
Heave disturbance attenuation in 
managed pressure drilling from a 
floating platform using model predictive 
control

Edvin Hatlevik

Master of Science in Engineering Cybernetics (2 year))

Supervisor: Tor Arne Johansen, ITK

Department of Engineering Cybernetics

Submission date: June 2014

Norwegian University of Science and Technology



 



Heave disturbance attenuation in managed

pressure drilling from a floating platform

using model predictive control

Edvin Hatlevik

June 2, 2014

Prosjekt oppgave

Institutt for Teknisk Kybernetikk

Norges teknisk-naturvitenskapelige universitet

Supervisor: Professor Tor Arne Johansen



i

Problem Description

Managed pressure drilling has received increased attention due to its ability to perform drilling

with small pressure margins. A significant challenge in offshore operations from a floating plat-

form is the effect of the platform´s motion. During pipe connection the conventional heave

compensation system is not operational as the drill string must be clamped to the drill floor.

Consequently, the drill bit acts as a moving piston near the bottom of the well such that motion

of the platform leads to large pressure variations at the bottom hole, potentially causing damage

to the well or risk for well control issues. The task is to study how an MPC can exploit motion

predictions to compensate for the pressure variations. And how MPC for managed pressure

drilling can be implemented in an industrial PLC. These steps are gone through to study and

test how an MPC can exploit motion prediction to compensate for the pressure variations.

1. Find a way to linearize the model, and discretize the model using existing schemes for

discretization.

2. Formulate a linear MPC for control of bottom hole pressure, using the choke as manipu-

lated variable, with feedforward from measured and future predicted heave motion.

3. Design a state estimator based on Kalman-filtering.

4. Use a dynamic model to simulate the motion of a semi-submersible drilling rig to test the

MPC in Matlab.

5. Design an MPC implementation suitable for implementation on an industrial PLC, and

test using simulations.



ii

Summary

Since a large part of the Norwegian oil shelf has been active for over a generation, many fields

begin to be depleted and the drilling operations requires tight down hole pressure margins. And

by improving the pressure control for the drilling operations former undrillable wells becomes

drillable. Which will make the the oilfields more profitable, and extend their life expectancy. It

will also make drilling operations safer by preventing kicks and preventing environmental dam-

ages caused by mud leaking into the pore space.

One of the most critical phases when drilling from a floating drilling rig in terms of down hole,

is pipe connection. During this procedure the conventional heave compensation is not oper-

ational as the drill string is climbed to the drill floor. Consequently the drill bit functions as a

piston creating large pressure variations in the drill bit pressure. To control this pressure and

create disturbance attention a linear model predictive controller with feedback linearisztion is

created using feedback linearization. This controller shows promising results when feedforward

with future predictions is applied. Without future predictions the results are the same as for an

MPC without feedforward. Because only the topside pressure is known the rest of the states are

estimated using a Kalman filter, which shows good results on the state estimations. To make the

system more applicable in real life applications an efficient linear model predictive controller

implementation was created for a PLC with great results, both in terms of calculation time and

memory usage.



iii

Preface

This master thesis was written in my 4th and final semester at NTNU for the MSc. degree in Engi-

neering Cybernetics. It was carried out in the period from January to June, 2014. I was accepted

into this master’s program based on my BSc. degree in Automation from Ålesund University

College, from 2012. The assignment has been carried out under the supervision of Professor Tor

Arne Johansen.

I would like to tank my advisor Tor Arne Johansen for his work and contribution to this the-

sis, which is greatly valued. I would also like to thank Kwame Minde Kufoalor for his support

regarding, MPC implementation on PLCs.

Trondheim, 2014-06-02

Edvin Hatlevik



Abbreviations

BHA Bottom Hole Assembly

Cvr Controlled Variable

DHP Down hole pressure

Dvr Disturbance variable

IRIS International Research Institute of Stavanger

KKT Karush-Kuhn-Tucker

MPC Model Predictive Control

MPD Managed Pressure Drilling

Mvr Manipulated Variable

NMPC Non-linear Model Predictive Control

PID Proportional Integral Derivative

QP Quadratic Problem

SISO Single Input Single Output

SQP Sequential quadratic programming

iv



Contents

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 2

1.1 Norwegian oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Model Predictive Control in Managed Pressure Drilling . . . . . . . . . . . . . . . . . 3

1.3 MPC For Heave Disturbance Attenuation in MPD systems . . . . . . . . . . . . . . . 5

1.3.1 Research Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Drilling Systems 8

2.1 Pore and fracture pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Managed pressure drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Hydraulic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Pressure Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Choke Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 State space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Attempt to linearise with respect to depth . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Heave motion disturbance model and state estimation 26

3.1 Heave motion disturbance model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Wave spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



CONTENTS vi

3.1.2 Liner approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Wave response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Kalman filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Model Predictive Control 35

4.1 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Constrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Dynamic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Optimality and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Defining stability constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Numerical integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Controller design 53

5.1 Control hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 System properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Choke Valve Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.3 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.4 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.5 Internal Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 System discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Internal stability of discrete LTI system . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Constrained reference tracking MPC design . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.1 Condensed formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.2 Slack variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS vii

5.4.3 Controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Implementation 68

6.1 Compiling code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.1 Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.2 CMake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Matlab engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Acado toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.1 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 PLCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.1 Program execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Acado Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5.1 Software Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5.2 Generate MPC Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5.3 Implement solver in Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5.4 Implement solver in a PLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6 Matlab Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Simulation Results 90

7.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Heave Disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Selection of control horizon and MPC sampling frequency . . . . . . . . . . . . . . 97

7.4 Sparse v.s. Condensed Qp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.5 On-line constraint calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.6 Disturbance Attenuation as a function of problem complexity . . . . . . . . . . . . 103

7.7 FeedForward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.7.1 Measured rig motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.7.2 Estimated rig motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.7.3 Measured rig motion with future predictions . . . . . . . . . . . . . . . . . . . 108

7.7.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.8 PLC implementable MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



CONTENTS 1

7.8.1 Simulation of PLC implementable MPC . . . . . . . . . . . . . . . . . . . . . . 112

7.8.2 PLC preformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Discusion 117

9 Conclusion 122

A Condensed Qp 125

A.1 Condensed QP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.1.1 Reference Tracking MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1.2 Reference Tracking MPC white disturbance feed forward . . . . . . . . . . . 132

B Adding a PID controller to plant model 133

C Image Tutorials 135

C.1 Create New Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.2 Setup project with makefile and executable . . . . . . . . . . . . . . . . . . . . . . . 139

D Scripts 145

D.1 Code generation scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D.1.1 CMake settings File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D.1.2 Acado MPC for MPD script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D.2 Acado MPC simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

D.2.1 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

D.2.2 The header file for the simulation . . . . . . . . . . . . . . . . . . . . . . . . . 151

D.2.3 Initialisation of simulation environment . . . . . . . . . . . . . . . . . . . . . 153

D.2.4 Kalman filter implemented in C . . . . . . . . . . . . . . . . . . . . . . . . . . 154

D.2.5 Qp optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

D.2.6 The Simulation loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 158



Chapter 1

Introduction

1.1 Norwegian oil

Until the late 1950s very few people believed that there where petroleum in the north sea. But

in 1959 a Dutch gas field was found in Groningen. This raised some attention to the north sea,

and some experts began speculating if there could be oil in the Norwegian sea. Norwegian ge-

ologist was more negative, and did not believe there was any oil or gas in the Norwegian sea.

This did not stop the enthusiasm, and in October 1962 the Norwegian government received a

leather from Phillips petroleum, where they wanted permission to start oil exploration on the

Norwegian shelf. The company wanted a license on the Norwegian shelf, and offered 160 000

USD a month for such a deal. The Norwegian government declined the deal, because they felt

that Phillips wanted exclusive rights. In 1963 the Norwegian government wrote a law making

the king(government) landowner of the hole Norwegian shelf. Two years later, in 1965 a deal

was made with Great Britain and Denmark regarding the sharing of the north sea, where the

median line principle was used. One year later in 1966 the first Norwegian exploration well

was drilled, it was empty. The first oil was found in 1969 by Phillips petroleum approximately

320 km south west of Stavanger. It was called Ekofisk and is still one of the most important oil

findings in the north sea. This has obviously created huge incomes to the Norwegian govern-

ment, and 22.June.1990 the Norwegian government chose to save the income in a fund (Statens

petroleumsfond) to stabilize the economy. This has of course done more then stabilize the econ-

omy because in the end of 2013 the fund had a total value of 850 billion USD. In the early north

2



CHAPTER 1. INTRODUCTION 3

see drilling operations it become clear that drilling oil in the north sea had technological difficul-

ties both in the terms of weather and depth. Which lead to an increased activity in Norwegian

oil and gas related research. For more information about the Norwegian oil history, visit the

Norwegian governments web pages.

www.regjeringen.no/en/dep/oed/Subject/oil-and-gas

In the beginning of the Norwegian oil adventure the wells where drilled straight down. But as

time passed there began to be an increasing demand for more advanced drilling operations.

The need for advanced drilling operations is due to the easily accessible petroleum becomes

dried up, and to get the less available petroleum pockets more advanced techniques are used.

This also makes it possible to drill into several petroleum pockets in different locations from the

same oil installation. Which of course is profitable because fewer oil installations needs to be

built.

1.2 Model Predictive Control in Managed Pressure Drilling

One of the aspect of these new more advanced drilling techniques is that there is higher demand

for pressure control while drilling. There is many reasons why the drilling pressure is important.

Logically one would maintain the down hole pressure between a minimum and a maximum

value. Where the limits are imposed by the formation of the well and other geological factors. To

make it more tangible, here are some examples of what might occur if these limits are exceeded.

To low pressure To high pressure

Gas might leak in to the mud creating extreme

pressures called kicks

Mud leaks into the formation

Drilling into neighbouring wells. Mud forms a wall over the pores in the well,

slowing the production.

Getting influx of oil or water into the mud Overburdening the well by applying more

pressure than the combined weight of the

overlaying formation

Well collapses around the drill string

www.regjeringen.no/en/dep/oed/Subject/oil-and-gas


CHAPTER 1. INTRODUCTION 4

This is of course a bit shortened and it was just meant as a motivation to why pressure control

in drilling operations is important.

Now back to the case at hand, keep the pressure between the limits. To do this a control strategy

was developed called Managed pressure drilling(MPD) or more precise a variant called constant

bottom hole pressure. Where the principle is to control the bottom hole pressure when a back

pressure is applied with the choke valve. To control the bottom hole pressure a controller is

applied to the choke valve. An example of such a controller might be a PID controller. Much

research has been devoted to MPD control the last decade, not only internationally but also in

Norway. An early example of such research is (Johan Eck-Olsen, 2005) where they used man-

aged pressure to cement a seven inch liner on the Gullfaks field. Or more resent development in

(Godhavn, 2010) where some requirements for high-performance control where presented.

Another approach that has been discussed by control engineers in the oil industry for some

time, is to use model predictive control to control the bottom hole pressure. Which is a specific

type of advanced control theory. The reason why this controller type is being looked at besides

it’s excellent control results, is it’s native ability to handle constraints. Where constraints in the

MPD control case, refers to the desired limits on the down hole pressure, and the open and

closed limitations on the choke valve.

The master thesis (Øyvind Breyholtz, 2008) is exploring the use of non-linear model predic-

tive control with a combination of measurements and estimation for acquiring readings of the

states. Where the bottom hole pressure is the controlled variable and the choke vale the manip-

ulated variable, can be found at (Øyvind Breyholtz, 2008).

A master thesis, studying linear model predictive control with assumed measured down hole

pressures, where three different down hole pressures are controlled variables and the manipu-

lated variables are mud pump, choke and back pressure pump can be found at (Møgster, 2013).



CHAPTER 1. INTRODUCTION 5

1.3 MPC For Heave Disturbance Attenuation in MPD systems

When designing managed pressure drilling control systems, one should not just design a system

for an ordinary drilling application, but take into account for optional procedures and distur-

bances that affect the system performance. A specific such pressure is when extending the drill

string in order to drill deeper. During this pipe connection the drill string is clamped to the

drill floor, leaving the conventional heave compensation system inoperable. In this case the rig

moves vertically with the waves, referred to as heave motion. Because the drill string is clamped

to the drill floor, this motion will translate into a drill bit moving like a piston on the mud in

the well. Consequently creating severe pressure fluctuations at the bottom of the well. These

fluctuations have been observed to have a magnitude higher than the standard limits for pres-

sure regulation accuracy in MPD, which is about ±2.5[bar] (Amirhossein Nikoofard and Pavlov,

2014). When the drill bit moves down into the well the pressure increases (Surging), and up-

ward movement decreases the pressure (swabbing). Strong surging and swabbing pressures can

cause damage to the well, neighbouring wells, personnel, environment or drilling equipment as

mentioned in the previous section.

In the article (Ingar Skyberg Landet, 2013) a semi linear dynamical model was created to capture

the main dynamics of a MPD system in the case of heave disturbance in a well from the Ulrig

test drilling facility, with a length of approximately 2000 m with water based mud. This model

contained nine ordinary differential equations, and a choke equation. They also presented two

controllers for disturbance attenuation, which successfully damped the disturbance.

Amirhossein Nikoofarad later used this model in (Amirhossein Nikoofard and Pavlov, 2014) to

create a MPC controller with feedforward for disturbance attenuation.

In this master thesis, applied backpressure managed pressure drilling will be the choice of set

up in combination with a linear feedforward model predictive controller, using the model from

(Ingar Skyberg Landet, 2013). Designed for heave disturbance attenuation. Down hole measure-

ments will be estimated using a Kalman filter. The manipulated variable will be the choke valve.



CHAPTER 1. INTRODUCTION 6

The controlled variable will be the drill bit pressure. Where the constraints imposed on the ma-

nipulated variable is denoted by the limitations on the choke valve, in terms of open closed

valve. The constraints imposed on the controlled variable is denoted from the pressure limita-

tions of the well. This controller will then be implemented in an industrial PLC, using an efficient

C code solver generated by the ACADO toolbox. To the authors knowledge these controllers are

usually implemented using industrial computers. This is supposed to be a novel approach to

make these types of controllers easier to implement on existing installations, preferably using

equipment already installed.

1.3.1 Research Focus

• At first the focus will be on creating a working MPC controller, and an estimator suit-

able for PLC implementation. The next step will be to optimize this controller to be as

lightweight as possible, and run as swiftly as possible, because the PLC has a lack of both

processing power and memory.

• Another aspect that need some attention is the implementation of constraints on the ma-

nipulated variable, because they are non-linear.

• Testing different ways of implementing feedforward, and the effect on the disturbance

attenuation.

• Find a way to implement the controller on the PLC, and evaluate the performance.

1.3.2 Thesis Outline

The outline of this thesis is as follows. Chapter 2 is devoted to drilling in general and managed

pressure drilling. Chapter 3 introduces heave disturbance, modelling of this disturbance and

state estimation. Chapter 4 introduces model predictive control and the different properties of

such controllers. Chapter 5 presents the key aspects of designing the model predictive controller

and specific data used in Chapter 6 and 7. Chapter 6 goes more into specific details on imple-

mentation of the controller. Chapter 7 builds up scenarios for simulations and simulates these

scenarios.





Chapter 2

Drilling Systems

In figure 2.1 one can see an illustration of a floating drillrigg with a setup for managed pressure

drilling, where the important components are outlined.

Figure 2.1: Drilling operation

8



CHAPTER 2. DRILLING SYSTEMS 9

The derrick or the drill tower is where the drill string is assembled. And on the top of the

derrick the drill string is connected to the top drive. The topdrive holds the engine that turns

the drill string and it is where the mud is pumped in to the drill string. The drill string and the

topdrive can be moved up and down on the derrick as one drills deeper. Each drill string is

approximately 9 meters long and are connected into a 27 meters long drill stand. An new drill

stand is connected to the top of the last each time the last is drilled into the ground. It takes

approximately two hours to drill a drill stand int the ground which means a new needs to be

added every two hours at usual drill speed. The drill strings motion in the derrick is also used to

compensate for the motions of the drilling rig due to waves. When new pipes are connected to

the drill string, the string needs to be clamped to the drill floor. This causes the drill bit to act as

a piston near the bottom of the well.

Mud is pumped from the mud pit through the top drive, down the drill string, and out the drill

bit. The mud then brings along the drill cuttings from the drilling operation up the annulus ,

as shown in figure 2.2. From the top of the annulus the return mud flow qc is controlled by the

choke valve. Then purified in the shale shakers before it is transported back to the mud pit. The

mud plays many important roles in the drilling process, and in the list below some of its major

responsibilities are mentioned.

1. When drill cuttings needs to be transported from the drill hole up the annulus and sepa-

rated from the mud in the shale shakers. This require the mud to have rather high viscosity

in order to be able to bring the cuttings along. This is described in more detail in (Øyvind

Nistad Stamnes, 2011).

2. During drilling the drill bit may overheat and the mud acts as a coolant for the drill bit.

3. The flow rate back is used under managed pressure drilling to control the drill bit pressure

pbi t .



CHAPTER 2. DRILLING SYSTEMS 10

Figure 2.2: Schematic of an automated ABP-MPD system. Copied from (Kaasa, 2012)

2.1 Pore and fracture pressure

All formation penetrated by the drill bit is to some extent porous and may contain oil, gas or salt

water. These fluids contained in the pore space builds up the pore pressure, ppore. It is important

to keep the drill pressure pbi t higher than the pore pressure. If this criteria is not upheld one of

the following situations may occur.

1. If the pressure and the viscosity is to low, gas might leak into the mud creating so called

kicks. It’s called kicks because the gas expands as it rises to the surface and creates dan-

gerous increase in pressure and can cause a blow-out.

2. Drilling into neighbouring producing wells.

3. Getting influx to the mud in form of oil or water. This is only wanted during production

and may cost both production value and affect the muds viscosity.



CHAPTER 2. DRILLING SYSTEMS 11

If on the other hand the drill pressure gets higher than a certain pressure p f r ac which will cause

the mud to leak in to the formation, one may risk that.

1. Mud leaks into the pore space, causing mud loss. This is both costly and in violation of

environmental laws.

2. Mud might form a wall over the pores in the drill hole. This problem can be solved by

re-drilling the area, or it will slow down production.

In short the drill pressure must be held within the pressure parameters.

ppor e < pbi t < p f r ac

Beyond these boundaries are some worst case boundaries.

pcol l apse < ppor e < pbi t < p f r ac < pover bur den

The pcol l apse is the pressure limit where pressure becomes so low that the well will collapse

around the drill string. Consequently the drill string may be stuck in the drill hole. pover bur den

is the combined weight of formation materials and fluids in the geological formations above

any particular depth of interest in the earth (Skalle, 2011). Lastly it is worth mentioning that the

inequality above, is not completely written in stone, the pcol l apse might be larger then the pore

pressure in some rare occasions.

The pore and fracture pressure is calculated by geologist prior to the drilling, and can be ver-

ified during drilling operations. In figure 2.3 one can see a representation of the possible pres-

sure limits imposed by the pore and fracture pressure, and how the pressure limits is changing

with the depth of the well. One of the control objectives are to contain the down hole pressure

between the pressure limits calculated by the geologists.



CHAPTER 2. DRILLING SYSTEMS 12

Figure 2.3: Pore and fracture pressures at given depths. Copied from (Kaasa, 2012)

2.2 Managed pressure drilling

As one can imagine from the last section, there has become a high demand for accurate control

of the pressure in annulus during drilling operations. This has led to the rise of Managed pres-

sure drilling which is best described in the capable hands of (Øyvind Nistad Stamnes, 2011).

"Managed Pressure Drilling is an adaptive drilling process used to precisely control

the annular pressure profile throughout the wellbore. The objectives are to ascertain

the down hole pressure environment limits and to manage the annular hydraulic

pressure profile accordingly. The intention of MPD is to avoid continuous influx of

formation fluids to the surface. Any influx incidental to the operation will be safely

contained using an appropriate process."



CHAPTER 2. DRILLING SYSTEMS 13

—Øyvind Nistad Stamnes (2011)

When we talk about managed pressure drilling(MPD), we usually mean an adoption where the

bottom hole pressure pbi t is desired to be constant. This is a principal called the constant bot-

tom hole pressure. Were one wants to keep the bottom hole pressure between the pressure

limits described in the section above.

A Simple MPD system is illustrated in figure(Kasaa).Were the control goal is to keep the drill

bit pressure pbi t stable. This is done by controlling the feedback flow through the choke valve.

In this thesis the main focus will be on the part of the drilling operation where the drill string is

bolted to drill floor for pipe jointing. And due too this the flow through the top drive qp = 0. As

a result of this the drill bit pressure has to be maintained by the back pressure pump. Because

most measurements are taken top side one usually do not have the luxury of measuring any

other states than the top side pressure pc . The rest of the states including pbi t which is vital for

pressure control has to be estimated.



CHAPTER 2. DRILLING SYSTEMS 14

2.3 Hydraulic model

Figure 2.4: Control volumes of the annulus hydraulic model. Copied from (Ingar Skyberg Lan-
det, 2013)

In (Ingar Skyberg Landet, 2013) they created a hydraulic model with five control volumes to

capture the main dynamics of the ullrig test drilling facility. The model is made for controlling

the bottom hole pressure pbi t = p1 when a new drill string is being mounted. This results in a

model that dose not have the mud pump flow in the dynamics because the mud flow through

the top drive qp = 0. Consequently the only volumetric flow to create a down hole pressure be-

comes the feedback flow qbpp generated by the back pressure pump.

This resulting hydraulic model is split into five control volumes where each volume has a differ-

ential equation denoting the pressure in this volume and a differential denoting the volumetric

flow rate from this volume to the volume above. Each of these control volumes has a volumetric

flow rate into control volume and out of the control volume. Where the flow from the up most

control volume is determined by the flow through the choke valve qc , and the flow into the lower



CHAPTER 2. DRILLING SYSTEMS 15

control volume is created by the drill bit motion vd Ad .

ṗ1 = β1

A1l1

(−q1 − vd Ad
)

ṗ2 = β2

A2l2

(
q1 −q2

)
ṗ3 = β3

A3l3

(
q2 −q3

)
ṗ4 = β4

A4l4

(
q3 −q4

)
ṗ5 = β5

A5l5

(
q4 −qc +qqpp

)
q̇i = Ai

liρi

(
pi −pi+1

)− Fi (qi )Ai

liρi
− Ai g

∆hi

li

qc = Kc
p

p5 −p0G(u)

(2.1)

Where i = 1, . . . ,4 and the lower-case numbers refer to the control volume. And the parame-

ters are defined as.

• βi : The bulk modulus of the mud in control volume i .

• Ai : Is the cross section area in control volume i .

• li : Length of each control volume i .

• ∆hi Height of each control volume i .

• ρi : Mud density in control volume i .

• Fi (qi ): Friction force in the control volume i.

• g : Acceleration of gravity.

• p0: Atmospheric pressure.

