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Abstract

Most insurance companies deal with reinsurance. One of the problems they have to solve is:
What reinsurance treaty is optimal for their company? Optimal reinsurance for large portfolios
has, during the past decades, been given much more attention in the academic world than
individual claims have. In this thesis we will investigate the optimal reinsurance contract for
the individual claims case.

The thesis will start by introducing some basic concepts in reinsurance. There will be a brief
explanation of reinsurance mathematics. We will establish mathematical formulations of the
di�erent types of reinsurance contracts and the optimality criteria. Then we will see some
of the existing literature on the topic and show some own results. This is going to point us
towards the optimal reinsurance contract: the non proportional a x b contract with retention
limits a and b where b is in�nite.

We will introduce the reader to the Panjer recursion. The recursion will be used as a numerical
tool to simulate the a x b contract. We will vary di�erent key parameters and see how they
a�ect the criteria and the retention limits. These results will back our assumption of the a x
b contract with in�nite b as the optimal one.
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1 Introduction

1.1 The world of reinsurance

Most of the insurance contracts are subject to reinsurance. Which is an insurance contract
purchased by an insurance company, the cedent, from a reinsurance company. It can be
property insurance, car insurance, or even workplaces (oil rigs, boats etc...). Half century ago,
most reinsurance contracts were agreed upon in a mathematically primitive way, mostly based
on "hunches". Nowadays it's a di�erent story. The last two decades have seen a large number
of unexpected and costly events, the 1999 storm in France, the terrorist attacks of 9/11, the
2004 and 2005 hurricanes of the United States etc...

All these events have pushed the industry to re-evaluate the way the prices of reinsurance (the
premiums) are calculated. As the reinsurance business is global, a catastrophic and costly
event such as hurricane Katrina in 2005 (the National Hurricane Center estimated the costs
to 108 billion dollars), caused the reinsurance premiums to a rise not only in the United States,
but also in the rest of the world. As we can see, we are dealing with an issue that is di�cult
to predict and often subject to changes according to world events. The table below shows the
top ten reinsurers in terms of gross premium. The nationalities of the companies illustrate
the international aspect of reinsurance.

1 Munich Reinsurance Company $ 31,280 Germany
2 Swiss Reinsurance Company Limited $ 24,756 Switzerland
3 Hannover Rueckversicherung AG $ 15,147 Germany
4 Berkshire Hathaway Inc. $ 14,374 USA
5 LLoyd's $ 12,997 United Kingdom
6 SCOR S.E. $ 8,872 France
7 Reinsurance Group of America Inc. $ 7,201 USA
8 Allianz S.E. $ 7,201 Germany
9 PartnerRe Ltd. $ 4,881 Bermuda
10 Everest Re Group Ltd. $ 4,201 Bermuda

Table 1: Top 10 reinsurance companies in the world, ranked by gross premiums written in 2010, it is taken
from A.M. Best Co's website.

On average, an insurance company will lose money on reinsurance. However, there are
several bene�ts. The insurance world is subject to a lot of uncertainty. Reinsurance is an
important tool to cope with this uncertainty. It is a great way for an insurance company
to protect itself against catastrophic events. There are several examples in history of events
that have ruined insurance companies. One example is the 1906 San Francisco earthquake.
This event bankrupted twenty companies. It also deleted the pro�t that American �re in-
surers made in the previous 47 years (Source: Aetna Life Insurance history www.aetna.com).
Reinsurance may also reduce the capital requirements. The cedent will need less capital to
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satisfy the solvency directives. This can also increase the value per share of the company and
allow the cedent to issue more policies. Other bene�ts include tax deductibility of reinsurance
contracts, �nancing "startup" insurance companies, pro�t from the reinsurer's expertise ...

There are many di�erent types of reinsurance contracts. They are divided into two main
groups: the proportional contracts and the non-proportional contracts. The following para-
graphs will explain how they work.

Proportional The concept of proportional reinsurance is as follows. The insurer (the ce-
dent) and the reinsurer will agree to an assignment rate between 0% and 100% for all risks in
the portfolio. In order to determine the reinsurance premium, we apply the assignment rate
to the original premium. When we have a claim, the assignment rate is applied to the claim
size to decide how much the reinsurer will give.

The assignment rate varies according to the insurance policies. In the proportional reinsurance
world there are two major types of contracts:

� Quota share, the reinsurer shares an equivalent share of the premiums and claims of the
cedent's portfolio. The quota share can be modi�ed according to sub-portfolios de�ned
in the contract. This becomes a varying quota share contract type.

� Surplus share, the assignment rate varies according to a "line" (a money amount). If
the claim size exceeds this line, the reinsurer assumes the di�erence between the total
amount and the line. The surplus share can also be modi�ed and transformed into other
slightly di�erent contracts.

