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Abstract

With the continual growth in number of cores on the Central Processing
Unit (CPU), developers will need to focus more and more on concurrent
programming to get the desired performance boost that in the past have
come logically with the increased clock-rate.

Today there are numerous of different libraries and mechanisms for
synchronization and parallelization in Java, and in this thesis we will
attempt to test the efficiency and run time of two different types of sorting
algorithms on machines with multi-core processors using the concurrent
tools provided by Java.

We will also be looking into the overhead that occur by using the various
mechanisms, to help establish the correlations between the mechanisms
overhead and performance gain.
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Chapter 1

Introduction

1.1 Background

The Central Processing Unit (CPU) is one of the main components we have
in computer systems, and may be looked at as the brain in our computer.
It is the CPU which performs the necessary processing and calculations of
instructions for the computer.

Moore’s law is today one of the most known “laws” in computer science.
It all started in the mid-1960s when Gordon E. Moore released an article
in the Electronics magazine[1], where he described a long going trend
where the number of transistors that could be inexpensively placed on an
integrated circuit doubled roughly every two years. He foresaw that this
would continue for at least ten years, which by then would mean around
mid-1970s. But amazingly enough his statement continued to be true 40
years later, and it is still realistic to think that it will keep doing so.

Looking back at the years that has gone we see that the CPU originally
consisted of only one single processing core, where the performance
throughout the years have had an exponential growth because of a
combination of Moore’s law and the increasing of the clock frequency
speed (i.e. more instructions can execute per second). But in the later years
we have seen another trend rise, the multi-core CPU. This trend is due to
the limitation on of how high the clock frequency could go before having a
huge impact on energy consumption and heat production compared to the
performance gain. And that is why the manufactures started producing
CPUs with multi-core architecture, thus continue to increase the overall
system performance. So while a single core CPU only could execute a
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single sequence of instructions, multi-core could execute many sequences.
“Many” of course being how many cores the CPU has; dual- (2), quad- (4)
or octa-core (8) can today be seen on every modern laptop and desktop
computers. And on the server side we see all possible combination ranging
from 16- to 128-cores (and more), we will sure be seeing even more in the
future.

While the first dual-core processor hit the desktop market in 2005, Intel
had already used another idea of increasing the CPU performance some
years earlier. The introduction of Hyper-Threading was brought to the
market appearing on the Pentium 4 processor in 2002. In short the Hyper-
Threading is to physically duplicate certain sections of the processor (i.e.
architectural state), but not the main execution resources. Resulting in
giving a processor core the ability to schedule and assign resources to two
threads at once, but only compute one at any given time, and with this
theoretically increasing the performance. Intel claimed that they would get
a performance boost around 15 to 30% [2] compared to other non-Hyper-
Threaded CPUs and only increase the size of the die with 5%.

But with the introduction of multi-core the developers have had to change
their mindset when writing program code. Not only would they have to
divide the program in such a way that each part could run concurrently,
they also had to think about synchronization when more than one core have
access to shared data. Taking advantage of multi-core to get the desired
performance increase, these concurrent parts will have to run in parallel
and all necessary sequential fraction of the program needs to be kept to a
minimum (Amdahl’s law).

Java, a programming language developed by James Gosling at Sun
Microsystems and released in 1995, have since the beginning offered multi-
threading and synchronized methods. In the earliest versions, Java only
had a few low-level primitives that dealt with monitor and synchronization
of threads. In 2004 almost a decade later, version 5 of Java was released
introducing concurrency utilities. These utilities were designed to be used
as building blocks for concurrent classes or applications, offering a number
of advantages for the developer. These concurrency utilities have since then
received many improvements and additions in new version releases, with
the latest being Java 7 released July, 2011.

2



1.2 Motivation

The motivation for this thesis is to look into already existing sequential
sorting algorithms for Java, and explore the potential performance gain
by parallelizing these using the concurrency packages with its classes and
interfaces included in Java. Thus trying to take advantage of the multi-
core architecture and letting us test the efficiency and run time of these
implementations.

Creating implementations using various tools will also give us the ability
to compare the different results. Maybe some tools are more efficient at
certain tasks then others, how easy is it to create these implementations
and what precautions should one think about when writing concurrent
programs. These are some of the questions we would like to get answered
by working with the subject of this thesis.

1.3 Thesis Outline

Chapter 2 - Concurrency and Threads in Java provides background
information on concurrency in general. Here we will be giving an
introduction to commonly used terms, look at the collection of different
classes and interfaces to help dealing with concurrency and the usage of
threads; the main component for concurrent programming in Java.

Chapter 3 - Test Environment gives an overview of how the data
used for testing are structured and generated. What the thoughts
behind benchmarking the different implementations are, and what the
specification of the hardware and software that is used for producing and
testing for this thesis. There are also a section about the Java Virtual
Machine and what necessary tuning that had to be done.

Chapter 4 - Sorting Algorithms goes through the choices made for
picking what kind of algorithms we wanted to work with for this thesis.
Why chose sorting algorithms and what types of these to experiment with.
The chapter also gives an insight in how these algorithms work and how to
construct a regular sequential implementation of the different algorithms.
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Chapter 5 - Experiments will attempt on implementing different parallel
versions of the algorithms in Chapter 4, using the built-in concurrency
packages in Java. These implementations will be measured and compared
against a sequential algorithm to see how well they perform against each
other.

Chapter 6 - Threads and Overhead looks into the overhead imposed by
using the various tools / mechanisms in Java. First there is an introduction
to how the measurements were done on the two operating systems of
choice; Windows and Linux. Then there is an overview of the test results
with the different mechanisms, and finally a comparison of the results.

Chapter 7 - Discussion is a more in depth talk on the experiments and
overhead chapters, bringing some theoretical viewpoints.

Chapter 8 - Conclusions summarizes the results from the previous
chapters. And will go through some general advices when construction
parallel versions of already existing sequential algorithms. Finally give
some suggestions on further research on the topic; things that we would
like to have done, but were never able to set time for.
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Chapter 2

Concurrency and Threads in
Java

The Java class Thread is the whole foundation for all Java concurrency
frameworks. This class makes it easy for the developer to create and
execute threads. Initially a thread is identical to normal Java classes,
but with the exception of having a runnable task which can be executed
concurrently with the main program. When these threads are called it is up
to the Java Virtual Machine (JVM) and the operating system (OS) to decide
which processor core will execute the thread.

Before version 5 of Java was introduced the only way to synchronize
threads was through the low-level concurrency mechanisms; synchronized
, volatile, wait(), notify() and notifyAll(). They are all difficult
to use correctly and the potential for common concurrent threats like
deadlock and starvation is high. Java 5 (originally known as Java 1.5)
changed this by including a new package named java.util.concurrent

(including two sub-packages atomic and locks), which allows a more
high-level synchronization on threads. These packages have been updated
and improved by including new classes and interfaces in Java 6 and the
current version 7, giving the developer more tools to use with concurrent
programming.

While many of the subjects are covered in this thesis there are still a lot
more to go around, and if one want to get a more deeper knowledge and
insight in the basic concepts of concurrency, learn techniques for building
and composing thread-safe classes, how to use the concurrency building
blocks in java.util.concurrent and recommendation on performance op-
timization. There are many books and articles covering these subjects; one
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of the best-selling and personally recommend book is Java Concurrency in
Practice by Brian Goetz[3], which also includes Doug Lea as one of the au-
thors; the man behind JSR 166: Concurrency Utilities[4] the concurrency
APIs for Java.

2.1 Concurrency Concepts

This section will present a brief introduction to the different terms used for
concurrency and Java in general.

A program can be called concurrent if it is divided in such a way that two
or more threads can progress at some time. This does not mean that they
have to progress simultaneously, but that they can be swapped in and out
by the operating system on a single core[5].

Parallel on the other hand is when we have two or more threads that
progress at the same time, of course requiring multiple cores and where
each thread are assigned to a separate core.

Computation that is performed in a thread is called a task. This task can
also be a smaller part of a bigger problem (i.e. divide-and-conquer) that
can be executed in parallel and combined with other tasks to create the
complete solution.

A thread can only run one task at any given time. But two or more threads
can run two or more tasks in parallel to speed up the computation of a
problem.

Granularity in the terms of concurrency means the number of tasks the
computation for a problem is divided into. There are two sub-terms used
for granularity; Fine-grained and Coarse-grained. The finer the granularity,
the smaller each individual task is and coarse being the opposite.

Atomicity or atomic operation is when an action executes one single
instruction even though it may be a set of operations executing, an
example is incrementing a number where it first will Get the number, then
Increment it and finally Store the new value. The only possible outcome
for an atomic operation is success or failure.

Context Switching is performed when the operative system switches out
a running thread in favor for another thread that is allowed to execute
instead. This is done by a scheduler whenever a single CPU runs more
than one thread, to get a concurrent behavior. Context switches causes big
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performance penalties and the operative system therefore generally tries to
avoid them.

2.2 Concurrency in Java

As an introduction to concurrency in Java, we will in this part of the thesis
go through some of the packages currently included in Java SE 7[6] which
were released July, 2011. The new version includes some additions to the
concurrent package; some of these are the interface TransferQueue and
the classes ForkJoin, ThreadLocalRandom and Phaser. The following lists
show these packages and its classes:

java.util.concurrent

• AbstractExecutorService
• ArrayBlockingQueue
• ConcurrentHashMap
• ConcurrentLinkedDeque
• ConcurrentLinkedQueue
• ConcurrentSkipListMap
• ConcurrentSkipListSet
• CopyOnWriteArrayList
• CopyOnWriteArraySet
• CountDownLatch
• CyclicBarrier
• DelayQueue
• Exchanger
• ExecutorCompletionService
• Executors
• ForkJoinPool

• ForkJoinTask
• ForkJoinWorkerThread
• FutureTask
• LinkedBlockingDeque
• LinkedBlockingQueue
• LinkedTransferQueue
• Phaser
• PriorityBlockingQueue
• RecursiveAction
• RecursiveTask
• ScheduledThreadPoolExecutor
• Semaphore
• SynchronousQueue
• ThreadLocalRandom
• ThreadPoolExecutor

java.util.concurrent.atomic

• AtomicBoolean
• AtomicInteger
• AtomicIntegerArray
• AtomicIntegerFieldUpdater
• AtomicLong
• AtomicLongArray

• AtomicLongFieldUpdater
• AtomicMarkableReference
• AtomicReference
• AtomicReferenceArray
• AtomicReferenceFieldUpdater
• AtomicStampedReference
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java.util.concurrent.locks

• AbstractOwnableSynchronizer
• AbstractQueuedLongSynchronizer
• AbstractQueuedSynchronizer

• LockSupport
• ReentrantLock
• ReentrantReadWriteLock

These packages are commonly useful when dealing with concurrent
programming along with the many classes and interfaces to help dealing
with concurrency and parallelism. In the following subsections there will
be given a brief introduction to the classes and interfaces used throughout
this document, explaining their usage, what kind of problem they usually
solve and give a few code examples.

While we wanted to go through every tool seen in these lists, testing them
and get to know how they all work. It was however not possible for the
time set of for this thesis. If one is interested to learn more about each
individual tool, using the Java Platforms own API specification is a good
start[6].

2.2.1 ThreadPool, a Task Execution Framework

When working with threads one could create a new thread for every
task that is needed to be done and then proceed to tear them down
after execution time. But not only would that create extra work for the
developer, this would in most cases also result in poor performance (i.e.
large overhead), especially when creating many threads for a lot of small
tasks. This is where the executor framework in Java comes in to play. This
framework executes tasks in separate threads, handling the creation and
termination of threads and task so the developer does not have to it herself.

The ThreadPoolExecutor can be used to create an instance with the number
of threads we wish to have as a parameter. With the two variables
corePoolSize and maximumPoolSize we choose how many threads that
should be available at any given time, and what the maximum number of
threads allowed should be. By submitting tasks to the ThreadPoolExecutor
much performance would be gained compared to creating and executing in
a new thread.

To determine the number of threads one should use when creating a
ThreadPool, the usually optimal solution for compute-intensive tasks
is to use Ncpu + 1 [3]. This can easily be obtained with the function
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Runtime.getRuntime().availableProcessors() which will give out the
number of cores included Hyper-Threads. A lot of configuration can
be done to the ThreadPoolExecutor along with rejection policies, thread
factories and other configuration is explained well in the API documenta-
tion for Java[6].

2.2.2 Future

A Future<> instance is used as an asynchronous response of a computation.
The asynchronous methods for executing threads of ThreadPoolExector

and ForkJoinPool returns Future<> instances representing the result
of a task handled by their worker thread(s). The blocking method
Future<>.get() returns the generic result of the computation when
finished. This means that a task can be started asynchronously and then
some work can be performed and when the result of the task is needed the
application can block until it is available.

2.2.3 Atomicity

A solution to keep variable data consistence is using the package
java.util.concurrent.atomic. In this package there are a lot of different
classes with the possibility to create thread-safe variables, for the data types
like Boolean and Int; and Arrays of these types.

By creating these variables one would not have to worry about threads
starting to write over each other. But by using values that updated
atomically you would have to trade the simplicity of assigning variables
with common operators (i.e. + / - / * ... etc), with using methods like
Get() and Set() to update the values. In the Listing 2.1 there is a short
demonstration of a counter class using AtomicInteger to store the value.

1 /** Short example with two Threads incrementing and decrementing
on the same v a r i a b l e in a counter using the AtomicInteger */

3

import j ava . u t i l . concurrent . atomic . * ;
5

public c l a s s Atomic {
7 public s t a t i c void main ( S t r i n g [ ] args ) throws Exception {

Counter counter = new Counter ( ) ;
9 Thread t1 = new Thread (new Increment ( counter ) ) ;

Thread t2 = new Thread (new Decrement ( counter ) ) ;
11 t 1 . s t a r t ( ) ; // Construct and s t a r t an increment Thread

t2 . s t a r t ( ) ; // Construct and s t a r t an decrement Thread
13 t 1 . j o i n ( ) ; t 2 . j o i n ( ) ; // When both threads are done

9



System . out . p r i n t l n ( " Counter : " + counter . getCounter ( ) ) ;
15 } // t1 : inc 1000 times , t2 : dec 600 times

} // Counter should end as 400
17

c l a s s Counter {
19 private AtomicInteger anInt = new AtomicInteger ( ) ;

public void increment ( ) { anInt . getAndIncrement ( ) ; }
21 public void decrement ( ) { anInt . getAndDecrement ( ) ; }

public i n t getCounter ( ) { return anInt . get ( ) ; }
23 }

25 c l a s s Increment implements Runnable {
private Counter counter ;

27 public Increment ( Counter count ) { t h i s . counter = count ; }
public void run ( ) {

29 for ( i n t i = 0 ; i < 1000 ; i ++) { t h i s . counter . increment ( ) ; }
}

31 }

33 c l a s s Decrement implements Runnable {
private Counter counter ;

35 public Decrement ( Counter count ) { t h i s . counter = count ; }
public void run ( ) {

37 for ( i n t i = 0 ; i < 6 0 0 ; i ++) { t h i s . counter . decrement ( ) ; }
}

39 }

Listing 2.1: AtomicInteger with two Threads

Even though there are no atomic classes for floating-point numbers one can
still use the AtomicInteger and AtomicLong to store values for float and
double by using Float.floatToIntBits and Double.doubleToLongBits

conversion.