• Kc : Choke constant.

• vd : Heave velocity due to ocean waves.

Where control volume i = 1 refer to the lower control volume, which means that p1 = pbi t = pdh .

Because there are five control volumes p5 = pc becomes the downstream choke pressure, and qc



CHAPTER 2. DRILLING SYSTEMS 16

the choke volumetric flow rate. In principle you could control the down hole pressure both with

the back-pressure pump and the choke valve. Pump control would require the pump to change

speed so fast that it would change the down pressure faster then the waves. This is generally not

possible so the choke valve is mainly used for pressure control.

2.4 Instrumentation

Instrumentation is the link between the control system and the process. It’s important to un-

derstand what we are measuring and what we are controlling in in order to control the process

correctly.

2.4.1 Pressure Measurement

Pressure is usually measured in industrial process by a type of instrument often referred to as a

pressure transmitter or (PT). These transmitters are mainly categorized into tree different types

of transmitters

• Differential pressure transmitter

One of the way to measure pressure is to measure the differential pressure between two

spots. This is usually used to measure the level in pressurised tanks as shown in figure

DiffPreasure, flow in pipes or filter clogging.

Figure 2.5: Differential pressure transmitter

• Absolute pressure transmitter

This sensor measure pressure relative to perfect vacuum.

pa = pg +patm



CHAPTER 2. DRILLING SYSTEMS 17

And is usually used if the transmitter doesn’t have access to a atmospheric pressure. If

this type of transmitter is used it’s common practise to use a second absolute pressure

transmitter to measure the atmospheric pressure. This way one can abstract the gauge

pressure by subtracting the absolute pressure

pg = pa −patm = pg +patm −patm

• Gauge pressure transmitter

This is probably what one might call a common pressure transmitter. It measures pressure

relative to atmospheric pressure. It can be described as a differential pressure transmitter

if p1 is the measurement and p2 is the atmospheric pressure

And for each of these transmitters a range of different pressure sensing technologies can be used

(Capacitive,Piezoelectric,Electromagnetic,etc).

These measurement is then sent to the control system in our case a (PLC). To do this there exists

a range of different standards, and one of the most common is 24v, 4−20mA. Where 4mA is 0%

and 20mA is 100% of the measurement scale.

In the MPD system setup used in this thesis, the only available relevant measurement is the

top side pressure pc . This is not enough to control this system, mainly because the controlled

variable is the down hole pleasure. But there is also a need to acquire the rest of the states used

in the MPC controller. To get the rest of the states the measured pressure is used in a Kalman

filter explained in section 3.2 combined with the system model from section 2.3 to estimate the

rest of the states.

2.4.2 Choke Valve

To have a control system one must have a manipulated variable. In a MPD systems it’s common

to control the return flow in order to control the bottom hole pressure. The return volumetric



CHAPTER 2. DRILLING SYSTEMS 18

flow rate qc is controlled by the choke valve.

qc = Kc
p

p5 −p0G(u) (2.2)

Where the choke characteristic G(u) can be defined as a polynomial function

G(u) = ag u2 +bg u + cg

which is not necessarily a quadratic function. But in many cases this is a sufficient notation.

Another factor that should be taken into consideration that isn’t included in the equations is

that valves have limits to how fast they can move. The M-I SWACO ECHOKE [swaco] which is

advertising for being a fast choke, uses 8 seconds from full open to full close. This means if the

controller sets an output to the choke valve it’s not realistic to assume that this instantaneously

will be the actual choke output.

2.5 State space model

In order to implement the system in a MPC controller the system needs to be linearised and

written as a linear sate space model.

Based on experimental research from the Ullrig test data, the friction force in annulus can be

considered a linear function.(Ingar Skyberg Landet, 2013)

Fi (qi ) = k f r i c,i qi

Ai

where

k f r i c,i =
64liµi (αi +βi )

r 2
h,i

where the new parameters are defined as.

• µi is the viscosity in the specific control volume.

• αi and βi are constants related to the ratio between the diameters of the annulus for in-



CHAPTER 2. DRILLING SYSTEMS 19

struction in calculation see (Ingar Skyberg Landet, 2013).

• rh : Is the hydraulic radius.

This leads to the linearised flow model

q̇i = Ai

liρi

(
pi −pi+1

)− K f r i c

l jρ j
qi − Ai g

∆hi

li

Another non-linearity is the choke characteristic discussed in section 2.4. This one can’t be

linearised directly but by using feedback linearisation this non-linearity can also be removed in

order to create a linear system.

ua = qbpp −qc

= qbpp −Kc
p

pc −p0G(u)

G(u) = qbpp −ua

Kc
p

p5 −p0

the equation for the top pressure becomes.

ṗ5 = β5

A5l5

(
q4 +ua

)
Where the choke characteristics can be approximated as a second degree polynomial.

G(u) = g = achoke u2 +bchoke u + cchoke

Because the input 1 ≥ u ≥ 0, the negative root of the answer becomes irrelevant, and the control

input becomes.

u =
−bchoke +

√
b2

choke −4achoke (cchoke − g )

2achoke

How general is nonlinearity cancellation? It is not possible to cancel nonlinearities in all nonlin-

ear systems. In order to cancel this kind of nonlinearities the system must have some structural

properties. In order to make this properties more tangible (Hhalil, 1996) have created definition

1 to show that a system is feedback linerizable. This theorem clearly states that the system in



CHAPTER 2. DRILLING SYSTEMS 20

(2.1) must be possible to rewrite into

ż = Az +Bγ(x)[u f −α(x)]

= Az +B(−Kc
p

p5 −p0)

[
G(u)− qbpp

Kc
p

p5 −p0

] (2.3)

in order to be feedback linerizable. Where γ(x) is and must be nonsingular for all x ∈ D , and

(A,B) controllable. Now that the requirements for feedback linearisation is stated, the rest of

this section is going to focus on stating a linear system. To start the parameters is redefined in a

simpler faction by denoting the parameters as.

a j =
β j

A j l j
, b j =

A j

l jρ j
, c j =

K f r i c

l jρ j
, e j =

A j g∆h j

l j

which forms the sate space model

ṗ1 =−a1q1 −a1 Ad vd

ṗ2 = a2q1 −a2q2

ṗ3 = a3q2 −a3q3

ṗ4 = a4q3 −a4q4

ṗ5 = a5q4 −a5ua

q̇i = bi pi −bi pi+1 − ci qi −ei

Where

ua = qbpp −Kc
√

pc −P0G(u)



CHAPTER 2. DRILLING SYSTEMS 21

Which is then written as a LTI system on state space matrix form as.

ẋ =



0 −a1 0 0 0 0 0 0 0

b1 −c1 −b1 0 0 0 0 0 0

0 a2 0 −a2 0 0 0 0 0

0 0 b2 −c2 −b2 0 0 0 0

0 0 0 a3 0 a3 0 0 0

0 0 0 0 b3 −c3 −b3 0 0

0 0 0 0 0 a4 0 −a4 0

0 0 0 0 0 0 b4 −c4 −b4

0 0 0 0 0 0 0 a5 0


︸ ︷︷ ︸

A

x +



0 0

0 −e1

0 0

0 −e2

0 0

0 −e3

0 0

0 −e4

a5 0


︸ ︷︷ ︸

B

ua

1

+



−Ad a1

0

0

0

0

0

0

0

0


︸ ︷︷ ︸

E

vd

y =
[

1 0 0 0 0 0 0 0 0
]

︸ ︷︷ ︸
C

x, x =
[

p1 q1 p2 q2 p3 q3 p4 q4 p5

]>

Definition (Hhalil, 1996) 1. A nonelinear system

ẋ = f f (x)+G f (x)u f (2.4)

where f : D → Rn and G : D → Rn×p are sufficently smooth on s domain D ⊂ Rn , is said to be

feedback linearisable (or input-state linearizable if there exists) a diffeomorphism T : D → Rn

such that Dz = T (D) contains the origin and the change of variables z = T (x) transforms the

system (2.4) into the form

ż = Az = Bγ(x)[u −α(x)] (2.5)

with (A,B) controllable and γ(x) nonsingular for all x ∈ D

2.6 Attempt to linearise with respect to depth

Model predictive control has become a success story in the cybernetics society. One of the rea-

sons for the success of MPC is due to the ability to take account for physical constraints. Al-

though the MPC produces great performance in control systems, it require lots of computation



CHAPTER 2. DRILLING SYSTEMS 22

power to produce the control action. Because there are many systems with fast dynamics that

could gain a lot from the properties of MPC control, it’s become more and more important to

find solutions to speed up the computational time of a MPC. One way of speeding up the opti-

mization is by changing the QP solver with an explicit solver, which gives birth to a range of new

problems. One of these problems comes from the fact that the explicit MPC makes a dataset

containing all the information needed to solve the QP. This dataset usually takes extremely long

time to compute and if the system model changes at different depths, it becomes unrealistic to

compute a new one at each depth. The solution to this problem is to create a liner state space

model that doesn’t change with the depth of the well.

First of we create the new states for the depth invariant state space model

xi = 1

Ai
qi ⇒ qi = Ai xi

pi = zi

The next step is to make a time transformation to cancel out the depth θ = t/∆h and presume

that li =∆hi , which makes way for the new derivatives.

d xi

∂θ
= 1

Ai

d qi

dθ

= ∆h

Ai

d qi

d t
⇒ q̇i = Ai

∆h

d xi

dθ
= Ai

li

d xi

∂θ

d pi

dθ
= d zi

d t
∆h ⇒ ṗi = 1

∆h

d zi

dθ
= 1

li

d zi

dθ



CHAPTER 2. DRILLING SYSTEMS 23

Which gives the the new state space model

1

l1

d z1

dθ
= β1

A1l1

(−q1 − vd Ad
)

= β1l1

A1l1
(−A1x1 − vd Ad )

=−β1x1 −β1
Ad

A1
vd

d z1

dθ
=−β1x1 −β1

Ad

A1
vd

d z2

dθ
= β2 A1

A2
x1 −β2x2

d z3

dθ
= β3 A2

A3
x2 −β3x3

d z4

dθ
= β4 A3

A4
x3 −β4x4

d z5

dθ
= β5 A4

A5
x4 − β5

A5
ua

q̇i = Ai

liρi

(
pi −pi+1

)− K f r i c

liρi
qi − Ai g

∆hi

li

Ai

li

∂xi

∂θ
= Ai

liρi
(i zi − i zi+1)− K f r i c

liρi

Ai

1
xi − Ai g

∆hi

li

∂xi

∂θ
= 1

ρi
(i zi − i zi+1)− K f r i c

ρi
xi − g∆hi

The drill string is presumed to have a radius rstring and the well is presumed to have a radius ri

in control volume i . Then the cross section area becomes

Ai =π(r 2
i − r 2

string)

Where the drill string radius is presumed to be zero and therefore creating

Ai

Ai+1
= r 2

i

r 2
i+1

=
(

ri

ri+1

)2

≈ karea

Which means because ri and ri+1 are presumed linearly dependent, Ai and Ai+1 becomes lin-

early dependent. We also presume that the drill bit area Ad and the cross section area of the low-

est control volume is linearly dependent, and that the top cross section area A5 doesn’t change.



CHAPTER 2. DRILLING SYSTEMS 24

If all the presumptions above proves to hold then we have successfully created a depth invariant

state space model. The fact of the matter is that most of these assumptions actually have a fight-

ing chance, except for the very first one ∆hi = li . This is due to the fact that the well might be

non-vertically as shown in figure 2.6. From this it can be concluded that although the depth of

the well is included in the model, the model cannot be linearised with respect to depth because

li and ∆hi may in general differ from each other.

To connect the dots regarding linearizing the system with respect to depth, this paragraph is

intended as a summation of the main points above. First of the drilling model is none-linear

and to even create a linear model for a specific depth the model needs to be linearized. This

none-linearity is imposed by the choke valve and a linearization are presented in section 2.5.

Although the problem now is linearized, it is still not time-invariant. In this section a method

was presented to to create a model that does not change with depth in order to eliminate this

time varying factor. This was partially successfully if the well is drilled just vertically. Which is

of cause newer the case in a modern drilling operation. In other words the geometry of the well

makes it practically impossible to create a time invariant model. From these discoveries it was,

in agreement with supervisor, determined not to proceed with explicit MPC.

Figure 2.6: Non-vertical well





Chapter 3

Heave motion disturbance model and state

estimation

3.1 Heave motion disturbance model

An important part of designing control systems is to evaluate the robustness in the presence of

disturbances. In our case the disturbance is waves hitting the floating drill rig causing a heave

motion, illustrated in figure 3.1.

Figure 3.1: Direction of wave force on drilling rig

3.1.1 Wave spectrum

If wind blows over large areas of sea, ocean waves are born. And as the distance grow and the

wind speed rises the waves grow taller. So when ship designers and control engineers want in-

26



CHAPTER 3. HEAVE MOTION DISTURBANCE MODEL AND STATE ESTIMATION 27

formation about what waves are produced by a given wind in a specific area, they need a wave

analysis. This wave analysis is often presented in form of a spectrum analysis. This spectrum

may have more than one peak. This is due to the fact that tidal waves or existing waves often

have a low frequency in opposition to newly formed waves with a higher frequency.

There has been a lot of research into this field and a lot of spectrum models have been cre-

ated. But the relevant case is probably the Joint North Sea Wave Project (JONSWAP) spectrum

(K. Hasselman, 1973). This spectrum was created as a joint venture between England, Holland,

USA and Germany on the island of Sylt in the north of Germany. These measurements were

taken by an array of sensors in recording for several weeks in 1968-1969. The spectral density

function is written by (Fossen, 2011) as

S( jω) = 155
H 2

S

T1
ω−5 exp

(
−944

T 4
1

ω−4

)
γY

where Hs is the significant wave height, T1 the average wave period, γ= 3.3 and

Y = exp

[
−

(
0.191ωT1 −1p

2σ

)2]

where

σ=
 0.07 for ω6 5.24/T1

0.09 for ω> 5.24/T1

3.1.2 Liner approximation

As (Fossen, 2011) describes a linear wave response approximation is usually preferred over a

spectrum analysis by a control engineer due to it’s simplicity and applicability. This linear re-

sponse is presented in the form of a transfer function.

H(s) = diag
[
h{1}, . . . ,h{6}]



CHAPTER 3. HEAVE MOTION DISTURBANCE MODEL AND STATE ESTIMATION 28

Were there are six transfer functions presented in a diagonal matrix. Because we only are inter-

ested in the heave response the transfer function can be presented as.

hh(s) = Kωs

s2 +2γω0s +ω2
0

where

Kω = 2γω0σ

In the paper (Amirhossein Nikoofard and Pavlov, 2014) it is stated that typical parameter choices

for drilling operations in the north sea are

• λ= 0.1017

• σ= 1.9528

• Hs = 4.7

• T0 = 8.7

• ω0 = 0.7222

• K h = 23

Which will provide a linear spectrum describing the sea state as shown in fig 3.2.

Figure 3.2: JONSWAP spectrum and its approximation. Copied from (Amirhossein Nikoofard
and Pavlov, 2014)



CHAPTER 3. HEAVE MOTION DISTURBANCE MODEL AND STATE ESTIMATION 29

3.1.3 Wave response

With the established wave spectrum of the north sea waves and the linear approximation model

in hand, it is possible to simulate the wave amplitude. Knowing the waves is not enough to

simulate the heave motion of a drilling rig. To transform the wave amplitude to heave motion,

Response Amplitude operators (RAOs) are introduced. There are two main types of RAOs

Linerar wave 
spectrum 
approximation

1st-order Force 
RAO

Linear vessel 
dynamics

Wave
amplitudeWhite Noise

Wave freqency
 (WF) motion

(s)sH (s)raoH (s)vH

K

Figure 3.3: Linear approximation for computation of wave induced positions. Inspired by (Fos-
sen, 2011)

• Hr ao(s) - Wave force response amplitude operator

This is a transfer function that transforms the wave amplitude to a force in [N]. The func-

tion is creating a force vector by using newton’s second law of motion.

• Hv (s) - Motion response amplitude operator

This transfer function transforms force to motion.

These functions are put together as shown in figure(fig). In addition to this the RAO vessel model

can be approximated as.

Hr ao(s)Hv (s) ≈ K

Where K is a matrix of tunable gains.

K = diag
[
K {1}, . . . ,K {6}]



CHAPTER 3. HEAVE MOTION DISTURBANCE MODEL AND STATE ESTIMATION 30

If the fixed gain approximation is applied, the generalized wave-frequency position vector be-

comes.

ηω = K Hs(s)ω(s)

where Hs(s) is the diagonal matrix containing all the linear approximations of the wave spec-

trum as described in the section above. Because we only are interested in the heave motion our

wave-frequency position equation becomes.

ηh
ω = K hhh

s (s)ωh(s)

where hh
s (s) is the spectral factor of the wave spectral density function S(ω) and ωh(s) is a zero-

mean Gaussian white noise process with unity power across the spectrum:

P do f
ωω (ω) = 1

This calculation will provide a JONSWAP wave approximation that generates waves like the ones

in figure 3.4.

0 10 20 30 40 50
−3

−2

−1

0

1

2

3

Time [s]

W
av

e 
he

ig
th

 [m
]

Figure 3.4: Waves generated from JONSWAP linear approximation



CHAPTER 3. HEAVE MOTION DISTURBANCE MODEL AND STATE ESTIMATION 31

3.2 Kalman filtering

Kalman filtering is a type of state estimator created by Rudolf E. Kálmán. This technology uses

a series of noisy measurements observed over time to produce estimates of unknown variables.

The Kalman filter itself is an efficient predictor-corrector algorithm that calculates a Kalman

gain Kk in a way that minimizes the estimated error covariance P−
k = E [e−

k e−>
k ] where ek =

xk − x̂−
k . The filter is commonly used on linear stochastic systems. Which means that the system

has process noise and or measurement noise.

For more information and complete derivation of the Kalman filter see (R.G. Brown, 2012).

3.2.1 Design

A linear dynamical system can be described on explicit discrete steady state form as

x(k +1) = Ad x(k)+Dbu(k)+Ed vd (k)

y(k) = Ad x(k)

Where the disturbance that affects the system can be modeled as.

w(k) = Ed vd (k)

Where vd represents the wave velocity on discrete form, and Ed is the discrete disturbance input

matrix.

With information about the disturbance it is possible to create a covariance matrix.

E [wk wi ] =
 G , i = k

0, i 6= k



CHAPTER 3. HEAVE MOTION DISTURBANCE MODEL AND STATE ESTIMATION 32

And because we only are interested in the diagonal and E [wk wk ] = E [w 2
k ] The covariance matrix

becomes.

G = diag
(
E [w 2

1],E [w 2
2], . . . ,E [w 2

n]
)

Now we have all the information we need to calculate the estimated states x̂k using the Kalman

filter algorithm presented in (R.G. Brown, 2012).

1. Enter prior estimate x̂−
0 and it’s error covariance P−

0

2. Compute calman gain:

Kk = P−
k C>

d

(
Cd P−

k C>
k

)−1

3. Update estimate with measurment zk :

x̂k = x̂−
k +Kk

(
yk −Cd x̂−

k

)
4. Compute error covariance for updated estimate:

Pk = (I −KkCd )P−
k

5. Project ahead:

x̂−
k+1 = Ad x̂ +Bdu

P−
k+1 = Ad PA>

d +G

6. Increase k = k +1 and go to step two.

3.2.2 Stability

Stability theorem

x(k +1) = Ad x(k)+Dbu(k)+w(k)

y(k) = Ad x(k)+ v(k)

If the system above is a time-invariant, observable and statistically reachable. And G is positive

definite. Then the following statements are true for the Kalman filter.

• For any symmetric and positive definite matrix P (0|0), P (k|k) converges uniformly to a

unique matrix P̄ . Which implies that K (k) converges to a constant matrix K̄ .



CHAPTER 3. HEAVE MOTION DISTURBANCE MODEL AND STATE ESTIMATION 33

• The steady state Kalman filter is defined as the one using the Kalman gain K̄ . We have

x̂(k|k) = x̂(k|k −1)+ K̄ (z(k)− H x̂(k −1)) = (Φ− K̄ HΦ)x̂(k −1|k −1)+ K̄ z(k). This filter is

asymptomatically stable, i.e. all the eigenvalues of (Φ− K̄ HΦ) lie within the unit circle.

This is important because they provide the necessary condition for the error covariance matri-

ces to converge independently of the initial condition P(0|0), and guarantee numerical stability

of the filter equations. (Erik Bølviken, 1998)

• The system is unstable or has a bias error.

• The model error is higher than expected





Chapter 4

Model Predictive Control

4.1 Feasibility

An equation such as 2x −6 = 0 has only one solution or feasible position x = 3, a second degree

equation such as x2−4 = 0 has two feasible positions x =−2∨x = 2. The multi variable equation

z2
1 + z2

2 = 0 has infinitely many feasible points forming a feasible region, where all the points

form a circle with radius one. One might reduce this feasible region by adding a new constraint

z1 + z2 > 0, which forms a smaller feasible region shown in red on figure 4.1. These constraints

form what is called a feasible set.

Ω= {
z ∈R2 | c1(z) = 0∧ c2(z)> 0

}
= {

z ∈R2 | z2
1 + z2

2 = 0∧ z1 + z2 > 0
}

Which separates constraints in to groups, equality constraints ε= {1} where one can find c1(z),

and inequality constraints I = {2} where we find constraint c2(z).

4.2 Optimization

In examples such as above where there might be infinitely many solutions one stops searching

for a solution, and starts searching for the optimal solution inside the given constraints. This

35



CHAPTER 4. MODEL PREDICTIVE CONTROL 36

Figure 4.1: Ilustration of feasible region. Copied from (Heirung, 2013)

form of thoughts form the optimization problem.

min
x∈Rn

f (x)

Subject to

ci (x) = 0, i ∈ ε
ci (x)> 0, e ∈I

The optimization problem has three main components, the decision variables x = [x1, x2, . . . , xn]>,

an objective function f (x) and the constraints ci (x). Where the objective function finds the opti-

mal value for each decision variable within the given constraints. This is supposed to summarize

the main points of the active-set method with the intent to give some clarity of the concept of

how iterative constraint optimization work.

4.2.1 Constrained optimization

This section will describe the iterative active set method for solving a quadratic optimization

problem, where G is positive semidefinite. Which means that q(x) is a convex function and by

theorem 1 the local minimizer x∗ found by the the optimization is a global minimizer. The QP



CHAPTER 4. MODEL PREDICTIVE CONTROL 37

problem is defined as

min
x

q(x) = 1
2 x>Gx +x>c Subject to a>

i x = bi , i ∈A (x∗) (4.1)

Where A (x∗) is the active set from definition 1 at the minimal point x∗. And usually there is no

prior knowledge of the minimal point x∗

Line search

One of the most efficient ways of finding the minimum of a constrained optimization problem

is by using a iterative search method. In each iteration of a line search, a direction of the search

is computed. The iteration is given by.

xk+1 = xk +αk pk (4.2)

In order for the line search to be efficient and successful the direction pk and the step length αk

must be carefully chosen.

