
UNIVERSITY OF OSLO
Department of Informatics

A tandem queue
distribution
strategy for data
subscription
oriented nodes

Master thesis

Sigfred Sørensen

Network and System
Administration

Oslo University College

May 20, 2012

A tandem queue distribution strategy for data
subscription oriented nodes

Sigfred Sørensen

Network and System Administration
Oslo University College

May 20, 2012

Abstract

Fast data distribution is important for many businesses and services today.
If data distributions like operating-system deployment, media/file distribu-
tion and patching is slow it could negatively impact productivity. The work
in this thesis is aimed at improving performance of data distribution where
the receiving nodes are in a data subscriber relationship. The main idea is
that this could be achievable by first discovering the network topology and
then traverse the network with a snake like behavior, in other words travers-
ing each network link only once. In this thesis the focus is on exploring
what performance gain there could be when using the proposed distribution
strategy.

The thesis goal is approached through two main steps. First, trans-
port protocols are used to benchmark switch duplexing performance. These
benchmarks are aimed at finding out what performance can be expected and
if the proposed distribution strategy is viable. Second, a proof of concept
prototype based on the proposed distribution strategy is created. The pro-
totype is compared with BitTorrent in a distribution scenario. The findings
in this thesis show that there could indeed be a performance gain by using
the proposed distribution strategy.

Acknowledgements

I would like to express my gratitude to the following individuals for their
support during my time at Oslo University College and over the course of
this master thesis.

My supervisor Tore Møller Jonassen for guiding my master thesis in the right
direction, acquiring the necessary equipment and ensuring the quality of my
work.

The staff at Oslo University College that has provided a good environment
for learning.

My fellow students for interesting discussions, providing a good social envi-
ronment and making most days at the university a joy.

My family for patience and understanding during this busy time in my life.

An extra thanks goes to my little-sister Kristine Kristiansen for her moral
support. Wish you the best of luck as you now start you academic pursuit.

A special thanks goes to my girlfriend Kristin Paulsen for her support, love,
patience and understanding. You have helped me improve my mathematical
skills and been someone to bounce my ideas off. If writing a master thesis
was a sport; you have not only been my cheerleader, but also my best team-
player.

May 20, 2012
Sigfred Sørensen

i

List of Figures

1.1 Problem scenario network topology 2
1.2 The classic 1970s video game snake 5
1.3 Illustration of a non-blocking switch 6
1.4 IaaS distribution scenario . 7
1.5 Order priority distribution scenario 8
1.6 Roll-out service distribution scenario 9

2.1 DX 10G S32 Ethernet test module 17
2.2 Packet overhead illustration 18
2.3 Bandwidth-delay product illustration 23
2.4 A tandem queue . 26
2.5 Choke point relative to the buffer size 28
2.6 Choke point relative to the write-rate 29
2.7 Choke point relative to write-rate and buffer size 30

3.1 An illustration of roof performance experimental setup 34
3.2 Model architecture details . 37
3.3 An illustration of comparative experimental setup prototype . 39
3.4 An illustration of comparative experimental setup BitTorrent 39

4.1 Benchmark: Baseline Cat6, TCP, Individual results 47
4.2 Benchmark: Baseline Cat6, TCP, Combined results 47
4.3 Benchmark: Baseline Cat6, UDP, Individual results 48
4.4 Benchmark: Baseline Cat6, UDP, Combined results 48
4.5 Benchmark: HP V1405C-5, TCP, Individual results 49
4.6 Benchmark: HP V1405C-5, TCP, Combined results 50
4.7 Benchmark: HP V1405C-5, UDP, Individual results 51
4.8 Benchmark: HP V1405C-5, UDP, Combined results 52
4.9 Benchmark: Dlink DGS-1005D, TCP, Individual results . . . 53
4.10 Benchmark: Dlink DGS-1005D, TCP, Combined results . . . 54
4.11 Benchmark: Dlink DGS-1005D, UDP, Individual results . . . 55
4.12 Benchmark: Dlink DGS-1005D, UDP, Combined results . . . 56
4.13 Benchmark: Netgear GS605, TCP, Individual results 57
4.14 Benchmark: Netgear GS605, TCP, Combined results 58
4.15 Benchmark: Netgear GS605, UDP, Individual results 59

ii

LIST OF FIGURES LIST OF FIGURES

4.16 Benchmark: Netgear GS605, UDP, Combined results 60
4.17 Benchmark: Netgear ProSafe GS105, TCP, Individual results 61
4.18 Benchmark: Netgear ProSafe GS105, TCP, Combined results 62
4.19 Benchmark: Netgear ProSafe GS105, UDP, Individual results 63
4.20 Benchmark: Netgear ProSafe GS105, UDP, Combined results 64
4.21 Benchmark: Cisco SD2005, TCP, Individual results 65
4.22 Benchmark: Cisco SD2005, TCP, Combined results 66
4.23 Benchmark: Cisco SD2005, UDP, Individual results 67
4.24 Benchmark: Cisco SD2005, UDP, Combined results 68
4.25 Benchmark: 3Com 3CGSU05, TCP, Individual results 69
4.26 Benchmark: 3Com 3CGSU05, TCP, Combined results 70
4.27 Benchmark: 3Com 3CGSU05, UDP, Individual results 71
4.28 Benchmark: 3Com 3CGSU05, UDP, Combined results 72
4.29 Benchmark: Cisco SG 100D-08, TCP, Individual results . . . 73
4.30 Benchmark: Cisco SG 100D-08, TCP, Combined results . . . 74
4.31 Benchmark: Cisco SG 100D-08, UDP, Individual results . . . 75
4.32 Benchmark: Cisco SG 100D-08, UDP, Combined results . . . 76
4.33 Benchmark: 3Com 3CGSU08, TCP, Individual results 77
4.34 [Benchmark: 3Com 3CGSU08, TCP, Combined results 78
4.35 Benchmark: 3Com 3CGSU08, UDP, Individual results 79
4.36 Benchmark: 3Com 3CGSU08, UDP, Combined results 80
4.37 Benchmark: rTorrent receive throughput 91
4.38 Benchmark: rTorrent forward throughput 92
4.39 Benchmark: rTorrent receive throughput, Aggregated results . 93
4.40 Benchmark: Prototype receive throughput 94
4.41 Benchmark: Prototype forward throughput 95
4.42 Benchmark: Prototype receive throughput, Aggregated results 96
4.43 Benchmark: rTorrent storage read performance 97
4.44 Benchmark: rTorrent storage write performance 98
4.45 Benchmark: rTorrent storage performance, Aggregated results 99
4.46 Benchmark: Prototype storage read performance 100
4.47 Benchmark: Prototype storage write performance 101
4.48 Benchmark: Prototype storage performance, Aggregated results102
4.49 Benchmark: rTorrent CPU usage 103
4.50 Benchmark: rTorrent CPU usage, Aggregated results 104
4.51 Benchmark: Prototype CPU usage 105
4.52 Benchmark: Prototype CPU usage, Aggregated results 106
4.53 Benchmark: Prototype throughput job size scaling 107
4.54 Benchmark: Prototype storage job size scaling 108
4.55 Benchmark: Prototype CPU job size scaling 109
4.56 Benchmark: Prototype delay measurements 110

5.1 Netgear ProSafe GS105, showing visually separated port . . . 112
5.2 Throughput distribution example 117

iii

List of Tables

2.1 Mutlicast efficiency table . 14
2.2 Prototype target efficiency metrics 14
2.3 A short data size abbreviations list 16
2.4 Some common overhead calculations 20
2.5 Minimum TCP connections required to fill BDP of 2,44 MiB . 22
2.6 TCP efficiency based on RWND size for a BDP of 1000 kb . . 24

3.1 Prototype byte-stream architecture 36
3.2 A table of the network equipment that was benchmarked . . . 42
3.3 The ideal throughput values for the benchmark configuration 43

4.1 A table with TCP throughput statistics 81
4.2 TCP throughput mean: Statistical significance over baseline 81
4.3 TCP throughput mean: ANOVA test statistics 82
4.4 A table with UDP throughput statistics 83
4.5 UDP throughput mean: Statistical significance over baseline . 83
4.6 UDP throughput mean: ANOVA test statistics 84
4.7 A table with UDP jitter statistics 85
4.8 Jitter mean: Statistical significance over baseline 85
4.9 Jitter mean: ANOVA test statistics 86
4.10 A table with datagram loss statistics 87
4.11 Datagram loss mean: Statistical significance over baseline . . 87
4.12 Datagram loss mean: ANOVA test statistics 88
4.13 A table with delay measurement statistics 110

iv

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 A problem scenario . 2
1.2 Proposed solution . 4

1.2.1 Solving the problem scenario 6
1.2.2 Usage scenarios . 7
1.2.3 Expected weaknesses 9

1.3 Problem statement . 10
1.4 Approach . 11

1.4.1 Finding the roof performance 11
1.4.2 Comparative benchmark of prototype 11

1.5 Main contributions . 11
1.6 Thesis outline . 12

2 Background 13
2.1 Placement within existing work 13

2.1.1 Multicast design . 13
2.1.2 BitTorrent performance 14
2.1.3 Tandem queue . 15
2.1.4 Network discovery and path calculation 15

2.2 Bits and bytes . 16
2.3 How to benchmark using transport protocols 16

2.3.1 Overhead . 17
2.3.2 Bandwidth-delay product 21
2.3.3 Packet loss . 24
2.3.4 Jitter . 24
2.3.5 Buffer delay . 24
2.3.6 TCP equilibrium . 25
2.3.7 Methodology . 25
2.3.8 Accuracy of measurements 26

2.4 Prototype model detailed . 26
2.4.1 Defining the prototype roles 26
2.4.2 Buffer size . 27
2.4.3 End-to-end delay and job size 31

v

CONTENTS CONTENTS

3 Experimental design and methodology 33
3.1 Finding the roof performance 33

3.1.1 Collecting performance data 33
3.1.2 Methodology . 33

3.2 Prototype architecture . 35
3.2.1 Libraries . 35
3.2.2 Header . 35
3.2.3 Concurrency design . 36

3.3 Comparative benchmarks . 38
3.3.1 Collecting performance data 38
3.3.2 BitTorrent . 38
3.3.3 Methodology . 38
3.3.4 BitTorrent configuration 40
3.3.5 Prototype configuration 41

3.4 Test equipment . 42
3.4.1 Node hardware . 42
3.4.2 Network devices . 42
3.4.3 Network configuration 43

4 Results 44
4.1 Finding the roof performance 44

4.1.1 Iperf wrapper . 44
4.1.2 Baseline Cat6, TCP 47
4.1.3 Baseline Cat6, UDP 48
4.1.4 HP V1405C-5, TCP 49
4.1.5 HP V1405C-5, UDP 51
4.1.6 Dlink DGS-1005D, TCP 53
4.1.7 Dlink DGS-1005D, UDP 55
4.1.8 Netgear GS605, TCP 57
4.1.9 Netgear GS605, UDP 59
4.1.10 Netgear ProSafe GS105, TCP 61
4.1.11 Netgear ProSafe GS105, UDP 63
4.1.12 Cisco SD2005, TCP 65
4.1.13 Cisco SD2005, UDP 67
4.1.14 3Com 3CGSU05, TCP 69
4.1.15 3Com 3CGSU05, UDP 71
4.1.16 Cisco SG 100D-08, TCP 73
4.1.17 Cisco SG 100D-08, UDP 75
4.1.18 3Com 3CGSU08, TCP 77
4.1.19 3Com 3CGSU08, UDP 79
4.1.20 TCP throughput performance statistics 81
4.1.21 UDP throughput performance statistics 83
4.1.22 Jitter statistics . 85
4.1.23 Datagram loss statistics 87

4.2 Presenting the prototype . 89
4.2.1 The program . 89

vi

CONTENTS CONTENTS

4.3 Comparative benchmarks . 91
4.3.1 rTorrent throughput performance 91
4.3.2 Prototype throughput performance 94
4.3.3 rTorrent storage performance 97
4.3.4 Prototype storage performance 100
4.3.5 rTorrent CPU usage 103
4.3.6 Prototype CPU usage 105

4.4 Prototype scalability measurements 107
4.4.1 Throughput . 107
4.4.2 Storage performance 108
4.4.3 CPU usage . 109
4.4.4 Prototype delay measurements 110

5 Analysis 111
5.1 Finding the roof performance 111

5.1.1 TCP throughput performance 111
5.1.2 UDP throughput performance 113
5.1.3 Jitter . 114
5.1.4 Errors . 115
5.1.5 RTT and BDP . 116
5.1.6 Throughput distribution and inter arrival-rate 116

5.2 Comparative benchmarks . 118
5.2.1 Throughput performance 118
5.2.2 Storage performance 119
5.2.3 CPU usage . 121

5.3 Scalability measurements . 121
5.3.1 Throughput performance 121
5.3.2 Storage performance 122
5.3.3 CPU usage . 122
5.3.4 Delay measurements 122

6 Discussion and conclusion 123
6.1 Finding the roof performance 123

6.1.1 TCP throughput performance 123
6.1.2 UDP throughput performance 123
6.1.3 TCP and UDP comparison 124
6.1.4 Repeatability . 124
6.1.5 Likelihood of errors in the data 124
6.1.6 Weaknesses in the experimental design 124
6.1.7 Alternative approaches 125
6.1.8 Surprising results . 125
6.1.9 Viability of the results 126

6.2 Comparative benchmarks . 126
6.2.1 Repeatability . 126
6.2.2 Likelihood of errors in the data 127
6.2.3 Weaknesses in the experimental design 127

vii

CONTENTS CONTENTS

6.2.4 Alternative approaches 127
6.2.5 Viability of the results 128

6.3 Scalability measurements . 128
6.3.1 Repeatability . 128
6.3.2 Likelihood of errors in the data 128
6.3.3 Weaknesses in the experimental design 128
6.3.4 Viability of the results 129

6.4 Future work . 129
6.5 Conclusion . 130

7 Appendices 134
7.1 Appendix: Iperf wrapper (Perl) 134
7.2 Appendix: Prototype makefile (BASH) 141
7.3 Appendix: Prototype source (C++) 141

viii

Chapter 1

Introduction

1.1 Motivation

Fast data distribution is important for many businesses and services today.
If data distributions like operating-system deployment, media/file distribu-
tion and patching is slow it could negatively impact productivity.

Network and system administrators are often in charge of distributing
data between computer devices. When the time comes for the network and
system administrator to distribute the data, the receivers often need the
same data simultaneously. Additionally the data are often distributed by a
single server, which adds to the logistical challenge. In these distribution
scenarios the receivers are in a data subscriber relationship, where the re-
ceivers are known and which receivers are to receive what data. The data
subscribers are waiting until the day a security patch, software update or
the new files are ready for distribution. Data subscriber relationship is a
central topic in this thesis, and is a mandatory prerequisite for the proposed
distribution strategy.

The main goal of this thesis is to explore the viability of a data distri-
bution strategy. The distribution strategy should improve the speed of data
distribution and reduce redundant traffic. The relevant distribution scenar-
ios are when the receivers are in a data subscriber relationship. The general
application domain portrayed in this thesis applies to network and system
administration relevant scenarios.

In the following subsection a relevant problem scenario will be discussed,
and an introduction into the proposed seeding strategy will be presented.

1

1.1. Motivation Introduction

1.1.1 A problem scenario

Figure 1.1 illustrates how a common network topology could be structured.
The task is to deploy a self installing operating-system to all computers as
efficiently as possible. There are several distribution methods that can be
employed to distribute the data required to install the operating-system. In
this section distribution methods relevancy to the illustrated problem will
be discussed.

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Machine 6 Machine 7 Machine 8

Main Switch

Sub Switch 1 Sub Switch 2

Seeding Server

Internet

Router 2

Router 1
Machine 9 Machine 10 Machine 11

Figure 1.1: An illustration of how a common network topology could look
like.

Unicast

Unicast is a commonly used data delivery method for both local-area net-
work and over the Internet. Unicast distributes data to each receiving client
individually. The required bandwidth for Unicast distribution is directly pro-
portional to the number of receiving clients [42]. This proportionality makes
the distribution-time scale linearly to the number of recipients. This means
that doubling the number of recipients is likely to double the distribution-
time, and is therefore not well suited for suited for data distribution scenarios
where there are multiple simultaneous receivers.

IP-layer multicast

IP-layer multicast was first proposed in the early 80s, and was modelled in
1989 [8]. It is a technology that enables "one to many" and "many to many"
distribution over network. IP-layer multicast is achieved by replicating the

2

1.1. Motivation Introduction

the packets in the network devices, such that a copy of the same data is sent
to each receiver. In theory IP-layer multicast should use equal amount of
time to distribute data to any amount of nodes, for distribution-time this is
considered optimal.

To implement IP-layer multicast it is required that all network devices
support multicast as specified in [8]. This implies that every router, switch,
wireless access-point, host and server needs to be multicast compliant and
configured properly [5, 19, 12]. Despite much research, IP-layer multicast
has problems with administrative, security and scalability issues [21, 9, 1].
These issues were presented quite some time ago, but have still not been
resolved. These issues has prevented IP-layer multicast protocols to become
widespread on the Internet. Additionally IP-layer multicast is a "best effort"
service and does not provide any guarantee that data is delivered. This limits
the possible usage scenarios to services where a lost byte here and there are
insignificant. If the scenario is to distribute audio or video streaming to
multiple receivers in a local-area network, IP-layer multicast is probably
the best known solution. There exists research into making IP-multicast
transfer reliable, but none of the efforts seem to have had any penetration
into the existing market. If assuming a transfer reliable IP-layer multicast
distribution, it could be used for solving the problem scenario, but every
node that is not located in the local-area network would, however, still need
to receive the data by Unicast methods. This would significantly slow down
the distribution process.

Application-layer multicast

When distributing data with application-layer multicast each node that re-
ceives data also becomes an up-loader to the system. This greatly improves
on the Unicast model and at the same time creating an alternative for IP-
layer multicast. Application-layer multicast protocols use Unicast methods
between hosts to emulate multicast capabilities. Because application-layer
multicast uses Unicast to acheive multicast it works on the Internet. Addi-
tionally there often is no need for network configuration, making it easy to
set up and use.

A common application-layer multicast protocol that use this method is
BitTorrent [6]. For the given problem scenario BitTorrent would be a great
candidate for distributing data efficiently between the nodes. BitTorrent
is, however, not a perfect fit for the presented problem scenario. BitTorrent
has much focus on seeding and choking strategies revolving around exploiters
and free-riders [4]. Additionally research presented in [23] show there is much
overhead traffic in the protocol associated with peer-discovery. It has also
been shown that randomness of peer selection and locality-unawareness has

3

1.2. Proposed solution Introduction

significant impact on performance [44]. For the presented problem scenario
none of these features are required and would lead to unnecessary perfor-
mance loss. Additionally the scenario requires the receiving clients to install
and reboot, which creates an issues with knowing when each node is done
seeding.

BitTorrent is application centric, where it targets a specific need and does
not suit the exact needs set by the problem scenario. This is quite common
for application-layer multicast protocols, as there exists a plethora of different
protocols where each tries to target the specific applications needs [20]. There
has been much work done in the field of application-layer multicast protocols.
The typical trend is, however, that application-layer multicast typically leads
to compromises. There is often a sacrifice of efficiency for ease of deployment
[16, 11].

1.2 Proposed solution

The basic of the idea is to use an application-layer multicast approach with
a preplanned seeding strategy. In contrast to the application-layer multicast
protocol BitTorrent, using a preplanned seeding strategy will reduce over-
head associated with peer discovery. Additionally when the distribution is
preplanned an optimal path can be chosen avoiding problems with locality
unawareness. Lastly the receivers are considered trusted nodes, and no chok-
ing will be needed. The main goal is to create as little redundant network
traffic as possible, and still maintain fast transfer speeds. This is thought
to be achievable by adopting a snake like behavior when traversing the net-
work. In other words trying to traverse the network by only traversing each
network link only once, an illustration can be seen in figure 1.2 on the next
page. It is thought that this distribution method could significantly improve
data distribution speed, but there are some prerequisites that need to be
in place. A mandatory perquisite for this distribution strategy is that the
receivers are in a data subscription relationship, where the nodes are known
and are waiting for the data to be distributed when it becomes available. Ad-
ditionally the receives need to be trusted peers, there can be no unreliable
receivers.

4

1.2. Proposed solution Introduction

Figure 1.2: The proposed seeding strategy have similarities with the 1970s
video game snake. The snakes goal is to eat food while traversing a world
without hitting the walls or its own tail. As the snake eats food, the
tail grows longer, making the game progressively more difficult. Damian
Yerrick, 6 June 2007, Snake on a TRS-80 [image online] Available at:
http://en.wikipedia.org/wiki/Snake_(video_game) [Accessed 29 January
2012]

5

1.2. Proposed solution Introduction

1.2.1 Solving the problem scenario

Using the preplanned distribution strategy it becomes important to utilize
an optimal path through the network. A central feature that enables this
is switch duplexing. A non-blocking full duplex Gigabit Ethernet switch
which can handle 2 Gbit/s for each port. This means that the data can be
served into port 1 traverse port 2,3,4,5 and then out port 1 again without
any bottlenecks, see figure 1.3 for an illustration of the concept. If this
assumption is true a possible optimal solution to the problem scenario could
be

1→ 2→ 3→ 4 then 5→ 6→ 7→ 8 and last 9→ 10→ 11

For the given scenario Machine n would seed data to Machine n+1 until Ma-
chine n+ 1 reports it is done, signaling that Machine n can start installing.
This effectively solves the seeding issue mentioned in section 1.1.1 on page 3.

Another path could be

8→ 7→ 6→ 5 then 4→ 3→ 2→ 1 and last 11→ 10→ 9

which is an equally good scenario. It is assumed that any ordering within
one switch is equally fast. There is also very undesirable paths, traversing

11→ 1→ 10→ 2→ 9→ 3 and so on

would create significant redundant traffic between router 1 and router 2.
These examples show that data distribution-time could be saved finding one
of these optimal paths. There are more aspects to the proposed seeding
strategy, see section 2.4 on page 26 for more details on buffer usage and end
to end delay.

1GBit 1GBit

1 2 3 4 5 1 2 3 4 5

Data Out Data IN

1GBit 1GBit 1GBit 1GBit

1GBit

Each port provides
2Gbit/s

Gigabit Ethernet Switch Seeding Strategy

Figure 1.3: Duplexing enables the proposed seeding strategy.

6

1.2. Proposed solution Introduction

1.2.2 Usage scenarios

In this section some relevant usage scenarios for the proposed distribution
strategy will be presented.

Cloud infrastructure services

IaaS (Infrastructure as a Service) provides computing resources on demand.
A key benefit of IaaS is the possibility to pay only for the resources that
is being used, and one of these resources is bandwidth. Cost savings could
be made if node data distribution could be planned. IaaS service Amazon
EC2 [2] have different prices according to what region the traffic is routed,
such that large number of server instances in different regions like USA and
Europe should preferably not cross talk for optimal cost savings. An example
on how the proposed model could be used in an IaaS distribution scenario
can be seen in figure 1.4.

EuropeUSA

3

1

N

2

3

1

N

2

Low cost

Traffic

High Cost

Traffic Zone

Random peer selection

High cost

EuropeUSA

3

1

N

2

3

1

N

2

Low cost

Traffic

Local peer selection

Low cost

High Cost

Traffic Zone

IaaS distribution scenario

Figure 1.4: How local peer selection could save cost can be seen in this figure.

Not IP-layer multicast configured networks

Many local-area networks are not configured for IP-layer multicast. The
motivation or knowledge to configure the network may be lacking. The
proposed solution is intended to enable fast multicast deployments without
any network configuration.

7

1.2. Proposed solution Introduction

Not IP-layer multicast compliant networks

Some specialized high performance network equipment used in Internet back-
bone routers are not designed to support complex services such as IP-layer
multicast. These routers make significant sacrifice of features in favor of per-
formance [11]. In such conditions IP-layer multicast just does not apply, and
application-layer multicast becomes the only option. The low redundancy
design also assures that as little as possible of the bandwidth for other ser-
vices is affected. An example of such a distribution scenario is presented in
figure 1.5.

Medium Server 1

Medium Server 2

Medium Server 4

Medium Server 3

Large Server 3

Large Server 2

Large Server 4

Large Server 1

Planning Distribution order by priority

Small Server 1

Small Server 2

Figure 1.5: Distribution among large servers could be prioritized such that
the most important nodes will receive the data before the less important
nodes. An example of this type of content distribution could be movies
shared amongst servers hosting video on demand services.

8

1.2. Proposed solution Introduction

Internet roll-out services

The distribution strategy could be suitable for an Internet roll-out services,
similar to Rocks Cluster Distribution [38]. An example of a roll-out service
is illustrated in figure 1.6.