As of today one of the new classes that may appear in Java 8 is
AtomicDouble[7], the JAR-file (Java ARchive) is available to download from
the “Concurrency JSR-166 Interest Site”[4] and can be used with Java 7. The
new version is expected to release summer 2013.

2.2.4 Locks

With concurrency we are almost always bound to get issues at one point
when more threads are working on the same data. When threads are
updating and retrieving values from the same object a situation can occur
that could render the data’s consistency, giving out wrong values to the
user.

One solution to this problem could be to use locks. Locks can be used
to make only one thread handling the object at any given time, and not
let other threads handle the data while it is still being used. The library
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java.util.concurrent.locks has methods helping out with this. This package
contains the interface Lock which allows us to do just that.

There is also an extension for this interface that lets you have both a
Read- and Write-lock, which is called ReadWriteLock. Since reading of the
data still keeps the consistency, a Read-lock could be assigned to multiple
threads accessing the same variable. When a thread would want to update
the data, it will then ask for the write lock.

2.2.5 Queue and Deque

In some situations we could have threads doing different tasks then
others. A usual example is the Producer/Consumer scenario. In the
java.util.concurrent package we have the interface BlockingQueue which
can help out. This interface let threads add and remove objects from a
queue, which easily can be used in said scenario. As one or more threads
contribute to the queue by adding objects, other threads could remove and
handle them. When constructing and using a BlockingQueue it will always
have a maximum number of objects the queue can contain. But the interface
includes methods for waiting to input into the queue, it also let consumers
wait for new objects if the queue gets empty. The example in Listing 2.2
shows how one could solve the Producer/Consumer problem by using a
BlockingQueue.

1 c l a s s Producer implements Runnable {
private f i n a l BlockingQueue queue ;

3 Producer ( BlockingQueue q ) { queue = q ; }
public void run ( ) {

5 // Producing
}

7 }

9 c l a s s Consumer implements Runnable {
private f i n a l BlockingQueue queue ;

11 Consumer ( BlockingQueue q ) { queue = q ; }
public void run ( ) {

13 // Consuming
}

15 }

17 c l a s s ProducerConsumer {
void main ( ) {

19 BlockingQueue q = new SomeQueueImplementation ( ) ;
/** Creat ing and s t a r t i n g threads */

21 }
}

Listing 2.2: Producer/Consumer example
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There are also some extended classes based on the BlockingQueue. In
the concurrent utility we have LinkedBlockingQueue that acts like a
regular LinkedList and uses the first inn, first out approach (FIFO ). We also
have PriorityBlockingQueue, which will priorities the objects put into the
queue. This will of course only let you put object that can be compared to
each other, and object will be handed out by priority and not FIFO.

Other queue types includes DelayQueue, that let you delay an object
before it is allowed to be handed out. We also have SynchronousQueue
and ArrayBlockingQueue.

Contrary to a regular queue, where we are only able to handle one input
and one output, a double-ended queue (Deque) lets us add and remove
from both sides, making it a combination of a FIFO-list, and a last inn, first
out (LIFO-list ) with both a head and a tail. There are currently two types
of deques in the concurrent package; they are called BlockingDeque and
LinkedBlockingDeque.

2.2.6 Synchronize

With all the classes and methods in the concurrent utility, there is also
some that can be used to synchronize two or more threads working
simultaneously. This is to make sure we obtain correct runtime order.

The CountDownLatch is a class that let the developer create a gate with
an integer as a parameter. This integer let the developer choose how many
times the method countDown need to be called before opening the gate.
When threads approach the gate they will have to wait for the countdown
to reach zero before they can pass it.

CountDownLatch can only be used once. When it is created and the
countdown has reached zero it will not lock the gate again and threads
can pass through freely. So if we want to reset the countdown we would
have to use another class called CyclicBarrier.

One of the classes included in Java 7 was the Phaser. The Phaser
is an updated version of the previously mentioned CountDownLatch
and CyclicBarrier. This updated version gives the developer a new
functionality to change the value of the “countdown” dynamically while
the program is running, giving the option to increase or decrease the
number of needed calls to the Phaser.
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2.2.7 Fork/Join

Another of the new features that was implemented in Java 7 is the Fork/-
Join-framework, a framework that is similar to the ThreadPoolExecutor.
It has its own kind of thread pool like ThreadPoolExecutor, so it takes ad-
vantage of reusing threads by submitting tasks.

Fork/Join is based on the idea of Divide and Conquer ; a problem that is
repeatedly spilt into smaller bits until some limit where the problem is
small enough, then each sub-problem are solved and combined to form
the full solution. The structure is illustrated in Listing 2.3 [8].

Resul t compute ( Task task ) {
2 i f ( problem i s small ) {

Solve s e q u e n t i a l
4 }

e lse {
6 s p l i t i n t o : Task l e f t , Task r i g h t

fork ( compute ( l e f t ) , compute ( r i g h t ) )
8 j o i n the r e s u l t s of subtasks

compose r e s u l t s
10 }

}

Listing 2.3: Divide and Conquer Structure

The basic idea for the Fork/Join-framework is the creation of new tasks
every time an Divide and Conquer algorithm splits the data into two
sub-problems. These tasks can then be solved in parallel by letting the
framework divide them among threads. This framework is very light-
weight as it is optimized to solve such problems where usually the only
synchronization is when tasks wait for other sub-tasks to finish, resulting
in a framework that scales very well.

Work-Stealing

The Fork/Join-framework also implements Work-stealing which also
should give it good scalability and performance. The work-stealing is
based on the producer/consumer design pattern with the use of deques.

The work-stealing scheduler operates as follows. Each worker thread has
its own individual deque, a double-ended queue (see previous subsection).
The queue works in a way that subtasks generated from running tasks on
a worker are pushed into that works queue, and the worker pops tasks in
LIFO order. If a worker has no tasks left in its own queue, it will pick

13



another workers queue randomly and try taking (”stealing”) a task in FIFO
order[8].

Using LIFO for popping with its own thread and FIFO when another thread
takes makes it an optimal solution for recursive divide-and-conquer
algorithms. It takes advantage of that these algorithms generate much
larger tasks early on and smaller tasks towards the end, resulting in less
need for stealing work from each other.

Figure 2.1 shows a possible scenario which illustrates how the work-
stealing could apply:

• At time = 1, Worker Thread-1 is idle and pops the last task that was
put into its own queue (Task 3). Worker Thread-N is busy computing
Task 4.

• At time = 2, Worker Thread-1 is busy computing Task 3. Worker
Thread-N is idle and checks its own queue, but as it is empty he takes
(”Steals” ) the first task that was put into a randomly picked queue,
in this case Task 1 from Thread-1’s queue.

• At time = 3, Worker Thread-1 is still busy computing Task 3. Worker
Thread-N is busy computing Task 1 which in the process produces a
new subtask (Task 5) that gets pushed into its own queue.

Figure 2.1: Work-Stealing
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Chapter 3

Test Environment

The following chapter explains the test environment used for the next
Chapters 4 and 5. We will here be going through how the test data is build
up, how the measurement are done and the specifications of hardware and
software used to produce the test results.

With this given information one should then be able to reproduce the
collected data, or maybe even create some comparable results by using
different hardware and/or software.

3.1 Test Data Structure

When benchmarking it is reasonable to do more than one test run on
each dataset. This is mainly because other background processes on the
computer may interrupt ongoing computation and may cause a relative
huge impact on measurements, especially when sorting smaller dataset.
When sorting 100 000 elements sequentially, which only takes a few
milliseconds on a modern computer, a small delay in the computation
could cause the measured time to be many times higher than expected.

To get a wide range of test results, the test data structure consists of many
different sizes. The results shown in the different graphs in this thesis are
generated by the structure that can be seen in Listing 3.1. This structure
contains array-sizes ranging from 1000 to 100 million elements and also
includes the number of times each array is sorted to get a more precise
result. The array-sizes were defined using Powers of Ten incremented by
1/4.
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10n∗1/4 , 12 ≤ n ≤ 32

With n ranging from 12 to 32 we get a good collection of array-sizes
between 1000 and 100 million to test.

1 s t a t i c i n t [ ] [ ] dataArray = new i n t [ ] [ ] {
/* { Array−s ize , N runs } */

3 { 1 000 , 2 5 0 0 } , { 1 778 , 2 5 0 0 } , { 3 162 , 2 5 0 0 } ,
{ 5 623 , 2 5 0 0 } , { 10 000 , 2 5 0 0 } , { 17 782 , 2 5 0 0 } ,

5 { 31 622 , 1 2 5 0 } , { 56 234 , 1 2 5 0 } , { 100 000 , 7 5 0 } ,
{ 177 827 , 5 0 0 } , { 316 227 , 2 5 0 } , { 562 341 , 1 5 0 } ,

7 { 1 000 000 , 1 0 0 } , { 1 778 279 , 7 5 } , { 3 162 277 , 6 0 } ,
{ 5 623 413 , 5 0 } , {10 000 000 , 4 0 } , { 17 782 794 , 2 4 } ,

9 {31 622 776 , 1 6 } , {56 234 132 , 8 } , {100 000 000 , 4 } ,
} ;

Listing 3.1: Test Data Structure

For the smallest arrays-sizes a limit to 2500 test runs have been set, this
should let the computation process “warm-up” and also giving a large
collection of test data. As the array-sizes increase, we have chosen to
decrease the number of test runs. The main reason to do this is that as
the array grows so does the computation time, and with an increased
computation time the impact of other background processes will have
a smaller effect. The time for sorting up to 100 million elements also
starts taking a couple of seconds, so doing many tests runs start taking
unnecessary amount of time.

3.1.1 Generating Data

With defined sizes of the arrays containing test data, the next step would
be to fill these arrays with actual data appropriate for sorting. The most
common types of sorting would be to sort positive integers (i.e. {1, 2, 3, ...}),
and in Java one can then use short, int or long as the variables.

Of these data types short can only hold values up to around 32 thousand
(215− 1) which with arrays ranging up to 100 million elements, the number
of duplicate values would be very high. long on the other hand would
be overkill with the ability to store values up to 263 − 1, but would also
be a doubling of bit-size compared to int which also would have impact
memory and performance wise. The choice of using 32-bit int as elements
is best suited for the array-sizes chosen, the signed int in Java may contain
positive values from 1 to about 2.1 billion (231 − 1).
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In Listing 3.2 a basic function is shown, this function will take two
parameters; the wanted size of the array and a “seed” for the random data
creation. After creating the random number generator rdm and construct
array with the desired size, a for-loop will fill each index of the array with
random values ranging from 1 to array.length. By using the same seed
when initializing an array with a specific size, this function will create an
array which will contain identical values in each index every time. This is
useful when wanting to benchmark the algorithms more than once and/or
on other computers and still have the same starting point.

i n t [ ] i n i t A r r a y ( i n t s ize , i n t seed ) {
2 Random rdm = new Random( seed ) ;

i n t [ ] array = new i n t [ s i z e ] ;
4

for ( i n t i = 0 ; i < array . length ; i ++) {
6 array [ i ] = rdm . n e x t I n t ( array . length ) + 1 ;

}
8

return array ;
10 }

Listing 3.2: Initialize an array with data

If one want to have completely random data each time, the Random(seed)

can easily be changed to just Random() which then uses the systems clock
rather than a given seed, ensuring randomized data with each and every
use. But since we want to produce fair and comparable data to be used for
all implementations in this thesis, we are going to use the same seed every
time.

3.2 Benchmarking

3.2.1 Method

To benchmark the algorithms in this thesis, the main method used is
practical measurements of run time. By measuring and comparing the time
it takes to sort the variety of different array-sizes, as seen in Listing 3.1, we
can see how well they perform compared to each other.

In Java there are currently two built-in functions which let the user retrieve
time, and with a start and stop time we are then able to see how much time
was spent performing the computation. These functions are:
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• System.currentTimeMillis() • System.nanoTime()

System.currentTimeMillis() is based on the computers system-clock.
This function actually returns the difference (in milliseconds) between the
current time and midnight, January 1, 1970 UTC. This can be used to
measure elapsed time but the function has some weaknesses; the system-
clock is in no way perfect, it may drift off and occasionally needs to be
corrected. How often the system-clock ticks, increasing the unit of time,
also depends on the underlying operating system.

Included in Java 5 was the function System.nanoTime(), when this function
is called it returns a number in nanoseconds from a fixed but arbitrarily
chosen point in time, a time that may also be in the future. Since the
purpose for this function is to measure elapsed time, it is unaffected by
the small corrections done by currentTimeMillis.

Another possible measuring method would be profiling. With a good
profiling tool you will not only find answer to the execution time, but also
get a better overview to find:

• What methods are called the
most?

• What methods are using the
largest percentage of time?

• What methods are calling the
most-used methods?

• What methods are allocating a
lot of memory?

There are a lot of both commercial and non-commercial profiling tools
for Java out there, and Java even has an included lightweight alternative
called HPROF that is capable of presenting CPU usage and heap allocation
statistics.

