''''13.55%'
'2013?01?25'07:54:06''''''''''''''4.0K''''''''''''237524'kB''''''''''13.55%'
'2013?01?25'07:54:11''''''''''''''4.0K''''''''''''236796'kB''''''''''13.55%'
'2013?01?25'07:54:16''''''''''''''4.0K''''''''''''237044'kB''''''''''13.55%'
'2013?01?25'07:54:21''''''''''''''4.0K''''''''''''236920'kB''''''''''13.55%'
'2013?01?25'07:54:26''''''''''''''4.0K''''''''''''236888'kB''''''''''13.55%'
'2013?01?25'07:54:31''''''''''''''4.0K''''''''''''236516'kB''''''''''13.55%'
'2013?01?25'07:54:36''''''''''''''4.0K''''''''''''237144'kB''''''''''13.55%'
'2013?01?25'07:54:41''''''''''''''4.0K''''''''''''236780'kB''''''''''13.55%'
'2013?01?25'07:54:46''''''''''''''4.0K''''''''''''237120'kB''''''''''13.55%'
'2013?01?25'07:54:51''''''''''''''4.0K''''''''''''236888'kB''''''''''13.55%'
'2013?01?25'07:54:56''''''''''''''4.0K''''''''''''236624'kB''''''''''13.55%'
'2013?01?25'07:55:01''''''''''''''4.0K''''''''''''236664'kB''''''''''13.55%'
'2013?01?25'07:55:06''''''''''''''4.0K''''''''''''236896'kB''''''''''13.55%'
'2013?01?25'07:55:11''''''''''''''4.0K''''''''''''236664'kB''''''''''13.55%'
'2013?01?25'07:55:16''''''''''''''4.0K''''''''''''237020'kB''''''''''13.55%'
'2013?01?25'07:55:21''''''''''''''4.0K''''''''''''236648'kB''''''''''13.55%'
'2013?01?25'07:55:26''''''''''''''4.0K''''''''''''236988'kB''''''''''13.55%'
'2013?01?25'07:55:31''''''''''''''4.0K''''''''''''236740'kB''''''''''13.55%'
'2013?01?25'07:55:36''''''''''''''4.0K''''''''''''236756'kB''''''''''13.55%'
'2013?01?25'07:55:41''''''''''''''4.0K''''''''''''237004'kB''''''''''13.55%'
'2013?01?25'07:55:46''''''''''''''4.0K''''''''''''236724'kB''''''''''13.55%'
'2013?01?25'07:55:51''''''''''''''4.0K''''''''''''236740'kB''''''''''13.55%'
'2013?01?25'07:55:56''''''''''''''4.0K''''''''''''236888'kB''''''''''13.55%'
'2013?01?25'07:56:01''''''''''''''4.0K''''''''''''236912'kB''''''''''13.55%'
'2013?01?25'07:56:06''''''''''''''4.0K''''''''''''237144'kB''''''''''13.55%'
'2013?01?25'07:56:11''''''''''''''4.0K''''''''''''236772'kB''''''''''13.55%'
'2013?01?25'07:56:16''''''''''''''4.0K''''''''''''237524'kB''''''''''13.55%'
'2013?01?25'07:56:21''''''''''''''4.0K''''''''''''237400'kB''''''''''13.55%'
'2013?01?25'07:56:26''''''''''''''4.0K''''''''''''237616'kB''''''''''13.55%'
'2013?01?25'07:56:31''''''''''''''4.0K''''''''''''237476'kB''''''''''13.55%'
'2013?01?25'07:56:36''''''''''''''4.0K''''''''''''237616'kB''''''''''13.55%'
'2013?01?25'07:56:41''''''''''''''4.0K''''''''''''237144'kB''''''''''13.55%'

'2013?01?25'07:56:46''''''''''''''4.0K''''''''''''237360'kB''''''''''13.55%'
'2013?01?25'07:56:51''''''''''''''4.0K''''''''''''237740'kB''''''''''13.55%'
'2013?01?25'07:56:56''''''''''''''4.0K''''''''''''237492'kB''''''''''13.55%'
'2013?01?25'07:57:01''''''''''''''4.0K''''''''''''237244'kB''''''''''13.55%'
'2013?01?25'07:57:06''''''''''''''4.0K''''''''''''237476'kB''''''''''13.55%'
'2013?01?25'07:57:11''''''''''''''4.0K''''''''''''237996'kB''''''''''13.55%'
