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Introduction 
The immune system 

The immune system is a complex system responsible for protecting the body 

from harmful microorganisms and malignant cells. In some circumstances the 

immune system can also have detrimental effects and lead to chronic inflammatory 

reactions. The immune system is traditionally divided into an innate and an adaptive 

component. Upon entrance of a pathogen, the innate immune system is triggered first. 

Innate immune cells like macrophages and neutrophils recognize conserved microbial 

structures or stress-induced self molecules using an invariant set of receptors (pattern 

recognition receptors).1 Later on, the adaptive immune system, dependent on T and B 

lymphocytes is triggered. The adaptive response takes longer time to initiate but has 

memory, meaning that the response will be more rapid after encounter with the same 

antigen on the next occasion2 (an antigen is a substance recognized by the adaptive 

immune system). In general, each lymphocyte expresses only a unique antigen 

receptor on its surface, but the total repertoire of antigens recognized by the pool of 

lymphocytes is enormous.  

B lymphocytes recognize antigen directly using their cell-surface B-cell 

receptor. After activation, B lymphocytes proliferate and differentiate into plasma 

cells that secrete large amounts of the soluble version of the B-cell receptor 

(antibody), or into memory B cells. Memory B cells respond more rapidly after 

encounter with the same antigen.  

Using their T-cell receptors (TCRs), T lymphocytes recognize antigen 

presented on specialized major histocompatibility complex (MHC) molecules, 

expressed on antigen-presenting cells (APC). Mature T cells that have not yet met 

their specific antigen (naïve T cells) recirculate between blood and peripheral 

lymphoid organs. APC engulfing antigen in the periphery, migrate to lymphoid 

organs where they can get in contact with naïve T cells. Activated naïve T cells will 

then proliferate and give rise to effector and memory T lymphocytes. 

 

T lymphocyte maturation and activation 

Progenitor T cells migrate from the bone marrow to the thymus where 

maturation of these cells (thymocytes) takes place. Maturation involves 
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rearrangements of TCR gene segments. This process is responsible for the great 

diversity of TCRs generated. Only thymocytes with a TCR that has sufficient affinity 

to self-peptide-MHC will survive (positive selection).3 Thymocytes whose TCR has 

too strong affinity to self-peptide-MHC are eliminated (negative selection).4 The 

avidity model proposes that the strength of signaling determines whether the cell 

undergoes negative or positive selection.5  

After thymic maturation, a few T cells express a �� heterodimer, while the 

majority express an �� heterodimer. The �� positive T cells express either the co-

stimulatory molecule cluster of differentiation 4 (CD4) or CD8. Schematically, CD8+ 

T cells are cytotoxic T cells and kill the cells they recognize, while CD4+ T cells, also 

called T helper cells (Th), are master regulators of the adaptive immune response and 

important both for B-cell responses and CD8+ T-cell responses. 

To be activated, naïve T cells require additional signals in addition to TCR 

stimulation, provided by costimulatory molecules and cytokines. Only after 

perceiving a “danger” signal through their pattern recognition receptors do APC 

upregulate costimulatory molecules and become efficient activators of T cells.6 In the 

absence of costimulation, TCR stimulation seems to induce a state of 

nonresponsiveness (anergy).7  

 

CD4+ T cell subsets 

An important role of effector CD4+ T cells is to produce cytokines. Cytokines 

are proteins released by cells that affect the behavior of cells that bear receptors for 

these proteins. The term “Interleukin” (IL) was originally chosen to name cytokines 

produced by and acting on leukocytes. The term now refers to cytokines with far more 

diverse functions and origins. The cytokine environment plays an essential role in 

deciding the differentiation of naïve CD4+ T cells into various Th subsets8 (Figure 1).  

Since the discovery that CD4+ T cells could be divided into Th1 and Th2 

cells,9 several subtypes of CD4+ T cells have been uncovered. In addition to Th1 and 

Th2 cells, regulatory T cells, Th17 and follicular T helper cells (Tfh) are now 

recognized as distinct Th subsets. These Th subsets can be distinguished based on 

transcription factors, surface molecules and the cytokines produced.8  

Th1 cells express the transcription factor T-box 21 (TBX-21)10 and produce 

IFN-�. This subset plays a role in protection against intracellular pathogens and was 
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until recently considered the main player in autoimmunity. Th2 cells express the 

transcription factor GATA-3,11 produce IL-4, IL-5 and IL-13. This subset plays a role 

in protection against parasites and is particularly important in allergy. Regulatory T 

cells express the transcription factor forkhead box P3 (FoxP3),12 produce IL-10 and 

transforming growth factor (TGF)-�, and have a dampening effect on the immune 

response. Th17 cells express the transcription factor RAR-related orphan receptor 

(ROR)�t (RORC in humans)13 and produce IL-17A, IL-17F, IL-21 and IL-22. IL-17 

seems particularly important in defense against Candida infections.14 The last years’ 

considerable research on Th17 cells have shown that not only Th1 cells but also Th17 

cells play an important role in several chronic inflammatory disorders.15 The relative 

contribution of the Th1 and Th17 subsets in various diseases is still controversial.16 

Tfh cells express the transcription factor B-cell lymphoma 6 (Bcl6),17, 18 produce IL-

21 and express the surface molecule chemokine (C-X-C motif) receptor 5 (CXCR5). 

Tfh cells are important in formation of germinal centers and regulate B-cell 

differentiation into plasma cells and memory B cells.19 The relationship of Tfh cells to 

other Th subset is an ongoing debate.19 Other subsets, such as the Th2220, 21 and Th9 

subsets22  characterized by the production of IL-22 and IL-9 respectively, have also 

been proposed. 

Importantly, recent findings suggest that T cells are more plastic than 

previously understood. While the concept of Th subsets remains useful, subsets do not 

appear to be end-stage phenotypes and the phenotype of Th cells is probably a 

dynamic process.23 
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Figure 1: Simplistic representation of the different CD4+ T cell subsets. The 

figure shows the cytokine environment that favors the differentiation of Th subsets, the 

transcription factors expressed, cytokines produced and some selected functions. 

 

Th17 cytokines 

Given our interest in cytokines produced by Th17 cells, I will discuss this in 

greater detail. As mentioned, Th17 cells produce the cytokines IL-17A, IL-17F, IL-21 

and IL-22. These so-called Th17 cytokines exert a variety of different effects and are 

not produced exclusively by Th17 cells.  

IL-17A and IL-17F have proinflammatory properties and act on a variety of 

cell types to induce the expression of other cytokines (tumor necrosis factor, IL-1�, 

IL-6, granulocyte macrophage colony-stimulating factor), chemokines (chemokine 

(C-X-C motif) ligand 1 (CXCL1), CXCL8, CXCL10) and metalloproteases. IL-17A 

and IL-17F are key cytokines for the recruitment, activation and migration of 

neutrophils.15 IL-17 is also produced by other cell types, such as �� T cells,24 

neutrophils,25 CD8+ T cells15, 26 and the newly described innate lymphoid cells.27 

IL-21 has been shown to induce differentiation of naïve T cells to Th17 cells, 

in an autocrine fashion in synergy with TGF-�.28-30 IL-21 is also produced by Tfh 

cells and in lower amounts by Th1 cells (in humans).31 The cytokine also has multiple 



 

 10

other functions, and stimulates CD8+ T cells, natural killer (NK) cells32 and exerts 

important effects on B cells and plasma cells.33  

IL-22 has both pro- and anti-inflammatory properties, possibly dependent on 

the inflammatory environment.34  

IL-23 is important for maintenance of Th17 cells,35 but also has important 

effects on non-T cells.36  

 

The immune response in the gut 

The induction of the adaptive immune response in the gut takes place in 

organized gut associated lymphoid tissue (consisting of Peyer’s patches and isolated 

lymphoid follicles) or draining mesenteric lymph nodes. The effector sites of the gut 

are localized in the epithelium and lamina propria, where intrusion of pathogens 

mainly takes place. The intestinal mucosa is continuously exposed to a large amount 

of microorganisms and food antigens, not least because of the very large surface area 

of the gut. Thus, not very surprisingly, a large number of immune cells are found in 

the gut. In healthy individuals, these immune cells maintain a balance between 

tolerance to harmless agents (oral tolerance) and inflammation towards pathogenic 

agents. Clonal anergy, deletion and the generation of antigen-specific regulatory T 

cells are involved in the process of oral tolerance.37 The maintenance of tolerance 

possibly relates to a tolerogenic microenvironment. In the steady state, epithelial cells 

seem to condition dendritic cells into a non-inflammatory state.38, 39 Oral tolerance to 

the food antigen gluten is broken in celiac disease (CD), a disease that will be 

discussed in more detail later. 

 

MHC 

Function 

The MHC complex is called human leukocyte antigen (HLA) complex in 

humans. The HLA complex is a gene-dense region localized to the short arm of 

chromosome 6. The classical HLA class I and class II genes encode surface molecules 

essential for antigen presentation to T cells. HLA class I molecules are expressed on 

all nucleated cells and usually present intracellular peptides to CD8+ T cells. HLA 

class II molecules are constitutively expressed on professional APC, like B cells, 
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dendritic cells and macrophages and present mainly endocytosed antigen to CD4+ T 

cells. Cross-presentation, which is presentation of endocytosed antigen on HLA class 

I molecules, can however also occur.40 Loading of peptides onto HLA class II is 

facilitated by the chaperone molecule HLA-DM. 

 

MHC class II structure  

As CD is associated with certain MHC class II molecules, we will focus on 

MHC class II. MHC class II molecules are heterodimers of � and � glycoprotein 

chains. There are three pairs of HLA class II genes in humans, namely HLA-DR, -DQ 

and -DP. Both the �-chains and the �-chains of DQ and DP molecules are 

polymorphic. Thus for these molecules, �� heterodimers can be encoded both in cis 

(on the same chromosome) and trans (on two different chromosomes), but pairing 

restrictions exist.41 Since the first crystal structure of an MHC class II molecule was 

determined in 1993,42 the structure of several MHC class II molecules bound to 

different peptides has been determined. The open ends of MHC class II molecules 

allow peptides to extend out of the binding groove. The peptide-binding groove of the 

MHC class II molecule is formed by a floor provided by a �-sheet and walls formed 

by two � helices. Two main principles have traditionally been described for binding 

of peptides to MHC class II.43 First, hydrogen bonds are formed from conserved 

MHC residues to the peptide backbone. Second, polymorphic residues from MHC 

class II interact with peptide side chains at position P1, P4, P6 and P9 (and sometimes 

P7). The side chains of these so-called anchor residues interact with distinctive 

pockets in the binding groove.43 A third, less commonly mentioned principle, is the 

formation of hydrogen-bonds between polymorphic residues of MHC and the peptide 

backbone.44 Upon binding to HLA class II, the peptide assumes a conformation 

similar to a polyproline type II helix,45 so that some peptide side chains are directed 

towards MHC (P1, P4, P6, P7 and P9) and others towards the TCR. 

 

The HLA nomenclature 

The beginning of the HLA allele name specifies the locus within the gene 

region (e.g, DQA1). The allele name is followed by an asterisk. Several numbers, 

each separated by a colon, follow (e.g, DQA1*05:01:01:01). The first number 

following the asterisk refers to the allele group and is often similar to the serotype. 



 

 12

The second number refers to specific alleles encoding for proteins with different 

sequences. The third number refers to alleles that differ by synonymous nucleotide 

substitutions. Alleles differing in the fourth number have sequence polymorphisms in 

introns or 5’ and 3’ untranslated regions.46 

HLA molecules can be named according to the HLA alleles by which they are 

encoded. This is generally determined by genomic typing. HLA molecules can also be 

named by their � chain, followed by their � chain, separated by a dot (e.g, DQ2.5). 

The strong linkage disequilibrium (see below) between HLA-DR and -DQ often 

enables the HLA-DR and -DQ genotypes to be determined with a fairly high certainty 

by serologic HLA-DR and -DQ typing.  

The nomenclature can be exemplified by HLA-DQ2 (DQ2) (Figure 2). The 

antibody which initially defined the DQ2 molecules recognizes the � chain encoded 

by DQB1*02 alleles. Three DQ2 heterodimers can actually be distinguished: the cis-

encoded DQ2.5, the trans-encoded DQ2.5 and the cis-encoded DQ2.2. DQ2.5 is 

encoded in cis on the DR3-DQ2 haplotype, or in trans on the DR7-DQ2/DR5-DQ7 

haplotypes. DQ2.2 is encoded in cis on the DR7-DQ2 haplotype.  