In each iteration the current set being worked on is denoted as the kth iterate xk by Wk . For

each iteration it is required that the gradients ai of the working set Wk are linearly independent.

Also a check to see if xk and Wk minimizes (4.1) is done in each iteration. The sub problem for

each iteration is defined as

p = x −xk , gk =Gxk + c

And by substituting for x into the objective function in (4.1), we get a new objective function

q(x) = q(xk +p) = 1

2
p>Gp + g>

k p +q(xk )

Here, q(xk ) is independent of p and can be dropped from the objective function without chang-

ing the solution of the problem. Which results in the QP problem to be solved for each iteration.

min
p

1
2 p>Gp + g>

k p

Subjet to a>
i p = 0, i ∈Wk .

(4.3)



CHAPTER 4. MODEL PREDICTIVE CONTROL 38

Where the solution of optimization problem (4.3) is the search direction pk in (4.2). Since G is

positive definite, the solution of (4.3) can be solved as a direct solution of the KKT system.

To maximize the decrease in q , the step length αk is chosen to be as long as possible in [0,1]

while retaining feasibility by the following definition.

αk ,min

(
1, min

i∉Wk ,a>
i pk<0

bi −a>
i xk

a>
i pk

)
(4.4)

This way of iterating is used until Pk = 0 then we have that

∑
i∈Ŵ

ai λ̂i = g =Gx̂ + c (4.5)

This is supposed to summarize the main points of the active-set method with the intent to give

some clarity of the concept of how iterative constraint optimization work. For a more detailed

dive into the active set method or optimization in general read (Wrigth, 2006). It also gives the

opportunity to present an example of the active set algorithm from presented in algorithm 1, as



CHAPTER 4. MODEL PREDICTIVE CONTROL 39

a example how to solve a convex QP.

Compute a feasible starting point x0;

Set W0 to be a subset of the active constraint at x0;

for k = 0,1,2 . . . do

Solve (4.3) to find pk ;

if pk = 0 then

Compute Lagrange multipliers λ̂i that satisfy 4.5, with Ŵ =Wk ;

if λ̂i ≥ 0 ∀ i ∈Wk ∩I then

Stop with solution x∗ = xk ;

else

j ← arg min j∈Wk∩I λ̂ j ;

xk+1 ← xk ;

Wk+1 ←Wk \ { j } ;

end

else

Compute αk from (4.4) ;

xk+1 ← xk +αk pk ;

if There are blocking constraints then

Obtain W by adding one of the blocking constraints to Wk ;

else
Wk ←Wk

end

end

end
Algorithm 1: Active-set method for Convex QP. Copied from (Wrigth, 2006)

Definition (Wrigth, 2006) 1.

The active set A (x) at any feasible c consists of the equality constraint indices from ε together with

the indices of the inequality constraints i for which ci (x) = 0; that is,

A (x) = ε∪ {i ∈I |ci (x) = 0}.



CHAPTER 4. MODEL PREDICTIVE CONTROL 40

At a feasible point x, the inequality constraints i ∈I is said to be active if ci (x) = 0 and inactive is

the strict inequality ci (x) > 0 is satisfied.

Theorem (Wrigth, 2006) 1.

When f is convex, any local minimizer x∗ is a global minimizer of f. If in addition f is differential,

then any stationary point x∗ is a global minimizer of f.

4.2.2 Dynamic Optimization

Ordinary mathematical systems can be divided into static or dynamical systems, where dynam-

ical systems can be divided into linear and non-linear systems.

• Statical systems

Statical systems are time independent systems, or systems that is not a function of time.

To put it in a practical perspective, to apples plus thee apples always equals five apples.

• Dynamical systems

This is not necessary a system that changes over time, but is a function of time. To put this

into a practical perspective let’s say you have a car that drives around in 14[m/s] and have

an acceleration of 1[m/s], then it is not going in 14[m/s] five minutes later. The modern

idea of dynamics comes from Newtonian science and the tree laws of motion but there are

dynamics in everything, ranging from social dynamics to economical dynamics, one only

need to look at a border picture and its there.

Until now the main theme have bean optimization of statical systems or time independent sys-

tems, but from now on we are going to look at dynamical systems. More specifically linear dy-

namical systems written on state space form.

xt+1 = Axt +But +Evt

Where the system variables are

• x - System states

• u - System input



CHAPTER 4. MODEL PREDICTIVE CONTROL 41

• v - System disturbance

where the first two are the decision variables. As one can imagine these systems does not have

one answer, but an array where the length depends on the sampling time and the length of the

control horizon. This introduces two new concepts to be described in more detail, sampling

time and control horizon.

Control horizon

Optimizing a dynamical system is not about optimizing a set of variables but a set of variables

over time as shown in the upper figure in figure 4.2. This means one need to have a decision

variable for each state and control input at every discrete time instant. If the control horizon

is infinitely long there will be infinitely many decision variables and it will take infinitely long

time to get an answer. So how long should the horizon be? "The prediction horizon is com-

monly chosen sufficiently long for the plant to reach steady state"(Hovd, 2012). This is because

of stability issues. Lets say that the plant undershoots early in the step response, then the op-

timization would automatically give a negative response to compensate if the control horizon

wasn’t sufficiently long.

Sampling time

Both the length of the control horizon and the sampling time are important issues because they

affect the complexity of the optimization problem. This doesn’t mean that the sampling rate can

be chosen to be as small as possible, because the system must have a decent sampling frequency

for the optimization to be efficient, and the systems performance gets to some extent better as

the frequency rises depending on how quick the system dynamics are. There is also the aspect of

disturbance rejection which also improves as the frequency rises. The Nyquist–Shannon sam-

pling theorem (Marks, 1991) states that.

fs > 2 f

Where fs is the sampling frequency and f the highest frequency component of interest. This

means that to be able to remove a disturbance, the sampling frequency has to be at least twice as

high as the disturbance you want to remove. In our case the waves has it’s main energy focused



CHAPTER 4. MODEL PREDICTIVE CONTROL 42

between 0.5−1.5[rad/s] with a peak at ω= 0.722[rad/s]. Due to the fact that 1.5[rad/s] ≈ 0.24Hz

the sampling theorem states

fs > 2 f ≈ 2 ·0.24 = 0.48

Ts = 1

fs
≈ 2.1

Which means the sampling time must at least be smaller than Ts = 2.1 for the disturbance rejec-

tion to be efficient.

Dynamical optimization problem formulation

The typical formulation of a linear optimization problem used in most research literature is for-

mulated in section 4.4, and the formulation used in ACADO toolbox for generating a MPC solver

is

minz∈Rn
∫ t0+T

t0

∥∥h(t , x(t ),u(t ), p)−η(t )
∥∥2

Q d t +∥∥m(x(t0 +T ), p, t0 +T )−µ∥∥2
P

Subject to:

x(t0) = x0

∀t ∈ [to , to +T ] : 0 = f (t , x(t ), ẋ(t ),u(t ), p)

∀t ∈ [to , to +T ] : 0> s(t , x(t ),u(t ), p)

0 = r (x(t0 +T ), p, t0 +T )

Where

• x - The states

• u - The control input

• p - A time-constant parameter

• T - The time horizon

• f - Represents the model equations



CHAPTER 4. MODEL PREDICTIVE CONTROL 43

• s - The path constraints

• r - The terminal constraints.

This is of course a non-linear set-up because ACADO is a non-linear optimization library, but

that does not mean it cannot be used on linear problems, in fact the toolbox identifies the system

as linear and creates a linear QP solver. It’s also worth mentioning that the dynamical optimiza-

tion problems are formulated continuously and automatically discretized by the toolbox. The

implementation will be covered in more detailed in chapter 6.

Figure 4.2: Illustration of the MPC principle. Copied from (Heirung, 2013)



CHAPTER 4. MODEL PREDICTIVE CONTROL 44

4.3 Optimal control

Optimization without feedback is great for solving minimizing/maximizing problems, but us-

ing this approach on a dynamical system will only generate an optimal path N steps into the

future. This would have worked if the system model was perfectly modelled, without distur-

bances and the last output was to stay the same for all foreseeable future. Consequently the

idea of optimization without feedback becomes less plausible and in most cases only a hypo-

thetical idea. Which gives birth to optimization with feedback, often referred to as Model Predic-

tive Control(MPC), but also referred to as Receding Horizon control and Moving Horizon Optimal

Control. This concept is implemented by solving a optimization problem for each sampling in-

stance as described by (D. Q. Mayne, 2000).

"Model predictive control is a form of control in which the current control action is

obtained by solving, at each sampling instant, a finite horizon open loop optimal con-

trol problem, using the current state of the plant as the initial state; the optimization

yields an optimal control sequence and the first control in this sequence is applied to

the plant."

—D. Q. Mayne (2000)

The functionality of the MPC can be seen in figure 4.2. In the figure an optimization problem

is solved for a given time instance with the initial condition x0 (upper figure), sets the first con-

trol input to the proses(lower figure), let the system iterate one sampling instant into the future

before reading out the state information from the process and feed it into the optimization prob-

lem and solves it for the next time instant. The MPC functionality can then be compressed into

the short algorithm 2.

for t = 0,1,2 . . . do

Get the current state xt ;

Solve a dynamic optimization problem on the prediction horizon from t to t +N with

xt as the initial condition;

Apply the first control move ut from the solution above;

end
Algorithm 2: State feedback MPC procedure. Copied from [optcontrol note]



CHAPTER 4. MODEL PREDICTIVE CONTROL 45

4.4 Optimality and Stability

In this section there will be presented presented some specific ways of ensuring stability in MPC

controllers. There will also be explained how to ensure feasibility in the controller at al times. In

research literature MPCs is almost always presented presented on discrete state space form.

x(t +1) = Ax(t )+Bu(t ), x(0) = x0 (4.6a)

u(t ) =C x(t ) (4.6b)

Where x(t ) ∈ Rn denotes the states at time t , u(t ) ∈ Rm the input, and y(t ) ∈ Rp the output. By

iterating the discrete system in 4.6, k steps into the future, the states can be denoted as x(t+k|t ).

And the optimization problem used in the MPC algorithm defined in algorithm 2, is defined as.

min
u,x

J (u, x) =
Np−1∑
k=0

x>(t +k|t )Qx(t +k|t )

+
Nm−1∑

k=0
u>(t +k|t )Ru(t +k|t )+x(Np )>P0x(Np )

(4.7a)

subject to

F1u(t +k|t ) ≤G1 (4.7b)

E1x(t +k|t ) ≤G1 +F2u(t +k|t ) ≤G2 (4.7c)

and

Stability Constraints (4.7d)

Where Np is the length of the prediction horizon in samples, Nm is the length of the input

horizon and Nm ≤ Np . An infinite horizon is defined as Np = ∞, and finite horizon as Np =
scalar.

Assumption (Morari, 1999) 1. The polyhedron {(x,u) : F1u ≤G1E2x +F2u ≤G2} contains the ori-

gin (x = 0,u = 0). And that the constraint (4.7d) are inserted in the optimization problem are

implemented in the optimization problem in order to guarantee closed loop stability.



CHAPTER 4. MODEL PREDICTIVE CONTROL 46

4.4.1 Defining stability constraints

A range of different techniques are used in literature to enforce stability assuming assumption

1 is satisfied (Morari, 1999). These approaches are divided into two main classes. The first uses

the Lyapunov function V (t ) = J (u∗, x∗, Np , Nm). Where u∗ and x∗ are the optimal solution from

the optimization at each sampling instance. The second requires that x(t ) is shrinking in some

norm. Some of the methods for guaranteed stability are listed below.

• Terminal Constraint

One way of ensuring stability is to replace equation (4.7d) with the terminal constraint

method defined as

x(t +Np |t ) = 0 (4.8)

The main drawback to this approach is that all the states have to be brought to zero within

the prediction horizon. This might require a large control effort in order to get the state

to zero within the control horizon. The large control effort might also become a feasibility

problem.

• Invariant Terminal Constraint

The idea of the invariant terminal constraint is to relax the terminal constraint 4.8 to

x(t +Np |t ) ∈Ω

and set u(t +k|t ) = FLQ x(t +k|t ), k ≥ Nm where FLQ feedback gain. The setΩ is invariant

under LQ control and such that the constraints are fulfilled inside the feasible setΩ.

• Infinite Output Prediction Horizon The constraint in (4.7d) is not required if Np =∞ and

the system in (4.6) is asymptotically stable.

4.4.2 Feasibility

Feasibility of the optimization problem in (4.7a) must be ensured for each sampling instant for

the system in (4.6), and if the system is feasible at t = 0 it can be assumed to be feasible for the

rest of the control horizon. Feasibility is secured if the constraints are never broken (Morari,



CHAPTER 4. MODEL PREDICTIVE CONTROL 47

1999). The constraints are usually divided into two types, hard constraints and soft constraints.

Hard constraints can never be broken while soft constraints can be broken to ensure feasibility.

Input constraints are usually constrained physically and can not be broken. The other con-

straints are the state constraints imposed by the fracture pressure and the formation pressure

presented in section 2.1. These constraints can be broken under extreme circumstances to en-

sure feasibility. They can therefore be added as soft constraints. The most common way of

adding soft constraints are by adding slack variables to the hard constraints, as shown below.

εxmin,k ≤ xk ≤ εxmax,k

Where the slack variable ε is then added to the cost function with high cost.



CHAPTER 4. MODEL PREDICTIVE CONTROL 48

4.5 Numerical integrator

Simulations are an important part of engineering a control system. It’s a useful tool throughout

the life cycle of a control system, beginning in the design but also in both maintenance and up-

grading. Most control systems are dynamical and therefore formulated with either differential

equations or transfer functions with initial conditions. Because computers are digital, simulat-

ing these systems requires numerical integrators. Simulations are used to simulate dynamical

systems for implementation of controllers, designing controllers and testing the controllers be-

fore implementing them in a real system. In NMPCs it’s often used as a tool for simulating the

slope of the optimization problem in question. The reason why this is brought up is that it is

used in the ACADO toolbox for creating MPC solvers.

Explisit Runge-Kutta

There are a bunch of integrator schemes and they are often placed into two categories, implicit

and explicit methods. As the names implies, the explicit methods are easier to solve because

they can be solved directly. The stability properties of implicit methods are usually to some ex-

tent better and therefore used when they are necessary. An example where implicit integrators

are needed are stiff systems. The explicit numerical scheme for simulating an ODE on the form

ẏ = f (y, t ) with an explicit Runge-kutta method with σ stages is given by.

ki = f (yn +h
i−1∑
j=1

ai j k j , tnci h), i = 1, . . . ,σ (4.9a)

yn+1 = yn +h
σ∑

j=1
b j k j (4.9b)

One of the most common explicit Runge-Kutta methods is the forth order model often short-

ened RK4. The butcher tableau which gives the constants for the numerical scheme in (4.9) is



CHAPTER 4. MODEL PREDICTIVE CONTROL 49

0

c2 a21

c3 a31 a32

...
...

...
. . .

cσ aσ1 aσ2 · · · aσ,σ−1

b1 b2 · · · bσ−1 bσ

=

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

2
6

2
6

1
6

For more information about numerical integrators, simulation of ODEs or information about

stability of numerical integration schemes, please refer to the book (Olav Egeland, 2002).



CHAPTER 4. MODEL PREDICTIVE CONTROL 50

4.6 Condensation

Model predictive control has shown itself to be a powerful way of controlling dynamical systems.

This is both because it produces great results and have a native property of handling constraints.

Although the MPC produces great performance in control systems it has a price, it require lots

of computation power to solve the optimization problem for each sampling instance to produce

the control action. Because there are many systems with fast dynamics that could gain a lot from

the properties of MPC control, it’s become increasingly important to find solutions to speed up

the computational time of a MPC. One of the ways to minimize the computational time is by

minimizing the number of decision variables. In literature there are a range of different ways to

minimize the number of decision variables. But when boiling down these different approaches

there are mainly two extremal approaches, sparse formulation where both states and inputs are

decision variables and condensed formulation where only inputs are decision variables. There

are also approaches in between often called sparse-condensed formulations.

• Sparse formulation

In the sparse formulation both the states and the inputs are decision variables. Which

forms the decision variable vector for a QP problems as.

z =
[

x>
0 u>

0 x>
1 u>

1 · · · u>
N−1 x>

N

]>
To the corresponding QP problem

min
z

J (z) = 1
2 z>H z

subject to F z = f

Gz ≤ g

• Condensed formulation

In the Condensed formulation only the inputs are used as decision variables. Which forms

the decision variable vector for a QP problems as.

u =
[

u>
0 u>

1 u>
2 · · · u>

N−1

]>
To the corresponding QP problem



CHAPTER 4. MODEL PREDICTIVE CONTROL 51

Computation Time Memory consumption

Condensed O (N 3m2(l +m)) O (N 2m(l +m))
Sparse O (N (m +n)2(l +m +n)) O (N (m +n)(l +m +n))

Where

Variable Definition
m Number of inputs
n Number of states
l Number of constraints
N Length of horizon in samples

Table 4.1: Computational complexity and memory requirements from (Juan L. Jerez, 2011)

min
u

J (u) = u>Hu + (Fθ+ f )u

subject to Ai eq u ≤ bi eq +Bi eqθ

Which comes from the condensed formulation used in the rest of this thesis, for the com-

plete formulating look in appendix A.

From this it might seem like the condensed solution is always the way to go but this is nei-

ther true or tangible. To get something more tangible, one should look at table 4.1, to see what

solution to choose. In general the condensed solution is the better choice for both memory con-

sumption and computation time if N is small. If N is large, a sparse formulation is probably the

way to go. How long the horizon can be before the sparse solution becomes sensible is depen-

dent on the number of states, inputs and constraints. Fore more information on computation

time and memory consumption in condensation read (Juan L. Jerez, 2011).





Chapter 5

Controller design

5.1 Control hierarchy

Figure 5.1: Typical structure of the control system for a large plant in proses industry. Copied
from (Hovd, 2012)

53



CHAPTER 5. CONTROLLER DESIGN 54

A typical structure of a modern control system is show in figure 5.1. Beginning at the bottom

of this control system structure one finds the process layer. This layer is literally the process as

it is in the drilling hydraulic model .

Above this layer is some connections, these connections represents measurements, in this case

the top side pressure. The outputs in this case is the choke set-point. The next level is the regu-

latory control layer. This is where the low level controller is. In this case, this it is the controller

that controls the topside pressure with the choke valve. This layer is in ordinary cases important

because it’s stabilizes the system for easier MPC control. We do not use a PID controller to sta-

bilise the system, but this can be done and is a common approach to stabilize the system. This

of course modifies the dynamical state space model of the plant, and a new state space model

must be used in the MPC controller. An example of how to modify the system state space model

to contain the PI controller is attached in appendix B. In this implementation this control layer

consists of a feedback Linearization to remove the non-linearity in the state space model.

The next level is the Supervisory level. This is where the MPC is placed and it’s using the es-

timated states from the Kalman filter to calculate an optimal manipulated value as a choke set-

point. This way one can indirectly control the drill bit pressure with the MPC controller.

The next layer is the real time optimization(RTO) control layer. In this layer the optimal condi-

tions to the MPC is set. This means setting the pressure limits for the drill bit pressure between

the limits described in section 2.1. And setting the set point. These values changes at different

depths and different materials, and these values are calculated before the drilling starts by a ge-

ologist.

The last layer is essentially exactly what the name indicates.



CHAPTER 5. CONTROLLER DESIGN 55

5.2 System properties

5.2.1 Simulation Parameters

To simulate the MPD system in section 2.3. The well is assumed to be 1990.99 [m] long and the

identified parameters from the IRIS Drill simulator are used (Amirhossein Nikoofard and Pavlov,

2014). Where the parameters are defined as.

Parameter Value Parameter Value

ai 2.545 ·108 [Pa/m3] K f 5.725 ·105 [aPa/m3]

bi 5.725 ·10−8 [m4/K g ] Kg 0.00650

ci 14.4982 [1/sm2] A 0.0269 [m2]

ei 0.2638 [m3/s] Ad 0.0291 [m2]

g 9.806 [m/s2] Kc 2.32 [m/s2]

p0 101325 [Pa] qbpp 369.2464 [m3/s]

(5.1)

5.2.2 Choke Valve Characteristic

In section 2.4.2 a choke valve model was presented. In this section the choke valve character-

istics was not presented. To simulate the systems choke valve, parameters identified from data

from a offshore drilling rig is used. The identification was done by the author in a previous

course in system identification on data presented in (Kaasa, 2012). This choke characteristic is

denoted by by the parameters in table 5.1 The differential pressure over the valve is formulated

as p5−p0 =∆p. In order to create the simulated choke characteristic in figure 5.2 the differential

pressure is assumed to be ∆p = 25[bar ]. From this figure one can clearly see the non-linearity

imposed by the G(u). The choke actually doesn’t start opening before it has moved approxi-

mately 35 percent of the range, but after that it seams to have a quick-opening characteristic.



CHAPTER 5. CONTROLLER DESIGN 56

Variable Value

Kc 8.9670
ag −1.96 ·10−4

bg 0.0419
cg −1.1920

(5.2)

Table 5.1: Choke characteristic

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Valve characteristic q
c
(∆p

c
, z

c
) med ∆P

c
 = 25

Prosent [%]

q c

Figure 5.2:

5.2.3 Controllability

The controllability matrix C, from theorem 1 has the row rank.

rank(C ) = 9

Which means the liner system (A,B) from section 2.5 is controllable with the parameters from

(5.1). Since the system is stabilizable, which is a weaker form of controllable, the system in (5.9)

will always have a well defined solution. It also means that that the feedback linearisation from

section 2.5 is satisfied by definition 1.

Theorem 1. (Chen, 2009)



CHAPTER 5. CONTROLLER DESIGN 57

The n-dimensional pair (A,B) is controllable if the n ×np the controllability matrix

C =
[

B AB A2B · · · An−1B
]

has rank n (full row rank)

5.2.4 Observability

The observability matrix O, from theorem 1 has the column rank.

rank(O) = 9

Which means the liner system (A,C ) from section 2.5 is observable with the parameters from

(5.1). Because the system is observable and therefore automatically stochastically reachable by

[ref oslo]. The Kalman filter in section 3.2 then satisfies the stability theorem in section 3.2.2.

Theorem 1. (Chen, 2009)

The n-dimensional pair (A,C ) is observable if the np ×n the Observability matrix

O =



C

C A
...

C An−1


has rank n (full column rank)

5.2.5 Internal Stability

The MPD system from section 2.5 with the parameters from (5.1) on state space form with the

parameters denoted (5.1) with the characteristic polynomial

det(A−λI) = 0



CHAPTER 5. CONTROLLER DESIGN 58

Where the roots are.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

−14.2397 −13.5127 −12.4762 −11.4547 −3.0435 −2.0220 −0.0000 −0.2585 −0.9855

Which is satisfying theorem 1.2 and the system is marginally stable. Because the system only is

marginally stable the infinite output prediction horizon stability concept can not be used. To

guarantee MPC stability the solution then becomes to use the invariant terminal constraint to

ensure stability. More information about MPC stability can be found in section 4.4.