Roll-out server

Windows roll-out

Linux roll-out

Internet

Windows Stream

Linux Stream

Internet roll-out service

Figure 1.6: An example of how a roll-out service could be handled by the
proposed distribution method. An Internet roll-out service could have a sin-
gle streams for each roll-out site. Different operating-systems, distributions
and versions of them would also need separate data streams.

1.2.3 Expected weaknesses

• Wireless access-points
Wireless access-points could be a likely weak-point with the given seed-
ing strategy. Given the usually slow bandwidth of wireless access-
points compared to wired it is reasonable to assume wireless access-
points will become a choke point. It is also expected that the data-
amount combined with duplexing will create interference, further in-
creasing the choke.

• Scaling
In the 1970s snake game in figure 1.2 on page 5 the length of the snake
dictates the difficulty of maintaining the current state and finding new
good paths. It could be an equal scenario where it could be progres-
sively increased difficulty of maintaining the seeding stream with in-
crease in node count for the given distribution strategy. A slow or non
functional node in the middle of a seeding chain could stop or reduce
convergence-time considerably. Path recalculation and on-fly change
might be needed for proper robustness.

9

1.3. Problem statement Introduction

• Asynchronous bandwidth choke points
If there is asynchronous bandwidth choke points a one data-stream
approach is not suited. There will be significantly reduced bandwidth
utilization compared to distribution methods with multiple redundant
data-streams.

1.3 Problem statement

The first goal of this thesis is to explore the proposed application-layer mul-
ticast distribution strategy, and find out if the distribution strategy could
improve the speed of data distribution between nodes in network and system-
administration relevant scenarios. Another goal is to try to remove all re-
dundant data traffic from all the network links by traversing each network
link only once. Effectively enforcing a one data stream policy to reduce the
network footprint. Lastly the protocol should be applicable to both local
network and the Internet as they are wired today.

The main idea is that this non redundant data transfer could be achiev-
able by first discovering the network topology and then traversing the net-
work with a snake like behavior, i.e. traversing each network link only once.
The known challenges to this approach is that there are not many good
mechanisms to discover the required network topology, and there needs to
be a mechanism to find the optimal path when the topology is found. The
problems with network discovery and optimal path calculation will not be
solved in this thesis, the main goal is to explore the viability of the distribu-
tion strategy. To answer this a proof of concept model will be developed and
benchmarked. To give the benchmarked results some meaningful context
a comparative analysis between the proof of concept model and BitTorrent
will be done. Additionally the following research questions are important for
the work in this thesis.

• Application-layer multicast protocols relies on end hosts duplexing
transferred data to achieve multicast. What impact does duplexing
have on switch and end host performance?

• The proposed application-layer multicast protocol uses an optimal path
and only one data-stream. How does such a transfer method compare
in performance to random peer selecting and multiple data-stream mul-
ticast protocol such as BitTorrent?

10

1.4. Approach Introduction

1.4 Approach

The problem statement will be solved by two main approaches, in this section
an overview is presented.

1.4.1 Finding the roof performance

Before setting up the prototype it is important to find the theoretical through-
put performance. Overhead, delay and packet loss are some important fac-
tors that need to be accounted for before any benchmarking results can be
assessed. Additionally the performance of the equipment that will be used
needs to be tested. A large portion of this thesis will focus on measuring
transport protocol throughput performance. It then becomes essential to
uncover how to performance benchmark different transport protocols and
the underlying network equipment. These measurements will have two pur-
poses. First, is to uncover the roof threshold for expected performance of the
developed prototype. Second, is to confirm that the proposed distribution
method is possible on standard networking equipment. Getting this data will
give important information about what the performance roof is, and it will in
the end be the measuring stick for how well the prototype application-layer
multicast protocol performs.

1.4.2 Comparative benchmark of prototype

A proof of concept model based on the proposed seeding strategy will be
created. This prototype will be benchmarked according to CPU, disk and
network usage. Additionally BitTorrent will be benchmarked in the same
distribution scenarios. This is primarily done to give the performance mea-
surements a reference point.

1.5 Main contributions

Key contributions are

• Finding out if the proposed distribution strategy is possible from a
throughput perspective.

• Presenting the practicality and usage scenarios for the proposed distri-
bution strategy.

• Determining the theoretical and practical roof performance of dis-
tributing data when using duplexing methods.

• Proving the concept by developing and benchmarking a working pro-
totype.

11

1.6. Thesis outline Introduction

All contributions are targeted at a single end goal, which is an attempt to
improve performance of data distribution for networks with data subscription
oriented nodes.

1.6 Thesis outline

The thesis is organized in the following manner:

• Introduction
A short overview of project topics and its relevance. The motivation
for the project is given, and the problem statement is defined in this
section. Additionally a brief overview of how the problem statement
will be solved is given.

• Background and previous work
The theory behind benchmarking transport protocols is presented here.
Placement of the thesis work within existing research will also be done
here.

• Experimental design and methodology
Describes how the experiments was designed to answer the problem
statement, and the reasoning why these methods where chosen.

• Results
The scripts and the prototype will be presented in this chapter. Addi-
tionally the results from the roof performance tests and the compara-
tive benchmarks are presented here.

• Analysis
This chapter contains the interpretation of the results.

• Discussion and Conclusion
Repeatability of the experiments, likelihood of errors in the data and
the viability of the results are discussed in this chapter. Lastly the
thesis conclusion is presented.

12

Chapter 2

Background

Since a large portion of this thesis will focus on measuring transport pro-
tocol throughput performance, research into how to benchmark transport
protocols had to be done. Some of this research is summarized here into
the background section and is the foundation for the interpretation of the
results. Additionally placement of where the work in this thesis fits within
existing research will be presented in this chapter. Lastly some additional in-
sight into the importance of buffer usage and end to end has on the proposed
seeding strategy will be presented.

2.1 Placement within existing work

2.1.1 Multicast design

There exists multiple recent surveys into multicast protocols, where [11, 16]
are recommended. In this section a brief and general overview is presented.

Multicasting can be segmented into primarily 3 different approaches.

• IP-layer multicast Is multicasting where the network devices repli-
cates packets and sends them to a group of computers. This approach is
a "best effort" service and does not provide any guarantee that data is
delivered. This limits the possible usage, and it is best suited for video
and audio streaming where a lost byte here and there are insignificant.
There exists research into making IP-layer multicast transfer reliable,
but none of the efforts have had any penetration into the existing mar-
ket.

• Application-layer multicast Instead of replicating data at the net-
work level, application-layer multicast utilizes end hosts to replicate
and re-upload data to other hosts. This distribution method is often
called peer to peer protocols.

13

2.1. Placement within existing work Background

• Overlay multicast Overlay multicast means that an overlay network
topology is created to accommodate or improve on current multicast
approaches. An example of this could be to implement IP-layer muli-
cast serves at different remote sites, acting as islands, which internally
sync data and multicast at their respective sites.

The approaches has different strengths, the overall results from the surveys
can be presented in the following table.

Metric IP-layer Application-layer Overlay
Ease of deployment low High medium

Bandwidth and delay efficiency High low medium
Overhead efficiency High low medium

Table 2.1: A highly generalized overview of the different multicast ap-
proaches.

The aim of the work in this thesis is to improve on the bandwidth, delay and
overhead associated with application-layer multicast. Since there will be no
work done on optimal path finding and network discovery, this will sacrifice
the ease of deployment. The prototype target is to achieve the following
metrics, see table 2.2.

Metric Prototype target
Ease of deployment medium

Bandwidth and delay efficiency High
Overhead efficiency High

Table 2.2: Without automatic network discovery and optimal path calcula-
tion this table represents the target metrics for the prototype.

Further work into optimal path calculation and network discovery is
thought to be able to improve the ease of deployment. Since the distri-
bution strategy is only intended for data subscription oriented nodes, the
usage scenarios will, however, be limited.

2.1.2 BitTorrent performance

A deep analysis of the performance of BitTorrent is not presented in this
thesis, it is used primarily as a reference point. The piece picker is a central
component in BitTorrent implementations, where the strategy is to find and
seed the rarest pieces into the swarm. This strategy has proven itself to

14

2.1. Placement within existing work Background

be quite efficient, and BitTorrent has become a popular data distribution
protocol. For more information on BitTorrent performance see survey [44].

2.1.3 Tandem queue

To utilize a tandem queue for data distribution is not new. Tandem queuing
is central for all network routing. What is new for this thesis is to explore
if there is any benefit to chose a tandem queue path that conforms with
network junction-points such as switches and routers.

2.1.4 Network discovery and path calculation

It is thought that the primary reason for that the proposed distribution
strategy has not been done before, is that there does not exist a good way
to automatically discover the link-layer network devices. The intention is
to use a link layer network discovery methods together with optimal path
calculator to create data seeding maps for the proposed distribution strategy.

There does exists some methods to do some link-layer discovery today.
Etherbat [10] for instance uses MAC spoofing to create invalid paths in the
network, probes how it changed by injecting specially crafted ARP requests
and checks for replies or absence of them [10]. There is also work on cre-
ating a dedicated protocol, LLTD [17] (Link Layer Topology Discovery) by
Microsoft, LLDP (Link Layer Discovery Protocol) defined in IEEE 802.1AB
and there exists vendor proprietary protocols such as CDP (Cisco Discov-
ery Protocol). If LLTD, LLDP or other protocols such as CDP saturates
the market, there could be promising alternatives for future implementa-
tion. There will not be done any attempt at network topology discovery in
this thesis, the prototype will rely on the user to input the network topology
manually.

When the network topology is found, it is though that optimal path
calculation can be simplified significantly by grouping the nodes by which
network junction-point they are connected to. This can be done because
it is hypothesized that the distribution ordering within a switch will not
affect performance. There will not be done any attempt at optimal path
calculation in this thesis, the prototype will rely on the user to input the
path manually.

15

2.2. Bits and bytes Background

2.2 Bits and bytes

In network communications there is a history of using the SI standard nota-
tions for Kilo, Mega, Giga and so on, where the multiplier is a decimal base.
When measuring storage the the multiplier can sometimes have a binary
base, which could create confusion as to the actual size. To not have any
confusion, a short abbreviations table explaining the data size values used
in this document was created, see table 2.3. The values in the table can be
prepended to a per time unit notation, where Mbps is Megabit per second.

Abbreviation Name Value
b bit 1 ∨ 0

B byte 8 bits
kb kilobit 103 bits
Mb Megabit 106 bits
Gb Gigabit 109 bits
KiB Kibibyte 210 bytes
MiB Mebibyte 220 bytes
GiB Gibibyte 230 bytes

Table 2.3: A short data size abbreviations list.

2.3 How to benchmark using transport protocols

In this section theory behind how to benchmark and measure transport pro-
tocols will be presented. This theory will also be the basis for how to inter-
pret benchmark results of network devices when using transport protocols
as a benchmark tool. Ideally when benchmarking network devices proper
benchmarking hardware such as the one seen in figure 2.1 on the next page
would be the best tool for the job. Not having access to specialized hardware
there is the alternative to benchmark with regular transport protocols such
as TCP and UDP.

When benchmarking network device throughput using common network
transport protocols such as TCP and UDP, there are several factors that
are important to beware of. The actual effectiveness of a network trans-
port protocol is reliant on several factors like protocol overhead, congestion
control, packet loss, maximum bottleneck bandwidth and propagation-delay
[32]. When the network devices reach its limits, it is nice to know what per-
formance numbers are expected at the application-layer. Important factors

16

2.3. How to benchmark using transport protocols Background

that needs to be considered when benchmarking using network transport
protocols are presented here. The prototype in this thesis is developed using
TCP, making the main focus in this section biased towards TCP throughput
performance.

Figure 2.1: Using specialized hardware is preferable for high bandwidth
testing. This hardware module from Spirent is created to be able to
fully saturate high performance Ethernet network devices to their maxi-
mum capacity. HyperMetrics dX 32-port 10G Ethernet test module [image
online] Available at: http://www.spirent.com/Solutions-Directory/Spirent-
TestCenter/HyperMetrics_dX [Accessed 1 March 2012]

2.3.1 Overhead

When network devices communicate, protocols are needed for knowing things
like where to send the data, where it came from, what bits are coming now
and in what order. These protocols are essential for interpreting the data
that are being transmitted. For benchmarking it is important to beware of
the overhead that these protocols have, which will use up bandwidth, reduc-
ing the effective data payload size intended for the receiver. When reading
the throughput measurements using transport protocols it is only the ef-
fective data payload which is read. It then becomes essential to account
for overhead bytes before the number of bytes transferred and the actual
network device performance can be determined. Different protocols have
different overhead, making the possible combinations fairly large. In this
text, the scope is limited by the protocols that is relevant for this thesis,
which are TCP, UDP, Ethernet and IP.

Starting from the bottom, an Ethernet frame consists of header, CRC
(Cyclic Redundancy Check) and payload, but on the physical link it also
has a gap and preamble. Combined the Ethernet frame overhead is 12 gap+
8 preamble +14 header +4 CRC = 38 bytes for each frame [14]. The Eth-
ernet payload is often referred to as the MTU (Maximum Transmission Unit)
which for the original Ethernet standard is 576 bytes. The old Ethernet stan-
dard was superseded by Ethernet v2 [37] which had a standard MTU size
of 1500 bytes, this decreased the associated overhead significantly. Today it

17

2.3. How to benchmark using transport protocols Background

is being replaced by the Gigabit Ethernet standard, which has support for
"jumbo frames" with an MTU of 9000 bytes, further decreasing the over-
head [25]. Enabling larger frames will decrease overall overhead, but for
benchmarking purposes it will only change the target performance number
slightly, which serves no purpose for the end result.

The MTU bytes are, however, not the effective payload size, the Ethernet
frame also needs to carry both the IPv4 header and the transport protocol
header. The TCP and IPv4 headers are not fixed in stone, requiring some
extra attention when counting overhead bytes. Using IPsec [26] for instance
adds 4 extra overhead bytes to the IP datagram, and timestamps option for
TCP will add 12 extra overhead bytes to the TCP header. Both IP and TCP
has options that make them range from 20 to 60 bytes each [36]. Taking the
advised optimistic position defined in [36] the IPv4 , TCP , UDP headers are
usually 20, 20 and 8 bytes respectively [34, 35, 33]. This leaves 1460 bytes
for effective data when using TCP and 1472 bytes for UDP. For TCP this
remaining payload can be referred to as the MSS (Maximum Segment Size)
[36]. MSS is not defined for UDP, but for all intents and purposes its data
must also fit into this window.

Ethernet Frame IP Header
TCP or UDP

Header
Payload

MTU

MSS

Overhead

Figure 2.2: An example illustration on how network overhead eats up net-
work bandwidth. The purpose of this illustration is to show that it is im-
portant to account for the bandwidth lost to overhead when performance
benchmarking network devices.

Knowing the overhead that is associated with the protocols, the network
efficiency can be calculated. It is these calculations which represents the
performance targets for the benchmarks. The bandwidth efficiency can be
expressed with the following equation

18

2.3. How to benchmark using transport protocols Background

MTU− IP header− Transport protocol header
MTU + Ethernet frame

· 100 = Packet efficiency %

(2.1)
With an MTU of 1500 and using the optimistic values for transport

protocol overhead, this would give the efficiency results of 94.9285% for TCP
and 95.7087% for UDP. For a 1000 Mbps line this would translate to a
theoretical maximum throughput of ∼949 Mbps and ∼957 Mbps for TCP
and UDP respectively. See table 2.4 on the following page for more examples
on common overhead combinations. These values are considered the ideal
throughput values, as it considers only protocol overhead and disregards
packet-loss and propagation-delay [32].

19

2.3. How to benchmark using transport protocols Background

MTU IP Transport Options Calculation Efficiency
9000 IPv4 UDP None 9000−28

9000+38 99,2697 %
9000 IPv4 UDP VLAN 9000−28

9000+42 99,2258 %
9000 IPv4 TCP None 9000−40

9000+38 99,1370 %
9000 IPv4 TCP VLAN 9000−40

9000+42 99,0931 %
9000 IPv6 UDP None 9000−48

9000+38 99,0485 %
9000 IPv6 UDP VLAN 9000−48

9000+42 99,0046 %
9000 IPv4 TCP Timestamp 9000−52

9000+38 99,0042 %
9000 IPv4 TCP Timestamp and VLAN 9000−52

9000+42 98,9604 %
9000 IPv6 TCP None 9000−60

9000+38 98,9157 %
9000 IPv6 TCP VLAN 9000−60

9000+42 98,8719 %
9000 IPv6 TCP Timestamp 9000−72

9000+38 98,7829 %
9000 IPv6 TCP Timestamp and VLAN 9000−72

9000+42 98,7392 %
1500 IPv4 UDP None 1500−28

1500+38 95,7087 %
1500 IPv4 UDP VLAN 1500−28

1500+42 95,4604 %
1500 IPv4 TCP None 1500−40

1500+38 94,9285 %
1500 IPv4 TCP VLAN 1500−40

1500+42 94,6822 %
1500 IPv6 UDP None 1500−48

1500+38 94,4083 %
1500 IPv6 UDP VLAN 1500−48

1500+42 94,1634 %
1500 IPv4 TCP Timestamp 1500−52

1500+38 94,1482 %
1500 IPv4 TCP Timestamp and VLAN 1500−52

1500+42 93,9040 %
1500 IPv6 TCP None 1500−60

1500+38 93,6281 %
1500 IPv6 TCP VLAN 1500−60

1500+42 93,3852 %
1500 IPv6 TCP Timestamp 1500−72

1500+38 92,8479 %
1500 IPv6 TCP Timestamp and VLAN 1500−72

1500+42 92,6070 %
576 IPv4 UDP None 576−28

576+38 89,2508 %
576 IPv4 UDP VLAN 576−28

576+42 88,6731 %
576 IPv4 TCP None 576−40

576+38 87,2964 %
576 IPv4 TCP VLAN 576−40

576+42 86,7314 %
576 IPv4 TCP Timestamp 576−52

576+38 85,3420 %
576 IPv4 TCP Timestamp and VLAN 576−52

576+42 84,7896 %

Table 2.4: In this table some efficiency values for common combination of
protocol settings are listed. IPv6 does not have support for MTU less than
1280 [27], and therefore is not included in the bottom part of the table. The
table is sorted by the efficiency value.

20

2.3. How to benchmark using transport protocols Background

2.3.2 Bandwidth-delay product

When a network signal is sent it has to propagate through the network.
This propagation speed to a node and back again is called RTT (Round
Trip Time). This RTT value is important for window based protocols like
TCP. TCP window size is the amount of data a sender can send to a receiver
without the receiver having to acknowledge the data. This means that if
the TCP window size is 65535 bytes, a sender could put 65535 bytes on the
link before stopping and waiting for an acknowledgment of the received data.

This brings us back to the network propagation speed. It takes time to
propagate both the bytes and the acknowledgment. This delay makes it such
that there will be bytes on the physical network that has been transmitted
but not yet been received. The size of how many bytes that is in the state of
transit is called the BDP (bandwidth-delay product) [32]. The BDP is the
product of the bandwidth and the RTT. As an example, if the bandwidth is
at 1000 Mbps for a server, and there is a 2 ms RTT between the sender and
receiver the BDP would be

BD = 1000 · 106bps · 2 · 10−3s = 2000 · 103 = 2000kb or ∼244KiB

The problem with TCP throughput arise when the BDP is large, and is
most common on networks with high bandwidth and RTT. These networks
are called LFN (Long Fat Networks), which is fittingly pronounced "ele-
phan(t)". There are also problems with large BDP in local area networks
when there is need for high speeds. With a receive window of 65535 bytes,
all the bytes intended for the receive window will be in transit when the
sender stops and waits for an acknowledgment. This creates a gap where the
line is not used and both the sender and the receiver just waits for data to
propagate the network link, see figure 2.3 on page 23 for an illustration of the
problem. The efficiency can roughly be express by RWND

BDP , where RWND is
the size of the receive window. For the specific example it would translate to
65535
250000 = 26, 2% efficiency. This example show that the RTT has significant
impact on TCP throughput, and it demonstrates that using correct TCP
window size is important for throughput.

Originally TCP only supported a maximum of 65535 byte window, and
this was later improved, see [24] with the "TCP Window Scale Option",
allowing for larger than 65535 byte windows. Although increasing the win-
dow size removes much of the problems with link utilization associated with
LFN and high speed networks, another problem arises. With the larger win-
dow size there is a greater risk of unintentionally congesting the network,
increasing both packet loss and retransmissions. This implies that a too
large increase of the window would also be also be undesirable. How much
is enough? The window size is dependent on the RTT, and the RTT is de-

21

2.3. How to benchmark using transport protocols Background

pendent on other traffic, queues and chosen route, implying that it variates.
To solve this variation problem the general strategy is to use the highest
expected RTT to calculate the BDP. This highest expected BDP value then
can be used as the TCP receive window size, being large enough to not un-
derutilized the network link, and small enough to not unnecessarily congest
traffic. Many TCP implementations use RTTM methods (Round Trip Time
Measurement), for adapting to changing traffic conditions and to avoid in-
stability known as "congestion collapse" [24]. This measurement requires the
use of the extra TCP timestamp option. This timestamp adds an additional
12 bytes of overhead to the TCP header.

Mostly when using TCP these settings are taken care of by the operating-
system‘s TCP/IP stack. This does, however, have an impact on performance
and must be known to get accurate benchmarks calculations. When allocat-
ing the window size on on Linux it is important to know that it allocates
twice as much as requested [18]. The entire window is, however, not used for
purely receiving data. TCP uses some of this extra space for administrative
purposes and internal kernel structures [18], thus complicating the calcula-
tions further.

If the network BDP turns out to be unusually large, it would be better
to test the path with multiple TCP connections. With a line width of 1000
Mbps and an RTT of 20 ms the BDP will be 20 000 kb or ∼2,44 MiB. This
amount of in-transit data would be to large for a single TCP connection to
test reliably [32]. In table 2.5 the minimum required TCP connections with
associated RWND sizes to fill the BDP of the previous example is listed.

TCP RWND N connections
16 KiB 153
32 KiB 77
64 KiB 39
128 KiB 20
256 KiB 10

Table 2.5: The minimum required number of TCP connections required to
fill a BDP of 2,44 MiB at different RWND sizes.

22

2.3. How to benchmark using transport protocols Background

Sender Receiver

Payload

In transit

Sender Receiver

GAP

Payload

In transit

Sender Receiver

ACK

Send more

GAP

Figure 2.3: A simplified illustration of a large BDP and a small TCP window.
In this example the sender prematurely fills up the entire TCP window before
the receiver has received a single byte, resulting in the sender waiting for an
acknowledgment before it can send more. For large data transfers this will
severely impact the throughput performance.

23

2.3. How to benchmark using transport protocols Background

The RWND and BDP values are the most important measures when con-
sidering TCP throughput performance. To show this importance an example
table was made, see table 2.6. Not knowing these limitations could lead to
errors when evaluating throughput performance values.

TCP RWND Efficiency
16 KiB 13,1 %
32 KiB 26,2 %
64 KiB 52,4 %
128 KiB 100 %
256 KiB 100 %

Table 2.6: TCP throughput efficiency at different RWND sizes for a BDP
size of 1000 kb. The BDP size is representative for line with 1000 Mbps
bandwidth and 1 ms RTT.

2.3.3 Packet loss

Not all packets sent over a network reach their destination or arrive un-
scathed. There are a number of reasons for how a packet in transit ei-
ther becomes corrupt or is lost entirely. Some common reasons being signal
degradation, faulty hardware or congestion. TCP efficiency based on packet
corruption and/or loss can be expressed by the following formula

Packets sent - Packets retransmitted
Packets sent

· 100 = Efficiency % (2.2)

2.3.4 Jitter

Jitter or also known as packet delay variation, is the difference in delay be-
tween successive packets in a data flow. Packet delay variation is important
for applications with real-time voice and/or video applications, and is also
important for understanding network queues as changes in delay can change
the network queue dynamics [29]. For benchmarking purposes this value is
important when measuring the expected quality of these real-time applica-
tions. Additionally the packet delay variation is important for the accuracy
of throughput benchmarks, see section 2.3.8 on page 26 for more details.

2.3.5 Buffer delay

When running a TCP throughput test the RTT value might increase be-
cause of congestion created by traffic generated in the test. This increase in

24

2.3. How to benchmark using transport protocols Background

RTT over the baseline RTT measured at non-congested conditions is called
buffer delay [32]. As seen in section 2.3.2 on page 21, the RTT value is signif-
icant for the throughput performance of TCP and an increase in RTT could
be significant for the end results. The buffer delay is calculated using the
following formula

Mean RTT− Baseline RTT
Baseline RTT

· 100 = Buffer delay % (2.3)

Where the mean RTT value is based on the RTT values during transfer.
How to measure the RTT value is defined in [32].