Non Proportional In non-proportional reinsurance, there is no fraction determining how
the premiums and the losses will be shared between the cedent and the reinsurer. How much
the reinsurer will pay depends on the amount of losses. The reinsurer and the cedent will
instead agree upon the retention (also known as the priority). When the amount of losses ex-
ceeds the retention, the reinsurer takes over the �nancial compensations relative to the losses
up to a certain limit (also agreed upon contract).

The reinsurance premium is the price the cedent pays the reinsurer for the cover it provides.
In non-proportional, the reinsurer must anticipate the potential losses in order to �x a pre-
mium. This requires more sophisticated techniques than proportional reinsurance since there
is no proportionality between premium and losses. Therefore, the reinsurer will receive more
information about the potential losses. The actuarial models used are more advanced and are
becoming more popular. The two major types of non-proportional contracts are stop loss and
excess of loss:

� Excess of loss, also called the a x b contract (a times b). The contract covers the share
of losses exceeding the retention and up to a certain limit (�xed in the contract). There
are two distinct types of excess of loss contracts, one is per "event" (here an event is the
cause of several losses, terrorist attacks, hurricanes etc...). The other one is per portfolio
(car insurance portfolio, an aircraft etc...).

� Stop loss, similar to the excess of loss contract. It covers a percentage of the aggregate
yearly losses over the retention and up to a certain limit. For example, in a 50% xs
70% (the percentages express the ratio losses to premiums), the reinsurer covers losses
exceeding 70% with a maximum of 50%.
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1.2 Optimal reinsurance

The topic of optimal reinsurance for the cedent was already researched upon in 1940 by the
Italian mathematician de Finetti, see Wahlin (2012). He worked on optimal proportional rein-
surance by minimizing the variance of the gain given a �xed gain. His results were pointing
in the direction of a quota share type of contract. In 1960, the Norwegian professor Borch
suggested an optimal contract by maximizing the reduction of the variance in the claim dis-
tribution of the cedent for a given net premium. He showed that, under fairly restricted
conditions, the stop loss type of contract was the optimal one. The world of reinsurance has
changed substantially since these papers were written and the topic needed an update. Nowa-
days, when dealing with optimal reinsurance, there are several criteria we must optimize with
respect of. There has been a substantial increase in computational abilities which allows us to
simulate with greater speed and accuracy. The reinsurance industry has changed a lot since
the middle of the twentieth century.

In the last decade, the literature on optimal reinsurance in property and casualty insurance
(P&C insurance) has been growing. With a notable summary of the prior results in Centento
and Simoes (2009). Only a small part of the literature is focusing on the individual claim
case. For example the papers of Dickson and Waters (2006) and Centento and Guerra (2010).
However, the case of reinsurance for portfolio aggregates have so far received much more at-
tention.

The idea that the deciding parts of an insurance company are going to base their choice of
reinsurance contract only on a mathematical argument is probably a little far-fetched. Nev-
ertheless, the research on this topic can help them make better decisions, based on good
evidence. By carefully choosing the optimality criteria, the decision makers can consider the
results from the di�erent criteria and choose the reinsurance contract satisfying their com-
pany's needs. Cai and Wei (2012) give solutions in terms of a utility function. Although the
utility functions are interesting in a theoretical sense, their impact in the industry is rather
limited as they are sometimes based upon unclear conditions, which are not always as easy to
interpret in practice. In Chung, Sung, Yam and Yung (2011), they use the expected pro�ts
against "Value at Risk" (V@R, although it expresses almost the same value as the reserve
based on percentiles, V@R is not to be confused with the reserve ε that we will introduce later
on) as the criteria.

As of today, the preferred methods for reinsurance optimizing seem to be expected pro�ts
against variance (stability of the results) and expected pro�ts against total solvency capital
required (the reserve ε).

In this thesis, we are going to focus on the optimal reinsurance contract per event. As we
have seen, there are several papers addressing the topic of optimal reinsurance, however most
of them are on the portfolio level, and not per event. They are also excessively theoretical and
do not focus on the practical aspects of the reinsurance industry. Decisions need to be made.
It is therefore interesting to focus on these individual events and see if they coincide with
the current literature. Our simulations in section 4 will try to answer the following question:
Which reinsurance contract is optimal for the cedent when we focus on individual

events?