Since this thesis is mainly focused on investigating different concurrent
mechanisms in Java, we are not really after implementing the “perfect”
algorithm. But interested in measuring how the different mechanisms per-
form compared to each other. So profiling the different implementations
to find CPU usage and memory leaks is not really an issue. Compar-
ing System.nanoTime() and System.currentTimeMillis(), we find that
nanoTime() is the best alternative if one does not have a program that have
to rely on system-date.
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3.2.2 Median or Average

As mentioned in the previous Subsection 3.1 - Test Data Structure we want
to do many test runs on each dataset, but how should one treat this run
time collection of test runs. Two of the easiest and best suited solutions
here would be to either:

A. Sum all test results and get the average value.

B. Sort all the results and pick the median value.

Since the purpose is to summarize a set of test runs by a single typical
value. The average would not be the best alternative in this case, as
the average is more sensitive if non-typical values would occur. When
measuring with only System.nanoTime() other background processes on
the computer could cause the sorting process to get delayed and may be
giving a much higher measured time than usual.

In the following Listings 3.3, 3.4 and 3.5 the ExecutorService implement-
ation of Quicksort was tested with an array-size of 50 000 and with three
different number of runs; 10, 100 and 1 000. The idea was to see how the
average and median time differ from each other.

Size : 50000 | Runs : 10 | Seed : 3141592 | Cores : 8
2

QuickParExec :
4 1 . Run : 12 .238287 ms

2 . Run : 6 .884612 ms
6 3 . Run : 4 .980912 ms

4 . Run : 3 .635897 ms
8 5 . Run : 3 .645102 ms

6 . Run : 3 .791753 ms
10 7 . Run : 3 .657373 ms

8 . Run : 3 .651544 ms
12 9 . Run : 3 .681611 ms

1 0 . Run : 3 .631295 ms
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Average time : 4 .979838 ms // ( tota lTime / runs )
16 Median time : 3 .657373 ms // s o r t ( Times ) , pick ( runs / 2)

==============================

Listing 3.3: Quicksort; 10 runs

The first thing to notice is that the first three runs always takes longer time,
which results in causing a great impact on the average times when few test
runs are done (1.32 ms “slower” than median with 10 runs).
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1 Size : 50000 | Runs : 100 | Seed : 3141592 | Cores : 8

3 QuickParExec :
1 . Run : 12 .492011 ms

5 2 . Run : 6 .870806 ms
3 . Run : 4 .918938 ms

7 4 . Run : 3 .707996 ms
5 . Run : 3 .669339 ms

9 * * *
9 8 . Run : 3 .660442 ms

11 9 9 . Run : 3 .659521 ms
1 0 0 .Run : 3 .674861 ms

13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Average time : 3 .805993 ms // ( tota lTime / runs )

15 Median time : 3 .664123 ms // s o r t ( Times ) , pick ( runs / 2)
==============================

Listing 3.4: Quicksort; 100 runs

When increasing the number of runs we see much less impact, but the
average value still does not give out a typical run time.

Size : 50000 | Runs : 1000 | Seed : 3141592 | Cores : 8
2

QuickParExec :
4 1 . Run : 12 .32051 ms

2 . Run : 6 .873567 ms
6 3 . Run : 4 .979072 ms

4 . Run : 3 .663509 ms
8 * * *

9 9 8 . Run : 3 .650931 ms
10 9 9 9 . Run : 3 .681304 ms

1000 . Run : 3 .657681 ms
12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Average time : 3 .690158 ms // ( tota lTime / runs )
14 Median time : 3 .658294 ms // s o r t ( Times ) , pick ( runs / 2)

==============================

Listing 3.5: Quicksort; 1000 runs

Even though one could increase the number of test runs and that the impact
will be much less with the increased array-size. The conclusion is to use
median time to get the typical value for a test run, and it is these values that
we have used for future drawing of graphs and calculating the differences
in the next chapters.

3.3 Hardware and Software

With the idea of making many different implementations of the sorting
algorithms as discussed in Chapter 4, it is necessary to keep using the
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same hardware with every test run. This we do in order to ensure that
the measured times can be correctly compared to each other, giving us the
information on how well each implementation perform.

3.3.1 Specification

For the development and benchmarking the following hardware in Table
3.1 has been used. Even though it would be very interesting to see how well
each implementation would have worked on different kind of architecture
and with a wide variety of N-cores CPUs, it was not possible with the time
available for this thesis.

CPU Intel Core i7 920 @ 3.5GHz Quad-Core
RAM 6 GB DDR3 @ 1333MHz

OS Windows 7 64-bit / Linux Mint 13 64-bit

Table 3.1: Hardware used for Experiments

The hardware is used within a modern desktop computer, and where
almost all the parts are from early 2009. The CPUs stock Clock Speed is 2.66
GHz, but have been overclocked to 3.5 GHz which will result in a bit faster
computation time making it in more up to par with the current generation
of Intel Core i7 models.

Figure 3.1: Nehalem Architecture

In Figure 3.1[9] we have an overview of
cache sizes, memory controller and the
QuickPath Interconnect speed. Quick-
Path Interconnect replaces what may
be better known as the Front Side Bus
(FSB). The i7 CPU is in the micropro-
cessor family know as Bloomfield un-
der the Nehalem microarchitecture.

While the main platform used for this
thesis is Windows 7 for developing
and testing, Chapter 6 also includes
some overhead testing on Linux. The
Linux distribution of choice ended up
being Linux Mint 13, which is based on
Ubuntu 12.04 with the current kernel
version 3.2.
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The Java versions used for benchmarking and testing are Java SE 7 (build
1.7.0_03) and Java SE 6 (build 1.6.0_31) acquired from Oracle’s own website
under Windows. While the same versions and builds are used under Linux,
the runtime environment is OpenJDK an open-source implementation of the
6th and 7th edition of the Java SE Platform.

3.3.2 Cache

To reduce the average time to access memory, the CPU has its own
cache. The cache is a memory bank between the main memory and the
CPU, which stores copies of the data from the most frequently used main
memory locations. The cache is spilt into multiple levels with today’s
modern processors usually up to three levels, which varies in access times
and sizes.

When reading and writing to cache, the most used terms are cache hit
and cache miss. A cache hit is when a cache access successfully finds
the requested data. A cache miss is when a cache access failed to find
the requested data. Larger caches have better hit rates, but usually longer
latency.

In Figure 3.2 the application known as CPU-Z from the developer CPUID
have been used. This application let the user see the time consumption in
CPU-cycles for each cache-level when it read / write to it, and also gives
the information on the cache-size for each level.

Figure 3.2: Cache Latency
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• Level 1-cache (L1) is the fastest cache available on a CPU, but also the
smallest cache, and is the first cache that gets checked. If it hits, the
processor proceeds at high speed. In modern processors this cache is
actually split into two caches of equal size, one to store program data
and the other to store instructions.

• Level 2-cache (L2) will be the next cache to be checked if L1 misses.
L2 is bit larger compared to L1, but alas a bit slower. It also stores
both program data and instructions.

• Level 3-cache (L3) takes approximately ten times longer to access
than L1. While the other caches are individual to each core (shared
with Hyper-Thread), this cache is usually shared between all cores.

• Main memory (RAM), finally we may need to read / write to the
main memory. Here the access time are usually a few hundreds CPU-
cycles, on our CPU it is around ∼185 [10].

3.4 Java Virtual Machine (JVM)

Java programs are usually compiled into a format known as Java byte-code.
Byte-code is comparable to the format that our computers understand
natively, but no mainstream processor understands Java byte-code. Instead
compiled Java programs usually require a translation layer for them to run
the code. And it is this layer that we call a Java Virtual Machine, or short
just JVM. This is a standardized execution environment developed by Sun
Microsystems (now merged with Oracle Corporation) that Java programs
may run within.

3.4.1 Tuning

The JVM has more than hundreds of options that can be tuned to tweak
performance or to customize the behavior of a running virtual machine. At
start-up there are three categories of options that can be given to the virtual
machine:

• Standard options: They are supported for any version of JVM.
Though some options are specific to different operating system.

• -X options: Are non-standard, means that they do not guaranteed to
be supported on all JVM implantations, and may also change without
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notice in new releases of JDK.

• -XX options: Also non-standard, but are also not stable and not
recommended for casual use.

For concurrent programming most of the options are with -XX, meaning
that when we tune the JVM with these options we must keep in mind that
it is a certain risk and that the possibility of the option used on the current
JVM may not exist on another.

But some of the -X options are also useful for concurrent programming
even though it was not what they were mainly designed for. Two of these
options are the setting of the initial heap size; where the default initial heap
size is set to 1/64 of the machine’s physical memory or some reasonable
minimum, and the maximum heap size; which by default is set to 1/4

of the physical memory with an upper threshold at 1 GB. These two is
important when running memory intense programs and can be set by using
the options below:

• -Xms <initial java heap size>

• -Xmx <maximum java heap size>

This is two of the options that are used for this thesis as the different
implementations require much more memory, than the default sizes set by
the JVM, when sorting arrays up to 100 million elements.

Since each thread also gets its own memory stack, parallel implantations
with a lot of threads will also have an increase in memory requirements.
As of Java 6, in a Windows environment this stack size is default set to
320kb in 32-bit VM and 1024kb in 64-bit VM[11]. This will also be an
issue with ThreadPools; even though we may have a set amount of threads
the application may create many task instances again rising the memory
requirement.
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Chapter 4

Sorting Algorithms

The programming language Java is the language of choice, mainly because
it is a language that I always wanted to get more familiar with, it offers
a great collection of tools when dealing with concurrency and it is also
a modern and popular language which has been covered in many books
and papers. This combination gave a smoother access to the world of
concurrent and parallel programming in Java.

To test out the various frameworks and some of its classes presented in
Chapter 2 - Concurrency and Threads in Java. We needed to have some
algorithms with different characteristics to try out, and for each algorithm
a couple of different implementations should be considered to be able to
try out some varieties of tools. This would let us see the effect of different
parallel implementations of the algorithm, and getting some comparable
results.

4.1 Which Sorting Algorithms

The choices of sorting algorithms have been based on trying to find types
which let us use a wide range of different tools from the concurrency
package in Java. Therefore we are after algorithms that achieve the
following:

• Sorting in parallel is feasible. The algorithms does not necessary have
be specifically constructed for parallel computing, as we want to see
the effect of going from sequential to parallel. But we should be able
run at least some parts of the algorithms concurrently, so that we can
expect some performance boost with multi-core.
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• Using two distinct algorithms that uses shared and non-shared data
should help us to be able to use a larger variety of tools.

• Popular or at least commonly known sorting algorithms and not
some obscure implementation of these.

4.2 Quicksort

Quicksort is a sorting algorithm developed by Charles Antony Richard
Hoare or more commonly known as Tony Hoare. While he was abroad
as a student at Moscow State University, working in a project on machine
translation, he developed this specific algorithm to be used in sorting
translated words. The algorithm was presented as an article in the The
Computer Journal [12] in 1962, and is a comparison sorting algorithm that
is based on the divide-and-conquer paradigm.

The most common implementations of Quicksort are so called in-place
version and also uses recursion. Each recursive call needs to store some
local variables on the stack, which usually grows up toO(logn) in memory-
space. The algorithm sorts an input of n element with the average of
O(nlogn) comparisons. In a worst-case scenarioO(n2) comparisons would
be needed to sort the input sequence, though this behavior is rare.

The pseudocode for a Quicksort algorithm is written in Listing 4.1, and are
based on the code from the book Introduction to Algorithms[13].

1 QUICKSORT(A, p , r )
i f p < r

3 q = PARTITION(A, p , r )
QUICKSORT(A, p , q − 1)

5 QUICKSORT(A, q + 1 , r )

7

PARTITION(A, p , r )
9 x = A[ r ]

i = p − 1
11 for j = p to r − 1

i f A[ j ] <= x
13 i = i + 1

exchange A[ i ] with A[ j ]
15 exchange A[ i + 1] with A[ r ]

return i + 1

Listing 4.1: Quicksort pseudocode
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The fundamental steps for the sorting are rather simple:

1. Pick an element q, the pivot, from the array A.

2. Partitions the remaining elements into those greater than and less
than the pivot q.

3. And recursively repeat the process on the partitions, until the array is
completely sorted.

There are at least two things that make Quicksort a suitable algorithm for
parallelism. First it does not have any shared data, meaning no need for
synchronization, as the pivot split the array in two each iteration.

Second each part of the array would recursively call Quicksort dividing it
in such a way that they can be assigned for the available resources on the
system.

4.2.1 Implementation

Based on the previous mentioned pseudocode of Quicksort, the code in
Listing 4.2 is a rather straight forward implementation of Quicksort in Java.

c l a s s Quicksor tSequent ia l {
2 void q ui ck so r t ( i n t [ ] array , i n t l e f t , i n t r i g h t ) {

i f ( l e f t < r i g h t ) {
4 i n t pivotIndex = p a r t i t i o n ( array , l e f t , r i g h t ) ;

q u i ck so r t ( array , l e f t , pivotIndex − 1) ;
6 q ui ck so r t ( array , pivotIndex + 1 , r i g h t ) ;

}
8 }

10 i n t p a r t i t i o n ( i n t [ ] array , i n t l e f t , i n t r i g h t ) {
pivotValue = array [ r i g h t ] ;

12 i n t index = l e f t ;

14 for ( i n t i = l e f t ; i < r i g h t ; i ++) {
i f ( array [ i ] <= pivotValue ) {

16 swap ( array , i , index ) ;
index ++;

18 }
}

20

swap ( i n t [ ] array , index , r i g h t ) ;
22 return index ;

}
24

void swap ( i n t [ ] array , i n t l e f t , i n t r i g h t ) {
26 i n t temp = array [ l e f t ] ;

array [ l e f t ] = array [ r i g h t ] ;
28 array [ r i g h t ] = temp ;

}
30 }

Listing 4.2: Sequential Quicksort
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With only some variable declaration, name differences and the included
swap function, one will easy notice the similarity in the code with Listing
4.1. But one problem with this sequential implementation is when the
worst-case scenario happens. When the pivotValue (line number 11 in
Listing 4.2) is set by the rightmost (or could also be leftmost) integer in
the array, worst-case would actually be to sort an already sorted array and
the same goes if it is in reverse order.