2.3.6 TCP equilibrium

TCP connections does not start out at maximum speed when a end to end
connection is made. TCP goes through a build up process before it reaches
a state called equilibrium state. A TCP connection goes through 3 distinct
phases which is designed to ramp up throughput speed until packet loss and
adjust speed accordingly. The phases are

1. Slow start phase

2. Congestion avoidance phase

3. Loss recovery phase

Some packet loss is expected in this build up process, as it is a natural
result of the process of finding the throughput limit. Congestion control
algorithms are a large subject, for information on how the phase processes
achieve their purpose see [31]. This buildup process is relevant for the actual
TCP performance, and will be a factor in TCP reliant applications. Since this
process has the largest impact at the beginning of the TCP connection this
slow start becomes less significant with increasing transfer size. Maximum
throughput should therefore be measured when equilibrium state is reached.

2.3.7 Methodology

It is considered best practice to run full layer 2/3 tests such as described in
[28] to verify the integrity of the network before running tests [32]. The test
methodology can be summarized by the following three points

1. Identify the path MTU. See [30] for more information on MTU discov-
ery methodology.

2. Find the baseline RTT and bandwidth. This step is used to provide
estimates for TCP RWND size and send socket buffer size.

3. TCP connection throughput tests. Single and multiple TCP connec-
tions tests to verify the baseline network performance.

25

2.4. Prototype model detailed Background

2.3.8 Accuracy of measurements

Generally it is considered not possible to make accurate TCP throughput
performance measurements when the network is exhibiting unusually high
packet loss and/or jitter. The guideline provided in [32] considers 5% packet
loss and/or 150 ms jitter too high for accurate measurements. Because of
the buffer delay, TCP throughput tests should not last less than 30 seconds,
and it could be useful to test at different times of day when testing networks
with underlying traffic [32].

2.4 Prototype model detailed

In the introduction section the basic idea of how to best traverse the network
junction-points was presented. There are other factors that are important for
the overall performance of the data distribution. Buffer usage and end to end
delay is considered crucial subjects for the proposed seeding strategy. Before
explaining how these metrics will affect performance a basic role definition
will be presented.

2.4.1 Defining the prototype roles

At the most basic level the prototype can be seen as a tandem queue model.
Tandem queue models in networks are often related to network routing,
where the packets often must be be routed between two end points choosing
the shortest or cheapest route. The prototype model is based on the same
model, only that the aim is to visit all nodes. The prototype consists of
three basic roles, which is the traffic generator, forwarder and receiver, see
figure 2.4. It is the forwarding node which is of most interest, and it is the
primary focus when discussing node performance in this thesis.

Traffic generator Traffic forwarder

and receiver

Traffic receiver

Figure 2.4: A tandem queue.

26

2.4. Prototype model detailed Background

2.4.2 Buffer size

One of the aspects of the proposed model is to make use of the system buffer
to utilize a temporary boost to performance until the system chokes. This
choke point appears when the buffer runs out, and the system cannot receive
any more data before memory space is made available. A forwarder node
receive data at a specific rate, in queuing theory referred to as arrival-rate,
λ. The forward node also needs to forward data, µf , and write to disk, µw.
This creates a system with two effective queues, one for forwarding data
and one for writing to disk. The prototype model is created such that the
forward happens before the write to disk, such that the arrival-rate for the
disk queue is dependent on forward data. The rate at which arrivals are
served to the disk queue will be arrival-rate, λf . It is assumed that these
internal dependent queues can be approximated using independent M/M/1
queuing models, as stated by Jackson’s theorem. Some traffic shaping is
expected, but it is assumed that the arrival-rates, forward-rate and write-rate
can be approximated by a Poisson process. M/M/1 queuing theory states
that theoretical forward utilization-rate, ρf , and write utilization-rate, ρw,
can be express by the following equations

ρf =
λ

µf
(2.4)

ρw =
λf
µw

(2.5)

An important aspect of these equations are that queue explodes when
(ρw ∨ ρf) > 1. This is expected behavior and effectively means that the
buffer usage increase as data is being transferred. When ∀x((ρf ∧ ρw) < 1)
for a tandem queue consisting of x forwarding nodes, it is not likely there
will be a significant buildup of queue, hence no large buffer needed. The
point of the large buffer usage in the model becomes clear in the scenarios
where ∃x((µf > µw) ∧ (ρw > 1)), which is expected to be the norm. In
the prototype it is the write-rate which is responsible for discarding queue
items, and freeing up new queue spots. Assuming that µf > µw this creates
a relationship between the arrival-rate and the write-rate. This relationship
is the choke point, at which point the system will have to deny any new
arrivals, and the arrival-rate λ cannot become larger than the write-rate.
The choke point z can be found by the following equation

µ =

{
µf if (µw > µf)
µw else

z =
q

λ− µ
(2.6)

Where, q, is the size of the buffer. Examples of how much data can be
transferred before the system chokes can be seen in figures 2.5, 2.6 and 2.7.

27

2.4. Prototype model detailed Background

In the example figures the arrival-rate is fixed at 1000 Mbps and it is assumed
that µw < µf .

0 2 4 6 8 10
0

5

10

15

20

Buffer size HGiBL

C
h

o
ke

p
o

in
t

HG
iB

L

Choke point, Arrival-rate 1000 Mbps, Write-rate 500 Mbps

Figure 2.5: Choke point relative to the buffer size.

28

2.4. Prototype model detailed Background

0 200 400 600 800 1000
0

5

10

15

20

Write-rate HMbpsL

C
h

o
ke

p
o

in
t

HG
iB

L

Choke point, Arrival-rate 1000 Mbps, Buffer size 2 GiB

Figure 2.6: Choke point relative to the write-rate.

29

2.4. Prototype model detailed Background

Figure 2.7: Choke point relative to write-rate and buffer size.

30

2.4. Prototype model detailed Background

2.4.3 End-to-end delay and job size

Since the prototype model is a tandem queue there will be an end-to-end
delay, which is the time the data needs to propagate from the first to the last
node. This end-to-end delay is important for the scalability of the proposed
distribution strategy. The end-to-end delay is the sum of all the nodal delays.
Between each node there will be processing delay, dp, queuing delay, dq,
transmission delay, dt and propagation delay, df . The end to end delay can
then be described by the following formula

end-to-end delay =

N−1∑
i=1

(dp(i) + dq(i) + dt(i) + df (i)) (2.7)

Where N is the number of nodes. It is important to notice that the
routers, and switches separating the nodes also have the same delay prop-
erties. In equation 2.7 it is assumed to fall under the propagation delay
between nodes. It is expected that the processing delay and the transmis-
sion will become the largest bottleneck in the distribution. It is important to
notice that the end-to-end delay can create a situation where the first node
has sent all data but has not been received by the last receiving node yet.
This creates a scenario where it might be beneficial to divide the nodes into
segments which will receive the stream in turns. If the data-stream reach
10 nodes as the original sender sends its last byte, it might be possible to
segment the receiving nodes into 10 and 10 nodes. Additionally this segmen-
tation of nodes could be combined with buffer choke avoidance, alternating
between segmented nodes as the node buffer becomes saturated. These sce-
narios are interesting for future research, but are not out of scope for this
thesis.

In the prototype model the transmitted data will be pushed into a job
which contains the data buffer. The size of this buffer is important for the
end-to-end delay. A job needs to be filled up before it can be forwarded,
creating a transmission delay, also called the store-and-forward delay. The
transmission delay is expected to scale linearly with increasing job buffer
size, significantly increasing end-to-end delay with increasing N . Decreasing
the job buffer size will increase processing overhead, as the system needs to
create more jobs, queue more items and do conditionals more often, which all
adds up to requiring more system resources. For fast convergence it becomes
important to have as little job size as the system allows without loosing
throughput caused by node resource usage. The job buffer size might have a
significant role in the performance of the proposed distribution model. This
implies that the system will benefit from the possibility of specifying the job
buffer size, such that the transmission can be optimized according to need.

31

2.4. Prototype model detailed Background

Since the job buffer size can be seen as analogous to packet-switched
network delays, some of the theory in this section is based on the overview
of delays in packet-switched networks presented in [15].

32

Chapter 3

Experimental design and
methodology

3.1 Finding the roof performance

Before setting up the prototype benchmark it is important to measure the
performance of the equipment that will be used in the final experiments.
Getting this data will give information about what the performance roof is,
and it will in the end be the measuring stick for how well the prototype
application-layer multicast protocol performs. These benchmarks will be
used to confirm that the proposed distribution method is possible.

3.1.1 Collecting performance data

Switch throughput performance is central for the proposed seeding strategy,
therefore a good benchmarking tool will be needed. Iperf [13] was chosen as
the benchmarking software to use. Iperf is developed my NLANR/DAST,
and the primary function of the software is measuring the maximum TCP
and UDP bandwidth performance of a network link. The variables that
Iperf can report that is of interest are bandwidth, delay jitter and datagram
loss. Iperf does not, however, provide with the possibility of collecting per-
formance data from multiple simultaneous benchmarks. A wrapper to Iperf
will therefore be created to get this required functionality.

3.1.2 Methodology

The first benchmark will be a baseline test with a single Cat6 cable between
two nodes. The purpose of this baseline test is to uncover any potential
issues with network cards or general node performance.

The full test routine designed to test the network duplexing performance
can be described as f(1, 2), f(2, 3) . . . f(n− 1, n), f(n, 1) where the function

33

3.1. Finding the roof performance Experimental design and methodology

f(x, y), is the logical statement: "An Iperf benchmark is run from node x
to receiving node y". See figure 3.1 for an illustration of the experimental
setup. This routine will effectively create a benchmark loop, such that both
up and down speed will be maxed out for every node. There will be a few
seconds interval between each individual node benchmark. This delay is in-
troduced to get a more accurate measurement of an eventual choke point.
SSH will be used to orchestrate the benchmarks and to collect results. The
individual benchmarks will be aggregate into a single plot. The plot aggrega-
tion and benchmark orchestration requires time synchronization for accurate
measurements. Synchronization to an NTP (Network time protocol) server
will therefore be required before any benchmarks can be run.

1 2 3 4 5

f(1,2) f(2,3) f(3,4) f(4,5)

f(5,1)

Node 1 Node 2 Node 3 Node 4 Node 5

Figure 3.1: An illustration of the experimental setup for the roof performance
experiments.

The prototype will be created using TCP, therefore the most important
measurement will be the TCP throughput. There is a problem, however,
Iperf does not support collection of packet loss or jitter when when running
TCP benchmarks. Iperf does, however, support these measurements in the
UDP benchmark tests, and therefore this issue will be solved by also running
full UDP benchmarks.

The results from the full test routine will be measured against the baseline
test using inferential statistics. It is not known if the switches will improve
or degrade over the baseline performance, therefore a two tailed test will be

34

3.2. Prototype architecture Experimental design and methodology

performed to get a more rigorous statistic. The sample count is expected to
be high, making it reasonable to assume that the sampling distribution of
the sample mean to be normally distributed. This implies that the inferen-
tial test can be carried out by using a Z statistic. The following hypotheses
statements are tested

H0: There is no qualitative difference between the baseline and the switch
mean performance.

H1: There is a qualitative difference.

The H0 will be assumed to be true. The significance level, α, of the test
will be set to 0.05 (5%). If the P value returned by the Z-test returns a P
value such that P < α the H0 hypothesis will be rejected.

3.2 Prototype architecture

The architectural design of the prototype is presented in this section.

3.2.1 Libraries

The main functionality of the program will be crated using parts of the C++
Boost library [3]. The following libraries will be used.

• Boost Asio A cross-platform C++ library for network and low-level
I/O programming.

• Boost Program Options A program options library that allow fetch-
ing of command-line and configuration file options

• Boost Thread A library that enables the use of multiple threads of
execution with shared data.

3.2.2 Header

Designing an application-layer protocol always introduce extra overhead. To
keep this overhead to an absolute minimum, this header is included at the
start of the file transfer and is not introduced again. This header consists
of 14 bytes of obligatory data and 0 to 1024 bytes for the variable length
filename. After the filename is sent the file transfer starts and can be from 0
to ∼8 exabytes of data. The following table show the file transfer byte-stream

35

3.2. Prototype architecture Experimental design and methodology

Byte offset 0 - 2 3 - 6 7 - 14
0 Job size Filename length File size
15
to Filename
1038

Max ∼8 exabytes File Data

Table 3.1: The structure of the byte-stream created by the prototype when
initiating a file transfer.

3.2.3 Concurrency design

The prototype will be designed for concurrency, such that nodes with mul-
tiple processors and/or cores can utilized. The internal architecture will be
created using task-servers, where each worker-thread has the responsibility
of accomplishing the tasks within its assigned task-server. The internal task-
servers can be divided into read, receive, send and write. Where the traffic
generator "reads and sends data", the forwarder "receives, sends and writes"
and lastly the receiver node "receives and writes". The task-servers for the
forwarding node are illustrated in figure 3.2 on the next page. In the figure
each column illustrates the tasks assigned to a worker-thread. A task must
not be confused with a job. The job is the class containing the memory
buffer that holds the transmission-data.

These task-servers are run in the same process such that they can share
memory. This shared memory allows for sharing of job queues, and it allows
the jobs to be moved and not copied from one task-server to another. This
is accomplished using C++ 11 Move semantics. The key benefit from using
Move semantics is that the jobs are not copied, it is only the ownership of
the job that is transferred between the task-servers. The same principle is
used to move jobs into and out of the queues, such that a job is only written
to memory once during its lifetime in the process. This design is thought to
be essential for minimizing the store and forward delay.

After the data has been transferred the task-servers are terminated by
creating a kill-job. The kill-job is created after the last job containing
transmission-data is sent. When a kill-job is received, the task-server will
start shutdown procedures and the worker-threads rejoins the main-thread
before the process is finally terminated.

36

3.2. Prototype architecture Experimental design and methodology

D
a
ta
s
ts
tre

a
m

IN

Fo
rw

a
rd
 q
u
e
u
e

W
rite

 q
u
e
u
e

W
rite

 T
h
re
a
d

12
. T
h
re
a
d
 w
a
k
e
s

u
p

13
. W

rite
 jo

b
 d
a
ta

to
 d
is
k

14
. D

e
le
te
 jo

b
 fro

m

m
e
m
o
ry

15
. If

m
e
m
o
ry w

a
s

fu
ll w

a
k
e
 th

re
a
d

16
.If

w
rite

 q
u
e
u
e

n
o
t e

m
p
ty

e
ls
e

S
le
e
p
 th

re
a
d

D
a
ta
s
ts
tre

a
m
 O
U
T

Fo
rw

a
rd
 T
h
re
a
d

7. T
h
re
a
d
 w
a
k
e
s
 u
p

8
. Fo

rw
a
rd
 jo

b
 d
a
ta

9
. M

o
ve

 jo
b

10
.If

w
rite

 q
u
e
u
e

w
a
s
 e
m
p
ty w

a
k
e

th
re
a
d

11.If
fo
rw

a
rd
 q
u
e
u
e

n
o
t e

m
p
ty

e
ls
e

S
le
e
p
 th

re
a
d

Jo
b

FIFO

FIFO

Dataststream OUT

1. T
h
re
a
d
 w
a
k
e
s
 u
p

2
. C

re
a
te
 e
m
p
ty jo

b

3
. Fill jo

b

4
. M

o
ve

 jo
b

5
.If

fo
rw

a
rd
 q
u
e
u
e

w
a
s
 e
m
p
ty w

a
k
e

th
re
a
d

6
.If

a
va

ila
b
le

m
e
m
o
ry

e
ls
e

S
le
e
p
 th

re
a
d

Jo
b

Jo
b

R
e
c
e
ive

 T
h
re
a
d

JO
B

W
A
K
E

LO
O
P

Figure 3.2

37

3.3. Comparative benchmarks Experimental design and methodology

3.3 Comparative benchmarks

The prototype will be benchmarked according to CPU, storage and network
usage. Additionally BitTorrent will be benchmarked in the same distribution
scenarios. This is primarily done to give the performance measurements a
good reference point.

3.3.1 Collecting performance data

To benchmark the different protocols a performance data collecting tool
will be needed. Collectl [7] was chosen. Collectl is created for collecting
system data relating to benchmarking, monitoring of system health and as
a record of what the system has been doing at a certain time or period.
The subsystems that Collectl can gather data from that is of interest are
CPU, storage, and network. Using this tool for collecting data instead of
using integrated performance monitoring will ease the the aggregation of the
performance data for both protocols.

3.3.2 BitTorrent

BitTorrent was chosen as a comparative basis because it is one of the most
successful application-layer multicast protocols, meaning that its perfor-
mance is a good reference point and the results can easily be repeated by
others.

BitTorrent has the possibility of adding nodes while a distribution is run-
ning, and it is known to scale well to a significant amount of receiving nodes.
This means that the performance of the prototype has to be significantly
faster than this already robust protocol before it will be relevant for usage.
BitTorrent performance will be valuable in determining the worth of the pro-
totype performance.

There exists several BitTorrent clients that can be used for comparative
basis. The BitTorrent client rTorrent [39] was chosen. rTorrent was chosen
for two reasons. First, that it is a client that can be run on debian linux.
Second, rTtorrent is known for high efficiency in high performance networks.

3.3.3 Methodology

The main task for the comparison benchmarks will be to transfer a 10 Gbit
file to all nodes in a tree network. The benchmark will be setup with two
connected 5 port switches, where there are 4 individual nodes connected to
each switch. This setup will simulate a tree topology. See figure 3.3 on
the following page and figure 3.4 on the next page for illustrations of the
experimental setups. The arrows in the figures show the expected directions

38

3.3. Comparative benchmarks Experimental design and methodology

of the data flow. The goal of the experiment is to see if there is a performance
benefit to transferring the data distribution in an optimal path.

1 2 3 4 5

Send node Forward

node

Forward

node

Forward

node

1 2 3 4 5

Forward

node

Forward

node

Forward

node

Receive

node

1 2 3 4 5

Initial Seed

/ Tracker

Peer Peer Peer

1 2 3 4 5

Peer Peer Peer Peer

Figure 3.3: An illustration of the experimental setup for the prototype bench-
marks. The data flow follows a predetermined optimal path.

1 2 3 4 5

Send node Forward

node

Forward

node

Forward

node

1 2 3 4 5

Forward

node

Forward

node

Forward

node

Receive

node

1 2 3 4 5

Initial Seed

/ Tracker

Peer Peer Peer

1 2 3 4 5

Peer Peer Peer Peer

Figure 3.4: An illustration of the experimental setup for the BitTorrent
benchmarks. The data flow in this experiment should go to and from all
peers

Since the benchmark results are individually collected for each node, the
data will need to be aggregated into a single plot. The plot aggregation and
benchmark orchestration requires time synchronization for accurate measure-
ments. Synchronization to an NTP server will therefore be required before
any benchmarks can be run.

39

3.3. Comparative benchmarks Experimental design and methodology

3.3.4 BitTorrent configuration

BitTorrent performance variates according to configuration, in this section
the rTorrent client configuration setup is presented.

rTorrent uses the file rtorrent.rc to configure the client behavior. The fol-
lowing rtorrent.rc file will be used during the rTorrent benchmarks.

rtorrent.rc

Global upload and download rate in KiB. "0" for unlimited.
download_rate = 0
upload_rate = 0

min_peers = 50 ; look for more peers if limit doesn’t reach 50
max_peers = 500 ; if there are 500 peers, don’t allow any more

Same as above but for seeding completed torrents (-1 = same as downloading)
min_peers_seed = 10
max_peers_seed = 100

Maximum number of simultanious uploads per torrent.
max_uploads = 25

port_range = 6881-6999 ; ports to use for listening

Start opening ports at a random position within the port range.
port_random = yes

check_hash = no; check hash on finished torrents

encryption settings
encryption = allow_incoming,enable_retry,prefer_plaintext

use_udp_trackers = yes ; setup client to use udp (stateless) trackers

DHT clientless tracker
dht = yes
dht_port = 6881
peer_exchange = yes

Session tmp file (relative dir is good, absolute is bad)
session = ./.session

Default directory to save the downloaded torrents.
directory = ./tmp/

Watch a directory for new torrents, and stop those that have been deleted (^d)
schedule = watch_directory,1,1,"load_start=./watch/*.torrent"
schedule = untied_directory,1,1,remove_untied=./watch/*.torrent

Tracker

To coordinate communication between peers a tracker is needed. Peertracker
[22] was chosen for this job. Peertracker was chosen because it does not
index uploading of torrents, share ratio monitoring or any other form of user
management.

40

3.3. Comparative benchmarks Experimental design and methodology

Tuning

• Memory To keep disk usage to a minimum, rTorrent needs to use
system memory as caching. The amount of memory used for caching
is limited to "ulimit -m" or 1GiB [40]. In the benchmark setup "ulimit
-m" will be set to unlimited, such that rTorrent can use up to 1GiB of
memory. This is the same amount of memory available as used for the
prototype benchmarks.

• check_hash disabled Preliminary testing revealed that rTorrent dis-
connects all peers at torrent completion when check_hash option is
enabled. The node does not seem to continue seeding to the discon-
nected peers after hash check is completed, but rather leaves it to
the tracker to resolve the issue. When most nodes complete fairly si-
multaneously this could lead to some nodes being disconnected from
most other peers. The "abandoned" peer/s must then time-out and
re-connect to tracker before the conflict can be resolved. Disabling this
feature enhanced average convergence-time significantly.

• super-seeding disabled When using super-seeding all connections
are closed for the initial seeder after the swarm shows two distributed
complete copies [41]. The initial seeder re-joins the swarm and are re-
connected with normal seeding connection after this. There are so few
peers in the benchmark setup that the peer disconnection is considered
too be more detrimental to performance than what performance could
be gained by enabling super-seeding.

3.3.5 Prototype configuration

Tuning

• Memory For the prototype to perform well, system memory will need
to be available for use. 1GiB of memory will be the maximum amount
of memory that the prototype will be able to use. This is the same
amount of memory available as used in the rTorrent benchmark.

• Job size The job size will be set to 1460 bytes in the comparative
benchmarks. It is expected that this setting will use more CPU power
than what a larger job size would, but it is not expected to become a
limiting factor.

41

3.4. Test equipment Experimental design and methodology

3.4 Test equipment

Here is a list of the equipment used in the experiments in this thesis

3.4.1 Node hardware

All experiments in this thesis has been carried out on nodes with equivalent
specifications. Here follows the node specifications

• Model: Apple MacBook 2.4 (Mid-2010)

• CPU: Intel Core 2 duo P8600 2,4 GHz

• Memory: 2 GiB DDR3 SDRAM 1066 MHz, 1,74 GiB usable by the
system as 256 MiB is reserved for graphics.

• Network card: Nvidia Nforce 10/100/1000

• Disk: 250 GB Serial ATA (5400 RMP)

All nodes where connected via Cat6 certified cables. Debian GNU/Linux 6.0
2.6.32-5-amd64 was used as operating-system for the nodes.

3.4.2 Network devices

Here follows the network equipment that was benchmarked in the roof per-
formance tests.

Device Certified speeds Full duplex Ports
HP V1405C-5 10/100 Mbit Yes 5
Dlink DGS-1005D 10/100/1000 Mbit Yes 5
Netgear GS605 10/100/1000 Mbit Yes 5
Netgear ProSafe GS105 10/100/1000 Mbit Yes 5
Cisco SD2005 10/100/1000 Mbit Yes 5
3Com 3CGSU05 10/100/1000 Mbit Yes 5
Cisco SG 100D-08 10/100/1000 Mbit Yes 8
3Com 3CGSU08 10/100/1000 Mbit Yes 8

Table 3.2: A table of the network equipment that was benchmarked.

The list consist of a mix of consumer and business-grade switch equip-
ment. The amount of devices is considered fair enough to uncover if there
is a general trend when looking at switch throughput performance. The 100
Mbit switch was included in the list to uncover if there was any issues with
node network performance.

42

3.4. Test equipment Experimental design and methodology

3.4.3 Network configuration

The benchmarks was run with the following network configuration

Test MTU Overhead/Options Ideal per node Ideal 5 port Ideal 8 port
TCP 1500 IPv4, Timestamp 941.48 Mbps 4705.74 Mbps 7529.19 Mbps
UDP 1500 IPv4, None 957.09 Mbps 4785.44 Mbps 7656.70 Mbps

Table 3.3: The ideal throughput values for the benchmark configurations.
The throughput values are rounded to the nearest two decimal places.

In table 3.3 the target performance values for the benchmarks in the following
sections are listed.

43

Chapter 4

Results

4.1 Finding the roof performance

4.1.1 Iperf wrapper

In this section the developed Iperf wrapper is presented. The wrapper was
successfully developed with the required functionality defined in the method-
ology section. The full Perl script can found in appendix 7.1 on page 134.