I will start this thesis by introducing some insurance concepts and notation. The di�erent
types of contracts and also the Monte Carlo method for simulating the claims. Then, I will
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show some results already existing in the literature about this topic and also show some results
developed independently from the literature. Finally, I will introduce the reader to the Panjer
recursion for compound distribution. This recursion will be used as a tool for optimization. I
will focus on the non-proportional contract and the expected pro�ts against solvency capital
requirements criteria for results.
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2 Reinsurance Mathematics

In order to understand the mathematics behind reinsurance, it is essential to explain how
insurance loss works. Doing this, we can establish a mathematical relationship between the
cedent and the reinsurer. From the introduction we understand that the losses are organised
this way:

Z −→ Zce −→ Zre

First Clients Cedent Reinsurer

An insurance company (the cedent) and a person (or company) agree upon a contract, also
known as a policy which makes the insurance company economically responsible for incidents
which a�ect the item or person that is insured. In this theses, the amount that the insurance
company must pay to the person in case of a claim will be called Z. The insurance company
will have several policies, this makes the total of the Z highly uncertain. The same way
as the �rst client cedes his risk to the insurer, the insurer can cede his risk to a reinsurer.
The reinsurer's risk Zre is formulated as a function of the insurer's risk Hre(Z) = Zre. The
cedent's net risk Zce is then de�ned as Zce = Hce(Z) = Z − Zre = Z −Hre(Z). Hre and Hce

can be considered as the same function but with di�erent point of views. They are de�ned
by contract and the reinsurers and cedent's net risk Zre and Zce are directly a�ected by the
insurance total net risk Z.

2.1 Basic formulations

There are two uncertainty factors for the insurance company. The claim frequency and the
claim intensity. We want to have a model for the insurance claims that will predict the
expected amount the insurance company is accountable for:

X = Z1 + Z2 + ...+ ZN

where N is the number of claims and Z1, Z2, ... the amount of each claims.
The claim frequency is often modelled with the Poisson distribution. The Poisson distribution
is a discrete probability distribution which expresses the probability that a number of events
will happen independently in a prede�ned time interval. The probability mass function is

P (N = n) =
λn

n!
e−λ

where the mean is E[N ] = λ and the standard deviation sd(λ) =
√
λ. It seems �t to express

the claim number of a policy N as poisson distributed with parameters λ = µT . The intensity
is an average over time and policies, see Bølviken (2014), page 283.

In order to model the claim size Z, there are several distributions that could seem adequate. In
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this thesis we want to deal with individual claims that occur rarely, but are very costly. Since
these claims occur rarely, it would be wrong to try to �t a distribution using historical events.
The non-parametric approach being ruled out because of the scarceness of historical data, we
should use the parametric approach. We must then �nd a distribution that agrees with these
principles. To model the claim size there are several potential distributions, for example the
Log-normal, Pareto, Gamma etc ... For our problem, which is to �nd the optimal reinsurance,
the distribution choice should not be a crucial factor. Once we have build a program that
takes the distributions as input, it will be easy to simulate with di�erent distributions and
vary their parameters.

In the introduction we explained how di�erent types of reinsurance contracts function. In order
to simulate the e�ects of reinsurance, it is important to express these contracts mathematically.
In the previous section, we expressed the cedent's net loss. Since the reinsurance function
Hre(Z) = Zre is derived from the cedent's net loss we can give mathematical formulas for the
reinsurance contracts. Since the reinsurance function is equal to Z−Hce(Z), it should always
satisfy 0 ≤ Hre(Z) ≤ Z.

The proportional contracts are the quota share type of contracts and the surplus share. In
the quota share contract, the total net risk is shared using a �xed percentage 0 ≤ c ≤ 1, the
risk kept by the cedent and the reinsurer are Hce(Z) = c(1− Z) and Hre(Z) = cZ.

The surplus share contracts are mathematically a little di�erent, de�ne a as the retention
limit of the cedent, s the maximum insured sum. If one claim exceeds the retention limit, the
reinsurer pays the di�erence between the claims and the limit a. The percentage ceeded is
then c = max(0, 1− a

s
). Which gives us from the cedent's point of view:

Hce(Z) =

{
Z if a ≥ s

a if a < s

and from the reinsurer's point of view:

Hre(Z) =

{
0 if a ≥ s

(1− a
s
)Z if a < s

The non proportional contracts are the excess of loss and stop loss. The excess of loss
contract is as follows, assume that the cedent's net risk is

∑N
i=1H

ce(Zi) where N is the
number of claims, Z1, Z2, ... independent claims for incidents, 1, 2, ... and H

ce(Z) the risk kept
by the cedent. The contract is then as follows (from the cedent's point of view):

Hce(Z) =


Z if Z < a

a if a ≤ Z ≤ a+ b

Z − a if Z ≥ a+ b

from the reinsurer's point of view the same contract will look like this:

Hre(Z) =


0 if Z < a

Z − a if a ≤ Z ≤ a+ b

b if Z ≥ a+ b

The stop loss contracts are similar to the excess of loss contract, the di�erence is that the limit
b is unde�ned and can even be considered as in�nite, see Bølviken (2014), page 367. These
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non-proportional contracts will be called a x b contracts (because of the retention limits), we
will di�erentiate them by the b, which will either be given a numerical value, or de�ned to be
in�nite.