Theorem 1. (Chen, 2009)

1. The equation ẋ(t ) = Ax(t ) is marginally stable if and only if all the eigenvalues of A have

zero or negative real part and those with zero real parts are are simple roots of the minimal

polynom of A

2. The equation ẋ(t ) = Ax(t ) is asymptotically stable if and only if all the eigenvalues of A have

negative real part.

5.3 System discretization

When modelling a dynamical system it’s ordinary to look at the plant as a continuous system,

because physics in nature usually are continuous. To use these systems in control applications

they are usually denoted on a standard form suitable for the system. One of the most common

formulation for LTI system is the matrix state-space form.

ẋ(t ) = Ax(t )+Bu(t ) (5.3a)

y(t ) = Cx(t )+Du(t ) (5.3b)

Modern computers on the other hand are digital and aren’t made to handle continuous dy-

namics directly. In order to implement these systems on modern computers these systems usu-



CHAPTER 5. CONTROLLER DESIGN 59

ally are discretized. A discrete state space model can be denoted on the form.

x[k +1] = Adx[k]+Bdu[k] (5.4a)

y[k] = Cdx[k]+Ddu[k] (5.4b)

Where the system matrices on discrete form is denoted on the following form where Ts is the

sampling time.

Ad = e ATs , Bd =
(∫ T

0 eAτdτ
)

B, Cd = C, Dd = D (5.5)

These matrices from (5.5) is not an approximation and will generate accurate results given that

u(t ) is piecewise constant(doesn’t change between the samples), If u(t ) is generated by a com-

puter this usually isn’t a problem. To avoid calculating infinite data series the matrix Bd is for-

mulated

Bd = A−1(eATs − I)B = A−1(Ad − I)B (5.6)

Given that Ad is non-singular. By using the MATLAB function

[Ad,Bd,Cd,Dd] = c2d(A,B,C,D,T), the system in (5.3) will be transformed into the system in (5.4).

5.3.1 Internal stability of discrete LTI system

The MPD from section 2.5 with the parameters from (5.1) are discretized using the discretization

from section 5.3. Which denotes the characteristic polynomial

det(Ad −λI) = 0

Where the roots are.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

1.0000 0.9745 0.9062 0.8169 0.7376 0.3181 0.2408 0.2872 0.2589



CHAPTER 5. CONTROLLER DESIGN 60

Which is satisfying theorem 1.2 and the system is marginally stable.

Theorem 1. [Chen]

1. The equation x[k +1] = Adx[k] is marginally stable if and only if all the eigenvalues of Ad

have a magnitude less then or equal to 1 and those equal to 1 are simple roots of the minimal

polynom of Ad

2. The equation x[k +1] = Adx[k] is asymptotically stable if and only if all the eigenvalues of

Ad have a magnitude less then or equal to 1

5.4 Constrained reference tracking MPC design

Consider the discrete-time linear time-invariant input affine system of a MPD represented in

section 2.5 and discretizated using the technique represented in section 5.3. Where the con-

trolled output is the bottom hole pressure p1.

xk+i+1|k = Adxk+i |k +Bduk+i |k +Edvdk+i |k +Bd,bias

yk+i |k = Cd,MPCxk+i |k =
[

1 0 0 0 0 0 0 0 0
]

xk+i |k
(5.7)

And the disturbance vd , represented in section 3.1 is assumed known (predicted/measured).

While fulfilling the constraints

ymi n ≤ yyk+i |k ≤ ymax umi n ≤ yuk+i |k ≤ umax (5.8)

At all time instants k > 0. Where the constraint on y = p1 is denoted from the pore and fracture

pressure from section 2.1, and the constraint on the input is denoted by the restrictions of the

choke valve. The constrained reference tracking MPC solves the following quadratic optimiza-

tion problem



CHAPTER 5. CONTROLLER DESIGN 61

min
u,x

J (u, x) =
N∑

i=1

 u>
k+i |k Ruk+i |k

+(yk+i |k − rk+i |k )>Q(yk+i |k − rk+i |k )


Subject to xk+i+1|k = Adxk+i |k +Bduk+i |k +Edvk+i |k +Bd ,bias

yk+i |k = Cdxk+i |k

xk = x[k]

yk+N |k = rk+N |k

ymi n ≤ yyk+i |k ≤ ymax

umi n ≤ yuk|k ≤ umax

(5.9)

at each sampling instant k. Where N is the length of the finite horizon in samples, J is the cost

function, r is the reference trajectory, x[k] is the initial condition at time instant k, rk+N |k is the

invariant terminal constraint, Q and R are positive definite.

5.4.1 Condensed formulation

In this section the problem is reformulated to a form which is implementable on a QP solver. The

objective is to create an optimization problem where the only decision variable is uk+i |k , this

is often referred to as a condensed formulation as an opposition to a sparse/none-condensed

formulation where both the states and the inputs are considered as decision variables in the

optimization. This condenses the optimization problem in (5.9) into

min u>Hu + (Fθ+ f )u

s.t. Ai eq u ≤ bi eq +Bi eqθ

where there are many undefined matrices which has to be chosen in such a way that they fit

the problem from (5.9), but can be manipulated to some extent to fit the application of the

controller. The main thing one can change is the initial condition x0, and by switching this

variable the type of controller changes drastically. If this variable for an example is chosen to be

x0 = x[k] it becomes impossible to change the reference. In the sections that follows a couple of

different choices of initial conditions are presented.



CHAPTER 5. CONTROLLER DESIGN 62

Reference Tracking MPC

The first possibility to choose an initial condition θ is to include both the current state estimate

and the desired reference trajectory r . Which will produce a reference tracking MPC.

F =
[

2(P>
1 P>

5 QP5P2)> −2(QP5P2)>
]

θ =
xk|k

r


f = 2(P>

3 P>
5 QP5P2)>vd +2P>

4 P>
5 QP5P2

Ai eq =
 Du

D y P5P2


bi eq =

 du

dy −D y P5P3vd −D y P5P4


Bi eq =

 0 0

−D y P5P1 0


Reference Tracking MPC with disturbance feed forward

Another option is to choose the initial condition θ to include the system disturbance. This will

create a disturbance feedforward and the controller will be more capable to contract the the

disturbances generated from the waves. The problem will of course be that this require some



CHAPTER 5. CONTROLLER DESIGN 63

sort of knowledge about the disturbance.

F =
[

2(P>
1 P>

5 QP5P2)> −2(QP5P2)> 2(P>
3 P>

5 QP5P2)>
]

θ =


x0

yr e f

vd


f = 2P>

4 P>
5 QP5P2

Ai eq =
 Du

D y P5P2


bi eq =

 du

dy −D y P5P4


Bi eq =

 0 0 0

−D y P5P1 0 −D y P5P3


System matrices in condensed MPC

When using a condensed QP formulation to solve a dynamical optimization problem, the state-

space model from (5.7) have to be written out recursively and added to the cost function, be-

cause this process is a bit hairy it’s moved to appendix A, but the resulting matrices becomes.

x = P1x0 +P2u +P3vd +P4

y = P5x

= P5P1x0 +P5P2u +P5P3vd +P5P4



CHAPTER 5. CONTROLLER DESIGN 64

Where

P2 =



B 0 0 · · · 0

AB B 0 · · · 0

A2B AB B · · · 0
...

...
...

. . .

AN−1B AN−2B AN−3B · · · B



P3 =



E 0 0 · · · 0

AE E 0 · · · 0

A2E AE E · · · 0
...

...
...

. . .

AN−1E AN−2E AN−3E · · · E



P4 =



Bbi as 0 0 · · · 0

ABbi as Bbi as 0 · · · 0

A2Bbi as ABbi as Bbi as · · · 0
...

...
...

. . .

AN−1Bbi as AN−2Bbi as AN−3Bbi as · · · Bbi as



P5 =



C 0 · · · 0

0 C
. . .

...
...

. . . C 0

0 · · · 0 C

 , P1 =



A

A2

A3

...

AN





CHAPTER 5. CONTROLLER DESIGN 65

And the MPC constraints from (5.8) is formulated into the constraint matrices.

dy =


 ymax,1

−ymi n,1

>  ymax,2

−ymi n,2

>

· · ·
 ymax,N−1

−ymi n,N−1

>
>

du =


 umax,1

−umi n,1

>  umax,2

−umi n,2

>

· · ·
 umax,N−1

−umi n,N−1

>
>

D y = diag
(
D y1 D y2 · · ·D yN−1

)
Du = diag

(
Du1 Du2 · · ·DuN−1

)
Duk = D yk =

[
1 −1

]>

(5.10)

5.4.2 Slack variable

Feasibility of the optimization problem in (5.9) at each time instant k must be ensured, as dis-

cussed in section 4.4.2. To ensure feasibility at each time instant a slack variable can be added

on the hard constraint of the drill bit pressure yk+i |k = p1 to create a soft constraint on the con-

trolled variable.

ymi n −ε≤ yyk+i |k ≤ ymax +ε (5.11)

The slack variable ε is then added as a third decision variable in the cost function in (5.9), which

generates a new cost function for the system with slack variables.

min
u,x,ε

J (u, x) =
N∑

i=1


u>

k+i |k Ruk+i |k

+(yk+i |k − rk+i |k )>Q(yk+i |k − rk+i |k )

+ε>Sε

 (5.12)

This also creates a new tunable parameter S, which determines the hardness of the constraint.

It is ordinary to place a unnecessarily high weight on this variable because breaking shall not

occur during normal operation, and if it breaches, it should be to ensure feasibility.



CHAPTER 5. CONTROLLER DESIGN 66

5.4.3 Controller tuning

Tuning an MPC controller is more a work of art than a craft, and it is a matter of experience to get

it right. The flowchart in figure 5.3 suggest a possible procedure, where one starts with setting a

Priorities
Weights

and
constraints

Satisfying
Reduce

Number of
Mvr’s

Satisfying

Evaluate

Start
Stop

no

yes
yes

no

Figure 5.3: Simple tuning procedure

high sampling rate in the MPC and guess some weights suitable for the controller. Then

1. Simulate the process with MPC controller.

2. Check if the controlled variable converges to the reference and if the manipulated variable

is used unnecessarily much.

3. Upgrade the weights if the result doesn’t live up to the expectations or go to the next step

if results are good.

4. If the weights produces satisfying results step up the sampling rate until the results starts

to degrade.





Chapter 6

Implementation

The first sections in this chapter will be building up towards the MPC implementation by de-

scribing some of the concepts and tools used in the implementation. And in the end of the

chapter the implementation itself is going to be explained in more detail.

6.1 Compiling code

Computers are advanced machines and in order to make them simpler they are built to take

simple commands at a high speed. This is done by creating a simple language called machine

code, which is so simple it’s hard to write and easy to make errors. In fact, in the first computers

the cost of making software often cost tree times as much as the computer itself. This gave

birth to what’s today called high-level programming languages. This language is usually quite

different from the machine code and often inspired by a mixture of logic and English syntax. To

make the computer understand the high-level language a compiler is used for translating the

code into machine code. Some of the main reasons for using a high-level computer language

might be.

• The structure, syntax and logic is closer to how humans think.

• The high-level code tends to be shorter than the equivalent machine code.

• The compiler can spot the most dubious mistakes.

68



CHAPTER 6. IMPLEMENTATION 69

• The same code can be compiled to many different machines.

This of course makes high-level computer code faster to write and cheaper. On the other hand,

code written in high level languages and compiled to machine code tends to be a bit slower

than hand coded machine code. Therefore machine code is still used today for some critical

problems. For more information about compilers and basic compiler design one might reed

(Ægidius Mogensen, 2010).

6.1.1 Makefiles

Programming can be put into a fairly simple routine. First edit your source files, compile them

then debug the result. Although this sounds simple enough the programmer might use enor-

mous amounts of time tracking down an error that didn’t really exist. Or trying to fix a bug, but

when you fixed the bug you where still running the old file. The problem of building executable

files also have a tendency to grow more complex as the program grows and with the introduc-

tion of libraries.

A Unix program called make was intended to automate the transformation from source code

to executable. "make make defines a language for describing the relationships between source

code, intermediate files, and executables. It also provides features to manage alternate config-

urations, implement reusable libraries of specifications, and parameterize processes with user-

defined macros. In short, make can be considered the center of the development process by

providing a roadmap of an application’s components and how they fit together."(Mecklenburg,

2004)

The make program runs a text file usually called makefile containing the specifications of how to

run the program, which compiler to use, what library’s to include and so forth. The source files

is compiled into binary files, then merged together by a linker to form an executable program.

(Mecklenburg, 2004)



CHAPTER 6. IMPLEMENTATION 70

6.1.2 CMake

CMake is an open-source, cross platform build system. This system is used to control the soft-

ware compilation. This is done by adding a second layer of makefiles. You write a makefile for

the CMake environment, then you run that makefile in CMake. This creates a new makefile spe-

cific for your environment. The benefits with this approach is that one makefile can be written

to work on multiple operating systems with multiple compiler choices.

This program is used for building source code that includes the acado library. A simple guide,

how to begin can be found at

http://sourceforge.net/p/acado/wiki/Using%20CMake%20-%20UNIX%20-%20Common/

For further information about CMake go to

http://www.cmake.org/

6.2 Matlab engine

The matlab engine is a library for C,C++ or Fortran. It is created in such a way that you can call

Matlab software from your own programs. In this way you can use Matlab as a computational

tool or simply as a plotting tool. To use this tool you must have Matlab installed on your com-

puter, a version of Matlab Compiler runtime doesn’t cut it.

Standalone programs written in C, C++ or Fortran communicate with a separate MATLAB pro-

cess via pipes on unix systems, or via COM interfaces on windows systems. This library allows

you to use all the common Matlab functions.

You can split the usage of Matlab engine into three groups

1. Opening Matlab engine

Before you can use the Matlab engine you have to open one or more engine applications.

http://sourceforge.net/p/acado/wiki/Using%20CMake%20-%20UNIX%20-%20Common/
http://www.cmake.org/


CHAPTER 6. IMPLEMENTATION 71

This is done by creating a pipe to Matlab as shown below

Engine *ep = engOpen(NULL)

2. Runing matlab comands

Matlab scripts or .m files is based on running command lines in a script or separately in

chronological order to do the desired job. In Matlab engine you can do the same, you ba-

sically send a command to the Matlab command window like this

engEvalString(ep, "The matlab command")

This way you can run either simple commands, Matlab script, Matlab functions or simulink

models.

3. Getting/Setting variables

To use the engine it might be useful to set variables to the Matlab engine

engPutVariable(ep, "T", T);

Or get variables d = engGetVariable(ep, "d");

These variables are in a special matrix format and one need to go via them to get a or-

dinary data type.

All the information abut the Matlab engine can be found in the Matlab External Interfaces man-

ual (MAT, 2014).

6.3 Acado toolbox

The simplest way of describing what acado toolkit is, is probably by using their own words from

(David Ariens, 2014).



CHAPTER 6. IMPLEMENTATION 72

ACADO Toolkit is a software environment and algorithm collection written in C++

for automatic control and dynamic optimization. It provides a general framework

for using a great variety of algorithms for direct optimal control, including model

predictive control as well as state and parameter estimation. It also provides (stand-

alone) effciently implemented Runge-Kutta and BDF integrators for the simulation

of ODE’s and DAE’s.

—(acado toolbox)

The ACADO toolbox provides a MATLAB interface which makes the ACADO algorithms acces-

sible from Matlab. An alternative to this is to implement the optimization problem as self con-

tained C++ code. In addition to offer MPC algorithms for simulation purposes, it provides a code

generation package for fast MPCs. This will generate C-code black box providing the optimiza-

tion algorithm. This black box uses an iterative active set method with gauss-newton Hessian

approximation. To iteratively solve the SQP/QP problem with a predefined number of itera-

tions. All these iterations do not have to be iterated if the KKT tolerance criterion is fulfilled. A

standard setup for this tolerance criterion is to choose a maximum tolerance of 1e−6

6.3.1 Code generation

The idea behind ACADO code generation is to write a program describing a non-linear model

predictive control problem in C++, which is creating a new C function which solves the opti-

mization problem. The dynamical optimization problem to be solved is presented on the form



CHAPTER 6. IMPLEMENTATION 73

below.

min

x0, . . . , xN

u0, . . . ,uN−1

N−1∑
k=0

∥∥h(xk ,uk )− ỹk
∥∥2

Wk

∥∥x(xN )− ỹN
∥∥2

WN

Subject to x0 = x̂0

xk+1 = F (xk ,uk , zk ), for k = 0, . . . , N −1

x lo
k 6 xk 6 xhi

k , for k = 0, . . . , N −1

ulo
k 6 uk 6 uhi

k , for k = 0, . . . , N

r lo
k 6 rk (xk ,uk )6 r hi

k , for k = 0, . . . , N −1

r lo
N 6 rk (xn)6 r hi

N

Where

• x ∈Rnx Is the differential states

• u ∈Rnu Is the control input

• x̂0 ∈Rnx The current state measurement/estimate

• h ∈Rny and hN ∈Rny,N Is the reference variables

• Wk ∈Rny×ny and WN ∈Rny,N×ny,N Are the weighting matrices.

• ŷk ∈Rny and ŷN ∈Rny,N Is the reference vectors

• x lo
k < xhi

k ∈Rnx and ulo
k < uhi

k ∈Rnu are bounds on control inputs and states control bounds.

The newly created C code for solving a non-linear MPC problem uses a range of efficient algo-

rithms in the optimization process. This code generation algorithm is set up for solving none-

linear MPC problems but by studying the generated code, it is found that if the algorithm is

presented a linear problem it will generate a regular QP instead of an SQP algorithm.



CHAPTER 6. IMPLEMENTATION 74

6.4 PLCs

PLCs have their origin from logical relay control systems. These control systems where expen-

sive to build or modify. So when the computers became easily available, it was naturally to im-

plement these roles in a programmable unit. With time, more and more systems implemented

in the PLC, and after a while the PID controllers where implemented as well. At today’s oil plat-

forms the process controlled by only a few PLCs with a plethora of RIO(remote i/o) connections.

Connectivity

These controllers are made to control processes so there has to be an interface to the industrial

machinery. These connections are usually divided into inputs and outputs. Where both the in-

puts and the outputs are divided into digital and analogue connections. The digital i/o can for

an example be used to turn on a pump or get a running signal. The analogue i/o is used for

getting or setting process variables. Examples on analogue i/o can be setting the choke valve

position or getting the topside oil pressure.

The PLCs are also usually connected to a human machine interface (HMI) for observation or

interaction with the process.

Programming Languages

The most commonly used text-based programming languages for PLCs are structured text but

in this thesis the programming language C is going to be used.

6.4.1 Program execution

There are different ways of executing a PLC program. The PLC programming languages are

procedural, meaning the program goes through different stages throughout the program and

execute the commands as they come. Cyclic execution is an example of a procedural program

where all the blocks in figure 6.1 are stages the procedural program goes through.

1. Initialize

Sets all the initial conditions of the program.



CHAPTER 6. IMPLEMENTATION 75

2. Reads all inputs

Reads in the measurements from physical or network based i/o and puts it in the internal

memory.

3. Program

Runs PLC program. This might be all sorts of control problems, from logical control to

advanced process control.

4. Update all outputs

Gets the new data from memory and updates i/o

5. Go to step 2.

Read all inputs

Initialise

Program

Update all outputs

Figure 6.1: Cyclic execution program

6.5 Acado Implementation

6.5.1 Software Installation

ACADO is a native Linux application, and to run it in windows a Compatibility layer is needed.

An alternative is to use Cygwin which gives Linux like environment. From a strictly practical per-



CHAPTER 6. IMPLEMENTATION 76

spective Cygwin installs a unix like terminal on the native windows environment. The Cygwin

application can be downloaded for Free from

www.cygwin.com

Another approach is to use native Linux system and the author is using Linux Fedora OS, but

the procedure is the same for Cygwin with the exception that the package management system

"YUM" is switched to "apt-get". When a proper operating system or emulator is installed some

software needs to be installed in order to install the ACADO toolbox.

Software Description

gcc C compiler.

g++ C++ compiler.

CMake Software for managing build process.

Git Revision control software.

gnuplot Plotting software.

Doxygen documentation generator a tool.

Graphviz Graph Visualization Software

Before installing these programs note that you have to be logged on as a super user(root), which

can be done by typing su in the terminal followed by the root password. To install the software

listed above using the yum package manger, type.

yum i n s t a l l gcc g++ cmake g i t gnuplot doxygen graphviz

Now that all needed software is installed, the ACADO toolbox can be downloaded from github

using the pre-installed software GIT. Before running the command below it’s important to ma-

neuver into a desirable location.

g i t clone https : / / github .com/acado/acado . g i t −b stable ACADOtoolkit

Further more enter the newly created "ACADOtoolkit" folder and build the newly downloaded

software.

cd ACADOtoolkit

mkdir build

cd build

www.cygwin.com
http://www.fedoraproject.org


CHAPTER 6. IMPLEMENTATION 77

cmake . .

make

To test if ACADO is properly installed run the test problem.

cd . .

cd examples/ g e t t i n g _ s t a r te d

. / simple_ocp

Now that most of the programming environment is set-up the only missing thing is a (C/C++)

editor of your choice. An alternative is to use the eclipse editor with with CDT(C/C++ Devel-

opment Tooling) extension. This program is free and easily installed in the terminal using the

command.

yum i n s t a l l ecl ipse eclipse−cdt

Setting up the environment

We need to make the operating system aware of the ACADO toolbox in order to use the library

outside the ACADO folder. One way of doing this is by adding this is to edit the ".bashrc" file.

This is a script file that contains commands that will be executed at start-up in a Linux environ-

ment, and is often used to add directories to PATH or setting up environment variables. Because

this file is hidden the easiest way of opening it is through the terminal, so go to the home folder

on your system and run the command

gedit ~/. bashch

This of course implies that the text editor "gedit" is installed, but any text editor will do the job.

Furthermore add the following line in the bottom of this file then save and close it.

source "Acado Root Folder " / build /acado_env . sh

To implement the changes you now have made to the system environment run the command

or restart the system.

. ~/. bashrc



CHAPTER 6. IMPLEMENTATION 78

6.5.2 Generate MPC Solver

Setting up a project

We begin with creating a new empty project with an empty source file. To show how this is done,

an image tutorial on how to create a new project in eclipse is added under appendix C.1.

Now that we have created our project we need a makefile to compile an executable. The make-

file is created by a cross platform build managing program called CMake. The idea behind this

is to create a makefile that contains the information needed to create makefiles in different en-

vironments. To link the project folder to the ACADO toolbox, copy the file "FindACADO.cmake"

from "/cmake/FindACADO.cmake" in the ACADO folder to the project folder. Now create a new

empty ".txt" text file in the project folder. This is the settings file where all the build settings

are defined. The settings file used in this project is added under scripts in appendix D.1.1. Now

create a new folder inside the project folder called "build". Enter this folder in the terminal and

type "cmake .." to create the makefile, and type "make" to compile the project and create an

executable.

