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Abstract 

In the industrial communities of today there is reason for concern for the reproductive health 

of the male, due to decreasing sperm quality and increased incidences of testicular cancer. 

Norway and Denmark have the highest incidence rates of testicular cancer in the world. 

There has traditionally been more focus on the maternal contribution for infertility and 

defects on the offspring compared to the paternal contribution. The genetic constitution of 

the offspring depends on the integrity of both the paternal (sperm) and the maternal (oocyte) 

genomes. When the integrity of the paternal genome is challenged it may lead to serious 

conditions; Oxidative damage in human sperm correlates with poor sperm quality and 

reduced fecundity (ability to conceive children). Couples undergoing assisted fertilisation 

have lower success rates when the father is a smoker, and there is epidemiological data 

suggesting that children of smoking fathers have a higher risk of developing cancer. One 

component of cigarette smoke, Benzo(a)pyrene (BaP), induce bulky DNA adducts and also is 

believed to cause oxidised base damage through generation of reactive oxygen species 

(ROS). 

BaP is a polycyclic aromatic hydrocarbon (PAH) that has been studied extensively. PAHs are 

an ubiquitous class of environmental contaminants. We are exposed to PAHs on a daily basis 

from food, burning of fossil fuels, forest fire, tobacco smoke and diesel exhaust. This 

exposure to humans qualifies for extensive studies to achieve a good understanding of the 

possible negative effects on humans. 

BaP-exposure leads to induction of DNA damage that may be removed via DNA repair. We 

have previously shown that human testicular cells exhibit poor repair of oxidative damage 

such as 8-oxoG, compared to rodents. We, and others, have also shown that male germ cells 

exhibit a low NER function for several bulky DNA adducts, including BPDE-adducts. These 

findings indicate that male germ cells, particularly human, may be particularly sensitive for 

exposure to certain environmental agents and that care should be taken in extrapolating 

results from rodents to man. The use of repair deficient mice, such as Ogg1
-/- mice, thus 

mimics the repair capacity of human male germ cells and allows more relevant analyses of 

the possible genotoxic effects of environmental agents. 
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 In this study a small increase in oxidative damage was observed in the testis at Day 31 

following BaP-exposure of Ogg1
-/- mice. The increased levels of oxidative damage were 

most evident in haploid round spermatids. Oxidative damage was also induced in the somatic 

tissues investigated in Ogg1
-/- mice; at Day 31 a small increase was observed in the liver 

whereas in the lung a more pronounced induction was detected, with increases at both Day 

17 and Day 31 after exposure. No increases in oxidative damage were observed in Ogg1
+/+ 

mice in any of the tissues investigated. NADP/NADPH-ratios declined following BaP-

exposure in line with the DNA damage levels observed. The expression of Cyp1a1 and 

Akr1a4 was studied, with induction of Cyp1a1 at Day 1 following exposure in all tissues 

examined of both genotypes. The constitutive expression of Akr1a4 was significantly higher 

than Cyp1a1 in all the tissues. Akr1a4 was induced following BaP-exposure in the testis at 

Day 17 in Ogg1
+/+ mice whereas the induction on the lung was more apparent, it occurred in 

both genotypes and took place at earlier time points following BaP-exposure. The decline in 

NADP/NADPH-ratios and expression levels of Cyp1a1 and Akr1a4 correspond well with the 

oxidative DNA damage levels observed.  

We conclude that exposure to BaP in vivo do induce oxidative damage. We provide solid 

evidence for its induction on the lung whereas the indications that oxidative damage is 

induced in male germ cells or in the liver are still unresolved.  
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1. Introduction 

1.1 General background 

Today in the industrial world there is reason for concern about the male reproductive health 

since the sperm count and quality is declining and the incidence of testicular cancer is 

increasing (Moline et al., 2000). Men in Norway and Denmark have the highest incidence 

rates of testicular cancer in the world (Adami et al., 1994; Jacobsen et al., 2006; Richiardi et 

al., 2004).  Traditionally there has been more focus on the maternal than the paternal genome 

with respect to their contribution to infertility, early embryo loss and defects on the offspring. 

The genetic constitution of the offspring depends on the integrity of the genomes of both the 

sperm cell and the egg DNA (Olsen et al., 2005). In USA approximately 15% (2008) of 

couples experience some difficulties to conceive, and in roughly 50% of the infertile couples, 

the male factor is partially responsible for the failure to conceive (Jarow and Zirkin 2005). 

Men that smoke have lower success rates in assisted reproduction procedures (Zitzmann et 

al., 2003). Sperm from smokers exhibit more DNA damaged compared to sperm from non-

smokers (Sipinen et al., 2010).  

In this thesis we have investigated effects of in vivo exposure to a mutagenic compound that 

humans are exposed on a daily basis: Benzo(a)pyrene (BaP). BaP is a ubiquitous polycyclic 

aromatic hydrocarbon (PAH). Epidemiological studies have shown that paternal exposure to 

PAHs increase the risk of childhood cancer in their offspring (Boffetta et al., 2000; Cordier 

et al., 1997; Lee et al., 2009). The main area of research in our laboratory is male 

reproductive toxicology hence the main focus in this thesis will be on effects on male germ 

cells. Selected somatic tissues (liver and lung) are studied for comparison due to their role in 

BaP metabolism (liver, Chapter 1.3), and since they are target organs for BaP-mediated 

carcinogenesis (lung).  

In a previous study (denoted: Study 1) we had indications of a small, but statistically 

significant increase in oxidative DNA lesions in male germ cells following in vivo exposure 

to BaP of mice lacking the repair enzyme 8-oxoguanine-DNA glycosylase (Ogg1;(Meier 

2008)). Scientific research is based on the ability to reproduce results by using different 
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methods, reiterating experiments, using new personal or alternative laboratories. The 

increased level of oxidative damage observed in the previous study (Study 1;(Meier2008)) 

was based on a limited number of experimental animals and the induction was significant but 

marginal. In the current study we include a higher number of mice to have more robust data; 

other somatic tissues are studied, as well as new relevant endpoints. 

1.1.1 Aims 

The main aim is to determine whether exposure to environmental mutagens in vivo 

compromises the DNA integrity of male germ cells. We use a mouse model to mimic the 

reduced repair capacity of oxidative purines characteristic of humans (Olsen et al., 2003), i.e. 

a mouse line deficient in an enzyme involved in the repair of oxidative DNA damage (Ogg1
-

/-) and its concurrent wild type (Ogg1
+/+). Moreover, besides mimicking the repair capacity 

of human male germ cells, oxidative DNA damage will accumulate in every tissue of the 

Ogg1
-/- model making it possible to clarify the role of oxidative DNA damage following 

exposure to BaP. Special focus is on elucidating the possible effects of BaP-exposure on the 

genotoxic effects in male germ cells.  

Our aims are: 

1) Reproduce a previous experiment, Study 1;(Meier2008). 

2) Investigate whether in vivo exposure of Ogg1
-/- and Ogg1

+/+ mice to BaP leads to 

induction of oxidative damage in the testis, liver and lung. 

3) Establish the presence of NADPH and investigate the temporal change in 

NADP/NADPH-rates in the testis, liver and lung of Ogg1
-/- and Ogg1

+/+ mice after exposure 

to BaP to explore the potential for generating reactive oxygen species (ROS) due to futile 

redox reactions during BaP-metabolism.  

4) Investigate the temporal expression patterns of central genes involved in BaP-metabolism 

(Cyp1a1 and Akr1a4) in the testis, liver and lung of Ogg1
-/- and Ogg1

+/+ mice following 

BaP-exposure in vivo. 
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1.2 Benzo(a)pyrene 

 

Figure 1.1 Benzo(a)pyrene. The chemical structure of BaP, numbered by the UPAC system, showing 
the sterically hindered bay region.  

BaP is a PAH that has been extensively studied (Casarett et al., 2008). PAHs constitute a 

ubiquitous class of environmental contaminants. They enter the environment through several 

routes, including burning of fossil fuels, forest fire, tobacco smoke and diesel exhaust. PAHs 

can also be found in high levels in charcoal broiled food. The major route of exposure for 

humans are inhalation, consumption of contaminated food and water (Ramesh et al., 2004). 

PAHs are carcinogenic and mutagenic, BaP is categorised as an IARC group 1 (carcinogenic 

to humans), it was previously categorised in group 2B (possibly carcinogenic to humans), but 

recently (actually still in progress) it has been upgraded “based on mechanistic and other 

relevant data” (IARC 2010). In addition to this, PAHs have also been found to be potent 

immunosuppressant’s (Casarett et al., 2008). One of the most studied PAHs is BaP. We want 

to study BaP, because humans are exposed to it on almost a daily base (3 mg/day in USA, 

according to Environmental Protection Agency, (Stedeford et al., 2001)) through several 

routs of exposure (air/food) and in vitro studies have shown that BaP generates ROS which 

leads to oxidative damage to DNA (Briede et al., 2004; Gallagher et al., 1993; Park et al., 

2008b; Park et al., 2006b; Penning et al., 1996).   

Tobacco smoke is an important source of exposure to BaP. Levels of 11 ng of BaP per 

cigarette were found in mainstream smoke and 103 ng per cigarette in side stream smoke 

have been reported (WHO 1998). For smokers this is a significant contribution to the 

exposure to BaP. There has also been found high amount of DNA damage in sperm from 
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smokers (Sipinen et al., 2010; Zenzes et al., 1999a), and there are evidences of transmission 

of DNA adducts from spermatozoa to embryos (Zenzes et al., 1999b).   

1.2.1 Metabolism 

When xenobiotica enter a cell the metabolism has evolved to detoxify and eliminate the 

xenobiotica. BaP, and all other PAHs, is hydrophobic and through metabolism the 

hydrophilic property of the xenobiotic is elevated and excretion is thereby facilitated. In 

general, metabolic conversions of xenobiotica either detoxify or activate the xenobiotica. 

BaP is activated to its ultimate carcinogen metabolite, 7,8-dihydro-9,10-epoxy-

7,8,9,10tetrahydrobenzo(a)pyrene (BPDE), by metabolism.   
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Figure 1.2: The metabolism of BaP (Penning 2004). Detailed information is presented in the text.  

Metabolism of BaP, and other PAHs, occurs in most tissues, and through several pathways. 

The ultimate carcinogen is a diol epoxide of BaP (BPDE). BPDE is formed by three 

consecutive enzymatic reactions (Casarett et al., 2008; Sims et al., 1974), and arises through 

one of the three major activation routes (Figure 1.2; (Penning2004)). The metabolic 

activation to BPDE represents a minor pathway, suggested by Leadon et al. (1988) who 

found the amount of total indirect damage induced exposure to BaP greatly exceeds that of 

total direct adduct formation, and these adducts are efficiently removed by the nucleotide 

excision repair (NER) (Chapter 1.2.3.1) pathway. Indirect damage to DNA via the generation 

of ROS may occur through another pathway, producing quinones (Leadon et al., 1988; 

Stedeford et al., 2001).   

A BaP radical cation is formed via one route by the peroxidase activity of Cytochrome P450 

superfamily (Cyp), a one electron mediated oxidation. This BaP-radical have potential to 

induce DNA adducts, but it is probably not long-lived enough to cause DNA damage in 

living cells (Cavalieri and Rogan 1995).    

In the other two routes BaP is first converted into BaP-7,8-oxide by CYP1A1/CYP1B1, 

which is further metabolized by epoxide hydrolase to yield a trans-dihydrodiol ((-)-BaP-7,8-

diol) (Penning2004). Only (-)-BaP-7,8-diol is formed in vivo (Gelboin 1980) and it is the 

substrate for two further subpathways for BaP metabolism. The (-)-BP-7,8-diol may undergo 

a second epoxidation by CYP1A1, -1A2 or -1B1 to yield 7,8-dihydroxy-9,10-epoxy-7,8,9,10-

tetrahydroBaP ((+)-anti-BPDE), that readily forms adducts with DNA (mainly (+)-anti-

BPDE-N2-dGuo adducts) (Xue and Warshawsky 2005). The epoxide is located at the 

sterically hindered bay region of BaP where epoxide hydrolase does not easily react. 

Alternatively (-)-BP-7,8-diol may undergo a NADP+-dependent oxidation catalyzed by 

enzymes in the aldo-keto reductase (Akr) superfamily, via a catechol and an o-semiquinone 

anion radical to yield the corresponding reactive and redox-active o-quinone (BaP-7,8-dione) 

(Penning2004). This o-quinone can then either undergo a reduction in the presence of a 

reducing cofactor, such as NADPH, back to catechol, or form covalent DNA adducts. Each 

time the catechol is reformed it may be reoxidised by molecular oxygen to form reactive 

oxygen species (ROS) like superoxid anion (O2
-), hydroxyl radical (OH) and hydrogen 

peroxidase (H2O2) until it is fully oxidised to o-quinone. This may establish a futile redox 
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cycle that generates ROS. In the absence of redox-cycling conditions, such as the presence of 

NADPH and CuCl2, less ROS-mediated oxidative damage will occur (Park et al., 2006a). 

ROS may oxidise the bases in DNA and one major lesion formed is the product of oxidised 

guanines, 8-oxoG. During BaP-metabolism aryl hydrocarbon receptor (AhR) facilitates 

damage to DNA formed by PAH o-quinones by acting as a carrier of quinones into the 

nucleus and concentrating them there, where they can form oxidative DNA damage in the 

form of DNA strand breaks or lesions like 8-oxoG (Park et al., 2009).   

1.2.2 DNA damage 

DNA in human cells is subject to approximately 20,000 lesions every day due to normal 

metabolism alone. These lesions arise from endogenous and environmental agents which 

attack cellular DNA. For endogenous factors DNA is susceptible to temperature, pH, 

chemical compounds, oxidation, deaminations, spontaneous hydrolysis and to errors 

introduced during replication. Examples of environmental factors are ionising irradiation, 

UV irradiation, chemical agents, cross-linking agents, intercalating agents and electrophilic 

reactants. There are several types of DNA damage, single- and double strand breaks, cross-

links (both between bases in the DNA and between bases and proteins), damage to the sugar-

phosphate backbone,  and chemical alterations of DNA bases or covalent binding of 

metabolites to the DNA bases, also called DNA adducts (Casarett et al., 2008).  In this thesis 

the focus is on oxidative DNA base alterations induced by ROS.  

1.2.2.1 Oxidative DNA damage 

ROS is a major source of oxidative damage. The most common ROS are superoxide anion 

(O2
-), hydroxyl radical (OH) and hydrogen peroxidase (H2O2). ROS react with DNA but also 

with other macromolecules such as proteins and lipids. The major intracellular source of 

ROS is electron leakage from the cellular respiration process in the mitochondria. 

Peroxisomal metabolism, lipid peroxidation and enzymatic synthesis of nitric oxide also 

contribute. Extracellular sources that can lead to ROS include ionising and near-UV 

radiation, heat, various drugs and redox cycling compounds, as well as inflammation caused 

by various endogenous and environmental agents (Casarett et al., 2008).     
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One of the major oxidative lesion in the genome is the mutagenic 8-oxoG (figure 1.3) (Hsu 

et al., 2004). All bases can be oxidised, but guanine has the lowest redox potential and is 

therefore the most prone to be oxidised (Kovacic and Wakelin 2001). When the DNA 

polymerases encounter an 8-oxoG during replication adenine is frequently misincorporated 

instead of cytosine (figure 1.3). This results in a guanine to thymine (G to T) transversion 

mutation, which is a commonly observed somatic mutation associated with cancer (Hsu et 

al., 2004). In lung cancer the pattern of mutations in p53 are predominantly G to T 

transformations (Holstein et al. 1991).  

Numerous approaches and attempts have been made to quantify intracellular levels of 8-

oxoG (De Iuliis et al., 2009; Devi et al., 2008; Gallagher et al., 1993; Mangal et al., 2009; 

Park et al., 2009; Penning et al., 1996; Quinn and Penning 2008; Rosenquist et al., 1997; 

Stedeford et al., 2001; Zenzes et al., 1999a).The estimations have reported levels of 8-oxoG 

with at least 10 times differences according to the different methods used. The challenge is 

that DNA is readily oxidised and the methods used themselves generate 8-oxoG (Gedik and 

Collins 2005). Anyhow, estimations using the comet assay have suggested background levels 

of 8-oxoG in normal human cells as approximately one per 106 guanine (Collins 2005; Gedik 

and Collins2005). 
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Figure 1.3: Base pairing properties of 8-oxoG. A) Oxidation of guanine to 8-oxoG at C8-position by ROS. B) 
8-oxoG base paired with cytosine, the normal anti conformation form a stable Watson-Crick base pair with 

three hydrogen bonds. C) 8-oxoG base pared with adenine in the syn conformation forming a stable Hogsteen 
mispair with two hydrogen bonds. Figure from Hsu et al. (2004).  