In order to deal with the di�erent levels of uncertainty in reinsurance, we can use a set of
statistical rules called the double rules for expectations and variance, see Bølviken (2014), page
187. These rules will be used in the next section to show some interesting theoretical results
on the choice of optimal reinsurance contract and are as follows. Suppose the distribution of
Y depends on a random vector X, the double expectation and the double variance are then

E[Y ] = E{ξ(X)}, for ξ(x) = E[Y |x] (2.1)

and
var(Y ) = var{ξ(X)}+ E{σ2(X)}, for σ(x) = sd(Y |x) (2.2)

2.2 Monte Carlo in reinsurance

In actuarial science, claims are often simulated using the Monte Carlo method. Here, I will
show how to simulate the a x b contract with this method. The cedent net risk is Xce =∑N

i=1H
ce(Zi), where N is the number of claims, Z the size of the claims. The reinsurer's net

risk is the then Xre =
∑N

i=1H
re(Zi). In order to simulate the cedent's and the reinsurer's

liabilities we must �rst simulate the claims using the Monte Carlo simulation method.

The Monte Carlo method is a method to �nd a numerical value using random procedures.
After selecting the suitable distributions for the events, we draw a large number of simulations
in order to select the probability of each events we are interested in. In our case, the claim
number will be simulated using the Poisson distribution, the claim size can be simulated
with several distributions, such as the Log-normal, the Gamma and the Pareto distributions.
Algorithm 1 describes how the R-program I developed deals with the simulation of the claims.
The input parameters (m, λ, JµT , σ and ξ) are easy to change according to the desired
simulations. Because of the large number of simulations required and the loops in the code,
running the program may take several minutes.

Algorithm 1 The claims

Input: Integers m, λ = JµT , σ, ξ
1: m← 100000 . Number of simulations for the claim number
2: for i in m do

3: N [i]← Poisson(λ)

4: Nsum = sum(N)
5: for j in Nsum do

6: if Nsum[j] > 0 then . Need values > 0 to avoid problems later
7: Z ← Distribution(ξ, σ) . Log-Normal, Pareto, Gamma ...

8: return Z

The simulation from Algorithm 1 gives us all the potential claims and their values. These
values are grouped in their respective Poisson group: assuming we have a Poisson simulation
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of n claims, the program will group the claim sizes corresponding to the same nth group in an
array. For later calculations we need to compress these groups into averages in order to avoid
numbers of simulations exceeding the computer's capacity.

Figure 1 shows the density of the claim size for each compound distribution. The parameters
are: number of simulations m = 1000000, Poisson distribution intensity λ = 10. For the claim
size distributions: Log-normal distribution with ξ = 2 and σ = 0.3, Pareto distribution with
α = 3 and β = 1 and �nally the Gamma distribution with α = 0.5 and ξ = 1. The plots have
been cut in the top to make it easier for the reader to visualise the di�erence between them.
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Figure 1: Monte Carlo simulations of the aggregate distribution of the Poisson and Log-normal (blue), Pareto
(black) and Gamma (red) distributions. The �gure on the right is the same simulations with di�erent axes.

Now that we have all the claims, we can �nd the reinsurance and cedent liabilities (actually,
�nding one is enough as they are complementary events). The following algorithms show the
procedures we must follow. We start with the algorithm for the cedent, Algorithm 2 shows
the procedures needed to �nd the total liabilities for the cedent before singing a reinsurance
treaty, it is an average of all the claims simulated in Algorithm 1.

Algorithm 2 Algorithm for the cedent

Input: Integers m
1: X ← 0
2: s2← 0
3: i← 1
4: while i ≤ m do

5: s1 = s2 + 1
6: s2 = s1 +N [i]− 1
7: X[i] = mean(Z[s1 : s2])
8: i← i+ 1

9: return X
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Algorithm 3 is the algorithm for the reinsurer, it gives us the procedure to �nd the rein-
surer's liabilities. We have added the reinsurance function Hre (in this algorithm the a x b
contract) to the procedure. As we can see in the algorithm, the values of a and b are easily
changed and we can therefore create a function taking them as parameters.