In order to efficiently be able to write source code, the build process needs to be implemented

in the editor. This is also a bit hard to explain how to do in a few words so this is also explained

in an image tutorial in appendix C.2.

Write code generation source code

This section is going to contain the main points in the QP code generation script based on the

controller from section 5.4, but for a complete script take a loop at appendix D.1.2. For more in-

formation about the code generation or ACADO in general please refer to (David Ariens, 2014).

We start of by defining the differential states of the MPD system from chapter one, plus one

differential state "dummy" which is just implemented in order to be able to add the slack vari-

able to the cost function.

DifferentialState p_1;



CHAPTER 6. IMPLEMENTATION 79

DifferentialState q_1;

DifferentialState p_2;

DifferentialState q_2;

DifferentialState p_3;

DifferentialState q_3;

DifferentialState p_4;

DifferentialState q_4;

DifferentialState p_5;

// Slack variable dummy state.

DifferentialState dummy;

Defines the control input u = ua = qbpp −qc and a slack variable defined as a control input.

Control u; // Control input

Control s; // Slack variable

The system parameters can be implemented as parameters, and this way one can change the

parameters online. But because the depth is changing so slowly, creating simulations where the

depth is changing would be meaningless, so the parameters will be defined as constants. Where

for these simulations ai = a, bi = b, ci = c and ei = e for all values of i .

const double a = 2.25;

const double b = 4.28;

const double c = 14.5;

const double e = 2.64;

const double Kc = 8.96;

const double p0 = 1.01;

const double qbpp = 14.88;

And to implement the measured disturbance into the differential equations a parameter vd is

added to the system, this variable can be set from the simulator or MPC program.

parameter vd;

Now that all the inputs, differential states, parameters and disturbances are defined we can de-

note the differential equations from section 2.3, into the MPC from section 5.4.

DifferentialEquation f;

f << dot( p_1 ) == a*(-q_1 - vd *0.0656*21);



CHAPTER 6. IMPLEMENTATION 80

f << dot( q_1 ) == b*(p_1 -p_2) - c*q_1 -e;

f << dot( p_2 ) == a*(q_1 -q_2);

f << dot( q_2 ) == b*(p_2 -p_3) - c*q_2 -e;

f << dot( p_3 ) == a*(q_2 -q_3);

f << dot( q_3 ) == b*(p_3 -p_4) - c*q_3 -e;

f << dot( p_4 ) == a*(q_3 -q_4);

f << dot( q_4 ) == b*(p_4 -p_5) - c*q_4 -e;

f << dot( p_4 ) == a*(q_4 + u);

// Slack variable defined in dummy state

// so it can be implemented in cost function.

f << dot(dummy) == s;

The reference function h from the optimization problem in section 6.3.1 from the MPC for-

mulation in section 5.4, is defined as h =
[

u p1 s
]

, and the terminal constraint is defined as

hN = p1.

Function h, hN;

h << u << p_1; << s

hN << p_1;

Where the corresponding weighting matrices is denoted as

Matrix W = eye( h.getDim () );

Matrix WN = eye( hN.getDim () );

W(0,0) = 15; // Input weighting

W(1,1) = 150; // Output weighting

W(2,2) = 5000; // Weight of slack

WN(0,0) = 5000; // Terminal weight

Where the slack variable is weighted hard to work as a soft constraint and the terminal constraint

is weighted hard to satisfy xk+N = ω = x[k +N ] the invariant terminal constraint. The optimal

control problem denoted above is then assembled in

OCP ocp(0.0, N*Ts , N);

ocp.subjectTo( f );

ocp.minimizeLSQ(W, h);

ocp.minimizeLSQEndTerm(WN , hN);

Where we define the constraints on the drill-bit pressure as



CHAPTER 6. IMPLEMENTATION 81

const double ymin = 280;

const double ymax = 250;

ocp.subjectTo(p_1 + s - ymax <= 0);

ocp.subjectTo( 0 <= p_1 + s - ymin);

The maximum constraint on the input is defined as G(u) = 1 and the minimum is defined as

G(u) = 0 which gives the constraints.

ocp.subjectTo (0 <= u - qbpp + Kc*sqrt(p_5 -p0) );

ocp.subjectTo( u -qbpp <= 0 );

Now that the MPC is completely defined we can generate the QP solver by.

OCPexport mpc( ocp );

mpc.set( INTEGRATOR_TYPE , INT_RK4 );

mpc.set( SPARSE_QP_SOLUTION , SPARSE_SOLVER );

mpc.set( QP_SOLVER , QP_FORCES );

Where there is a lot of options one can change, for a complete overview of the options read

(David Ariens, 2014). For an example can the sparse solver be switched for a condensed solver,

but then the solver needs to be switched to the "QP_OASIS" solver because "QP_FORCES" doesn’t

support sparse solutions.

6.5.3 Implement solver in Simulations

Setup simulator project

To create a system Simulator written in C, we begin by creating a new empty project using the

same tutorial as when generating the MPC solver. This torturial can be found in appendix C.1.

We will in this section show how to use the "QP_OASIS" solver with full condensing and therefore

we need to copy the oasis solver source code into the project folder. To be more specific copy

the folder called "qpoasis" from "acado root folder/external_packages" to the root folder in your

project. Then copy the generated source files into the project. Note that to have something to

start from it might be useful to add the generated makefile and source file to the code generation

options.

mpc.set( GENERATE_TEST_FILE , YES );

mpc.set( GENERATE_MAKE_FILE , YES );



CHAPTER 6. IMPLEMENTATION 82

The generated source files should contain the files listed in table 6.5.3, if the test file and make-

files are included in the options.

File name File format

acado_auxiliary_functions c

acado_auxiliary_functions h

acado_common h

acado_integrator c

acado_integrator c

acado_qpoases_interface cpp

acado_qpoases_interface hpp

acado_solver c

Makefile

test c

Table 6.5.3: Files generated by the ACADO toolbox

To connect the simulator to the Matlab engine from section 6.2, the generated makefile needs

to be modified to call the engine. To do this the following lines needs to be implemented into

the makefile. For starters we add a path to the Matlab root folder.

MATLAB = /usr/local/MATLAB/R2013a/ // Path to matlab root folder

Then the Matlab engine library can be loaded by the command.

LDLIBS += -L/usr/local/MATLAB/R2013a/bin/glnxa64 -Xlinker -rpath -

Xlinker (MATLAB)/R2013a/bin/glnxa64 -leng -lmx

CFLAGS += -I$(MATLAB)/extern/include -I$(MATLAB)/extern/include/cpp

CXXFLAGS += -I$(MATLAB)/extern/include -I$(MATLAB)/extern/include/cpp

And the environment variables can be passed to the compiler. Here is an example on how to add

the environment variables both in C and C++, but in our program only the first line is needed.

CFLAGS += -I$(MATLAB)/extern/include -I$(MATLAB)/extern/include/cpp

CXXFLAGS += -I$(MATLAB)/extern/include -I$(MATLAB)/extern/include/cpp



CHAPTER 6. IMPLEMENTATION 83

To compile the generated code, we can open the terminal and manoeuvre to the project folder

and type "make". Note that this is necessary to set up an executable in the editor. To setup

the editor to use the makefile above to compile the code, use the tutorial in Appendix C.2. The

complete makefile can be found in appendix D.2.1.

Write source code

Define global variables

Initialisation

Estimate States

Run optimization

Put control input to simulator

k = k + 1

Figure 6.2: System simulator execution procedure

The system is chosen to be implemented as shown in figure 6.2, and the following section

will explain the different steps.

We begin with Defining the global variables, which is done in the header file shown in appendix

D.2.2. To reduce the number of variables in the project, most variables are defined as global, this

is done because if variables are defined inside loops the PLC must constantly declare variables

and this might effect the limited PLC memory and the system might crash. A summary of the

variables needed for the simulation is enlisted below.



CHAPTER 6. IMPLEMENTATION 84

• To make the compiler aware of the functions they are declared in the header file.

• Get the optimization variables from the generated code.

• Define the simulation length and maximum number of iteration in the optimization.

• Define the state space matrices and all the plant information needed for the optimization

or the state estimator.

• Define the matrices needed in the kalman filter.

• Define control, output, and disturbance variables.

• Define the Matlab engine variables used to get variable from the Matlab engine.

The initialisation is split into two functions, one for initializing the Matlab engine and one to

initialize the optimization. The Matlab initialisation creates a bridge between a Matlab com-

mand window and the C program. It also initializes the plant initial values needed to run the

plant simulator in Matlab. To get the detailed information abut the initial step, the functions are

sown in appendix D.2.3.

The optimization is an implementation of the iterative QP solver from section D.2.5. Where

we iterate the QP solver until a satisfying solution is found, and when the solution is found the

optimal control input is returned.

The loop from figure 6.2 is the simulation iterator, where k denotes the sample number from

the MPC in section 5.4. This loop is as one can see from the figure consisting of three different

steps

1. Run the kalman filter appendix D.2.4, to estimate the states used in the MPC.

2. Run the MPC optimization for step k.

3. Put the optimal control input into the simulator in Matlab.

4. Go to the next iteration step k = k +1



CHAPTER 6. IMPLEMENTATION 85

6.5.4 Implement solver in a PLC

From the previous section we have basically set up both the optimization QP and the simulator

model, so this section will focus on how to implement this into an ABB AC500 PLC.

Rewriting the code to be PLC implementable

First, the ABB software doesn’t support C++ code and the "QP_OASIS" solver is written in C++. To

solve this problem the "QP_OASIS" solver is switched to the "QP_FORCES" solver, which doesn’t

support a condensed solution and therefore a sparse solver is chosen in the MPC settings.

mpc.set( SPARSE_QP_SOLUTION , SPARSE_SOLVER );

mpc.set( QP_SOLVER , QP_FORCES );

This will give a Matlab file defining the solver problem, and to generate the solver we need to

run this file in matlab. Note that this file isn’t directly runnable without downloading the forces

solver, which can be downloaded from

www.forces.ethz.ch/

Now that we have presumable run the Matlab script we get a forces folder containing a solver

project, but we are only interested in the solvers source code files.

File name File format

forces .c

forces .h

Then copy both files in table 6.5.3 and the forces files into a new folder to be implemented into

a PLC function block.

At this point the program can’t be implemented in the PLC software because of the following

reasons. The PLC doesn’t support print functions, illegal variable declaration, no makefile and

the Matlab simulator. These problems needs to be addressed in order to implement the MPC.

• Print functions

The generated files are written with a range of different print functions. In order for these

files to be implementable, these needs to be commented out.

www.forces.ethz.ch/


CHAPTER 6. IMPLEMENTATION 86

• Illegal declarations

In the "forces.c" file some variables are declared as a sum of other variables, this notation

is not accepted by the ABB compiler. To work around this problem one can make a new

function with the sole purpose to make those summations, and remove the summation

from the declaration itself. This function is then run in the solver initialisation. Note that

there are hundreds of variables declared this way and it may take some time to implement

these changes.

• No makefile

The ABB build process isn’t invoked by a user defined makefile explaining the build pro-

cess. This means you can only use the libraries already established within the software,

and you can’t use linkers. To work around this problem we include all the source code

files in the simulator header. Because we don’t have an INCLUDE environment from the

makefile, the includes needs to be added with question marks insisted of angel braces.

• Matlab engine

Previously we have used the Matlab engine to do the simulations, but the PLC don’t have

access to Matlab. To solve this problem a simulator is written in C to do the process simu-

lations inside the PLC. The C simulator is shown in appendix D.1.2.

Making a PLC MPC function block

First of we need to install the ABB Control builder software, when installing the PLC software just

follow the installation manager and remember to cross of everything containing OPC servers,

because its used in the PLC/PC connection.

Now that the ABB software package is installed the MPC, kalman filter and simulator can be

implemented in a function block. To have common ground for implementation of the code into

the function block, we presume that a project with an empty function block is created.

• Then the code files created in the section can be copied into function block folder. Note

that the main code file needs to have the same name as the auto generated source file we



CHAPTER 6. IMPLEMENTATION 87

are replacing, and the main function declaration must be identical to the main function

in the original function.

• If one wants any readouts from the simulations these needs to be defined as input, output

or variables in the control builder software. This will automatically define the variables in

the source code and can easily be written to.

• When the code is implemented in the ABB software and all the desired input and output

variables are defined and used in the source code we can compile the project by pushing

the compile button.

Running the PLC

By double clicking on AC500 in the device tree in the PLC program editor CoDeSys will automat-

ically open. Because our program runs the hole simulation inside the function block there is no

need of multiple iterations in the plc implementation. This is not a realistic implementation if

it is going to be used on a physically plant, but it will give us data on the performance of the

MPC controller in the form of running time, processing power and memory consumption. The

function block can easily be implemented in the PLC structured text code by adding the block

as a variable

PROGRAM PLC_PRG

VAR

MPC: POU; (* Defining the MPC function block*)

END_VAR

And in the main PLC loop the MPC function block is run by the code.

IF MPC.iterCounter < 1 THEN

MPC();

END_IF;

Which will run the MPC one time as explained above, then do nothing for the rest of the itera-

tions.



CHAPTER 6. IMPLEMENTATION 88

6.6 Matlab Implementation

To optimise the MPC controller and to have an MPC controller implementation independent

from the ACADO MPC. A MPC controller implemented in Simulink is created. The block dia-

gram for this simulation can be seen in figure 6.3. To explain how the control system is built up

we are going to take a closer look at the different blocks.

• Kalman filter

To estimate the states a kalman filter is used. The kalman filter is created from the discrete

filter equations in section3.2 combined with a unit delay.

• Nonlinear state space model implementation of the equations in 2.3.

• The disturbance from section 3.1 is made into a disturbance vector and this vector is read

into simulink from this vector.

• This block contains the feedback linearisation equations created in sec ?? In section 4.4, a

condensed MPC was formulated. This MPC formulation is in this scenario implemented

in a Matlab "S-function" and solved with the QP solver "quadprog".

[z,fval ,exitflag ,output ,lambda] = quadprog(H,(F*uu+f)',Aieq ,Bieq*theta

+bieq ,[],[],[],[],[], options);

Where "theta" is defined as θ =
[

u> p>
1,ref v>

d

]>
, but can be manipulated to change the

properties of the MPC as shown in section 5.4.

Figure 6.3: Simulink MPC implementation





Chapter 7

Simulation Results

In this section the set up for the simulations will be stated and the simulation results presented.

The simulations will part by part test the different aspects of the problem, until the end where

a PLC implementable MPC controller will be presented as a product of the results. For all the

simulations the MPCs presented in section 5.4 will be used, and if not specified otherwise the

parameter weights denoted below are used.

Parameter value

Q 150

R 15

The parameter weights were found using the tuning strategy presented in section 5.4.3. Where

it is assumed that the model parameters for a 1990.99 [m] long well presented in (5.1) is used. In

section 5.2.3, it was shown that the MPD model with these parameters is controllable, observ-

able and that the system is marginally stable.

7.1 Kalman filter

In most real processes measuring all the states is not a possibility, or even if it was possible

would it be sensible to do so. The simple answer is probably no. If it was possible it would

require an immense amount of instrumentation and would be extremely expensive, so in most

cases the states needs to be estimated. There are many approaches to estimating the states,

and the methodology should be chosen to fit the problem. In this case a Kalman filter is chosen

90



CHAPTER 7. SIMULATION RESULTS 91

because there is prior knowledge about the disturbance and it’s properties and the kalman filter

has an excellent ability to filter disturbances. In section 3.2.2, a stability theorem for kalman

filter stability was presented, and because the system is both controllable and stochastically

reachable it shall in principal have filter convergence. To verify that the states convergence and

analyse the performance of the Kalman filter a test scenario is set up in Matlab. For this scenario

a ordinary condensed MPC is chosen, with the following specification.

Parameter value

Q 150

R 15

TMPC 1

N 15

The disturbance source

The disturbance is created from the drill-bit moving like a piston near the bottom of the well

during pipe connections. This effect is created from the waves moving the rig in heave direction

while the drill string is fixed to the drill floor. Consequently, the bottom hole pressure pbi t = p1

is varying rapidly. This means the disturbance starts in p1 and creates pressure waves beginning

in the lowest control volume and spreading upwards. As can be seen in figure 7.1 sub-figure [2,1]

and figure 7.2, the estimation error is also highest in the lower control volume and dissipating

towards the surface. This makes the performance of the Kalman filter slightly more important

because the disturbance directly affects the controlled variable in the MPC, and if this variable

is wrongly estimated the MPC will control the system towards an invalid pressure.

Sample rate

The squared estimation error between the actual states and the estimated stated are plotted in

figure 7.1 and 7.2 can be formulated as.

e2
i ,k = (xi ,k − x̂i ,k )2

Where i denotes the state in question and k the time instant. In this formula all the data is

acquired from the same time instant, and from a quick look at the mathematical formulations



CHAPTER 7. SIMULATION RESULTS 92

0 20 40 60 80 100
255

260

265

270
Real vs Estimated states

P
bi

t [b
ar

], 
T

s 
=

 1

 

 

0 20 40 60 80 100
0

2

4

6
Error

0 20 40 60 80 100
255

260

265

270

P
bi

t [b
ar

], 
T

s 
=

 1
/4

0 20 40 60 80 100
0

0.5

1

1.5

0 20 40 60 80 100
255

260

265

270

Time [s]

P
bi

t [b
ar

], 
T

s 
=

 1
/1

6

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

Time [s]

Real
Estimat

Figure 7.1: Estimation errors and sampling time

behind the kalman filter it is not an obvious correlation between updating rate and estimation

error. And if the disturbance had been completely random it wouldn’t matter. But if one think

about it the disturbance isn’t completely random, there is a correlation between ek and ek+1. So

in principle if one increase the sample rate, there is more samples to estimate the same distur-

bance, or in other words more iterations to converge towards the solution. Consequently if the

sampling rate is increased the estimation error will decrease, as can be seen in figure 7.1. For

this reason it’s always a good policy to select the sampling rate as high as the measurement sam-

pling rate, a higher sampling rate than measurement sampling rate will be a waste of resources

because it does not bring any new information to the table. In figure 7.1, one can clearly see

this effect. When the sampling time is decreased from Ts = 1 to Ts = 0.25 the estimation is ap-

proximately four times lower, and likewise when the sampling time is decreased from Ts = 0.15



CHAPTER 7. SIMULATION RESULTS 93

Ts = 0.0625 the estimation error is approximately four times lower. From these observations it

seems like there is a linear dependence between estimation error and sampling time.

Initials conditions

0 50 100
0

0.02

0.04

Estimation Error − p
2

0 50 100
0

0.05

0.1

Estimation Error − q
1

0 50 100
0

0.5

1
x 10

−4Estimation Error − p
3

0 50 100
0

1

2
x 10

−3Estimation Error − q
2

0 50 100
0

0.5

1
x 10

−7Estimation Error − p
4

0 50 100
0

2

4
x 10

−6Estimation Error − q
3

0 50 100
−1

0

1

Estimation Error − p
5

Time [s]
0 50 100

0

1

2
x 10

−9

Time [s]

Estimation Error − q
4

Figure 7.2: Estimation errors in different states white, Ts = 1/4

Especially when doing short simulations like in a thesis it’s important to choose good initial

conditions for the estimation. Even if the kalman filter has good convergence capability’s it has



CHAPTER 7. SIMULATION RESULTS 94

some form of convergence time until all the estimation errors are reasonably small. This may

cause some problems for the controller in the beginning of the control problem, and one should

be aware of it. In this thesis, the initial conditions for the simulator is found by setting presuming

that all the states are in seedy state and that there is no flow between the the control volumes.

This forms the pressure equation pi = pi+1 +ei /bi where the topside pressure is denoted by the

choke equation. Which with the parameters from (5.1) gives the initial states are denoted as

x0 ≈
[

257.8 0 196.1 0 134.4 0 72.7 11
]>

Because the initial conditions from the simulator is exactly known, the initial conditions in the

Kalman filter is presumed known and this will not be a problem for this simulations. But we

are still missing the information about the initial covariance matrix P−
0 and should have it in the

back of our heads.

Disturbance estimation

Even if the kalman filter is commonly used for state estimation it can also be used for estimation

of disturbances. Estimating measurement disturbances is very easily done and for this reason

it is also a very common thing to do. The only thing one need to do is turn around the output

formula from the state space formulation and we get.

v̂k = yk −Cd x̂k

This is notably unnecessary for our process when we don’t have any measurement disturbance,

but we get an idea how to do the same thing for process disturbances. One way of implementing

this is by subtracting the priori estimate from the states, even if this only gets the disturbance at

the last sample.

x̂−
k = Ad x̂k−1 +Bd uk−1

xk = Ad xk−1 +Bd uk−1 +wk−1

xk − x̂−
k = wk−1



CHAPTER 7. SIMULATION RESULTS 95

TMPC Horizon [sec] Horizon [N] Sparse variables Condensed variables

0.1 15 150 1509 150
0.3 15 50 509 50
0.6 15 25 259 25
1.5 15 10 109 10
3 15 5 59 5
5 15 3 39 3

Table 7.1: Different choice of control horizons

Where the states are unknown, and the estimated states x̂ are used in stead. Which forms the

estimated disturbance x̂k−x̂−
k = ŵk−1. To do this the estimated states must be presumed x̂k ≈ xk

for this to be accurate. This way there is possible to create an estimate of the process disturbance

wk−1. But in reality we need wk and in order for this to be accurate, the update rate needs to

be chosen to be low Ts → 0 because then wk → wk+Ts . So if we chose Ts = 1/16 we get the

disturbance estimation shown in figure 7.3. And we see that although the disturbance is from

the last sample it gives a good estimate because the sample time is chosen to be of a negligible

size.