There is more than one solution to help dealing with this problem, we can:

A. Choose the integer in middle.

B. Choose the median of three integers[14].

C. Choose a random integer from the array.

Listing 4.3 show the usage with option A, which is used for the Quicksort
implementations in this thesis.

i n t pivotValue = array [ ( l e f t + r i g h t ) / 2 ] ;
2 swap ( array , ( l e f t + r i g h t ) / 2 , r i g h t ) ;

Listing 4.3: Pivot Select

To make the Quicksort algorithms more like the built-in Arrays.sort()

in Java, we have included an insertion sort for small arrays. The current
threshold for when to use insertion sort is set to 47, the same threshold
currently used in Arrays.sort() for Java 7 (build 1.7.0_03)[15].

void i n s e r t i o n S o r t ( i n t [ ] array , i n t l e f t , i n t r i g h t ) {
2 for ( i n t i = l e f t + 1 ; i <= r i g h t ; i ++) {

i n t a = array [ i ] ;
4 i n t j ;

for ( j = i − 1 ; j >= l e f t && a < array [ j ] ; j−−) {
6 array [ j + 1 ] = array [ j ] ;

}
8 array [ j + 1 ] = a ;

}
10 }

Listing 4.4: Insertion Sort

The Listing 4.4 includes the code used in all Quicksort implementation in
this thesis, and is called when an array (or part of an array while sorting)
contains 47 or less elements. By including this we should see a performance
boost as insertion sort is very efficient for small arrays.
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4.2.2 Test Run

To compare how well this implementation of Quicksort are to the
Arrays.sort(), a test run has been done. What size and type of data that is
used to create the graph are described in greater detail in Chapter 3 - Test
Environment.

As shown in Figure 4.1, the sequential Quicksort implementation without
the insertion sort usually runs at 75 to 90% speed compared to the
built-in Arrays.sort(). But by including the insertion sort with the
same threshold, the computation speeds are very much alike. The
Arrays.sort() is a Dual-Pivot Quicksort implementation by Vladimir
Yaroslavskiy[16].

Figure 4.1: Sequential Quicksort

4.3 LSD-Radixsort

Contrary to Quicksort, Radixsort is a non-comparative sorting algorithm
that can be dated back as far as the 1890s. Radixsort being a part of the work
by Herman Hollerith, an American statistician, who back then worked on
tabulating machines. But it was later converted to a computer algorithm in
1954 at Massachusetts Institute of Technology (MIT) by Harold H. Seward.

There are essentially two types of Radixsort. The first is the Least-
Significant-Digit (LSD), which sort with keys from rightmost digit to the
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leftmost digit. The second one is the Most-Significant-Digit (MSD) which
goes the other way around. Both illustrated in Figure 4.2.

Figure 4.2: LSD- / MSD-Radixsort

In this thesis we have chosen the LSD implementation. With Radixsort
we will also have shared-data, resulting in that we will have to use tools
for synchronization when we construct parallel implementations of this
algorithm.

There are also no recursive calls, meaning that we would have to look into
another way to split the work among the available resources on the system.

4.3.1 Implementation

A sequential algorithm has been implemented using inspiration from the
book Algorithms[14] by Robert Sedgewick and Kevin Wayne, which in
the book uses Radixsort for string sorting. The code in Listing 4.5 is an
implementation for sorting the variables we chose; int.

c l a s s LSDRadixSequential {
2 void r a d i x s o r t ( i n t [ ] array ) {

i n t max = 0 , b i t s = 1 , length = array . length ;
4

// Find max value in array
6 for ( i n t i = 0 ; i < length ; i ++) {

i f ( array [ i ] > max) max = array [ i ] ;
8 }

10 while (max >= 1<< b i t s ) b i t s ++;

12 i n t [ ] temp = new i n t [ length ] ;
i n t [ ] count = new i n t [1<< b i t s ] ;

14

// Compute frequency counts
16 for ( i n t i = 0 ; i < length ; i ++) {

count [ array [ i ]+1]++;
18 }
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20 // Compute frequency cumulates
for ( i n t i = 1 ; i < (1<< b i t s )−1; i ++ ) {

22 count [ i ] += count [ i −1];
}

24

// D i s t r i b u t e the records
26 for ( i n t i = 0 ; i < length ; i ++) {

temp [ count [ array [ i ] ] + + ] = array [ i ] ;
28 }

30 // Copy back
for ( i n t i = 0 ; i < length ; i ++) {

32 array [ i ] = temp [ i ] ;
}

34 }
}

Listing 4.5: Sequential LSD-Radixsort

The algorithm does the sorting in what can be defined as five steps:

1. Start of by finding the maximum value in the whole array. And
finding how many bits this value consist of in the binary numeral
system.

2. Count how many elements it is of each value in the array.

3. Add up values in count, accumulating the values.

4. Distribute the values sorted to temp.

5. Copy back the elements from the temporary array to the original.

2-Digit

By using only one digit with one full pass of the algorithm to completely
sort the array, we get a very fast algorithm for small arrays[10]. But as the
array grow in size following our test data structure; the 1-digit Radixsort
will continuously decrease in performance.

To “slow” down this process we can extend the algorithm to use more
passes, and we did this by implementing a 2-digit version of the LSD-
Radixsort. While this version will be slower on small array, it will perform
much better on larger ones, overall giving a better performance.

1 i n t b i t 1 = b i t s /2 ,
b i t 2 = b i t s−b i t 1 ;

3

r a d i x s o r t 2 ( array , temp , b i t1 , 0 ) ;
5 r a d i x s o r t 2 ( temp , array , b i t2 , b i t 1 ) ;

Listing 4.6: Sequential 2-Digit LSD-Radixsort
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With the code in Listing 4.6 we show how we split the 1-pass digit, bits,
into a 2-pass with two equally sized smaller digits. We have then put the
sorting steps into its own method, calling it two times with the necessary
parameters to do the two full passes now required to sort the array.

4.3.2 Test Run

In Figure 4.3 a test run was done for the 1-digit and 2-digit LSD-
Radixsort, comparing how well they performed against each other and
Arrays.sort().

Figure 4.3: Sequential Radixsort

From the graph we can see that 1-digit Radixsort performs very well
on small arrays, reaching a peak at ∼3000 elements, but decreases in
performance as the array grows. And start to perform worse than
Arrays.sort() with ∼5 million elements.

The 2-digit implementation start of slower, but keeps on climbing and
reaching maximum performance at ∼30 000 elements. The 2-digit also
performed better than Arrays.sort() on large arrays. Comparing the two
implementations of Radixsort we see that the 2-digit version have the best
overall performance and is the one we chose to implement in parallel.
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Chapter 5

Experiments

The goal of the following experiments has been to try out many of the
various tools included in the Java concurrency packages. This to see
if it is easy and effective to create parallel versions of common sorting
algorithms, and what the actual performance gain can be compared to a
regular sequential implementation.

For this thesis it is the two algorithms from the previous Chapter 4 that
we will create parallel implementations of; Quicksort and 2-digit LSD-
Radixsort. This chapter includes the ideas, how we implemented the
parallel versions with different tools and finally the tests comparing the
results with the built-in Arrays.sort().

5.1 Parallel Quicksort Implementations

With the divide-and-conquer pattern that Quicksort is built on, it is no need
for synchronization as the array that we are going to sort will be divided
for each recursive call and which will result in that we have no shared data.
With no share data and an algorithm that split into smaller tasks for us, we
only need to have tools for executing these tasks in parallel.

Going through Java API documentation, we ended up with three different
tools to create parallel implementations of Quicksort. The parallelization
will be achieved with the following scenarios:

• An ”naive” attempt by only creating new Threads.

• Using the included ExecutorService in Java.

• Using the new Fork/Join-framework included in Java 7.
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This will let us see how well the implementations by just creating new
threads for every task versus the reusing of threads in a pool perform
compares to each other. We will also see if the new framework Fork/Join
does have any advantages compared with the older ExecutorService.

5.1.1 Naive

The naive attempt differs from the sequential Quicksort in that way that
each time Quicksort recursively calls itself; it instead creates new threads
which then call. And by creating these new threads, each core (included
Hyper-Threads) on the current system can then be assigned the available
threads and do the computation in parallel, which then should result in
increasing the overall performance. The Listing 5.1 contains code for this
implementation.

But with larger and larger arrays to sort, even more threads will be created
in the naive attempt of Quicksort. As creating threads causes overhead
and with a new thread for each recursive call, the algorithm would result
in poor performance if we do not limit the creation process somehow.

1 c l a s s Q u i c k s o r t P a r a l l e l implements Runnable {
private f i n a l i n t [ ] array ;

3 private f i n a l i n t l e f t , r i g h t ;
f i n a l s t a t i c i n t INSERTION_SORT_THRESHOLD = 4 7 ;

5

public Q u i c k s o r t P a r a l l e l ( i n t [ ] arr , i n t l , i n t r ) {
7 // Constructor

}
9

public void run ( ) {
11 q ui ck so r t ( array , l e f t , r i g h t ) ;

}
13

void q ui ck so r t ( i n t [ ] array , i n t l e f t , i n t r i g h t ) {
15 i f ( r ight− l e f t <= INSERTION_SORT_THRESHOLD) {

i n s e r t i o n S o r t ( array , l e f t , r i g h t ) ;
17 }

19 e lse {
i n t pivotIndex = p a r t i t i o n ( array , l e f t , r i g h t ) ;

21 Thread t1 = new Thread (
new Q u i c k s o r t P a r a l l e l ( array , l e f t , pivotIndex − 1) ) ;

23 Thread t2 = new Thread (
new Q u i c k s o r t P a r a l l e l ( array , pivotIndex + 1 , r i g h t ) ) ;

25

t 1 . s t a r t ( ) ;
27 t 2 . s t a r t ( ) ;

t r y {
29 t 1 . j o i n ( ) ; t 2 . j o i n ( ) ;

} catch ( InterruptedExcept ion e ) { }
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31 }
}

33

i n t p a r t i t i o n ( i n t [ ] array , i n t l e f t , i n t r i g h t ) {
35 i n t pivotValue = array [ ( l e f t + r i g h t ) / 2) ] ;

swap ( array , ( l e f t + r i g h t ) / 2 , r i g h t ) ;
37 i n t index = l e f t ;

39 for ( i n t i = l e f t ; i < r i g h t ; i ++) {
i f ( array [ i ] <= pivotValue ) {

41 swap ( array , i , index ) ;
index ++;

43 }
}

45

swap ( array , index , r i g h t ) ;
47 return index ;

}
49

51 void swap ( i n t [ ] array , i n t l e f t , i n t r i g h t ) {
i n t temp = array [ l e f t ] ;

53 array [ l e f t ] = array [ r i g h t ] ;
array [ r i g h t ] = temp ;

55 }
}

Listing 5.1: Parallel Naive Quicksort

To reduce the number of threads to create we can try by finding the optimal
granularity. This is no simple task when using different systems with
various numbers of cores, clock-speed and memory bandwidth to run the
algorithm. One approach would be to do a live profiling to give the desired
granularity for each system. But as the test environment in this thesis is
mainly focused on one system there is an easier solution. In Listing 5.2 is a
simplified alternative, using a hardcoded threshold to limit the creation of
threads.

f i n a l s t a t i c i n t LIMIT = 50000 ;
2

void qu ic ks or t ( ) {
4 . . .

i f ( r ight− l e f t <= LIMIT ) {
6 /** I f current part of the array−s i z e i s l e s s than the s e t

LIMIT , we c a l l q u i ck so r t ( ) r e c u r s i v e with current thread */
8 }

e lse {
10 /** Else we c r e a t e two new threads to c a l l qu ic ks or t ( ) */

}
12 }

Listing 5.2: Granularity; limit the creation of threads for Quicksort
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The result of using this IF-check is that it will also reduce the number of
additional threads to create, and on this naive implementation we will only
have one thread when the array-sizes is less or equal to 50 000 elements.

Test Run

After we have including the hardcoded threshold to the code in Listing 5.1,
the next step is doing a test run and comparing it to Arrays.sort(). The
test can be seen in Figure 5.1.

Figure 5.1: Parallel Naive Quicksort

Because we now start the sorting by allocating a new thread for the
QuicksortParallel class, the overhead will cause such an impact on the
measured times that it performs worse when sorting less than ∼50 000
elements. A solution to this problem could have been to do add an array
length check before deciding to create and run the parallel implementation,
and rather call a sequential Quicksort implementation to get the result from
Figure 4.1.

As the number of elements goes above 50 000, the algorithms starts create
new threads for the recursive calls. Threads get assigned to different cores
on the CPU by the Java Virtual Machine and Operating System. The
outcome of this is the performance increase we see in the graph, with the
highest at ∼3 million elements being 2.3 times faster than Arrays.sort()

on our quad-core (8 w/Hyper-Thread) CPU.
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5.1.2 ExecutorService

The creation process is a bit different with ExecutorService since we have
to create a ThreadPool with a fixed amount of threads that should be
available, and we need a Future to keep track of every submitted task. The
Future will also need a checkpoint to see when the sorting is completed.

An example of starting Quicksort with ExecutorService can be seen in
Listing 5.3. The static integer CORES when we create the ThreadPool are
initialized using Runtime.getRuntime().availableProcessors() to get
the current systems available processors (included Hyper-Threads). On the
system used for this test this would mean eight.

// Create the f i x e d Threadpool f o r the ExecutorServ ice
2 f i n a l ExecutorServ ice pool = Executors . newFixedThreadPool (CORES) ;

// and a future to keep t r a c k of when t a s k s are done
4 Lis t <Future > f u t u r e s = new Vector <Future > ( ) ;

6

8 // I n s t a n t i a t e the Quicksort implemented with ExecutorServ ice
QuicksortExecutor QE = new QuicksortExecutor

10 ( QuickArray , 0 , QuickArray . length −1, futures , pool ) ;

12 // Submit the task to the Threadpool and add i t to Future
f u t u r e s . add ( pool . submit (QE) ) ;

14

// Wait f o r a l l t a s k s to complete
16 while ( ! f u t u r e s . isEmpty ( ) ) {

Future topFeature = f u t u r e s . remove ( 0 ) ;
18 t r y {

i f ( topFeature != null ) topFeature . get ( ) ;
20 } catch ( . . . ) { . . . }

}
22 pool . shutdown ( ) ;

Listing 5.3: ExecutorService Start Process

When all tasks are complete this means that we are done sorting, and finally
we will shut down the ThreadPool.