Algorithm 3 Algorithm for the reinsurer

Input: Integers a, and b
1: X ← 0
2: s2← 0
3: i← 1
4: while i ≤ m do

5: s1 = s2 + 1
6: s2 = s1 +N [i]− 1
7: X[i] = mean(min(max(Z[s1 : s2]− a, 0), b))
8: i← i+ 1

9: return X

Once we have both these procedures up and running (for the R programs, consult appendix
B.1), we can �nd Zce by simply subtracting the results from Algorithm 3 from the results from
Algorithm 2. Once we have these values, it is possible to �nd the gain and expected gain and
use them to set up the criteria and optimise them with the retention limits as variables for
example.
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3 Optimal Reinsurance I: Theory

On average, the cedent loses money on reinsurance, when the cession rate increases, the
reinsurance price increases too. However, there are several crucial bene�ts associated with
reinsurance, an insurance company cannot avoid reinsurance. We want to �nd a contract
which allows us to optimize the situation of the cedent according to the optimality criteria.
When an insurance company wants to cede part of their risk, there are several types of
contracts to choose from. There are also di�erent criteria we can use to optimize on. We are
going to focus on the criteria Cce

σ and Cce
ε (Cσ and Cε in case there is no reinsurance contract).

Their mathematical formulations are:

Cce
σ = E[Gce]/sd(Gce) (3.1)

and
Cce
ε = E[Gce]/xceε (3.2)

where E[Gce], sd(Gce) and xceε are the expected gain of the cedent, the standard deviation of
the cedent and the cedent's capital percentile. It seems that stability, keeping the standard
deviation low while maximizing the gain and the value at risk, keeping the solvency capital
low while maximizing the gain are the most relevant criteria when choosing reinsurance con-
tract. Why? Because stability and freeing capital are the main bene�ts from reinsurance for
the cedent.

In this section we are going to examine the stability and value at risk criteria. To do this,
we are going to use the literature available on this topic, and also elaborate some own re-
sults. Thanks to this process, we are going to be able to rule out some types of contracts for
optimality. This will point us toward the optimal contract.

3.1 Maximum stability

Here we are examining the Cce
σ criteria. This is the criteria for stability, we are going to

elaborate on this particularly important consequence of reinsurance. In order to maximize
Cce
σ , we need to maximize the expected gain and minimize the standard deviation. We are

going to investigate the e�ects of reinsurance on this criteria.

Using the double rules for the expectation and the variance we introduced earlier, we will now
be able to state a formula for both the expected gain and the standard deviation of the gain.
The portfolio risk is the sum of all the claims, X = Z1 + ... + ZN where N , Z1, Z2, ... are
stochastically independent. Let E[Zi] = ξ and sd(Zi) = σ. Elementary rules for random sums
imply

E[X|N ] = Nξ and var(X|N) = Nσ2

using (2.1) and (2.2),

E[X] = E[N ]ξ and var(X) = E[N ]σ2 + var(N)ξ2.
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If N is Poisson distributed so that E[N ] = var(N) = JµT = λ, then

E[X] = λξ and var(X) = λ(σ2 + ξ2)

De�ning X =
∑N

i=1 Zi as the total of the claims the cedent is accountable for and Xre =∑N
i=1H

re(Zi) as the share of the losses the reinsurer covers. The gain of having a reinsurance
contract Hre is then

Gce = (1 + γ)E[X]− (1 + γre)E[Xre]− (X −Xre) (3.3)

where γ and γre are respectively the loading of the insurer and the loading of the reinsurer. The
loadings express the "price" of the insurance contracts. It is an extra fee the company charges,
usually covering their expenses and also giving them some pro�t. E[X] = π and E[Xre] = πre

are the pure premiums of the insurer and the reinsurer. (1 + γ)E[X] and (1 + γre)E[Xre] are
then, respectively, the true premium charged from the insurance company to the client and
from the reinsurer to the cedent. We can express the mean and the standard deviation of the
cedent like this,

ξce = E[Z −Hre(Z)] and σce = sd(Z −Hre(Z))

we can then write
E[Xce] = λξce (3.4)

and
var(Xce) = λ

(
(ξce)2 + (σce)2

)
(3.5)

The expected gain and the variance of the gain are then,

E[Gce] = (1 + γ)E[X]− (1 + γre)E[Xre]− E[X] + E[Xre]

= γE[X]− γreE[Xre]

= γλξ − γreλξre = λ(γξZ − γreξre)
= λ(γξ − γreHre(Z))

var(Gce) = λ((ξce)2 + (σce)2)

There is no right answer to the ratio between E[Gce] and sd(Gce) that gives optimality for the
cedent, this depends on the companies risk pro�le. However, it is mathematically possible
to �nd the reinsurance contract which maximizes the criteria Cce

σ . This is known as an
e�cient frontier, a term introduced by Markowitz (1952). A combination of assets is e�cient
if the expected gain is the highest, given its level of risk. For reinsurance we can plot the
expected gain versus the standard deviation of the gain we get from changing the reinsurance
parameters. The e�cient frontier will be the portion of the plot which gives the highest
expected gain given its standard deviation.