 

DQ2.5 (cis)

02 05

DR7-DQ2 

Haplotypes

05:0102:01 03:01
DQA1*DQB1* DRB1*

DQ2.5 (trans)

02 05

DR3-DQ2

02:0102:02 07:01
DQA1*DQB1* DRB1*

DR7-DQ2

05:0503:01 11/12
DQA1*DQB1* DRB1*

DR5-DQ7

02 02

DQ2.2

02:0102:02 07:01
DQA1*DQB1* DRB1*

 
Figure 2: HLA nomenclature, exemplified with HLA-DQ2 (Adapted from Abadie 

et al.47). 

 

MHC and disease association 

Two aspects of the MHC region are worth mentioning. First, the region is 

highly polymorphic.48 Second, many alleles show very strong linkage disequilibrium 
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(non-random association of alleles). This is a major problem when trying to identify 

disease-predisposing MHC genes. Many autoimmune or chronic inflammatory 

diseases, such as diabetes, rheumatoid arthritis, ankylosing spondylitis and 

narcolepsy, show an association with certain HLA types.49 The differential 

predisposition to diseases of various HLA molecules is believed to be mainly related 

to their different peptide-binding properties. This may affect the TCR repertoire 

generated during thymic selection or the selection of peptides presented to T cells in 

the periphery. One disease that demonstrates a strong MHC association is CD.  

 

Celiac disease  

Clinical features 

CD is a chronic inflammatory disease of the small intestine triggered by gluten 

proteins from wheat, barley and rye. Malabsorption can develop and may lead to 

weight loss, vitamin deficiencies, osteoporosis and anemia.50 However, as shown by 

screening studies, many patients have mild or no symptoms and remain 

undiagnosed.51 The prevalence of CD is about 1% in general western populations52 

and is possibly increasing.53 CD can present at all ages. The initial detection of CD is 

usually based on the presence of antibodies specific for the enzyme transglutaminase 

2 (TG2). A definite diagnosis has up to now been based on histological findings in 

small intestinal biopsies.54 However, according to recently launched criteria, CD can 

be diagnosed in children without biopsy assessment.55 The only current available 

treatment of CD is a life-long gluten-free diet, which is efficient in the vast majority 

of patients. A rare complication is refractory CD (RCD), with persistent 

malabsorptive symptoms and villous atrophy despite strict adherence to a gluten-free 

diet. RCD can be categorized into RCD1 and RCD2.56 The latter, characterized by 

abnormal clonal intraepithelial lymphocytes gives a high risk of enteropathy-

associated T-cell lymphoma (EATL). CD patients seem to have an increased risk of 

cancer (in particular lymphoma) and premature death, that may possibly be reduced 

by adhering to a strict gluten-free diet.57 

 

Histological changes 

 The histological changes of the celiac lesion were initially graded by Marsh,58 

a grading later modified by Oberhuber et al59 to grades ranging from Marsh 0 to 3. 
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According to Oberhuber, Marsh 0 refers to a normal histology. Marsh 1 refers to an 

increased number of intraepithelial lymphocytes. Marsh 2 refers to crypt hyperplasia 

and an increased number of intraepithelial lymphocytes. Marsh 3a, 3b and 3c refers to 

villous atrophy of some degree. Although, not very strong, there seems to be a certain 

correlation between clinical features and histological changes.60, 61 

 

Genetics  

The high concordance rate between monozygotic twins (70-75%)62 suggests a 

strong genetic factor in CD that can be estimated to account for 50-90% of the 

variance in liability to the disease.63  

The genetic loci identified, of which HLA is the most important, can account 

for over 50% of the genetic variance in CD.64 The individual non-HLA genes 

identified so far, together probably account for only up to 14% of the genetic variance 

in CD (assuming a heritability of 50%).64 Some of the missing heritability is believed 

to be caused by highly penetrant rare variants, common variants with small effects or 

possibly epistatic interactions between risk genes.47 Interestingly, many of the 

predisposing genes identified in chronic inflammatory diseases (including CD) are 

shared, suggesting common biological mechanisms.65 

The great majority of CD patients express DQ2.5, which can be encoded in cis 

or in trans (see HLA nomenclature above).66 The mature cis- and trans-encoded 

DQ2.5 proteins differ only in one residue localized membrane proximally and thus 

unlikely to affect peptide-binding. The risks for CD of cis- and trans-encoded DQ2.5 

are indeed similar.47 Most of the patients not expressing DQ2.5 express DQ8 or carry 

either the �-chain or the �-chain variants of DQ2.5 (Table 1).67 The patients 

expressing only the � chain of DQ2.5 express DQ2.2, a molecule highly homologous 

to DQ2.5. The relative risk of developing CD for patients expressing DQ2.2 without 

any other predisposing HLA genes is much lower than that of CD patients expressing 

DQ2.5. A possible reason for this was recently suggested44 (see discussion). This was 

further examined in Paper II, in which we studied the gluten T-cell response in CD 

patients with DQ2.2 not expressing other CD predisposing HLA molecules. 

Another observation is that, in contrast to many HLA-DQ molecules, the CD 

predisposing HLA molecules DQ2 and DQ8 both lack aspartic acid (alanine instead) 

in position 57 of the � chain. HLA-DQ9.3 (hereafter DQ9 unless specified differently) 

differs from DQ8 only in this particular position and is not considered associated with 
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CD.68 In paper III, however, we identified gluten-reactive T cells restricted by DQ9 in 

a CD patient, thus suggesting that DQ9 may be involved in the T-cell response to 

gluten in CD. 

 

Table 1: Description and naming of HLA-DQ molecules that are associated with 

celiac disease and which are used as antigen presenting elements for CD4+ T cells 

of celiac disease patients (From Sollid et al.69). 

 
 Encoded by  Expression in Part of common 
HLA-DQ molecule DQA1* DQB1* Risk  cis or trans  cis haplotype 
      
HLA-DQ2.5 05 02 High cis, trans DR3DQ2 
HLA-DQ2.2 02 02 Low cis, (trans) DR7DQ2 
HLA-DQ2.3 03 02 Likely low † trans, (cis) §  
HLA-DQ7.5 05 03:01 Very low cis (trans) DR5DQ7 
HLA-DQ8 03 03:02 Low cis DR4DQ8 
HLA-DQ8.5 05 03:02 Likely low † trans, (cis) §  
 
† Risk for celiac disease has not been established in population studies. 
§ Molecule can also be encoded in cis on some rare haplotypes. 

  

Transglutaminase 2 

With the discovery in 1997 that the, until then, elusive endomysial auto-

antigen was TG2,70 a role of this enzyme in the pathogenesis of CD was rapidly 

uncovered. It was shown that TG2 increases the immunogenicity of gluten peptides, 

by catalyzing the conversion of glutamine to glutamic acid, in a process called 

deamidation.71, 72 The introduction of negative charges in certain positions increases 

the binding affinity of gluten peptides to the disease associated DQ2 and DQ8 

molecules, thereby increasing T-cell activation.71, 73 TG2 also has the ability to cross-

link proteins, in a process called transamidation. The specificity of TG2 is affected by 

C-terminal proline (P) residues and TG2 typically recognizes glutamine (Q) residues 

in the Q-X-P sequence (X is any amino acid).74, 75 

 

The inflammatory reaction  

The inflammatory reaction of CD involves cells of both the innate and 

adaptive immune system. The adaptive immune response is perhaps best understood. 

Gluten-reactive CD4+ T cells are likely to be essential in the pathogenesis of CD as 

such cells are isolated only from the small intestine of CD patients but not healthy 
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controls76, and are restricted by the disease predisposing DQ2 and DQ8 molecules.77, 

78 The cytokine production by gluten-reactive CD4+ T cells is dominated by IFN-�, 

although several other cytokines are produced, including IL-21 (Paper I), IL-479 and 

IL-10.80  

CD8+ T cells also seem to be involved in the pathogenesis of CD. Two studies 

have suggested that gluten-specific CD8+ T cells can be found in the small intestine of 

CD patients.81, 82 Nevertheless it is likely that the main involvement of CD8+ T cells is 

mediated through their expression of innate receptors. Increased IL-15 in CD induces 

increased expression of NK cell receptors on these CD8+ T cells, which can then 

recognize non-classical MHC molecules on the surface of epithelial cells and induce 

apoptosis of epithelial cells.83-85 

The presence of autoantibodies against the enzyme TG2 is an autoimmune 

feature of CD. A high frequency of TG2-specific plasma cells can be visualized 

directly in the celiac lesion.86 The dependency of a gluten-containing diet for 

production of TG2-specific antibodies, and the absence of TG2-specific T cells in the 

celiac lesion have led to the hapten-carrier model.87 The model proposes that TG2 

transamidates gluten peptides to itself (or to another surface molecule on the cell). 

This would facilitate uptake of gluten peptide by TG2-specific B cells and enable T-

cell help by gluten-specific T cells. Whether TG2-specific B cells contribute to 

disease development is still unknown. Gliadin-specific antibodies are also commonly 

found in CD and some of the epitopes recognized have been identified.88 

The possible innate effects of gluten are less well understood. While several 

gluten peptides with alleged innate effects have been reported,89 one particular �-

gliadin peptide, the p31-43 peptide has been most studied. Among several effects, this 

peptide interestingly induces IL-15.84, 90, 91 

 

HLA tetramer staining of antigen-specific T cells 

The development of MHC-peptide multimers has greatly facilitated the 

detection of antigen-specific T cells.92 MHC-peptide multimers generally consist of 

up to four MHC-peptide complexes, multimerized on streptavidin (conjugated to a 

fluorochrome for identification) to overcome the low affinity of the TCR-

peptide/MHC interaction. Although the valency of these MHC multimers is variable 

(most will usually be trimers or tetramers),93 they are commonly referred to as MHC 
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tetramers. We will continue using the term “HLA tetramer”. Gluten-reactive T cells 

can be visualized directly in peripheral blood after a short-term gluten challenge of 

treated DQ2+ CD patients using HLA-DQ2 gluten-peptide tetramers.94 Such T cells 

can also be visualized in peripheral blood of untreated and treated patients, using a 

bead-based enrichment protocol (Christophersen et al., unpublished observations) and 

directly in biopsy material of CD patients (unpublished data). 

 

The cereal antigen gluten 

Gluten is the mass remaining when washing dough to remove starch and other 

water soluble constituents. In practice the term refers only to the remaining proteins 

(accounting for around 80% of this mass).95 Historically, gluten referred only to wheat 

proteins. The term is now being used to include also proline and glutamine-rich 

proteins from barley, rye and oat. Wheat gluten can be divided into the alcohol 

soluble gliadins and the alcohol insoluble glutenins. Glutenins can further be 

subdivided into low and high-molecular weight glutenins. Gliadins have traditionally 

been subdivided into �-, �-, �-, and �-gliadins, according to their electrophoretic 

mobility. Sequence similarities have however later revealed that �- and �- gliadins 

belong to one group.95 As common wheat (Triticum aestivum) is hexaploid and 

because of extensive gene duplication, a high number of highly homologous proteins 

are found in common wheat. The gluten proteins of barley, rye and oat are called 

hordeins, secalins and avenins respectively.96 The high content of proline makes 

gluten proteins highly resistant to digestion by enzymes in the digestive tract97, 98 and 

influences the selective targeting of glutamines by the enzyme TG2. 

 

Gluten T-cell epitopes  

CD patients react to sequences in wheat (mostly sequences in gliadin, but also 

in glutenin), barley and rye.99 These sequences of barley and rye are often 

homologous to those found in wheat.100, 101 Although oats are generally considered 

safe for CD patients,102 some patients are apparently intolerant,103 and oat-specific T 

cells have been isolated from small intestinal biopsies of CD patients.104 

The nomenclature of gluten epitopes recognized by CD patients has been 

inconsistent and different groups have used different names for the same epitopes. A 

process of standardizing the nomenclature of gluten T-cell epitopes is ongoing69 and I 
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will use this nomenclature (Table 2). Since the initial discovery of the first gluten 

epitope in 1998105 and later the DQ2.5-glia-�1a and DQ2.5-glia-�2 epitopes,73 many 

gluten epitopes have been described.106-109 The DQ2.5-glia-�1, DQ2.5-glia-�2, 

DQ2.5-glia-�1, DQ2.5-glia-�2, DQ2.5-hor-1 and DQ2.5-sec-1 are dominant DQ2.5-

restricted gluten epitopes.101, 107 Three DQ8-restricted gluten epitopes have also been 

described, of which the dominant epitope is the DQ8-glia-�1.110-112 We recently also 

identified the first DQ2.2-restricted gluten epitope, which appears to be a dominant 

DQ2.2-restricted gluten epitope (Paper II).  
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Table 2: Overview of DQ2.5, DQ2.2 and DQ8-restricted gluten T-cell epitopes 

described to date (From Sollid et al.).  