The rest of the implementation is rather identical to the naive attempt, with
only some additions of parameters and the submission of new Quicksort
calls to the ThreadPool. The code can be seen in Listing 5.4.
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c l a s s QuicksortExecutor implements Runnable {
2 ExecutorServ ice pool ;

L i s t <Future > f u t u r e s ;
4

. . .
6

void q ui ck so r t ( i n t [ ] array , i n t l e f t , i n t r i g h t ) {
8 i f ( r ight− l e f t <= INSERTION_SORT_THRESHOLD) {

i n s e r t i o n S o r t ( array , l e f t , r i g h t ) ;
10 }

12 e lse {
i n t pivotIndex = p a r t i t i o n ( array , l e f t , r i g h t ) ;

14

i f ( r ight− l e f t <= LIMIT ) {
16 qu i ck so r t ( array , l e f t , pivotIndex − 1) ;

qu ic k so r t ( array , pivotIndex + 1 , r i g h t ) ;
18 }

20 e lse {
f u t u r e s . add ( pool . submit (new QuicksortExecutor

22 ( array , l e f t , pivotIndex − 1 , futures , pool ) ) ) ;
f u t u r e s . add ( pool . submit (new QuicksortExecutor

24 ( array , pivotIndex + 1 , r ight , futures , pool ) ) ) ;
}

26 }
}

28 . . .
}

Listing 5.4: Parallel Quicksort using ExecutorService

Test Run

As seen in Figure 5.2; compared to the naive attempt we get a much better
performance boost on the test run using the ExecutorService. The main
reason for this increased performance is that with a fixed ThreadPool, the
algorithm only creates the fixed amount of threads at the beginning and
then reuses these threads when new tasks are submitted.

Considering that we achieved a computation time of almost 4.75 times
faster than the sequential implementation, we think it is a pretty good
outcome on the quad-core CPU tested with here. And with some tweaking
to both the algorithm and the Java Virtual Machine, we think it should be
able to break the 5 times mark fairly easily.

As with the naive attempt the overhead will also here have such an impact
to the measured times that it is less efficient on small arrays. Another
solution to the problem could be to combining the algorithm with another
that is more ideal for these kinds of sizes.
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Figure 5.2: Parallel Quicksort using ExecutorService

5.1.3 Fork/Join

One of the new and very interesting feature introduced in Java 7; is the
Fork/Join-framework which is described in greater detail in Subsection
2.2.7.

As with the ExecutorService we create a fixed pool to contain the
available worker threads, and then submit tasks to this pool. But while
the submitting with ExecutorService submits a value-returning task for
execution and return a Future representing the pending results of the task.
The Fork/Join uses invoke on tasks, this performs the given task and
returning its result upon completion. This means that there is no need to
use Future to keep track of the tasks.

Creating the Fork/Join-framework only requires specifying the number of
desired threads for the pool (You can actually just call ForkJoinPool(),
which uses Runtime.getRuntime().availableProcessors() as default),
example like we did with ExecutorService:

ForkJoinPool QParFJ = new ForkJoinPool(CORES);

Rest of the implementation can be seen in Listing 5.5.
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1 c l a s s QuicksortForkJoin extends RecursiveAction {

3 . . .

5 protected void compute ( ) {
q u i ck so r t ( array , l e f t , r i g h t ) ;

7 }

9 void q ui ck so r t ( i n t [ ] array , i n t l e f t , i n t r i g h t ) {
i f ( r ight− l e f t <= INSERTION_SORT_THRESHOLD) {

11 i n s e r t i o n S o r t ( array , l e f t , r i g h t ) ;
}

13

e lse {
15 i n t pivotIndex = p a r t i t i o n ( array , l e f t , r i g h t ) ;

17 i f ( r ight− l e f t <= LIMIT ) {
qu ic k so r t ( array , l e f t , pivotIndex − 1) ;

19 qu i ck so r t ( array , pivotIndex + 1 , r i g h t ) ;
}

21 e lse {
invokeAll (

23 new QuicksortForkJoin ( array , l e f t , pivotIndex − 1) ,
new QuicksortForkJoin ( array , pivotIndex + 1 , r i g h t ) ) ;

25 }
}

27 }
. . .

29 }

Listing 5.5: Parallel Quicksort using Fork/Join

Test Run

The Figure 5.3 show the test run with the Fork/Join implementation.

If we compare the different graphs, Fork/Join-framework is actually
slower compared to ExecutorService. This is surprising as we thought
the Work-Stealing aspect would increase the performance as none of the
worker threads would idle (i.e. they got dealt a smaller portion of the array
that is sorted and finished earlier).

But over 4 times as fast compared to the sequential implementation, is in
our eyes still considered a good performance boost on a quad-core CPU.
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Figure 5.3: Parallel Quicksort using Fork/Join

5.2 Parallel LSD-Radixsort Implementations

Contrary to Quicksort it is necessary to use some sort of synchronization
to create parallel versions of LSD-Radixsort. This is because each step in
Radixsort has to be completely done before the next operation can take
place. We will also have to look into how we divide the work among the
available resources and how to treat the shared data for the algorithm.

For the parallel implementations of LSD-Radixsort we will use the same
tools, but with various tweaking to try improving the parallel computation
time. After going through the Java API documentation we ended up with
CyclicBarrier for synchronization and AtomicIntegerArray for storing
the shared data. This allowed us to create the following scenarios:

• CyclicBarrier and Atomicity

• Non-Atomic with Duplicate Reads

• Non-Atomic with Duplicate Data

While there are other mechanisms available for synchronization between
the different steps when sorting, we chose CyclicBarrier because first
of we do want to use tools from the concurrent packages rather than
wait/notify, Condition etc... Secondly we also want to reduce the number
of declarations and reuse them, which would not be possible with the
CountDownLatch.
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Another possible mechanism would be to use Phaser, but we chose not to
use this because we do not need the dynamic functionality it provides, and
while doing some minor testing we found that the performance was almost
identical compared to CyclicBarrier.

5.2.1 CyclicBarrier and Atomicity

With the overhead that occur by creating threads for computing in parallel,
we want to check the length of the array before we start sorting to
determine if we should sort the array sequentially (2-digit LSD-Radixsort
from Section 4.3.1) or in parallel.

As we did with Quicksort (Listing 5.2) we choose how to sort by setting a
LIMIT as seen in Listing 5.6. Here we do an IF-check to see if the arrays
length is less or equal to the set threshold, which are the same value used
in the parallel implementations of Quicksort, 50 000, a LIMIT that was
confirmed to be a good balance between overhead and sorting time on the
previous test runs.

1 f i n a l s t a t i c i n t LIMIT = 50000 ;

3 void r a d i x s o r t ( i n t [ ] array ) {

5 . . .

7 i f ( array . length <= LIMIT ) {
/** I f the arrays length i s l e s s than s e t LIMIT ,

9 we s o r t the array se q u en t i a l y as seen in S e c t i o n 4 . 3 */
}

11

e lse {
13 /** Else we i n i t i a t e the process to run with worker threads

and s o r t the array in p a r a l l e l with these , L i s t i n g 5 . 7 */
15 }

}

Listing 5.6: Radixsort, when to sort Sequential/Parallel

When we are going to sort arrays that exceed 50 000 elements, we would
have to initiate the parallel computation process which use worker threads
(classes with runnable) for sorting. But before starting these threads we
first need to sequentially find the maximum value for the whole array,
declaring the two bits for running the algorithm with 2-digit and create
the two AtomicIntegerArray as the shared counters.

42



// Find max value in array
2 for ( i n t i = 0 ; i < array . length ; i ++) {

i f ( array [ i ] > max) max = array [ i ] ;
4 }

6 // Convert the max value to b i t s
while (max >= 1<< b i t s ) b i t s ++;

8 // and s p l i t i t f o r 2−d i g i t
b i t 1 = b i t s /2;

10 b i t 2 = b i t s−b i t 1 ;

12 count1 = new AtomicIntegerArray (1<< b i t 1 ) ;
count2 = new AtomicIntegerArray (1<< b i t 2 ) ;

14

// Create and s t a r t the worker threads
16 for ( i n t i = 0 ; i < CORES ; i ++) {

new Thread (new Worker ( i ) ) . s t a r t ( ) ;
18 }

20 // Wait f o r a l l Worker Threads to f i n i s h ( i . e . s o r t i n g i s done )
t r y {

22 f i n i s h e d . await ( ) ;
} catch ( . . . ) { . . . }

Listing 5.7: Radixsort, sequential part

The created worker threads contain a runnable instance that will first find
its “own” portion of the array which it will sort. The workers are numbered
from 0 to CORES-1 (Runtime.getRuntime().availableProcessors()-1),
which helps us divide the array into equally sized pieces. Overview of the
Worker class is seen in Listing 5.8.

1 c l a s s Worker implements Runnable {
i n t threadNumber , l e f t , r i g h t ;

3 double part ;

5 Worker ( i n t threadNumber ) {
t h i s . threadNumber = threadNumber ;

7 }

9 public void run ( ) {
// Divide the array i n t o equal ly s ized p i e c e s

11 part = array . length/CORES ;
l e f t = ( i n t ) ( threadNumber * part ) ;

13

// and making sure they do not overlap
15 i f ( threadNumber == CORES−1) {

r i g h t = array . length −1;
17 }

19 e lse {
r i g h t = ( i n t ) ( ( threadNumber +1) * part )−1;

21 }

23
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// Do a 2−pass Radixsort where each worker thread
25 // focus on t h e i r "own" part of the array [ l e f t . . . r i g h t ]

r a d i x s o r t 2 ( array , temp , b i t1 , 0 ,
27 l e f t , r ight , count1 , threadNumber ) ;

r a d i x s o r t 2 ( temp , array , b i t2 , b i t1 ,
29 l e f t , r ight , count2 , threadNumber ) ;

31 // Wait f o r a l l other threads to f i n i s h
t r y {

33 f i n i s h e d . await ( ) ;
} catch ( . . . ) { . . . }

35 }
}

Listing 5.8: Radixsort, the Worker Threads

We use two CyclicBarrier for synchronization. The first one is finish

which will not open before every worker thread plus the main thread is
done computing, confirming that the array is sorted and we are done. The
second is sync which we use as a synchronizer between each step when
sorting.

Test Run

Like with Quicksort the test run for the Radixsort implementations are
done using the previously mentioned system and structure in Chapter 3.
Figure 5.4 show how the well the first implementation of a parallel version
of Radixsort performed by using CyclicBarrier and Atomicity as tools.

Figure 5.4: Parallel Radixsort using CyclicBarrier and Atomicity
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Compared with the sequential 2-digit Radixsort from Chapter 4, Figure 4.3,
we see that the beginning of test run is roughly the same. This is of course
the result of our limitation of when to start computing in parallel.

As soon as the arrays length exceed 50 000 elements the parallel sorting
begin. The measurement shows us that it performs quite badly compared
to the sequential implementation (∼9 times faster), and that we have to sort
array length above 30 million elements before we see any benefit with the
parallel version.

We have reason to believe that the bad performance is a combination of
the overhead for creating and calling worker threads, the synchronization
using the two AtomicIntegerArray count[] and that some steps of the
sorting are performed sequentially.

5.2.2 Non-Atomic with Duplicate Reads

To try improving the parallel LSD-Radixsort algorithm, an idea is to
remove the need for our synchronization on the count arrays (count1
and count2). Which would also give us opportunity to change out the
AtomicIntegerArray with regular int[], removing the extra overhead that
occur by using atomic variables.

We did this by dividing which values each worker will sort rather than
which part of the array (array[]) as in the previous implementation. This
means that all threads go through the whole array, but only addressing
their ”own” values and as a result no need for synchronization on the
count[] arrays. The new improved radixsort2 can be seen in Listing 5.9:

void r a d i x s o r t 2 ( i n t [ ] array , i n t [ ] temp , i n t bi t1 , i n t bi t2 ,
2 i n t l e f t , i n t r ight , i n t [ ] count , i n t threadNumber ) {

4 // Compute frequency counts f o r values t h a t t h i s worker owns
for ( i n t i = 0 ; i < array . length ; i ++) {

6 i n t j = ( array [ i ]>> b i t 2 ) & (1<< b i t 1 )−1;
i f ( l e f t <= j && j <= r i g h t ) { count [ j ]++ ; }

8 }

10 // Synchronize − wait f o r a l l worker threads
t r y {

12 sync . await ( ) ;
} catch ( . . . ) { . . . }

14

// Sequent ia l compute frequency cumulates
16 i f ( threadNumber == 0) {

i n t k = 0 , l ;
18 for ( i n t i = 0 ; i < (1<< b i t 1 ) ; i ++) {
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l = count [ i ] ; count [ i ] = k ; k += l ;
20 }

}
22

// Synchronize
24 t r y {

sync . await ( ) ;
26 } catch ( . . . ) { . . . }

28 // D i s t r i b u t e the records f o r values t h a t t h i s worker owns
for ( i n t i = 0 ; i < array . length ; i ++) {

30 i n t j = ( array [ i ]>> b i t 2 ) & (1<< b i t 1 )−1;
i f ( l e f t <= j && j <= r i g h t ) temp [ count [ j ]++] = array [ i ] ;

32 }

34 // Synchronize
t r y {

36 sync . await ( ) ;
} catch ( . . . ) { . . . }

38 }

Listing 5.9: Radixsort, Duplicate Reads

For the partition of the array each worker will now assign their left

/ right variable by shifting the bit1 / bit2. The updated Run()

implementation for the workers can be seen in Listing 5.10.

// Divide the array i n t o equal ly s ized p i e c e s
2 part = (1<< b i t 1 ) /CORES ;

l e f t V a l u e = ( i n t ) ( threadNumber * part ) ;
4

// and making sure they do not overlap
6 i f ( threadNumber == CORES−1) {

r ightValue = (1<< b i t 1 )−1;
8 }

e lse {
10 r ightValue = ( i n t ) ( ( threadNumber +1) * part−1) ;

}
12

// Do a 1 . pass Radixsort where each worker thread focus
14 // on t h e i r "own" value in the array

r a d i x s o r t 2 ( array , temp , b i t1 , 0 ,
16 l e f tV a lue , r ightValue , count1 , threadNumber ) ;

18 /* P a r t i t i o n with (1<< b i t 2 ) as above , and do 2 . pass */

20 r a d i x s o r t 2 ( temp , array , b i t2 , b i t1 ,
l e f tV a lue , r ightValue , count2 , threadNumber ) ;

Listing 5.10: Radixsort, Duplicate Reads run-method

Even though we have to go through the whole array this should reduce the
overhead as there is no need to use the getAndIncrement(), and there is no
synchronization on the array when updating it.
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Test Run

Even though we have to go through the whole array this should reduce
the overhead for not using atomic variables, and there is no more
synchronization on the counters when sorting the array. We see that in
Figure 5.5 we have gained a small performance boost overall compared
to the previous implementation, but still the sequential Radixsort have a
much better performance.