The �rst result we will be looking at is a simple mathematical argument using the properties
of the non-proportional reinsurance contracts. For the Cσ criteria, we can use the formulas
acquired above to show some interesting outcomes. Assume we have a reinsurance contract
with function Hre

a such that

Hre
a (Z) = min(Z − a, 0), for all Z > a.

This is an a x b contract with an in�nite b. Now, consider an arbitrary reinsurance contract
Hre(Z) which must only satisfy Hre(Z) ≤ Z. This leaves us with the following two possible
scenarios,
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Z > a : |Z − Z + a− a| = |Z −Hre
a (Z)− a| = 0

Z < a : |Z − a| ≤ |Z −Hre(Z)− a|

which then leaves us with

|Z −Hre
a (Z)− a| ≤ |Z −Hre(Z)− a|, for all Hre(Z) ≤ Z

using the above arguments for the variance of the claims, we can show the following interesting
result:

var(Z −Hre
a (Z)) = var(Z −Hre

a (Z)− a)
= E[Z −Hre

a (Z)− a]2 − (E[Z −Hre
a (Z)− a])2

≤ E[Z −Hre(Z)− a]2 − (E[Z −Hre(Z)− a])2

= var(Z −Hre(Z))

This shows us that the a x b contract with in�nite b gives us a smaller or equal variance, for
a �xed expected gain, than any other arbitrary reinsurance contract. This is an important
result, because it tells us that the a x b contract with in�nite b can give better results for the
Cce
σ criteria compared to any other reinsurance contract.

Another interesting argument we can use is based upon the convexity of the variance. In
the introduction we brie�y talked about the utility function, but we rejected it as a potential
criteria because of its lack of practical use. Looking at (3.5), we see that the variance is
composed of the square of the functions ξce and σce. Cai and Wei (2012) showed that the a
x b contract is the optimal reinsurance contract for individual claims under some precondi-
tions. They assume that the risks are positively dependent through stochastic ordering. They
prove the convolution preservation of the convex order for positively dependent through the
stochastic ordering random vectors. Their result is that for any convex function u, which they
see as a risk measure, the expected value of this risk measure for the a x b contract is less
than or equal to any other individualized reinsurance treaty. Transposing this argument to
our notation, we can express these results in the following way:

E[u(Hab(Z))] ≤ E[u(H(Z))]

where Hab is the a x b contract and H an arbitrary individualized reinsurance contract. The
function u can be seen as the variance in our case.

Since the variance in our criteria Cce
σ is a convex function, this argument is usable for the

criteria. Therefore it is another clue for our choice of contract. However, these arguments
show no numerical examples and are not giving us some concrete examples of contracts. These
arguments are also di�cult to read for anyone with no mathematics background. This shows
that there is a need of simpler and more intuitive arguments, such as numerical arguments.

3.2 Value at Risk

Another important criteria to consider is the capital requirements of an insurance company.
The capital requirements of insurance companies are based upon worst case scenarios. We
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wish to �nd the upper percentiles of the claims handled. This is the root to several values one
can consider as an optimality criteria: the reserve, the value at risk and also the conditional
value at risk. The reserve is the upper ε percentile xceε of Xce. This expresses the liquidity a
reinsurance company must keep in its books to meet the requirements given by the �nancial
authorities where the company is based. They are usually expressed in percentiles. The
percentile level ε of a liability Z is a threshold loss value x such that the probability of the
loss being greater than x is ε:

P(Z > x) = ε. (3.6)

The insurance companies wish to minimize these values. The capital required by the author-
ities is capital they cannot invest and therefore a loss of potential pro�t for the company.
Another optimality criteria could be to maximize the expected gain while keeping the reserve
low. This is the Cce

ε we introduced earlier:

Cce
ε = E[Gce]/xceε (3.7)

we could also have used another version of this, using the value at risk as the denominator

E[Gce]/V@Rε(Z).

But these two values are more or less expressing the same. In conclusion, the optimality of
reinsurance is decided by balancing the risk and reward factors implied by the reinsurance
contract the cedent is under.