1.2.3 Repair 

There are several ways to defend a cell against damage to the DNA. First, there are agents 

that directly prevent damage to the DNA, such as detoxifying peptides, protein or 

antioxidants. Second, there are repair mechanisms that remove and replace DNA lesions. 

Third, cells might enter cell cycle-arrest, to repair damage and stop replication of damaged 

template. And finally, when the cells exhibit extensive DNA damage they may be eliminated 

by apoptosis, to prevent accumulation of mutations (Olsen et al., 2005).  

 Chemically modified DNA bases, or DNA adducts are typically removed via excision repair 

(Casarett et al., 2008). There are two major pathways of excision repair; nucleotide excision 

repair (NER) and base excision repair (BER)(Olsen et al., 2005). 

A)

B) C)
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1.2.3.1 Nucleotide excision repair (NER) 

NER (Figure 1.4) is believed to be the most relevant repair mechanism for bulky DNA 

adducts, such as BPDE-DNA adducts (Rechkunova and Lavrik 2010). Defects in repair 

genes involved in NER are associated with very high cancer risk (Cleaver 1989).  

As depicted in figure 1.4 the DNA adducts are first recognized and verified followed by 

incision on both sides of the adducted DNA strand. De novo DNA synthesis occurs replacing 

the excised DNA strand followed by DNA ligation (Rechkunova and Lavrik2010). Two 

subpathways exist; global genomic repair (GGR), which repair the entire genome, and 

transcription-coupled repair (TCR) that removes DNA lesions that block RNA synthesis in 

actively transcribed genes. In total 25 or more proteins are involved in NER. GGR is initiated 

by binding of XPC-hHR23B to disrupted base pairs. During TCR, lesions that block the 

RNA polymerase are detected, and the polymerase is displaced, making the DNA lesion 

accessible for repair; this requires at least two TCR-specific factors: Cockayne syndrome 

factors (CSA and CSB). A multi-protein complex that includes the two helicases xeroderma 

pigmentosum complementation group B and D (XPB and XPD) unwinds about 30 base pairs 

surrounding the DNA lesion. The subsequent steps of GGR and TCR are believed to be 

identical. GGR is also found to be able to repair oxidative DNA damage, like 8-oxoG 

(Osterod et al., 2002; Sunesen et al., 2002). This might be the backup repair mechanism in 

Ogg1 deficient mice, but this pathway may not be functional in humans which have impaired 

NER capacity in the testis (Brunborg et al., 1995; Olsen et al., 2003).    
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Figure 1.4: The NER pathway, for repair of bulky DNA adducts. See text for description of the pathway. 
Abbreviations: XPA-G, xeroderma pigmentosum complementation group A-G; hHR23B, human homologue of 
yeast RAD23B; RNA pol II, RNA polymerase II; CSA and CSB, Cocayne syndrome factors A and B; TFIIH, 
general transcription factor IIH; ERCC1, excision repair cross complementing group 1 protein; RPA, 
replication protein A; PCNA proliferating cell nuclear antigen; RFC, replication factor C; Polδ/ε, DNA 
polymerase delta/epsilon; Lig1, DNA ligase 1. Figure from (Olsen et al., 2005).  

1.2.3.2 Base excision repair (BER)  

The major pathway for repairing aberrant DNA bases induced by endogenous and exogenous 

agents is BER (Figure 1.5), including ROS-induced DNA lesions like 8-oxoG (Klungland 

and Bjelland 2007). As first reported by Thomas Lindahl in 1974 (Lindahl 1974), BER is 

initiated by the release of an altered base by a DNA glycosylase via hydrolytic cleavage of 
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the N-C1’ glycosylic bond between the base and deoxyribose, forming a baseless 

apurinic/apyrimidinic (AP) site. Each DNA glycosylase recognises a specific set of aberrant 

DNA bases, and recognise and excise aberrant bases without requiring that the lesions cause 

major structural change in DNA (Olsen et al., 2005).  The excision of the base generates 

apurinic/apyrimidinic sites (AP-sites) followed by endonuclease cleavage, re-synthesis and 

DNA ligation. Similar to NER, BER probably remove lesions that inhibit transcription, such 

as 8-oxoG, partly using the same enzymes as in NER-TCR (Olsen et al., 2005).  

There are mono-functional and bi-functional DNA glycosylases; the mono-functional DNA 

glycosylases only removes the damaged base, whereas bi-functional DNA glycosylases 

cleaves the AP sites. In mammalian, eleven different DNA glycosylases are described and we 

will have the focus on those who remove oxidative DNA lesions: Human MutY homologue 

(MYH), which removes adenine basepaired with 8-oxoG; Thymine glycol-DNA glycosylase 

1 (NTH1), which removes oxidised pyrimidines and 2,6-diamino-4-hydroxy-5-

formamidopyrimidine (FaPyG) lesions; Nei-like protein (NEIL1 and NEIL2), which removes 

8-oxoG, oxidised pyrimidines, FaPyG and FaPyA; and the main DNA glycosylase in 

eukaryotes for removal of 8-oxoG is 8-oxoguanine-DNA glycosylase (Ogg1), which removes 

8-oxoG basepaired with C, and FaPyG lesions creating an AP site (Aburatani et al., 1997; Lu 

et al., 1997; Radicella et al., 1997; Rosenquist et al., 1997). In humans the OGG1 is located 

on the short arm of chromosome 3, a region which is commonly deleted in cancers (Lu et al., 

1997). Ogg1 is a bifunctional enzyme and is extremely specific: it is able to remove 8-oxoG 

basepaired with C and therefore has to distinguish between 8-oxoG and the vast majority of 

normal bases (Klungland and Bjelland2007).       
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Figure 1.5: The BER pathway. See explanation in the text. Abbreviations: HAP1, human AP endonuclease 1; 
Polβ, DNA polymerase beta; XRCC1, X-ray cross complementing protein 1; LigIII, DNA ligase III; PCNA, 
proliferating cell nuclear antigen; RFC, replication factor C; Polδ-ε, DNA polymerase δ-ε; FEN1, Flap 
endonuclease; Lig1, DNA ligase 1. The figure is modified by Olsen et al. (2005) from (Ide and Kotera 2004).   

Relevant to this thesis is the observation of limited repair of 8-oxoG in human testicular cells 

compared to efficient repair in rodent spermatogenic cells (Olsen et al., 2003; Olsen et al., 

2005). A very high level of Ogg1 mRNA is reported in mouse testis mRNA (Rosenquist et 

al., 1997), whereas in human tissues, including the testis OGG1 mRNA is ubiquitously 

expresses and the expression in testis varies markedly between individuals, in conclusion the 
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human germ cells may be more sensitive than rodents to DNA oxidation (Olsen et al., 2005). 

This is one of the major reasons why Ogg1
-/- mice are used as a model in this work. 

Moreover the activity of Ogg1 has been reported to be inhibited in protein extracts from lung 

tissue of rats after an acute treatment to BaP (Stedeford et al., 2001).   

Formamidopyrimidine-DNA glycosylase (Fpg, from E. coli) is a bacterial DNA glycosylase 

that recognise oxidative DNA damage, such as 8-oxoG, the bacterial homologue to OGG1. It 

is a bifunctional DNA glycosylase cleaving the DNA strand at the site of the DNA damage, 

and thereby allow the detection of specific DNA lesions in the comet assay (Collins et al., 

2008) enhancing the sensitivity of this assay.     

1.3 Organs 

1.3.1 Testis 

In the testicle sperm cells and steroid hormones such as testosterone are produced. The testis 

is physically enclosed by a capsule (tunica albuginea), and display two major compartments: 

the intertubular/interstitial compartment and the seminiferous tubule compartment.  

The intertubular compartment contains the blood and lymphatic vessels. This is where the 

Leydig cells are found, which are the major source of androgen, testosterone and other 

steroids (Russel et al., 1990). There are studies showing that exposure to BaP decrease the 

level of testosterone (Archibong et al., 2008), and a reduction in testis weight (Archibong et 

al., 2008; Ramesh et al., 2008). Both studies suggest that exposure to BaP contribute to 

reduced testicular and spermatogenic functions in rats. Reduced testis weight may also arise 

due to increased cell death which may occur as a consequence of extensive DNA damage.  In 

this thesis we investigate whether BaP give rise to oxidative damage in testicular cells. BaP 

induce somatic mutations, and de novo germ line mutations in sperm originating from BaP-

exposed stem cell spermatogonia (Olsen et al., 2010).  

The seminiferous tubules contain the male germ cells and the Sertoli cells, and this is where 

spermatogenesis takes place (Figure 1.5). 
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Figure 1.6: Spermatogenesis (Olsen et al., 2005). Spermatogenesis can be divided into three phases; the 
spermatogonial, the meiotic and the spermiogenesis stages. The spermatogonial phase starts with a division of 
spermatogonial stem cells into two daughter cells, one of which enter the process of spermatogenesis, while the 
other remains as a stem cell. This is the period of active replicative DNA synthesis producing different types of 
spermatogonia. The number of cell divisions varies from with species, but ultimately type B spermatogonia give 

rise to tetraploid primary spermatocytes. During the first part of the meiotic stage, genetic recombination takes 
place after which the first reduction division gives rise to secondary diploid spermatocytes, and subsequently 
the second reduction division results in haploid round spermatids. During spermatogenesis the nuclei are 
condensed and teh cells transformed into mature spermatozoa (Holstein et al., 2003; Olsen et al., 2005). In mice 
spermatogenesis lasts 35 days.    
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The general organisation of the spermatogenesis is essentially the same in all mammals and 

can be divided into three phases: the spermatogonial phase, the meiotic phase and 

spermiogenesis (Olsen et al., 2005). The vulnerability for DNA damage change varies with 

the stage of spermatogenesis and the agent (Adler 1996) Olsen et al., 2001, 2003, 2005, 

2010), and BaP related DNA damage are observed at all stages of the spermatogenesis 

(Olsen et al., 2010; Verhofstad et al., 2010b). DNA repair is deficient in the post-meiotic 

stages, the spermatids lack DNA repair (NER) and DNA damage persist in the sperm to 

fertilisation ( Jansen et al., 2001)(Olsen et al., 2003; Olsen et al., 2010; Verhofstad et al., 

2010b). In the comet assay used extensively in this thesis the majority of the scored cells are 

round spermatids.   

DNA damage in the male germ line has been linked to a variety of adverse clinical effects, 

including impaired fertility, increased incidence of miscarriage, and enhanced risk of 

diseases in offspring (Aitken et al., 2009; Aitken and De Iuliis 2010; Zenzes et al., 1999b). 

Smoking has been shown to induce increased levels of oxidative DNA damage, such as 8-

oxoG, in human sperm, abnormal sperm and reduced fecundity (Zenzes et al., 1999a; 

Zitzmann et al., 2003).  The origin of DNA damage could, in principle, involve: abortive 

apoptosis initiated post meiotically, unresolved strand breaks borne during spermiogenesis or 

oxidative stress. This has been proposed as the three major mechanisms for the formation of 

DNA damage in sperm and DNA damage may arise from combinations of all three (Aitken 

and De Iuliis2010). It is suggested by Aitken et al (2010) that oxidative stress is one of the 

major contributors to DNA damage in sperm. Mitochondrial DNA is extra vulnerable to free 

radical attack because it is essentially unprotected, compared to DNA in the nuclei (Sawyer 

et al., 2001). Sperm nuclear DNA on the other hand is tightly packed with protamines that 

are further stabilised by inter- and intra-molecular disulphide bonds (Aitken and De 

Iuliis2010; Sawyer et al., 2001). Even though DNA is tightly packed in the sperm free 

radicals can attack DNA and form DNA adducts which may ultimately result in DNA strand 

breaks. 8-oxoG, the major oxidized base damage induced by ROS, is found in high levels in 

spermatozoa of infertile patients (Kodama et al., 1997). It is also reported that 8-oxoG is 

highly correlated with DNA strand breaks in human spermatozoa (Aitken and De Iuliis2010).  
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1.3.2 Liver 

The liver maintain the metabolic homeostasis in the body, it extracts ingested nutrients, 

vitamins, metals, drugs and also environmental toxicants, like PAHs, from the blood for 

catabolism, storage and/or excretion into the bile (Casarett et al., 2008). 

In vitro studies with human hepatoma HepG2 cells showed a statistically significant 

decreased cell viability and increased catalase activity following BaP exposure (Briede et al., 

2004; Park et al., 2006b), finding increased levels of oxidative DNA damage. ROS and PAH 

may cause oxidative DNA damage and DNA adducts. Park and coworkers observed 

increased levels of DNA strand breaks using the comet assay following BaP exposure (Park 

et al., 2006b). 

In vivo studies with BaP and liver have also been conducted (Briede et al., 2004; Ramesh et 

al., 2004; Stedeford et al., 2001). Male rats were exposed to BaP, 20 mg/kg i.p. two times a 

day for up to five days (Stedeford et al., 2001), and organ specific differences in removal of 

8-oxoG were investigated in liver, lung and kidney. The capacity to remove 8-oxoG for the 

liver, and kidney, remained at baseline for all time points analyzed. Ogg1 protein levels were 

also measured in this study, finding that liver has the highest level of Ogg1 compared to lung 

(possesses 95% of the level) and kidney (possess 44.5% of the level. The amount of Ogg1 in 

the liver was constant at all times measured in this experiment (24hr, 72hr and 120hr). 

Briede et al. (2004) observed indication of ROS formation but a decrease in 8-oxoG in liver 

(and lung) of rats after exposure to BaP, suggesting a possible induction of DNA repair 

mechanism. 

DNA damage is thus induced in liver cells in vitro, but is such lesions induced after in vivo 

exposure to BaP? The Ogg1
-/- model is useful to measure a potential accumulation of such 

DNA damage  

1.3.3 Lung 

The lung is highly exposed to BaP through pollution from cars and especially tobacco 

smoke, it is estimated that 85-90% of all lung cancer is observed in individuals that smoke 

(Edwards et al., 2005). BaP is shown to give rise to oxidative damage in the lungs (Briede et 

al., 2004), regardless of the route of exposure (Stedeford et al., 2001). Water solubility is a 
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critical factor determining how deeply a toxicant will penetrate the lungs (Casarett et al., 

2008). PAHs are lipophilic compounds and BaP; which is almost insoluble in water, will be 

able to penetrate deeply into the lung and easily cross membranes and enter the cells. Studies 

have shown that BaP is rapidly taken up in the lung and transferred into the blood, and also 

considerable recycled back to the lung (Bevan and Weyand 1988). 

The lung also contains most of the enzymes involved in the xenobiotic biotransformation 

that has been identified in other tissues (Casarett et al., 2008), but the content of CYP in lung 

tissue is lower compared to other tissues (Casarett et al., 2008) and this may favour the 

peroxidative pathway (figures 1.2, 1.8) giving rise to increased production of o-quinone 

metabolites. In vitro studies have demonstrated that lung tissue has a high capacity to form 

quinones (Bevan and Weyand1988; Stedeford et al., 2001; Weyand and Bevan 1986). One in 

vitro study found evidence for the involvement of the Akr pathway (Figure 1.2, 1.8) in the 

metabolism of BaP in human lung A549 cells (Park et al., 2008b) confirming that lung cells 

form quinones from BaP. Studies have shown that submicromloar concentrations of PAH 

quinones causes G to T transversion in p53 cDNA, but only when the quinones were allowed 

to redox in the presence of both NADPH and CuCl2 (Park et al., 2008a). In lung cancer the 

most unambiguous signature is that the pattern of mutations in p53 is predominantly G to T 

transformation (Hollstein et al., 1991; Park et al., 2008a). Oxidative damage in lung cells 

formed by BaP might therefore very well give rice to mutations on p53 and cancer, and 

because of this the lung is also a very important and interesting organ to investigate in this 

thesis.   
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1.4 BaP-metabolism genes selected for gene expression 
studies  

1.4.1 Cytochrome P450 (CYP) 

 

Figure 1.7: The CYP pathway of BaP metabolism, from figure 1.2.  