Figure 5.5: Parallel Radixsort with Duplicate Reads

5.2.3 Non-Atomic with Duplicate Data

We suspect that the sequential parts of our Radixsort are the cause of the
poor performance, so the next step would be to try parallelizing these parts.
The following section and code are based on the work by Arne Maus[17].

The first thing we want to do is to find the maximum value in parallel.
We do this by dividing the array into equally sized pieces like we
did in Listing 5.8, then each of the workers will go through his part
([leftIndex...rightIndex]) and find the local maximum value. After
every worker has completed this, we then proceed to pick out the highest
maximum value from this collection.
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1 // Find l o c a l max value in t h i s workes part of the array
for ( i n t i = l e f t I n d e x ; i <= r ight Index ; i ++) {

3 i f ( array [ i ] > max) max = array [ i ] ;
}

5

localMax [ threadNumber ] = max ;
7

// Synchronizat ion − wait f o r a l l worker threads to f ind localMax
9 t r y {

sync . await ( ) ;
11 } catch ( . . . ) { . . . }

13 // Compare and f ind max value
for ( i n t i = 0 ; i < CORES−1; i ++) {

15 i f ( localMax [ i ] > max) max = localMax [ i ] ;
}

Listing 5.11: Radixsort, find maximum value in parallel

Another sequential part from the previous implementations is the compu-
tation of frequency cumulates, which was only done by the first worker
thread. We have tried to solve this issue by introducing a local count for
each worker, which will contain the frequency count for the workers own
part of the array ([leftIndex...rightIndex]).

for ( i n t i = l e f t I n d e x ; i <= r ight Index ; i ++) {
2 localCount [ ( array [ i ]>> b i t 2 ) & (1<< b i t 1 ) −1]++;

}
4 al lCount [ threadNumber ] = localCount ;

Listing 5.12: Radixsort, local count

By using the same left / right values from Listing 5.10, each worker can
now focus on his own values in the array and cumulate these in parallel.

// Compute frequency cumulates f o r values t h a t t h i s worker owns
2 i n t k = 0 , l ;

for ( i n t i = l e f t V a l u e ; i <= r ightValue ; i ++) {
4 for ( i n t j = 0 ; j < CORES; j ++) {

l = al lCount [ j ] [ i ] ; a l lCount [ j ] [ i ] = k ; k += l ;
6 }

}
8 a l lVa lue [ threadNumber ] = k ;

10 t r y {
sync . await ( ) ;

12 } catch ( . . . ) { . . . }

14 // Accumulate own values
k = 0 ;

16 for ( i n t i = 0 ; i < threadNumber ; i ++) {
k += a l lVa lue [ i ] ;

18 }
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20 // Update cumulates f o r values t h a t t h i s worker owns
for ( i n t i = l e f t V a l u e ; i <= r ightValue ; i ++) {

22 for ( i n t j = 0 ; j < CORES; j ++) {
al lCount [ j ] [ i ] += k ;

24 }
}

Listing 5.13: Radixsort, compute frequency cumulates in parallel

The most important factor with this implementation is that each worker
has a local version of count[] for their own values. This implementation
manages to both avoid the synchronization on count[] and it also share
data and values.

Test Run

With Figure 5.6 we clearly see a performance boost from using this
implementation.

Figure 5.6: Parallel Radixsort with Duplicate Data

One of the most important factor compared to those seen previously is
that when we start to run the algorithm in parallel (∼50 000 elements) it
keeps on climbing, reaching maximum performance at 300 000 elements
and when compared to Arrays.sort() more than 18 times faster!
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5.3 Test Cases with more Cores

After experimenting and testing on the local system we wanted to expand
the testing to systems with more cores to see how well the different
implementations scale.

The following tests in this section were done at the Department of
Informatics at the University of Oslo. The system we tested on has four
octa-core CPUs, each with eight additional threads available via Hyper-
Threading. This brings the total available threads up to 64. Table 5.1 show
the specification of the system, which all is run on a Linux environment.

CPU
4x Intel Xeon L7555 @ 1.87GHz Octa-Core

(32 total, 64 w/Hyper-Threading)
RAM 128 GB @ 1066MHz

OS
Red Hat Enterprise Linux 4 64-bit

(Kernel: 2.6.18-308.8.2.el5)

Table 5.1: Hardware for Test Cases with more Cores

5.3.1 Java 7 Utilities when using Java 6

Since the current version of Java used at the University is Java 6 (build
1.6.0_31-b04) it does not include the Fork/Join-framework, which was
part of the Java 7 update. This means that we would have to include
an extra package when compiling and running the Java-code at this
system. By using the preview version from the “Concurreny JSR-166
Interest Site” [4], we can import the extra package called jsr166y.jar

which includes most of the new classes that appeared in Java 7.

This package can easily be included in the program by implementing the
code: import jsr166y.*; . And then putting jsr166y.jar in the same
folder as the Java-code. When compiling and running the Java-code the
file has to be included in the Classpath (-cp). Like shown in the following
compiling example:

javac -cp ".:/home/testing/jsr166y.jar" QuicksortTesting.java

As of today JSR-166 Interest Site also have a new package called
jsr166e.jar; which is a preview version of the new concurrency classes
that may appear in Java 8. This package of course requires Java 7.
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5.3.2 Quicksort Test Runs

Comparing the graphs in Figure 5.7 with the one from Subsection 4.2.2, we
see that this sequential Quicksort is somewhat faster when comparing it to
Arrays.sort(). The reason for this is that we use an earlier version of Java
where the Arrays.sort() is less optimized, which is why our sequential
Quicksort have around 30% performance “boost”.

Figure 5.7: Sequential Quicksort on the 32-core CPU

The naive parallel implementation of Quicksort as seen in Figure 5.8 ends
up being around double as efficient as previous test run (Figure 5.1) with
elements from 200 000 to 2 million. But considering that we use 8 times the
number of cores, we are far away from a linear scaled performance increase.

Figure 5.8: Parallel Naive Quicksort with 32-cores (64 w/HT)
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With 64 threads the ExecutorService, Figure 5.9, remains as the most
effective Quicksort implementation of the once we tested. But again it is
far away from what we hoped for with the severely increase in number of
cores, and the only really noticeable performance gain was the last test with
100 million elements. Strangely we also see a drop in performance between
1 to 3 million elements.

Figure 5.9: Parallel Quicksort using ExecutorService; 32-cores (64 w/HT)

The same can be said of the Fork/Join implementation in Figure 5.10. On
average the 32-core test run is actually also less efficient than on our quad-
core test when excluding the sequential parts (less than 50 000), with a 288%
versus 296% increase in performance.

Figure 5.10: Parallel Quicksort using Fork/Join; 32-cores (64 w/HT)
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5.3.3 LSD-Radixsort Test Runs

With the sequential LSD-Radixsort test run at the University, we see in
Figure 5.11 that because of the less optimized version of Arrays.sort()

the sequential Radixsort performs better than on our own system.

Figure 5.11: Sequential Radixsort on the 32-core CPU

Figure 5.12: Parallel Radixsort using CyclicBarrier and Atomicity; 32-cores

Both test runs in Figure 5.12 (Atomic) and 5.13 (Non-Atomic with Duplicate
Reads) shows the same problem as seen in Subsection 5.2.1 / 5.2.2; as soon
as the parallel computation begins at 50 000 elements we see a huge drop
in performance, which with 32-cores is even worse than on the quad-core
test. This strengthen the reason to believe that the overhead for creating
and calling workers combined with synchronization and some of the steps
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are performed sequentially have a too much negative effect on the sorting
times.

Figure 5.13: Parallel Radixsort with Duplicate Reads; 32-cores (64 w/HT)

Finally on the parallel implementation with duplicate data, Figure 5.14,
it starts off slow but reaches very good results as the array grows. It is
clear that using a threshold around 50 000 does not go very well with
parallel Radixsort on 4x octa-cores, we should have set a larger threshold
and gradually increase the number of worker threads to create.

Figure 5.14: Parallel Radixsort with Duplicate Data; 32-cores (64 w/HT)
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Chapter 6

Threads and Overhead

To explain the results in Chapter 5, we will in this chapter look closer at
threads and the overhead that occurs from generating and calling them.

Overhead is the extra work the operating system must do to create and
manage multiple threads or a concurrent framework. So with a parallel
implementation of a program, the overhead could result in a loss in
performance if threads and concurrent frameworks are used for too small
problems.

By looking into this, it will help us give a few ideas to when we should or
should not use threads or a concurrent framework. Listed below are the
different mechanisms that we wanted to do some test runs on to measure
the overhead that occur when creating and calling:

• Methods

• Classes

• Threads

• ExecutorService

• Fork/Join-Framework

• Variables (int)

• Atomic Variables

While there are a lot of other mechanisms that would be interesting to look
into, the ones that are chosen are the ones previously used in Chapter 5 -
Experiments. This will also help us figuring out if there are any correlations
between the mechanisms overhead and performance gain.

The chapter starts off by going through how the tests are measured on both
Windows and Linux, before it presents each of the mechanisms result in its
own subsection and finally comparison of the results.
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6.1 Measurement Method

6.1.1 Test Program Structure

To test out the different mechanism mentioned at the beginning of this
chapter, we first start of by making a program structure for the test runs.
This would have to contain the creation and calling of the mechanism,
where each part have to include a time for when it starts and when it
is done, giving us the computation time which we then can use to get
comparable results.

In Listing 6.1 we can see the basic structure that will test out the various
mechanisms, creating and calling the number of times we wish to test.
When dealing with the ExecutorService- and Fork/Join-framework, the
ThreadPool will only be created once at the beginning and each call is a
submit/invoke.

1 // mechanism : may be method , c l a s s or thread
{

3 currentMechanismNr = 0 ;
numberOfMechanisms = N; // N: t o t a l number of mechanisms

5

startRunTime = System . nanoTime ( ) ;
7 s tar tCreateTime [ currentMechanismNr ] = System . nanoTime ( ) ;

/** Execute c r e a t i o n of the mechanism or
9 the framework t h a t w i l l be t e s t e d */

doneCreateTime [ currentMechanismNr ] = System . nanoTime ( ) ;
11

s t a r t C a l l T i m e [ currentMechanismNr ] = System . nanoTime ( ) ;
13 /** Execute c a l l to methodName to s t a r t the mechanism */

totalRunTime = System . nanoTime ( ) − startRunTime ;
15 }

17 c l a s s className {
void methodName ( ) {

19 doneCallTime [ currentMechanismNr ] = System . nanoTime ( ) ;
// i f more mechanisms being tes ted , c r e a t e / c a l l r e c u r s i v e l y

21 i f ( currentMechanismNr < numberOfMechanisms−1) {
i n t i = ++currentMechanismNr ;

23

s tar tCreateTime [ i ] = System . nanoTime ( ) ;
25 /** Execute c r e a t i o n of a d d i t i o n a l mechanisms */

doneCreateTime [ i ] = System . nanoTime ( ) ;
27

s t a r t C a l l T i m e [ i ] = System . nanoTime ( ) ;
29 /** Execute c a l l to the a d d i t i o n a l mechanisms */

}
31 }

}

Listing 6.1: Overhead Testing Structure
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Usually one would fill the methodName with code to actually doing
something (i.e. Sorting, calculation, merging... etc), but as we only want to
do measurements on the overhead, we do not want to have any additional
code for this. So the tests will call ”empty” methods for the different
mechanism, giving us the cost of each call.

For variables and atomic variables we will do different operations rather
than calls. Each operation will be performed a given number of times in a
for-loop, the structure can be seen in Listing 6.2:

// operat ion : Get , Set , Increment or Decrement
2

s t a r t O p e r a t i o n s = System . nanoTime ( ) ;
4 for ( i n t i = 0 ; i < numberOfTimes ; i ++) {

/** Perform operat ion N−t imes */
6 }

operationsTime = System . nanoTime ( ) − s t a r t O p e r a t i o n s ;

Listing 6.2: Overhead Atomic Testing

6.1.2 Windows and Batch-file

In Chapter 3 we discussed how important it is to do more test run to get a
more precise result while doing the experiments. For the overhead testing
we want to do the same thing; first do many test runs on each of the
different mechanisms, and collect the result of each run. Then sort these
collections and pick out the median values as mentioned in Subsection 3.2.2
- Median or Average.

To run the tests more than once one would usually just create a loop around
the part of the code that is going to be measured, storing each measurement
and finally calculate the result. The ”problem” with doing this while
measuring overhead is that the Java Virtual Machine (JVM) does a lot of
optimization at runtime. These optimization will impact the measurement
and only give us the full cost of overhead the first time we create or call the
different mechanisms (Class, Thread, ForkJoinPool... etc). And this is the
reason we would want to ”Cold-start” the test runs each time.

By Cold-starting this mean that we want to completely shut down the JVM
for each and every test run, so we then can start it up again without any
of the optimization from the previous run. Since overhead testing takes
such a small time to measure and we want to do a lot of runs to get more
accurate results, letting the JVM shut down and manually starting up new
test would then be a very tedious task. This is where scripting become
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handy and in the Windows environment we can then use Windows own
shell script Batch-files (.bat).

In the following Listing 6.3, we have the script created for the overhead test-
ing done in Windows for this chapter. It start off by assigning two variables;
numberOfMechanisms and numberOfTestRun, both which is commented in
the script. Then it compiles the two Java-files; OverheadTesting.java

which does the actual overhead testing and writing the results to .txt-files,
and OverheadOutput.java which reads the .txt-files sorting the results and
produce graphs and output suitable for tables.