 

 
 

†In the names of the epitopes, the following short terms denote the proteins of origin: glia-�: 

�-gliadin; glia-�: �-gliadin; glia-�: �-gliadin; glut-L: low molecular weight glutenin; glut-

H: high molecular weight glutenin; hor: hordein; sec: secalin; ave: avenin. Glutamate 

residues (E) formed by TG2-mediated deamidation which are important for recognition by T 

cells are shown in bold. Additional glutamine residues also targeted by TG2 are underlined. 
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What determines whether a gluten peptide can initiate a T-cell response? 

Several factors determine whether a gluten peptide can initiate a T-cell 

response (Figure 3). Important factors are (1) proteolytic stability, (2) sustained 

binding to MHC and (3) targeting by TG2. (1) Proteolytic stability of gluten peptides 

is maintained by a high content of proline.97, 98 The amount of protein containing the 

antigenic peptide prior to digestion is also likely to be important. (2) Sustained 

binding of peptides to MHC is essential to enable priming of naïve T cells in 

peripheral lymph nodes.44, 113 As previously mentioned, two principles are particularly 

important for peptide binding to MHC. The first principle is hydrogen bond formation 

between conserved MHC residues and the main chain of the peptide. Prolines, which 

are particularly common in gluten peptides, would eliminate the hydrogen bonds from 

MHC to the peptide main chains (in P2, P4, P6 and P9). Hence, in DQ2, prolines are 

generally not present in P2, P4, P7 and P9 (the absence of proline at P7 instead of P6 

possibly relates to pocket preferences).109, 114 A similar pattern is seen for DQ8, with 

the difference that proline is penalizing also in P1.111 The second principle is side 

chain interaction with the HLA pockets. DQ2 has a preference for a negative charge 

in P4, P6 and P7.115, 116 DQ8 has a preference for a negative charge in P1 and P9.117, 

118 (3) These negative charges are introduced by the conversion of glutamine residues 

to glutamic acid by TG2. Peptide fragments harboring T-cell epitopes are generally 

good targets of TG2.119 

 
Resistance to intestinal              Selective force by TG2 Sufficient affinity to DQ2 or DQ8 
proteolysis (proline-rich regions)    -Pocket interactions 
       (negative charges in certain positions) 
        -Main chain interactions 
       (abscence of proline in certain positions) 
 

Figure 3: Selection of gluten epitopes (modified from Sollid et al.120). 
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Aim of thesis 
 

Gluten-reactive CD4+ T cells are key players in CD. We aimed to study the 

phenotype of these cells and to investigate how HLA shapes the specificity of the T-

cell response to gluten in CD. 

At the time of initiation of this project, Th17 cells were a newly described T-

cell subset. Th17 cells were shown to be associated with chronic inflammation in 

several mice models. We therefore aimed to investigate whether some gluten-reactive 

T cells had the phenotype of Th17 cells. 

DQ2.2 is highly homologous to DQ2.5, but gives a much lower risk for CD. 

The CD4+ T cell response to gluten in DQ2.5 patients is well characterized, while the 

one in DQ2.2 patients had not been previously investigated. We wanted to study the 

gluten T-cell response in patients expressing DQ2.2 but no other CD predisposing 

HLA molecules.  

Finally, we serendipitously observed that CD4+ T cells from one CD patient 

recognized gluten peptides presented on DQ9. DQ9 has previously not been 

considered a risk factor for CD. Interestingly DQ9 differs from the CD-associated 

DQ8 molecule in one particularly MHC residue (�57). This residue is considered 

essential for the association of DQ8 with CD. The aim was to understand more about 

the role of DQ9 and thereby the �57 polymorphism for predisposition to CD. 
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Methodological considerations 
 

Patients 

For these studies, we recruited adult patients with a CD diagnosis according to 

the American Gastroenterological Association Institute’s recommendations.54 The 

patients underwent endoscopy and duodenal biopsies were sampled. The studies were 

approved by the regional ethics committee. Fresh small intestinal biopsies enable the 

culture of living cells obtained from the site of inflammation. Some patients 

underwent a 3 days oral gluten challenge before we collected blood samples on day 

6.121 This method enables direct visualization of gluten-specific T cells in the 

peripheral blood of CD patients.94 While the gluten challenge is generally well 

tolerated, some patients do experience clinical symptoms. 

 

T-cell culture  

Most T-cell lines (TCLs) were generated by incubating duodenal biopsies with 

gluten overnight. The biopsies were chopped into pieces the next day and the TCLs 

subsequently expanded in a polyclonal manner.122 T-cell clones (TCCs) were 

generated by limiting dilution. Importantly, although the antigen specificity is 

preserved, the phenotype of CD4+ T cells has been shown to be plastic after long term 

in vitro culture.23 In particular, Th17 cells can switch to Th1 cells.123, 124 We 

controlled for this by assessing the cytokine production of CD4+ T cells with 

unknown specificity, to ascertain that the culture conditions enabled maintenance of 

the Th17 phenotype (Paper I). 

 

T-cell proliferation assays 

To examine the reactivity of CD4+ T cells we used a 3H- thymidine 

incorporation assay. In this assay, antigen-specific T cells are identified by 

proliferation after presentation of antigen by APC. Differential requirements for 

proliferation of certain CD4+ T cell subsets compared with others (such as regulatory 

T cells)125 could introduce a potential bias. 

To investigate the T-cell response to gluten in CD patients (Paper II and III), 

we used Epstein-Barr virus (EBV) transformed B-cell lines as APC. As establishment 
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of autologous EBV B-cell lines takes time, we instead often used HLA homozygous 

EBV-transformed B-cell lines obtained through HLA workshops. Cell lines matched 

for the patient’s most CD relevant HLA haplotype were used as APC. Thus, 

presentation of gluten peptides by less CD relevant HLA molecules was not 

systematically assessed. In some cases, this could have lead to interesting findings 

gone unreported. In Paper II, for instance, two patients also expressed the DQ2.3 

transdimer (DQA1*03/DQB1*02) which has been shown to be able to present gluten 

peptides.111 This was not investigated further in this paper. 

As complex cereal antigen in paper II, we used a chymotrypsin digest of wheat 

gluten. We did not examine the T-cell responses to barley, rye or oat, although T-cell 

epitopes would possibly be expected to be found in also these cereals. Such sequences 

are often homologous between cereals.100, 101 Noteworthy however, we found no 

homologous sequences to the dominant DQ2.2-restricted epitope (DQ2.2-glut-L1) in 

barley or rye (paper II). 

Traditional T-cell proliferation assays do not take into account the affinity of 

peptide to MHC (see discussion). Consequently, the peptide sequence inducing the 

initial T-cell activation in vivo could be a different (probably homologous) sequence 

from the one inducing activation in vitro. This is in particular true for the antigen 

gluten, as many highly homologous sequences are present.  

  

ELISA/Bioplex analysis 

We investigated the cytokine production of gluten-reactive T cells after 

stimulation. Of notice, various modes of stimulation may lead to different cytokine 

production profiles. For instance, stimulation with anti-CD3/anti-CD28 may lead to a 

much higher IL-10 production than stimulation with phorbol-12-myristate-13-

acetate/ionomycin (Ingrid Olsen, unpublished observations). We therefore stimulated 

the T cells in various ways before examining cytokine production by enzyme-linked 

immunosorbent assay (ELISA) or Bioplex analysis. Defining a high and low cytokine 

producer is not straightforward and including positive and negative controls in the 

assays is important. 
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Peptide-binding assays 

The relative peptide-binding affinity was assessed in a competitive binding 

assay by measuring IC50 values (half maximal inhibitory concentration). The IC50 

value measures the amount needed of the peptide of interest to inhibit 50% of the 

binding of a biotinylated indicator peptide. Briefly, DQ molecules were captured 

(using anti-DQ antibodies) from lysates of homozygous EBV-transformed B-cell lines 

expressing the DQ molecule of interest. The indicator peptide was then incubated 

together with the peptide of interest.126 Of notice, this assay is suited to compare the 

relative binding affinity of peptides to a given HLA molecule, but not to different 

HLA molecules.  

Peptide binding to MHC was also assessed using two different peptide-MHC 

off-rate assays. These methods can be used to compare binding of peptides to 

different MHC molecules. In the first method, recombinant MHC molecules are 

loaded with a fluorescently labeled peptide. Dissociation of this peptide is then 

measured.44 In the second method, APC are loaded with peptide before washing away 

free peptide. Proliferation of antigen-specific T cells at different time points after 

wash-off is used to estimate off-rate.44 This second method is less accurate and a TCC 

specific to the actual peptide-MHC complex is needed. On the other hand, generation 

of recombinant MHC molecules is not required. 

 

Flow-cytometry 

Flow-cytometry was used to identify and characterize CD4+ gluten-reactive T 

cells. The advantage of flow-cytometry is its ability to detect and characterize rare cell 

populations accurately. The method is sensitive to improper gating and artifacts. The 

use of appropriate controls is therefore essential.  

We used DQ2-gliadin tetramers (see Introduction) to visualize gluten-specific 

T cells in intestinal TCLs or in peripheral blood. The soluble DQ2 molecules were 

loaded with a peptide harboring the DQ2-glia-�1a, the DQ2-glia-�2 epitope or with 

an endogenous peptide (serving as negative control). T cells binding these tetramers 

can be identified by flow-cytometry and further characterized. The identification of 

gluten-specific T cells using this method is highly specific, but enables the 

identification of T cells specific to only defined gluten T-cell epitopes. Further, 
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despite being peptide-MHC specific, some TCCs might not stain, likely because of a 

high off-rate of some TCRs to peptide-MHC.127  

The generation of recombinant DQ2 molecules currently requires the synthesis 

of new protein for each DQ2-peptide complex of interest. The reason for this is that 

the peptide must be covalently linked to the � chain of DQ2 for the stability of the 

molecule to be maintained. We are currently trying to develop a method that enables 

exchange of peptide on the surface of DQ2. The idea is to cleave off the covalently 

bound peptide, and then enzymatically attach a peptide of interest using the enzyme 

Sortase A (Bergseng et al, ongoing project).  

 

Identification of gluten T-cell epitopes 

Gluten is very complex and we do not have access to a panel of gluten 

peptides covering all known gluten proteins. Instead, to identify gluten epitopes, we 

used the strategy of reducing the complexity of a gliadin digest that stimulated the 

relevant TCCs. Fractionation of the gliadin digest was performed in two dimensions, 

namely first by size (gelfiltration chromatography) and then by hydrophobicity 

(reversed-phase high performance liquid chromatography). T-cell stimulating 

fractions were tested by mass-spectrometry. Peptide sequences identified by mass-

spectrometry that were common to all T-cell stimulating fractions were synthesized 

and tested for their T-cell stimulatory capacity. The disadvantage of the method is that 

sufficient amounts of a peptide must be present after fractionation to enable detection 

by mass spectrometry. Many highly homologous sequences in gliadin proteins also 

make a sufficient separation of peptides difficult.  
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Summary of papers 
Paper I 

In this study we investigated whether gluten-reactive CD4+ T cells produce 

Th17 cytokines. We examined gluten-reactive T cells isolated from the small intestine 

or visualized in peripheral blood of CD patients. We found that gluten-reactive T cells 

do not seem to produce the typical Th17 cytokines IL-17 or IL-22. Interestingly 

however, we found that the gluten-reactive T cells produce the pro-inflammatory 

cytokine IL-21.  
 

Paper II 

A high off-rate of the common DQ2.5-restricted gluten epitopes was found on 

DQ2.2.44  Consequently, we hypothesized that T cells from CD patients with DQ2.2 

without other HLA risk genes would not recognize these common DQ2.5-restricted 

epitopes, but epitopes showing sustained binding to DQ2.2. We investigated the CD4+ 

T-cell response to gluten in such patients. We identified a dominant epitope that was 

not commonly recognized by DQ2.5 CD patients without DQ2.2. The epitope showed 

sustained binding to DQ2.2. We investigated the basis for stable binding of the 

dominant DQ2.2-restricted epitope to this molecule. Our findings underscore the 

importance of kinetic stability of peptide-MHC in determining T-cell responses in 

CD. 
 