During the metabolism of BaP (Figure 1.7) CYP and especially Cyp1a1 is important in the 

activation of BaP, it is a part the first step in the metabolism (Figure 1.2) and it creates BPDE 

which forms a stable adduct with DNA (Figure 1.7) (Penning et al., 1996).  

BaP and its quinone metabolites are relatively potent ligands of the aryl hydrocarbon receptor 

(AhR). It binds to AhR and translocates into the nucleus in association with the AhR nuclear 

translocator (ARNT) (Park et al., 2009). The AhR-ARNT heterodimer binds to DNA 

sequences called Xenobiotic response elements (XRE). This direct binding of the 

heterodimer to the XRE leads to induction of Cyp1a1 (Hankinson 2005; Yauk et al., 2010). 

AhR and ARNT is found to be expressed ubiquitously in adult human tissues, with relatively 

high levels of both in lung (Yamamoto et al., 2004). Earlier findings in our lab by Håland et 
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al. (Håland 2005) report a higher expression of AhR in testis of mice than liver, a reduction 

following BaP exposure was also reported. Same reduction has also been reported by 

(Roman et al., 1998) after exposure to 2,3,7,8 –tetrakloridbenzo-para-dioxin (TCDD), which 

also is a ligand for AhR. This reduction corresponds with AhR being translocated to 

cytoplasma and degraded after ligand-binding. In human tissues the level of AhR is reported 

to be similar in testis and liver, and higher in lung and the level of ARNT to be higher in 

testis than liver, but even higher in lung tissue (Yamamoto et al., 2004). Yamamoto et al. 

also found an extremely high expression of aryl hydrocarbon receptor repressor (AhRR) in 

human testis. 

Yauk et al. (2010) found a significant increase of the expression of Cyp1a1 gene in the liver 

after giving BaP orally to male mice. High levels of mRNA may not necessarily correlate 

with protein quantity or activity. It has been suggested that members of the CYP superfamily 

may be regulated by microRNA (miRNA) (Hudder and Novak 2008; Yauk et al., 2010), but 

Yauk et al. (2010) found in their study that hepatic miRNAs exhibit minimal direct response 

to AHR agonists.  

In this thesis the expression of Cyp1a1 gene was studied following in vivo BaP exposure. In 

Study 1;(Meier2008), the Cyp1a1 gene expression was induced in liver and testis following 

BaP exposure in vivo. In the same work other CYP (Cyp1a2 and Cyp1b1) genes were also 

investigated, however these two genes were only induced in the liver and not in the testis. 

Besides repeating the previous experiment, the expression of Cyp1a1 gene upon BaP 

exposure can be used as positive control in this study.  
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1.4.2 Aldo-Keto Reductases  

 

Figure 1.8: The AKR pathway of BaP metabolism, from figure 1.2. NADPH reduces the quinone back to 

catechol establishing a futile cycle creating ROS.  

AKRs are generally monomeric reduced nicotinamide adenine dinucleotide phosphate 

(NAD(P)H) –linked oxidoreductases. These enzymes convert carbonyl-containing substrates 

to alcohols; aldehydes to primary alcohols and ketones are converted to secondary alcohols. 

These enzymes thus play a central role in the metabolism of endogenous substrates, drugs, 

xenobiotics and carcinogens and are likely to be as important as the CYP superfamily in 

dealing with toxic insults (Penning2004). Several AKRs have been implicated in carcinogen 

metabolism: these include the dihydrodiol dehydrogenases that oxidize PAH trans-

dihydrodiols to reactive and redox-active o-quinones, a pathway that creates ROS, relevant 

for BaP (figure 1.8). Quinones are also ligands for AhR (chapter 1.4.1).   

In this thesis we studied the expression of Akr1a4, which is one of several AKR enzymes 

involved in BaP metabolism, following in vivo BaP exposure to the mice. Akr1a4 is the 

mouse homolog to human AKR1A1, which is present in all tissues examined, including the 

testis (Barski et al., 1999). AKR1A1 takes part in BaP metabolism (Figure 1.2) 

(Penning2004). The expression of Akr1a4 has previously been investigated in Study 
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1;(Meier2008), observing a modest change in the Akr1a4 gene expression both in the liver 

and the testis. The constitutive expression of Akr1a4 was however high compared to 

different CYP gene expression.  
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2. Materials and Methods  

All solutions and chemicals used in this study are listed in Appendix A. 

2.1 Benzo(a)pyrene 

BaP is both toxic and carcinogenic and carful handling is necessary. The dissolving of BaP 

was done in ventilation cabinets and safety masks and gloves were used.  

2.1.1 Dissolving BaP in corn oil 

BaP is a lipophilic compound and almost unsolvable in water. Corn oil is commonly used for 

solving BaP, and has previously been used in our lab.     

Procedure: 

1.) BaP was weighed in a glass, and corn oil was added. We prepared a stock solution of 

7.5 mg BaP/ml corn oil.  

2.) The bottle was placed in a shaking water bath at 37˚C, for one hour to dissolve. 

3.) The remaining unsolved BaP was solved by using a magnetic stirrer for another hour.  

4.) The stock solution (BaP-corn oil) was placed in bottles covered with aluminium foil 

and stored in a container in a dry, dark and ventilated security cabinet, at room 

temperature.   

2.1.2 Exposing of mice 

BaP is dissolved in corn oil and is exposed in the mice by intra peritoneal (i.p.) injection. We 

used nine to eleven weeks old male mice (Chapter 2.2.1).  Injection was according to 

bodyweight, the mice weighed about 21-25 g and were injected with 0.4-0.5 ml BaP-corn oil, 

and the dose of BaP was 150 mg BaP/kg bodyweight.  

Control mice were treated with corn oil (oil) or not treated at all (CTL).   
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The mice were kept in separate cages, or cages with mice exposed to the same treatment, 

until sacrificing hence one, three, five, ten, seventeen and thirty-one days after exposure.  

The experiment design is shown in table 2.1, with the number of animals sacrificed at each 

time point: 

Table 2.1: Experiment design. 

 

Showing how many mice were killed at the different days after exposure. 

After we had the results from this we added extra animals at 10 days, see more about this in 

Appendix B.       

2.2 Mice 

2.2.1 Breeding 

Ogg1
-/- null mice in a mixed background of C57BL/6 and 129SV were generated by 

Klungland and co-workers (Klungland et al., 1999) and kindly given to us. The Ogg1
-/-

 mice 

were crossed with Big Blue® C57BL/6 homozygous mice purchased from Stratagene (La 

Jolla, California, USA). The Ogg1
-/- mice were backcrossed for 9 generations with Big Blue 

C57BL/6 mice to achieve isogenic strains with identical background (C57BL/6). Littermate 

intercrossing of heterozygotes performed maintenance of the mouse line. Homozygotic mice 

were bred for experiments. The mice used for this study were of generation 4-6 after 

backcrossing. The genotypes of the mice were identified by conventional PCR genotyping. 

132333BaP

132Oil

6CTLOBWT

132333BaP

132Oil

6CTLOBKO

3117105310

Days after 
expusureTreatment

Mice-
genotype

132333BaP

132Oil

6CTLOBWT

132333BaP

132Oil

6CTLOBKO

3117105310

Days after 
expusureTreatment

Mice-
genotype

Ogg1-/- 

Ogg1+/+ 
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Breeding and care were performed at the Norwegian Institute of Public Health, Oslo, 

Norway. Breeding trios contained one male and two females, the females were from the 

same litter. Litters were separated after 17 days; males and females were housed separately. 

The mice were housed in air flow IVC racks (Thoren Maxi-Miser System) or filter cabinets 

(Scantainer, Scanbur BK AS, Nittedal, Norway) in plastic disposable cages on Nestpack 

(Datesand Ltd., Manchester, UK) bedding. The room had 12-hour light/dark cycle, 6-10 air 

changes per hour, controlled humidity (55±5%) and temperature (19-23˚C). Water and diet 

were given ad libitum. The mice were given a breeding/maintenance diet (2018SX Teklad 

Global 18% Protein Extruded Rodent Diet, Harland Teklad, Madison, Wisconsin, USA). The 

males used in this study were 9-11 weeks old. Both Ogg1
-/- Big Blue (OBKO/KO) and 

Ogg1
+/+ Big Blue (OBWT/WT) male mice were used. 

2.2.2 Sacrifice of mice and harvesting of organs 

The mice were sacrificed at different times after exposure to BaP. Some mice were sacrificed 

at day 0, no exposure, and after one, three, five, ten, seventeen and thirty-one days (Figure 

2.1).    

The mice were sacrificed mostly by breaking the neck or using CO2. The mice that were 

sacrificed after 17 days were sacrificed with CO2, because then you find more blood in the 

heart and it makes it easier to get more blood. Blood was drawn from the heart, and checked 

for inflammatory agents.  The organs used were liver, lung, testis, cauda and caput. Most of 

the liver, lung and testis were quickly frozen with dry ice and stored at - 80˚C. One small 

piece of the liver and half of the lung and testis were used for the comet assay, and other 

small pieces were used to measure NADPH/NADP. 

2.3 Isolation of nuclei. 

The method used to isolate nuclei from tissue was developed in our lab by Brunborg 

(Brunborg et al., 1988). This isolating method is called the squeezing method and was 

developed for isolating nuclei from tissues as lung, liver, testis, brain and kidney. In order to 

squeeze the tissue, a small cylindrical tube with a stainless steel screen of 0.4 nm fitted inside 

is used. First the tissue is cut to small pieces and putted in the tube, and squeezed through the 
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screen with a modified plastic plunger (similar to the one you use in a syringe). The method 

is easy and quick, so it is possible to use it for a large scale in vivo animal study. Tissue used 

in this study was fresh, and we used lung, liver and testis. Fresh tissues were taken from only 

two animals at a time to make the time from sacrificing, squeezing and until cells are 

moulded in the gel as short as possible.  

2.3.1 Procedure 

The buffer and tissue were kept on ice. Lung, testis and liver were kept cold on PBS, before 

putting them in the Merchant buffer.   

1.) A small piece of the liver was used, about 0.5 cm in diameters. Half a lung was used; this 

is needed to get enough cells/nuclei for the comet assay. The testis was taken out of the 

capsule and one half was squeezed. 

2.) The tissue was put in 1 ml Merchant buffer and cut into small pieces. 

3.) Then transferred into the squeeze-unit, sometimes we had to add a little bit more 

Merchant buffer to get all the tissue, and squeezed through the screen by pressing the plunge 

a couple of times. 

4.) The suspension was filtered through a 100 µm nylon filter and centrifuged at 290g for 

5min at 4˚C.  

5.) The pellet was resuspended in 4 ml Merchant buffer. Pilot studies showed that this gave 

the right amount of nuclei for the comet assay (about 1.3 x 106 nuclei/ml).        

The nuclei suspension was used immediately for the comet assay and the left over were 

centrifuged and frozen at – 80˚C. 

2.4 The comet assay 

The comet assay, or the single-cell electrophoresis assay –which explain more about what it 

is, has now been used for over 20 years. The assay has moved from being the main focus of 

investigation to now being an analytical tool that is well known and used in several areas 
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(McArt et al., 2009). This is a versatile and sensitive method for measuring single- and 

double-strand DNA breaks (Collins et al., 2008).  

The main objective in this thesis was to study the possible induction of oxidative damage in 

cells from the testis, liver, lung following exposure to BaP. The use of Ogg1-deficient mice 

served two purposes: First, the Ogg1
-/- mouse line functions as a model for human testicular 

cells mimicking the repair capacity for oxidative DNA lesions (Olsen et al., 2003). Second, 

oxidative DNA damage induced in cells of Ogg1
-/- mice will not be repaired efficiently and 

will probably accumulate in any tissue and thereby increase the potential for detecting such 

DNA lesions that are rapidly repaired in wild type mice. In order to measure oxidative DNA 

lesions we used the comet assay, this assay is extensively used in our lab (Bjorge et al., 1996; 

Collins2005; Collins et al., 2008; Hansen et al., 2010; Olsen et al., 2001; Olsen et al., 2003; 

Sipinen et al., 2010).  

In this assay cells are fixed in agarose, lysis of cells and unwinding the DNA, before 

electrophoresis. Than the negatively charged DNA will wander to the positive pole and make 

a tail. Intact DNA will remain in the so-called head so the more brake in the DNA the longer 

the tail will be.  

In this thesis a modified version is used. The cells will be exposed with Fpg enzyme, a repair 

enzyme from E. coli (David-Cordonnier et al., 2001), before doing electrophoresis. This 

enzyme recognises damage caused by oxidative stress, oxidised purines like 8-oxoG, and 

cuts the DNA. Another recent modification is the use of Gelbond® films instead of glass 

slides. This is more effective because 12 agarose gels (or more) are moulded on the 

hydrophilic side, instead of only three gels per glass slide (Shaposhnikov et al., 2010). The 

films can also be stored for a longer period before and after scoring when it is fixed with 

ethanol and dried.     

2.4.1 Procedure 

Every step was performed in dim light. Low melting agarose (0.75%) was prepared and kept 

at 37˚C. Lysis solution and electrophoresis buffer were prepared and kept at 4˚C.  

Eight technical replicates of every organ used from each mouse were made: four that got 

Fpg-enzyme treatment, and four as controls.   
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1.) The nuclei suspension, from chapter 2.3, was mixed with agarose (1:10) and 60 µl 

were moulded on the films. There are 12 agarose-gels on every film, and the agarose 

solution was moulded on the film with help of a casting frame. The film was on a 

cold metal plate to speed up the moulding.  

2.) After moulding, the films were put into lysis solution over night.  

3.) The next day the films were rinsed in dH2O and then placed in enzyme reaction 

buffer, first for ten minutes and afterwards for fifty minutes. This step was at 4˚C. 

4.) While the films are in enzyme reaction buffer another enzyme reaction buffer 

solution with 0.2 mg/ml BSA is heated to 37˚C. In half of this, crude Fpg was added, 

giving a concentration of 1µg/ml, before placing the films in the solution for one 

hour. 

5.) After incubation for one hour the films were placed in electrophoresis buffer (pH 

13.2) for washing first for 5 minutes, and afterwards unwinding for 35 minutes in a 

fresh buffer, both in 4˚C.  

6.) Gel electrophoresis for 20 minutes. The electric source was a car-battery with 25V, 

and 1.5 l of the electrophoresis buffer.  

7.) Neutralising for to times 5 minutes in neutralisation buffer. 

8.) Rinsing the films in dH2O for about 1 minute. 

9.) After rinsing, the films were placed in absolute ethanol for 5 minutes and then in 

fresh absolute ethanol for 1 hour 30 minutes to fix the gels. After this the films were 

dried over night, and stored in a CD-folder until coloured and scored. The films can 

be stored like this, dark, dry and at room temperature for months.  

10.) Colouring and scoring of the films: The films were stained using 20µl – 30µl 

SYBER® Gold (1000x stock in DMSO) in 25 ml TE-buffer and shaked for 20 - 30 

minutes. The colouring is supposed to be saturated, so if the comets look likes 

donuts they have not been coloured enough, and if so they can be coloured again. If 

not scored at once, the films were stored moist and cold. After scoring the films 

were air-dried and stored dry at room temperature.  
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2.4.2 Scoring of comets 

 

Figure 2.1: Comets from lung cells. 

For scoring the comets the software called “Comet assay IV” (Perceptive Instruments) was 

used.  

SYBR Gold binds to DNA and emits fluorescence. The operator selected the comets, without 

selectively avoiding certain comets. The operator only knew if the gels were treated with 

enzyme or not, she did not know if the samples were from a mouse treated with BaP.  

The tail intensity is measured from the middle of the head to the end of the tail (see figure 

2.1). Usually the software finds the middle of the head, but it is possible for the operator to 

edit the line from where the tail is measured. This happens mostly if the cell has a lot of 

damage, because then it is difficult to distinguish between head and tail.  