0 10 20 30 40
−4

−2

0

2

4

6
Real vs Estimated disturbance

P
re

au
re

 [b
ar

]

Time [s]
0 10 20 30 40

0

0.5

1

1.5

2

2.5

3

3.5

4
Sqared error

Time [s]

Figure 7.3: Estimated vs real disturbance



CHAPTER 7. SIMULATION RESULTS 96

7.2 Heave Disturbance

In almost all the following scenarios the disturbance generated by the rigs motion in heave di-

rection from section 3.1 is going to have an influence on the system behaviour. To easier depict

how much this disturbance influence the system dynamics it is useful to plot how much pres-

sure abnormalities this disturbance is adding to the button hole pressure. Figure 7.4 shows the

pressure added to the bottom hole pressure by the disturbance. From this figure it is quite clear

that the disturbance is oscillating between minimum −5 to maximum 5 [bar]. Which would es-

sentially mean that if there is no disturbance rejection at all, the system will have an oscillation

on the bottom hole pressure of ±5 [bar]

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time [s]

P
re

ss
ur

e 
[b

ar
]

Figure 7.4: Disturbance influence pressure



CHAPTER 7. SIMULATION RESULTS 97

7.3 Selection of control horizon and MPC sampling frequency

When designing a MPC controller one of the most important things to consider is the length of

the control horizon. The control horizon should be chosen sufficiently long so as to stabilize

the system. In most cases it is chosen so long that the system reach steady state. From section

4.4 we see that in order to guarantee stability we must guarantee that the last step in the control

horizon must be within the control horizon to satisfy the invariant terminal constraint. This

is commonly implemented by either putting an equality constraint on the end of the control

horizon as done in section 5.4, or weighting the optimization extra high as done in the ACADO

implementation section 6.5. Either way it is important to choose a control horizon that is suf-

ficiently long. If the control horizon is chosen to short, the control effort must become larger

to satisfy the terminal constraint, and in worst case it might turn into a feasibility problem. For

these experiments it is important to find a system which stabilises the down hole pressure at all

reasonable MPC sampling rates, and to do this a control horizon of 15 seconds is chosen.

In table 7.1 is a printout from the ACADO toolbox denoting the increasing problem complex-

ity when the sampling time is decreased and the same control horizon is maintained. To see

how the system react to this step with different scaled control horizons, a scenario is set up

and plotted in figure 7.5. From this figure it can be seen what was expected above, when the

sample time increases the control effort increases and because there’s no viable constraint on

the manipulated variable there’s an immense overshoot when N = 3. This overshoot spreads

throughout the system and almost all the pressure states reaches a 50% overshoot compared to

the finishing value. Consequently this creates an overshoot also shown in figure 7.5. To solve the

problem with the system breaching the physical constraint on the manipulated variable some

constraints must be introduced to the optimization problem on the manipulated variable in

section 7.5.



CHAPTER 7. SIMULATION RESULTS 98

0 5 10 15 20 25
250

260

270

280

P
1 [b

ar
]

 

 

N = 150, Ts = 0.1
N = 10, Ts = 1.5
N = 3, Ts = 5

p
1
ref

0 5 10 15 20 25
0

50

100

C
ho

ke
 o

pe
ni

ng
 [%

]

0 5 10 15 20 25
−40

−20

0

20

u a[m
ill

i m
3 /s

]

0 5 10 15 20 25
190

200

210

220

P
2 [b

ar
]

0 5 10 15 20 25
−2

−1

0

1

q 1[m
ill

i m
3 /s

]

0 5 10 15 20 25
130

140

150

160

P
3 [b

ar
]

0 5 10 15 20 25
−4

−2

0

2

q 2[m
ill

i m
3 /s

]

0 5 10 15 20 25
60

80

100

120

P
4 [b

ar
]

0 5 10 15 20 25
−10

−5

0

5

q 3[m
ill

i m
3 /s

]

0 5 10 15 20 25
0

50

100

P
5 [b

ar
]

Time [s]
0 5 10 15 20 25

−10

0

10

q 4[m
ill

i m
3 /s

]

Time [s]

Figure 7.5: Estimated vs real disturbance



CHAPTER 7. SIMULATION RESULTS 99

7.4 Sparse v.s. Condensed Qp

In section 4.6 two ways of formulation a quadratic MPC into a QP problem was presented,

Sparse and the condensed implementation. It was discussed and concluded that it might be

beneficial to choose the condensed method for solving a QP, if the problem was sufficiently

small, depending on the structure of the problem. To get some exact data concerning compu-

tational complexity and memory consumption, the upper bound functions from table 4.1 are

plotted for the MPD problem at hand to check whether the condensation is worth the effort. In

a system with m = 1 manipulated inputs, n = 9 states and l = 4 constraints.

It might be useful to remember that these are upper bound functions and will not give us the

exact solution but it will give us an idea where the border land is. And the figure tells us that in

share processing power it will be profitable to choose a condensed solution if N < 17 and with

respect to memory consumption it will be profitable if N < 28.

5 10 15
0

0.5

1

1.5

2

2.5

x 10
4

Length of control horizon in samples [N]

C
O

M
P

U
T

A
T

IO
N

A
L 

C
O

M
P

LE
X

IT
Y

 

 

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

[N]

M
E

M
O

R
Y

 R
E

Q
U

IR
E

M
E

N
T

S

 

 

Condenced
Sparce

Condenced
Sparce

Figure 7.6: Computational time and Memory consumption



CHAPTER 7. SIMULATION RESULTS 100

7.5 On-line constraint calculation

In section 7.3 the consequence of not having a constraint on the manipulated variable was in-

troduced, and how this actually effects the convergence of the controlled variable. For the hole

system the manipulated variable is the open and closed position of the choke valve, but because

feedback linearization was used to cancel the non-linearities, the MPC manipulated becomes

the volumetric flow rate ua . This means the actual manipulated variable is calculated from ua ,

which is dependent of squared pressure differential over the choke valve
p

pc −p0. To get an

idea what to set the constraints to one can use the fact that the choke valve has a range between

0 ≤G(u) ≤ 1

And the manipulated variable in the MPC is defined as

ua = qbpp −qc

= qbpp −Kc
p

pc −p0G(u)

= qbpp −Kc
p

y −p0G(u)

And because the real manipulated variable is the choke opening, the range of ua can be defined

by G(u). Where the maximum volumetric flow rate uamax occurs when G(u) = 0, and the lowest

volumetric flow rate uami n occurs when G(u) = 1. This gives the constraints.

uamax = qbpp

uami n = qbpp −Kc
p

y −p0

Which is easily implemented in the Matlab model by updating the constraint on each iteration.

And for the ACADO implementation see section 6.5, where the constraints are adjusted from the

state equations. Note that this will influence the problem complexity and table 7.1 migth not be

viable for this setup.

Problems in the control horizon



CHAPTER 7. SIMULATION RESULTS 101

The minimum manipulated variable constraint is a non-linear function of the topside pressure,

and the topside pressure is varying over the control horizon. Because a liner MPC has been cho-

sen the non-linearity can not be implemented in the optimization problem. To work around

this problem the constraint uami n = qbpp −Kc
p

y −p0 can be set independently from the MPC

at each sampling instant [k]. This of course mean that the constraint is valid at the time instant

[k] but it is not necessarily true for the rest of the control horizon k + i . This means that the

constraint is only valid at the start of the control horizon and might cause damage into the hori-

zon when it’s not valid. An alternative to work around this problem is to only use the minimum

constraint on the first step in the control horizon, which have been used in the rest of these sim-

ulations to improve the results although the MPC might then choose an optimal control path

that isn’t really a feasible option, and may actually exacerbate the results.

Problems whit low update rate

When the sampling time of the MPC TMPC is high the MPC uses more extreme outputs to com-

pensate for the lack of ability to change the output as we saw in section 7.3 where the control ef-

fort increased as a function of the sampling rate, which brings the manipulated variable closer to

the constraints and increases the risk of a feasibility problem. This is brought up because when

the MPC sets an output it stays the same until the next sample instant, and by this time the root√
y −p0 may have changed so much that the physical constraint on pc may be breached. This

of course doesn’t cause a risk of infeasibility in the MPC, and can to some extent be prohibited

by increasing the sampling rate. This effect can be seen in figure 7.7 after 37 seconds when one

can see that the MPC never brakes the constraints but the choke is passing 100% in the example

with the lowest sampling rate. But in the example with the highest sampling rate, the constraint

is never broken and the choke never exceeds 100%.



CHAPTER 7. SIMULATION RESULTS 102

0 10 20 30 40 50 60
−60

−40

−20

0

20

T
M

P
C

=
0.

1,
 N

=
15

0

Manipulated variable whith constraints

 

 

0 10 20 30 40 50 60
20

40

60

80

100
Resulting choke position [%]

0 10 20 30 40 50 60
−60

−40

−20

0

20

Time [s]

T
M

P
C

=
1.

5,
 N

=
10

0 10 20 30 40 50 60
20

40

60

80

100

120

Time [s]

u
a

max

u
a

u
a

min

Figure 7.7: The manipulated variable with constraints and choke position



CHAPTER 7. SIMULATION RESULTS 103

7.6 Disturbance Attenuation as a function of problem complex-

ity

As shown in table 7.1, a MPC can be chosen with different sampling rates, and the QP complex-

ity is determined by the sampling rate and the length of the control horizon. This means that

the calculation power required to solve the QP problem is dependent on the sampling rate of the

controller because we cant decrease the length of the horizon without risking the stability of the

controller. Both the calculation power requirement and memory consumption is in principal

important to keep low in all cases but because this controller is meant to be PLC implementable

the requirement is even more vital. To see how the system with the disturbance presented in

section 2.5 reacts with different MPC sample rates a test scenario is set up. In figure 7.8, one can

see a step resonance of a condensed MPC without disturbance feedforward accumulated with

different sampling times ranging from TMPC = 0.1 to TMPC = 5.

The first plot in this figure shows the controlled variable p1 in the MPD system, and one can see

that the disturbance rejection is pretty much unperturbed by the change of sampling frequency

in the MPC. With that said, one can see from sub figure (2,2) that the control effort is consider-

ably higher at lower sampling rates. Consequently the choke is oscillating at a higher frequency

with a larger amplitude, which will cause the choke to move more and more rapidly. This will

cause more wear and tear on the valve and shorten its durability and shorten it’s life span. To

make a stronger case for on how much worse the control effort becomes with decreased sam-

pling rates we can summarize the control effort uat over a time period.

sum =
60∑

t=20
= |uat |

And to illustrate how much more control effort is needed for low frequency MPCs, the result

is depicted in figure 7.9. Which shows that TMPC = 1.5 is realistically probably the longest step

length one can have before the overall system performance drastically decreases.



CHAPTER 7. SIMULATION RESULTS 104

0 10 20 30 40 50 60
−20

0

20

u a[m
ill

i m
3 /s

]

0 10 20 30 40 50 60
0

50

100

Time [s]

C
ho

ke
 o

pe
ni

ng
 [%

]

0 10 20 30 40 50 60
190

200

210

P
2 [b

ar
]

0 10 20 30 40 50 60
−1

0

1

q 1[m
ill

i m
3 /s

]

0 10 20 30 40 50 60
130

140

150

P
3 [b

ar
]

0 10 20 30 40 50 60
−4

−2

0

2

q 2[m
ill

i m
3 /s

]

0 10 20 30 40 50 60
70

80

90

100

P
4 [b

ar
]

0 10 20 30 40 50 60
−5

0

5

q 3[m
ill

i m
3 /s

]

0 10 20 30 40 50 60
0

50

100

P
5 [b

ar
]

Time [s]
0 10 20 30 40 50 60

−10

0

10

q 4[m
ill

i m
3 /s

]

Time [s]

0 10 20 30 40 50 60
255

260

265

270

P
1 [b

ar
]

 

 

N = 150, Ts = 0.1
N = 10, Ts = 1.5
N = 3, Ts = 5

p
1
ref

Figure 7.8: Step response with disturbances and different sample rates



CHAPTER 7. SIMULATION RESULTS 105

Ts=3 Ts=1.5 Ts=.1
0

0.5

1

1.5

2

2.5

3
x 10

4

S
um

m
ar

iz
ed

 c
on

tr
ol

 in
pu

t

Figure 7.9: Summarized usage of ua with different sample rates



CHAPTER 7. SIMULATION RESULTS 106

7.7 FeedForward

Plant

Disturbance
Model

Estimator

MPC

Vd

Gaussian 
white noise

kx

5y pau
1

refp

Figure 7.10: FeedForward block diagram

Feedback control systems have been around for a long time. The principle idea is to return

the plant output, compare it to the reference and update the input to manage the error. A feed-

forward system on the other hand uses the knowledge of a disturbance or input to manipulate

the output to prevent the disturbance to affect the system behaviour before an error occurs. This

is a well documented and widely used technique which is often combined with a feedback con-

trol system. If both feedback and feadtforward are implemented there is an opportunity to both

prevent disturbances from affecting the system and remove errors that occurs even with feed-

forward. Even if this is a common control principle it can be adopted into an optimal control

problem by introducing the disturbance to the system equations. Figure 7.10 illustrates how the

disturbance is distributed in the control system and how it can be counteracted by the MPC by

introducing feedforward from the disturbance. Where the disturbance directly affects the down

hull pressure and the manipulated variable ua affect the topside pressure p5. Which means that

in order for the MPC to counteract the disturbance, it must manipulate the topside pressure in

such a manner that it will spread to the down hole pressure and neutralize the pressure imposed

by the disturbance. Although there is an obvious time difference from when an alteration on the

manipulated variable is sett, until it reaches the down hole pressure. Another aspect of this is

that disturbances is an unwanted system input, and unwanted influences is often unknown.

This disturbance can actually be acquired from multiple sources, and in the following sections



CHAPTER 7. SIMULATION RESULTS 107

one will see how well the overall system performance is affected by the different ways to acquire

the disturbance information .

7.7.1 Measured rig motion

The drilling system is placed on a floating offshore installation presumable hold still by anchor

or a DP system. If the installation is kept in place by a DP system or a DP system is installed,

it would need detailed information of the ship motion to successfully keep the ship in posi-

tion and it would certainly have accurate measurements of vessel movement in all directions.

So its not a stretch to presume that the DP system have access to vessel velocity in heave di-

rection. These measurements are measured by Motion reference units(MRU),Vertical reference

units(VRU) or Vertical reference units(VRS) and are actually not limited to DP controlled vessels,

which means there is a chance such devises is installed on a anchored vessel. Because our dis-

turbance is caused by the ship velocity in heave direction this measurement can then directly be

implemented as a feedforward in the MPC as shown in section 5.4. To show how the system will

react and how much better the system performance would be with the measured heave veloc-

ity the system step response with the measured disturbance is depicted in figure 7.11. From this

figure it seems like the disturbance rejection is much better than in the previous simulations but

in reality the system disturbance has been stepped down from ±5 [bar ] in section 7.2, to ±1.5

[bar ] this will guarantee that the system never comes close to the constraint. The reason why

we don’t want the manipulated variable close to the constraint is because if the manipulated

variable is using the whole span between the constraint, any potential improvement will be lost

in the constraint. Furthermore the system converges fast to the reference, and by the movement

of the choke there seems to some sort of disturbance rejection. This is done to guarantee that

the constraints are never reached, as this could possibly corrupt the comparison.



CHAPTER 7. SIMULATION RESULTS 108

7.7.2 Estimated rig motion

In the last section it was presumed that there were disturbance measurements available even

though this is not granted. If you do not have access to disturbance measurements, a possibil-

ity is to estimate the disturbance. One way of gaining an estimated disturbance is by using a

Kalman filter as simulated in section 7.1. To see how the system react to a feedforward control

system where the disturbance is estimated the step response of the system is depicted in figure

7.11. This is clearly not an ideal solution but if the estimation is accurate it will do approximately

the same job as a measurement as can be seen from the test scenarios of the kalman filter where

the disturbance was depicted with the estimated disturbance in figure 7.3. It’s easy to see that

this is not an ideal solution, but it is pretty accurate as seen in section 7.1, and if it’s not accurate

the state estimates are not accurate either.

7.7.3 Measured rig motion with future predictions

We know that the MPC principle is to create a perfect control horizon, and to create a perfect

control horizon with disturbance rejection it would be optimal to know the disturbance for the

whole horizon. It is of course impossible to measure the future directly. But by measuring the

waves on the ocean with radar or ultrasound technology it may be possible to predict the in-

coming waves before hand. If there then is a accurate RAO model of the drilling rig one could

in principle predict the ship motion. The results of this is complete knowledge of the heave mo-

tions over the whole control horizon. To see how the system react to having a MPC with foresight

to the disturbance on the whole control horizon a plot of the step resonance is shown in figure

7.11.



CHAPTER 7. SIMULATION RESULTS 109

7.7.4 Comparison

In this section the scenarios from section 7.7.1-7.7.3 will be compared to tell how much feedfor-

ward improves the results, how much it matters where the disturbance measurement/estimate

originates from and what information the estimates contains. To compare all the different as-

pects of the control problem in the comparison of the different aspects all the states and control

inputs of the MPD system is plotted in figure 7.11. Sub plot (2,1) in this figure displays the choke

opening for this for the different scenarios. From this figure one can see that for the systems

with only feedforward from the present time gives approximately the same output, but if future

information about the disturbance is introduced to the MPC controller the manipulated vari-

able has a phase shift of almost 90 [deg]. This is of course not unexpected because the pressure

travels at approximately the speed of sound and to contract a pressure wave coming 5 seconds

from now it is reasonable that the manipulated variable has an offset. In the scenarios where the

feedforward does not have future information the optimization looses the ability to counteract

the disturbances. This is because when the disturbances occurs it is to late to contract them.

The question then becomes how does this affect the performance of the down hole pressure

and to depict this the sub plot 1 shows the down hole pressure. The problem with this plot is

that it focuses on a too wide spectrum of pressures and the message does not quite come true.

To get a closer look at the pressure we zoom in on the pressure between 20-50[s] in figure 7.12.

This figure clearly shows that when future information is a part of the feedforward, the distur-

bance rejection gets better. The difference between the different sources of disturbances does

not matter at all which confirms that the source of the disturbance does not matter. As discussed

the measurement has no positive effect on the disturbance rejection because it comes to late to

prevent any future disturbances. So if the well was 0 meeter long p1 = p5, there would not be a

time delay and the disturbance could be removed completely by the manipulated variable with-

out feedforward. Which implies that the importance of future predictions increases as the the

well gets deeper, and dos not matter that much for a short well. This system have a zero mean

disturbance but if there develops a bias on the disturbance the measurement feedback on the

measurement would automatically counteract this bias from entering the system.



CHAPTER 7. SIMULATION RESULTS 110

0 10 20 30 40 50 60
255

260

265

270

P
1 [b

ar
]

 

 

Without Feedforward
Measured Feedforward
Measured Feedforward with prediction
Estimated Feedforward
Referance

0 10 20 30 40 50 60
30

40

50

60

C
ho

ke
 o

pe
ni

ng
 [%

]

0 10 20 30 40 50 60
−10

0

10

20

u a[m
ill

i m
3 /s

]

0 10 20 30 40 50 60
150

200

250

300

P
2 [b

ar
]

0 10 20 30 40 50 60
−1

−0.5

0

0.5
q 1[m

ill
i m

3 /s
]

0 10 20 30 40 50 60
130

140

150

P
3 [b

ar
]

0 10 20 30 40 50 60
−2

−1

0

1

q 2[m
ill

i m
3 /s

]

0 10 20 30 40 50 60
70

80

90

100

P
4 [b

ar
]

0 10 20 30 40 50 60
−4

−2

0

2

q 3[m
ill

i m
3 /s

]

0 10 20 30 40 50 60
0

20

40

60

P
5 [b

ar
]

Time [s]
0 10 20 30 40 50 60

−10

−5

0

5

q 4[m
ill

i m
3 /s

]

Time [s]

Figure 7.11: Comparison of disturbance rejection from different sources



CHAPTER 7. SIMULATION RESULTS 111

25 30 35 40 45 50

264.4

264.6

264.8

265

265.2

265.4

265.6

Time [s]

P
re

as
ur

e 
[b

ar
]

 

 

Without Feedforward
Measured Feedforward
Measured Feedforward with prediction
Estimated Feedforward
Referance

Figure 7.12: Comparison of disturbance rejection from different sources



CHAPTER 7. SIMULATION RESULTS 112

7.8 PLC implementable MPC

When creating PLC implementable solution both memory availability and processing power

requirement is immensely important if it’s going to run properly, as discussed in section 7.8.2. To

create an implementation as light as possible it’s naturally to look at the comparison of update

speeds from section 7.6. Where it clearly comes forward that selecting a solution faster then

TMPC = 1.5 will create a heavy wear on the choke valve and possibly not being feasible, so an

update frequency of TMPC = 1.5 is chosen for the implementation. The MPC problem is defined

in a C++ script which is used to create a C solver solution. In this script it’s possible to define

variables to set in the runnable file. These variables can be used to implement the constraints

from section 7.5 and one can use it to change the system equations online to fit the well depth.

Because ACADO is made to make none-linear solvers it will naturally make a SQP solver, but if

the problem is linear it will create an ordinary QP solver. One can also choose between different

QP solvers and sparse or condensed implementations. For the simulations a sparse formulation

is chosen with the Forces QP solver. The sparse formulation is chosen because it is written in C

which is the supported language in the ABB AC500 PLC. The Kalman filter from section 7.1, is

also implemented in the C script. The simulator and plotting function is implemented in Matlab

and communicated over to the c program using matlab engine. For more detailed information

about the implementation read chapter 6.

7.8.1 Simulation of PLC implementable MPC

To see how the C implementation of the MPC and kalman filter affects the simulations it is rea-

sonable to plot the response of the system with disturbances. To best show the response of this

control system all the states inputs and manipulated variables are depicted in figure 7.13. This

figure clearly shows that the response of the ACADO implementation is identical to the response

of the Matlab implementation in the sections 7.6. This validates the Matlab implementations

above, from the perspective that the scenarios played out previously also is valid for the ACADO

implementation. Further to analyse this scenario it might be helpful to notice that the previous

simulations is 1 minute long, but this one is 5 minutes long. Sub plot (2,1) shows the choke valve

is operating within the perimeters [0,100]% which shows that the constraints are upheld which



CHAPTER 7. SIMULATION RESULTS 113

gives feasible sets, while converging nicely to the pressure references in sub plot 1.

0 50 100 150 200 250 300
250

260

270

280

P
1 [b

ar
]

 

 Without Disturbances
Measured Feadback

0 50 100 150 200 250 300
0

50

100

150

C
ho

ke
 o

pe
ni

ng
 [%

]

0 50 100 150 200 250 300
−10

0

10

20

u a[m
ill

i m
3 /s

]

0 50 100 150 200 250 300
195

200

205

210

P
2 [b

ar
]

0 50 100 150 200 250 300
−1

0

1

2

q 1[m
ill

i m
3 /s

]

0 50 100 150 200 250 300
130

140

150

P
3 [b

ar
]

0 50 100 150 200 250 300
−2

−1

0

1

q 2[m
ill

i m
3 /s

]

0 50 100 150 200 250 300
70

80

90

100

P
4 [b

ar
]

0 50 100 150 200 250 300
−4

−2

0

2

q 3[m
ill

i m
3 /s

]

0 50 100 150 200 250 300
0

20

40

60

P
5 [b

ar
]

Time [s]
0 50 100 150 200 250 300

−10

−5

0

5

q 4[m
ill

i m
3 /s

]

Time [s]

Figure 7.13: Acado Simulation



CHAPTER 7. SIMULATION RESULTS 114

7.8.2 PLC preformance

The previous section now have been dedicated to engineer a suitable MPC controller for the

sole purpose of being PLC implementable. There has also been designed an Kalman for state

estimation and a process simulator to simulate the MPD system. In order to independently test

the PLC MPC implantation from chapter 6 in a PLC, the simulator is moved from MATLAB to

the C code implemented in the PLC. The reason why it is interesting to implement the MPC on

an actual PLC is simple. To actually know if the designed MPC is runnable on the PLC. Where

runnable it is meant that the memory usage is less than the available memory and the compu-

tation time is smaller than the time MPC sampling time. Optimally a condensed solver should

be used, because this should deliver a better solver for MPC implementation on a PLC. But due

to the lack of functionality in the PLC a sparse "Forces" solver was used. Which actually cre-

ates a better scenario if the results are satisfying, because if this scenario gives good results. The

conceded solver will generate even better results. In time the QpOasis condensed solver will be

available in C code, which will give even better results.