Paper III 

DQ9 differs from DQ8 only in position �57. This position has been suggested 

to be critical for the association of DQ8 to CD and type 1 diabetes. DQ9 has been 

claimed not to be associated with CD. In this paper we investigated the gluten 

response in a DR7-DQ2/DR9-DQ9 heterozygous CD patient. Unexpectedly, we found 

many gluten-reactive T cells restricted by DQ9. We characterized the DQ9-restricted 

gluten response in this patient in detail and identified a dominant DQ9-restricted 

epitope. We further investigated the binding of gluten peptides to DQ8 and DQ9. The 

findings suggest that DQ9 can be involved in the pathogenesis of CD. 
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Discussion 
Functional difference between DQ2.2 and DQ2.5 

DQ2.2 and DQ2.5 are homologous molecules and differ only in ten amino 

acids in their membrane distal domains. The binding motifs of DQ2.2 and DQ2.5 are 

also fairly similar.128 The question was how this small difference could translate into 

the large risk difference observed between DQ2.2 and DQ2.5 for CD. In particular it 

seemed paradoxical that despite the large risk difference, DQ2.2 expressing APC 

could present peptide in vitro to gluten-reactive T cells isolated from CD patients 

expressing DQ2.5.109, 126 Fallang and Bergseng44 recently proposed that the difference 

in risk relates to a polymorphism at position 22 of the � chain. Tyrosine in �22 of 

DQ2.5 is necessary to maintain a hydrogen-bonding network to the main chain of the 

peptide. In DQ2.2, this tyrosine is changed to a phenylalanine, which is unable to 

form this hydrogen bonding network. The result is that common DQ2.5-restricted 

gluten epitopes show less sustained binding to DQ2.2 than to DQ2.5. This difference 

would explain the risk difference between DQ2.2 and DQ2.5.44  

As sustained binding of peptides to MHC was hypothesized to be critical, we 

predicted that T cells from CD patients with DQ2.2 would not recognize the common 

epitopes recognized by T cells of DQ2.5 patients. Instead epitopes which bound well 

to DQ2.2 would be recognized. To investigate this, we studied the gluten T-cell 

response in CD patients carrying DQ2.2 but no other HLA risk genes (Paper II).
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T-cell response in DQ2.2 patients 
DQ2.2 gives a much lower risk than DQ2.5 for CD, but up to 5% of CD 

patients express DQ2.2 without other predisposing HLA genes.67 Interestingly, no 

difference in disease severity was observed between DQ2.2 and DQ2.5 patients.60 We 

found that DQ2.2 patients without other predisposing HLA genes do have gluten-

reactive CD4+ T cells in their small intestine (Paper II). Most gluten-reactive T cells 

from such patients recognized an epitope, named DQ2.2-glut-L1. This epitope has 

previously been described in the literature as a DQ2.5-restricted gluten epitope (glut-

17). Noteworthy, we only found T-cell responses towards this epitope in DQ2.5 

patients who also expressed DQ2.2. TCCs reactive to this epitope have only been 

isolated from one CD patient expressing DQ2.5, but not DQ2.2,106 so this must be 

rare. Stronger binding of the DQ2.2-glut-L1 epitope to DQ2.2 than to DQ2.5 can most 

likely explain this observation. Further, in DQ2.2 patients that did not express DQ2.5, 

we found no T cells reactive to the common DQ2.5-restricted gluten epitopes. Thus, 

the stability of different peptides to DQ2.2 and DQ2.5 controls the generation of T-

cell responses in DQ2.2 and DQ2.5 patients. This supports the hypothesis we put 

forward. Sustained antigen binding to MHC seems critical in determining T-cell 

responses in CD and hence possibly in setting the threshold for disease initiation. 

 

Mechanism for sustained binding of DQ2.2-glut-L1 to DQ2.2 

We found that a serine in P3 of the dominant DQ2.2-restricted epitope is 

important for sustained binding to DQ2.2. We modeled the binding of the DQ2.2-

glut-L1 epitope to DQ2.2. The model suggests that the side chain of this peptide (in 

P3) can interact with DQ2.2. This interaction can possibly compensate for the loss of 

the hydrogen-bonding network from �22 to the main-chain of the peptide that is lost 

in DQ2.2. The absence of proline in P3 was proposed to be essential for efficient 

antigen presentation by DQ2.2,126 but this was contended in a later study.109 Our 

findings suggest that the preference of serine at P3, rather than the absence of proline 

is essential for strong binding of the DQ2.2-glut-L1 epitope to DQ2.2. A preference of 

a serine in P3 however was not seen for DQ2.5 and this possibly relates to space 

constraints imposed by the tyrosine in �22. 

 

Why does DQ2.2 give a lower risk than DQ2.5 for celiac disease? 
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The gluten epitope DQ2.2-glut-L1 shows sustained binding to DQ2.2 and 

binds better to DQ2.2 than to DQ2.5. Why is the risk of DQ2.2 for CD then so much 

lower than that of DQ2.5?  

One contributory factor could be the lower amounts of the DQ2.2-glut-L1 

epitope apparently present in digested gluten compared with the dominant DQ2.5-

restricted gluten epitopes (Paper II). This could be caused either by a lower amount of 

protein harboring this sequence or by a lower proteolytical stability of this peptide. 

The latter is supported by the presence of a chymotrypsin cleavage site within the 

sequence of the DQ2.2-glut-L1 epitope. 

Further, an anchor residue in P3 (serine, aspartate or threonine) seems 

important for sustained binding to DQ2.2, but not DQ2.5.128 Hence, fewer different 

peptides are likely to fulfill the stricter criteria necessary to become a good DQ2.2 

binder. In order to examine this, we searched in a tailored gluten database (containing 

all identified gluten proteins from wheat) with the predicted peptide-binding motif of 

DQ2.2 ([Either QFYWILMSP]-[No P]-[S or T]-[No P]-[Any]-[Either PEQD]-[No P]-

[Any]-[No P]; at least one P and one Q present). In fact, among the unique proteins 

containing this pattern, many (over 15%) contained sequences homologous to the 

DQ2.2-glut-L1 epitope. 

The use of soluble MHC molecules to enrich for high affinity peptide binders 

is a promising method to identify dominant T-cell epitopes in infectious and 

autoimmune diseases.129 Our group has started using recombinant soluble DQ 

molecules to enrich for high affinity peptide binders in a complex gluten digest 

treated with TG2. Astonishingly, almost half the peptides identified from the gluten 

digest after enrichment with soluble DQ2.2 contained the DQ2.2-glut-L1 epitope 

(Dørum et al., unpublished data).  

Possibly, initiation of CD is a matter of threshold. Somehow the “advantage” 

of a new anchor in P3 in DQ2.2 is lower than the “disadvantage” of losing a 

hydrogen-bonding network to the peptide main chain (Figure 4). 
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DQ2.2
No main chain interaction from �22 
Anchor residue in P3 
Fewer potential binders? 
Lower amount of antigen? 

Risk

DQ2.5
Main chain interaction from �22 
No anchor residue in P3
More potential binders? 
Higher amount of antigen? 

 

Figure 4: Increased risk of DQ2.5 compared with DQ2.2 for CD. The loss of the 

main chain interaction to the peptide leads to a greater risk reduction than the risk 

increase of a potential anchor residue in P3 (arrows up/down refer to 

increased/reduced risk). 

 

The concept of threshold of HLA 

The concept of a threshold effect of HLA in CD was already proposed in 

2003.126 The idea is supported by epidemiologic data showing that the risk for CD is 

increased in homozygous compared with heterozygous DQ2 patients.130 In additional 

support of this concept, is the higher frequency of low-risk HLA class II genes 

(including DQ2.2) in latent CD (high antibody titers, but no histological changes) 

compared with full-blown CD.131, 132 The association of DQ2 homozygosity with 

RCDII and EATL133 also suggests that the degree of inflammation is somehow 

correlated with disease severity.  

 

Kinetic stability of peptide-MHC 

Our findings suggest that kinetic stability of peptide-MHC complexes has 

important effects on the specificity of T-cell responses in CD. Kinetic stability affects 

both the hierarchy of peptides loaded onto MHC134 and the half-life of peptide-MHC 

on the cell surface. The latter impacts the number of peptide-MHC complexes that 

reach the lymph node on the surface of the APC. Interestingly, in a mouse model, 

peptide off-rate on MHC was a crucial factor in determining the CD8 T cells’ decision 

to stop and form long-lived contacts with dendritic cells.113 Another study showed 

that in vivo priming in the presence of competitive T-cell responses to unrelated 

peptides, lead to an aborted expansion of T cells reactive to peptide-MHC complexes 
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with poor kinetic stability.135 Two alternative scenarios could thus explain the 

differential T-cell response in DQ2.2 and DQ2.5 patients. In the first scenario, the 

patients generate an initial response towards peptides with a lower kinetic stability to 

MHC. This response is later on inhibited by the presence of peptides with higher 

kinetic stability. In the second scenario, no initial response is generated towards 

epitopes with a low affinity to MHC.  

Whether CD should be called an autoimmune disease or not is a matter of 

semantics. Autoantibodies are found, but the disease-driving CD4+ T cells recognize a 

foreign antigen. In contrast to CD, many autoimmune diseases seem to be driven by 

autoreactive T cells. Somehow, these autoreactive T cells escape negative selection. A 

low affinity of peptides to MHC has been suggested as a potential mechanism.136 In 

non-obese diabetic mice (model of type 1 diabetes), the 9-23 peptide of the insulin � 

chain may be an important autoantigen.137 This peptide shows a very low affinity to 

the relevant MHC molecule.138 Thus, while kinetic stability seems to be an important 

factor in determining the specificity of the T-cell response in CD, the transferability of 

these findings to autoimmunity is not obvious. 

 

DQ9 as a risk factor for celiac disease 

Both DQ2 and DQ8 lack aspartic acid in �57 (non-Asp �57) as both carry 

alanine in this position. This has been proposed to be particularly important for their 

association with CD. In contrast to DQ8, DQ9 has not been considered a risk factor 

for CD,68 although the genetic epidemiological evidence for this seems to be lacking. 

The presence of aspartic acid in �57 of DQ9 is the only difference between DQ8 and 

DQ9. Interestingly, we found that DQ9-restricted gluten-reactive T cells could be 

isolated from the small intestine of a CD patient expressing DQ9 and DQ2.2 (Paper 

III). This shows that DQ9 can be implicated in the T-cell response to CD. We 

identified a dominant DQ9-restricted gluten epitope, DQ8-glut-H1, also recognized 

by CD patient expressing DQ8, but uncommonly. 

The non-Asp �57 molecule DQ8 has a preference for a negative charge in P9, 

while DQ9 has no such preference.68 It has also been proposed that the importance of 

the DQ8 �57 polymorphism relates to the ability of this molecule to interact with a 

negatively charged TCR, upon binding a native gluten peptide139 (Figure 5). As 
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expected, our binding data of gluten peptides confirmed that DQ9 is unable to harness 

a negative charge in P9. Further, the DQ8-glut-H1 epitope bound better than two 

more dominant DQ8-restricted gluten epitopes to DQ9. This could possibly explain 

why a T-cell response is generated to this epitope and not to the two more dominant 

DQ8-restricted epitopes, which bound less well to DQ9. Although we only studied the 

T-cell response from one CD patient expressing DQ9, it is tempting to speculate that 

only the DQ8-glut-H1 epitope would bind sufficiently well to DQ9 to initiate a gluten 

response in CD patients expressing DQ9. 

Interestingly, in Western populations, type 1 diabetes shows an association 

with the non-Asp �57 DQ molecules encoded by the DR3-DQ2 and DR4-DQ8 

haplotypes.140, 141 However, this association is not seen in Japan, where the �57 Asp 

positive DQ9 on the DR9-DQ9 haplotype is more common and actually seems to be 

associated with type 1 diabetes.142 

We demonstrate that DQ9 may contribute to CD development, but does DQ9 

give a lower risk for CD than DQ8? Understanding this would help to uncover the 

importance of the DQ �57 polymorphism in CD. None of the patients in a study 

investigating a large number of CD patients expressed DR9-DQ9 without other 

predisposing HLA genes.67 However, this haplotype is rare in Western populations143 

and concluding based on epidemiologic studies is therefore difficult. The extreme 

rarity of CD in Japan,144 despite the fact that the DR9-DQ9 haplotype is found in up 

to 15% of individuals,142 may suggest a lower risk for DQ9 than DQ8. However, 

scarcity of CD in Japan could also be related to the fact that the main cereal in the 

Japanese diet is rice and not wheat, or to other genetic factors. On a more speculative 

basis, it seems plausible that, as with DQ2.2 and DQ2.5, DQ9 gives a lower risk than 

DQ8 for CD, as fewer gluten peptides potentially bind well to DQ9.  