2.5 Measuring NADP+ and NADPH 

One of the three major routs of activation of BaP (Figure 1.8) is that catechol undergoes a 

NADP+-dependent oxidation catalyzed by AKRs to yield an o-quinone. This reaction will 

give rise to oxidative damage. After the oxidation the o-quinone can then undergo a 

reduction in the presence of a reducing cofactor, such as NADPH which is an essential 

cofactor in the in vitro microsomal metabolism of BaP (Sadowski et al., 1985), back to 

catechol, or o-quinone can form covalent DNA adducts. By measuring NADP+ and NADPH 

we can see if NADPH is present in the cell and making this reaction possible and the 
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relationship between them can tell us about what happens in the cells. NADPH has been 

shown, by indirect measuring, to be a rate limiting factor in mixed function oxidase activity 

in the whole liver perfusion system (Sadowski et al., 1985).  

To measure the NADP/NADPH ratio we used the kit: EnzyChromTM NADP+/NADPH Assay 

Kit, from BioAssay Systems. This kit measures the concentration of NADP+/NADPH in cell 

or tissue extract.   

Fresh lung, liver and testis tissues were used from both Ogg1
-/- and Ogg1

+/+ mice, but some 

extracts were frozen down at -80˚C after step two in the procedure. 

2.5.1 Procedure 

The procedure was done after the description from material safety data sheet in the kit, with 

some small adjustments.  

1.) Liver, lung and testis were taken out of the mice and put in PBS. 

2.) Sample: ≈ 20 mg from the tissue: liver and lung were used. Half a testis was cut with 

Evensens-cut and 20-100 µl were taken (according to the standard curve). This was 

homogenised in a 1,5 ml eppendorf tube with either 100 µl NADP extraction buffer, for 

NADP determination, or NADPH extraction buffer for NADPH determination.  

3.)  The extract was heated on 60˚C for 5 min. Then 20 µl assay buffer were added, and 100 

µl of the opposite extraction buffer (NADP or NADPH). Two separate samples from 

each tissue were used to measure both NADP and NADPH. 

4.) Calibration curve: 500 µl were prepared by mixing 5 µl 1 mM Standard and 495 µl 

distilled water. To make a curve, we diluted the standard as shown in the table. 
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Table 2.2: The mixtures for the standard curve.  

No Premix + H2O Volume (µl) [NADP] (µM) 

1 100 µl +   0 µl 100 10 

2 80 µl +   20 µl  100 8 

3 60 µl +  40 µl 100 6 

4 40 µl +  60 µl 100 4 

5 30 µl +  70 µl 100 3 

6 20 µl +  80 µl   100 2 

7 10 µl +  90 µl 100 1 

8 0 µl + 100 µl   100 0 

 

40 µl of the standards were put in to a clear bottom 96-well plate. We did not do this 

every time, because we used the relationship between NADP/NADPH and not the total 

concentration. But it was used some times to see if we got the curve and that the reaction 

was working. 

5.) Reagent: For each well of reaction this working reagent was prepared. 50 µl assay buffer 

was mixed with 1 µl enzyme, 10 µl glucose, 14 µl PMS and 14 µl MTT. This was kept 

out of the light, and made freshly every time. 

6.) 40 µl from the tissue samples were put into the 96-well plate. 

7.) 80 µl of the Working Reagent were put quickly into each well with samples and 

standards.  

8.) The optical density (OD) was measured at time zero, at 570 nm, and again after 

incubating for 30 minutes at room temperature, without light.    
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2.6 Gene expression analysis by quantitative real time 
PCR (RT-qPCR) 

2.6.1 RNA extraction 

RNA was isolated from the following tissue; liver, lung and testis, from mice exposed to 

BaP, oil and untreated CTLs. The tissues were prepared (see chapter 2.2.2) and stored at -80 

until use.   

RNA isolation was done according to GenEluteTM Mammalian Total RNA Miniprep Kit 

(Sigma-Aldrich) with some modifications; tissues were homogenized by the Precellys®24 

(Bertin Technologies), a machine designed to lyse and homogenize biological samples, 

according to manufacture recommended use. We used 2 ml tubes containing CK14 small 

ceramic beads, for homogenization of soft animal tissue.      

It was important to not let the tissue thaw before coming in contact with the Lysis Solution, 

so it was kept and cut on dry ice before putting it into the solution. This prevents RNA 

degradation.  

2.6.1.1 Procedure 

All steps were carried out at room temperature.  

1.) Tissue homogenization 

a.) Up to 40 mg of tissue per preparation could be used. The tissue was kept on dry ice. 

b.) The tissue was transferred into a tube containing 500 µl of Lysis Solution and 2-

MercaptoEthanol mixture and ~ 200 beads of type CK14.  

c.) The tissue was homogenized using the Precellys®24 at 5000 rpm for 2x20sec. This 

homogenized tissue might be stored at -70 ˚C for several months. 

d.) The homogenized tissue was pipetted into a GenElute Filtration Column and 

centrifuged at maximum speed (~14 100 g) for 2 minutes. The filtered lysate was 

used further and the filtration column was discarded. 
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e.) 500 µl of 70% ethanol solution was added to the lysate and vortexed to prepare for 

binding of RNA to a binding column.  

2.) RNA isolation 

f.) Up to 700 µl, at one time, of the ethanol containing lysate were pipetted into a 

GeneElute Binding Column and centrifuged at maximum speed for 15 seconds. 

g.) The flow-through was discarded and the rest, up to 700 µl, of the ethanol containing 

lysate was added and centrifuged at maximum speed for 15 seconds. 

h.) The flow-through was discarded.  

i.) First column wash: 500 µl of Wash Solution 1 was pipetted into the column and 

centrifuged at maximum speed for 15 seconds. 

j.) Second column wash: The binding column was transferred into a fresh 2 ml 

collection tube. The other collection tube was discarded with the flow-through. 500 

µl of Wash Solution 2, diluted with ethanol, was pipetted into the binding column in 

the fresh collection tube and centrifuged at maximum speed for 15 seconds. 

Collecting tube was retained but the flow-through was discarded.  

k.) Third column wash: For the second time 500 µl of Wash Solution 2 were pipetted 

into the column and centrifuged at maximum speed for 2 minutes. Or more if the 

binding column was not dry.  

l.) Elute RNA: The binding column was transferred into a fresh 2 ml collection tube. 50 

µl of the Elution Solution was pipetted into the binding column and centrifuged at 

maximum speed for 1 minute. 

Quantification and purity of total RNA were measured using the NanoDropTM 1000 

Spectrophotometer (Thermo Scientific) (see 2.6.1.2).    

2.6.1.2 RNA quality and quantity assessment 

RNA quality and quantity was evaluated by NanoDrop Spectrophotometry. The samples 

were measured according to the manual of the NanoDrop1000 software. RNA and DNA 
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absorb at 260 nm, this software estimate the concentration according to the absorbance at 

260 nm (Figure 2.2). Proteins and phenols absorb light at 280, other contaminants like 

carbohydrates, salts and also phenols absorb light at 230 nm. The ratio 260/280 and 260/230 

of absorbance is calculated, giving the purity of the samples. A 260/280 ratio of around 1.8 

for DNA and 2.0 for RNA indicates pure samples and a 260/230 ratio below 2.0 indicates 

contaminants. 

 

Figure 2.2: The absorbance at 260 nm for DNA, picture from NanoDrop1000 software manual. 

1.) The system was initiated with a distilled water sample. 

2.) In the computer program ”RNA-40” was chosen for RNA samples, “DNA-50” for DNA 

samples and “other-39” for cDNA. 

3.) A blank measurement was conducted using 2 µl distilled water. 

4.) 2.0 µl of each sample were used for the measurement. 

5.) The system measures the absorbance at 260 nm and 280 nm and gave directly the 

concentration of the sample in ng/µl. 

6.) Afterwards the Sample Retention System was cleaned with distilled water.   
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2.6.2 Reverse transcription 

Reverse transcription of the isolated totalRNA (see 2.6.1) to cDNA was done using the High-

Capacity cDNA Reverse Transcription Kits (Applied Biosystems) according to manufacture 

recommendation. The Kit uses a random primer scheme for initiating cDNA synthesis. The 

RT reaction can also be carried out using oligo-dT or gene specific primers. We choose to 

use the random primers because it came with the Kit. Random primers are capable of 

priming cDNA synthesis at many points along the RNA template. Priming at many points 

simultaneously ensures the efficiency of the cDNA and that the whole sequence of interest is 

synthesised.  

2.6.2.1 Procedure 

To avoid RNA degradation, samples were kept on ice during the procedure.  

1.) Total RNA (1 µg) was synthesised to cDNA using a 96-well reaction plate. The 

remaining RNA was stored at -80˚C. 

2.) The mastermix was prepared according to the kit (Table 2.3).  

Table 2.3: cDNA mastermix reaction set up. 

Component Volume (µl) reaction kit 

(without RNase inhibitor) 

10x RT Buffer 2.0 

25x dNTP Mix (100mM) 0.8 

10x RT Random Primers 2.0 

MultiScribeTM Reverse Transcriptase 1.0 

Nuclease-free H2O 4.2 

Total per reaction 10.0 

3.) 10 µl Mastermix were added to each well with diluted RNA, for a total volume of 20 

µl in the 96-well reaction plate.  

4.) The 96-well plate was centrifuged briefly to remove air bubbles and to spin down the 

content.  
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5.) The cDNA synthesis was done with the following thermal cycle, program shown in 

table 2.4:   

Table 2.4: The thermal cycler program. 

 Step 1 Step 2 Step 3 Step 4 

Temperature 25˚C 37˚C 85˚C 4˚C 

Time 10 min 120 min 5 sec ∞ 

  

6.) The synthesised cDNA were quantified by NanoDropTM 1000 Spectrophotometer as 

described in chapter 2.6.1.2 

7.) cDNA was stored at -20˚C until use, avoiding thawing and freezing.  

8.) cDNA was thawed and water (1-9 µl) was added to some of the samples so that all of 

them would have the same concentration of cDNA. 

 

2.6.3 Real-time PCR 

The principle behind the real-time PCR (RT-PCR) methode is essentially the same as 

original PCR (also called end point PCR), developed by Kary Mullis and co-workers in the 

mid 1980s. (Kubista et al., 2006; Saiki et al., 1992). Instead of having to amplify the samples 

first to generate a large number of identical copies and then analyzing them with RT-PCR the 

generated data is collected every cycle “in real time”. PCR is still performed in a DNA 

template, in this case cDNA; this can be single or double-stranded. Primers are also needed, 

they have to flank the DNA sequence to be amplified, dNTPs, the rest we need is a heat 

stable polymerase and magnesium ions in the buffer. At first high temperature will melt and 

separate the strands and opening up for the primers. It is important that the melting fully 

separate the strands, if not they will quickly reanneal when the heat sinks. Then several 

cycles of high temperature follows for separating, and lower for the primers to get to the 

strands and start amplifying.  
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The difference with RT-PCR is that it also needs a fluorescent reporter that binds to the 

product formed and reports its presence by fluorescence and reflects the amount of product 

formed. Fluorescence is used for detection in real-time PCR. There are several dyes 

available, both sequence specific probes and non-specific labels (Kubista et al., 2006). For 

this experiment the dye SYBR green (SG) is used. This has virtually no fluorescence when it 

is free in solution and becomes brightly fluorescent when it binds to DNA (Kubista et al., 

2006). SG can bind to both single stranded DNA (ss-DNA) and double stranded (ds), but is 

about 11 fold lower with ss-DNA (Zipper et al., 2004), therefore the fluorescence will 

increase with the amount of ds-DNA. It is sequence non-specific and binds to the minor 

grove in DNA, and will detect both the gene we are looking for and also undesired primer-

dimer products.  During the first cycles the signal is weak and cannot be distinguished from 

the background, but after a while as the product accumulates the signal will increase 

exponentially until it runs out of critical components.  

In end-point PCR it says nothing about the initial amount of target molecules; it can only 

give a positive or negative answer. For real-time PCR the growth curve for the signal reflects 

on the difference in their initial amount of template molecules. This can be measured by the 

numbers of cycles needed to reach a threshold line, this number is called the CT (cycle 

threshold) or CP (crossing point) value (Kubista et al., 2006). Different instrument software 

use different methods to set the threshold and you can also set a threshold manually. 

Therefore one gene can have different CT values in different experiments and you cannot 

compare individual CT values between experiments.   
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Figure 2.2: The CT value, the number of cycles needed to reach the threshold line. 

At the end of the PCR cycles a disassociation-step is added to make a melting curve analysis 

in order to examine if there are any unwanted products. Shorter (or longer) products will 

melt at a different temperature.  



 

Figure 2.3: Dissociation curve. A: Melting curve for the product. B: The derived of the melting curve. 

 To avoid unspecific annealing, sequence specific primers are used. We use primers for 

Cyp1a1 and Akr1a4 as well as five housekeeping genes: 18s ribosomal RNA (18s), Actb, 

Gapdh, Hprt1 and Rpl13a (more about housekeeping genes in chapter 2.6.3.2, and 3.3.2).  

2.6.3.1 Procedure 

The cDNA was kept on ice at all times. The procedure is according to the protocol for the 

RT2 Real-TimeTM SYBR Green/Rox PCR master mix (SA Biosciences).  

A) Dissociation curve

B) Dissociation curve derivative
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A dilution series with the samples from the liver were conducted to find the cDNA dilution 

appropriate for the selected genes. This ensures that the eventually change of expression of 

the genes are not lost, as well as having the optimal cDNA concentration for the run. Results 

showed that a 1:10 dilution was appropriate.  

1.) The real-time PCR reaction mixture was prepared as shown in Table 2.5 

A 96 well reaction plate was used. 

Table 2.5: The real time PCR reaction mixture.  

Component Volume (µl) 

Master mix 12.5 

Primers* 1.0 / 2.0 

cDNA 2.0 

ddH2O 8.5 / 9.5 

Total volume: 25.0 

*If 1 or 2 µl of the primers were used depended on the primer and the recommendation from the manufacture, 
water was added to make a total volume of 25 µl. Primers were diluted in TE-buffer. 

The reaction plate was centrifuged briefly for one minute to remove air bubbles and to spin 

down the content. 

2.) The real-time PCR run was on 7500 Fast Real Time PCR System (Applied Biosystems), 

with following thermal cycle program (Table 2.6):  

Table 2.6: Thermal cycle for the real time PCR. 

Stage Duration Temperature Cycles 

1 10 min 95 ˚C 1 

2 15 sec 

 1 min 

95 ˚C 

60 ˚C * 

40 

3 15 sec 95˚C 1 

* Data collecting step 
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2.6.3.2 Real time PCR data analysis 

Relative quantification is the most widely used technique. It determines the changes in 

steady-state mRNA levels of a gene across multiple samples and expresses it relative to the 

levels of an internal contntrol RNA (Duale 2010). The reference genes we are using are 

housekeeping genes (HKGs). HKGs are used to correct methodological variations during the 

same run; they are ubiquitously and are thought to be expressed at similar levels in cells. 

Here we used the BestKeeper (BK) algorithm to evaluate the stability of these HKGs (Pfaffl 

et al., 2004b).        

Normalisation was performed according to the ∆∆CT-method (Livak and Schmittgen 2001). 

This is the simplest one as it is a direct comparison of CT values between target gene and 

HKG (or BK as we use). The samples were normalised first to the BK (∆CT = CTtarget – 

CTBK) and then values for the treated samples vs. the control samples were calculated (∆∆CT 

= ∆CTtreated - ∆CTcontol). For expressing the relative change between treated and control 2-∆∆CT 

values were calculated, and then the fold change values were log2-transformed.  

2.7 Statistics  

The data from comet assay were analysed using the nonparametric Mann-Witney U-test, 

because the data were not normally distributed.  

For the NADP/NADPH ratio we also used nonparametric test. Nonparametric two related 

samples test (Wilcoxon Signed Ranks Test) to test for Ogg1
-/- and Ogg1

+/+ genotype 

differences. Nonparametric two dependent sample test (Mann-Whitney U-test) was used to 

examine the difference between BaP- versus corn oil treated samples. 

The gene expression data were analyzed by one-way ANOVA followed by a post hoc 

Dunnett’s test to allow for multiple comparisons, i.e. comparison between treatment groups: 

∆CT BaP exposed (CT exposed target gene – CT BK genes) versus ∆CT untreated CTL (CT 
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untreated control target gene – CT BK genes), and two paired t-test was used to check for 

genotype differences.  