To execute the script the following command can be used

bench.pl -i iplist -s 30 -t 60 -o results/ -x 10.0.0.10

The command will result in 30 sample benchmarks run for 60 seconds
each. The option -x defines which NTP server to synchronize time with.
The input file iplist will determine which hosts to benchmark and option -o
defines which folder to save the output results.

iplist full

10.0.0.10
10.0.0.11
10.0.0.12

Here is a sample of how a typical output from the script looks like
output sample

SSH Password: **********
Client: 10.0.0.10
Client: 10.0.0.11
Client: 10.0.0.12

Server: 10.0.0.10
Server: 10.0.0.11
Server: 10.0.0.12

44

4.1. Finding the roof performance Results

Client connect retries: 0

Server connect retries: 0

Trying to sync 10.0.0.10 to 10.0.0.10
10.0.0.10 is ntp server,
skipping synchronization of 10.0.0.10
Trying to sync 10.0.0.11 to 10.0.0.10
time server 10.0.0.10 offset 0.175051 sec
Trying to sync 10.0.0.12 to 10.0.0.10
time server 10.0.0.10 offset 0.183668 sec

SAMPLE 1 OF 30
Host 0 connects to 1
iperf -s (10.0.0.11)
iperf -c 10.0.0.11 -y C -i 1 -t 62 (10.0.0.10)
Waiting for: 2
Host 1 connects to 2
iperf -s (10.0.0.12)
iperf -c 10.0.0.12 -y C -i 1 -t 62 (10.0.0.11)
Waiting for: 2
Host 2 connects to 0
iperf -s (10.0.0.10)
iperf -c 10.0.0.10 -y C -i 1 -t 62 (10.0.0.12)
Waiting for: 2
Waiting for execution to finish..

The script will run benchmarks for 2 seconds more than specified in the
script input, and the resulting output is cropped to the specified length. It
was uncovered during preliminary testing that Iperf some times fail to print
results for the last executed second, and therefore the 2 second margin was
added to prevent uneven length data.

The results are output to files separated by protocol, host and sample. The
resulting output to file from one host/sample could be as follows

T-h1-s1.csv sample

20120315193526,10.0.0.10,58556,10.0.0.11,5001,3,0.0-1.0,118136832,941094656
20120315193527,10.0.0.10,58556,10.0.0.11,5001,3,1.0-2.0,117809152,941473216
20120315193528,10.0.0.10,58556,10.0.0.11,5001,3,3.0-4.0,117686272,941490176
20120315193529,10.0.0.10,58556,10.0.0.11,5001,3,4.0-5.0,110395392,883163136

Invoking the script with option -h will print the correct usage of the script,
and give explanation of the csv output fields.

Usage full

Usage: bench.pl [OPTIONS] --in iplist

DESCRIPTION

A wrapper to iperf that can benchmark multiple nodes simultaneously.
The benchmark results are output in a csv file format.

GENERIC OPTIONS

45

4.1. Finding the roof performance Results

-h, --help Display Usage information
-i, --in File with list of IP addresses to benchmark
-o, --out File to output sampled data
-t, --time Time in seconds to sample
-w, --wait How long to wait before adding another node to the benchmark
-s, --samples How many benchmarks to run
-x, --sync Specify NTP server sync address
-r, --window Specify TCP recieve window size

UDP OPTIONS

-u, --udp Invoke UDP test
-b, --bandwidth [m|g] Specify UDP bandwidth target

EXPLANATION OF CSV OUTPUT FIELDS

TCP:
Field 1: Timestamp
Field 2: From host
Field 3: From port
Field 4: Target host
Field 5: Target port
Field 6: ID
Field 7: Time interval
Field 8: Bytes transferred
Field 9: Bits per second over interval

UDP:
Field 1: Timestamp
Field 2: From host
Field 3: From port
Field 4: Target host
Field 5: Target port
Field 6: ID
Field 7: Time interval
Field 8: Bytes transferred
Field 9: Bits per second over interval
Field 10: Jitter in milliseconds
Field 11: Lost datagrams over interval
Field 12: Total datagrams over interval
Field 13: Lost datagrams in % over interval
Field 14: Datagrams delivered out of order

46

4.1. Finding the roof performance Results

4.1.2 Baseline Cat6, TCP

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Time: Seconds

M
bp

s

Baseline Cat6, TCP, Node1

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Time: Seconds

M
bp

s

Baseline Cat6, TCP, Node2

500 600 700 800 900 1000
0

100

200

300

400

500

Mbps

B
in

C
ou

nt

Baseline Cat6, TCP, Throughput distribution

Figure 4.1: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated
from 30 samples, and the standard deviation is plotted for every second. In
the histogram to the right the benchmark throughput distribution is shown.

0 10 20 30 40 50 60
0

500

1000

1500

2000

Time: Seconds

M
bp

s

Baseline Cat6, TCP, Combined results

Figure 4.2: The results for the 2 nodes combined into a single plot. The plot
data is aggregated from 30 samples per node, and the standard deviation is
plotted for each second.

47

4.1. Finding the roof performance Results

4.1.3 Baseline Cat6, UDP

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Baseline Cat6, UDP, Node1

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Baseline Cat6, UDP, Node2

950 952 954 956 958 960 962 964
0

500

1000

1500

2000

Mbps

B
in

C
ou

nt

Baseline Cat6, UDP, Throughput distribution

Figure 4.3: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated
from 30 samples, and the standard deviation is plotted for every second. In
the histogram to the right the benchmark throughput distribution is shown.

0 10 20 30 40 50 60
0

500

1000

1500

2000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Baseline Cat6, UDP, Combined results

Figure 4.4: The results for the 2 nodes combined into a single plot. The plot
data is aggregated from 30 samples per node, and the standard deviation is
plotted for each second.

48

4.1. Finding the roof performance Results

4.1.4 HP V1405C-5, TCP

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

M
bp

s

HP V1405C-5, TCP, Node1

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

M
bp

s

HP V1405C-5, TCP, Node2

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

M
bp

s

HP V1405C-5, TCP, Node3

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

M
bp

s
HP V1405C-5, TCP, Node4

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

M
bp

s

HP V1405C-5, TCP, Node5

Figure 4.5: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated
from 30 samples, and the standard deviation is plotted for every second.

49

4.1. Finding the roof performance Results

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

HP V1405C-5, TCP, Combined results

50 60 70 80 90 100 110
0

200

400

600

800

Mbps

B
in

C
ou

nt

HP V1405C-5, TCP, Throughput distribution

Figure 4.6: In the top graph the results for the 5 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

50

4.1. Finding the roof performance Results

4.1.5 HP V1405C-5, UDP

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

HP V1405C-5, UDP , Node1

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

HP V1405C-5, UDP , Node2

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

HP V1405C-5, UDP , Node3

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

HP V1405C-5, UDP , Node4

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

HP V1405C-5, UDP , Node5

Figure 4.7: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated
from 30 samples, and the standard deviation is plotted for every second.

51

4.1. Finding the roof performance Results

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

HP V1405C-5, UDP, Combined results

95.4 95.5 95.6 95.7 95.8 95.9 96.0
0

2000

4000

6000

8000

Mbps

B
in

C
ou

nt

HP V1405C-5, UDP, Throughput distribution

Figure 4.8: In the top graph the results for the 5 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

52

4.1. Finding the roof performance Results

4.1.6 Dlink DGS-1005D, TCP

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Dlink DGS-1005D, TCP, Node1

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Dlink DGS-1005D, TCP, Node2

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Dlink DGS-1005D, TCP, Node3

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s
Dlink DGS-1005D, TCP, Node4

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Dlink DGS-1005D, TCP, Node5

Figure 4.9: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated
from 30 samples, and the standard deviation is plotted for every second.

53

4.1. Finding the roof performance Results

0 20 40 60 80
0

1000

2000

3000

4000

5000

Time: Seconds

M
bp

s

Dlink DGS-1005D, TCP, Combined results

500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

Mbps

B
in

C
ou

nt

Dlink DGS-1005D, TCP, Throughput distribution

Figure 4.10: In the top graph the results for the 5 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

54

4.1. Finding the roof performance Results

4.1.7 Dlink DGS-1005D, UDP

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Dlink DGS-1005D, UDP , Node1

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Dlink DGS-1005D, UDP , Node2

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Dlink DGS-1005D, UDP , Node3

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Dlink DGS-1005D, UDP , Node4

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Dlink DGS-1005D, UDP , Node5

Figure 4.11: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

55

4.1. Finding the roof performance Results

0 20 40 60 80
0

1000

2000

3000

4000

5000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Dlink DGS-1005D, UDP, Combined results

950 952 954 956 958 960 962 964
0

1000

2000

3000

4000

Mbps

B
in

C
ou

nt

Dlink DGS-1005D, UDP, Throughput distribution

Figure 4.12: In the top graph the results for the 5 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

56

4.1. Finding the roof performance Results

4.1.8 Netgear GS605, TCP

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Netgear GS605, TCP, Node1

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Netgear GS605, TCP, Node2

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Netgear GS605, TCP, Node3

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s
Netgear GS605, TCP, Node4

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Netgear GS605, TCP, Node5

Figure 4.13: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

57

4.1. Finding the roof performance Results

0 20 40 60 80
0

1000

2000

3000

4000

5000

Time: Seconds

M
bp

s

Netgear GS605, TCP, Combined results

500 600 700 800 900 1000
0

500

1000

1500

2000

Mbps

B
in

C
ou

nt

Netgear GS605, TCP, Throughput distribution

Figure 4.14: In the top graph the results for the 5 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

58

4.1. Finding the roof performance Results

4.1.9 Netgear GS605, UDP

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear GS605, UDP , Node1

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear GS605, UDP , Node2

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear GS605, UDP , Node3

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear GS605, UDP , Node4

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear GS605, UDP , Node5

Figure 4.15: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

59

4.1. Finding the roof performance Results

0 20 40 60 80
0

1000

2000

3000

4000

5000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear GS605, UDP, Combined results

950 952 954 956 958 960 962 964
0

500

1000

1500

2000

2500

3000

Mbps

B
in

C
ou

nt

Netgear GS605, UDP, Throughput distribution

Figure 4.16: In the top graph the results for the 5 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

60

4.1. Finding the roof performance Results

4.1.10 Netgear ProSafe GS105, TCP

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Netgear ProSafe GS105, TCP, Node1

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Netgear ProSafe GS105, TCP, Node2

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Netgear ProSafe GS105, TCP, Node3

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s
Netgear ProSafe GS105, TCP, Node4

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Netgear ProSafe GS105, TCP, Node5

Figure 4.17: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

61

4.1. Finding the roof performance Results

0 20 40 60 80
0

1000

2000

3000

4000

5000

Time: Seconds

M
bp

s

Netgear ProSafe GS105, TCP, Combined results

500 600 700 800 900 1000
0

500

1000

1500

2000

Mbps

B
in

C
ou

nt

Netgear ProSafe GS105, TCP, Throughput distribution

Figure 4.18: In the top graph the results for the 5 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

62

4.1. Finding the roof performance Results

4.1.11 Netgear ProSafe GS105, UDP

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear ProSafe GS105, UDP , Node1

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear ProSafe GS105, UDP , Node2

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear ProSafe GS105, UDP , Node3

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear ProSafe GS105, UDP , Node4

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear ProSafe GS105, UDP , Node5

Figure 4.19: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

63

4.1. Finding the roof performance Results

0 20 40 60 80
0

1000

2000

3000

4000

5000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Netgear ProSafe GS105, UDP, Combined results

950 952 954 956 958 960 962 964
0

1000

2000

3000

4000

Mbps

B
in

C
ou

nt

Netgear ProSafe GS105, UDP, Throughput distribution

Figure 4.20: In the top graph the results for the 5 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

64

4.1. Finding the roof performance Results

4.1.12 Cisco SD2005, TCP

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SD2005, TCP, Node1

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SD2005, TCP, Node2

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SD2005, TCP, Node3

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s
Cisco SD2005, TCP, Node4

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SD2005, TCP, Node5

Figure 4.21: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

65

4.1. Finding the roof performance Results

0 20 40 60 80
0

1000

2000

3000

4000

5000

Time: Seconds

M
bp

s

Cisco SD2005, TCP, Combined results

500 600 700 800 900 1000
0

500

1000

1500

2000

Mbps

B
in

C
ou

nt

Cisco SD2005, TCP, Throughput distribution

Figure 4.22: In the top graph the results for the 8 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

66

4.1. Finding the roof performance Results

4.1.13 Cisco SD2005, UDP

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SD2005, UDP , Node1

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SD2005, UDP , Node2

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SD2005, UDP , Node3

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SD2005, UDP , Node4

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SD2005, UDP , Node5

Figure 4.23: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

67

4.1. Finding the roof performance Results

0 20 40 60 80
0

1000

2000

3000

4000

5000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SD2005, UDP, Combined results

950 952 954 956 958 960 962 964
0

1000

2000

3000

4000

5000

Mbps

B
in

C
ou

nt

Cisco SD2005, UDP, Throughput distribution

Figure 4.24: In the top graph the results for the 5 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

68

4.1. Finding the roof performance Results

4.1.14 3Com 3CGSU05, TCP

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU05, TCP, Node1

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU05, TCP, Node2

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU05, TCP, Node3

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s
3Com 3CGSU05, TCP, Node4

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU05, TCP, Node5

Figure 4.25: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

69

4.1. Finding the roof performance Results

0 20 40 60 80
0

1000

2000

3000

4000

5000

Time: Seconds

M
bp

s

3Com 3CGSU05, TCP, Combined results

500 600 700 800 900 1000
0

200

400

600

800

1000

1200

Mbps

B
in

C
ou

nt

3Com 3CGSU05, TCP, Throughput distribution

Figure 4.26: In the top graph the results for the 8 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

70

4.1. Finding the roof performance Results

4.1.15 3Com 3CGSU05, UDP

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU05, UDP , Node1

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU05, UDP , Node2

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU05, UDP , Node3

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU05, UDP , Node4

0 20 40 60 80
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU05, UDP , Node5

Figure 4.27: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

71

4.1. Finding the roof performance Results

0 20 40 60 80
0

1000

2000

3000

4000

5000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU05, UDP, Combined results

950 952 954 956 958 960 962 964
0

1000

2000

3000

4000

Mbps

B
in

C
ou

nt

3Com 3CGSU05, UDP, Throughput distribution

Figure 4.28: In the top graph the results for the 5 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

72

4.1. Finding the roof performance Results

4.1.16 Cisco SG 100D-08, TCP

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SG 100D-08, TCP, Node1

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SG 100D-08, TCP, Node2

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SG 100D-08, TCP, Node3

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SG 100D-08, TCP, Node4

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SG 100D-08, TCP, Node5

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SG 100D-08, TCP, Node6

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SG 100D-08, TCP, Node7

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Cisco SG 100D-08, TCP, Node8

Figure 4.29: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

73

4.1. Finding the roof performance Results

0 20 40 60 80 100 120
0

2000

4000

6000

8000

Time: Seconds

M
bp

s

Cisco SG 100D-08, TCP, Combined results

500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

Mbps

B
in

C
ou

nt

Cisco SG 100D-08, TCP, Throughput distribution

Figure 4.30: In the top graph the results for the 8 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

74

4.1. Finding the roof performance Results

4.1.17 Cisco SG 100D-08, UDP

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SG 100D-08, UDP , Node1

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SG 100D-08, UDP , Node2

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SG 100D-08, UDP , Node3

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SG 100D-08, UDP , Node4

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SG 100D-08, UDP , Node5

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SG 100D-08, UDP , Node6

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SG 100D-08, UDP , Node7

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SG 100D-08, UDP , Node8

Figure 4.31: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

75

4.1. Finding the roof performance Results

0 20 40 60 80 100 120
0

2000

4000

6000

8000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

Cisco SG 100D-08, UDP, Combined results

950 952 954 956 958 960 962 964
0

2000

4000

6000

8000

Mbps

B
in

C
ou

nt

Cisco SG 100D-08, UDP, Throughput distribution

Figure 4.32: In the top graph the results for the 8 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

76

4.1. Finding the roof performance Results

4.1.18 3Com 3CGSU08, TCP

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU08, TCP, Node1

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU08, TCP, Node2

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU08, TCP, Node3

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU08, TCP, Node4

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU08, TCP, Node5

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU08, TCP, Node6

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU08, TCP, Node7

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

3Com 3CGSU08, TCP, Node8

Figure 4.33: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

77

4.1. Finding the roof performance Results

0 20 40 60 80 100 120
0

2000

4000

6000

8000

Time: Seconds

M
bp

s

3Com 3CGSU08, TCP, Combined results

500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Mbps

B
in

C
ou

nt

3Com 3CGSU08, TCP, Throughput distribution

Figure 4.34: In the top graph the results for the 8 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

78

4.1. Finding the roof performance Results

4.1.19 3Com 3CGSU08, UDP

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU08, UDP , Node1

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU08, UDP , Node2

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU08, UDP , Node3

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU08, UDP , Node4

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU08, UDP , Node5

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU08, UDP , Node6

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU08, UDP , Node7

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU08, UDP , Node8

Figure 4.35: Benchmark results for the individual nodes. There is a 5 second
interval between the startup of each node. The test plots are aggregated from
30 samples, and the standard deviation is plotted for every second.

79

4.1. Finding the roof performance Results

0 20 40 60 80 100 120
0

2000

4000

6000

8000

Time: Seconds

M
bp

s

Lo
st

da
ta

gr
am

s
‰

3Com 3CGSU08, UDP, Combined results

950 952 954 956 958 960 962 964
0

2000

4000

6000

8000

Mbps

B
in

C
ou

nt

3Com 3CGSU08, UDP, Throughput distribution

Figure 4.36: In the top graph the results for the 8 nodes are combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second. In the bottom histogram the
benchmark throughput distribution is shown.

80

4.1. Finding the roof performance Results

4.1.20 TCP throughput performance statistics

Device Mean Median Mode Max S 95% CI
Baseline Cat6 802.373 908.296 941.425 968.36 232.71 794.769, 809.978
HP V1405C-5 86.569 90.702 91.750 108.134 15.029 86.257, 86.880
Dlink DGS-1005D 888.526 913.375 915.866 950.141 118.292 886.082, 890.970
Netgear GS605 878.530 904.069 916.390 950.206 121.830 876.013, 881.048
Netgear ProSafe 826.057 900.071 918.487 955.908 170.618 822.532, 829.583
Cisco SD2005 879.225 903.610 916.914 949.813 119.329 876.759, 881.691
3Com 3CGSU05 831.486 869.761 917.438 949.223 137.774 828.639, 834.333
Cisco SG 100D-08 879.378 909.050 915.341 949.223 120.935 877.403, 881.353
3Com 3CGSU08 839.663 865.796 916.914 947.585 107.530 837.906, 841.419

Table 4.1: A table with the TCP throughput statistics.

Device Sample Count x̄− ȳ Sx̄ Sx̄−ȳ P value
Baseline Cat6 3600 N/A 3.879 N/A N/A
Dlink DGS-1005D 9000 + 86.153 1.247 5.125 0.
Netgear GS605 9000 + 76.157 1.284 5.163 0.
Netgear ProSafe 9000 + 23.684 1.798 5.677 0.00003
Cisco SD2005 9000 + 76.852 1.258 5.136 0.
3Com 3CGSU05 9000 + 29.113 1.452 5.331 0.
Cisco SG 100D-08 21600 + 81.238 0.694 4.573 0.
3Com 3CGSU08 21600 + 37.737 0.663 4.542 0.

Table 4.2: A table with the statistical significance of the difference between
the TCP throughput sample mean over the TCP baseline sample mean.

81

4.1. Finding the roof performance Results

ANOVA DF Sum of squares (SoS) SoS
DF F Statistic P value

SSB 4 3.14× 107 7.85× 106 430.535 0.
SSW 88193 8.20× 108 18233.4 N/A N/A
SST 88199 8.52× 108 N/A N/A N/A

Device Deviates from P value, less than
Dlink DGS-1005D 3Com 3CGSU05 0.01

Netgear GS605
Cisco SD2005
Netgear ProSafe

Netgear GS605 3Com 3CGSU05, Netgear ProSafe 0.01
Cisco SD2005 3Com 3CGSU05, Netgear ProSafe 0.01

Table 4.3: The ANOVA F-test statistics for the 5 port switches, and the
Bonferroni post hoc test results revealing which devices significantly differs
and at what significance level. Abbreviations: SSB (Sum of Squares Be-
tween), SSW (Sum of Squares Within), SST (Sum of Squares Total) and
DF (Degrees of Freedom).

82

4.1. Finding the roof performance Results

4.1.21 UDP throughput performance statistics

Device Mean Median Mode Max S 95% CI
Baseline Cat6 956.626 957.041 956.982 957.523 10.625 956.279, 956.973
HP V1405C-5 95.702 95.703 95.703 95.773 0.008 95.702, 95.702
Dlink DGS-1005D 956.579 957.005 957.099 958.040 14.356 956.282, 956.876
Netgear GS605 956.759 956.817 957.099 957.546 0.579 956.747, 956.771
Netgear ProSafe 956.944 957.005 957.076 957.711 0.544 956.933, 956.955
Cisco SD2005 956.514 957.041 957.099 957.652 16.516 956.173, 956.855
3Com 3CGSU05 956.904 956.994 957.088 957.711 2.425 956.854, 956.954
Cisco SG 100D-08 956.859 956.970 957.099 957.605 1.428 956.839, 956.878
3Com 3CGSU08 956.782 956.958 957.099 957.605 5.589 956.708, 956.857

Table 4.4: A table with the UDP throughput statistics.

Device Sample Count x̄− ȳ Sx̄ Sx̄−ȳ P value
Baseline Cat6 3600 N/A 0.1771 N/A N/A
Dlink DGS-1005D 9000 − 0.0471 0.1513 0.3284 0.8860
Netgear GS605 9000 + 0.1328 0.0061 0.1832 0.4684
Netgear ProSafe 9000 + 0.3178 0.0057 0.1828 0.0822
Cisco SD2005 9000 − 0.1122 0.1741 0.3512 0.7493
3Com 3CGSU05 9000 + 0.2782 0.0256 0.2027 0.1699
Cisco SG 100D-08 21600 + 0.2324 0.0097 0.1868 0.2135
3Com 3CGSU08 21600 + 0.1563 0.0380 0.2151 0.4675

Table 4.5: A table with the statistical significance of the difference between
the UDP throughput sample mean over the UDP baseline sample mean.

83

4.1. Finding the roof performance Results

ANOVA DF Sum of squares (SoS) SoS
DF F Statistic P value

SSB 7 1599.94 228.563 3.819 0.00037
SSW 91792 5.4931× 106 59.8429 N/A N/A
SST 91799 5.4947× 106 N/A N/A N/A

Device Deviates from P value, less than
Cisco SD2005 Netgear ProSafe 0.01
Cisco SD2005 Cisco SG 100D-08 , 3Com 3CGSU05 0.05
Dlink DGS-1005D Netgear ProSafe 0.05

Table 4.6: The ANOVA F-test statistics, and the Bonferroni post hoc test
results revealing which devices significantly differs and at what significance
level. Abbreviations: SSB (Sum of Squares Between), SSW (Sum of Squares
Within), SST (Sum of Squares Total) and DF (Degrees of Freedom).

84

4.1. Finding the roof performance Results

4.1.22 Jitter statistics

Device Mean Median Mode Max S 95% CI
Baseline Cat6 0.0166 0.015 0.015 1.98 0.0331 0.0156, 0.0177
HP V1405C-5 0.2299 0.208 0.151 0.422 0.0738 0.2283, 0.2314
Dlink DGS-1005D 0.0168 0.015 0.015 1.987 0.0311 0.0161, 0.0174
Netgear GS605 0.0162 0.015 0.015 0.058 0.0058 0.0161, 0.0163
Netgear ProSafe 0.0161 0.015 0.015 0.063 0.0056 0.0160, 0.0162
Cisco SD2005 0.0171 0.015 0.015 1.985 0.0376 0.0163, 0.0178
3Com 3CGSU05 0.0163 0.015 0.015 0.055 0.0059 0.0162, 0.0164
Cisco SG 100D-08 0.0162 0.015 0.015 0.055 0.0058 0.0162, 0.0163
3Com 3CGSU08 0.0163 0.015 0.015 2.114 0.0154 0.0161, 0.0165

Table 4.7: A table with the jitter statistics.

Device Sample Count x̄− ȳ Sx̄ Sx̄−ȳ P value
Baseline Cat6 3600 N/A 0.00055 N/A N/A
HP V1405C-5 9000 + 0.21322 0.00078 0.00133 0.
Dlink DGS-1005D 9000 + 0.00014 0.00033 0.00088 0.8752
Netgear GS605 9000 − 0.00041 0.00006 0.00061 0.5088
Netgear ProSafe 9000 − 0.00049 0.00006 0.00061 0.4263
Cisco SD2005 9000 + 0.00043 0.00040 0.00095 0.6504
3Com 3CGSU05 9000 − 0.00033 0.00006 0.00061 0.5910
Cisco SG 100D-08 21600 − 0.00040 0.00004 0.00059 0.4959
3Com 3CGSU08 21600 − 0.00032 0.00011 0.00066 0.6246

Table 4.8: A table with the statistical significance of the difference between
the jitter sample mean over the baseline jitter sample mean.