'2013?01?25'07:57:16''''''''''''''4.0K''''''''''''237748'kB''''''''''13.55%'
'2013?01?25'07:57:21''''''''''''''4.0K''''''''''''238120'kB''''''''''13.55%'
'2013?01?25'07:57:26''''''''''''''4.0K''''''''''''237724'kB''''''''''13.55%'
'2013?01?25'07:57:31''''''''''''''4.0K''''''''''''237980'kB''''''''''13.55%'
'2013?01?25'07:57:36''''''''''''''4.0K''''''''''''237616'kB''''''''''13.55%'
'2013?01?25'07:57:41''''''''''''''4.0K''''''''''''237624'kB''''''''''13.55%'
'2013?01?25'07:57:47''''''''''''''4.0K''''''''''''236996'kB''''''''''13.55%'
'2013?01?25'07:57:52''''''''''''''4.0K''''''''''''237252'kB''''''''''13.55%'
'2013?01?25'07:57:57''''''''''''''4.0K''''''''''''237624'kB''''''''''13.55%'
'2013?01?25'07:58:02''''''''''''''4.0K''''''''''''238408'kB''''''''''13.55%'
'2013?01?25'07:58:07''''''''''''''4.0K''''''''''''238020'kB''''''''''13.55%'
'2013?01?25'07:58:12''''''''''''''4.0K''''''''''''238416'kB''''''''''13.55%'
'2013?01?25'07:58:17''''''''''''''4.0K''''''''''''238268'kB''''''''''13.55%'
'2013?01?25'07:58:22''''''''''''''4.0K''''''''''''238268'kB''''''''''13.55%'
'2013?01?25'07:58:27''''''''''''''4.0K''''''''''''237988'kB''''''''''13.54%'
'2013?01?25'07:58:32''''''''''''''4.0K''''''''''''238112'kB''''''''''13.54%'
'2013?01?25'07:58:37''''''''''''''4.0K''''''''''''238120'kB''''''''''13.54%'
'2013?01?25'07:58:42''''''''''''''4.0K''''''''''''238120'kB''''''''''13.54%'
'2013?01?25'07:58:47''''''''''''''4.0K''''''''''''238236'kB''''''''''13.54%'
'2013?01?25'07:58:52''''''''''''''4.0K''''''''''''238608'kB''''''''''13.54%'
'2013?01?25'07:58:57''''''''''''''4.0K''''''''''''238484'kB''''''''''13.54%'
'2013?01?25'07:59:02''''''''''''''4.0K''''''''''''238748'kB''''''''''13.54%'
'2013?01?25'07:59:07''''''''''''''4.0K''''''''''''238980'kB''''''''''13.54%'
'2013?01?25'07:59:12''''''''''''''4.0K''''''''''''238732'kB''''''''''13.54%'
'2013?01?25'07:59:17''''''''''''''4.0K''''''''''''238368'kB''''''''''13.54%'
'2013?01?25'07:59:22''''''''''''''4.0K''''''''''''238244'kB''''''''''13.54%'
'2013?01?25'07:59:27''''''''''''''4.0K''''''''''''238212'kB''''''''''13.54%'
'2013?01?25'07:59:32''''''''''''''4.0K''''''''''''238212'kB''''''''''13.54%'
'2013?01?25'07:59:37''''''''''''''4.0K''''''''''''238228'kB''''''''''13.54%'
'2013?01?25'07:59:42''''''''''''''4.0K''''''''''''238700'kB''''''''''13.54%'
'2013?01?25'07:59:47''''''''''''''4.0K''''''''''''238616'kB''''''''''13.54%'
'2013?01?25'07:59:52''''''''''''''4.0K''''''''''''238500'kB''''''''''13.54%'
'2013?01?25'07:59:57''''''''''''''4.0K''''''''''''238252'kB''''''''''13.54%'
'2013?01?25'08:00:02''''''''''''''4.0K''''''''''''239384'kB''''''''''13.54%'
'2013?01?25'08:00:07''''''''''''''4.0K''''''''''''238780'kB''''''''''13.54%'
'2013?01?25'08:00:12''''''''''''''4.0K''''''''''''238144'kB''''''''''13.54%'
'2013?01?25'08:00:17''''''''''''''4.0K''''''''''''238780'kB''''''''''13.54%'
'2013?01?25'08:00:22''''''''''''''4.0K''''''''''''238252'kB''''''''''13.54%'
'2013?01?25'08:00:27''''''''''''''4.0K''''''''''''238640'kB''''''''''13.54%'
'