Statistical analyses were performed using SPSS software v17 (SPSS Inc., Chicago, IL), and p 

< 0.05 was accepted as statistically significant.  
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3. Results 

3.1 Induction of oxidative DNA damage following in vivo 
exposure to BaP 

The mice were treated acutely with one dose of BaP (150 mg/kg bw) or vehicle only (corn 

oil) by i.p. administration. For the comet assay the sacrifice of the mice occurred at day ten 

(Day 10), seventeen (Day 17) and thirty-one (Day 31) following the treatment, with main 

focus on Day 17 since we in Study 1 have observed a low but significant increase in Fpg-

sensitive DNA lesions in testicular cells (Meier2008). Three mice per genotype were 

exposed for sacrifice at Day 17 whereas for Day 10 and Day 31 one mouse of each genotype 

was included.  Four untreated control mice (CTL) of each genotype were also included to 

establish spontaneous background DNA damage levels. For each tissue four technical 

replicates were generated in the comet assay (four gels were moulded on the GelBond film 

per sample) and fifty comets were scored on each technical replicate, giving a total of 200 

scored comets for each sample.      

In order to specifically address oxidative damage digestion of nuclear DNA with a crude 

extract of the bifunctional DNA glycosylase/AP-lyase Fpg from E. coli was included in the 

comet assay. Net Fpg-sensitive sites (Fpg-ss) were obtained by subtracting the tail intensity 

value of the corn oil treated mice from the tail intensity value of the BaP treated mice.  

In Ogg1-/- mice the background damage level in untreated CTL mice (Appendix B) was 

lowest in the testis with 19.8% tail intensity in the KO and 15.1% in WT mice. It was 

markedly higher in lungs of Ogg1-/- mice with a tail intensity of 50.6% whereas the WT had 

22.5% in the lung. The liver had approximately similar levels as the lung, with 48.1% tail 

intensity in KO and 21.6% in WT. 

For the animals exposed to the vehicle (corn oil) and sacrificed at Day 10 unexpectedly high 

DNA damage levels were recorded. Repeating the experiment with new mice lower levels of 

DNA damage were measured, but we could still see some effect of oil treatment. This is also 

the reason for subtracting oil treatment from BaP treatment in the results shown here, raw 
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data are shown in Appendix B. We could not specifically exclude that the first data of DNA 

damage had been introduced due to health issues with the individual mice, or as a result of 

operator errors. The results from Day 10 were thus left out of the dataset due to these 

unexplainable observations, and are represented in Appendix B.  

In the testis no increase in Fpg-ss was observed at Day 17, either in Ogg1-/- mice or in wild 

type mice (Figure 3.1A). At Day 31, on the other hand, there was a small induction of Fpg-ss 

in Ogg1-/- mice that were not observed in the wild type. The results from Day 31 were 

however based on only one mouse per genotype. In the somatic tissues investigated, the liver 

and lung, oxidative DNA damage was induced in vivo as a result of BaP (Figures 3.1B and 

C). Moreover significant differences in DNA damage levels between genotypes were 

observed. In the liver of Ogg1
+/+

 mice, the level of Fpg-ss increased at Day 17, after which it 

declined to the level of untreated mice at Day 31. In liver cells of Ogg1
-/- mice, on the other 

hand, the level of Fpg-ss initially declined below that of untreated mice at Day 17. This 

difference is statistically significantly different between the genotyes (p = 0.049).  At Day 31 

liver cells showed a ~17% increase above that of untreated CTL mice. In the lung of both 

Ogg1
-/- and Ogg1

+/+ mice increased levels of Fpg-ss was recorded at Day 17 that declined at 

Day 31. The lung cells from Ogg1
-/- mice showed a higher increase in Fpg-ss that the WT 

and the difference between them were significantly different with (p = 0.049). The level of 

Fpg-ss declined at Day 31, but not to the level of untreated CTL mice as it did for wild type 

mice. The differences in damage level in the lung between Ogg1
+/+ and Ogg1

-/- mice were 

largely similar at Day 17 and at Day 31. The induction of Fpg-ss sites were thus most 

pronounced in the lung.  
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Figure 3.1: Net Fpg-sensitive sites in testis, liver and lung from BaP-exposed mice, measured using the comet 

assay. Tail intensity (%) of cells from testis (A), liver (B) and lung (C) measured with the comet assay. The y-
axis shows the relative tail intensity, after subtracting the tail intensity of the corn oil treated mice from mice 
exposed to BaP. The x-axis shows day of sacrifice following treatment. These data are based on four untreated 
CTL animals, three animals per exposure scenario and genotype at Day 17 and one animal per exposure 

scenario and genotype at Day 31. The average of medians of 200 scored comets per animal ± SE is shown, after 
subtraction as described above. * Statistical significant differences between genotypes (p < 0.05).      

 

When whole tissue cells/nuclei preparations from testis are made by the mechanical 

squeezing procedure a heterogeneous population of male germ cells of different stages of 

spermatogenesis and different somatic cells are generated. In comet assays on these samples 

male germ cells are not distinguished from somatic cells except for the haploid round 

spermatids due to their lower DNA content identified as total intensity. The comet data can 

be plotted in a diagram showing the total intensity and the DNA damage level as tail 

intensity. Using these approach specific results from haploid round spermatids can be 

obtained. Evaluating results from untreated CTL mice and due to previous experience we 

found that the haploid round spermatids constitute ~50-60% of the cells scored in the comet 

assay on testis tissue squeeze cell samples. Based on plotting the results in testis diagrams 

according to ploidy (total intensity) versus DNA damage (tail intensity) we observed that a 
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population of the haploid round spermatids at Day 31 following BaP-exposure indeed 

showed very high damage levels (Circled in Figure 3.2B). In the mice treated with the 

vehicle (corn oil) only few haploid round spermatids expressed marked levels of Fpg-

sensitive sites (Figure 3.2 A). Furthermore, the time from exposure to sacrifice of mice of 31 

days imply that the haploid round spermatids present in the testis at the time of sacrifice 

originated from stem cells spermatogonia at the time of exposure. The results from Day 31 

were however restricted to one mouse per exposure scenario and genotype. 
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Figure 3.2: Results from comet assays on testis samples presented as DNA damage levels (Tail intensity) as a 
function of ploidy (Total intensity). Testis samples are from individual Ogg1

-/- mice treated with oil (A) and 

BaP (B) sacrificed at Day 31 following treatment. On the x-axis the total intensity for the comets is shown, and 
on the y-axis the the % tail intensity is shown. Haploid round spermatids are at the left part of the x-axis due to 
their low DNA content. The circle indicates where heavily damaged haploid round spermatids appear.    

.   

A) Testis -oil

0

10

20

30

40

50

60

70

80

90

100

0 100000 200000 300000 400000 500000 600000

Total intensity

T
a

il
 i
n

te
n

s
it

y
 (

%
)

No fpg

Fpg

B) Testis -BaP

0

10

20

30

40

50

60

70

80

90

100

0 100000 200000 300000 400000 500000 600000

Total intensity

T
a

il
 i
n

te
n

s
it

y
 (

%
)

No fpg

Fpg



 

 

57 

57 

3.2 The relationship between NADP/NADPH 

BaP is first metabolised to (-)-BaP-7,8-diol via Cyp1A1/Cyp1A2 and epoxide hydrolase (see 

figure 1.2). This metabolite can either be metabolised further by Cyp1A1 to (+)-anti-BPDE 

or alternatively it can be metabolised by AKRs to a redox-active quinone (BaP-7,8-dione) via 

a catechol. The o-quinone formed can undergo a reduction back to catechol in the presence 

of a reducing cofactor, like NADPH. Each time the catechol is reformed it may be reoxidised 

to catechol simultaneously generating ROS via molecular oxygen. This futile redox cycle 

generates ROS and utilise NADPH. In order for this redox cycle to occur, NADPH must be 

present in the cell. A decline in the NADPH/NADP-relationship is indicative of consumption 

of NADPH and is an indication of reiterating redox cycles giving rise to ROS. We measured 

the NADPH/NADP-relationship in mice exposed to BaP or corn oil that were sacrificed at 

day one, three, five and seventeen for both genotypes. For WT mice we measured this 

relationship also in mice sacrificed at Day 10. Two untreated CTL mice of each genotype 

were used to establish baseline levels of NADPH and NADP.  

3.2.1 Standard curve 

A standard curve for the amount of NADP was established (Figure 3.2), and we determined 

the appropriate amounts of tissue extract to be used that had levels of NADP within the range 

of the standard curve.  
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Figure 3.3: The standard curve for NADP. The x-axis shows the concentration of NADP (µM) and the y-axis 

shows the ∆OD (OD at time 30 minutes minus OD at 0 minutes).  

3.2.2 The amount of NADP/NADPH 

NADP and NADPH were measured in extracts from half a decapsulated testis (30-40 mg) 

and from ~20 mg liver or lung tissue from untreated CTL mice. The amounts of NADP and 

NADPH were lowest in the testis, higher in the lung and highest in liver tissue (Table 3.1). 

The amounts of NADP and NADPH were stable in the untreated CTL mice described by 

their low SD.  

Table 3.1: Levels of NADP and NADPH in testis, liver and lung tissue for untreated CTL Ogg1
+/+ and Ogg1

-/- 
mice 

 

*mean ∆OD value ± SD for two untreated CTL animals of each genotype.  

0.05 ± 0.000.22 ± 0.000.46 ± 0.00NADPH

0.09 ± 0.000.18 ± 0.010.23 ± 0.03*NADP

TestisLungLiverOgg1-/-

A) ∆ OD CTL

0.05 ± 0.000.22 ± 0.000.46 ± 0.00NADPH

0.09 ± 0.000.18 ± 0.010.23 ± 0.03*NADP

TestisLungLiverOgg1-/-

A) ∆ OD CTL

0.08 ± 0.010.19 ± 0.010.53 ± 0.15NADPH

0.09 ± 0.000.12 ± 0.010.21 ± 0.07NADP

TestisLungLiverOgg1+/+

B) ∆ OD CTL

0.08 ± 0.010.19 ± 0.010.53 ± 0.15NADPH

0.09 ± 0.000.12 ± 0.010.21 ± 0.07NADP

TestisLungLiverOgg1+/+
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3.2.3 Relationship between NADP/NADPH 

In order for the redox cycle of quinones to occur leading to ROS generation the cell should 

contain significant amounts of the reducing agents such as NADPH and Cu2+. The 

NADP/NADPH ratio should therefore ideally start with a very low number that increases as 

NADPH is being used in the reaction. If NADP/NADPH > 1 there is more NADP than 

NADPH whereas when NADP/NADPH < 1 there is more NADPH than NAPD, favourable 

of redox cycling. As the reaction proceed and NADPH is used we would expect the ratios to 

increase, which was exactly what we found. 

In the testis of Ogg1
-/- mice, the relative amount of NADPH was initially low in untreated 

controls. The relative amount of NADPH was however markedly reduced at Day 3 following 

BaP-exposure with higher relative amount than CTL mice at Day 5 after which it returned to 

the relative amount of CTL mice (Figure 3.4).  

In the liver the relative amount of NADPH followed a similar pattern as the testis. The level 

declined somewhat relative to NADP already at Day 1, with a most pronounced reduction at 

Day 3, after which it was increased at Day 5 and approached the level of CTL mice and corn 

oil treated mice at Day 17. The response in the lung did not follow a similar pattern as did 

the testis and liver. The NADPH level was dramatically reduced at Day 1 (there were no 

NADPH left in the samples) after which it returned gradually to levels of CTL mice at the 

subsequent days of analyses.  

At Day 17 there were no significant differences between BaP-exposed samples and oil 

treated ones (P > 0.05) in any of the tissues or genotypes. For Day 1-5 there were only one 

animal in each group, and we could not test for statistical differences.  

No significant differences in NADP/NADPH ratios between the genotypes for testis and lung 

(P > 0.05) were observed. In the liver, on the other hand, there were significant differences in 

NADP/NADPH ratios between Ogg1
-/- and Ogg1

+/+ samples following BaP treatment (p = 

0.007) 
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Figure 3.4: Ratios between NADP/NADPH in Ogg1-/- mice. The y-axis shows the ∆OD for NADP divided by 

the ∆OD for NADPH. The x-axis is categorical and shows the treatment and the day of sacrifice after treatment, 

single numbers represent mice exposed to BaP. The mean values and SD of technical replicates are also shown 
as a table. There were three animals in the CTL group, one in the Day 1, 3 and 5 groups and three in the Day 17 
groups.  
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mainly the same patterns as did Ogg1
-/- mice and at Day 10 the relationships between NADP 

and NADPH were almost one. One exception was the liver. The initial relative levels of 

NADPH were similar in Ogg1
+/+ and Ogg1

-/- mice. The response following BaP-exposure 

was however significantly different between the two genotypes; instead of having the lowest 

relative amount of NADPH at Day 3, as in Ogg1
-/- mice, the lowest and most pronounced 

reduction in the relative amount was observed at Day 1 (where we found no NADPH in the 

samples thus the NADP/NADPH ratio was close to ∞), followed by an increase at day 3 and 

another reduction at Day 5. At Day 10 and Day 17 the relative levels approached those of 

untreated CTL mice.  
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Figure 3.5: Ratios between NADP/NADPH in Ogg1
+/+ mice. The y-axis shows the ∆OD for NADP divided by 

the ∆OD for NADPH. The x-axis is categorical and shows the treatment and the day of sacrifice after treatment, 
single numbers represent mice exposed to BaP. The mean values and SD of technical replicates are also shown 
as a table There were three animals in the CTL group, one in the Day 1, 3, 5 and 10 groups and three in the Day 
17 groups.  
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3.3 Gene expression pattern of two selected genes 
involved in BaP-metabolism 

The final aim of this experiment was to see if there were any alterations in the gene 

expression.  

3.3.1 RNA quality and quantity control 

RNA quality (purity and integrity) and quantity were measured using a NanoDrop ND-1000 

Spectrophotometer (Fisher Scientific, Norway). The total RNA concentration of the samples 

has been quantified with the NanoDrop-1000 software by measuring the extinction at 260 

nm. Additionally, the OD260/280 and the OD260/230 ratio showing RNA purity were 

evaluated. An OD260/280 ratio of ~ 2.0 for RNA indicates pure samples, ratios lower than 

these values indicate the presence of protein, phenol or other contaminants that absorb light 

at 280 nm. An OD260/230 ratio above 2.0 indicates pure samples, and a ratio below 2.0 

indicates contaminants such as carbohydrates, salts and phenols. Table 3.2A shows the 

average total RNA yields from testis, lung and liver. The total RNA yield ranged from a 

minimum of 1.16 µg (lung) to maximum of 195.8 µg (liver).   

We have synthesised cDNA from 1 µg total RNA, and the quality of the generated cDNAs 

are acceptable (Table 3.2B). The average OD260/280 ratio ranged from 1.75 to 1.84. Pure 

DNA has an OD260/280 ratio ~ 1.8. 
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Table 3.2: RNA/cDNA quality and quantity* 

 

*Mean values ± SD 

3.3.2 Evaluation of housekeeping gene stability 

Housekeeping genes, HKGs, or reference genes are considered as gold standard for 

normalization. They are used to even out variations in the expression of the target genes. 

However, up to now no general rules for which HKG is the right one to normalise the target 

genes is given. A good HKG should have a constant level of expression between individuals, 

among different tissues of an organism, at all stages of development, and should not be 

affected by the experiment treatment (Duale2010). It has been proposed to use several HKGs 

because the expression of one HKG might change slightly. It is recommended to use a 

reference gene index, i.e. a geometrical average of multiple HKGs. We have used the 

BestKeeper software (Pfaffl et al., 2004b), to evaluate the stability of five HKGs (18s rRNA, 

Actb, Gapdh, Hprt1 and Rpl13a). The software allows for an accurate normalization of qRT-

PCR data by geometric averaging of multiple internal control genes, BestKeeper (BK). The 

major drawback of these methods is the need of many primer pairs and the complicated way 

to process the data. Figure 3.6 shows the stablitity of the five HKGs and their geometric 

mean (BK) for testis from Ogg1
-/-

 mice (HKG stability for other tissues or genotype is shown 

in Appendix B). 