Memory consumption

PLC memory consumption is divided into two different sections, program code and program

data. Program code are the memory allocated to the program code and program data is the

memory allocated to data variables (int,double,Boolean,etc.). Figure 7.14(b) shows the mem-

ory consumption for the MPC implementation on the PLC. The code does not necessarily take

more space if the problem is increased, while the number of variables will increase if the MPC

complexity increases. Consequently the data consumption probably is the more critically of the

two and only 2% is used.

Calculation Time

As a simple rule when implementing a MPC controller is that the MPC update time should be

at least twice as long as the computation time. The worst case computation time of the MPC

shown in figure 7.14(a) is 63[ms] and the update speed of the MPC is TMPC = 1.5[s] = 1500[ms].

Which means the PLC is 24 times faster than the MPC and we are well within the boundaries.



CHAPTER 7. SIMULATION RESULTS 115

One might make an argument that because the PLC solves the problems so quick one might

make the MPC faster. But it might also be useful to have large part of the PLC available because

with this configuration it is possible to implement the MPC on a PLC already installed on the

drilling rig, or use the PLC for multiple purposes.



CHAPTER 7. SIMULATION RESULTS 116

0 10 20 30 40 50
60

65

70

75

80

85

90

95

Sample

C
al

cu
la

tio
n 

T
im

e 
[m

s]

 

 

Calculation Time
Mean Calculation time = 60.9 [ms]
Worst case Calculation time = 63 [ms]

(a) Computation time

2%

98%

Program Data

 

 

Used
Unused

9%

91%

Program Code

(b) Memory consumption

Figure 7.14: PLC performance



Chapter 8

Discusion

State estimation

Because the state is not measurable a state estimator is implemented, or more specifically a

Kalman filter to estimate the states. That automatically creates the question, is this estimator

good enough or how good must it be? To answer these questions, you may want to look at what

it will be used to. To use a MPC controller all the states must be presumed known, which they

are not. And because of this a Kalman filter is employed to estimate the states. What makes the

performance of this estimator so extremely important is that it estimates the controlled variable.

And to make the estimation even harder, the disturbance affects the controlled variable directly.

From the figures in section 7.1 one can see that the estimation error is worse on the controlled

variable as a result of this. These simulations also shows that the estimation error becomes

significantly better when one chooses a low sampling time, so how low should the sampling time

be? The correct answer is probably as fast as possible. Because when the Kalman filter sampling

time is Ts = 1, the estimation error becomes half the size of the disturbance it self. But this

has limitations because choosing sample times faster than the sample time of the transmitter

dos not give any improvements. So the sampling speed of the estimator should be chosen as

fast as the sampling time of the topside transmitter. If one, for the sake of the argument, says

that the minimum sampling time is Ts = 1/16. It can be seen from figure 7.1 that the maximum

estimation error is under half a bar pressure. Which is only a fraction of the disturbance.

117



CHAPTER 8. DISCUSION 118

Non-linearity

In section 2.3 a dynamic model is presented, which is in large part linear with the exception of

the choke valve equation.

qc = Kc︸︷︷︸
Constant

√
pc︸︷︷︸

y

− p0︸︷︷︸
Constant

G(u)︸ ︷︷ ︸
Innput

(8.1)

This non-linearity of course makes the overall system non-linear. Now that a non-linear model

has been presented, what alternative is there to implement optimal control? The solution is

rather simple. One can either linearize the dynamical model and implement a linear MPC, or di-

rectly implement a non-linear MPC(NMPC). NMPC is a technology on the rise, and the problem

could then be implemented directly. But there is some draw backs with this technology as with

everything else. Because non-linear problems are in general harder to solve than linear prob-

lems, this solution would probably be less suitable for MPC implementation. Another aspect,

is that ordinary MPCs are more established in the automation industry, and therefore easier to

implement for possible users. So what must be done to implement a linear MPC, and what neg-

ative consequence does this present. First of, linearizing this model is possible. It can be done

by using feedback linearization presented in section 2.5. The main drawback with this approach

is that one dose not optimize the actual manipulated variable u but a new manipulated variable

ua = qbpp − qc for the linearized system. But constraint on the manipulated variable is open /

closed choke valve, can this constraint be used on the linearized MPC? In principle it can’t be

used, because if a non-linear constraint is added to a linear MPC it becomes a NMPC. So has

our MPC become a NMPC or is there a way around this problem? In section 7.5 a solution to

this problem was presented, where the constraints where calculated online. This approach had

some drawbacks presented in section 7.5 but all in all this seemed to be a good solution, and for

this reason it was used for the rest of the simulation.

Elaborating the control horizon

Because this system is meant to be PLC implementable it is important to choose a short as pos-

sible control horizon and this control horizon should be divided into as few samples as possible.

If the sample time is large it will provide us with better time to calculate the optimal manipu-

lated variable. The length of the control horizon on the other hand determines how complex



CHAPTER 8. DISCUSION 119

the problem will be, in the sense that there will be more optimal decision variables to calculate.

This brings us the question of how much we can simplify the MPC without losing the virtues of

the MPC controller? To even begin to respond to this question, one need to know how long time

the system uses to reach steady state. This is because regardless of which method one choose to

ensure stability from section 4.4, the performance, feasibility or stability is at stake. In section

7.3 it is shown that for most sampling frequencies a horizon of 15 seconds brings the states per-

fectly to steady state. Which again brings us to the question of how many optimization points

are needed in the control horizon? To answer this one might look at what benefits many opti-

mization points N gives. Section 7.6 tries to look at how much the sampling frequency helps

on dampening the disturbance, but it concludes that the main effect of lowering the sampling

frequency is that the control efforts becomes larger. So if the main drawback of having few opti-

mization points is that the sampling time becomes high, which again will induce a higher con-

trol effort. In worst case this can create a feasibility problem on the manipulated variable, which

will spread to the controlled variable to ensure feasibility. So how long can the sample time be

before the control effort becomes significantly deteriorated? Figure 7.9 shows the summed con-

trol effort with different sampling times and it clearly depicts that the sampling time should not

exceed Ts = 1.5 seconds.

Disturbance Attenuation

When reading section 7.6 one can see that the sampling frequency does not have any apparent

effect on the disturbance rejection. This forms the question of why that is? We can start by look-

ing at the main disturbance frequency ω0 ≈ 0.7222[r ad/s] ≈ 0.115[Hz] which forms the Nyquist

sampling theorem.

fNyquist > 2 f ≈ 2 ·0.115 ≈ 0.23[Hz]

TNyquist = 1

fNyquist
< 4.35[s]

And it can be seen that all of the sampling frequencies used in the simulation satisfies this distur-

bance and should have the ability to dampen the worst disturbances. So from a pure sampling

frequency perspective all the frequencies should do an approximately equally good job remov-



CHAPTER 8. DISCUSION 120

ing the disturbance, which is the case. This brings us back to how good the disturbance rejection

really is without feedforward. From figure 7.8 it is seen that the down hole pressure is oscillating

from ±5 [bar] which is exactly the same as the disturbance in figure 7.4. This essentially tells

us that the feedback MPC controller does not provide any disturbance rejection at all. Which

should not be a surprise because the controller has no way of knowing about the disturbance,

and asking the controller to fix a problem it know nothing about seems like a stretch.

To fix this problem it seems fitting to try giving the controller some knowledge about the distur-

bance and hope it will use it to counteract the disturbance. Which brings us to the feedforward

simulations in section 7.7 where the results are depicted in figure 7.11-7.12. Which tells us that if

feedforward is to be efficient it requires information about the disturbance in the whole control

horizon. This is of course no surprise because it is impossible to counteract a future distur-

bance without future information. But it can still be useful to have feedforward without future

information because it can prevent a potential steady state error on the down hole pressure if

there becomes a bias on the disturbance. With that said the feedforward with future information

dampens the disturbance with 25%, which is really impressive and way better than 0% which is

the case for all the other scenarios. And to top it all off, it also provides the advantage of being

able to prevent steady states errors caused by the disturbance.

PLC implementable solution

To implement the MPC controller on the PLC much of the information gathered above needs

to be considered. Many of the questions posed earlier had the purpose of creating a PLC im-

plementable solution as optimal for the job as possible. And as discussed when choosing the

control horizon. Choosing a MPC which can be solved as easily as possible is essential, especial

when making a controller which naturally requires a lot of computing power implementable on

a device almost without uting power. And the question, how simple can the MPC controller be,

is revisited. But this time the question is already answered. Because in section 7.6 it was found

that the simplest justifiable MPC controller has a control horizon N = 10 and a sampling time

Ts = 1.5. So how well does the PLC handle a MPC of this magnitude? From the simulations it

actually looks like it handles it quite well, because the PLC only uses 1/24 of its disposable time.



CHAPTER 8. DISCUSION 121

That allows the PLC to actually have more computation time to spare for any other tasks it might

be sensible to implement. But is this implementation as good as it appears in the Matlab sim-

ulations? To answer this question a simulation is set up to test the ACADO implementation in

section 7.8.1 to see how well this implementation responds to the simulation with disturbances.

And it appears to be operating exactly like the system in section 7.6.



Chapter 9

Conclusion

• State estimation

The quality of the estimation is highly dependent on the sampling rate of the Kalman fil-

ter. This is because the disturbance is not completely random, and more samples gives

more iterations to estimate the same disturbance. One of the main obstacles for the es-

timator was that the disturbance was directly influencing the controlled variable, which

then becomes the hardest to estimate. In practical terms this would mean that one cold

risk that the estimation error would be added on top of the disturbance, creating an even

larger BHP variation. But with a sufficiently small sampling time the estimation error be-

comes negligible. The Kalman filter also seems to create a good estimate for the heave

disturbance.

• Optimization of the MPC for PLC implementation

From experimental simulations its found that the optimal control horizon is 15 seconds.

This means that the problem complexity is a function of the sampling time in the MPC

controller. From the simulations it is seen that the sampling speed in the MPC does not

affect the disturbance attenuation, but it affect the control effort. The sampling time is

therefore selected reasonably high without generating an unreasonably high control ef-

fort. TMPC = 1.5

• Condensation

If the control horizon for our problem is shorter than N = 15, a condensed approach is

122



CHAPTER 9. CONCLUSION 123

preferable with respect to both computational time and memory consumption. ACADO

does not support condensation for C code generation at this point, but a new QpOasis

solver is in development which will provide this option. But this only reinforces the results

of the PLC implementation, because we know it would be even better with this option.

• Disturbance Attenuation

The MPC sampling time does not seem to have any effect on the disturbance attenua-

tion if it is reasonably low. But if feedforward with future predictions is introduced the

disturbance is damped with 25% at a depth of 2000 m. Even with this good result, the

disturbance is still over pressure regulation accuracy, which would have been interesting

on a more realistic drilling simulator or with some real life motion data from a drilling

rig. The feedforward without future predictions dose not have any dampening effect on

the disturbance but it could be used to prevent a bias to occur on the BHP if disturbance

stopped being zero mean.

• PLC implementation

The ACADO simulations lived up to the expectations in the sense that they where just like

the Matlab simulations discussed above. The calculation time is 63ms which is 4.2 % of

the MPC sampling time. Which is considerably better than 50 % which is generally a hand

rule. The program data and code is also way within the limits with 2 and 9 percent respec-

tively. Which would indicate that a much more software can be run on this simultaneously.

It might even be possible to implement it on a PLC already installed on the drilling rig.





Appendix A

Condensed Qp

This chapter is going to formulate a condensed Qp white background from a sparse Qp formu-

lation. The formulation is based on the condensed Qp in [ref til prosjekt]

Recursive model formulation

The system to be controlled is a discrete-time LTI system formulated on state space, as shown

below.

xk+1 = Axk +Buk +Evdk +Bbi as

yk =C xk

125



APPENDIX A. CONDENSED QP 126

If one begins to recursively formulate the state space model forwards in time one can clearly see

a pattern forming.

x1 = Ax0 +Bu0 +Evd0 +Bbi as

x2 = Ax1 +Bu1 +Evd1 +Bbi as

= A(Ax0 +Bu0 +Evd0 +Bbi as)+Bu1 +Evd1 +Bbi as

= A2x0 + ABu0 + AEvd0 + ABbi as +Bu1 +Evd1 +Bbi as

x3 = Ax2 +Bu2 +Evd2 +Bbi as

= A(A2x0 + ABu0 + AEvd0 + ABbi as +Bu1 +Evd1 +Bbi as)+Bu2 +Evd2 +Bbi as

= A3x0 + A2Bu0 + A2Evd0 + A2Bbi as + ABu1 + AEvd1 + ABbi as +Bu2 +Evd2 +Bbi as



APPENDIX A. CONDENSED QP 127

This pattern makes it possible to reformulate the system matrices to a recursively state space

valid for the control horizon.



x1

x2

x3

...

xN


︸ ︷︷ ︸

x

=



A

A2

A3

...

AN


︸ ︷︷ ︸

P1

x0 +



B 0 0 · · · 0

AB B 0 · · · 0

A2B AB B · · · 0
...

...
...

. . .

AN−1B AN−2B AN−3B · · · B


︸ ︷︷ ︸

P2



u0

u1

u2

...

uN−1


︸ ︷︷ ︸

u

+



E 0 0 · · · 0

AE E 0 · · · 0

A2E AE E · · · 0
...

...
...

. . .

AN−1E AN−2E AN−3E · · · E


︸ ︷︷ ︸

P3



vd0

vd1

vd2

...

vdN−1


︸ ︷︷ ︸

vd

+



Bbi as 0 0 · · · 0

ABbi as Bbi as 0 · · · 0

A2Bbi as ABbi as Bbi as · · · 0
...

...
...

. . .

AN−1Bbi as AN−2Bbi as AN−3Bbi as · · · Bbi as


︸ ︷︷ ︸

P4

y1

y2

...

yN


︸ ︷︷ ︸

y

=



C 0 · · · 0

0 C
. . .

...
...

. . . C 0

0 · · · 0 C


︸ ︷︷ ︸

P5



x1

x2

...

xN


︸ ︷︷ ︸

x



APPENDIX A. CONDENSED QP 128

The output y can be defined as.

y = P5x

= P5(P1x0 +P2u +P3vd +P4)

= P5P1x0 +P5P2u +P5P3vd +P5P4

The objective function dose not necessarily contain all the states, but may instead weighted

output variable. Or just the output as in this case.

J = (y − yref)
>Q(y − yref)+u>Ru

= y>Q y − y>Q yr e f − y>
r e f Q y + y>

r e f Q yr e f +u>Ru

Because the cost function is scalar y>Q yr e f = y>
r e f Q y , and the same goes for u/ur e f . Now all

the terms which dos not contain decision can be removed, without this altering the solution.

J = y>Q y −2y>
r e f Q y +u>Ru

If we now set inn for y we get.

J = (P5P1x0 +P5P2u +P5P3vd +P5P4)>Q(P5P1x0 +P5P2u +P5P3vd +P5P4)

−2y>
r e f Q(P5P1x0 +P5P2u +P5P3vd +P5P4)+u>Ru

= x>
0 P>

1 P>
5 QP5P1x0 +x>

0 P>
1 P>

5 QP5P2u +x>
0 P>

1 P>
5 QP5P3vd +x>

0 P>
1 P>

5 QP5P4

+u>P>
2 P>

5 QP5P1x0 +u>P>
2 P>

5 QP5P2u +u>P>
2 P>

5 QP5P3vd +u>P>
2 P>

5 QP5P4

+ v>
d P>

3 P>
5 QP5P1x0 + v>

d P>
3 P>

5 QP5P2u + v>
d P>

3 P>
5 QP5P3vd + v>

d P>
3 P>

5 QP5P4

+P>
4 P>

5 QP5P1x0 +P>
4 P>

5 QP5P2u +P>
4 P>

5 QP5P3vd +P>
4 P>

5 QP5P4

−2y>
r e f QP5P1x0 −2y>

r e f QP5P2u −2y>
r e f QP5P3vd −2y>

r e f QP5P3vd −2y>
r e f QP5P4

+u>Ru



APPENDIX A. CONDENSED QP 129

And now the only decision variable is u, and the rest can be omitted without this altering the

result, and each term is scalar an thus may be transposed.

J = x>
0 P>

1 P>
5 QP5P2u +u>P>

2 P>
5 QP5P1x0 +u>P>

2 P>
5 QP5P2u +u>P>

2 P>
5 QP5P3vd

+u>P>
2 P>

5 QP5P4 + v>
d P>

3 P>
5 QP5P2u +P>

4 P>
5 QP5P2u −2y>

r e f QP5P2u +u>Ru

Thus it may be written.

J = u> (R +P>
2 P>

5 QP5P2)︸ ︷︷ ︸
H

u +2(x>
0 P>

1 P>
5 + v>

d P>
3 P>

5 +P>
4 P>

5 − y>
r e f )QP5P2︸ ︷︷ ︸

Fθ+ f

u

beskrankninger

Where the constraints are defined.

umi n,k ≤ uk ≤ umax,k

ymi n,k ≤ uk ≤ ymax,k

Which can be written as.

uk ≤ umax,k yk ≤ ymax,k

−uk ≤−umi n,k −yk ≤−ymi n,k

 1

−1


︸ ︷︷ ︸

Duk

uk ≤
 umax,k

−umi n,k


︸ ︷︷ ︸

duk

 1

−1


︸ ︷︷ ︸

D yk

yk ≤
 ymax,k

−ymi n,k


︸ ︷︷ ︸

dyk

Where the total constraint matrices is written as.

D y y ≤ dy

Duu ≤ du



APPENDIX A. CONDENSED QP 130

with

D y =



D y1 0 · · · 0

0 D y2

. . .
...

...
. . . . . . 0

0 · · · 0 D yN

 , Du =



Du1 0 · · · 0

0 Du2

. . .
...

...
. . . . . . 0

0 · · · 0 DuN



dy =



dy1

dy2

...

dyN

 , du =



du1

du2

...

duN


Inserting the constraint model into the model yields:

D y y ≤ dy

D y P5x ≤ dy

D y P5(P1x0 +P2u +P3vd +P4) ≤ dy

D y P5P2u ≤ dy −D y P5P1x0 −D y P5P3vd −D y P5P4

and

Duu ≤ du

Which gives rice to the constraints in a condensed QP formulation.

 Du

D y P5P2


︸ ︷︷ ︸

Ai eq

u ≤
 du

dy −D y P5P1x0 −D y P5P3vd −D y P5P4


︸ ︷︷ ︸

bi eq+Bi eqθ

A.1 Condensed QP Formulation

And finally the MPC can be written on condensed QP form.



APPENDIX A. CONDENSED QP 131

min u>Hu + (Fθ+ f )u

s.t. Ai eq u ≤ bi eq +Bi eqθ

Where

H = R +P>
2 P>

5 QP5P2

Fθ+ f = 2(x>
0 P>

1 P>
5 + v>

d P>
3 P>

5 +P>
4 P>

5 − y>
r e f )QP5P2

= 2(P>
1 P>

5 QP5P2)>x0 +2(P>
3 P>

5 QP5P2)>vd +2P>
4 P>

5 QP5P2 −2(QP5P2)>yr e f

Ai eq =
 Du

D y P5P2


bi eq +Bi eqθ =

 du

dy −D y P5P1x0 −D y P5P3vd −D y P5P4


Where θ is the QP initial contritions.

A.1.1 Reference Tracking MPC

Configuration of optimization problem with x0 and the reference as initial conditions.

F =
[

2(P>
1 P>

5 QP5P2)> −2(QP5P2)>
]

θ =
 x0

yr e f


f = 2(P>

3 P>
5 QP5P2)>vd +2P>

4 P>
5 QP5P2

Ai eq =
 Du

D y P5P2


bi eq =

 du

dy −D y P5P3vd −D y P5P4


Bi eq =

 0 0

−D y P5P1 0





APPENDIX A. CONDENSED QP 132

A.1.2 Reference Tracking MPC white disturbance feed forward

Configuration of optimization problem with x0, reference and disturbance as initial conditions.

F =
[

2(P>
1 P>

5 QP5P2)> −2(QP5P2)> 2(P>
3 P>

5 QP5P2)>
]

θ =


x0

yr e f

vd


f = 2P>

4 P>
5 QP5P2

Ai eq =
 Du

D y P5P2


bi eq =

 du

dy −D y P5P4


Bi eq =

 0 0 0

−D y P5P1 0 −D y P5P3





Appendix B

Adding a PID controller to plant model

This appendix contain a method to create a model that contain both the system and the low

level controllers is the same model, as shown in figure B.1.

Simulator Model

New system

PI controller Prosess
+

-

Figure B.1: PID master system

This new model shown in figure B.1, can be built from a range of different controllers, but

due to it’s popularity in industrial applications a PI controller was chosen. This section will

describe how to create an new system model that includes both the controller and the physical

system model. The PI controller is usually expressed on standard or parallel form but it can also

133



APPENDIX B. ADDING A PID CONTROLLER TO PLANT MODEL 134

be written on state-space form as below.

ẋk = Bk e

u = xk +Dk e

Bk = Ti Kp

Dk = Kp

The controller above is then inserted into the process model from section[ref] and together they

form the flowing model.

ẋp = Ap xp +Bp (xk +Dk e)+Ep vd

This create the basis for a overall closed system loop system x = [ẋp ẋk ]> where e = r − y .

ẋ =
Ap xp +Bp (xk +Dk (r −Cp xp ))+Ep v

Bk (r −Cp xp )


=

Ap xp +Bp xk +Bp Dk r −Bp DkCp xp +Ep v

Bk r −BkCp xp



=


[

Ap −Bp DkCp Bp

][
xp xk

]>
+Bp Dk r +Ep v[

−BkCp 0
][

xp xk

]>
+Bk r


=

Ap −Bp DkCp Bp

−BkCp 0

xp

xk

+
Bp Dk

Bk

r +
Ep

0

v

= Asi m x +Bsi mr +Esi m vd



Appendix C

Image Tutorials

C.1 Create New Project

This section is going to cover the basics of setting up a empty project in eclipse and creating

a empty (C++) source file. The following enumerated list are built up in such a way that the

number in the list represent the figure number.

1. New project

Press the new project button to open the project manager faceplate.

2. Select C++ project

Select new C++ project followed by Next.

3. Define project

Select project name, empty project and select the compile of choice and finish by pressing

Finish.