 

 33

A �57

R �76
E 

A �57

R �76Q 

TCR with negative charge

P9P9
peptide

MHC
peptide

MHC

D �57

R �76
Q/E peptide
P9MHC

DQ9 (Asp �57): 
No preference for negative charge in P9

DQ8 (non- Asp �57) and native peptide:
Interaction with TCR with negative charge

DQ8 (non-Asp �57) and deamidated peptide:
Preference of negative charge in P9

?

-

+

- +
-

+

 

Figure 5: Impact of the DQ8 �57 polymorphism on binding of gluten peptides 

and interaction with TCR (schematic representation). R: arginine; D: aspartate; A: 

alanine; Q: glutamine; E: glutamic acid; Peptide in blue and MHC in red; Hydrogen 

bonds represented as dotted lines; Positive charges represented with a +, negative 

charges with a -.  
 

Importance of transdimers 

When investigating the gluten response in HLA heterozygous individuals, 

taking into account the formation of DQ heterodimers is important. As mentioned, the 

polymorphism of both DQA1 and DQB1 enables the formation of unique DQ 

molecules encoded by alleles positioned in trans. It has been reported that, in addition 

to the two cis-encoded DQ heterodimers, both trans-encoded DQ heterodimers 

formed in DQ2/DQ8 heterozygous CD patients can present gluten peptides and that 

their binding motifs are different from the two cis-encoded DQ molecules.111, 145, 146 In 

paper III, we investigated the T-cell response to gluten in the context of the trans-

encoded DQ9.2 molecule and the cis-encoded DQ9.3 molecule in a given CD patient. 

We found that both these MHC molecules can present peptide to DQ9-restricted 

gluten-reactive TCCs. DQ9.3 presented the identified gluten peptide most efficiently 

to the TCCs, and we believe this is likely to be the (most) disease relevant molecule. 

Interestingly, from this patient, expressing also DQ2.2 in cis and DQ2.3 in trans, we 

recently isolated TCCs that recognized an epitope which could be presented by both 

the DQ2.2 and the DQ2.3 transdimer (unpublished data). It is possible that other 

transdimers than those described until now could be involved in presenting gluten 
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peptides in CD, although this is probably very limited by pairing restrictions.41 

Interestingly, transdimer formation between DQ2 and DQ8 has been reported as a 

possible explanation for the increased risk observed in individuals with DR3-

DQ2/DR4-DQ8 for type 1 diabetes.147  

 

The pitfall of T-cell proliferation assays 

Traditional in vitro T-cell proliferation assays, in which APC, T-cells and 

antigen are mixed together at the start of the assay, do not take into account the off-

rate of gluten peptides to MHC molecules. APC from DQ2.2 expressing individuals 

are generally able to present peptide to gluten-reactive T cells from DQ2.5 expressing 

individuals in vitro, and vice a versa. This means that the affinity of these peptides to 

both DQ2.2 and DQ2.5 is sufficient to activate T cells in vitro. Further DQ2.2 and 

DQ2.5 are so homologous that the TCRs of these TCCs recognize peptide presented 

on both MHC molecules. Still, the longer off-rate of dominant DQ2.5-restricted 

gluten epitopes on DQ2.5 than on DQ2.2, and vice a versa, results in T-cell responses 

towards different epitopes in vivo in DQ2.2 and DQ2.5 patients. So, while the in vitro 

T-cell response in a standard T-cell proliferation assay is similar, the in vivo activation 

and expansion of T cells differs. This emphasizes the importance of categorizing an 

epitope only in the context of the HLA molecules expressed by the patient.  
 

Assessing cytokine production by gluten-reactive T cells (Paper I) 

The drawbacks of organ cultures 

Gluten-reactive T cells appear to be key players in the celiac lesion and 

determining their phenotype is important. Many of the studies investigating cytokine 

production of gluten-reactive T cells rely on an organ culture system. In such organ 

culture experiments, small intestinal biopsies from treated or untreated CD patients 

are cultured in the presence of medium (control) or gluten antigen and the production 

of cytokines from the biopsy is assessed (using for instance flow-cytometry, real-time 

polymerase chain reaction or western-blot).148-150A weakness of many of these studies 

relates to the large interbiopsy variation, which does not always seem to be taken 

sufficiently into account (Tollefsen et al., unpublished data). Further, the cytokine 

producing cells are not necessarily antigen specific T cells, as a bystander activation 

of antigen unspecific cells can potentially be observed. We have performed pilot 
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experiments in which we sorted proliferating and/or activated T cells four to seven 

days after stimulation of whole biopsies (or single-cell suspension) with a TG2-

treated digest of gluten. Activated and proliferating cells were mainly seen in CD 

patients after antigen stimulation. These cells were sorted by flow-cytometry and 

cultured. Still, only a small fraction of the T cells (less than 10%) were found to be 

antigen-specific upon retesting. Although organ cultures usually assess cytokine 

production after a shorter time span, our findings indicate that interpretation of the 

specificity of the T cells activated in an organ culture must be done with caution.  

 

Conflicting data on IL-17 production by gluten-reactive T cells 

Instead of using organ cultures, we studied gluten-reactive TCLs, generated 

from small intestinal biopsies, and visualized the gluten-reactive T cells with DQ2-

tetramers. We found that gluten-reactive T cells did not seem to produce IL-17 (or IL-

22). Nevertheless, IL-17 mRNA is increased in the celiac lesion150 and an increased 

frequency of CD4+ T cells producing IL-17 is found in the mucosa of untreated CD 

patients.149 The source of IL-17 could therefore be hypothesized to be CD4+ T cells 

with unknown specificity and/or other cells than CD4+ T cells.  

Our findings are apparently contradictory to the more recent findings of 

Fernandez et al., which found gliadin-specific T cells producing IL-17 in CD 

patients.151 There were however several key differences between our studies. First, we 

generated TCLs from treated CD patients, whereas they generated TCLs from 

untreated patients. Second, they added IL-23 to their culture medium, which favors in 

vitro expansion of Th17 cells, and cultured Th17 enriched cells separately, in the 

presence of gliadin. A small proportion of gliadin-specific Th17 cells in this sample 

may thus have been highly expanded, even though their initial frequency could have 

been very low. A weakness of our study is a possible bias in the selection of the TCLs 

used for testing cytokine production. We chose TCLs with a good proliferative 

response to gluten. Thus, we can not exclude that in these TCLs, gluten-reactive T 

cells have proliferated more than other T cells in vitro. A more extensive proliferation 

of the gluten-reactive T cells could affect the phenotype of these cells to a larger 

degree than that of other cells used as an internal control of the culture conditions of 

the TCL.  

We are currently validating direct tetramer staining of biopsy material and 

could possibly combine this with intracellular staining for cytokine production. This 
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should eliminate the potential problems associated with long term in vitro culturing. 

To further examine the phenotype of gluten-reactive T cells, we have also initiated a 

study to investigate the transcription factors of gluten-reactive T cells visualized in 

peripheral blood of CD patients after a short gluten-challenge. Preliminary data show 

a dominant Th1 phenotype with high TBX-21 expression (unpublished data). 

 

Production of IL-21 by gluten-reactive T cells 

We found that gluten-reactive T cells, visualized in intestinal TCLs using 

tetramer staining, produce IFN-� and IL-21. Interestingly, the IL-2/IL-21 locus is 

associated with CD152 and IL-21 seems to control the production of the pro-

inflammatory cytokines IFN-�148 and IL-17149 in the celiac lesion. The cytokine IL-21 

has also been shown to have an important role in B-cell differentiation in germinal 

centers and one could envisage that this cytokine contributes to the production of 

TG2-specific antibodies.153 

 

The pathogenic role of gluten-reactive T cells 

We have performed extensive studies of gluten-reactive T cells. How well 

established is their pathogenic role for CD initiation? Compelling evidence suggests 

that gluten-reactive CD4+ T cells are required for initiation of CD: Gluten-reactive T 

cells are only found in the small intestine of CD patients and not in the intestine of 

healthy controls,76 and, moreover, there is a strong MHC class II association with CD. 

One can speculate that these T cells also initiate the large intraepithelial infiltration of 

CD8+ T cells characteristic of CD. Indeed, in a mouse genital viral infection model, 

IFN-� produced by CD4+ T cells, induced secretion of cytokines exerting a 

chemotactic effect on CD8+ T cells.154 As previously discussed (see “inflammation in 

CD”), also the autoantibody response to TG2 appears to be controlled by gluten-

reactive T cells and such antibodies are only found in individuals with the CD 

predisposing HLA genes.155 Nevertheless, CD is not induced in DQ2 transgenic mice 

also expressing gliadin-specific TCRs.156, 157 Thus, in mice models, the appropriate 

MHC restriction (DQ2) and gluten-reactive T cells alone seem insufficient to trigger 

CD. Importantly however, little activation of naïve T cells in mesenteric lymph nodes 

was seen after feeding these mice with gluten antigen.156, 157 The failure of these mice 

to develop a CD-like enteropathy may relate to the absence of background genes that 
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substitute the human non-MHC CD susceptibility genes, as well as to differences in 

the gut physiology between man and mouse. Still, while gluten-reactive T cells in the 

celiac lesion seem necessary, it remains to be shown that activation of these cells is 

sufficient for initiation of CD. 

 

Peptide vaccination for therapy 

A gluten-free diet is the only established treatment in CD, but can be difficult 

to sustain, has high costs and may be a social burden.158 However, given the 

efficiency of a gluten-free diet in the treatment of CD, therapeutic alternatives should 

have little adverse effects. Based on our growing understanding of the pathogenesis of 

CD, several alternative approaches have been investigated, such as the digestion of 

gluten epitopes by exogenous enzymes, transglutaminase inhibitors, DQ2-blockers 

and different cytokine-blockers.159 A highly attractive option would be to target the 

antigen-specific T cells directly by restoring tolerance to gluten. In allergic diseases, 

subcutaneous injection therapy using a mixture of complex proteins can restore 

tolerance to the immunogenic antigens and is an established treatment modality. 

Gluten proteins are unfortunately poorly soluble in water and also contain peptides 

with possible innate effects. Therefore, peptide-based vaccination, using dominant 

gluten epitopes has been proposed instead of protein-based vaccination as a possible 

therapy in CD. A safety study of peptide vaccination using 3 dominant DQ2.5-

restricted epitopes in DQ2.5 expressing CD patients has already been undertaken 

(Nexvax2). Designing a vaccine containing only dominant T-cell epitopes could be 

sufficient. Indeed, tolerance induction after peptide vaccination is believed to occur 

through generation of regulatory T cells, and spreading of tolerance has been 

described using peptide vaccination.160, 161 Characterization of the epitopes recognized 

by gluten-reactive T cells of DQ2.2 expressing CD patients is important with regard 

to eventually designing a peptide vaccine to also this patient group. 

 

Future perspectives 

To evaluate the validity of our model of the DQ2.2-DQ2.2-glut-L1 complex, 

an attempt to solve the crystal structure of this complex will be made (Bergseng et al., 

ongoing project). One of the current limitations of T-cell studies of gluten-reactive T 
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cells in CD is the necessity to culture the T cells, or to expose the patient to a short-

term gluten challenge. To avoid this, we have developed a staining protocol to 

visualize gluten-reactive T cells directly in samples from small intestinal mucosa of 

untreated and treated CD patients expressing DQ2.5 using DQ2-tetramers 

(unpublished data). Whole transcriptome analysis of gluten-reactive T cells isolated 

directly from the small intestine could enable further characterization of these 

important cells. It would also be interesting to investigate whether any gluten-reactive 

T cells can be visualized in the small intestine of healthy individuals expressing 

DQ2.5, and if so, whether they have a regulatory phenotype. Preliminary data indicate 

that a small number of both memory and naïve gluten-reactive T cells can be 

visualized in peripheral blood of healthy individuals and CD patients (Christophersen 

et al., unpublished data). It will be interesting to find out whether these memory T 

cells of healthy individuals have a regulatory phenotype and whether they home to the 

small intestine.  
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Conclusion 
 

CD is an important model for understanding the pathogenesis of chronic 

inflammatory diseases. Gluten-reactive CD4+ T cells, producing pro-inflammatory 

cytokines such as IFN-� and IL-21, seem to be central in the pathogenesis. The 

threshold for disease initiation of CD is partly determined by the MHC genes of the 

individual. This relates to the importance of stable peptide binding to MHC in 

determining T-cell responses (as shown with DQ2.2 and DQ2.5; and more 

speculatively with DQ8 and DQ9). Why is it then so that the great majority of patients 

with the predisposing MHC genes do not develop CD? Other risk genes, many of 

which are immune-related explain some of this gap. The rest possibly relates to 

environmental factors or “bad luck”. Whether an active regulatory mechanism (such 

as antigen-specific regulatory T cells) is found in healthy individuals expressing the 

risk MHC genes, or whether the absence of a response to gluten is simply a matter of 

ignorance, remains unknown. Understanding more of the T-cell biology in CD could 

help us decipher what initiates the disease and possibly open new therapeutic avenues.  
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Erratum 
 
Paper I:  
 
Introduction, second paragraph, “TR” should be removed. 
 