85

4.1. Finding the roof performance Results

ANOVA DF Sum of squares (SoS) SoS
DF F Statistic P value

SSB 7 0.00712 0.00102 2.9017 0.00494
SSW 91792 32.1774 0.00035 N/A N/A
SST 91799 32.1845 N/A N/A N/A

Device Deviates from P value, less than
Cisco SD2005 Netgear ProSafe, 3Com 3CGSU08, Cisco SG 100D-08 0.05

Table 4.9: The ANOVA F-test statistics, and the Bonferroni post hoc test
results revealing which devices significantly differs and at what significance
level. Abbreviations: SSB (Sum of Squares Between), SSW (Sum of Squares
Within), SST (Sum of Squares Total) and DF (Degrees of Freedom).

86

4.1. Finding the roof performance Results

4.1.23 Datagram loss statistics

Device Mean Median Mode Max S 95% CI
Baseline Cat6 0.0360 0 0 46.184 1.0642 0.0012, 0.0707
HP V1405C-5 0.0017 0 0 5.982 0.0954 -0.0003, 0.0037
Dlink DGS-1005D 0.0419 0 0 93.438 1.4933 0.0110, 0.0727
Netgear GS605 0.0073 0 0 1.082 0.0565 0.0061, 0.0084
Netgear ProSafe 0.0081 0 0 1.171 0.0554 0.0069, 0.0092
Cisco SD2005 0.0542 0 0 94.011 1.7254 0.0186, 0.0899
3Com 3CGSU05 0.0097 0 0 23.300 0.2529 0.0045, 0.0149
Cisco SG 100D-08 0.0084 0 0 19.214 0.1438 0.0064, 0.0103
3Com 3CGSU08 0.0133 0 0 76.900 0.5839 0.0055, 0.0211

Table 4.10: A table with the datagram loss statistics.

Device Sample Count x̄− ȳ Sx̄ Sx̄−ȳ P value
Baseline Cat6 3600 N/A 0.0177 N/A N/A
HP V1405C-5 9000 − 0.0343 0.0010 0.0187 0.0675
Dlink DGS-1005D 9000 + 0.0059 0.0157 0.0335 0.8602
Netgear GS605 9000 − 0.0287 0.0006 0.0183 0.1173
Netgear ProSafe 9000 − 0.0279 0.0006 0.0183 0.1276
Cisco SD2005 9000 + 0.0183 0.0182 0.0359 0.6109
3Com 3CGSU05 9000 − 0.0263 0.0027 0.0204 0.1979
Cisco SG 100D-08 21600 − 0.0276 0.0010 0.0187 0.1401
3Com 3CGSU08 21600 − 0.0227 0.0040 0.0217 0.2969

Table 4.11: A table with the statistical significance of the difference between
the UDP datagram loss mean over the UDP baseline mean.

87

4.1. Finding the roof performance Results

ANOVA DF Sum of squares (SoS) SoS
DF F Statistic P value

SSB 7 23.1283 0.00102 5.1079 0.
SSW 91792 59375.7 0.64685 N/A N/A
SST 91799 59398.8 N/A N/A N/A

Device Deviates from P value, less than
Cisco SD2005 3Com 3CGSU05 0.01

Netgear GS605
Netgear ProSafe
Cisco SG 100D-08
3Com 3CGSU08

Dlink DGS-1005D Cisco SG 100D-08 0.05

Table 4.12: The ANOVA F-test statistics, and the Bonferroni post hoc test
results revealing which devices significantly differs and at what significance
level. Abbreviations: SSB (Sum of Squares Between), SSW (Sum of Squares
Within), SST (Sum of Squares Total) and DF (Degrees of Freedom).

88

4.2. Presenting the prototype Results

4.2 Presenting the prototype

4.2.1 The program

The prototype was successfully created with the required functionality. The
full source of the program can be found in appendix 7.3 on page 141. The
program must be compiled before execution, and the makefile is provided in
appendix 7.2 on page 141.

The main functionality of the program has been crated using parts of the
C++ Boost library [3]. The program was created using boost version 1.48.0,
and the following libraries where used.

• Boost Asio A cross-platform C++ library for network and low-level
I/O programming.

• Boost Program Options A program options library that allow fetch-
ing of command-line and configuration file options

• Boost Thread A library that enables the use of multiple threads of
execution with shared data.

For optimization of performance the program is heavily reliant on C++11
move semantics. Using R value references and Move semantics avoids un-
necessary copying of data in memory, making the program more efficient.
This feature requires the program to be compiled with GCC 4.6 and the
-std=c++0x option for enabling the appropriate C++11 features. The in-
tention was to transition to GCC 4.7 when it was released. The GCC 4.7 has
been released at the time of writing, but there are compiling issues with the
current released boost versions 1.48.0 and 1.49.0. When the boost library
is released with full compatibility with GCC 4.7 the transition is expected
to not cause any issues. Using GCC 4.7 the -std=c++0x option must be
switched with the corresponding GCC 4.7 option -std=c++11 when com-
piled.

To execute the program the following commands can be used. Where the IP
addresses of the nodes are 10.0.0.20, 10.0.0.21 and 10.0.0.22.

10.0.0.20

race -S 10.0.0.21 --file [PATH]

10.0.0.21

race -F 10.0.0.22

10.0.0.22

race -R

89

4.2. Presenting the prototype Results

The command will result in the specified file being transferred from node
10.0.0.20 to node 10.0.0.21 and forwarded to 10.0.0.22.

Next a typical output of the program. This particular sample is taken from
the virtualized environment that was used during development of the pro-
gram.

Forward node sample output

Forward behavior invoked, main thread waiting at barrier
Receiving data..
Writing to disk..
Forwarding data..
recv_job: 1336071772.084879 1336071772.093053 1336071772.100391 1336071772.106883
recv_start: 1336071772.082438
recv_end: 1336071778.776722
Data received: avg receive speed 1493.811736 Mbit/s for 6.694284s
write_start: 1336071772.082439
write_end: 1336071778.777146
Write finished: avg write speed 1493.717350 Mbit/s for 6.694707s
fwd_job: 1336071772.088926 1336071772.093650 1336071772.100920 1336071772.107304
fwd_start: 1336071772.083712
fwd_end: 1336071778.777164
Forward finished: avg forward speed 1493.997417 Mbit/s for 6.693452s
Total exectution time: 6.69572 seconds

Invoking the program with option -h will print the correct usage.
Usage

Commandline options:

Generic options:
-h [--help] Prints usage
-v [--version] Prints version
-b [--buffer_size] arg (=600) Buffer size in MiB

Send options:
-S [--send] arg Invoke send behavior, specify host address
-p [--s_port] arg (=9000) Data out to port
-f [--file] arg Specify send file
-c [--job_size] arg (=1460) Define send/write/receive chunk size

Forward options:
-F [--forward] arg Invoke forward behavior, specify host address
-i [--fr_port] arg (=9000) Data in port
-o [--fs_port] arg (=9000) Data out to port

Receive options:
-R [--receive] Invoke receive behavior
-r [--r_port] arg (=9000) Data in port

90

4.3. Comparative benchmarks Results

4.3 Comparative benchmarks

4.3.1 rTorrent throughput performance

Receive throughput

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Receive, Node 1

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s
RTorrent, 10Gbit file transfer, Receive, Node 2

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Receive, Node 3

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Receive, Node 4

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Receive, Node 5

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Receive, Node 6

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Receive, Node 7

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Receive, Node 8

Figure 4.37: rTorrent receive throughput results for the individual nodes.
The test plots are aggregated from 30 samples, and the standard deviation
is plotted for every second.

91

4.3. Comparative benchmarks Results

Forward throughput

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Forward, Node 1

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Forward, Node 2

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Forward, Node 3

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Forward, Node 4

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Forward, Node 5

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Forward, Node 6

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Forward, Node 7

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Forward, Node 8

Figure 4.38: rTorrent forward throughput results for the individual nodes.
The test plots are aggregated from 30 samples, and the standard deviation
is plotted for every second.

92

4.3. Comparative benchmarks Results

Throughput aggregated

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Receive, Aggregated 8 nodes

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Forward, Aggregated 8 nodes

Figure 4.39: The rTorrent throughput results for the 8 nodes combined into
a single plot. The plot data is aggregated from 30 samples per node, and
the standard deviation is plotted for each second.

93

4.3. Comparative benchmarks Results

4.3.2 Prototype throughput performance

Receive throughput

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Receive, Node 1

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Receive, Node 2

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Receive, Node 3

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Receive, Node 4

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Receive, Node 5

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Receive, Node 6

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Receive, Node 7

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Receive, Node 8

Figure 4.40: Prototype receive throughput results for the individual nodes.
The test plots are aggregated from 30 samples, and the standard deviation
is plotted for every second.

94

4.3. Comparative benchmarks Results

Forward throughput

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Forward, Node 1

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Forward, Node 2

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Forward, Node 3

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Forward, Node 4

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Forward, Node 5

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Forward, Node 6

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Forward, Node 7

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Forward, Node 8

Figure 4.41: Prototype forward throughput results for the individual nodes.
The test plots are aggregated from 30 samples, and the standard deviation
is plotted for every second.

95

4.3. Comparative benchmarks Results

Throughput aggregated

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Receive, Aggregated 8 nodes

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Forward, Aggregated 8 nodes

Figure 4.42: The prototype throughput results for the 8 nodes combined into
a single plot. The plot data is aggregated from 30 samples per node, and
the standard deviation is plotted for each second.

96

4.3. Comparative benchmarks Results

4.3.3 rTorrent storage performance

Storage read performance

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage read, Node 1

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage read, Node 2

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage read, Node 3

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage read, Node 4

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage read, Node 5

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage read, Node 6

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage read, Node 7

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage read, Node 8

Figure 4.43: rTorrent storage read performance results for the individual
nodes. The test plots are aggregated from 30 samples, and the standard
deviation is plotted for every second.

97

4.3. Comparative benchmarks Results

Storage write performance

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage write, Node 1

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage write, Node 2

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage write, Node 3

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage write, Node 4

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage write, Node 5

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage write, Node 6

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage write, Node 7

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage write, Node 8

Figure 4.44: rTorrent storage write performance results for the individual
nodes. The test plots are aggregated from 30 samples, and the standard
deviation is plotted for every second.

98

4.3. Comparative benchmarks Results

Storage performance aggregated

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage read, Aggregated 8 nodes

0 20 40 60 80
0

500

1000

1500

2000

2500

3000

3500

Time: Seconds

M
bp

s

RTorrent, 10Gbit file transfer, Storage write, Aggregated 8 nodes

Figure 4.45: The rTorrent storage performance results for the 8 nodes com-
bined into a single plot. The plot data is aggregated from 30 samples per
node, and the standard deviation is plotted for each second.

99

4.3. Comparative benchmarks Results

4.3.4 Prototype storage performance

Storage read performance

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage read, Node 1

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage read, Node 2

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage read, Node 3

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage read, Node 4

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage read, Node 5

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage read, Node 6

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage read, Node 7

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage read, Node 8

Figure 4.46: Prototype storage read performance results for the individual
nodes. The test plots are aggregated from 30 samples, and the standard
deviation is plotted for every second.

100

4.3. Comparative benchmarks Results

Storage write performance

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage write, Node 1

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage write, Node 2

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage write, Node 3

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage write, Node 4

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage write, Node 5

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage write, Node 6

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage write, Node 7

0 20 40 60 80
0

100

200

300

400

500

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage write, Node 8

Figure 4.47: Prototype storage write performance results for the individual
nodes. The test plots are aggregated from 30 samples, and the standard
deviation is plotted for every second.

101

4.3. Comparative benchmarks Results

Storage performance aggregated

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage read, Aggregated 8 nodes

0 20 40 60 80
0

500

1000

1500

2000

2500

3000

3500

Time: Seconds

M
bp

s

Prototype, 10Gbit file transfer, Storage write, Aggregated 8 nodes

Figure 4.48: The prototype storage performance results for the 8 nodes com-
bined into a single plot. The plot data is aggregated from 30 samples per
node, and the standard deviation is plotted for each second.

102

4.3. Comparative benchmarks Results

4.3.5 rTorrent CPU usage

rTorrent individual node CPU usage

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

RTorrent, CPU usage, Node 1

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

RTorrent, CPU usage, Node 2

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

RTorrent, CPU usage, Node 3

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

RTorrent, CPU usage, Node 4

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

RTorrent, CPU usage, Node 5

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

RTorrent, CPU usage, Node 6

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

RTorrent, CPU usage, Node 7

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

RTorrent, CPU usage, Node 8

Figure 4.49: rTorrent CPU usage for the individual nodes. The test plots
are aggregated from 30 samples, and the standard deviation is plotted for
every second.

103

4.3. Comparative benchmarks Results

rTorrent aggregated CPU usage

0 20 40 60 80
0

200

400

600

800

Time: Seconds

C
P

U
%

RTorrent, CPU usage, Aggregated 8 nodes

Figure 4.50: rTorrent CPU usage for the 8 nodes combined into a single plot.
The plot data is aggregated from 30 samples per node, and the standard
deviation is plotted for each second.

104

4.3. Comparative benchmarks Results

4.3.6 Prototype CPU usage

Prototype individual node CPU usage

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

Prototype, CPU usage, Job-size 1460, Node 1

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

Prototype, CPU usage, Job-size 1460, Node 2

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

Prototype, CPU usage, Job-size 1460, Node 3

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

Prototype, CPU usage, Job-size 1460, Node 4

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

Prototype, CPU usage, Job-size 1460, Node 5

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

Prototype, CPU usage, Job-size 1460, Node 6

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

Prototype, CPU usage, Job-size 1460, Node 7

0 20 40 60 80
0

20

40

60

80

100

Time: Seconds

C
P

U
%

Prototype, CPU usage, Job-size 1460, Node 8

Figure 4.51: Prototype CPU usage for the individual nodes. The test plots
are aggregated from 30 samples, and the standard deviation is plotted for
every second.

105

4.3. Comparative benchmarks Results

Prototype aggregated CPU usage

0 20 40 60 80
0

200

400

600

800

Time: Seconds

C
P

U
%

Prototype, CPU usage, Job-size 1460, Aggregated 8 nodes

Figure 4.52: The prototype CPU usage for the 8 nodes combined into a
single plot. The plot data is aggregated from 30 samples per node, and the
standard deviation is plotted for each second.

106

4.4. Prototype scalability measurements Results

4.4 Prototype scalability measurements

4.4.1 Throughput

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Time: Seconds

M
bp

s

Prototype, Receive, Job-size 1460 Aggregated 8 nodes

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Time: Seconds

M
bp

s

Prototype, Receive, Job-size 14600 Aggregated 8 nodes

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Time: Seconds

M
bp

s

Prototype, Receive, Job-size 146000 Aggregated 8 nodes

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Time: Seconds

M
bp

s

Prototype, Forward, Job-size 1460, Aggregated 8 nodes

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Time: Seconds

M
bp

s

Prototype, Forward, Job-size 14600, Aggregated 8 nodes

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Time: Seconds

M
bp

s

Prototype, Forward, Job-size 146000, Aggregated 8 nodes

Figure 4.53: The prototype throughput performance at different job-size.
The plots are aggregated results from full size experiments. The job-size is
a count of the number of bytes for each job. The test plots are aggregated
from 30 samples each, and the standard deviation is plotted for every second.

107

4.4. Prototype scalability measurements Results

4.4.2 Storage performance

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, Storage read, Job-size 1460, Aggregated 8 nodes

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, Storage read, Job-size 14600, Aggregated 8 nodes

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time: Seconds

M
bp

s

Prototype, Storage read, Job-size 146000, Aggregated 8 nodes

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

Time: Seconds

M
bp

s

Prototype, Storage write, Job-size 1460, Aggregated 8 nodes

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

Time: Seconds

M
bp

s

Prototype, Storage write, Job-size 14600, Aggregated 8 nodes

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

Time: Seconds

M
bp

s

Prototype, Storage write, Job-size 146000, Aggregated 8 nodes

Figure 4.54: The prototype storage performance at different job-size. The
plots are aggregated results from full size experiments. The job-size is a count
of the number of bytes for each job. The test plots are aggregated from 30
samples each, and the standard deviation is plotted for every second.

108

4.4. Prototype scalability measurements Results

4.4.3 CPU usage

0 10 20 30 40 50 60
0

200

400

600

800

Time: Seconds

C
P

U
%

Prototype, CPU usage, Job-size 1460, Aggregated 8 nodes

0 10 20 30 40 50 60
0

200

400

600

800

Time: Seconds
C

P
U

%

Prototype, CPU usage, Job-size 14600, Aggregated 8 nodes

0 10 20 30 40 50 60
0

200

400

600

800

Time: Seconds

C
P

U
%

Prototype, CPU usage, Job-size 146000, Aggregated 8 nodes

Figure 4.55: The prototype CPU usage at different job-size. The plots are
aggregated results from full size experiments. The job-size is a count of the
number of bytes for each job. The test plots are aggregated from 30 samples
each, and the standard deviation is plotted for every second.

109

4.4. Prototype scalability measurements Results

4.4.4 Prototype delay measurements

0 5 10 15 20 25 30
-2000

-1000

0

1000

2000

3000

4000

5000

Sample

T
im

e:
Μ
s

End to end delay 1 hop mean, Job-size 1460

0 5 10 15 20 25 30
-2000

-1000

0

1000

2000

3000

4000

5000

Sample

T
im

e:
Μ
s

End to end delay 1 hop mean, Job-size 14600

0 5 10 15 20 25 30
-2000

-1000

0

1000

2000

3000

4000

5000

Sample

T
im

e:
Μ
s

End to end delay 1 hop mean, Job-size 146000

Figure 4.56: The prototype delay measurements at different job-sizes. The
plots are aggregated results from full size experiments. The job-size is a count
of the number of bytes for each job. The test plots are aggregated from 30
samples each, and the standard deviation is plotted for every second.

Job-size Sample Count Mean Median Max S 95 % CI
1460 600 489.848 267.000 3531.000 674.260 435.788, 543.909
14600 600 474.735 288.500 7199.000 1025.330 392.527, 556.943
146000 600 1982.285 1721.000 7199.000 998.194 1902.250, 2062.320

Table 4.13: A table with delay measurement statistics. Values are rounded
to a presentable level.

110

Chapter 5

Analysis

5.1 Finding the roof performance

The data from the experiments aimed at pinpointing the roof throughput
performance of the proposed distribution strategy is analyzed here.

5.1.1 TCP throughput performance

The combined results for the baseline TCP test between two nodes with-
out any mediating network devices can be seen in figure 4.2 on page 47.
It can be seen from the figure that the connection from the first node to
the second achieve maximum throughput in less than one second. When
the second node establishes a connection the TCP connection immediately
congests. TCP equilibrium is reached approximately 20 seconds after the
returning TCP stream is initialized. The time delay until TCP equilibrium
is significant and is outside expected performance.

The baseline test does, however, not represent the performance character-
istics observed when the nodes are connected to a switch. A good represen-
tation of this can be seen in figure 4.14 on page 58. There seem to be a clear
and distinct increases in speed between each consecutive TCP connection
until the last node completes the transfer ring. When the last node connects
to the initial starting node, TCP congestion avoidance seem to kick in. This
performance pattern can be recognized among all tested network switches.
Some deviating results can be seen in node 2 in figure 4.17 on page 61, node
3 in figure 4.25 on page 69 and node 3 figure 4.33 on page 77. On closer
inspection it can be observed that two of the mentioned deviations from two
different switches within the 3Com brand show similar deviation pattern.
Another observation is that they are consistent in their deviation pattern.
This behavior cannot be explained by TCP congestion, the throughput seem
too flat and too consistent.

111

5.1. Finding the roof performance Analysis

Some further work was done trying to find the root cause of these devia-
tions. A physical examination revealed that all affected switches has one of
the ports visually separated from the rest, which indicates that the port is
indented to be used as an up-link port. In figure 5.1 an example of this can
be seen. This suggests that the port has a functionality that the others do
not.

Figure 5.1: The Netgear ProSafe GS105 visually separates the rightmost
port from the other ports. Netgear ProSafe GS105 [Photograph] [Taken 5
April 2012]

It was found that the switches that showed this deviation has QoS (Quality
of Service) listed as a feature. QoS is a resource reservation feature, which
often is related to real-time streaming of multimedia UDP traffic. QoS would
also explain why this deviation is only seen in the TCP benchmarks. Based
on this observation, a likely explanation is that the deviation pattern is a
TCP rate-limiting feature targeted at reserving resources for high priority
UDP data traffic.

The performance statistics for the TCP benchmark reveals that there is
a significant difference in mean TCP throughput and the ideal performance
value. Overhead suggest an ideal transfer rate of 941.482 Mbps. This dif-
ference is expected because of the slow buildup process TCP goes through
when trying to reach equilibrium state. Since the mean value is significantly
affected by outliers in the data, the mode better represents the equilibrium
state performance. The baseline test has a mode of 941.425 Mbps, which is
0.057 Mbps below the ideal performance target. TCP acknowledgments has
not been accounted for, and the slight deviation that is measured is smaller
than expected. None of the network switches achieve a mode value close to
this target. This gap in performance here is expected to be mostly caused by
the congestion appearing when the last node completes the transfer ring. In
the performance graphs there seems to be a trend that there are some speed
disturbance happening for each consecutive initiated TCP transfer, and the
largest impact is when the last node completes the transfer ring.

112

5.1. Finding the roof performance Analysis

The results return by the Z-tests, see table 4.2 on page 81, all gave a
P such that P < α. This is within the preset significance level, and the
similarities between the baseline is rejected. The dissimilarity can be clearly
seen in figure 4.2a on page 47. The difference observed was considered to
large to give a good comparative basis between the switches, resulting in the
need for post hoc tests. A more generalized ANOVA F-test test was setup
with the following hypotheses

H0: There is no difference between switch TCP throughput performances.

H1: There is a difference.

The H0 will be assumed to be true. The significance level, α, of the test will
be set to 0.05 (5%). If the P value returned by the F statistic returns a P
value such that P < α the H0 hypothesis will be rejected. It is only the 5
port switches that will be tested in this follow up test. This is done because
the congested port over non congested port ratio is significantly different for
the 8 and 5 port switches. The results for the 5 port tests are expected to
translate to the 8 port switches.

The results of the follow up test can be seen in table 4.3 on page 82.
The ANOVA F-test returned a P value such that P < α. This is within
the preset significance level, therefore H0 is rejected. The rejection of H0

makes it fair to assume that the observed differences in the measurements
are caused by a qualitative difference between the switches. The qualitative
difference is most prominent between the high performing non rate-limited
switches relative to the rate-limited ones.

5.1.2 UDP throughput performance

The performance statistics for UDP performance reveal that there is little de-
viation from the ideal throughput performance for all benchmarked switches.
The ideal throughput performance when accounting for the overhead in the
benchmarks is 95.7087%. All registered mode values are less than 0.02%
percent points away from the ideal target. The largest difference can be
seen in the standard deviation, where Dlink DGS-1005D and Cisco SD2005
show increased deviation over the baseline. The rest of the switches show
a decrease in throughput deviation over the baseline, with Netgear GS605
and Netgear ProSafe GS105 standing out in this regard. When looking at
the performance graphs, and the datagram loss statistics, it is clear that this
throughput deviation is directly related to datagram loss. An inspection of
the deviation for Dlink DGS-1005D when excluding error prone segments
showed that it is the errors that cause the throughput deviation, and not

113

5.1. Finding the roof performance Analysis

the throughput deviation that causes the errors. The Dlink DGS-1005D
switch has the highest recorded max throughput. The Cisco SD2005 switch
show similar tendency but does not show an abnormally high max value.
An inspection of the throughput values close to errors showed that there is
no boost in throughput before or after recorded errors. It is worth noting
that the plotted standard deviation in the graphs might give an impression
that the throughput deviates with positive and negative values. This is an
incorrect depiction, as it is consistently negative deviation that is seen in the
recorded data.

The results return by the Z-tests, see table 4.5 on page 83, all gave a P
such that P > α. This is not within the preset significance level, and the
similarities between the baseline cannot be rejected. In the TCP throughput
performance test it was revealed that the baseline did not properly represent
the switch throughput performance. Some of this trend can also be seen
here, as the baseline has a fairly large confidence interval despite the large
sample count. The difference seen was considered to large to give a good
comparative basis between the switches, resulting in the need for post hoc
tests. A more generalized ANOVA F-test test was setup with the following
hypotheses

H0: There is no difference between measured switch UDP throughput perfor-
mances.

H1: There is a difference.

The results of the follow up test can be seen in table 4.6 on page 84.
The ANOVA F-test returned a P value such that P < α. This is within
the preset significance level, therefore H0 is rejected. The rejection of H0

makes it fair to assume that the observed differences in the measurements
are caused by a qualitative difference between the switches.