1 : : Maximum number of mechanisms to t e s t using Powers of Two (2^n )
: : 32 w i l l t e s t : { 1 , 2 , 4 , 8 , 16 , 32 }

3 SET /a numberOfMechanisms = 32

5 : : Number of t e s t runs , more runs r e s u l t in more p r e c i s e output
SET /a numberOfTestRun = 2000

7

: : Compile Java−f i l e s
9 j a v a c OverheadTesting . java

j a v a c OverheadOutput . j ava
11

SET /a i = 1
13 : outerLoop

: : GTR means Greater than ( >)
15 IF %i% GTR %numberOfMechanisms% GOTO outerEnd

SET /a j = 1
17 : innerLoop

IF %j% GTR %numberOfTestRun% GOTO innerEnd
19 : : S t a r t the overhead t e s t i n g with current

: : number of mechanisms to t e s t with as parameter
21 j ava OverheadTesting %i%

SET /a j = %j% + 1
23 GOTO innerLoop

: innerEnd
25 SET /a i = %i% * 2

GOTO outerLoop
27 : outerEnd

29 : : Output r e s u l t s to LaTeX and graphs
java OverheadOutput %numberOfTestRun%

31 echo Test run done .

Listing 6.3: Batch-file for Overhead Testing

By simply executing the Batch-file in the same folder as the two Java-files
and with the current variables set in the script, overhead testing will be
done with the number of Call / Class / Threads : 1, 2, 4, 8, 16 and 32.
Where these all will be executed 2000 times to get a large collection of
measurements. The final test results produced by OverheadOutput.java

can be seen in Section 6.2 and 6.3.
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6.1.3 Linux and Bash-file

While the main platform used for this thesis is Windows, after running and
collection overhead data we thought it would also be interesting to see how
much overhead occur on other platforms. This resulted in trying to do the
same tests on the Linux platform to get some comparable data, with the
Linux distribution of choice Linux Mint 13.

To do the same test on Linux, also meant that we have to create a script-file
for this environment too. As Linux do not have the ability to execute Batch-
files, we created a similar script using Bash-files (.sh) which can be seen in
Listing 6.4.

1 # ! /bin/bash

3 # Maximum number of mechanisms to t e s t using Powers of Two (2^n )
# 32 w i l l t e s t : { 1 , 2 , 4 , 8 , 16 , 32 }

5 numberOfMechanisms=32

7 # Number of t e s t runs , more runs r e s u l t in more p r e c i s e output
numberOfTestRun=2000

9

# Compile Java−f i l e s
11 j a v a c OverheadTesting . java

j a v a c OverheadOutput . j ava
13

i =1
15 # −l e means Less than or equal ( <=)

while [ $ i −l e $numberOfMechanisms ] ; do
17 j =1

while [ $ j −l e $numberOfTestRun ] ; do
19 # S t a r t the overhead t e s t i n g with current

# number of mechanisms to t e s t with as parameter
21 j ava OverheadTesting $ i

l e t j +=1
23 done

l e t i *=2
25 done

27 # Output r e s u l t s to LaTeX and graphs
java OverheadOutput $numberOfTestRun

29 echo Test run done .

Listing 6.4: Bash-file for Overhead Testing

It is a rather straight-forward convert from the Batch-file using Linux ↔
DOS command equivalences. The results can be seen in Section 6.2 and 6.3.
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6.1.4 Hardware

Contrary to the hardware used for the Experiments in Chapter 5 (for
specifications see Section 3.3), another hardware setup has been used for
the overhead testing.

The reason for this decision is that with the previous hardware there
was some measurements trouble when using the built-in Java method
System.nanoTime(). An example is that the output of System.nanoTime()
when comparing the start and end time of method-calls sometimes resulted
in identical values, which means it took zero microseconds to call, a
precision issue that (hopefully) can be ignored with slower hardware.

An overview of the hardware can be seen in Table 6.1 and are parts of an old
Dell Inspiron 9300 laptop which released in 2004. This hardware have been
used for every test run in Section 6.2, and also for measuring the times for
the sequential Quicksort comparison in Figure 6.2, Section 6.3. The ”key”
component is the much slower Intel Mobile singe-core processor, which has
a much lower clock-speed and smaller cache-sizes. As there is no need for
multi-core either, the single-core does not share caches with other cores (or
Hyper-Threads).

CPU Intel Pentium M 760 @ 2.0GHz Single-Core
RAM 2 GB DDR2 @ 533 MHz

OS Windows 7 32-bit / Linux Mint 13 32-bit

Table 6.1: Hardware used for Overhead Testing

6.2 Overhead Test Results

The following subsections and its tables contain the test results given by the
testing in OverheadTesting.java, and output from OverheadOutput.java.
All the measured times used for this subsections are in microseconds (µs).

These subsections also refer to the Section 6.3 when comparing with the
different Quicksort computation times.

6.2.1 Methods

We start off by measuring a static method that practically does nothing. But
as Java also does some optimization when compiling, the method actually
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updates a global dummy variable so that the method will be called and not
just ignored. The measuring takes this into account so the results seen in
Table 6.2 and 6.3 is for the overhead cost of the calls only.

• First Call: This is the first call done to the method, and is commonly
the call that has the most overhead.

• Additional Calls: For the additional method-calls (i.e. for 16 calls
this is call number 2 to 16), we will see that the JVMs runtime-
optimization comes in to play, dropping the overhead for calling the
method.

• Total Run Time: The final run time given by totalRunTime seen at
line 14 in Listing 6.1, it should be very close to sum of all operations
done.

MethodCall
Number of Method Calls

1 2 4 8 16 32
First Call 4.75 4.75 4.75 4.75 4.75 4.75
Additional Calls - 2.24 2.05 1.96 1.96 1.96
Total Run Time 4.75 6.71 10.7 18.5 34.1 65.4

Table 6.2: Overhead using Methods on Windows (in µs)

MethodCall
Number of Method Calls

1 2 4 8 16 32
First Call 4.54 4.54 4.55 4.54 4.54 4.54
Additional Calls - 1.61 1.49 1.45 1.43 1.42
Total Run Time 4.54 6.08 8.95 14.6 26.0 48.5

Table 6.3: Overhead using Methods on Linux (in µs)

With the first call taking roughly ∼4.75 µs on Windows and ∼4.54 µs on
Linux, and the additional calls reducing the overhead with 50% to 70%.
There is really no reason to take any precaution when dealing with only
methods. But it is interesting to see that Linux uses less overhead with
methods.

6.2.2 Classes

With Classes we will have to instantiate a class by allocation memory for
the new object and return a reference to that memory. A task that should
cause more overhead compared to testing only methods. An overview of
the testing can be seen in Table 6.4 for Windows and 6.5 for Linux.
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• Create the Class: Instantiate the class with the new operator, we have
to create it before we can call its methods. This is only performed at
the beginning of the testing.

• First Method Call: The first call to the class’s “empty” method.

• Additional Calls: The rest of the additional call to the class’s “empty”
method.

ClassCall
Number of Classes

1 2 4 8 16 32
Create the Class 759 768 774 774 773 777
First Method Call 11 11 11 11 11 11
Additional Calls - 4 3 2 2 2
Total Run Time 770 788 802 817 848 914

Table 6.4: Overhead using Classes on Windows (in µs)

ClassCall
Number of Classes

1 2 4 8 16 32
Create the Class 494 499 499 500 500 501
First Method Call 12 12 12 12 12 12
Additional Calls - 3 2 2 2 1
Total Run Time 506 519 525 537 560 607

Table 6.5: Overhead using Classes on Linux (in µs)

With the process of instantiate a class and calling its methods we start to
notice some overhead, but mainly because of the creation process. For
while the first method-call’s overhead more than doubled, ∼11-12 µs is not
much to take notice of. Also again less overhead occur on Linux in total,
and creating a class is noticeably much cheaper.

6.2.3 Threads

It is by using Threads that we finally can create and run parallel
computations, and it will be very interesting to see how much the cost for
using this mechanism is. The results for testing threads with Windows and
Linux can respectively be seen in Table 6.6 and 6.7.

• Create the First Thread: Instantiate a class extended with a Runnable

object that is passed to the Thread constructor, with the cost of doing
so.
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• First Run() Call: Executing thread.start(), starting the object’s Run
method to be called in that separately executing thread.

• Additional Threads: Identical to “Create the First Thread”, for the
rest of the specified number of threads.

• Additional Run() Calls: Identical to “First Run() Call”, but for the
additional threads.

• Total Thread Create: Total cost of creating all Threads, First Thread +
All Additional Threads.

• Total Run() Call: Total cost of the First Run() Call + All Additional
Run() Calls.

ThreadCall
Number of Threads

1 2 4 8 16 32
Create the First Thread 759 758 764 767 766 772
First Run() Call 839 835 836 815 820 846
Additional Threads - 37 27 24 22 22
Additional Run() Calls - 188 178 180 170 168
Total Thread Create - 797 850 935 1101 1456
Total Run() Call - 1039 1388 2118 3425 6050
Total Run Time 1614 1841 2244 3062 4554 7533

Table 6.6: Overhead using Threads on Windows (in µs)

ThreadCall
Number of Threads

1 2 4 8 16 32
Create the first Thread 491 492 492 492 492 493
First Run() Call 185 185 185 185 186 186
Additional Threads - 29 22 21 20 20
Additional Run() Calls - 92 90 83 82 84
Total Thread Create - 521 558 636 789 1102
Total Run() Call - 277 455 763 1417 2796
Total Run Time 676 799 1014 1401 2215 3902

Table 6.7: Overhead using Threads on Linux (in µs)

With the introduction of Threads we see that overhead start to become
more of an issue. In the time it takes to create and call one thread on
Windows, Quicksort have already completed sorting 10 000 elements (1318
µs).

As JVMs optimization from already construction the first thread, the
additional threads have a much less overhead cost. The same goes for
executing the threads.

63



6.2.4 ExecutorService

ExecutorService is one of the mechanisms in Java that let us reuse a pool
of threads. A solution that will become more and more superior as the
number of tasks increases when compared to a new thread for each task.
Results can be seen in Table 6.8 and 6.9 (Windows / Linux).

• Create ExecutorService: Is the set-up time for the ExecutorService,
here we create a fixed ThreadPool with the specified number of
threads as a parameter. In addition create a Future to provide the
ability to check when computations (calls) are completed.

• First Submit: The very first submit done to the ThreadPool, with the
additional overhead for the system to assign the submitted work to
an available Thread in the Pool.

• Additional Submits: Every additional submit done to the ThreadPool.

• Total Submit: Total cost of the First Submit + All Additional Submits.

ExecutorCall
Number of Threads in Pool

1 2 4 8 16 32
Create ExecutorService 4881 4861 4874 4870 4835 4957
First Submit 2026 2045 2030 2061 2042 2067
Additional Submits - 231 238 212 203 214
Total Submit - 2282 2756 3565 5142 8699
Total Run Time 6915 7169 7694 8534 10123 13734

Table 6.8: Overhead using ExecutorService on Windows (in µs)

ExecutorCall
Number of Threads in Pool

1 2 4 8 16 32
Create ExecutorService 4174 4204 4241 4328 4428 4608
First Submit 1086 1081 1085 1094 1083 1077
Additional Submits - 558 292 193 156 147
Total Submit - 1642 1973 2465 3435 5689
Total Run Time 5675 5845 6216 6810 7926 10430

Table 6.9: Overhead using ExecutorService on Linux (in µs)

ExecutorService is the mechanism that produces the most overhead. In
the time it takes to construct and call with only one thread on Windows,
Quicksort is almost done sorting 50 000 elements (7980 µs).

One of the reasons that ExecutorService create so much additional over-
head is that we have to add a Future<> instance for keeping track on when
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the threads are done computing, which is necessary for asynchronous tasks
used in this thesis.

But while the ExecutorService generate much more overhead compared
to regular threads, the ThreadPool in ExecutorService let the user submit
additional tasks to the ThreadPool for the available threads in the pool
to compute (see Section 2.2.1). As the number of tasks reaches a certain
threshold, the ExecutorService will be cheaper to use compared to creating
a new thread for every task.

6.2.5 Fork/Join

One of the new tools in Java 7 is Fork/Join, and like the ExecutorService it
contains a pool of threads with the ability to submit (invoke) new tasks to
it. The Table 6.10 and 6.11 contains the result of doing an overhead test run
with this framework.

• Create ForkJoin: Is the set-up time for creating the ForkJoinPool

with the number of threads specified in the tables as parameter, and
the creation of ForkJoin class extending RecursiveAction.

• First Invoke: Invoke (await and obtain result ) the ThreadPool, let the
first thread perform the first given call and return upon completion.

• Additional Invokes: Identical to “First Invoke”, for additional calls.

• Total Invoke: Total cost of the First Invoke + All Additional Invokes.

ForkJoinCall
Number of Threads in Pool

1 2 4 8 16 32
Create ForkJoin 1728 1741 1775 1782 1806 1866
First Invoke 691 690 683 697 688 692
Additional Invokes - 10 5 3 3 3
Total Invoke - 700 698 722 735 789
Total Run Time 2450 2462 2488 2526 2579 2769

Table 6.10: Overhead using Fork/Join on Windows (in µs)

The construction of the Fork/Join-framework generate more overhead
compared the construction of regular threads, but the overhead for the first
and the additional calls (invokes) generate less. As a result of this with
eight threads and upward, Fork/Join is cheaper. And with the additional
ability to work-steal (Section 2.2.7), and the reuse of threads it is far more
superior to use with parallel programming.
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ForkJoinCall
Number of Threads in Pool

1 2 4 8 16 32
Create ForkJoinPool 1841 1850 1871 1897 1945 2077
First Invoke 405 443 434 437 451 462
Additional Invokes - 9 4 3 2 2
Total Invoke - 452 447 457 486 527
Total Run Time 2277 2312 2333 2374 2467 2662

Table 6.11: Overhead using Fork/Join on Linux (in µs)

6.2.6 Atomicity

Another of the tools that have been used in the different implementations
are the AtomicInteger and AtomicIntegerArray, thread-safe variables,
which we briefly explained in Section 2.2 about Concurrency in Java. With
these tools and the same hardware used in the previous sub-sections, we
have done measurements on the overhead imposed by utilizing these tools.

In the following Tables there are four different kinds of operations that have
been tested for the Atomic variables. Even though there are a couple more
operations available, it is these ones that are mostly common:

• GetAndSet N-times: For the int and int[] this operation grabs the
value N and sets the int or int[0...N] to this for an N number of
times.

• Get N-times: Here we call the Get() operation for AtomicInteger

and AtomicIntegerArray N-times.

• Set N-times: Here we call the Set(N) operation for AtomicInteger

and AtomicIntegerArray N-times, setting the value to N each time.

• Increment N-times: This operation perform two things, first it Get
the value from the source and then Increment it; increasing the value
with 1. This will be done N-times so the final value if it is not an array
will be N, if it is an array each int will be 1.