1.24 ± 0.482.18 ± 0.1011.65 ± 18.640.6 ± 18.9Lung

1.78 ± 0.342.12 ± 0.0857.2 ± 44.657.9 ± 22.6Liver

1.91 ± 0.262.21 ± 0.0843.7 ± 21.832.8 ± 10.2Testis

260/230260/280 Amount RNA (µg) Tissue (mg)Tissue

A) RNA

1.24 ± 0.482.18 ± 0.1011.65 ± 18.640.6 ± 18.9Lung

1.78 ± 0.342.12 ± 0.0857.2 ± 44.657.9 ± 22.6Liver

1.91 ± 0.262.21 ± 0.0843.7 ± 21.832.8 ± 10.2Testis

260/230260/280 Amount RNA (µg) Tissue (mg)Tissue

A) RNA

2.19 ± 0.081.76 ± 0.0663.3 ± 5.81Lung

2.14 ± 0.081.75 ± 0.0666.4 ± 4.81Liver

2.31 ± 0.021.84 ± 0.0136.9 ± 6.31Testis

260/230260/280Amount cDNA (µg)RNA (µg)Tissue

B) cDNA

2.19 ± 0.081.76 ± 0.0663.3 ± 5.81Lung

2.14 ± 0.081.75 ± 0.0666.4 ± 4.81Liver

2.31 ± 0.021.84 ± 0.0136.9 ± 6.31Testis

260/230260/280Amount cDNA (µg)RNA (µg)Tissue

B) cDNA



 

 

65 

65 

For some samples we used only the geometric average of four HKGs because some single 

HKGs had a SD higher than 1.0 and these HKG were left out of the geometrical mean for the 

BK.  

0

5

10

15

20

25

30

35

C
T

L

C
T

L

C
T

l 1 1 1 3 3 3 5 5 5

1
7

1
7

1
7

1
7
 O

il

1
7
 O

il

1
7
 O

il

Days after exposure

C
t-

v
a
lu

e

0

5

10

15

20

25

30

35

18s

Actb

Gapdh

Hprt1

Rpl13a

BK

 

Figure 3.6: HKG stability in testis of Ogg1
-/-

 mice. Evalution of five HKGs stability by BestKeeper software 

(Pfaffl et al., 2004a). Bars (left axis) represent the CT-value of five HKGs and line (right axis, red) represents 
the geometric mean of the five HKGs (BK). For every group (CTL, Day 1, 3, 5, 17 and 17 oil) and for each 
HKG, three technical replicates were used. Results for the other organs and genotypes are shown in Appendix 
C.   

3.3.3 Serial dilution curve analysis of cDNA standard  

Each analysed sample generates an individual amplification history during real-time 

fluorescence analysis. Biological replicates, even technical replicates, result in significantly 

different amplification curves as a result of sample-to-sample variations. Constant 

amplification efficiency in all compared samples is one important criterion for reliable 

comparison between samples. A number of variables can affect the efficiency of the PCR, 

such as length of the amplicon, GC content of the amplicon, secondary structures and primer 

quality (Duale2010). The PCR efficiency can be calculated from the slope of the standard 

curve (Figure 3.7) as:  Efficiency = 10(-1/slope) –1. 
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If the slope of the standard curve is -3.3 then the PCR is 100 % efficient. With 100 % 

efficiency, a 2-times dilution gives a ∆Ct of 1 between each dilution (in each cycle the 

amount of amplification is doubled) (Duale2010). Equal efficiency is required for the ∆∆CT-

method. Although valid data can be obtained that fall outside of the efficiency range, the RT-

qPCR should be further optimized or alternative amplicons designed (Duale2010). 

Serial dilution analysis was performed to find suitable dilution of cDNA and ensure that 

there are equal amplification efficiencies for all genes. The serial dilution analysis was done 

on the liver cDNA for both target genes (Cyp1a1 and Akr1a4) used in this thesis and also for 

one HKG (18s rRNA) (Figure 3.7). There were about 200 ng/ul cDNA in the samples and we 

found the 1:10 dilution to be the best and this dilution was used for all samples for all tissues 

and genes.  
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Figure 3.7: Serial dilution curve. cDNA standard for liver Ogg1
-/- (A) and Ogg1

+/+(B) for 18s rRNA, Cyp1a1 

and Akr1a4. R2 for Ogg1
-/-

 18s rRNA is 0.33, for Cyp1a1 0.51 and for Akr1a4 it is 0.48. For Ogg1
+/+ R2 is 18s 

rRNA 0.72, Cyp 1a1 0.39 and Akr1a4 0.59.  
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3.3.4 Gene expression analysis 

The relative gene expression of two genes (Cyp1a1 and Akr1a4), which are involved in the 

BaP-metabolism, were studied in testis, liver and lung from mice exposed to BaP, corn oil 

and unexposed controls (CTL). Animals were sacrificed at Day 1, 3, 5 or 17 after exposure. 

There are three mice that were sacrificed at Day 17 after corn oil treatment. For every 

treatment group there are three mice, and for every mouse there are three technical replicates. 

Four CTL mice were used. For every CTL there are two technical replicates. All samples are 

normalised to the geometric average of five (or four) HKGs, BK-value (see section 3.3.2). 

The average of CTL mice was used as calibrators. i.e. each normalised gene (∆CT -target 

gene) was subtracted by average unexposed controls (CTL) (∆CT-control) in the 2-∆∆CT –

method to find fold differences. The relative expression of a target gene (fold change) in BaP 

or corn oil exposed sample compared with unexposed controls (CTL) is given as: fold 

change = 2-∆∆CT. The log2-transformed fold change values were used to construct Figure 3.7 

and 3.8.  

3.3.4.1 The effect of BaP on Cyp1a1 gene expression 

In the testis Ogg1
-/- and Ogg1

+/+ samples had significant different (p < 0.01) expression 

patterns with maximum induction at Day 1 for Ogg1
+/+, while Ogg1

-/- samples reached 

maximum level at Day 5 (Figure 3.8A), at Day 17 the Cyp1a1 gene expression reached 

baseline level for both Ogg1
+/+ and Ogg1

-/- samples. In liver there was time-dependent 

statistical significant (p < 0.05) induction of Cyp1a1 in both Ogg1
-/- and Ogg1

+/+ compared 

to untreated controls (Figure 3.8B). Both Ogg1
-/- and Ogg1

+/+ had similar expression pattern 

between the genotypes, with maximum induction at Day 1. Then the Cyp1a1 gene expression 

declines to the baseline level at seventeen days after exposure (Figure 3.8B). In the lung there 

was induction of Cyp1a1 both in Ogg1
+/+ and Ogg1

-/- but the expression pattern was 

somehow different (p = 0.01) (Figure 3.8C). The Cyp1a1 gene expression level reached 

maximum induction at Day 1 for both samples.  
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Figure 3.8: Relative gene expression. Cyp1a1 gene expression in testis (A), liver (B) and lung (C) of mice 
treated with BaP. There are three mice at every group and three technical replicates for each of them. The mean 

of all the results using the ∆∆CT method ± SE is shown for the different days after exposure. A: Statistical 
significant increase at Day 1,3 and 5 for both genotypes (except Ogg1

-/- Day 1) compared to CTL value. B: 
Statistical significant increase at Day 1,3 and 5 compared to CTL value for both genotypes (p < 0.05). C: 
Statistical increase (and decrease) for all results for both genotypes, except WT Day 17-oil. * Statistical 

significant different from CTL (p < 0.05) 

3.3.4.2 The effect of BaP on Akr1a4 gene expression 

In the testis the Akr1a4 gene expression pattern of Ogg1
-/- mice was significantly different 

from the expression pattern of Ogg1
+/+  (p <0.001), with no induction of Akr1a4 gene in 

Ogg1
-/- mice and a maximum induction in Ogg1

+/+ mice at Day 17 (Figure 3.9A). In the liver 

the Akr1a4 gene expression pattern was similar (p > 0.05) for both Ogg1
-/- and Ogg1

+/+ mice 

and no induction of the Akr1a4 gene was observed (Figure 3.9B). In the lung there was a 

time dependent induction of the Akr1a1 gene in both Ogg1
-/- and Ogg1

+/+ mice (Figure 

3.9C). The Akr1a4 gene expression pattern of Ogg1
-/- mice was significantly different from 
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the expression pattern of Ogg1
+/+  (p <0.001), with a maximum induction at Day 5 for 

Ogg1
+/+ mice and Day 17 for Ogg1

-/- mice (Figure 3.9C).  
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Figure 3.9: Relative gene expression of Akr1a4. Akr1a4 gene expression in testis (A), liver (B) and lung (C) of 

mice treated with BaP. There are three mice in every group and three technical replicates for each of them. The 

mean of the results after using the ∆∆CT method ± SE are shown. A: Statistical significant increase at Day 17 

for Ogg1
+/+ compared to CTL value, and significant decrease for Ogg1

-/- Day 17-oil compared to CTL. B: 
Statistical significant increase at Day 1 for Ogg1

+/+ compared to CTL value. C: Statistical significant increase at 
Day 17 and Day 17-oil for both genotypes and also for Day 3 and 5 for Ogg1

+/+ compared to CTL. * Statistical 
significant different from CTL (p < 0.05) 

    

 

3.3.4.3 Constitutive levels of gene expression 

The constitutive levels of gene expression were evaluated (Figure 3.10). The relative 

quantities are derived from the normalised 2-∆CT values of unexposed CTL mice were used. 

The figure shows a higher constitutive expression level of  Akr1a4 gene in all tissues 

compared to the Cyp1a1gene expression level, with the highest difference in testis, medium 

difference in liver and the lowest difference in lung. From the figure (Figure 3.10) we also 

see that the Akr1a4 gene expression clearly is higher in Ogg1
-/- mice for both testis and liver 

tissue.  
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Figure 3.10: The constitutive expression of Cyp1a1 and Akr1a4. The relative quantities are derived from the 
normalised 2-∆CT values for CTL mice for Cyp1a1 and Akr1a4 in all tissues for both Ogg1

-/- and Ogg1
+/+ mice.  
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4. Discussion 

On a daily basis, we are exposed to PAHs such as BaP from food, burning of fossil fuels, 

forest fire, tobacco smoke and diesel exhaust which qualifies for extensive studies to achieve 

a thorough understanding of the possible negative effects of exposure of humans. Knowing 

that smoking men have more DNA damage than non-smokers in their sperm (Sipinen et al., 

2010), and that DNA damage in the sperm is correlated with reduced sperm quality and 

disturbed embryo development (Aitken et al., 2009) give rise for concern for the possible 

negative effects on male germ cells of human exposure to environmental agents. Moreover 

smoking men have lower success rates in assisted reproduction procedures (Zitzmann et al., 

2003) and paternal exposure to PAHs via cigarette smoke increase the risk of childhood 

cancer in the offspring (Boffetta et al., 2000; Cordier et al., 1997; Lee et al., 2009). 

 

BaP-exposure leads to induction of DNA damage that may be removed via DNA repair. We 

have previously shown that human testicular cells exhibit poor repair of oxidative damage 

such as 8-oxoG, compared to rodents (Olsen et al., 2003). We, and others, have also shown 

that male germ cells exhibit a low NER function for several bulky DNA adducts, including 

BPDE-adducts (Brunborg et al., 1995; Jansen et al., 2001; (Olsen et al., 2010; Verhofstad et 

al., 2010b) . These findings indicate that male germ cells, particularly human, may be very 

sensitive for exposure to certain environmental agents and that care should be taken in 

extrapolating results from rodents to man. The use of repair deficient mice, such as Ogg1
-/- 

mice, thus mimics the repair capacity of human male germ cells and allows more relevant 

analyses of genotoxicity of exposure to environmental agents. 

 

In this study a small increase in oxidative damage was observed in the testis at Day 31 

following BaP-exposure of Ogg1
-/- mice (Figure 3.1), which was most evident in haploid 

round spermatids (Figure 3.2). Oxidative damage was also induced in the somatic tissues 

investigated; we observed a small increase at Day 31 in the liver and a more pronounced 

induction in the lung at both Day 17 and Day 31 (Figure 3.1) in Ogg1
-/- mice. The analyses of 

NADP/NADPH-ratios (Figures 3.4 and 3.5) along with expression analyses of Cyp1a1 

(Figures 3.8 and 3.10) and Akr1a4 (Figures 3.9 and 3.10) in the different tissues corroborated 

the DNA damage levels observed. 
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4.1 Testis 

BaP is found in high levels in cigarette smoke and has been shown to induce increased levels 

of 8-oxoG lesions and DNA adducts in sperm, as well as abnormal sperm and reduced 

fecundity (Fraga et al., 1996; Zenzes et al., 1999a; Zitzmann et al., 2003). BaP gives rise to 

bulky DNA lesions in sperm and testicular cells at all stages of spermatogenesis (Verhofstad 

et al., 2010a; Verhofstad et al., 2010b; Zenzes et al., 1999a). Recently, we reported a 

temporal pattern of genotoxic consequences following exposure to BaP (Olsen et al. 2010); 

exposure to stem cell spermatogonia gave de novo mutations in the resulting sperm whereas 

exposure late during spermatogenesis gave sperm containing high levels of bulky BPDE-

adducts (Olsen et al. 2010).  

In Study 1, a marginal, but statistically significant increase in Fpg-ss at 17 days after BaP 

exposure in male germ cells from Ogg1
-/- mice, using the comet assay (Meier2008). In this 

work we aim to reproduce this experiment. The increase in Fpg-ss at Day 17 after BaP-

exposure was not verified in this experiment. Anyhow at Day 31 we do observe a small 

increase in net Fpg-ss (Figure 3.1) is observed, and we can ascribe this damage to the haploid 

rohund spermatids (Figure 3.2). These data are however based on one single animal for each 

genotype. The haploid round spermatides scored in the comet assay originated 

from spermatogonial stem cells at the time of exposure. This suggests that the stem cell stage 

may be susceptible to accumulation of Fpg-ss following BaP-exposure. Stem cell 

spermatogonia are located at the outside of the blood-testis barrier and may therefore be 

more exposed to agents via the blood. Spermatogonia are rapidly dividing making the DNA 

less tight and prone for damage. Although BaP-exposed samples had higher DNA damage 

levels than corn oil treated samples at Day 31, the damage levels recorded were not higher 

than the spontaneous background damage level (Appendix B). We thus suggest that exposure 

to BaP give rise to limited oxidative damage in male germ cells certain stages of 

spermatogenesis, assuming that the oxidative damage induced have not been removed by 

back-up repair. 

The amount of NADP and NADPH in the testis was low compared to liver or lung. NADPH 

needs to be present, as the reducing cofactor of the quinone, for the formation of ROS 

(Figure 1.8). A decrease in the amount of NADPH will give an indication of the amount of 

ROS formed. A low amount of NADP and NADPH in testis indicates that there may be 
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limited reduction to catechol of the quinones formed and hence limited formation of ROS in 

the testis (Park et al., 2006a). The somatic tissues had higher initial levels of NADPH, which 

may be one of the reasons why testicular cells differ in accumulation of oxidative DNA 

damage. We observed a marked increase in NADP/NADPH ratio at Day 3 showing that the 

level of NADPH is indeed reduced compared to NADP, and the observed increased ratios 

were not statistically different between Ogg1
-/- and Ogg1

+/+ mice. Deficiency in repair of 

oxidative damage due to Ogg1 thus did not influence the dynamics of NADP or NADPH. 

These are indications for at least some futile redox cycling do occur in testicular cells 

forming ROS, but at levels that are undetectable as oxidative DNA damage in the comet 

assay during time frame investigated, with exception for the damage observed at Day 31 

following exposure. 

The expression of Cyp1a1 in Ogg1
+/+ and Ogg1

-/- mice was greatly increased in all tissues 

(Figure 3.8), with the lowest increase in testis. The temporal expression pattern in the testis 

differed significant (p < 0.01) between Ogg1
-/- and Ogg1

+/+ mice; in the Ogg1
-/- testis there 

was a gradual increase with a maximum at Day 5, whereas in Ogg1
+/+ testis there was 

maximal increase at Day 1 that was equally high at Day 3 and 5, followed by a decrease at 

Day 17 in both genotypes with Ogg1
+/+ showing baseline levels and Ogg1

-/- approaching 

baseline levels. The Cyp1a1 gene expression pattern observed in this study was largely 

similar (with minor discrepancies) to that observed in Study 1;(Meier et al. 2008). The 

reproducibility of these results in two studies with two different operators indicates that the 

experimental approaches used are reliable and robust. It has also been reported a low 

constitutive and highly induced expression of Cyp1a1 in the testis, even higher than in the 

liver, following a single i.p. exposure to PAH (100 mg/kg bw ) of C57BL/6J mice, sacrificed 

after 72 hours (Shimada et al., 2003) and this report correspondence well with our results. 