5.1.3 Jitter

The jitter statistics seen in table 4.7 on page 85 does not show any surprising
results. The measured values are well within the range which is required for
accurate measurements. In the UDP throughput performance measurements
there was observed some deviations that was caused by data loss. A manual
inspection of the data revealed that this does not seem to be true for the
jitter measurements. The deviations here does not seem to be caused by the
errors, as high and low jitter seem evenly spread across the data and there
was found no pattern that could link high, medium or low jitter values to
data errors.

114

5.1. Finding the roof performance Analysis

The results returned by the Z-tests, see 4.8 on page 85 all gave a P
such that P > α. This is not within the preset significance level, and the
similarities between the baseline cannot be rejected. Similar to the UDP
throughput performance data the baseline has a fairly large 95% confidence
interval despite the large sample count. The difference seen was considered
to large to give a good comparative basis between the switches, resulting
in the need for post hoc tests. A more generalized ANOVA F-test test was
setup with the following hypotheses

H0: There is no difference between the observed jitter.

H1: There is a difference.

The results of the follow up test can be seen in table 4.9 on page 86.
The ANOVA F-test returned a P value such that P < α. This is within
the preset significance level, therefore H0 is rejected. The rejection of H0

makes it fair to assume that the observed differences in the measurements
are caused by a qualitative difference between the switches.

5.1.4 Errors

In table 4.10 on page 87 it can bee seen that DGS-1005D and Cisco SD2005
show an increase in errors over the baseline. The rest show an improvement,
where Netgear GS605 and Netgear ProSafe GS105 stand out in this regard.

The results returned by the Z-tests, see table 4.11 on page 87, all gave
a P such that P > α. This is not within the preset significance level, and
the similarities between the baseline cannot be rejected. Similar to the UDP
throughput performance and Jitter data the baseline has a fairly large 95%
confidence interval despite the large sample count. The difference seen was
considered to large to give a good comparative basis between the switches,
resulting in the need for post hoc tests. A more generalized ANOVA F-test
test was setup with the following hypotheses

H0: There is no difference between the observed loss measurements.

H1: There is a difference.

The results of the follow up test can be seen in table 4.12 on page 88.
The ANOVA F-test returned a P value such that P < α. This is within
the preset significance level, therefore H0 is rejected. The rejection of H0

makes it fair to assume that the observed differences in the measurements
are caused by a qualitative difference between the switches.

115

5.1. Finding the roof performance Analysis

5.1.5 RTT and BDP

The test environment did not measure any RTT value large enough for the
BDP to have any significance on TCP performance.

5.1.6 Throughput distribution and inter arrival-rate

The UDP throughput distributions all seem to be roughly normally dis-
tributed. There is little deviation seen in the UDP throughput distributions
and the mean is close to the theoretical ideal performance. In the TCP
throughput distributions unimodal, bimodal and even multi-modal tenden-
cies can be seen. The bimodal and multi-modal tendencies seem to be caused
primarily by switches where there is observed some TCP throughput throt-
tling. Ignoring this throttling behavior the general TCP throughput perfor-
mance can be described by a unimodal distribution with a negative skew. In
figure 5.2 on the next page an example of a unimodal throughput distribution
and a complementing histogram of the inter-arrival times can be seen. From
the inter-arrival histogram it can be observed that it is simply just a mirror
of the throughput distribution. Visually the inter-arrival distribution looks
similar to a Poisson distribution. The inter-arrival distribution is, however,
not formed by a Poisson arrival process. Since the TCP throughput goes
through a ramp-up process a positive skew in the arrival distribution is ex-
pected. Further more the arrivals are not formed by a random process, and
is therefore likely to be deterministic. Despite of this assumed deterministic
arrival process, it is assumed that a Poisson arrivals can be used as a crude
theoretical approximation.

116

5.1. Finding the roof performance Analysis

500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

Mbps

B
in

C
ou

nt

Cisco SG 100D-08, TCP, Throughput distribution

0.0012 0.0014 0.0016 0.0018 0.0020
0

2000

4000

6000

8000

Time: Seconds

B
in

C
ou

nt

Sample Inter-arrival times per 1Mbit

Figure 5.2: A histogram of the throughput distribution for the Cisco SG
100D-08 switch can be seen in the top graph. The graph is unimodal and
the peak seem to be right before the ideal maximum TCP throughput. In
the bottom graph it can be seen that the inter-arrival times are a mirror
image of the throughput distribution.

117

5.2. Comparative benchmarks Analysis

5.2 Comparative benchmarks

5.2.1 Throughput performance

rTorrent

In the graphs in figure 4.37 on page 91 it can be seen that there is a clear
early spike in receive and forward performance. The receive and forward
are naturally linked, as one cause the other. This early performance is tem-
porary, and performance overall drops after this initial performance spike.
The drop in performance is followed by a slow increase in performance until
some nodes have received the entire data, which results in a rapid decline in
overall throughput. It assumed that this slow increase in throughput would
continue up to at least the performance of the early spike if the file transfer
process had lasted longer.

Towards the end of the file transfer there is a decrease in overall through-
put. The reason for this behavior is that there will be less nodes to receive
the data when nodes reach completion. Additionally the file is segmented
and the segments are assigned to different nodes, resulting in fewer and fewer
nodes seeding to each receiver as the file transfer reaches completion.

The nodes are not started exactly simultaneously, which result is that
there will be a similar distribution of early peers for each benchmark sample.
It is hypothesized that this is the reason for the observed early performance
spike. The nodes are initiated sequentially, meaning that node 2 will be the
first to receive data, node 3 will contact tracker having node 1 and node 2
as peers, node 4 receiving node 1, 2 and 3 as peer and so on. This pattern
makes it reasonable to assume that it is highly likely to emerge an early tan-
dem queue seeding pattern. If there was a tandem queue, the data that node
8 receives will already be spread across all other 7 nodes, resulting in low
forward throughput for node 8. This is the pattern seen for the node 8 graph
in figure 4.38 on page 92, which supports the proposed explanation. After a
few seconds all nodes are aware of all other peers and the performance advan-
tage of the early tandem queue dissolves, explaining the drop in performance.

Overall the performance is lower than what was expected, as the network
is highly underutilized for most of the duration of the transfer.

Prototype

In the graphs in figure 4.40 on page 94 it can observed that the distinct
throughput pattern found in the roof performance tests are not entirely
translated to the prototype. The roof performance tests have distinct fast
starts, and little to no congestion before the last node. The prototype have

118

5.2. Comparative benchmarks Analysis

a slower initial start, and all nodes share the congestion evenly. The entire
capacity of the switches was not used in these benchmarks, therefore it was
not expected to be any observed congestion.

Compared to the rTorrent benchmarks the graphs show little difference
in how long time it takes to reach the initial peak performance. The proto-
type manges to reach a high throughput quite early, and show a slow overall
speedup until the end of the transfer. What separates the rTorrent and the
prototype is that the prototype manages to maintain high throughput dur-
ing the entire duration of the transfer. The prototype convergence-time is
approximately half of what is observed when distributing with rTorrent.

It appears to be higher stress on the switch when the TCP transfers are
initiated simultaneously. In the roof performance tests it was uncovered that
in cases where the transfer originates outside the switch and does not end
in the same switch the last node will experience congestion. The results
indicate that there is a change in performance characteristics based on how
much time there is between consecutive transfers, two possible scenarios is
assumed to be likely. The additional congestion observed for the last node
in the roof performance tests could be evenly distributed across the nodes,
possibly negating the hypothesized cascading effect of the lower throughput
for one node. The other option is that the congestion behavior seen in the
last node could appear for all participating nodes, which would result in a
significant decrease of overall performance. Additional testing would be re-
quired to confirm how this scenario would play out.

Based on the performance seen in previous benchmarks the throughput
results for the prototype was a little slower than expected. Considering
the small amount nodes, an average network throughput improvement from
rTorrent to the prototype of 10 - 50% was expected. The observed increase
in average throughput was more than 100%, resulting in less than half the
convergence-time when using the prototype. The difference is expected to
increase with increasing amount of nodes and network bottlenecks, as long
as the seeding chain of the prototype is maintained properly.

5.2.2 Storage performance

rTorrent

In the graphs in figure 4.43 on page 97 it can be seen that there is almost
no storage reads for any of the participating nodes. This suggest that the
seeding node has cached most of the file in memory. The performance of the
caching used in all the peers was unexpectedly efficient.

119

5.2. Comparative benchmarks Analysis

The write performance seen in the graphs in figure 4.44 on page 98 does
show that the write of the file to storage lasts for a significant amount of
time after the file has been received in memory. This period lasts approxi-
mately for 10-20 seconds after the file has been received. The write-rate is
considered to be efficient and high performing during the first half of the
transfer. Towards the last half of the file transfer the write-rate slows down
significantly, resulting in a an low average write-rate.

Overall the absence of reads is considered significantly more effective than
what was expected. The write performance was slower than expected.

Prototype

In the graphs in figure 4.46 on page 100 it can be seen that there are almost
no storage reads for any of the participating nodes, except for the initial
seeding node. The amount of storage reads observed for the initial seeding
node is significantly lower than the size of the file transfer would suggest.
This indicates that the operating-system has cached some of the file in mem-
ory.

The write performance seen in the graphs in figure 4.47 on page 101
show that the write of the file to storage lasts for a significant amount of
time after the file has been received in memory. This period lasts approxi-
mately for 10-20 seconds after the file has been received. The write-rate does
maintain a high performance during the entire transfer. The prototype does,
however, not achieve maximum write-rate throughout the entire transfer, as
there seems to be a dip in performance right after the entire file is received
in memory. This performance drop is not maintained over time and show
the characteristics of a short performance hiccup. In node 4 there seems to
be a lower performing storage device than what is in the rest of the nodes,
which does affect the appearance of the aggregated results. Although not
as apparent, this slower performing storage device can also be recognized in
the rTorrent benchmark results.

The read performance of the prototype is better than what was expected,
which was primarily caused by the amount in memory caching done by the
operating-system. It was unexpected that rTorrent outperformed the proto-
type on storage reads. It was expected that rTorrent would discard more of
the file from memory and that it would result in more storage reads. The
time it takes to write the file to disk after the file has been received in mem-
ory seems to be equal for both protocols. The storage write performance of
the prototype is, however, considered to be performing better. When the
prototype has received the file in memory it has only written approximately
half of the file to storage, and maintain what seems to be close to maximum

120

5.3. Scalability measurements Analysis

write-rate over the entire duration. This is not the case for rTorrent, and
the prototype achieves an approximate double the average write-rate over
rTorrent through the duration of the transfer. This is primarily caused by
the decrease in write-rate seen in the torrent distribution towards the end of
the file transfer.

5.2.3 CPU usage

rTorrent

In the graphs in figure 4.49 on page 103 it can be seen that the CPU usage is
not a limiting factor in the benchmarks. The CPU usage seem to follow the
throughput rates, where it seems that there is a higher CPU usage caused
by receiving data than transmitting. This difference can be seen when com-
paring node 1 and node 8 graphs. The CPU usage results are within the
expected range.

Prototype

In the graphs in figure 4.51 on page 105 it can be seen that the CPU usage is
not a limiting factor in the benchmarks. The CPU usage seem to follow the
throughput rates, where it seems that there is a higher CPU usage caused
by receiving data than transmitting. This difference can be seen when com-
paring node 1 and node 8 graphs. The CPU usage results are within the
expected range. Compared to the rTorrent CPU usage, there is little differ-
ence. The CPU usage of the prototype is closely linked with the specified
job size, see section 5.3.3 on the next page for more details.

5.3 Scalability measurements

The scalability of the prototype is hypothesized to be closely linked with
the job size specification. In this section the prototype performance char-
acteristics at different job sizes are analyzed. Since the maximum segment
size of the network that was benchmarked was 1460 bytes, the scalability
benchmarks are a multiple of this size, 1x, 10x and 100x respectively.

5.3.1 Throughput performance

In the graphs in figure 4.53 on page 107 there seem to be little change in
throughput characteristics depending on the benchmarked job sizes. This is,
however, not going to hold true for all job sizes. Imagine transferring a file
with a job size of the entire file, which would not be effective. It is expected
that there is no use in straying outside the job size range of 1460 bytes
to 1 MiB. Experience while developing the prototype indicated that larger
job sizes was especially useful for throughput performance in virtualized

121

5.3. Scalability measurements Analysis

environments. In virtualized environments the network performance is often
only restricted by memory and CPU performance, therefore throughput will
be limited by how job size affects those parameters, see section 5.3.3.

5.3.2 Storage performance

In the graphs in figure 4.54 on page 108 it can be seen that the storage per-
formance characteristics remains mostly unchanged depending on the bench-
marked job size.

5.3.3 CPU usage

In the graphs in figure 4.55 on page 109 it can be seen that the CPU usage
is closely linked to the specified job size. The CPU usage is close to halved
by increasing the job size with a multiple of 100x of 1460. Increasing the
job buffer size decrease processing overhead, as the system needs to create
less jobs, queue less items and do conditionals less often, which all adds
up to requiring less system resources. This does, however, not scale well.
The reason for this is that the CPU usage wasted on creating jobs, queuing
and conditionals will be dwarfed by the CPU usage required to receive and
transmit the data as the job size is increased beyond 100x of 1460.

5.3.4 Delay measurements

In the graphs in figure 4.56 on page 110 it seen that 1 hop end to end delay
seem to be linked to the specified job size. In table 4.13 on page 110 the 1460
and 14600 job sizes seem to be have no statistically significant difference. It
is, however, expected that with a higher sample count there will be lower
average delay when using the 1460 byte job size. In these experiments the
impact of the transmission delay has on the end to end delay seems to be
too small to notice between 1460 and 14600 bytes. When looking at the
job size of 146000 bytes there does seem to be an increase in transmission
delay, and is thought to be the reason for the observed increase in the end
to end delay. For a job size of 1460 bytes there is a 95% confidence interval
of 435.788 - 543.909 µs. These results are considered an estimate because
of the inherent low accuracy of the node clocks used for calculating these
delays. It is this inaccuracy of the internal node clocks that cause the high
standard deviation of up to 1000 µs (1 millisecond).

The end to end delay measurements show performance well above what
was expected. Assuming an average delay of 500 µs or 0.0005 seconds, the
data-stream could have reached 25 000 nodes within 12.5 seconds, and if
the performance characteristics manage to maintain an 800 Mbps average
throughput across a large number of nodes, the 10 Gbit data-stream could
be within memory of 25 000 nodes after 25+ seconds.

122

Chapter 6

Discussion and conclusion

6.1 Finding the roof performance

6.1.1 TCP throughput performance

In the performance statistics there was found to be speed disturbances for
each consecutive initiated TCP transfer. These disturbances are considered
negligible for all consecutive TCP transfers except for the last connection,
where the disturbance could have a significant performance degrading ef-
fect for the proposed seeding strategy. Additionally the last initiated TCP
transfer suffered significant performance penalty caused by TCP congestion
avoidance. Since the seeding strategy relies on a tandem queue, the perfor-
mance hit could have a cascading effect for all the succeeding nodes. This is
only an issue when the data stream does not originate or end in the switch.
This issue is easily solved by leaving one of the switch ports unused. It is
also hypothesized that using a transfer reliable UDP based protocol with
less aggressive congestion avoidance than TCP could alleviate or solve this
performance issue. This could be an interesting subject for further research.
The overall the TCP results are considered a healthy foundation for the
proposed seeding strategy.

6.1.2 UDP throughput performance

In the performance statistics there was found to be little difference in the
throughput performance of the switches. There was also some differences
in the amount of throughput deviation, and was correlated to be caused by
datagram loss. Where some switches improved upon the baseline perfor-
mance, and others did worse. It is unknown what caused the errors. It is
hypothesized that the reason could be a qualitative difference in the interpre-
tation and creation of the transmission signal. If it was a buffer dependent
issue, it is assumed that it is not likely that there would be observed improve-
ment over the baseline. The test results might suggest that using a transfer

123

6.1. Finding the roof performance Discussion and conclusion

reliable UDP based protocol with less aggressive congestion avoidance than
TCP could improve overall performance of the seeding strategy. Using UDP
based transfer protocol could also avoid observed throughput rate-limiting.

6.1.3 TCP and UDP comparison

As a hardware benchmarking tool the TCP and UDP tests did show a sig-
nificant difference. The TCP benchmarks did not manage to reveal any of
the switch performance figures because of too unstable overall performance.
It seems that UDP is a more precise and reliable tool for finding the true bit
pushing power of the switch. Although UDP was shown to be a more reli-
able benchmarking tool, the TCP test results ended up being more valuable
in discovering weaknesses and the expected performance of the distribution
strategy.

6.1.4 Repeatability

The script that was created and used for benchmarking is included as an
appendix. It is expected that the script will work on all versions of Iperf.
This compatibility is, however, not tested and using Iperf version 2.0.4 is
recommended for full reliability. The output results is reliant on accurate
synchronization of time, making the setup of an local NTP server recom-
mended for accurate measurements.

6.1.5 Likelihood of errors in the data

Each benchmark consists of 30 individual experiments where each experi-
ment has a run time of at least 60 seconds. These data where then aggre-
gated into the combined results for the benchmark. This is considered a fair
amount of data. Most of the results that where seen was within expected
behavior, and the deviations that where found in the benchmarks was con-
nected with a possible explanation. Overall the likelihood of errors in the
observed data is considered small.

6.1.6 Weaknesses in the experimental design

Some important weaknesses are listed here.

• The number of switches tested in this report is only a small subset of
existing consumer switch hardware that exists. Testing a larger sample
base would create a better basis for generalizing switch performance.
There could also be undiscovered issues that is not represented in the
sampled hardware in this thesis.

• The benchmarks in this thesis uses only a single type of network-card.
The distribution strategy requires full duplex bandwidth performance,

124

6.1. Finding the roof performance Discussion and conclusion

which is considered a significant load. It is not expected that there is
equal quality in performance between different vendor network-cards.
This makes it reasonable to assume that there could exist network-
cards that might not have full performance under this specific type of
load.

• Only a single operating-system is tested. Hence only a single TCP/IP
stack is tested. TCP/IP stacks might not be created equal, and it is
assumed that the TCP/IP stack tested is representative for all general
TCP/IP stacks. This assumption might be wrong, and there could dif-
ferent behavior seen based on different implementations of the TCP/IP
stack. Further testing would be required to confirm this.

• Iperf did not support collecting error data during TCP benchmarks.
This created a gap in the collected data that could have given valuable
information.

6.1.7 Alternative approaches

There are many ways the problem statement could have been solved, here
are some of the alternative approaches that was considered.

• Using a single machine with several network cards would increase the
time accuracy. Additionally using a single machine would ease the
collection of performance data. This approach was rejected because of
the possibility of saturating a system bottleneck.

• Using hardware test platforms dedicated for benchmarking network
equipment could improve testing reliability. This approach was re-
jected because the lack of access and funds to such hardware.

• It is assumed that the low cost switch performance translates up to
larger and more expensive switches. Benchmarks of assorted switches
with 24+ ports would have been valuable.

• Wireless access-points has been hypothesized as being a likely weak
point of the proposed distribution strategy. Benchmarks of low and
high end wireless access-points will be needed to confirm if this is true,
and to what extent.

6.1.8 Surprising results

In this section there will be made an attempt to explain the surprising results
in the roof performance tests.

125

6.2. Comparative benchmarks Discussion and conclusion

Baseline not representative for switch performance

In the baseline test the returning TCP connection showed immediate conges-
tion. An expected result from this would be to see congestion when receiving
and forwarding data when connected to a switch. This is not what is seen
in the results, and the congestion is delayed until the last connection of the
benchmark transfer ring. It is consistent by that it is always the last connec-
tion in the transfer ring that gets congested. This is, however, not considered
a likely explanation as it would suggest that the congestion is intentional. It
is hypothesized that the reason for the congestion in the baseline test could
be caused by a poor interpretation and/or creation of the transmission sig-
nal. If the switch interpretation and creation of the transmission signal is
better it would improve stability when it is being used to mediate the traffic.
This further would suggest that that the congestion seen in the baseline and
the switch benchmarks are unrelated. Testing would be required to confirm
the proposed explanation for this phenomena.

Measured UDP errors not translating too poor TCP performance

The measured errors in the UDP tests does not directly translate to poor
TCP throughput performance. There is logical link between high data loss
ratio and poor TCP performance, as data loss could cause TCP conges-
tion avoidance to trigger. The Dlink DGS-1005D and Cisco SD2005 showed
high ratio of data loss, but was nonetheless among the best performers in
the TCP tests. A possible cause for the difference could be that the TCP
benchmark does not maintain such a high data transmission-rate over a long
enough duration to provoke errors in the same degree as observed in the UDP
benchmarks. Further testing would be required to confirm this hypothesis.

6.1.9 Viability of the results

When looking at the performance strictly from a throughput perspective, the
results from the benchmarks show results which indicate that the distribution
strategy is viable. No further work will be done to confirm surprising results
or deviations, as the main objective of the roof performance benchmarks is
considered to be fulfilled.

6.2 Comparative benchmarks

6.2.1 Repeatability

The full source code and make file for the prototype is included as appendix,
making it possible to repeat the experiments. Note that the prototype does
not have any robustness or security measures and is therefore unsuitable for
use outside a lab environment.

126

6.2. Comparative benchmarks Discussion and conclusion

6.2.2 Likelihood of errors in the data

Each benchmark consists of 30 individual experiments. These data where
then aggregated into the combined results for the benchmark. This is con-
sidered a fair amount of data. There was observed slight deviation in write
performance in a single node and the effectiveness of the rTorrent caching
was unexpected. All results where within plausible range, and the mentioned
deviations are considered insignificant. Overall the likelihood of errors in the
data is considered to be small.

6.2.3 Weaknesses in the experimental design

Some important weaknesses in the experimental design are listed here.

• The experiments are configured such that the strength of the prototype
distribution strategy is shown. Using a non bottlenecked scenario is
likely to close the performance gap some.

• It is assumed that rTorrent represents a high performance BitTorrent
client. No testing towards differentiating BitTorrent clients has been
done, and there is a high chance that there exists a client that could
perform better in the given benchmark scenario.

• It is assumed that Peertracker represents a high performance BitTor-
rent tracker. No testing towards differentiating BitTorrent trackers has
been done, and it is likely there exists better performing trackers.

• rTorrent does have a fair amount of configuration options available.
Not all configuration options and combinations of these was thoroughly
tested, there certainly could exist a more optimal setup then what was
used in the experiments.

6.2.4 Alternative approaches

There are many ways the problem statement could have been solved, here
are some of the alternative approaches that was considered.

• In the introduction section of this thesis IP-layer multicast was intro-
duced as an alternative distribution method. Comparative benchmarks
against IP-layer multicast are needed for full assessments of the value
of the prototype performance.

• BitTorrent was chosen as a comparative basis because it is the most
commonly used application-layer multicast protocol. It is highly likely
that there exists application-layer multicast protocols that would rival
the prototype more on performance.

127

6.3. Scalability measurements Discussion and conclusion

6.2.5 Viability of the results

The prototype performed slightly below what was expected based on the
results from the roof performance tests. The performance was not far from
utilizing the network to its full potential, and overall the results are consid-
ered good. As stated in the methodology, the prototype was expected to have
better performance than BitTorrent in the configured experiment. Since the
prototype does have smaller feature set than BitTorrent and fewer available
usage scenarios, the performance had to be significantly better to be a viable
alternative. The experiments revealed that the prototype outperformed the
BitTorrent distribution on overall throughput and storage write performance
metrics by a fair margin. The prototype does sacrifice ease of deployment
for performance, but the performance difference is considered large enough
for the prototype to be a viable alternative in the proposed usage scenarios.

6.3 Scalability measurements

6.3.1 Repeatability

The prototype source is included as appendix, and the job size can be ad-
justed by using the command-line argument job_size. The scalability mea-
surements does, however, require some extra effort for reliable results. In
addition to requiring a NTP server for time synchronization, the delay mea-
surements will also require setup of clock disciplining. The clock drift on
most regular computer clocks are relatively large, the measurements will not
be possible if the clocks are not disciplined for at least some hours.

6.3.2 Likelihood of errors in the data

In the scalability measurements the accuracy of the internal computer clock
became an issue. During clock disciplining it was observed errors up to
±0.5 milliseconds. There was still high inaccuracy in the clocks relative to
the delays that needed to be measured after disciplining. The clock inac-
curacy was the prime reason for the high standard deviation seen in the
end to end delay measurements. A high sample count does not combat
this effectively because the node count becomes the limiting factor. The
high inaccuracy of the clocks made it impossible to determine if there was
a difference between the delays when using 1460 or 14600 byte job sizes. A
difference was expected, therefore the measured delays are considered to be
of limited accuracy.

6.3.3 Weaknesses in the experimental design

Some important weaknesses in the experimental design are listed here.