• Decrement N-times: This operation perform two things, first it Get
the value from the source and then Decrement it; decreasing the value
with 1. This will be done N-times so the final value if it is not an array
will be -N, if it is an array each int will be -1.

Table 6.12 and 6.13 are both results of non-thread-safe variables performing
different computation N number of times.
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int
Number: N

10 100 1000 104 105 106

GetAndSet N-times 0.118 0.251 1.70 14.3 159 1691
Increment N-times 0.152 0.258 1.33 12.1 170 1463
Decrement N-times 0.158 0.270 1.34 12.0 170 1460

Table 6.12: Overhead using int on Windows (in µs)

int[]
Number: N

10 100 1000 104 105 106

GetAndSet N-times 0.119 0.288 1.96 22.6 225 2357
Increment N-times 0.339 0.540 2.22 21.2 208 2182
Decrement N-times 0.347 0.547 2.24 21.1 208 2177

Table 6.13: Overhead using Array of int on Windows (in µs)

Table 6.14 and 6.15 are both results of thread-safe variables performing
different computation N number of times.

AtomicInteger
Number: N

10 100 1000 104 105 106

Create AtomicInteger 41.7 42.0 41.7 42.0 42.0 41.6
Get N-times 1.03 1.34 4.16 33.5 333 3166
Set N-times 1.25 1.62 4.84 39.3 380 3448
Increment N-times 1.83 3.08 15.2 123 1267 4490
Decrement N-times 1.91 3.15 15.3 123 1280 4531

Table 6.14: Overhead using AtomicInteger on Windows (in µs)

AtomicIntegerArray
Number: N

10 100 1000 104 105 106

Create Array[N] 138 139 138 140 173 251
Get N-times 1.37 3.03 19.2 163 688 2951
Set N-times 4.37 5.92 19.2 167 1173 3860
Increment N-times 8.57 11.8 42.4 341 2323 5768
Decrement N-times 8.60 11.9 42.3 360 2365 5805

Table 6.15: Overhead using AtomicIntegerArray on Windows (in µs)

Comparing int versus AtomicInteger there is roughly 3-times as much
overhead when using the Atomic version.
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With arrays we have int[] versus AtomicIntegerArray which give 2.5-
times as much overhead with the Atomic version.

6.3 Comparison

The graph seen in Figure 6.1 contains plots of the Total Run Time for each
of the mechanisms tested on Windows. This gives us a good overview of
how much overhead that occurs by using the different mechanisms in this
thesis

Figure 6.1: Comparison of Total Run Times (in µs)

Sequential Quicksort
Number of

Elements

Sorting

Time

1 000 104 µs
2 500 288 µs
5 000 607 µs
7 500 973 µs

10 000 1318 µs
25 000 3632 µs
50 000 7980 µs
75 000 12214 µs

100 000 16980 µs

Figure 6.2: Quicksort
Sorting Times

By using the Sequential Quicksort implement-
ation (without Insertion Sort) from Chapter 4.2,
with the hardware specified in the previous Sec-
tion 6.1.4, we have been able to measure how
long it typically takes to sort different number of
elements. These measurements are useful when
comparing sorting times to the overhead that
occur with the different mechanisms in Java.

The Table 6.2 on the right show the time it
takes for Quicksort to sort a given number of
elements, ranging from 1 000 to 100 000. This
implementation is only using one method-call,
so the overhead does not have much impact on
the sorting time.
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Chapter 7

Discussion

7.1 Amdahl’s Law

For us to understand why parallel implementations of algorithms do not
scale linearly to the number of available processor cores, we need to reflect
on the following ”law”.

Amdahl’s Law[3] says that the theoretically speedup with additional
number of cores on a CPU, is based on the proportion of parallelizable
and serial components. So for a system to scale linearly to the number
of processor cores, it has to be completely parallelized. This is generally
not possible as it will always be part of a program that has to run in serial,
like splitting up a problem to smaller bits and delegate these to available
resources.

With Amdahl’s Law we can find the maximum theoretically speedup by
using the equation below; we let F be the fraction of the program that must
execute serially, and N the number of cores available:

speedup ≤ 1

F + (1−F)
N

As the number of cores increases to infinity, we see that the expression

reduces to
1
F

. This helps us easily define how much the maximum
achievable speedup is, no matter how many cores we have available. For
example: if our program does 5% of the computation serially, and the
rest 95% with an unlimited number of cores; we still can only achieve a

theoretically speedup of measly 20 times! (
1

0.05
= 20)
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In Figure 7.1 we show how the speedup scale with number of cores
on different parallel portions, and it is easy to see that eventually the
improvement by introducing additional cores will flat out the speedup.

Figure 7.1: Amdahl’s Law

Gustafson’s law

However in 1988, John L. Gustafson did a reevaluation of Amdahl’s
Law[18]. He stated that by increasing the data size, it would also increase
the parallel work. This results in that the speedup obtained through
parallelization increases.

Below is the equation of Gustafson’s Law. Here N is the number of cores
available, α is the non-parallelizable part of the program.

speedup(N) = N − α(N − 1)

But it does not necessarily mean that any of them are wrong, but rather that
each law is in fact different perspective on the same problem. Amdahl sees
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the data sizes as fixed and Gustafson sees the relation as a function of data
size.

Of course these two laws are just theoretical viewpoints of parallel
problems where no other factors determine the result. But in the real world
we have all kind of influences; interruption, overhead, technical drawbacks
just to name a few. So we should use the laws as they are meant to, as
theoretical viewpoints.

7.2 Test Results Discussion

As we discussed both Amdahl’s and Gustafson’s laws are what we could
achieve in theory and that the overhead is not a part of the equations they
produced. With the measurements that we did in Chapter 6 – Threads
and Overhead, we see that overhead could have a big part in the extra
computation time. So from a developer viewpoint we should always have
overhead in our mind when programming parallel implementations.

An interesting point would be to include the overhead in the equations,
for example by adding a typical overhead cost from using a specific
mechanism M and multiply it with the number of cores:

speedup ≤ 1

F + (1−F)
N + (N ∗M)

The drawback of this is of course that the overhead is not really static and
may vary between different machine architecture and operating system. By
using the exact same system in the previous overhead testing we saw that
with the overhead we gained from using Linux was usually less costly than
on Windows.
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Chapter 8

Conclusions

The main goal for this thesis was to implement two distinct Sorting
Algorithms, one with non-shared data and one with shared data. Each
of the algorithms had three different implementations to test out various
tools given by java.util.concurrent, creating parallel versions of the
algorithms. By using different tools, measuring the time it takes to sort
an array with them and comparing these results to a regular sequential
implementation, we could see how well each implementation performed
and learn something from the results.

As overhead is one of the significant factors when dealing with parallelism,
we did extensive tests on the various mechanism used for the different
implementations. This would help us draw conclusions on how the parallel
algorithms respond to overhead and giving us a better insight in when to
go from sequential to parallel.

Quicksort

Performance wise with Quicksort the ExecutorService implementation was
the fastest overall on both the systems, the one of our own (quad-core) and
at the University (4x octa-core). Even though we measured the Fork/Join-
framework to use less overhead when compared with ExecutorService, and
of course the work-stealing which cause the worker threads to not idle if
another worker have remaining tasks in their queue. So maybe with other
algorithms that are emitting much more tasks and where the tasks are more
unfair weighted in terms of computation time, we would see that Fork/Join
being superior.
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Overall we got good parallelization with the quad-core CPU, gradually
increasing the performance as the computation time surpass the extra
overhead that occur with generating the parallel framework. We could
have done the array length check before creating the parallel framework
to avoid the overhead when dealing with arrays with less than 50 000
elements.

On the 4x octa-core CPUs we saw that while we got the gradually
increasing performance, it was only on par with the quad-core system and
not what we really hoped for. Measurements of overhead for the different
mechanisms also conclude that we should not gain so much additional
overhead to answer for not getting the expected performance. We suspect
that the cache, memory and bandwidth limitation when having 4 CPUs
working in parallel are the reason for this.

Radixsort

Sequential Radixsort is proven to be very fast compared to the built-in
Quicksort based Arrays.sort(). The 2-digit LSD-Radixsort is over 6-
times faster on average with array-sizes ranging from 1000 to 100 million
elements.

On the parallel implementation we gradually increased the efficiency of the
algorithm, by eliminating most of the synchronization and sequential parts
we ended up with a very fast algorithm. With a quad-core CPU we reached
a peak with sorting 300 000 elements 18 times faster than Arrays.sort(),
and compared with sequential version 2.5 times. That gives us an increase
of around 62.5% (31.25% by including Hyper-Threads) more performance
per core. This is of course not the case if we decided to use a CPU with
more (or less) cores, because there are so many other factors that matters.

This is why we tested with the system at the University. Here the outcome
was that we saw a huge drop in performance when spawning 64 worker
threads, and that it was not before sorting 5 million or above that this
system became more efficient. The problem here is that as soon as parallel
computation begins, we create and start all 64 worker threads; suffering a
huge cost in additional overhead compared to how much data each of the
worker handles. We should have added a limitation on how many workers
to create based on how much data each will sort (array size).
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Last words

With the research and implementation that has been done for this thesis,
the following general conclusions have been drawn when constructing
parallel versions of already existing sequential algorithms using the Java
concurrency library:

• Avoid old concurrent tools - At least for Java, the only tools available
before version 5 were a couple of low-level concurrent primitives.
These are all difficult to use correctly which potentially could induce
dead-lock, starvation or other safety issues. The more modern
concurrency tools found in the standard java.util.concurrent

package, help create a more easy to use and much safer environment
when working with concurrent programming. The new version Java
7 brought some interesting and valuable tools to the table. While
the Fork/Join-framework performed a bit slower than the older
ExecutorService on the tests in this thesis, the work-stealing aspect
for Fork/Join should become very valuable with more and wider
range of task sizes. With the upcoming Java 8 introduces LongAdder,
DoubleAdder and more.

• Use specific tools for the job - Different problems may require
different tools to achieve the best scalability and performance.
Certain problems like divide-and-conquer may find the Fork/Join-
framework, which was specific constructed for these problems, to be
the best tool. Or find out if one should use the CountDownLatch or
CyclicBarrier as synchronization for the problem.

• Know when to parallelize - Parallelize CPU intense parts of a
program, but also takes notice of the computation time for these
parts. If it takes more time to set-up, spilt into tasks and initiates the
threads (Overhead) then it takes to just compute the part sequential,
the choice is obvious.

• Try to reduce or remove synchronization - Shared data can be
a problem with parallelization, as the number of threads that
needs access to the same data increases so does the number of
synchronizations. This will cause a huge effect on the performance
as seen with the first parallel implementations of Radixsort, where
we on large arrays were up in millions of synchronizations. But by
making the shared data local in the last implementation we went
down to only 10 synchronizations.
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• Educate for concurrency - Developing for traditional sequential soft-
ware varies a lot from implementing concurrent software. De-
velopers need to be aware of the tools available for concurrency on
the programming language they use, and get to know various design
patterns suitable for concurrency. The ability to write concurrent soft-
ware that scales well on multi-core architectures, but also be caution
on the different safety issues with parallel computations.

8.1 Future Work

As working through this thesis there have come up a lot of things we wish
we had time to do, or that we would have approached differently than we
did.

Even though we were not really after creating the “perfect” algorithm we
would still have liked to do profiling on the test runs, to gain a much better
overview of memory and CPU usage, and help gain an overview of the
most CPU / memory intensive parts.

It would be interesting to test the ExecutorService- and Fork/Join-
framework on other algorithms. To find out if it would conclude the same
results we got with Quicksort. Because of our conclusion we have reason to
believe that Fork/Join should perform better overall with the less overhead
and work-stealing.

Test out more of different mechanisms that the concurrency packages have
to offer. Especially the Phaser would be interesting to look into as we only
did some small tests with it. But would like to try it out more to see if it
gives any advantages, excluding the dynamical functionality it provides,
compared to CyclicBarrier. Also look into the new mechanisms in Java 8;
AtomicDouble, ConcurrentHashMap, LongAdder, DoubleAdder etc...

The testing done at the University should have been more extensive. When
doing test runs with so many cores we should have tried out different
settings with fewer cores, to get a better view of the connection between
numbers of cores versus the increased performance. We suspected the
Cache / Memory / Bandwidth limitation on this system to cause problems,
and doing additional measurements and testing on these areas would
hopefully give some answers. In addition test out other systems and
architectures.
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Appendix

Source Code

The source code used for producing all the test results seen in this thesis is
available at: https://github.com/Busterud/master-thesis/

The code can be navigated and viewed directly online, with the ability
to download the whole repository as a zip-file. The test code available is
categorized below and with a short description:

Sorting Tests:

• Quicksort (QuicksortTesting.java): Sequential, Threaded, Execut-
orService and Fork/Join implementations tested with Test Data Struc-
ture seen in Section 3.1.

• LSD-Radixsort (LSDRadixsortTesting.java): Sequential and three
Parallel implementations using CyclicBarrier and Atomicity, tested
with Test Data Structure seen in Section 3.1.

• Graph Creation (GraphCreationSort.java): Create graph from
the data produced by QuicksortTesting.java and LSDRadixsortTest-
ing.java.

Overhead Tests:

• Overhead (OverheadTesting.java): Methods, Classes, Threads,
ExecutorService and Fork/Join overhead testing.

• OverheadAtomic (OverheadAtomicTesting.java): int, int[],
AtomicInteger, AtomicIntegerArray overhead testing.

79



• Batch-file for Overhead (OverheadTesting.bat): Test the Overhead
and/or OverheadAtomic many times in a Windows environment.

• Bash-file for Overhead (OverheadTesting.sh): Test the Overhead
and/or OverheadAtomic many times in a Linux environment.

• Graph Creation (GraphCreationOverhead.java): Create graph from
the data produced by OverheadTesting.java and OverheadAtomicT-
esting.java.

Prerequisites

The following tools need to be installed in order to use the test codes:

• Java; Version 1.7 or later for Quicksort and Overhead testing, version
1.6 or later for the rest (http://www.java.com/en/download/)

• JFreeChart; for Graph Creation (http://www.jfree.org/)

• Jsr166y.jar; when using Java 1.6 for Quicksort and Overhead testing
(http://g.oswego.edu/dl/concurrency-interest/)
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