Akr1a4 is a mouse homologue of the human AKR1A1 (Barski et al., 1999), which is one of 

several AKR-enzymes involved in BaP metabolism (AKR1A1, and AKR1C1-1C4) (Penning 

et al., 1996). The constitutive expression of Akr1a4 gene is markedly higher than Cyp1a1 

gene in testis (Figure 3.10), and this differences is more pronounced in testis than in the other 

tissues investigated. High constitutive expression was observed in Study 1;(Meier et al. 

2008), and also reported by others (Allan and Lohnes 2000). In humans AKR1A1 gene is  

expressed in the testis (Barski et al., 1999). The high constitutive expression level of Akr1a4 
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gene may favour metabolism of BaP via the AKR-route in the testis, which facilitate ROS 

generation. However, this requires the availability of reducing agents and oxygen within the 

cell. The high constitutive Akr1a4 mRNA level is probably associated with the stable Akr1a4 

expression observed after BaP-exposure in the testis. Similar Akr1a4 gene expression pattern 

was observed for Ogg1
-/- mice in Study 1, but the expression magnitude was somehow lower 

than our result. The BaP exposure induced Akr1a4 expression at Day 17 in Ogg1
+/+ mice, 

which was not apparent in Ogg1
-/- mice (Figure 3.9A). The AKR enzymes can efficiently 

compete with CYPs for metabolising BaP, and the dominant pathway depends on the redox 

state of the cell (Quinn and Penning2008). When quinones are formed they lead directly to 

induction of CYP enzymes through the AhR-pathway (Burczynski and Penning 2000; Park et 

al., 2006a). Testis cells exhibit a lower amount of NADPH and a lower oxygen pressure than 

liver and lung, implying that the AKR pathway might not dominate.  

Several in vitro studies with BaP in different cell types have found 8-oxoG damage 

following BaP exposure (Briede et al., 2004; Park et al., 2006a; Park et al., 2008a; Park et 

al., 2009; Park et al., 2006b; Quinn and Penning2008; Sipinen et al., 2010),. Only few in 

vivo studies of BaP have been conducted, and to our knowledge none of these have reported 

on oxidative damage in testis.  

In human sperm, using the comet assay plus Fpg our group observed DNA damage 

irrespective of BaP and BPDE exposure (Sipinen et al. 2010), showing that this method is 

suitable for measuring oxidative damage. 

BaP-induced oxidative damage may theoretically arise in male germ cells in several ways; (i) 

futile redox cycling of quinones arising via the AKR-pathway in nuclei after AhR 

translocation, (ii) indirect induction due to the presence of BPDE (maybe through extensive 

damage to mitochondria) or (iii) via a general inflammatory process after acute dosing to 

BaP. The appearance of detectable levels of oxidative DNA lesions may thus not be expected 

immediately after BaP exposure. The small induction of oxidative damage observed at Day 

31, may thus be ascribed to one or several of the above mentioned options.  

Mitochondrial DNA plays a vital role in sperm, for processes such as sperm motility. 

Mitochondrial DNA is more susceptible for ROS-attack due to the essentially unprotected 

nature (Sawyer et al., 2001). Genes regarding mitochondrial functions, such as energy 
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metabolism is required to propel the flagellum (Kao et al., 1998), has been reported to be 

down regulated in BaP-exposed mice (Verhofstad et al., 2010a). BaP-exposure is thus likely 

to impair sperm motility and fertilisation capacity, and may contribute to explain the low in 

vitro fertilisation rates for smoking fathers (Zitzmann et al., 2003). Chromatin anomalies in 

human spermatozoa in general give a lower fertilization rate (Sakkas et al., 1998). This may 

however act as a selective mechanism, not making offspring from damaged sperm. Female 

mice fertilised by BaP-exposed Xpc
-/- males were indeed found to have smaller litters 

(Verhofstad et al., 2010a).   

4.2 Liver 

In the liver of BaP-exposed Ogg1
-/- mice a small decrease in net Fpg-ss was observed at Day 

17 followed by an increase at Day 31 (Figure 3.1). In Ogg1
+/+ mice there were a modest 

increase in net Fpg-ss at Day 17 that decreased to baseline levels at Day 31, but this increase 

at Day 17 might as well be due to really few Fpg-ss in the oil treated samples than an actual 

increase in Fpg-ss in the BaP treated samples, because it is still lower than CTL values 

(Figure 7.2, Appendix B). Comparing the genotypes, we found a significant difference 

between net Fpg-ss at Day 17 (p = 0.049), with Ogg1
-/- liver showing lower levels than 

Ogg1
+/+ liver. These findings suggest that Fpg-ss sites are transiently reduced followed by an 

induction after BaP-exposure, and that the use of Ogg1
-/- mice facilitated their detection. Our 

findings correlate well with the previous experiment conducted (Study 1;(Meier2008)), 

observing no significant increases in oxidative DNA damage for the time points up to Day 17 

after exposure to BaP. 

The liver had the highest initial level of NADPH compared with testis and lung (Table 3.1) 

and the relative NADPH amount declined in both genotypes following BaP-exposure with 

Ogg1
-/- mice showing a maximum reduction at later time points than the Ogg1

+/+ mice 

(Figures 3.4 and 3.5). However, the NADPH/NADP-ratios were changed considerably in 

Ogg1
+/+ mice compared to Ogg1

-/- mice, and the Ogg1
+/+ mice showed another peak at a 

later time point (Day 5). These data (Day 1, Day 3 and Day 5) are however based on single 

animal in each group, and must therefore be interpreted with care. At Day 17 three mice were 

included in each group. The reduced relative amounts of NADPH after BaP exposure suggest 
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that the quinones formed in the liver are reduced to catechols, implying that ROS are most 

likely formed in liver cells, which is in compliance with the induced Fpg-ss detected at Day 

31. 

Similarly, and as expected, the fold change of Cyp1a1 was highest in the liver compared to 

the other tissues. The temporal expression patterns were however similar in Ogg1
-/- and 

Ogg1
+/+ mice, with a maximum at Day 1 (Figure 3.8B). In line with this, a significant 

increase in Cyp1a1 at Day 1 after exposure followed by a gradual decrease to base levels at 

Day 17, both for Ogg1
-/- and Ogg1

+/+ mice were observed in Study 1;(Meier2008).  

The expression of Akr1a4 was not altered in any of the genotypes (Figure 3.9B). This may be 

associated with the high constitutive level of Akr1a4, compared to Cyp1A1 (Figure 3.10). 

Alternatively Cyp1A1 is more important than Akr1a4 for BaP-metabolism in the liver, 

consistent with high levels of BPDE-adducts compared to the levels of oxidative damage in 

liver cells. The liver can indeed express the highest amount of CYP-enzymes of all tissues 

(Casarett et al., 2008). Anyhow, the mutagenicity of a compound is not always determined 

by the most prevalent DNA-lesion, but more to the occurrence of DNA lesion with the high 

mutagenic potential.  

The levels of Fpg-ss sites observed in the Ogg1
-/- mice observed may be underestimated 

compared to the actual level of oxidative damage induced due to back-up DNA repair. The 

liver most probably do express backup DNA repair systems (see chapter 4.1.4)  since the 

liver is the most important organ for metabolising exogenous agents (Casarett et al., 2008), 

agents that in many cases will lead to induction of oxidative damage.   

4.3 Lung 

BaP lead to cancer in several organs, including the lung (Melendez-Colon et al., 1999; Yeh 

and Wu 2006)(chapter 1.3.3). BPDE-DNA adducts are believed to be involved in the 

development of lung cancer, but also metabolism of BaP through the AKR-pathway giving 

rise to o-quinones is shown to cause G to T transversions in p53 cDNA, in the presence of 

NADPH and CuCl2 (Hollstein et al., 1991; Park et al., 2008a). G-T transversions in p53 is 

the most unambiguous signature of lung cancer. One important question to address in this 
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context is whether exposure to BaP in vivo gives rise to DNA lesions, with potential to give 

G to T transversions, via the AKR-pathway. 

Indeed, we provide evidence that BaP-exposure do give rise to oxidative damage in the lung 

in vivo. The most pronounced induction of oxidative DNA damage among the tissues 

investigated was in the lung of Ogg1
-/- mice (Figure 3.1). We thereby confirm the findings in 

Study 1;(Meier et al. 2008) of significant increase in Fpg-sensitive sites in lung tissue at Day 

17 after BaP-exposure. Supporting evidence is provided by the consumption of NADPH 

(Figures 3.4 and 3.5) and induction of Akr1a4 (Figure 3.9) irrespective of genotype following 

BaP-exposure, even if the expression levels of Akr1a4 differed between the genotypes. The 

findings suggest that BaP-metabolism through the AKR-pathway is important in the lung. 

Furthermore the induced oxidative damage may contribute to give rise to G to T 

transversions in genes like p53 and thereby maybe adding to the risk of lung cancer. 

Others have investigated ROS and DNA adduct formation in rat lung finding a transient 

decrease in 8-oxoG after oral administration of BaP exposure (10 mg BaP in tricapryline/kg 

bw), this study lasted for 20 days (Briede et al., 2004).  

Stedeford et al. (2001) studied effects of BaP given to rats by measuring 8-oxoG levels and 

activity of Ogg1 in lung, kidney and liver tissue. The rats were given 20 mg/kg body weight 

BaP in corn oil i.p. twice a day for up to five days, giving a maximum dose of 200 mg/kg 

body weight. The relative amount of 8-oxoG was 7-fold increased at day three and returned 

back to basal levels at day five. They measured 8-oxoG using a HPLC method, which have 

been compared to results obtained with the comet assay by Gedik and Collins et al. (2005). 

HPLC-methods were found to be less sensitive that the comet assay, and during the isolation 

of non-related DNA oxidative damage is easily introduced to the DNA. In the comet assay, 

we isolate cells or nuclei circumventing this challenge (Gedik and Collins2005). Stedeford 

further reported that the Ogg1 activity was initially inhibited in lung tissue measured by 

cleavage of double-stranded oligonucleotides carrying a DNA lesion by tissue extracts. They 

found an initial decrease at three days and increased activity at five days in the lung whereas 

the activity was unchanged in the other organs tested. The in vitro assay used is however 

linear only at low levels of oligonucleotide cleavage, giving possibility for non-accurate 

conclusions. 
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Further, we showed elevated expression of Cyp1a1 in both genotypes, with a maximum at 

Day 1 (≈ 8-fold) after exposure (Figure 3.8). The expression levels were approximately 50% 

lower than that observed in the liver and comparable to the induction in the testis. This is 

consistent with others reporting lower amounts of CYP enzymes in the lung compared to 

liver (Cavalieri and Rogan1995; Stedeford et al., 2001). The expression in Ogg1
-/- mice 

differed from the wild type with the Ogg1
-/- mice expressing lower levels of Cyp1a1 than the 

wild type at the subsequent time-points after Day 1 eventually expressing Cyp1a1 at levels 

below the level of untreated mice at Day 17. This indicate that the absence of Ogg1 influence 

the metabolism of BaP. Moreover, and supporting the induction of oxidative damage in the 

lung, it was the only organ investigated where Akr1a4 was induced, in both genotypes (figure 

3.8), with increasing expression levels with time, suggesting that AKR plays a central role in 

the lung for the metabolism of BaP. Induction of oxidative damage in the lung is further 

supported by the complete consumption of the existing NADPH already at Day 1 after 

exposure in both genotypes. Active AKR-pathway leading to generation of ROS is consistent 

with the oxidative damage we observed in the lung (Figure 3.1).  

Our findings also correlate well with in vitro studies showing that lung tissue has a high 

capacity to form quinones (Figure 1.2) (Bevan and Weyand1988; Cavalieri and Rogan1995). 

The decreasing NADPH suggest that the quinones are formed also in vivo and are likely to be 

reduced to catechols giving rise to futile redox cycles forming ROS (Figures 1.2 and 1.8, 

(Penning2004)).  

Relative to the induction of bulky BPDE-adducts, Verhofstad et al. (2009) exposed mice to 

BaP (oral dose of 13 mg/kg bw) and measured bulky BPDE-adducts in lung, testis and 

sperm. They observed increased BPDE-adduct levels at day one for lung, with a gradual 

decline until 14 days after treatment. This corresponds with our findings with expression of 

Cyp1a1, which is maintained at high levels the first five days and decline at Day 17 (Figure 

3.8).  

In the absence of Ogg1 it is evident that oxidative damage detectable by Fpg accumulates in 

the mouse lung at Day 17 following exposure, suggesting that BaP gives rise to ROS in the 

lung. Such induction is not apparent in wild type mice, probably due to efficient removal of 

oxidative damage via base excision repair. The damage levels were detectable in the lung of 

Ogg1
-/--mice despite the existence of back-up repair, possibly explaining why oxidative 
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damage was not evident at earlier time points after BaP-exposure. The actual level of 

oxidative damage induced by BaP is therefore probably underestimated. 

4.4 Backup repair mechanisms  

The limited amounts of oxidative DNA damage observed in the testis and liver in Ogg1
-/- 

mice suggests that ROS are not formed in marked amounts or that or that oxidative DNA 

damage is removed via back-up, or redundant, DNA repair. Findings by Klungland et al. 

(1999) suggest that in the absence of Ogg1 an alternative repair pathway exist, to minimize 

the effects of an increased load of 8-oxoG in the genome. This has also been suggested after 

observing a transient reduction, that can be because of induction of repair enzymes, of 

oxidative DNA damage of testis, liver and lung of mice deficient in Ogg1 (Briede et al., 

2004; Meier2008). NER is an important repair pathway for DNA adducts, reviewed by 

(Rechkunova and Lavrik2010), and has been suggested to be a backup repair pathway for 

oxidative damage (Lin and Sancar 1989; Sunesen et al., 2002). Alternatively, other DNA 

glycosylases may excise oxidative DNA lesions, such as NTH1, NEIL1 and NEIL2, with 

variable efficiency. Mammalian hNTH1 and hNEIL1 recognise several common oxidative 

base lesions and have been proposed to have redundant repair roles in cells (Katafuchi et al., 

2004), a role that probably becomes more evident for 8-oxoG in cells lacking hOGG1. 

NEIL1 is ubiquitous expressed in most tissues and is found to have properties similar to 

mammalian OGG1, with preferred removal of 8-oxoG basepared with C (Morland et al., 

2002). NEIL2 on the other hand have marginal or negligible lyase activity when it was tested 

on oxidative base lesions (Katafuchi et al., 2004), but it needs further investigation. MYH 

removes adenine basepared with 8-oxoG (Aburatani et al., 1997), whereas OGG1 removes 8-

oxoG basepared with G, so MYH will still remove some of the 8-oxoG in the cells.  

Another interesting characteristic of NEIL1 as backup repair are its ability to excise 

hydantoins from DNA (Krishnamurthy et al., 2008). Oxidation of 8-oxoG leads to the 

formation of hydantoins, a class of oxidative damage that have recently been getting more 

attention due to their unusual structure and high mutagenic potential (David et al., 2007; 

Neeley and Essigmann 2006). Hydantions are suggested to be the best substrate known for 

NEIL1 so far (Krishnamurthy et al., 2008; Zhao et al., 2010). Cells of the Ogg1
-/- mice that 
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exhibit significant levels of spontaneous oxidative damage may be susceptible for the 

generation of hydantoins via oxidation, with subsequent efficient removal via NEIL1. 

Oxidation leading to hydantoins in vivo will therefore probably be efficiently removed 

(within hours) in Ogg1
-/- mice instead of being measured as oxidative damage in the comet 

assay. Hydantions are also excised by Fpg giving rise to Fpg-ss in the comet assay. The role 

of DNA backup repair needs to be further investigated. 

If there is an induction of oxidative damage in testis and liver, it is only a small induction, 

and the backup repair mechanism might be able to remove the damage before we are able to 

se anything.           

The oxidative damage observed was delayed compared with the induction of metabolic 

enzymes and reduction in NADPH. In the cells of all tissues examined there are initially 

higher levels (Figure 3.10) of Akr1a4, favouring the formation of quinones. The quinones as 

well as BaP itself are ligands for AhR, thereby inducing Cyp1a1 (Park et al., 2009), which 

translocates BaP into the nuclei thereby facilitating ROS generation within the nuclei. If AhR 

is an important pathway in testis for human is unsure, because there have been reported an 

extremely high AhRR gene expression in testis, compared to lung and liver (Yamamoto et 

al., 2004). In mice the expression pattern of AhRR mRNA varies from tissue to tissue, both 

in untreated mice, and BaP treated mice (Bernshausen et al., 2006).  