The argument of Cai J. and Wei W. (2012) from the previous section is not applicable for the
Cce
ε criteria. Their results are only suitable for convex functions such as the variance and xceε

is not convex. As we can see from �gure 2, the xceε has a structure which makes Cai and Wei's
arguments not applicable for Cce

ε . We will therefore have to �nd other sources for arguments.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Percentile

x_
ep

si
lo

n

Figure 2: Plot of the reserve for Log-normal (blue), Pareto (black) and Gamma (red) claim sizes with
parameters ξLN = −0.5, σLN = 1, αG = 0.5, ξG = 1, αP = 3, βP = 1, λ = 10 and a = 5. This is done
the Monte Carlo way with 10000 simulations, x-axis go from ε = 1 to 0 and the y-axis shows the capital
requirements xceε .
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We can show interesting results for the Cce
ε criteria as well. We start with an argument

showing that the proportional type of contract is not optimal for the cedent. The expected
gain of the cedent under a proportional contract, when c is the percentage agreed upon and
γ and γre are the loadings is

E[Gce] = γπ − γreE[πre] = γλE[Z]− γrec+ E[Z] = (γ − γrec)λE[Z]

the reserve criteria is then

E[Gce]

xceε
=

(γ − cγre)λE[Z]
(1− c)xε

=
(1− cγre/γ)Cε

1− c

which concludes to the following for the criteria

Cce
ε =

(γ − cγre)λ
1− c

Cε < Cε, when γ < γre (3.8)

where Cε is the reserve criteria with no reinsurance. In order for the argument to work, we
need the loading of the cedent to be lower than the loading of the reinsurer, but this is actually
what we observe in the industry. We see in equation (3.8) that when we choose a proportional
type of contract, the solvency criteria with reinsurance is less than or equal the criteria without
reinsurance. This means that at best, the cedent gets the same criteria with reinsurance than
without. In other words, when considering the reserve criteria, the proportional types of
reinsurance contract is not optimal. This points us towards the non-proportional types of
contracts.

Another interesting result for large portfolios is given in Cheung (2011). It is shown there
that the optimal reinsurance contract for large portfolios under value at risk and conditional
tail expectation is insurance layers (which can be translated into our excess of loss type of
contracts). Under law-invariant convex risk measure (average value at risk), the optimal
contract is the stop-loss type of contract. This is another clue pointing towards the non-
proportional types of contracts. But, the arguments they use in this paper are as theoretical as
the ones in Cai and Wei (2012). They also lack the numerical examples for easier interpretation
and practical use.

3.3 Several large portfolios

What happens when we are dealing with large portfolios and reinsurance? Examining this
question can help us understand optimal reinsurance and possibly point us towards the rein-
surance contracts that are also optimal for individual claims. A lot more research has been
made on this topic than for the individual claims, it is therefore interesting to see results in
this case. We are going to look at some results for the solvency capital.

Assume we have a portfolio loss X and a number of policies J −→∞. When we have a large
number of random numbers, the central limit theorem can be applied to formulate the aggre-
gated losses. The central limit theorem states that the mean of a su�ciently large number of
independent random variables, each with well de�ned expected value and well de�ned vari-
ance, will be approximatively normally distributed. Since our portfolio losses are independent
from each other we get

E[X] = λξJ and sd(X) =
√
λ
√

((ξ)2 + (σ)2)
√
J
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Now, let us consider the gain of the cedent Gce for large portfolios. I will not include the
loadings in this formula for simpli�cation. The gain is now

Gce = λξceJ +
√
J · sd(Xce)N(0, 1) + o(

1√
J
)

where
√
Jo( 1√

J
)→∞ as J →∞. The function o( 1√

J
) <
√
Jsd(Xce)N(0, 1) for large portfolios.

Which means that for a large J, we can have some �xed results for the gain of the cedent which
can help us �nd results. This leads to the following approximation for the reserve percentile
qε:

qε = λξce +
√
λ
√

(ξce)2 + (σce)2φε =
√
Jsd(Xce)φε

where φε is the upper ε-percentile of the standard normal distribution, for example φ0.99 = 2.33.
This is due to the Lindeberg extension of the central limit theorem see Appendix A.4. in
Bølviken (2014).

When we wish to maximize the Cε criteria, we want to have the smallest qε possible for the
highest corresponding �xed gain. Now, if we focus on the formula for qε, we see that in order to
minimize qε, we must minimize sd(X

ce). This is the same problem as the stability criteria Cσ.
We saw that the optimal contract for minimizing the variance is the a x b type of contract
with in�nite b. Since for large portfolios, the criteria have the same optimizing procedure
of minimizing the variance, we can conclude that they have the same optimal reinsurance
contract: a x b with in�nite b.