‘TCL KT CDE3’ should in all instances in paper read ‘TCL KT CD3’ 
 
Figure 1: The order of the bars in the panel showing IL-21 production was 
inadvertently interchanged. Further, TCC 430.1.1.142 is �-I restricted, not �-II 
restricted. These errors do not affect the conclusion drawn from this figure. The 
correct figure is displayed below: 
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Figure 2: ‘pg/ml-1’ as indicated on the y-axis should read ‘pg/ml’.  
 
Table 1, row 1: ‘TCL 548.A.1.4’ should read ‘TCL 48.A.1.4’. 
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Figure 4 and Figure 5: In the legends of both figures ‘18-24h’ should read ‘5h’. 
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Evidence�that�HLA�DQ9�confers�risk�to�celiac�disease�by�presence�of�
DQ9�restricted�gluten�specific�T�cells�
�
Michael�Bodd1,�Stig�Tollefsen1,�Elin�Bergseng2,�Knut�E.A.�Lundin1,�Ludvig�M.Sollid1,2�
1Centre�for�Immune�Regulation�and�Department�of�Immunology,�Oslo�University�Hospital�Rikshospitalet,�0027�Oslo,�Norway�
2Centre�for�Immune�Regulation�and�Department�of�Immunology,�University�of�Oslo,�0027�Oslo,�Norway�

�
We�describe�the�gluten�T�cell�response�of�a�DR7DQ2/DR9DQ9�heterozygous�celiac�disease�patient�CD555.�
Interestingly,�this�patient�had�T�cells�recognizing�gluten�in�the�context�of�HLA�molecules�of�both�haplotypes.�For�the�
DR9DQ9�haplotype,�DQ9�was�identified�as�the�antigen�presenting�molecule.�As�DQ9�carries�aspartate�at�DQ��57�but�is�
otherwise�identical�to�DQ8�and�not�considered�associated�with�celiac�disease,�we�aimed�to�characterize�this�DQ9�
restricted�T�cell�response�in�detail.�By�fractionation�of�pepsin�trypsin�digested�gliadin�we�identified�an�epitope�
stimulatory�for�several�T�cell�clones.�This�epitope�was�identical�to�an�epitope�(DQ8�glut�1)�previously�identified�in�DQ8�
patients.�In�CD555,�this�was�the�dominant�DQ9�restricted�epitope,�while�no�T�cell�response�was�found�towards�two�
other�DQ8�restricted�epitopes.�These�findings�correlated�with�peptide�binding�data�demonstrating�that�this�epitope�
bound�better�to�DQ9�than�the�two�other�DQ8�restricted�epitopes.�Whereas�glutamine�to�glutamate�exchange�at�P9�
improved�binding�of�all�three�epitopes�to�DQ8,�no�such�effect�was�observed�for�DQ9.�The�differential�ability�of�DQ8�
and�DQ9�to�harness�a�negatively�charged�anchor�at�P9�may�result�in�fewer�potential�gluten�epitopes�in�DQ9�patients.�
Our�data�further�indicate�that�DQ9�is�a�susceptibility�factor�for�celiac�disease.��

�
1.�INTRODUCTION��
The�absence�of�aspartate�at�position��57�is�considered�a�par�
ticularly� important� functional� feature� of� the� type� 1� diabetes�
and� celiac� disease� (CD)� associated� HLA�DQ8� molecule� [1�3].�
HLA�DQ9� (DQA1*03/DQB1*03:03)� differs� from� HLA�DQ8�
(DQA1*03/DQB1*03:02)�only� in�position��57�where�DQ8�has�
alanine� and� DQ9� has� aspartate.� This� difference� leads� to� the�
loss�of�a�salt�bridge�between�arginine��76�and�aspartate��57�
of�DQ8�and�hence�to�a�preference�of�negatively�charged�pep�
tides� in�P9�of� the�peptide�binding�groove�of�DQ8,�but�not�of�
DQ9�[3�5].� In�support�of� the� importance�of�the��57�polymor�
phism� it�has�been� stated� that�DQ9� is�not�associated�with�CD�
[5].� It� has� recently� been� proposed� that� the� remarkable�
association� of� DQ8� to� CD� is� related� to� the� ability� to� recruit�
negatively� charged� TCR� and� that� this� is� linked� to� the� �57�
polymorphism� [2].� However� the� effect� of� this� polymorphism�
on�peptide�MHC�interaction�has�not�been�fully�investigated.�

Gluten�reactive�CD4+�T�cells�are�found� in�the� intes�
tinal� mucosa� of� CD� patients� but� not� of� healthy� controls� [6].�
Most� intestinal�gluten�reactive�T�cells� respond�to�gluten�pep�
tides�only�after�conversion�by�the�enzyme�transglutaminase�2�
(TG2)�of�certain�glutamine�residues�to�glutamic�acid�[7].�In�this�
paper,� we� found� that� DQ9�restricted� gluten�reactive� CD4+� T�
cells�could�be�isolated�from�the�small�intestine�of�a�CD�patient�
expressing�DQ9�and�DQ2.2.� �We�established�T�cell�clones�and�
identified�the�epitope�recognized.�We�further�investigated�the�
binding� of� gluten� peptides� to� DQ8� and� DQ9.� Our� findings�
suggest�that�DQ9�can�be�implicated�in�CD,�and�they�shed�light�
on� the� importance� of� the� HLA�DQ� �57� polymorphism� for�
disease�initiation.�
�
2.�SUBJECTS�AND�METHODS��
2.1.�Subject�

Intestinal� biopsies�were� obtained� on� two� separate� occasions�
from� an� adult� female� patient� (CD555).� She� carried� the� sero�
logical� HLA� type� DR7DR9/DQ2DQ3� and� genomic� DQ� type�
DQA1*02:01/03:02� and� DQB1*02/03:03.� Based� on� known�
linkage�disequilibria,�she�is�very�likely�to�carry�the�DR7DQ2�and�
DR9DQ9� haplotypes.� She� had� a� diagnosis� of� CD� from� 1999�
which�was�in�accordance�with�the�American�Gastroenterology�
Association� guidelines� [8]� with� a� positive� endomysium� anti�
body� test� and� histology� showing�Marsh� 3C.� Upon� accidental�
exposure� to� gluten� the� patient� has� experienced� abdominal�
pain�and�diarrhea.�As�a�child�she�suffered�from�abdominal�pain�
and�failure�to�thrive.�Biopsies�were�taken�both�in�2004�as�part�
of�routine�follow�up�and�in�2007�as�part�of�a�study�examining�
the� gluten� response� in� patients� with� DQ2.2� (Bodd� et� al.,�
Gastroenterology,�in�press).�She�was�on�a�gluten�free�diet�and�
was�well�treated�on�both�occasions.� In�2010,�the�patient�also�
accepted�to�undergo�an�oral�bread�challenge�(see�below).�The�
regional�committee�for�medical�research�ethics�had�approved�
the�relevant�protocols,�and�the�patient�gave�written�consents�
before�participating.�
�
2.2.�Oral�bread�challenge�
An� oral� gluten� challenge� was� performed� as� previously� de�
scribed� [9,10].� In� brief,� the� patient� � ingested� four� slices� of�
white� bread�daily� for� 3� days� and� blood�was� drawn�on�day� 6�
followed� by� peripheral� blood� mononuclear� cell� isolation� by�
density� gradient� centrifugation.� 4� ×� 105�peripheral� blood�
mononuclear� cells� and�various�peptides�were� added� to�wells�
of�96�well�plates�and� incubated�overnight�at�37°C.�Single�cell�
secretion� of� interferon��� was� detected� using� an� interferon���
ELISPOT�assay�[9,10].�
�
�
�
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2.3.�Antigen�
As� complex� cereal� antigens� we� used� chymotrypsin� digested�
gluten�(hereafter�referred�to�as�gluten)�and�pepsin�and�trypsin�
digested�gliadin� (Sigma,�9007�90�3)� [11].�Treatment�with�TG2�
was� performed� as� previously� described� [11].� Peptides� were�
purchased�from�GLS�Biochem,�EZ�Biolabs�or�were�synthesized�
in�house.�The�sequences�of�the�synthetic�gluten�peptides�used�
can�be�found�in�Supplementary�Table�1.��
�
2.4.�Fractionation�of�gliadin�digest�
Fractionation�of�pepsin�and�trypsin�digested�gliadin�was�done�
by� gel� filtration� and� reverse� phase� HPLC.� The� gliadin� digest�
was�first�fractionated�by�gel�filtration�(Äkta;�Superdex�peptide�
10/300�GL�column;�GE�healthcare;�1ml/min�in�milli�Q�water).�A�
fraction� stimulating�T�cell� clone� (TCC)�555.A.1.4.S.6�was� then�
further� fractionated� by� reverse� phase� HPLC� (Agilent� 1100,�
Zorbax�300SB�C18�column�using�an�acetonitrile�gradient�from�
5�100%;�1ml/min;�0.1%�trifluoroacetic�acid).�A�T�cell�stimulat�
ing�fraction�(fraction�14)�was�then�analyzed�by�LC�MS/MS�(Q�
TOF;� Bruker� Daltonics).� Peptides� were� separated� on� an� ana�
lytical� column� (150mm� x� 0.075� mm)� packed� with� 100Å� C18�
3.5�m� particles� (G&T� Septech).� Data� were� acquired� using�
microTOF�control�v2.0�and�processed�using�DataAnalysis�v3.4.�
The�data�were�analyzed�using� the�Mascot� search�engine�and�
Proteome�Discoverer�software�version�1.0�(Thermo�Scientific)�
using�an�in�house�built�database�of�Triticum�aestivum�derived�
proteins.��
�
2.5.�T�cell�assays�
Generation�of� gluten�reactive� T�cell� lines� (TCL)� and� prolifera�
tive�T�cell�assays�were�performed�as�previously�described�[11].�
Irradiated� B� lymphoblastoid� B�cell� lines� (B�LCL)� 9050�
(DQA1*02:01/� DQB1*02:02;� DQ2.2),� 9092� (DQA1*03:01/�
DQB1*03:02;�DQ8),�9076� (DQA1*03:02/DQB1*03:03;�DQ9.3),�
9102� (DQA1*03:03/DQB1*02:02;� DQ2.3)� and� 9052�
(DQA1*02:01/DQB1*03:03;� DQ9.2)� were� used� as� antigen�
presenting� cells� (APC).� Notably,� the� mature� DQ�� chains� en�
coded� by� DQA1*03:02� and� DQA1*03:03� are� identical,� but�
different�from�DQA1*03:01�at�residue��160�(aspartate�instead�
of�alanine),�which� is�unlikely� to�affect�peptide�binding�and�T�
cell� recognition.� To� assess� HLA� restriction� of� the� TCC,� APC�
were�incubated�with�anti�DQ�(SPV�L3),�anti�DR�(B8.11)�or�anti�
DP�(B7/21)�antibodies�(final�concentration�of�20�g/ml)�for�30�
min�prior�to�addition�of�antigen.�In�experiment�from�figure�2D,�
the� APC� were� incubated� with� peptide� overnight� before� free�
peptide�was�washed�away�and�T�cells�were�added.�
�
2.6.�Peptide�MHC�off�rate�assay�
Functional� peptide� off�rate� assays� were� performed� as� previ�
ously� described� [12].� In� brief,� antigen�pulsed� irradiated� APC�
were�incubated�for�various�time�points�without�antigen�before�
adding�T�cells�and�measuring�T�cell�proliferation.��
�
2.7.�Competitive�binding�assay�
Peptide�binding�was�measured�in�a�competitive�binding�assay�
as� described� previously,� using� the� B�LCL� 9092� and� 9076� as�
source� of� HLA�DQ8� and� HLA�DQ9� molecules,� respectively�
[13,14].� IC50� values� (half� maximal� inhibitory� concentration)�

were�established�as�the�concentration�of�peptide�required�to�
inhibit� the� binding� of� an� indicator� peptide� (biotin�PEG�
FESTGNLIAPEYG;�used�at�0.2�M�for�DQ8�and�2�M�for�DQ9)�by�
50%.� Three� independent� 4�fold� titration� experiments� were�
performed.�
�
2.8�Analysis�of�HLA�DQ�expression�
Staining� of� B�LCL� 9076� and� 9052� was� performed� using� a�
monoclonal�antibody�to�HLA�DQ�(clone�FN81,�IgG2a,�PE�conju�
gated;�Diatec)�or�an�IgG2a�isotype�control�antibody�conjugated�
with� PE.� Analysis� was� performed� on� a� FACSCalibur� (BD�
Biosciences).�
�
3.�RESULTS��
3.1.�Identification�of�DQ9�restricted�epitope��
The� gluten� response� in� one� CD� patient� (CD555)� expressing�
both�DQ2.2�and�DQ9�was�examined.�A� total�of� ten� intestinal�
gluten�reactive� TCL� were� generated.� The� TCL� were� initially�
tested� for� recognition� of� TG2� treated� gluten� presented� by�
homozygous�B�LCL�carrying�DR7DQ2�and�DR9DQ9�haplotypes.�
Six�gluten�reactive�TCL�made�a�positive�response�with�DR7DQ2�
APC� of�which� four� also�made� a� response�with�DR9DQ9�APC.�
Five�TCL�(B1.1,�A.1.1.S,�A.1.4.S,�B.2.2,�A.0.4.S)�made�a�response�
with�DR9DQ9�APC�but�only�weakly�with�DR7DQ2�APC�(Figure�
1).�These�TCL�were�considered�particularly�interesting,�and�we�
generated�gluten�reactive�TCC�from�three�of�these�TCL.�Three�
gluten�reactive�TCC�were�obtained�from�TCL�555.A.1.4.S,�one�
from�TCL�555.A.1.1.S�(originally�from�same�biopsy)�and�eleven�
from� TCL� 555.B.2.2� (different� biopsy� from� different� time�
point).� The�TCC�made�a� response� to�gluten� in� the� context�of�
DR9DQ9�but�not�DR7DQ2�APC�(Figure�2A).�Using�DR9DQ9�APC,�
the� proliferative� response� could� be� inhibited� by� an� anti�DQ�
specific� monoclonal� antibody,� but� not� by� anti�DR� or� anti�DP�
specific�monoclonal�antibodies�(Figure�2B).�We�thus�conclude�
that� the� TCC� were� restricted� by� DQ9.� The� TCC� proliferated�
similarly�to�titrated�amounts�of�native�and�TG2�treated�gluten�
(data�not�shown).��
�

�
� �
Figure�1:�Identification�of�DQ9�restricted�T�cell�responses�to�gluten�in�
CD555,�a�celiac�disease�patient�heterozygous�for�DQ2.2�and�DQ9.�The�
figure�shows�proliferation�responses�of�several�gluten�reactive�T�cell�
lines�stimulated�with�DR7DQ2�(B�LCL�9050)�or�DR9DQ9�(B�LCL�9076)�
expressing�antigen�presenting�cells�and�transglutaminase�(TG2)�
treated�gluten.�Proliferation�was�assessed�by�[3H]�thymidine�
incorporation�and�is�measured�in�counts�per�minute�(cpm;�mean�of�
duplicates).�� �

�
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3.2.� Recognition� of� DQ8�glut�1� epitope� by� DQ9�restricted� T�
cells��
We� performed� fractionation� of� a� pepsin�trypsin� digest� of�
gliadin� and� obtained� several� T�cell� stimulating� fractions� for�
TCC� 555.A.1.4.S.6� (Supplementary� Figure� 1).� One� fraction�
(fraction� 14)� was� subjected� to� mass� spectrometry� analysis.�
Several� masses� were� present� in� the� fraction,� but� only� the�
sequence�of� one�peptide,� a�35�mer,�was� identified�with�high�
certainty�(qQGYYPTSPQQPGQGQQLGQGQPGYYPTSQQPGQK,�q�
is� pyroglutamate).� This� peptide� harbored� the� sequence� (un�
derlined)�of�the�previously�described�DQ8�glut�1�(or�glutenin)�
epitope� [15],� indicating� glutenin� contamination� of� the�
commercial� gliadin� preparation.� Glutamine� in� P1� of� this� epi�
tope�can�be�targeted�by�TG2�(for�deamidation)� [15]�and�DQ9�
exhibits� the�preference�of�a�negative�charge� in�P1[5].�Hence,�
the�peptide�variant�with�glutamate�at�P1�should�be�biologically�
relevant�and�we�used�this�peptide�in�later�experiments.�Reac�
tivity�of� the�generated�gluten�reactive�TCC� to� the�DQ8�glut�1�
epitope� (underlined)�was�established�by�testing� the�synthetic�
peptide� Ac�QEGYYPTSPQQSG� (Figure� 2C).� All� 15� generated�
DQ9�restricted�T�cell�clones�from�altogether�3�TCL�were�reac�
tive�to�the�DQ8�glut�1�epitope.�
�

�
�
Figure�2:�Several�gluten�reactive�T�cell�clones�(TCC)�generated�are�
DQ9�restricted�and�they�recognize�the�previously�described�DQ8�glut�
1�epitope.�Figure�A�shows�proliferation�responses�of�TCC�555.A.1.1.13�
stimulated�with�DR9DQ9�(B�LCL�9076)�or�DR7DQ2�(B�LCL�9050)�
expressing�antigen�presenting�cells�and�transglutaminase�treated�
gluten�or�medium.�Figure�B�shows�proliferation�responses�of�TCC�
555.A.1.1.13�in�the�presence�of�blocking�antibodies�and�gluten,�
gluten�alone�or�medium,�and�DR9DQ9�expressing�antigen�presenting�
cells.�Figure�C�shows�proliferation�of�this�TCC�stimulated�with�
DR9DQ9�expressing�antigen�presenting�cells�and�peptide�containing�
the�DQ8�glut�1�epitope�(Ac�QEGYYPTSPQQSG).�Figure�D�shows�
proliferation�of�TCC�555.B.2.2.45�after�stimulation�with�APC�encoding�
DQ9.3�(encoded�in�cis�by�the�patient)�or�DQ9.2�(encoded�in�trans�by�
the�patient),�loaded�with�peptide�containing�the�DQ8�glut�1�epitope.�
The�results�are�representative�of�the�testing�of�five�TCC.�Figure�E�
shows�flow�cytometric�analysis�of�expression�of�HLA�DQ�on�the�
surface�of�the�DQ9.2�and�DQ9.3�expressing�APC.�Proliferation�was�
assessed�by�[3H]�thymidine�incorporation,�measured�in�counts�per�
minute�(cpm)�(mean�of�duplicates).�
� �

3.3�Presentation�of�DQ8�glut�1�epitope�by�a�DQ9�variant�
encoded�in�trans�by�CD555�
In� addition� to� the� cis�encoded� HLA�DQ� molecules ������������
DQ2.2� (DQA1*02:01/DQB1*02:02)� and� DQ9.3� (DQA1*03:02/�
DQB1*03:03),� patient� CD555� can� express� the� two� trans�en�
coded�HLA�DQ�molecules� DQ2.3� (DQA1*03:02/� DQB1*02:02)�
and�DQ9.2�(DQA1*02:01/�DQB1*03:03).�While�the�TCC�did�not�
respond� to� the�DQ8�glut�1�epitope�when�presented�by� a�ho�
mozygous�B�LCL�expressing�DQ2.3� (data�not� shown),� the�TCC�
responded�when�presented�by�a�homozygous�B�LCL�expressing�
DQ9.2� although� with� a� tenfold� lower� sensitivity� than� when�
presented� by� a� DQ9.3� expressing� APC� (Figure� 2D).� When�
stained�with� an� anti�DQ� antibody,� the� expression� of� HLA�DQ�
molecules�by� these� two�APC�was� found� to� be� similar� (Figure�
2E).�
�
3.4.�Importance�of�DQ8�glut�1�epitope�in�this�patient�
Two�other�gluten�epitopes,�namely� the�DQ8�glia���1�and� the�
DQ8�glia���1� epitope,� are� commonly� recognized� by� celiac�
disease� patients�with�DQ8.�We� therefore� carefully� examined�
whether� the� TCL� that� made� gluten�specific� responses� with�
DR9DQ9� APC,� could� harbor� T� cells� which� were� specific� for�
these� epitopes.� None� of� the� seven� tested� DQ9�restricted�
gluten�reactive� TCL� responded� to� peptides� representing� the�
DQ8�glia���1�or�the�DQ8�glia���1�epitopes,�whereas�they�made�
responses� to� the� DQ8�glut�1� epitope� (Figure� 3A).� This� re�
sponse�pattern�was�maintained�in�TCL�established�from�intes�
tinal�biopsies�taken�with�3�years’�interval�(Figure�3A).�We�also�
examined� by� ELISPOT� the� response� to� these� epitopes� in� pe�
ripheral� blood� after� a� short� gluten� challenge� and� found� that�
the�DQ8�glut�1�epitope�gave�a�titratable�IFN���response�which�
was�much�stronger�than�the�response�to�the�two�other�com�
mon� DQ8� gluten� epitopes� (Figure� 3B).� Taken� together� the�
results� indicate� that� patient� CD555� made� persistent� T�cell�
responses�to�the�DQ8�glut�1�epitope�in�the�context�of�DQ9.�
�

�
�
Figure�3:�Compared�with�two�other�common�DQ8�gluten�epitopes,�
the�DQ8�glut�1�epitope�appears�to�be�a�dominant�epitope�in�this�
patient.�Figure�A�shows�proliferation�responses�of�seven�T�cell�lines�
(TCL)�from�CD555�stimulated�with�DQ9�(DQ9.3)�expressing�antigen�
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presenting�cells�and�peptides�containing�the�DQ8�gluten�epitopes,�
gluten�or�transglutaminase�2�(TG2)�treated�gluten.�Open�symbols�
represent�TCL�generated�from�biopsies�taken�in�2004�while�closed�
symbols�represent�TCL�generated�from�biopsies�taken�in�2007.�TCL�
B.2.2�was�generated�from�a�different�biopsy�than�TCL�B.1.3�and�TCL�
B.1.4;�TCL�A.1.1.S,�TCL�A.1.3.S�and�TCL�A.1.4.S�from�a�different�biopsy�
than�TCL�A.0.4.S.�Proliferation�was�assessed�by�[3H]�thymidine�
incorporation�and�is�expressed�in�stimulation�index�(cpm�with�antigen�
stimulation/cpm�with�medium�stimulation;�mean�of�duplicates).�A�
cut�off�of�3�was�chosen�as�a�significant�stimulation�index�(dotted�
line).�Figure�B�shows�response�in�peripheral�blood�after�a�short�term�
gluten�challenge�as�measured�by�IFN���ELISPOT�(average�of�
triplicates;�Spot�forming�units�(SFU)�per�106�peripheral�blood�
mononuclear�cells).�Left�panel�shows�response�towards�peptide�
harboring�DQ8�gluten�epitopes�including�DQ8�glut�1�epitope�(Ac�
QEGYYPTSPQQSG)�or�medium�and�right�panel�shows�response�
against�titrated�amounts�of�the�DQ8�glut�1�peptide.�For�the�peptide�
sequences,�see�Supplementary�Table�1.�
�
3.5.�Sustained�antigen�presentation�
As�sustained�antigen�binding�appears�crucial�for�the�initiation�
of�a�gluten�response� [12],�we�wanted�to� investigate�whether�
this�epitope�shows�sustained�binding�to�DQ9.�By�using�a�T�cell�
based� off�rate� assay,� we� found� that� the� DQ8�glut�1� epitope�
was� effectively� presented� by� DQ9� (DQ9.3)� even� after� 96h�
(Figure�4).��
�

�
�
Figure�4:�The�DQ8�glutenin�epitope�shows�sustained�binding�to�DQ9.�
The�figure�shows�proliferation�responses�of�T�cell�clone�
555.A.1.4.S.32�stimulated�with�irradiated�DQ8�or�DQ9�(DQ9.3)�
expressing�antigen�presenting�cells�loaded�for�2�h�with�peptide�(Ac�
QEGYYPTSPQQSG)�containing�the�DQ8�glut�1�peptide�or�medium�
(T+B).�The�antigen�presenting�cells�were�then�washed�and�incubated�
for�various�time�points�followed�by�addition�of�T�cells.�The�
experiment�is�representative�of�two�separate�experiments.�
Proliferation�was�assessed�by�[3H]�thymidine�incorporation,�
measured�in�counts�per�minute�(cpm)�(mean�of�duplicates).��

�
3.6.�Binding�of�various�DQ8�epitopes�to�DQ9�
We�performed�a�competitive�binding�assay�for�peptide�binding�
to�DQ9�(DQ9.3)�and�found�that�the�DQ8�glut�1�epitope�had�a�
tenfold� lower� IC50� value� (half� maximal� inhibitory� concentra�
tion;� hence� higher� affinity)� than� the� DQ8�glia���1� epitope,�
whereas� the�DQ8�glia���1�epitope�had�an�even� lower� affinity�
(Table� 1).� � This� could� explain� why� the� DQ8�glut�1� epitope�
appears� to� be� recognized� over� the� two� other� DQ8� gluten�
epitopes�in�this�patient.�
�

�
�
�
�

Table�1:�Affinity�measurements�of�known�DQ8�gluten�epitopes�for�
interaction�with�DQ9�(DQ9.3)�or�DQ8�in�competitive�binding�assays.�
Affinity�is�measured�as�IC50�values�(half�maximal�inhibitory�
concentration).�

 
 � IC50�(�M) 

� Peptide�sequence� DQ8� DQ9�
DQ8�glut�1� Ac�QEGYYPTSPQQSG� 4.3� 3�

DQ8�glut�1�(E)� �������������������E������� 1.6� 5.4�
DQ8�glia���1� SGEGSFQPSQQNPQ� 12.9� 36�

DQ8�glia���1�(E)� ������������������E������ 2� 21.6�
DQ8�glia���1b� FPEQPQQPYPQQPQQ� >160� >160�

DQ8�glia���1b�(E)� ������������������E��������� 6.8� >160�

�

3.7.� Effect� of� glutamine� to� glutamate� exchange� for� peptide�
binding�to�DQ8�and�DQ9�
In� a� competitive� binding� assay,� using� P9� glutamine� to� gluta�
mate� substitutes,� we� found� improved� binding� of� all� three�
epitopes�for�binding�to�DQ8,�but�no�such�effect�for�any�of�the�
epitopes�for�binding�to�DQ9�(Table�1).�Further�we�found�that�
for�DQ8,�the�DQ8�glut�1�variant�with�a�glutamine�residue�at�P9�
had�an�affinity�intermediate�between�that�of�the�deamidated�
forms�of�the�DQ8�glia���1�and�the�DQ8�glia���1�epitopes.�We�
also�examined�the�response�of�one�of�the�DQ8�glut�1�reactive�
TCC� from� patient� CD555� to� different� P1� and� P9� (gluta�
mine�glutamate)� variants� of� the�DQ8�glut�1� epitope� (Figure�
5).�The�TCC�proliferated�well� in�response�to�native�peptide.�A�
negative� charge� at� P1� seemed� slightly� beneficial� for� recogni�
tion�by� this�TCC.�On� the�other�hand,� the�TCC� recognized� this�
epitope� less�well�when�a�negative� charge�was�present�at�P9.�
This�probably�relates�to�TCR�specificity� issues�as�the�affinities�
of� the�native�and�deamidated�variant�of�DQ8�glut�1� for�bind�
ing� to� DQ9� are� fairly� similar� (Table� 1)� and� suggests� that� this�
TCC�was�initially�primed�by�the�peptide�variant�with�a�Q�at�P9.��
�

�
Figure�5:�Lower�proliferation�of�DQ8�glut�1�reactive�T�cell�clone�from�
CD555�when�stimulated�with�peptide�with�a�negative�charge�at�P9.�
The�figure�shows�proliferation�responses�of�TCC�555.A.1.4.S.32�
stimulated�with�P1�and�P9,�Q�or�E�variants�of�DQ8�glut�1�epitope�and�
irradiated�DQ9�(DQ9.3)�antigen�presenting�cells.�Proliferation�was�
assessed�by�[3H]�thymidine�incorporation,�measured�in�counts�per�
minute�(cpm)�(mean�of�duplicates).��

�
�
�
�
�
�
�
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4.�DISCUSSION��
In�this�study�we�show�for�the�first�time�the�presence�of�DQ9�
restricted�gluten�reactive�T�cells�in�the�small�intestine�of�a�CD�
patient.�As�this�patient�was�heterozygous�for�DQ2.2�and�DQ9,�
it�is�still�unknown�whether�DQ9�on�its�own�can�initiate�CD.�We�
have� found� the� presence� of� DQ2.2�restricted� gluten�reactive�
T�cell�clones� in� this�patient�which� recognize� the�DQ2.2�glut�1�
epitope�(Bodd�et�al.,�Gastroenterology,�in�press).�Further,�this�
patient� can� form� the� transdimer� DQ9.2� (DQA1*02:01/�
DQB1*03:03),� that� also� activated� the� gluten�reactive� DQ9�
restricted�T�cells.�This�transdimer�shares�the���chain�with�the�
cis� encoded� DQ9.3� molecule� (DQA1*03:02/DQB1*03:03).�
While� both� DQ9.2� and� DQ9.3� could� activate� the� gluten�
reactive� T� cells,� the� cis�encoded� DQ9.3� appeared� more�
efficient.� Altogether,� even� though� studies� of� HLA�DQ�
homozygous� patients� may� have� been�more� informative,� our�
study� of� this� heterozygous� patient� indicates� that� DQ9� (in�
particular� DQ9.3)� can� be� implicated� in� a� pathogenic� gluten�
response�in�CD.��

The� DR9DQ9� haplotype� is� very� rare� in� Caucausian�
populations� (<� 1%)� [16],� and� thus� it� is� hard� by� population�
genetics� to� determine� whether� DQ9� is� a� risk� factor� for� CD.�
Interestingly,� in�a� study�of� a� large� series�of� CD�patients� [17],�
one� of� the� four� patients� who� did� not� carry� the� known� risk�
factors�DQ2.5,�DQ8,�or�either� the��� or��� chain�of�DQ2.5,�ex�
pressed� DQ9.3� (DQA1*03:02/DQB1*03:03)� encoded� in� trans�
and�DQ9.2�(DQA1*02:01/DQB1*03:03)�encoded�in�cis.�In�such�
a� setting� functional� studies� may� provide� important� hints� to�
unravel�risk�factors.�This�is�exemplified�by�studies�of�DQ7�and�
DQ8�as�risk�factors�for�CD.�DR4�haplotypes�confer�risk�in�DQ2�
negative�CD�patients,�but� initially� it�was�unclear�whether� the�
risk�was�associated�with�DR4DQ7,�DR4DQ8�or�both�haplotypes�
[18].� A� study� of� a� DR4DQ7/DR4DQ8� heterozygous� patient�
provided� a� clue� to� this� issue� [19].� The� gluten�reactive� T� cells�
established� from�gut�biopsies�of� this� patient� only� recognized�
gluten�in�the�context�of�DQ8�but�not�DQ7,�thus�indicating�that�
DQ8�is�the�susceptibility�factor.�This�conclusion�has�later�been�
confirmed� in� population� genetics� studies� [20].� Similar� to� the�
above�described�study,�our�current�observation�indicates�that�
DQ9�is�a�susceptibility�factor�for�CD.�

The� gluten� epitope� recognized� by� the� patient� ex�
pressing�DQ9�was�identified�as�the�DQ8�glut�1�epitope,�which�
has� been�previously� identified� in�DQ8�patients,� but� does�not�
appear� to� be� a� common� epitope� in� patients� of� this� category�
[15,21].�All�DQ9�restricted�gluten�reactive�TCC�generated�from�
three�TCL�(two�of�which�generated�from�biopsies�taken�years�
apart)�and�all�seven�TCL�(generated�from�in�total�four�different�
biopsies)� responding� to� gluten� after� stimulation� with� DQ9�
expressing�APC�responded�to�this�peptide.�Thus,�the�DQ8�glut�
1� epitope�appears� to� be� the�dominant�DQ9�restricted� gluten�
epitope� in� this� patient.� In� line� with� the� importance� of� sus�
tained� antigen� presentation� for� initiating� a� gluten� response�
[12],� we� found� that� the� epitope� shows� sustained� binding� to�
DQ9.� Further,� we� showed� a� strong� DQ9�restricted� T�cell� re�
sponse� to� the� DQ8�glut�1� epitope,� while� no� response� was�
found� against� two� other� common� DQ8� gluten� epitopes.� Al�
though�we�must�be�cautious�to�conclude�on�the�basis�of�one�
patient,�we�propose�that�this�is�likely�due�to�a�higher�affinity�of�

the�DQ8�glut�1�epitope�for�binding�to�DQ9�than�the�other�two�
DQ8�epitopes,�as�measured�in�a�competitive�binding�assay.�

Affinity�measurements�of�gluten�peptide�interaction�
with�DQ8�and�DQ9�also�confirmed,�as�previously�modeled�[5],�
the� importance�of�a�negative�charge�at�P9�of�gluten�peptides�
for� binding� to� DQ8,� but� not� to� DQ9.� Interestingly� we� found�
that� the� DQ8�glut�1� epitope� binds� fairly� well� also� to� DQ8,�
compared�with� two�other� common�DQ8�epitopes,� even�with�
the�presence�of�a�glutamine�at�P9.�This�might�explain�why�the�
response�to�the�DQ8�glut�1�epitope�is�deamidation�independ�
ent�in�DQ8�CD�patients�[21].�This�also�explains�why�some�DQ8�
glut�1� reactive� TCC� from�DQ8�patients� recognize� the�peptide�
much� better� with� a� glutamine� than� with� a� glutamate� at� P9,�
suggesting�that�the�T�cells�were�initially�primed�by�the�peptide�
variant�with�a�glutamine�at�this�position�[5].��

We�have�recently�shown�that�the�lower�risk�for�CD�
of�DQ2.2�compared�with�DQ2.5�relates�to�stricter�constraints�
for� binding� of� gluten� peptides� to� DQ2.2� than� to� DQ2.5� [12]�
(Bodd�et�al.,�Gastroenterology,�in�press).�Our�findings�suggest�
a� similar� mechanism� for� DQ8� and� DQ9� as� for� DQ2.5� and�
DQ2.2.�Indeed,�the�loss�of�the�advantage�of�a�negative�charge�
at� P9� for�DQ9�possibly� restricts� the�number�of�potential� epi�
topes�binding� sufficiently�well� to� initiate�a�T�cell� response.� In�
conclusion,�we�report�the�presence�of�DQ9��restricted�gluten�
reactive�T�cells�recognizing�the�DQ8�glut�1�epitope,�an�epitope�
previously�described�to�be�recognized�by�DQ8�patients,�in�the�
small� intestine� of� a� CD� patient� expressing� DQ9.� This� epitope�
appears� to� be� the� dominant� DQ9�restricted� epitope� in� this�
patient� and� binds� particularly� well� to� DQ9� compared� with�
other�DQ8�gluten�epitopes.�Our�findings�indicate�that�the�lost�
potential�benefit�of�a�negative�charge�at�P9�possibly� restricts�
the� number� of� peptides� binding� well� to� DQ9� and� hence� the�
threshold�for�disease�initiation.�Our�findings�shed�light�on�the�
association�of�the�DQ8��57�polymorphism�with�immunological�
diseases.�
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SUPPLEMENTARY�MATERIAL�
�
Supplementary� table� 1:� Overview� of� peptides� used� in� the� study.�
Acetylated� peptides� where� used� to� avoid� the� formation� of�
pyroglutamate.�
�
Epitope�� Sequence� Comment�

DQ8�glut�1�� Ac�QEGYYPTSPQQSG� Most�frequently�used�DQ8�
glut�1�peptide�in�manuscript.�

DQ8�glia��1�� SGEGSFQPSQQNPQ� �

DQ8�glia��1�(E)� SGEGSFQPSQENPQ� �

DQ8�glia��1b�� FPEQPQQPYPQQP� �

DQ8�glia��1b�
(E)��

FPEQPQQPYPEQPQQ� �

DQ8�glia��1a�� PQTEQPQQPFPQPQ� �

DQ8�glut�1,�P1�
and�P9�(E)�

Ac�QEGYYPTSPEQSG� �

DQ8�glut�1,�P9�
(E)���

Ac�QQGYYPTSPEQSG� �

DQ8�glut�1,�No�
E�

Ac�QQGYYPTSPQQSG� �

�
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�
Supplementary�figure�1:�T�cell�proliferation�of�TCC�555.A.1.4.S.6�
against�transglutaminase�treated�pepsin�trypsin�digested�gliadin�and�
high�performance�liquid�chromagraphy�(HPLC)�separated�fractions�
(from�1�36)�from�a�stimulatory�fraction�of�pepsin�trypsin�digested�
gliadin�separated�by�gel�filtration.�
�
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