4. New source file

To open the new source file faceplate left click on the project in the project explorer and

select "New → Source File"

5. Define source file

Select the name of the source file and finish by pressing Finish

135



APPENDIX C. IMAGE TUTORIALS 136

Figure C.1: New project

Figure C.2: Select C++ project



APPENDIX C. IMAGE TUTORIALS 137

Figure C.3: Define project

Figure C.4: New source file



APPENDIX C. IMAGE TUTORIALS 138

Figure C.5: Define source file



APPENDIX C. IMAGE TUTORIALS 139

C.2 Setup project with makefile and executable

This section is going to graphically illustrate how to setep the project with the the makefile from

CMake build managing software. And further make eclipse recognise the executable created the

compilation defined in the makefile.

1. Open Properties

To open the properties faceplate left click on the project in the project explorer and select

"Properties"

2. Change build options

Select "C/C++ Build" options in the tree on the left side. Deselect generate makefile au-

tomatically to stop eclipse from making a makefile then press the workspace button to

select the pre made makefile from CMake.

3. Select folder with makefile inside

Select the folder "build" inside the the project folder. If you don’t have created this folder

or the makefile within, the process is explained in section [ref]. When this file is selected

press OK on both faceplate’s to get back to the properties faceplate.

4. Create new executable

The numbering jumps over one number her in-case you closed the properties faceplate,

if you do go to point number one to open it again. Open the "Run/debug" in the tree on

the left side, and press new build setting.

5. Configuration type

Select that you want to build a C/C++ application and press OK.

6. Executable configuration

Press the browse button to open a file browser, to select a executable from the file system.

Note that if the code hasn’t been compiled jet there is no executable file. To create a exe-

cutable one can build the project or open the terminal maneuver to the build folder and

type make.



APPENDIX C. IMAGE TUTORIALS 140

7. Select executable file Maneuver your project folder select the executable from the make

process and press OK until you are back to the editor.

Figure C.6: Open Properties

Figure C.7: Change build options



APPENDIX C. IMAGE TUTORIALS 141

Figure C.8: Select folder with makefile inside



APPENDIX C. IMAGE TUTORIALS 142

Figure C.9: Create new executable



APPENDIX C. IMAGE TUTORIALS 143

Figure C.10: Configuration type

Figure C.11: Executable configuration



APPENDIX C. IMAGE TUTORIALS 144

Figure C.12: Select executable file



Appendix D

Scripts

D.1 Code generation scripts

D.1.1 CMake settings File

To create a makefile for the code generation application in ACADO a build managing software

called CMake is used. The build process setting is defined in a script. The settings file used in

the MPD problem is denoted below.

# Minimum required version of cmake

CMAKE_MINIMUM_REQUIRED( VERSION 2.8 )

# Project name and programming languages used

PROJECT( MPD_MPC_SOLVER CXX )

# CMake module(s) path

SET( CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${PROJECT_SOURCE_DIR} )

#

# Prerequisites

#

FIND_PACKAGE( ACADO REQUIRED )

#

# Include directories

145



APPENDIX D. SCRIPTS 146

#

INCLUDE_DIRECTORIES( . ${ACADO_INCLUDE_DIRS} )

#

# Build an executable

#

ADD_EXECUTABLE( generateCode DefineController.cpp )

TARGET_LINK_LIBRARIES( generateCode ${ACADO_SHARED_LIBRARIES} )

SET_TARGET_PROPERTIES( generateCode PROPERTIES RUNTIME_OUTPUT_DIRECTORY

${CMAKE_CURRENT_SOURCE_DIR} )

Where "generateCode" is the name of the executable an "DefineController.cpp" is the name of

the source code file.



APPENDIX D. SCRIPTS 147

D.1.2 Acado MPC for MPD script

Below is the complete script for the ACADO code generation. A background explanation and the

meaning of the code lines is explained in section [ref].

#include <acado_toolkit.hpp >

int main( )

{

USING_NAMESPACE_ACADO

// States:

DifferentialState p_1;

DifferentialState q_1;

DifferentialState p_2;

DifferentialState q_2;

DifferentialState p_3;

DifferentialState q_3;

DifferentialState p_4;

DifferentialState q_4;

DifferentialState p_5;

DifferentialState dummy;

// Control inputs

Control u; // Control input

Control s; // Slcak variable

// Disturbance

Parameter vd;

// Constraints

Parameter uMin; // Disturbance

Parameter yMin; // Disturbance

Parameter yMax; // Disturbance

// System Parameters

Parameter a;



APPENDIX D. SCRIPTS 148

Parameter b;

Parameter c;

Parameter e;

Parameter Kc;

Parameter p0;

Parameter qbpp;

// Simulation Data

const double N = 10; // Contol horizon

const double Ts = 1.5; // Sampling time

// Model equations:

DifferentialEquation f;

f << dot( p_1 ) == a*(-q_1 - vd *0.0656*21);

f << dot( q_1 ) == b*(p_1 -p_2) - c*q_1 -e;

f << dot( p_2 ) == a*(q_1 -q_2);

f << dot( q_2 ) == b*(p_2 -p_3) - c*q_2 -e;

f << dot( p_3 ) == a*(q_2 -q_3);

f << dot( q_3 ) == b*(p_3 -p_4) - c*q_3 -e;

f << dot( p_4 ) == a*(q_3 -q_4);

f << dot( q_4 ) == b*(p_4 -p_5) - c*q_4 -e;

f << dot( p_4 ) == a*(q_4 + u);

f << dot(dummy) == s;

// Reference functions and weighting matrices:

Function h, hN;

h << u << p_1; << s

hN << p_1;

Matrix W = eye( h.getDim () );

Matrix WN = eye( hN.getDim () );

W(0,0) = 15; // Input waigthing

W(1,1) = 150; // Output waigthing

W(2,2) = 5000; // waigth of slack

WN(0,0) = 15;

// Optimal Control Problem



APPENDIX D. SCRIPTS 149

OCP ocp(0.0, N*Ts , N);

ocp.subjectTo( f );

ocp.minimizeLSQ(W, h);

ocp.minimizeLSQEndTerm(WN, hN);

// Constraints

ocp.subjectTo( p_1 + s - ymax <= 0);

ocp.subjectTo( 0 <= p_1 + s - ymax);

ocp.subjectTo (0 <= u - umin );

ocp.subjectTo( u -qbpp <= 0 );

// Export the code:

OCPexport mpc( ocp );

mpc.set( HESSIAN_APPROXIMATION , GAUSS_NEWTON );

mpc.set( DISCRETIZATION_TYPE , SINGLE_SHOOTING );

mpc.set( SPARSE_QP_SOLUTION , SPARSE_SOLVER );

mpc.set( INTEGRATOR_TYPE , INT_RK4 );

mpc.set( NUM_INTEGRATOR_STEPS , 10 );

mpc.set( QP_SOLVER , QP_FORCES );

mpc.set( GENERATE_TEST_FILE , NO );

mpc.set( GENERATE_MAKE_FILE , NO );

mpc.set( GENERATE_MATLAB_INTERFACE , NO );

mpc.set( GENERATE_SIMULINK_INTERFACE , NO );

return EXIT_SUCCESS;

}

D.2 Acado MPC simulator

D.2.1 Makefile

UNAME := $(shell uname)

MATLAB = /usr/local/MATLAB/R2013a/

LDLIBS = -lm -lstdc++



APPENDIX D. SCRIPTS 150

ifeq ($(UNAME), Linux)

LDLIBS += -lrt -L/usr/local/MATLAB/R2013a/bin/glnxa64 -Xlinker -

rpath -Xlinker /usr/local/MATLAB/R2013a/bin/glnxa64 -leng -

lmx

endif

CFLAGS = -O3 -finline -functions -I. -I./ qpoases -I$(MATLAB)/extern/

include -I$(MATLAB)/extern/include/cpp

CXXFLAGS = -O3 -finline -functions -I. -I./ qpoases -I./ qpoases/INCLUDE -I

./ qpoases/SRC -I$(MATLAB)/extern/include -I$(MATLAB)/extern/include/

cpp

CC = gcc

CXX = g++

OBJECTS = \

./ qpoases/SRC/Bounds.o \

./ qpoases/SRC/Constraints.o \

./ qpoases/SRC/CyclingManager.o \

./ qpoases/SRC/Indexlist.o \

./ qpoases/SRC/MessageHandling.o \

./ qpoases/SRC/QProblem.o \

./ qpoases/SRC/QProblemB.o \

./ qpoases/SRC/SubjectTo.o \

./ qpoases/SRC/Utils.o \

./ qpoases/SRC/EXTRAS/SolutionAnalysis.o \

acado_qpoases_interface.o \

acado_integrator.o \

acado_solver.o \

acado_auxiliary_functions.o

.PHONY: all

all: libacado_exported_rti.a test

test: ${OBJECTS} test.o

acado_qpoases_interface.o : acado_qpoases_interface.hpp

acado_solver.o : acado_common.h



APPENDIX D. SCRIPTS 151

acado_integrator.o : acado_common.h

acado_auxiliary_functions.o : acado_common.h \

acado_auxiliary_functions.h

test.o : acado_common.h \

acado_qpoases_interface.hpp \

acado_auxiliary_functions.h

libacado_exported_rti.a: ${OBJECTS}

ar r $@ $?

${OBJECTS} : acado_qpoases_interface.hpp

.PHONY : clean

clean :

-rm -f *.o *.a ./ qpoases

D.2.2 The header file for the simulation

#include "acado_common.h"

#include "acado_auxiliary_functions.h"

#include <stdio.h>

#include <string.h>

#include <engine.h>

#define NX ACADO_NX // Number of differential state variables.

#define NXA ACADO_NXA // Number of algebraic variables. */

#define NU ACADO_NU // Number of control inputs.

#define NP ACADO_NP // Number of parameters.

#define NY ACADO_NY // Number of measurements/references on nodes 0..N

- 1.

#define NYN ACADO_NYN // Number of measurements/references on node N.

#define N ACADO_N // Number of intervals in the horizon.

#define NUM_STEPS = 50 // Iterations to find optimal soution

int SIM_STEPS = 500 // Length of simulation



APPENDIX D. SCRIPTS 152

/* Global variables used by the solver. */

ACADOvariables acadoVariables;

ACADOworkspace acadoWorkspace;

// Declare functions

int initMatlab ();

void updateKalman ();

int initAcado ();

void acadoIter ();

// Declare the system matrices

double Add [9][9] = // Discrerte system matrice Ad with Ts=1.5

double Bdd [9][9] = // Discrerte system matrice Bd with Ts=1.5

double Cdd [9] = // Discrerte system matrice Ad with Ts=1.5

const double qbpp = 14.88;

// Define the kalman filter matrices

double Pm [10][10] = //The initial error covariance

double Q[10][10];

double xhat_m [10] = // inital state

double K[10],P[10][10];

double CPC ,CXhatm ,KC[10][10] , KCT [10][10] , PKC [10][10] , PKCT [10][10] ,PA

[10][10];

double xhat [10]

double xmat [10] = // inital state

// The input , output and disturbance.

double u[2];

double y;

double vd;

// Iterators for the system loop.

int i,j, iter ,step;

// Matlab enige variables

Engine *ep;



APPENDIX D. SCRIPTS 153

mxArray *mxVd;

mxArray *mxY;

mxArray *mxP5;

D.2.3 Initialisation of simulation environment

int initMatlab ()

{

ep = engOpen(NULL); // Connect to MATLAB engine

if(ep==0) {

printf("Connecton to Matlab Engine failed\n");

return (-1);

}

// Set a path to the matlab project folder and run th init

script

engEvalString(ep ,"addpath('/home/edvin/Dropbox/Master/Matlab/

cSimEin ')");

engEvalString(ep ,"run('FungerendeParameterGull.m ')");

printf("Matlab Conection sucsess \n\n");

return (0);

}

int initAcado (){

// Initialize the covariance matrix

Q[1][1] = 0.067472149950386;

Q[2][2] = 0.052295642557368;

Q[3][3] = 0.008542080531829;

Q[4][4] = 0.002259804065364;

Q[5][5] = 1.308157314771722e-04;

// Set the control bias

u[1] = 1;

// Clear solver memory.

memset (& acadoWorkspace , 0, sizeof( acadoWorkspace ));

memset (& acadoVariables , 0, sizeof( acadoVariables ));



APPENDIX D. SCRIPTS 154

// Initialize the solver.

initializeSolver ();

// Initialize the states and controls.

for (i = 0; i < NX * (N + 1); ++i) acadoVariables.x[ i ] = 0.0;

for (i = 0; i < NU * N; ++i) acadoVariables.u[ i ] = 0.0;

// Sett the control referance

for (i = 0; i < N; ++i)

{

for (j = 0; j < NY; ++j){

if(j==0){

acadoVariables.y[i * NY + j] = 0; // u

}else{

acadoVariables.y[i * NY + j] = 265; // y

}}}

return (0);

}

D.2.4 Kalman filter implemented in C

void updateKalman ()

{

int i,j,k;

// Equation for calculating K

CPC = Pm [8][8];

for(i = 0;i <9;++i){

K[i] = Pm[i][8]/ CPC;

}

// Equation for calculating /hat{x}

CXhatm = Cdd [8]* xhat_m [8];

for(i = 0;i <9;++i){

xhat[i] = xhat_m[i] + K[i]*(y-CXhatm);

}

// Equation for calculating P

KC [8][8] = KCT [8][8] = 1-Cdd [8]*K[8];

for(i = 0;i <9;++i){

KC[i][8] = -Cdd [8]*K[i];



APPENDIX D. SCRIPTS 155

KC[i][i] = 1;

KCT [8][i] = -Cdd [8]*K[i];

KCT[i][i] = 1;

}

for (i = 0;i < 9; ++i){

for (j = 0; j < 9; ++j){

PKCT[i][j]=0;

for(k = 0;k < 10; ++k){

PKCT[i][j] = PKCT[i][j]+Pm[i][k] * KCT[k][j];

}}}

for (i = 0;i < 9; ++i){

for (j = 0; j < 9; ++j){

P[i][j]=0;

for(k = 0;k < 10; ++k){

P[i][j] = P[i][j]+KC[i][k] * PKCT[k][j];

}}}

// ----------------------------------------------------

// Preparer for next step

// ----------------------------------------------------

// Equation for calculating /hat{x}

for(i = 0;i <9;++i){

xhat_m[i] = 0;

for(j = 0;j <9;++j){

xhat_m[i] += Add[i][j]*xhat[j];

}

for(j = 0;j <2;++j){

xhat_m[i] += Bdd[i][j]*u[j];

}}

// Equation for calculating P_m

for (i = 0;i < 9; ++i){

for (j = 0; j < 9; ++j){

PA[i][j]=0;

for(k = 0;k < 9; ++k){

PA[i][j] = PA[i][j]+P[i][k] * Add[k][j];

}}}



APPENDIX D. SCRIPTS 156

for (i = 0;i < 9; ++i){

for (j = 0; j < 9; ++j){

Pm[i][j]=0;

for(k = 0;k < 9; ++k){

Pm[i][j] = Pm[i][j]+Add[i][k] * PA[k][j];

}}}

for ( i = 0 ; i < 9 ; ++i )

// Q only has only element on the diagonal

Pm[i][i] = Pm[i][i] + Q[i][i];

vd = xhat_m [0] - xhat [0];

}

D.2.5 Qp optimization

void acadoIter (){

preparationStep ();

for(iter = 0; iter < NUM_STEPS; ++iter)

{

// Perform the feedback step.

feedbackStep( );

// Chech if the KKT condition

// satisfy a predefined reqierment

if(getKKT () <0.0000001) break;

// Preper for next step

preparationStep ();

}}

D.2.6 The Simulation loop

int main()

{

// Run the init methods

initMatlab ();

initAcado ();



APPENDIX D. SCRIPTS 157

for(step = 0; step < MPC_STEPS; ++step){

// Get the disturbance from Matlab

engEvalString(ep ,"vvv = vd((i)*ceil(Ts/Tn));");

mxVd = engGetVariable(ep , "vvv");

acadoVariables.p[0] = (double)mxGetScalar(mxVd);

// Set the intial condition to the optimization

acadoVariables.x0[i] = xhat[i];

// Run the optimization

acadoIter ();

// Run the simulator one iteration forward

u[0] = acadoVariables.u[0];

mxP5 = mxCreateDoubleScalar (( double)u_a);

engPutVariable(ep,"z",mxP5);

engEvalString(ep ,"[z] = UpdateMod(z,Add ,Bdd ,Edd ,Cdd ,vd((

i+1)*ceil(Ts/Tn)))");

mxY = engGetVariable(ep, "z");

y = mxGetScalar(mxY)

// Estimate the states whith kalman filter.

updateKalman ();

}

// Save the results to a data file.

engEvalString(ep ,"save('/home/edvin/Dropbox/Master/Matlab/

cSimEin/DistInfolessAcado.mat ','x','y','u','vd ');");

engClose(ep);

return (0);

}



Bibliography

(2014). MATLAB® External Interfaces ,R2014a ,User manual.

Amirhossein Nikoofard, Tor Arne Johansen, H. M. . and Pavlov, A. (2014). Design and compar-

ison of constrained mpc with pid controller for heave disturbance attenuation in offshore

managed pressure drilling systems. Marine Technology Society Journal, 48(2):90–103.

Chen, C.-T. (2009). Linear System Theory & Design. Oxford, 3st edition.

D. Q. Mayne, J. B. Rawlings, C. V. R. . P. O. M. S. (2000). Constrained model predictive control:

Stability and optimalityq. Automatica, 36:789–814.

David Ariens, Moritz Diehl, H. J. F. B. H. F. L. R. Q. M. V. (2014). Toolkit User’s Manual. acado-

toolkit.org.

Erik Bølviken, N. C. S. (1998). Linear dynamical models, Kalman filtering and statistics. Univer-

sity of Oslo.

Fossen, T. I. (2011). Marine Carft Hydrodynamics and Motion Control. John Wiley & Sons.

Ægidius Mogensen, T. (2010). Basics of Compiler Design. lulu.com.

Godhavn, J.-M. (2010). Control requirements for automatic managed pressure drilling system.

SPE Drilling & Completion, 25(03):336–345.

Heirung, B. F. . T. A. N. (2013). Merging optimization and control. Lecture Note.

Hhalil, H. K. (1996). Nonlinear Systems. Prentice-Hall, 3st edition.

Hovd, M. (2012). Lecture notes for the course advanced control of industrial processes.

158



BIBLIOGRAPHY 159

Ingar Skyberg Landet, A. P. . O. M. A. (2013). Modeling and control of heave-induced pressure

fluctuations in managed pressure drilling. IEEE TRANSACTIONS ON CONTROL SYSTEMS

TECHNOLOGY, 21(4):1340–1351.

Johan Eck-Olsen, P.-J. P. . A. R. (2005). Maneaged pressures during underbalaced cementing by

choking the return flow; innovative design and operational medeling as well as operational

lessons. In SPE/IDAC 92568. SPE International.

Juan L. Jerez, E. C. K. . G. A. C. (2011). A condensed and sparse qp formulation for predictive

control. In 50th IEEE Conference on Decision and Control and European Control Conference.

K. Hasselman, T.P. Barnett, E. H. D. C. K. E. J. H. D. P. A. P. D. K. . W. H. (1973). Measur-

ments of wind-wave groth and swell decay during the joint north sea wave project (jonswap).

Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift.

Kaasa, G.-O. (2012). Lecture in system identification. Un-publiched.

Marks, R. J. (1991). Introduction to Shannon Sampling and Interpolation Theory. Springer.

Mecklenburg, R. (2004). Managing Projects with GNU Make. O’reilly, 2st edition.

Møgster, J. (2013). Bruk av mpc for mpd. Master’s thesis, NTNU.

Morari, A. B. . M. (1999). Robust model predictive control: A survey. springer, 245:207–226.

Olav Egeland, J. T. G. (2002). ModeModel and Simulation for Automatic Control. MARINE CY-

BERNETICS, 2st edition.

R.G. Brown, P. H. (2012). Introduction to Random Signals and Applied Kalman Filtering. John

Wiley & Sons, 4st edition.

Skalle, P. (2011). Pressure Control During Oil Well Drilling. Ventus Publishing, 4st edition.

Wrigth, J. N. . S. J. (2006). Numerical Optimization. Springer, 3st edition.

Øyvind Breyholtz (2008). Nonlinear model predictive pressure control during drilling opera-

tions. Master’s thesis, NTNU.



BIBLIOGRAPHY 160

Øyvind Nistad Stamnes (2011). Nonlinear Estimation with Applications to Drilling. PhD thesis,

Norwegian University of Science and Technology.


	Acknowledgment
	Summary and Conclusions
	Preface
	Introduction
	Norwegian oil
	Model Predictive Control in Managed Pressure Drilling
	MPC For Heave Disturbance Attenuation in MPD systems
	Research Focus
	Thesis Outline


	Drilling Systems
	Pore and fracture pressure
	Managed pressure drilling
	Hydraulic model
	Instrumentation
	Pressure Measurement
	Choke Valve

	State space model
	Attempt to linearise with respect to depth

	Heave motion disturbance model and state estimation
	Heave motion disturbance model
	Wave spectrum
	Liner approximation
	Wave response

	Kalman filtering
	Design
	Stability


	Model Predictive Control
	Feasibility
	Optimization
	Constrained optimization
	Dynamic Optimization

	Optimal control
	Optimality and Stability
	Defining stability constraints
	Feasibility 

	Numerical integrator
	Condensation

	Controller design
	Control hierarchy
	System properties
	Simulation Parameters
	Choke Valve Characteristic
	Controllability
	Observability
	Internal Stability

	System discretization
	Internal stability of discrete LTI system

	Constrained reference tracking MPC design
	Condensed formulation
	Slack variable
	Controller tuning


	Implementation
	Compiling code
	Makefiles
	CMake

	Matlab engine
	Acado toolbox
	Code generation

	PLCs
	Program execution

	Acado Implementation
	Software Installation
	Generate MPC Solver
	Implement solver in Simulations
	Implement solver in a PLC

	Matlab Implementation

	Simulation Results
	Kalman filter
	Heave Disturbance
	Selection of control horizon and MPC sampling frequency
	Sparse v.s. Condensed Qp
	On-line constraint calculation
	Disturbance Attenuation as a function of problem complexity
	FeedForward
	Measured rig motion
	Estimated rig motion
	Measured rig motion with future predictions
	Comparison

	PLC implementable MPC
	Simulation of PLC implementable MPC
	PLC preformance


	Discusion
	Conclusion
	Condensed Qp
	Condensed QP Formulation
	Reference Tracking MPC
	Reference Tracking MPC white disturbance feed forward


	Adding a PID controller to plant model
	Image Tutorials
	Create New Project
	Setup project with makefile and executable

	Scripts
	Code generation scripts
	CMake settings File
	Acado MPC for MPD script

	Acado MPC simulator
	Makefile
	The header file for the simulation
	Initialisation of simulation environment
	Kalman filter implemented in C
	Qp optimization
	The Simulation loop


	Bibliography