4.5 Methodological consideration 

4.5.1 Design and conduction of experiment 

This work was divided into two parts; the first part was to confirm the findings in a previous 

master degree (Study 1; (Meier2008)) whereas part two was to further understand the effects 

of BaP-exposure by including more animals and new analyses. This study is denoted Study 

2.  

These studies are large, time- and labour-consuming mouse studies. The numbers of mice at 

selected time points as well as untreated control mice were increased in Study 2 compared to 

the Study 1 to obtain more robust results, and other time points of sacrifice after exposure 
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were included (10 and 31 days). In Study 1 a small but significant increase in oxidative DNA 

lesions was observed in testicular cells from Ogg1
-/--mice at Day 17 following BaP-

exposure. This finding warranted confirmation. In this study sacrifice of mice prior to and 

also after Day 17 following exposure were included to further explore the possible induction 

of oxidative DNA damage in mice exposed to BaP. In Study 1 expression of genes involved 

in BaP-metabolism were measured in the testis and liver and were normalised to only one 

untreated mice, whereas in Study 2 analyses of the lung were included since BaP is a lung 

carcinogen and the results were normalised to a higher number of untreated control mice.  

The mice in our studies were given one acute dose of BaP of 150 mg/kg body weight. This is 

a high dose given as one single exposure compared with the level and manner of exposure of 

humans (3 mg/day in USA, according to Environmental Protection Agency (Stedeford et al., 

2001)). Higher exposure to humans might be expected in cases where chronically exposure 

occurs through cigarette smoke, occupation or living in the vicinity of contaminated sites. It 

is common practise to use high exposure in animal experiments for effects to be evident. For 

BaP we used a dose that is below LD50 dose of 232 mg/kg for mice (Salamone M.F. 1981). 

Corn oil was used as vehicle, and we observed unexpected high oxidative damage in some 

mice treated with corn oil only (both old and new corn oil; see appendix B), and the reason 

for the high corn oil induced oxidative damage is unknown.  

The genotypes of the mice used were Ogg1
-/-

 and Ogg1
+/+

. Several oxidatively modified 

DNA bases are removed by Ogg1 (Aburatani et al., 1997; Boiteux and Radicella 1999). 

Ogg1 deficient mice serve two purposes: First, the Ogg1
-/- mouse line functions as a model 

for human testicular cells mimicking the low repair capacity for oxidative DNA lesions 

(Olsen et al., 2003). Second, the repair of oxidative DNA damage in cells of Ogg1
-/- mice is 

reduced and leading to a possible accumulation in any tissue, depending on the activity of 

back-up repair systems, thereby increasing the potential for detecting such DNA lesions. In 

wild type mice such lesions are rapidly repaired and may therefore not be detected. 

4.5.2  The comet assay     

The single-cell gel electrophoresis technique or comet assay is widely regarded as a quick 

and reliable method of analysing DNA damage in individual cells and has been used for over 

20 years (McArt et al., 2009). It is a sensitive tool and has ability to detect a wide range of 
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DNA damage (McArt et al., 2009; Moller 2006; Ostling and Johanson 1984), and it is a 

central method in our lab. The method is easy and quick, but there are still challenges to 

resolve. One limitation is the ability to detect very low or very high levels of DNA damage 

with precision. The sensitivity is best when the assay is calibrated then from as low as one 

hundred breaks and up to several thousand breaks per cell can be determined, and by adding 

enzyme treatment (like Fpg) the range and sensitivity is greatly increased (Collins et al., 

2008). Thus even small increase in Fpg-ss should be detected in our comet assay.  

There are different aspects to the comet assay techniques that might give difference in 

results; solution molarity, pH, wash times, unwinding times, electrophoresis time, staining 

and microscope settings all which contribute to the scoring value, making it important to 

include some kind of calibration in the assays Also the person scoring (the operator) may 

introduce bias since the cells/nuclei to be scored are chosen by the operator. Ideally, the 

operator should be “blind”, not knowing if the sample is treated or not, to avoid bias. The 

scoring is preferably done without personal interference, but sometimes the operator has to 

manually set the middle of the comet head due to software limitations 

Due to the unexpected and unexplainable high damage level in samples from mice sacrificed 

at Day 10 after oil exposure, we decided to expose more mice to repeat this finding. We 

observed that the exposure to oil itself might give some oxidative damage in all the tissues 

(Appendix B). We also observed lower levels of Fgp-sensitive sites in the untreated CTL 

mice than observed in previous untreated CTL mice, which is likely to be due to operator 

skills getting better. The experiment, from sacrifice, to squeezing of nuclei/cells from tissues, 

and moulding of cells into gels was faster for the later mice sacrificed. We know from 

previous experiments of this kind, that the time from sacrifice to the cells/nuclei are moulded 

in gels and subjected to lysis is important for keeping background damage levels low. Due to 

these issues some experiments were discarded due to high background damage levels. 

4.5.3 NADP/NADPH ratios 

The procedure was conducted according to the recommendations of the manufacturer and 

pilot studies showed that the measurements were stabile. The amount of tissue required for 

each organ and initial steady state ratios were established in pilot studies. We used ~20 µg 

for each organ and since the amount of tissue was not identical in every reaction the total 
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quantity of NADP and NADPH could not be detected, but the ratios were established. Using 

approximately similar amounts of tissue from each organ it was evident that the liver 

exhibited the highest level of NADPH, with lower levels in the lung and little in the testis.  

Few biological or technical replicates exist for these results, which might be a source of 

error.  

4.5.4 Real time PCR 

Following the example of the microarray community and the MIAME guidelines (Brazma 

and Vilo 2001), the Real-Time PCR Data Markup Language (RDML) consortium has 

recently proposed the Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments (MIQE) guidelines that describe the minimum information necessary for 

evaluating RT-qPCR experiments (Bustin et al., 2009). In Study 2, we tried to follow the 

MIQE-guideline in the RT-qPCR experiments and our data are in compliance with the 

guideline. We set up the experiments to have at least three mice (at least three biological 

replicates) in each group and three technical replicates to obtain robust results. For untreated 

control animals we included as many as four animals. This is more animals than was used in 

Study 1; (Meier2008). We also decided to include five reference genes to obtain more 

accurate results. In this way, we tried to control some of the technical aspects that may affect 

assay performance and result interpretation.  Some of the technical aspects that must be 

controlled include: sample storage, preparation, and RNA quality (purity and integrity), 

reverse-transcription details, PCR efficiencies, and analysis parameters (statistical analyses), 

and finally, sample normalisation (against single or several reference genes, and justification 

of the choice of reference genes). We used the geometrical average of five reference genes 

and the BestKeeper software (Pfaffl et al., 2004b) was used to evaluate the stability of these  

reference genes (Figure 3.6 and Appendix B). 

4.6 Conclusions  

Our first aim was to reproduce the results obtained in a previous study, Study 1;(Meier et al. 

2008). In Study 1 a small but significant induction of Fpg-ss was observed in testicular cells 

of Ogg1-defective mice. We were unable to reproduce this small increase at Day 17, but we 
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found a possible increase at Day 31 after BaP exposure. The existence of potential backup 

DNA repair in the testis may have hampered the detection of such damage. In general, most 

of the findings in this study (Study 2) correlate well with the results in Study 1. The question 

of whether BaP-exposure leads to oxidative damage in male germ cells needs further 

investigation.  

BaP exposure clearly gave rise to oxidative damage in lung, and from this thesis and work 

done by others, the lung seems as the most sensitive organ to BaP exposure with respect to 

induction of oxidative damage. Our results suggest that this is due to metabolism of BaP 

through the AKR-pathway creating ROS. Moreover, we also found induction of oxidative 

damage in liver after exposure to BaP at Day 31 after exposure 

Investigating the ratio of NADP/NADPH gave results that were concurrent with the gene 

expression dat aand the damage levels observed. NADPH was present initially in all three 

tissues at various steady-state levels, enabling the reduction of quinones to catechol and 

thereby the futile cycle required for creating ROS. NADPH were clearly consumed and 

reformed in all tissues. 

Cyp1a1 was induced in all tissues, with a maximum level at day one, for all except testis in 

Ogg1
-/- that had a maximum level at Day 5 after exposure to BaP. Akr1a4 gene expression 

was induced in liver for both genotypes and in WT testis at day 17 after exposure to BaP. 

Constitutively Akr1A4 was present at high constitutively levels whereas Cyp1A1 was almost 

absent in the tissues, allowing the BaP-metabolism to be routed into this pathway until 

Cyp1A1 was induced. This is favourable for ROS-generation and oxidative DNA damage. 

Altogether our findings indicate that BaP is metabolised in all tissues investigated and clearly 

forming oxidative DNA damage in lung. The possibility of BaP inducing oxidative damage 

in male germ cells is still not resolved, and needs further investigation. 

4.7 Future work    

The possibility of BaP-induced oxidative DNA damage in male germ cells, and in lung, 

should be confirmed. This could be done by exposing more animals and sacrificing them at 

appropriate time points using the present methods and including alternative methods for 
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damage detection such as analytical methods. The use of mouse models with other repair 

defects would help outline the existence of possible back-up DNA repair of oxidative 

damage. In line with this, studying the regulation of other DNA repair proteins after BaP-

exposure, would give indications on the importance of possible back-up repair and their role 

in the respective tissues studied. Further investigating of the NADP/NADPH ratios would 

strengthen the study, and also finding the total amount of NADP and NADPH. A inclusion 

of  studies of inflammatory responses in the tissues, or in the blood, which also can induce 

ROS could be useful to deduce whether it is the high exposure levels of BaP that indirectly 

gives oxidative damage due to inflammation or it is due to metabolism of BaP. A study using 

lower exposure levels exposing for longer periods would also give indications on the 

relevance of the findings in this study to real-life exposure levels. 
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Appendix A 

6.1 Solutions 

0.75% Agarose solution (low melting point)  

Added 0.075 g NuSieve GTG Low melting agarose to 10 ml of 10 mM EDTA-solution, 

warmed up to boiling point until the Agarose is dissolved and held warm in a warming block 

at 37 C. 

Merchant´s buffer 

0.14 M NaCl 

1.47 mM KH2PO4 

2.7 mM KCl 

8.1 mM Na2HPO4 

10 mM EDTA 

Dissolved in sterile H2O, pH adjusted to 7.4, autoclaved and stored at 4 C. 

 

Lysis fluid for Comet (stock) 

2.5 M NaCl 

100 mM EDTA 

10 mM Tris-base 

1% SLS 

Dissolved in dH2O, before SLS was added pH was adjusted to approximately 10 with NaOH 
solution. The stock was leaved to stir until everything was dissolved, and then pH was 
adjusted again to 10 with concentrated HCl or 10M NaOH. 

 

Lysis fluid for Comet (for GelBond films)  

300 ml Lysis fluid stock 
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10% DMSO (33.3 ml) 

1% Triton-X (3.33 ml) 

Mixing together and putting at 4C 

 

Neutralising buffer for Comet 

0.4 M Tris-base 

Dissolved in dH2O and pH adjusted to 7.5 with concentrated HCl. 

 

Electrophoresis buffer for Comet 

10 M NaOH 

200 mM EDTA 

Dissolved in dH2O and pH adjusted to 13.2 with concentrated HCl. 

 

Enzyme reaction buffer for Comet 

40 mM Hepes 

0.1 M KCl 

0.5 mM EDTA 

Dissolved in dH2O and pH adjusted to 7.6 with 7M KOH. 

 

TE-buffer 

1 mM EDTA 

10 mM Tris-HCl 

Dissolved in dH2O and pH adjusted to 8.0. 
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6.2 Products and producers 

Product Producer Country 

2-Mercaptoetanol Sigma France 

Absolut alcohol prima  Arkus kjemi Norway 

Benzo(a)pyrene Sigma USA 

Bovine serum albumine Sigma USA 

Corn oil (old) Coop Norway 

Corn oil (new) Sigma USA 

DMSO Merck Germany 

dH2O Bibco USA 

EDTA Sigma USA 

EnzyChrom NADP/NADPH 
Assay Kit 

BioAssay Systems USA 

Fpg Locally produced Norway 

Gelbond® Film Cambrex USA 

GeneElute Mammalian Total 
RNA Miniprep Kit 

Sigma USA 

Glycerol Sigma USA 

Glycine Sigma South Korea 

Hepes Sigma USA 

High-Capacity cDNA 
Reverse Transcription Kit 

Applied Biosystems USA 

HCl Merck Germany 

MicroAmp 96-well reaction 
plate 

Applied Biosystems Singapore 
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Primers Quiagen Germany 

NuSieve GTG Low melting 
Agarose 

Cambrex USA 

PBS Locally produced Norway 

KCl Merck Germany 

KH2PO4 Merck Germany 

KOH Merck Germany 

Power SYBR® Green Applied Biosystems UK 

NaCL Merck Germany 

SDS Fluka Japan 

Na2HPO4 Merck Germany 

NaOH Merck Germany 

SLS Sigma UK 

SYBR®Gold Invitrogen USA 

SYBR®Green Sigma USA 

Triton-X Sigma USA 
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Appendix B 

As described in chapter 3.1 there were some problems with the mice receiving corn oil and 

sacrificed at Day 10 after exposure. Unexpected and unexplainable high levels of Fpg-

sensitive DNA damage in the corn oil treated mice were observed for both Ogg1
-/- and 

Ogg1
+/+ mice: 

 

Fig 7.1: Testis, comet assay. % tail intensity in Ogg1
-/- and Ogg1

+/+ mice at the different days after exposure.  
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Fig 7.1: Liver, comet assay. % tail intensity in Ogg1
-/- and Ogg1

+/+ mice at the different days after exposure.  
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Fig 7.3: Lung, comet assay. % tail intensity in Ogg1
-/- and Ogg1

+/+ mice at the different days after exposure. 

 Only one mouse was used of each genotype at Day 10, but we see the same pattern in both 

genotypes. We decided to repeat this part of the experiment, and also tested a new batch of 

corn oil (Sigma), to investigate whether corn oil alone would lead to such high DNA damage 

levels.  
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Experiment 2: Additional mice sacrificed at Day 10 

Due to errors during genotyping, discovered after the experiment had been conducted, to 

verify the genotypes of the mice, only Ogg1
+/+ mice were used in experiment 2. . In the testis 

there were increased levels of oxidative damage following both the new and the old batch of 

corn oil compared to the untreated control, and BaP-exposure (using BaP dissolved in the 

first batch of corn oil used) did not give higher levels of oxidative damage than that observed 

with corn oil. Similarly, in the liver comparably increased levels of oxidative damage were 

observed in both corn oil- and BaP-treated mice compared to the untreated control. In the 

lung, on the other hand, there was no increase in the corn oil- or BaP-treated mice compared 

to the untreated control.  

 

Fig 7.4: Day 10, comet assay. The % tail intensity in mice treated with oil, both old and new, and BaP, we also 
have one CTL mouse. 

We conclude that no induction of oxidative damage occurred in Ogg1
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alone seems to induce some oxidative damage in the testis and liver. We cannot exclude that 

the mice were subjected to conditions that induced oxidative damage, such as inflammatory 

processes, or that errors made during the practical experiment led to these unexplainable 

results. We therefore chose to present the results from the mice sacrificed at Day 10 in 

Appendix B, and the damage levels presented (Figure 3.1) were calculated by subtracting the 

level of corn oil mice from that of BaP-exposed mice.   
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Appendix C 

Evaluation of five housekeeping gene (HKG) stabilities using BestKeeper (BK) software. 

A) 

Ogg1-/- liver HKGs stability assessment
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 B) 

Ogg1-/- lung HKGs stability assessment
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C) 

Ogg1+/+ liver HKGs stability assessment

0

5

10

15

20

25

30

35

40
C

T
L

C
T

L

C
T

L 1 1 1 3 3 3 5 5 5

1
7

1
7

1
7

1
7
 O

il

1
7
 O

il

1
7
 O

il

Days after treatment

C
t-

v
a
lu

e

0

5

10

15

20

25

30

35

40

18s

Actb

Gapdh

Hprt1

Rpl13a

BK

 

 

D) 

Ogg1+/+ lung HKGs stability assessment
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E) 

Ogg1+/+ testis HKGs stability assessment
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