128

6.4. Future work Discussion and conclusion

• The experiments does only have 8 participating nodes, and only 6 of
those are forwarding nodes. The end to end delay measurements are
then calculated between the 6 forwarding nodes, which gives only 5
similar data points for each benchmark. It is the first and last node
clock drift that becomes significant when averaging out the delay. Thus
increasing the node count would have given significantly better accu-
racy in the end to end delay measurements.

• There could be issues in with scalability that is not presenting itself
in low node count experiments. Extrapolating from the results of 8
nodes is not considered confirming of high scalability. Large node count
experiments would be required to confirm the small scale test results.

6.3.4 Viability of the results

The end to end delay of the prototype is considered the single most impor-
tant measurement of how well the prototype scales to increasing number of
receiving nodes. As the delay approaches 0, the scalability of the prototype
approach infinity. Assuming that the measurements in this report show the
true average delay, a single node can be traversed in approximate 0.0005
seconds. Assuming an average throughput of 800 Mbps, a 10 Gbit transfer
will last for 10000/800 = 12.5 seconds. Using the measured delay the data
will have traversed 12.5/0.0005 = 25000 nodes within 12.5 seconds. Further
assuming the transfer characteristics can be maintained across this amount
of nodes, the last node will receive the data within another 12.5 seconds plus
the time of header exchange and writing to disk. A 10 Gbit file can then
be transferred to 25000 equal stable performing nodes like those used in the
benchmarks in 25+ seconds. Some large assumptions are made in these cal-
culations, but the potential of the prototype is clearly shown. Additional
testing is certainly needed for confirmation of large scale scalability, but the
small scale show promising results.

6.4 Future work

For the prototype to become a usable product, further work with robustness,
security and NAT traversal will be needed. Additionally the prototype needs
to be implemented with a controller that can update node routes, collect
availability status and initiate transfers. Converting the current prototype
from a command-line tool into a library would be preferable before devel-
opment of a graphical user interface. The current prototype sacrifice ease
of deployment for performance. Implementation and research into link-layer
discovery and optimal-path calculation could significantly improve ease of
deployment. It is hypothesized that an implementation of a transfer reliable
UDP based transport protocol over TCP could improve performance further,

129

6.5. Conclusion Discussion and conclusion

especially for networks exhibiting a large BDP. UDT [43] is considered a good
candidate for a slot-in replacement for the current TCP implementation in
the prototype.

6.5 Conclusion

In this thesis a data distribution strategy for nodes in a data subscriber re-
lationship was proposed. The main idea was that data could efficiently be
transferred to all nodes in a network by traversing the network with a snake
like behavior, in other words traversing each network link only once.

In the problem statement the following goal was defined

"Explore the proposed application-layer multicast distribution strategy, and
find out if the distribution strategy could improve the speed of data distribu-
tion between nodes in network and system administration relevant scenarios"

When working to solve the problem statement the following tasks where
accomplished

• A roof performance test was devised and the results showed that the
proposed distribution strategy was viable from a throughput perspec-
tive.

• A prototype which used the proposed distribution strategy was created.
This prototype was benchmarked and was found to be a little less
efficient than the roof performance tests would suggest.

• The prototype and the BitTorrent client rTorrent was benchmarked
with 8 nodes in a tree topology scenario. The results showed that the
prototype was more than twice as fast in average network throughput
and storage write performance.

• Experiments to uncover scalability of overall throughput performance
of the prototype where devised, in which the most important measure
was the end to end delay. By extrapolating the end to end delay
results to larger node counts it was found that there was potential for
significant performance.

The results has shown that there could indeed be a performance gain by
using the presented distribution strategy in the proposed usage scenarios.

130

Bibliography

[1] K.C. Almeroth. “The evolution of multicast: from the MBone to inter-
domain multicast to Internet2 deployment”. In: Network, IEEE 14.1
(2000), pp. 10 –20. issn: 0890-8044. doi: 10.1109/65.819167.

[2] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.
com/ec2/.

[3] Boost Library. http://www.boost.org.

[4] Xinuo Chen and S.A. Jarvis. “Analysing BitTorrent’s Seeding Strate-
gies”. In: Computational Science and Engineering, 2009. CSE ’09. In-
ternational Conference on. Vol. 2. Aug. 2009, pp. 140 –149. doi: 10.
1109/CSE.2009.140.

[5] Cisco. Planning for IP Multicast in Enterprise Network. http://www.
cisco.com/en/US/tech/tk828/technologies_white_paper09186a0080092942.
shtml.

[6] Bram Cohen. BitTorrent. http://www.bittorrent.com.

[7] Collectl. http://collectl.sourceforge.net.

[8] S. Deering. Host Extensions for IP Multicasting. http://www.ietf.
org/rfc/rfc1112.txt. 1989.

[9] C. Diot et al. “Deployment issues for the IP multicast service and
architecture”. In: Network, IEEE 14.1 (2000), pp. 78 –88. issn: 0890-
8044. doi: 10.1109/65.819174.

[10] Etherbat - Ethernet topology discovery (Documentation). http://www.
cryptonix.org/projects/etherbat/#documentation.

[11] M. Hosseini et al. “A Survey of Application-Layer Multicast Protocols”.
In: Communications Surveys Tutorials, IEEE 9.3 (2007), pp. 58 –74.
issn: 1553-877X. doi: 10.1109/COMST.2007.4317616.

[12] IBM. Deployment Guide Series: Tivoli Provisioning Manager for OS
Deployment V5.1. http://www.redbooks.ibm.com/redbooks/pdfs/
sg247397.pdf. 2007.

[13] Iperf. http://sourceforge.net/projects/iperf/.

131

http://dx.doi.org/10.1109/65.819167
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.boost.org
http://dx.doi.org/10.1109/CSE.2009.140
http://dx.doi.org/10.1109/CSE.2009.140
http://www.cisco.com/en/US/tech/tk828/technologies_white_paper09186a0080092942.shtml
http://www.cisco.com/en/US/tech/tk828/technologies_white_paper09186a0080092942.shtml
http://www.cisco.com/en/US/tech/tk828/technologies_white_paper09186a0080092942.shtml
http://www.bittorrent.com
http://collectl.sourceforge.net
http://www.ietf.org/rfc/rfc1112.txt
http://www.ietf.org/rfc/rfc1112.txt
http://dx.doi.org/10.1109/65.819174
http://www.cryptonix.org/projects/etherbat/#documentation
http://www.cryptonix.org/projects/etherbat/#documentation
http://dx.doi.org/10.1109/COMST.2007.4317616
http://www.redbooks.ibm.com/redbooks/pdfs/sg247397.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247397.pdf
http://sourceforge.net/projects/iperf/

BIBLIOGRAPHY BIBLIOGRAPHY

[14] James F. Kurose and Keith W. Ross. Computer Networking: A Top
Down Approach, 4th edition. Pages 471 - 475, Ethernet Frame Struc-
ture. Addison-Wesley, 2007.

[15] James F. Kurose and Keith W. Ross. Computer Networking: A Top
Down Approach, 4th edition. Pages 33 - 45, Delay , Loss and Through-
put in Packet-Switched Networks. Addison-Wesley, 2007.

[16] L. Lao et al. “A comparative study of multicast protocols: top, bottom,
or in the middle?” In: INFOCOM 2005. 24th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceed-
ings IEEE. Vol. 4. 2005, 2809 –2814 vol. 4. doi: 10.1109/INFCOM.
2005.1498567.

[17] Link Layer Topology Disvoery (LLTD). http://msdn.microsoft.com/
en-us/library/cc233983(v=prot.10).aspx.

[18] Linux Programmer’s Manual: TCP protocol. http://www.kernel.
org/doc/man-pages/online/pages/man7/tcp.7.html.

[19] Microsoft. About Multicast for Operating System Deployment. http:
//technet.microsoft.com/en-us/library/cc431418.aspx. 2008.

[20] K. Obraczka. “Multicast transport protocols: a survey and taxonomy”.
In: Communications Magazine, IEEE 36.1 (1998), pp. 94 –102. issn:
0163-6804. doi: 10.1109/35.649333.

[21] M. Ohmori, K. Okamura, and K. Araki. “Design of scalable interdo-
main IP multicast architecture”. In: Information Networking, 2001.
Proceedings. 15th International Conference on. 2001, pp. 819 –824. doi:
10.1109/ICOIN.2001.905591.

[22] Peertracker. http://code.google.com/p/peertracker/.

[23] Jiayin Qi et al. “Analyzing BitTorrent Traffic Across Large Network”.
In: Cyberworlds, 2008 International Conference on. Sept. 2008, pp. 759
–764. doi: 10.1109/CW.2008.150.

[24] RFC 1323 - TCP Extensions for High Performance. http://tools.
ietf.org/html/rfc1323.

[25] RFC 2147 - TCP and UDP over IPv6 Jumbograms. http://tools.
ietf.org/html/rfc2147.

[26] RFC 2401 - Security Architecture for the Internet Protocol. http://
tools.ietf.org/html/rfc2401.

[27] RFC 2460 - Internet Protocol, Version 6 (IPv6) Specification. http:
//tools.ietf.org/html/rfc2460.

[28] RFC 2544 - Benchmarking Methodology for Network Interconnect De-
vices. http://tools.ietf.org/html/rfc2544.

132

http://dx.doi.org/10.1109/INFCOM.2005.1498567
http://dx.doi.org/10.1109/INFCOM.2005.1498567
http://msdn.microsoft.com/en-us/library/cc233983(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc233983(v=prot.10).aspx
http://www.kernel.org/doc/man-pages/online/pages/man7/tcp.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/tcp.7.html
http://technet.microsoft.com/en-us/library/cc431418.aspx
http://technet.microsoft.com/en-us/library/cc431418.aspx
http://dx.doi.org/10.1109/35.649333
http://dx.doi.org/10.1109/ICOIN.2001.905591
http://code.google.com/p/peertracker/
http://dx.doi.org/10.1109/CW.2008.150
http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/rfc2147
http://tools.ietf.org/html/rfc2147
http://tools.ietf.org/html/rfc2401
http://tools.ietf.org/html/rfc2401
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc2544

BIBLIOGRAPHY BIBLIOGRAPHY

[29] RFC 3393 - IP Packet Delay Variation Metric for IP Performance
Metrics (IPPM). http://tools.ietf.org/html/rfc3393.

[30] RFC 4821 - Packetization Layer Path MTU Discovery. http://tools.
ietf.org/html/rfc4821.

[31] RFC 5681 - TCP Congestion Control. http://tools.ietf.org/
html/rfc5681.

[32] RFC 6349 - Framework for TCP Throughput Testing. http://tools.
ietf.org/html/rfc6349.

[33] RFC 768 - User Datagram Protocol. http://tools.ietf.org/html/
rfc768.

[34] RFC 791 - INTERNET PROTOCOL. http://tools.ietf.org/
html/rfc791.

[35] RFC 793 - TRANSMISSION CONTROL PROTOCOL. http://tools.
ietf.org/html/rfc793.

[36] RFC 879 - The TCP Maximum Segment Size and Related Topics.
http://tools.ietf.org/html/rfc879.

[37] RFC 895 - A Standard for the Transmission of IP Datagrams over
Experimental Ethernet Networks. http://tools.ietf.org/html/
rfc895.

[38] Rocks Cluster. http://www.rocksclusters.org/wordpress/.

[39] rTorrent. http://libtorrent.rakshasa.no.

[40] rTorrent performance tuning. http://libtorrent.rakshasa.no/
wiki/RTorrentPerformanceTuning.

[41] rTorrent super seeding. http://libtorrent.rakshasa.no/wiki/
RTorrentInitialSeeding.

[42] Henning Schulzrinne, Radu State, and Saverio Niccolini. Principles,
systems and applications of IP telecommunications : Services and Se-
curity of next generation networks : second international conference
IPTcomm 2008. Page 42. 2008.

[43] UDT: Breaking the Data Transfer Bottleneck. http://udt.sourceforge.
net.

[44] R.L. Xia and J.K. Muppala. “A Survey of BitTorrent Performance”. In:
Communications Surveys Tutorials, IEEE 12.2 (2010), pp. 140 –158.
issn: 1553-877X. doi: 10.1109/SURV.2010.021110.00036.

133

http://tools.ietf.org/html/rfc3393
http://tools.ietf.org/html/rfc4821
http://tools.ietf.org/html/rfc4821
http://tools.ietf.org/html/rfc5681
http://tools.ietf.org/html/rfc5681
http://tools.ietf.org/html/rfc6349
http://tools.ietf.org/html/rfc6349
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc879
http://tools.ietf.org/html/rfc895
http://tools.ietf.org/html/rfc895
http://www.rocksclusters.org/wordpress/
http://libtorrent.rakshasa.no
http://libtorrent.rakshasa.no/wiki/RTorrentPerformanceTuning
http://libtorrent.rakshasa.no/wiki/RTorrentPerformanceTuning
http://libtorrent.rakshasa.no/wiki/RTorrentInitialSeeding
http://libtorrent.rakshasa.no/wiki/RTorrentInitialSeeding
http://udt.sourceforge.net
http://udt.sourceforge.net
http://dx.doi.org/10.1109/SURV.2010.021110.00036

Chapter 7

Appendices

7.1 Appendix: Iperf wrapper (Perl)
bench.pl

1 #!/usr/bin/perl
2

3 # --> Include packages
4 # --------------------
5 use Getopt::Long;
6 use strict;
7 use warnings;
8 use threads;
9 use Net::SSH::Expect;

10 use Term::ReadKey;
11

12 # --> Init variables
13 # ------------------
14 my $HELP;
15 my $OUT;
16 my $IN;
17 my @IP_LIST;
18 my $PASSWORD;
19 my $TIME;
20 my $U;
21 my $B;
22 my $WAIT;
23 my $SAMPLES;
24 my $SYNC;
25 my $WIN;
26

27 # --> Handle flags and arguments
28 # ------------------------------
29 GetOptions(’h|help’ => \$HELP,
30 ’u|udp’ => \$U,
31 ’x|sync=s’ => \$SYNC,
32 ’b|bandwidth=s’ => \$B,
33 ’o|out=s’ => \$OUT,
34 ’i|in=s’ => \$IN,
35 ’t|time=s’ => \$TIME,
36 ’w|wait=s’ => \$WAIT,
37 ’s|samples=s’ => \$SAMPLES,
38 ’r|window=s’ => \$WIN);
39

40 # Print help message if -h is invoked

134

7.1. Appendix: Iperf wrapper (Perl) Appendices

41 if ($HELP){
42 usage();
43 exit 0;
44 }
45

46 if(!$TIME)
47 {
48 $TIME = 32;
49 }
50 else
51 {
52 $TIME = $TIME + 2;
53 }
54

55 if(!$WAIT)
56 {
57 $WAIT = 2;
58 }
59

60 if(!$B)
61 {
62 $B = "957m";
63 }
64

65 if(!$SAMPLES)
66 {
67 $SAMPLES = 1;
68 }
69

70 if($WIN)
71 {
72 $WIN = "-w $WIN";
73 }
74 else
75 {
76 $WIN = "";
77 }
78

79 if(!$IN)
80 {
81 print "Option --in is mandatory\n";
82 usage();
83 exit 0;
84 }
85 else
86 {
87 open(FILE,"<", "$IN") or die "\nCannot open file $IN $!\n";
88 while (<FILE>)
89 {
90 push @IP_LIST, trim($_);
91 }
92 }
93

94 # Password prompt
95 my $key = 0;
96 my $password = "";
97

98 print "\nSSH Password: ";
99

100 my $index = 0;
101 ReadMode(4);
102 while(ord($key = ReadKey(0)) != 10)

135

7.1. Appendix: Iperf wrapper (Perl) Appendices

103 {
104 if(ord($key) == 127 || ord($key) == 8) {
105 # DEL/Backspace was pressed
106 # 1. Remove the last char from the password
107 if ($index > 0)
108 {
109 chop($PASSWORD);
110 # 2 move the cursor back by one
111 print "\b \b";
112 $index--;
113 }
114 } elsif(ord($key) < 32) {
115 # Do nothing
116 } else {
117 $PASSWORD = $PASSWORD.$key;
118 print "*";
119 $index++;
120 }
121 }
122 ReadMode(0); # Reset the terminal
123

124 # --> Main script content
125 # -----------------------
126

127 my @servers_ssh;
128 my @clients_ssh;
129

130 print "\n";
131 # Create ssh connectors for iperf clients
132 foreach (@IP_LIST)
133 {
134 push @clients_ssh, Net::SSH::Expect->new (
135 host=> $_,
136 password=> "$PASSWORD",
137 user=> ’root’,
138 raw_pty => 1
139);
140 print "Client: $_\n";
141 }
142

143 print "\n";
144 # Create ssh connectors for iperf servers
145 foreach (@IP_LIST)
146 {
147 push @servers_ssh, Net::SSH::Expect->new (
148 host=> $_,
149 password=> "$PASSWORD",
150 user=> ’root’,
151 raw_pty => 1
152);
153 print "Server: $_\n";
154 }
155

156 # Connect
157 print "\n";
158 foreach(@clients_ssh)
159 {
160 my $max_retry_count = 10;
161 my $retry_count = 0;
162 while(1){
163 my $rc = eval{$_->login();};
164 last if defined $rc;

136

7.1. Appendix: Iperf wrapper (Perl) Appendices

165 last if $retry_count >= $max_retry_count;
166 $retry_count++;
167 sleep 1;
168 }
169 print "Client connect retries: $retry_count\n";
170 if($retry_count >=$max_retry_count)
171 {
172 print "Connection refused, script exited\n";
173 exit 0;
174 }
175 }
176

177 # Connect
178 print "\n";
179 foreach(@servers_ssh)
180 {
181 my $max_retry_count = 10;
182 my $retry_count = 0;
183 while(1){
184 my $rc = eval{$_->login();};
185 last if defined $rc;
186 last if $retry_count >= $max_retry_count;
187 $retry_count++;
188 sleep 1;
189 }
190 print "Server connect retries: $retry_count\n";
191 if($retry_count >=$max_retry_count)
192 {
193 print "Connection refused, script exited\n";
194 exit 0;
195 }
196 }
197

198 my $command = $U ? "iperf -s -u -i 1 -y C" : "iperf -s $WIN";
199 my $max = scalar(@IP_LIST);
200

201 print "\n";
202

203 if($SYNC)
204 {
205 foreach(@clients_ssh)
206 {
207 print "Trying to sync $_->{’host’} to $SYNC\n";
208 if ($_->{’host’} eq $SYNC){
209 print "$SYNC is ntp server,\nskipping synchronization of $SYNC\n"; next;
210 }
211 $_->exec("stty raw -echo");
212 $_->send("ntpdate $SYNC");
213 $_->waitfor(’adjust’,10) or die "Could not sync time to $SYNC, exited\n";
214 print $_->eat($_->peek(0));
215 print "\n";
216 }
217 }
218

219 for(my $sample = 1; $sample <= $SAMPLES; $sample++)
220 {
221 print "### SAMPLE $sample OF $SAMPLES ###\n";
222 for(my $b = 0; $b < $max; $b++)
223 {
224 my $g;
225

226 my $client = $clients_ssh[$b];

137

7.1. Appendix: Iperf wrapper (Perl) Appendices

227 if($b == ($max-1)){$g = 0;} else {$g = $b+1;}
228 my $server = $servers_ssh[$g];
229

230 print "Host $b connects to $g \n";
231

232 $server->exec("stty raw -echo");
233 $client->exec("stty raw -echo");
234

235 $server->send ($command);
236 sleep(1);
237

238 print "$command ($IP_LIST[$g])\n";
239

240 if($U)
241 {
242 $client->send ("iperf -c $IP_LIST[$g] -u -b $B -t $TIME");
243 print "iperf -c $IP_LIST[$g] -u -b $B -t $TIME ($IP_LIST[$b])\n";
244 }
245 else
246 {
247 $client->send ("iperf -c $IP_LIST[$g] -y C -i 1 -t $TIME");
248 print "iperf -c $IP_LIST[$g] -y C -i 1 -t $TIME ($IP_LIST[$b])\n";
249 }
250

251 print "Waiting for: $WAIT\n";
252 sleep($WAIT);
253 }
254

255 print "Waiting for execution to finish..\n";
256 sleep($TIME);
257

258 print "\n";
259 for(my $b = 0; $b < $max; $b++)
260 {
261 my $g;
262

263 my $client = $clients_ssh[$b];
264 if($b == ($max-1)){$g = 0;} else {$g = $b+1;}
265 my $server = $servers_ssh[$g];
266

267 my $chunk;
268 my @content;
269 if($U)
270 {
271 $chunk = $server->peek();
272 @content = split(’\n’,$server->eat($chunk));
273 }
274 else
275 {
276 $chunk = $client->peek();
277 @content = split(’\n’,$client->eat($chunk));
278 }
279

280 splice(@content,($TIME-2));
281

282 my $s = 1;
283 foreach (@content)
284 {
285 print "Line $s: $_\n";
286 $s++;
287 }
288

138

7.1. Appendix: Iperf wrapper (Perl) Appendices

289 my $prot = $U ? "U" : "T";
290 my $hos = $b+1;
291 # Output to file
292 if ($OUT){
293 open(OUT,">OUTprot-h$hos-s$sample.csv");
294

295 foreach (@content)
296 {
297 print OUT "$_\n";
298 $s++;
299 }
300

301 close(OUT);
302 }
303

304 # Terminate iperf server
305 $server->send("\cC"); # Ctrl-C
306 print "\n";
307 }
308 }
309

310 # Close ssh connection
311 foreach(@clients_ssh)
312 {
313 $_->close();
314 }
315

316 # Close ssh connection
317 foreach(@servers_ssh)
318 {
319 $_->close();
320 }
321

322 # --> Functions
323 # -------------
324

325 sub trim{
326 my $string = shift;
327 $string =~ s/^\s+|\s+$//g;
328 return $string;
329 }
330

331 # Prints the correct use of this script
332 sub usage{
333 print <<"USAGE";
334

335 Usage: bench.pl [OPTIONS] --in iplist
336

337 DESCRIPTION
338

339 A wrapper to iperf that can benchmark multiple nodes simultaneously.
340 The benchmark results are output in a csv file format.
341

342 GENERIC OPTIONS
343

344 -h, --help\tDisplay Usage information
345 -i, --in\tFile with list of IP addresses to benchmark
346 -o, --out\tFile to output sampled data
347 -t, --time\tTime in seconds to sample
348 -w, --wait\tHow long to wait before adding another node to the benchmark
349 -s, --samples\tHow many benchmarks to run
350 -x, --sync\tSpecify NTP server sync address

139

7.1. Appendix: Iperf wrapper (Perl) Appendices

351 -r, --window\tSpecify TCP recieve window size
352

353 UDP OPTIONS
354

355 -u, --udp\tInvoke UDP test
356 -b, --bandwidth\t[m|g] Specify UDP bandwidth target
357

358 EXPLANATION OF CSV OUTPUT FIELDS
359

360 TCP:
361 Field 1: Timestamp
362 Field 2: From host
363 Field 3: From port
364 Field 4: Target host
365 Field 5: Target port
366 Field 6: ID
367 Field 7: Time interval
368 Field 8: Bytes transferred
369 Field 9: Bits per second over interval
370

371 UDP:
372 Field 1: Timestamp
373 Field 2: From host
374 Field 3: From port
375 Field 4: Target host
376 Field 5: Target port
377 Field 6: ID
378 Field 7: Time interval
379 Field 8: Bytes transferred
380 Field 9: Bits per second over interval
381 Field 10: Jitter in milliseconds
382 Field 11: Lost datagrams over interval
383 Field 12: Total datagrams over interval
384 Field 13: Lost datagrams in % over interval
385 Field 14: Datagrams delivered out of order
386

387 USAGE
388 }

140

7.2. Appendix: Prototype makefile (BASH) Appendices

7.2 Appendix: Prototype makefile (BASH)
make.sh

1 #!/bin/bash
2

3 g++-4.6 -O2 -march=native -std=c++0x -o race racetrack.cpp -pthread -lboost_thread
4 -lboost_system -lboost_program_options -static -static-libgcc

7.3 Appendix: Prototype source (C++)
racetrack.cpp

1 #include <stdio.h>
2 #include <fstream>
3 #include <iostream>
4 #include <boost/thread.hpp>
5 #include <boost/asio.hpp>
6 #include <boost/program_options.hpp>
7 #include <chrono>
8 #include <deque>
9 #include <condition_variable>

10 #include <sstream>
11

12 namespace po = boost::program_options;
13 using boost::asio::ip::tcp;
14 using namespace std;
15

16 struct Job
17 {
18 char* buf;
19 int size;
20 bool kill;
21 };
22

23 struct Header
24 {
25 static const int head_size = 14;
26 char head[14];
27 int chunk_size;
28 char filename[1024];
29 short filename_length;
30 int64_t filesize;
31 };
32

33 template<class T>
34 class JobQueue
35 {
36 deque<T> _queue;
37 condition_variable _cond;
38 mutex _mutex;
39

40 public:
41

42 void put(T && job)
43 {
44 {
45 lock_guard<mutex> lck(_mutex);
46 _queue.push_front(move(job));
47 }
48 _cond.notify_one();

141

7.3. Appendix: Prototype source (C++) Appendices

49 }
50

51 T receive()
52 {
53 unique_lock<mutex> lck(_mutex);
54 _cond.wait(lck,[this]{return !_queue.empty();});
55 T job = move(_queue.back());
56 _queue.pop_back();
57 return job;
58 }
59 };
60

61 class JobCounter
62 {
63 int _max_in_queue;
64 int _in_queue;
65 int _total_job_count;
66 int _jobs_created;
67 condition_variable _cond;
68 mutex _mutex;
69

70 public:
71

72 void setValues(int max_in_queue, int total_job_count)
73 {
74 lock_guard<mutex> lck(_mutex);
75 _max_in_queue = max_in_queue;
76 _total_job_count = total_job_count;
77 }
78

79 bool inc()
80 {
81 unique_lock<mutex> lck(_mutex);
82 _in_queue++;
83 _jobs_created++;
84 _cond.wait(lck,[this]{return (_in_queue < _max_in_queue);});
85 return (_jobs_created < _total_job_count);
86 }
87

88 void dec()
89 {
90 {
91 lock_guard<mutex> lck(_mutex);
92 _in_queue--;
93 }
94 _cond.notify_one();
95 }
96 };
97

98 void receive(
99 boost::promise<Header> & header_received,

100 boost::promise<
101 std::chrono::time_point<
102 std::chrono::high_resolution_clock>> & send_start_receive,
103 int port, JobQueue<Job> & sendqueue,
104 JobCounter & jobcounter,
105 int buffer_size
106)
107 {
108 int n;
109 Header h;
110

142

7.3. Appendix: Prototype source (C++) Appendices

111 boost::asio::io_service io_service;
112 tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(),port));
113

114 tcp::socket socket(io_service);
115 acceptor.accept(socket);
116

117 send_start_receive.set_value(std::chrono::high_resolution_clock::now());
118

119 // Read header
120 int bytes_received = 0;
121 while(bytes_received < h.head_size)
122 {
123 n = boost::asio::read(socket,boost::asio::buffer(
124 h.head + bytes_received,
125 h.head_size - bytes_received));
126 bytes_received += n;
127 }
128

129 memcpy(&h.chunk_size,h.head,4);
130 memcpy(&h.filename_length,h.head+4,2);
131 memcpy(&h.filesize,h.head+6,8);
132

133 // Read filename
134 bytes_received = 0;
135 while(bytes_received < h.filename_length)
136 {
137 n = boost::asio::read(socket,boost::asio::buffer(
138 h.filename + bytes_received,
139 h.filename_length - bytes_received));
140 bytes_received += n;
141 }
142

143 header_received.set_value(h); // Send prms
144

145 int chunks_to_receive = h.filesize / h.chunk_size;
146 int left = h.filesize % h.chunk_size;
147 buffer_size = buffer_size * 1048576; // MiB
148

149 jobcounter.setValues((buffer_size/h.chunk_size), chunks_to_receive);
150

151 stringstream out (stringstream::in | stringstream::out);
152 out << "recv_job: ";
153 int i = 0;
154

155 auto start = std::chrono::high_resolution_clock::now();
156 cout << "Receiving data.." << endl;
157

158 do
159 {
160 Job j;
161 char* buffer = new char[h.chunk_size];
162

163 int bytes_received = 0;
164 while(bytes_received < h.chunk_size)
165 {
166 n = boost::asio::read(
167 socket,
168 boost::asio::buffer(
169 buffer + bytes_received,
170 h.chunk_size - bytes_received));
171 bytes_received += n;
172 }

143

7.3. Appendix: Prototype source (C++) Appendices

173

174 // Record arrivaltimes of first 4 jobs
175 if(i < 4)
176 {
177 auto pkttime = std::chrono::high_resolution_clock::now();
178 out << fixed << std::chrono::duration<double>(
179 pkttime.time_since_epoch()).count() << " ";
180 i++;
181 }
182

183 j.buf = move(buffer);
184 j.size = h.chunk_size;
185 sendqueue.put(move(j));
186

187 }while(jobcounter.inc());
188

189 // Receive leftover bytes that did not fill up a chunk
190 if(left > 0)
191 {
192 Job j;
193 char* buffer = new char [left];
194

195 int bytes_received = 0;
196 while(left > bytes_received)
197 {
198 n = boost::asio::read(
199 socket,
200 boost::asio::buffer(
201 buffer + bytes_received,
202 left - bytes_received));
203 bytes_received += n;
204 }
205

206 j.buf = move(buffer);
207 j.size = left;
208 sendqueue.put(move(j));
209 }
210

211 Job j;
212 j.kill = true;
213 sendqueue.put(move(j)); // Send kill job
214

215 auto end = std::chrono::high_resolution_clock::now();
216 double sec = std::chrono::duration<double>(end - start).count();
217

218 // OUTPUT
219 double transfer_speed = (((double)(h.filesize*8)/1000000)/sec);
220 out << endl;
221 out << "recv_start: ";
222 out << fixed << std::chrono::duration<double>(
223 start.time_since_epoch()).count() << endl;
224 out << "recv_end: ";
225 out << fixed << std::chrono::duration<double>(
226 end.time_since_epoch()).count() << endl;
227 out << "Data received: avg receive speed ";
228 out << transfer_speed << " Mbit/s" << " for " << sec << "s" << "\n";
229

230 cout << out.str();
231 socket.close();
232 }
233

234 void write_to_disk_server(

144

7.3. Appendix: Prototype source (C++) Appendices

235 boost::shared_future<Header> & header,
236 JobQueue<Job> & writequeue,
237 JobCounter & jobcounter)
238 {
239 header.wait();
240 Header h = header.get();
241

242 auto start = std::chrono::high_resolution_clock::now();
243 cout << "Writing to disk.." << endl;
244

245 h.filename[h.filename_length] = ’\0’;
246

247 fstream filedata(h.filename, ios::in | ios::out | ios::binary | ios::trunc);
248

249 while(true)
250 {
251 Job j = writequeue.receive();
252 if(j.kill){break;};
253 filedata.write(j.buf ,j.size);
254

255 delete[] j.buf;
256 jobcounter.dec();
257 }
258

259 filedata.close();
260

261 auto end = std::chrono::high_resolution_clock::now();
262 double sec = std::chrono::duration<double>(end - start).count();
263

264 // OUTPUT
265 double write_speed = (((double)(h.filesize*8)/1000000)/sec);
266 stringstream out (stringstream::in | stringstream::out);
267

268 out << "write_start: ";
269 out << fixed << std::chrono::duration<double>(
270 start.time_since_epoch()).count() << endl;
271 out << "write_end: ";
272 out << fixed << std::chrono::duration<double>(
273 end.time_since_epoch()).count() << endl;
274 out << "Write finished: avg write speed ";
275 out << write_speed << " Mbit/s" << " for " << sec << "s" << endl;
276

277 cout << out.str();
278 }
279

280 void forward_data_server(
281 boost::shared_future<Header> & header,
282 JobQueue<Job> & sendqueue,
283 JobQueue<Job> & writequeue,
284 string port,
285 string host)
286 {
287 int n;
288

289 header.wait();
290 Header h = header.get();
291

292 // Establish tcp connection options
293 boost::asio::io_service io_service;
294 tcp::resolver resolver(io_service);
295 tcp::resolver::query query(tcp::v4(), host ,port);
296 tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);

145

7.3. Appendix: Prototype source (C++) Appendices

297 tcp::socket socket(io_service);
298

299 // Establish a connection.
300 boost::asio::connect(socket, endpoint_iterator);
301

302 // Send header
303 int bytes_sent = 0;
304 while(bytes_sent < h.head_size)
305 {
306 n = boost::asio::write(
307 socket,
308 boost::asio::buffer(
309 h.head + bytes_sent,
310 h.head_size - bytes_sent));
311 bytes_sent += n;
312 }
313

314 // Send filename
315 bytes_sent = 0;
316 while(bytes_sent < h.filename_length)
317 {
318 n = boost::asio::write(
319 socket,
320 boost::asio::buffer(
321 h.filename + bytes_sent,
322 h.filename_length - bytes_sent));
323 bytes_sent += n;
324 }
325

326 stringstream out (stringstream::in | stringstream::out);
327 out << "fwd_job: ";
328 int i = 0;
329

330 auto start = std::chrono::high_resolution_clock::now();
331 cout << "Forwarding data.." << endl;
332

333 while(true)
334 {
335 Job j = sendqueue.receive();
336 if(j.kill){writequeue.put(move(j));break;}
337

338 int bytes_sent = 0;
339 while(bytes_sent < j.size)
340 {
341 n = boost::asio::write(
342 socket,
343 boost::asio::buffer(
344 j.buf + bytes_sent,
345 j.size - bytes_sent));
346 bytes_sent += n;
347 }
348

349 // Record arrivaltimes of first 4 jobs
350 if(i < 4)
351 {
352 auto pkttime = std::chrono::high_resolution_clock::now();
353 out << fixed << std::chrono::duration<double>(
354 pkttime.time_since_epoch()).count() << " ";
355 i++;
356 }
357

358 writequeue.put(move(j));

146

7.3. Appendix: Prototype source (C++) Appendices

359 }
360

361 socket.close();
362

363 auto end = std::chrono::high_resolution_clock::now();
364 double sec = std::chrono::duration<double>(end - start).count();
365

366 double forward_speed = (((double)(h.filesize*8)/1000000)/sec);
367 out << endl;
368 out << "fwd_start: ";
369 out << fixed << std::chrono::duration<double>(
370 start.time_since_epoch()).count() << endl;
371 out << "fwd_end: ";
372 out << fixed << std::chrono::duration<double>(
373 end.time_since_epoch()).count() << endl;
374 out << "Forward finished: avg forward speed ";
375 out << forward_speed << " Mbit/s" << " for " << sec << "s" << endl;
376

377 cout << out.str();
378 }
379

380 void send_data(
381 boost::shared_future<Header> & header,
382 JobQueue<Job> & sendqueue,
383 string port,
384 string host,
385 JobCounter & jobcounter)
386 {
387 int n;
388

389 header.wait();
390 Header h = header.get();
391

392 // Establish tcp connection options
393 boost::asio::io_service io_service;
394 tcp::resolver resolver(io_service);
395 tcp::resolver::query query(tcp::v4(), host ,port);
396 tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);
397 tcp::socket socket(io_service);
398

399 // Establish a connection.
400 boost::asio::connect(socket, endpoint_iterator);
401

402 // Send header
403 int bytes_sent = 0;
404 while(bytes_sent < h.head_size)
405 {
406 n = boost::asio::write(
407 socket,
408 boost::asio::buffer(
409 h.head + bytes_sent,
410 h.head_size - bytes_sent));
411 bytes_sent += n;
412 }
413

414 // Send filename
415 bytes_sent = 0;
416 while(bytes_sent < h.filename_length)
417 {
418 n = boost::asio::write(
419 socket,
420 boost::asio::buffer(

147

7.3. Appendix: Prototype source (C++) Appendices

421 h.filename + bytes_sent,
422 h.filename_length - bytes_sent));
423 bytes_sent += n;
424 }
425

426 stringstream out (stringstream::in | stringstream::out);
427 out << "sent_job: ";
428 int i = 0;
429

430 auto start = std::chrono::high_resolution_clock::now();
431 cout << "Sending file.." << endl;
432

433 while(true)
434 {
435 Job j = sendqueue.receive();
436 if(j.kill){break;}
437

438 int bytes_sent = 0;
439 while(bytes_sent < j.size)
440 {
441 n = boost::asio::write(
442 socket,
443 boost::asio::buffer(
444 j.buf + bytes_sent,
445 j.size - bytes_sent));
446 bytes_sent += n;
447 }
448

449 // Record arrivaltimes of first 4 jobs
450 if(i < 4)
451 {
452 auto pkttime = std::chrono::high_resolution_clock::now();
453 out << fixed << std::chrono::duration<double>(
454 pkttime.time_since_epoch()).count() << " ";
455 i++;
456 }
457

458 delete[] j.buf;
459 jobcounter.dec();
460 }
461

462 socket.close();
463

464 auto end = std::chrono::high_resolution_clock::now();
465 double sec = std::chrono::duration<double>(end - start).count();
466

467 double send_speed = (((double)(h.filesize*8)/1000000)/sec);
468 out << endl;
469 out << "send_start: ";
470 out << fixed << std::chrono::duration<double>(
471 start.time_since_epoch()).count() << endl;
472 out << "send_end: ";
473 out << fixed << std::chrono::duration<double>(
474 end.time_since_epoch()).count() << endl;
475 out << "Send finished: avg send speed ";
476 out << send_speed << " Mbit/s" << " for " << sec << "s" << endl;
477

478 cout << out.str();
479 }
480

481 void read_from_file(
482 boost::promise<Header> & header_created,

148

7.3. Appendix: Prototype source (C++) Appendices

483 boost::promise<
484 std::chrono::time_point<
485 std::chrono::high_resolution_clock>> & send_start_receive,
486 int chunk_size,
487 string file,
488 JobQueue<Job> & sendqueue,
489 JobCounter & jobcounter,
490 int buffer_size)
491 {
492 send_start_receive.set_value(std::chrono::high_resolution_clock::now());
493

494 Header h;
495 h.chunk_size = chunk_size;
496

497 fstream filedata(file.c_str(), ios::in | ios::binary | ios::ate);
498 int64_t filesize = filedata.tellg();
499 filedata.seekg(0, ios::beg);
500

501 short filename_size = file.length();
502

503 memcpy(h.head, &chunk_size,4);
504 memcpy(h.head + 4, &filename_size,2);
505 memcpy(h.head + 6, &filesize,8);
506 strcpy(h.filename, file.c_str());
507 memcpy(&h.chunk_size, h.head,4);
508 memcpy(&h.filename_length, h.head+4,2);
509 memcpy(&h.filesize, h.head+6,8);
510

511 header_created.set_value(h);
512 int chunks_to_read = filesize / chunk_size;
513 int left = filesize % chunk_size;
514 buffer_size = buffer_size * 1048576; // MiB
515

516 jobcounter.setValues((buffer_size / chunk_size), chunks_to_read);
517

518 auto start = std::chrono::high_resolution_clock::now();
519 cout << "Reading file.." << endl;
520

521 do
522 {
523 Job j;
524 char* buffer = new char [h.chunk_size];
525

526 filedata.read(buffer,h.chunk_size);
527

528 j.buf = move(buffer);
529 j.size = h.chunk_size;
530 sendqueue.put(move(j));
531

532 }while(jobcounter.inc());
533

534 // Receive leftover bytes that did not fill up a chunk
535 if(left > 0)
536 {
537 Job j;
538 char* buffer = new char [left];
539

540 filedata.read(buffer,left);
541

542 j.buf = move(buffer);
543 j.size = left;
544 sendqueue.put(move(j));

149

7.3. Appendix: Prototype source (C++) Appendices

545 }
546

547 Job j;
548 j.kill = true;
549 sendqueue.put(move(j)); // Send kill job
550

551 filedata.close();
552

553 auto end = std::chrono::high_resolution_clock::now();
554 double sec = std::chrono::duration<double>(end - start).count();
555

556 stringstream out (stringstream::in | stringstream::out);
557

558 double read_speed = (((double)(h.filesize*8)/1000000)/sec);
559 out << "read_start: ";
560 out << fixed << std::chrono::duration<double>(
561 start.time_since_epoch()).count() << endl;
562 out << "read_end: ";
563 out << fixed << std::chrono::duration<double>(
564 end.time_since_epoch()).count() << endl;
565 out << "Read finished: avg read speed ";
566 out << read_speed << " Mbit/s" << " for " << sec << "s" << endl;
567

568 cout << out.str();
569 }
570

571 int main(int argc, char *argv[])
572 {
573 //--> INIT VARIABLES
574 //------------------
575

576 const string version = "23.04.12";
577 int port;
578 string fwdport; // Must be string
579 string fwdhost;
580 int chunk_size;
581 string file;
582 int buffer_size;
583

584 JobQueue<Job> sendqueue;
585 JobQueue<Job> writequeue;
586 JobCounter jobcounter;
587

588 // Promise of sending header
589 boost::promise<Header> send_header;
590 boost::shared_future<Header> header;
591 header = send_header.get_future();
592

593 // Promise of sending start message
594 boost::promise<
595 std::chrono::time_point<
596 std::chrono::high_resolution_clock>> send_start_receive;
597

598 boost::unique_future<
599 std::chrono::time_point<
600 std::chrono::high_resolution_clock>> start_receive;
601

602 start_receive = send_start_receive.get_future();
603

604 //--> HANDLE INPUT
605 //----------------
606

150

7.3. Appendix: Prototype source (C++) Appendices

607 // Declare the supported commandline options.
608 po::options_description o_generic("Generic options", 1024);
609 o_generic.add_options()
610 ("help,h", " Prints usage")
611 ("version,v"," Prints version")
612 ("buffer_size,b",
613 po::value<int>(&buffer_size)->default_value(600),
614 " Buffer size in MiB")
615 ;
616

617 // Declare the supported commandline options.
618 po::options_description o_receive("Receive options", 1024);
619 o_receive.add_options()
620 ("receive,R", " Invoke receive behavior")
621 ("r_port,r",
622 po::value<int>(&port)->default_value(9000),
623 " Data in port")
624 ;
625

626 // Declare the supported commandline options.
627 po::options_description o_forward("Forward options", 1024);
628 o_forward.add_options()
629 ("forward,F",
630 po::value<string>(&fwdhost),
631 " Invoke forward behavior, specify host address")
632 ("fr_port,i",
633 po::value<int>(&port)->default_value(9000),
634 " Data in port")
635 ("fs_port,o",
636 po::value<string>(&fwdport)->default_value("9000"),
637 " Data out to port") // Must be string, do not change
638 ;
639

640 // Declare the supported commandline options.
641 po::options_description o_send("Send options", 1024);
642 o_send.add_options()
643 ("send,S",
644 po::value<string>(&fwdhost),
645 " Invoke send behavior, specify host address")
646 ("s_port,p",
647 po::value<string>(&fwdport)->default_value("9000"),
648 " Data out to port")
649 ("file,f",
650 po::value<string>(&file),
651 " Specify send file")
652 ("job_size,c",
653 po::value<int>(&chunk_size)->default_value(1460),
654 " Define send/write/receive chunk size")
655 ;
656

657 // Options for print
658 po::options_description cmd_options("Commandline options");
659 cmd_options.add(o_generic).add(o_send).add(o_forward).add(o_receive);
660

661 po::variables_map vm;
662 po::store(po::parse_command_line(argc, argv, cmd_options), vm);
663 po::notify(vm);
664

665 // Print usage if help is invoked
666 if (vm.count("help"))
667 {
668 cout << cmd_options << endl;

151

7.3. Appendix: Prototype source (C++) Appendices

669 return 1;
670 }
671

672 // Print version if invoked
673 if (vm.count("version"))
674 {
675 cout << "Development version: " << version << endl;
676 return 1;
677 }
678

679 //--> MAIN EXECUTION
680 //------------------
681

682 if(vm.count("forward"))
683 {
684 boost::thread th_read(
685 &receive,
686 std::ref(send_header),
687 std::ref(send_start_receive),
688 port,std::ref(sendqueue),
689 std::ref(jobcounter),
690 buffer_size);
691

692 boost::thread th_forward(
693 &forward_data_server,
694 std::ref(header),
695 std::ref(sendqueue),
696 std::ref(writequeue),
697 fwdport,fwdhost);
698

699 boost::thread th_disk(
700 &write_to_disk_server,
701 std::ref(header),
702 std::ref(writequeue),
703 std::ref(jobcounter));
704

705 cout << "Forward behavior invoked, main thread waiting at barrier" << endl;
706

707 th_read.join();
708 th_forward.join();
709 th_disk.join();
710 }
711 else if(vm.count("receive"))
712 {
713 boost::thread th_read(
714 &receive,
715 std::ref(send_header),
716 std::ref(send_start_receive),
717 port,std::ref(sendqueue),
718 std::ref(jobcounter),
719 buffer_size);
720

721 boost::thread th_disk(
722 &write_to_disk_server,
723 std::ref(header),
724 std::ref(sendqueue),
725 std::ref(jobcounter));
726

727 cout << "Receive behavior invoked, main thread waiting at barrier" << endl;
728

729 th_read.join();
730 th_disk.join();

152

7.3. Appendix: Prototype source (C++) Appendices

731 }
732 else if(vm.count("send"))
733 {
734 boost::thread th_read(
735 &read_from_file,
736 std::ref(send_header),
737 std::ref(send_start_receive),
738 chunk_size,
739 file,std::ref(sendqueue),
740 std::ref(jobcounter),
741 buffer_size);
742

743 boost::thread th_send(
744 &send_data,std::ref(header),
745 std::ref(sendqueue),
746 fwdport,fwdhost,
747 std::ref(jobcounter));
748

749 cout << "Send behavior invoked, main thread waiting at barrier" << endl;
750

751 th_read.join();
752 th_send.join();
753 }
754 else
755 {
756 cout << "No behavior was invoked" << endl;
757 cout << cmd_options << endl;
758 return 1;
759 }
760

761 auto start = start_receive.get();
762 auto end = std::chrono::high_resolution_clock::now();
763 double sec = std::chrono::duration<double>(end - start).count();
764

765 cout << "Total exectution time: " << sec << " seconds" << endl;
766

767 return 0;
768 }

153

	Introduction
	Motivation
	A problem scenario

	Proposed solution
	Solving the problem scenario
	Usage scenarios
	Expected weaknesses

	Problem statement
	Approach
	Finding the roof performance
	Comparative benchmark of prototype

	Main contributions
	Thesis outline

	Background
	Placement within existing work
	Multicast design
	BitTorrent performance
	Tandem queue
	Network discovery and path calculation

	Bits and bytes
	How to benchmark using transport protocols
	Overhead
	Bandwidth-delay product
	Packet loss
	Jitter
	Buffer delay
	TCP equilibrium
	Methodology
	Accuracy of measurements

	Prototype model detailed
	Defining the prototype roles
	Buffer size
	End-to-end delay and job size

	Experimental design and methodology
	Finding the roof performance
	Collecting performance data
	Methodology

	Prototype architecture
	Libraries
	Header
	Concurrency design

	Comparative benchmarks
	Collecting performance data
	BitTorrent
	Methodology
	BitTorrent configuration
	Prototype configuration

	Test equipment
	Node hardware
	Network devices
	Network configuration

	Results
	Finding the roof performance
	Iperf wrapper
	Baseline Cat6, TCP
	Baseline Cat6, UDP
	HP V1405C-5, TCP
	HP V1405C-5, UDP
	Dlink DGS-1005D, TCP
	Dlink DGS-1005D, UDP
	Netgear GS605, TCP
	Netgear GS605, UDP
	Netgear ProSafe GS105, TCP
	Netgear ProSafe GS105, UDP
	Cisco SD2005, TCP
	Cisco SD2005, UDP
	3Com 3CGSU05, TCP
	3Com 3CGSU05, UDP
	Cisco SG 100D-08, TCP
	Cisco SG 100D-08, UDP
	3Com 3CGSU08, TCP
	3Com 3CGSU08, UDP
	TCP throughput performance statistics
	UDP throughput performance statistics
	Jitter statistics
	Datagram loss statistics

	Presenting the prototype
	The program

	Comparative benchmarks
	rTorrent throughput performance
	Prototype throughput performance
	rTorrent storage performance
	Prototype storage performance
	rTorrent CPU usage
	Prototype CPU usage

	Prototype scalability measurements
	Throughput
	Storage performance
	CPU usage
	Prototype delay measurements

	Analysis
	Finding the roof performance
	TCP throughput performance
	UDP throughput performance
	Jitter
	Errors
	RTT and BDP
	Throughput distribution and inter arrival-rate

	Comparative benchmarks
	Throughput performance
	Storage performance
	CPU usage

	Scalability measurements
	Throughput performance
	Storage performance
	CPU usage
	Delay measurements

	Discussion and conclusion
	Finding the roof performance
	TCP throughput performance
	UDP throughput performance
	TCP and UDP comparison
	Repeatability
	Likelihood of errors in the data
	Weaknesses in the experimental design
	Alternative approaches
	Surprising results
	Viability of the results

	Comparative benchmarks
	Repeatability
	Likelihood of errors in the data
	Weaknesses in the experimental design
	Alternative approaches
	Viability of the results

	Scalability measurements
	Repeatability
	Likelihood of errors in the data
	Weaknesses in the experimental design
	Viability of the results

	Future work
	Conclusion

	Appendices
	Appendix: Iperf wrapper (Perl)
	Appendix: Prototype makefile (BASH)
	Appendix: Prototype source (C++)