After investigating the theory on optimal reinsurance, we have found some interesting results.
Generally, it seems that the optimal contract is of the non-proportional type. More speci�cally
an a x b contract with b in�nite. The arguments for this have all been theoretical, we have no
numerical evidence for this statement. Therefore we need to back our arguments with some
numerical examples. We will do this in the next section.
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4 Optimal Reinsurance II: Numerics

We have seen in the previous section that �nding an optimal reinsurance contract for the
cedent, when we focus on individual events, is a very relevant issue for today's industry. The
number of papers addressing this topic has increased the last decade and generally, they point
towards a non-proportional type of contract and more speci�cally, the a x b contracts (with
some variations). We will therefore focus on this type of contract when we are going to ex-
amine the numerical results in the following section section. The Monte Carlo method was
introduced earlier but is a little too slow and not robust enough. We have a way around these
obstacles: The Panjer Recursion. The idea is to �nd the optimal retention limits by �nding
the compound distribution of the claim size and amount, and simulating step by step for small
increments.

It should be noted that before selecting the Panjer recursion as a tool for numerical results, dif-
ferent approaches were tried. The thesis started o� with smoothing splines as a potential tool
for optimization. Then when the Panjer recursion was �nally selected, di�erent approaches
with R and C running in parallel where tried.

4.1 The Panjer Recursion

The Panjer recursion is an algorithm computing the distribution of a compound random
variable

X = Z1 + Z2 + ...+ ZN

where both N and Z1, Z2, ... are random variables with speci�c attributes, typically assumed
to be independent. It is also assumed that Z1, Z2, ... are identically distributed as a random
variable Z. In our context, we have each claim size distributed according to a distribution such
as the Pareto, the Gamma and the Log-Normal distribution. The number of claims occuring
is Poisson distributed. Our compound distribution is then representing the total sum of all
the claims. A recursive de�nition of the distribution of the total claims, for a speci�c family
of claim number and size distributions was introduced in a paper by Panjer (1981). This
recursion can be used for di�erent applications, in our case, we have N insurance claims, each
of size Z1, Z2, ...

We are interested in the compound random variable X, where X and the Zi ful�ll the follow-
ing preconditions. We assume the Zi to be independent and identically distributed random
variables, independent of N . Furthermore the Zi have to be distributed on small increments
h > 0, such that

fj = P [Z = jh]

the probability that Z is in the jth increment.

For the Panjer recursion, the probability distribution of N has to be a member of the so-
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called (a,b,0) class of distributions, which will in this thesis be rebranded as the (u,v,0) class
for notational purposes. It consists of all counting random variables which satisfy the following
relation:

pn =
(
u+

v

n

)
pn−1, for n = 1, 2, 3... (4.1)

for some u and v which ful�ll u+ v ≥ 0. The four members of this family of distributions are

1. The Poisson distribution: pn = λ
n!
e−λ

u = 0, v = λ

2. The Binomial distribution: pn =
(
N
n

)
pn(1− p)N−n

u = −p/(1− p), v = (N + 1)p/(1− p)

3. The Negative Binomial distribution: pn =
(
α+n−1

n

)
pn(1− p)α

u = p, v = 0

4. Geometric distribution (Negative binomial with α = 1)

The Panjer recursion makes use of this iterative relationship to specify a recursive way of
constructing the probability distribution of X. In this project, we will only look at the case of
discrete severities. Before we start with the recursion, we need to calculate fj. After choosing
a h, which can be seen, in our context, as a rounding o� to the nearest multiple of monetary
unit, we discretize the continuous distribution using the central di�erence approximation:

f0 = F (h/2)

fj = F (jh+ h/2)− F (jh− h/2) for j = 1, 2, ....

see the next section for more calculation details.

Now that we have discretized the claim size part, we can go further and calculate the compound
distribution by using the procedure given by Algorithm 4.

Algorithm 4 The Panjer recursion

Input: Starting value g0 and integers a, b, h
1: if a = 0 then
2: g0 = p0 · exp(f0b)
3: if a 6= 0 then
4: g0 =

p0
(1−f0a)1+b/a

5: for gj = P [X = hj] do
6:

gj =
1

1− f0a

j∑
k=1

(
a+

b · k
j

)
fk · gj−k

7: Gj = Gj−1 + gj

8: return gj and Gj
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Panjer proves that the recursion holds using arguments such as the recursive de�nition of
convolutions and symmetry of the elements in question. The proof for a continuous claim size
distribution is in Panjer H. (1981). However it should be noted that Adelson in 1966 came
with an article on compound Poisson distributions already addressing this topic.

Before we start with the proof of the recursion, it is interesting to show why the Poisson
distribution is said to be a member of the (u,v,0) class of distributions. Assuming that p0 > 0,
we can observe that p1 = (u + v)p0 and since (u + v) ≥ 0, the value of p1 is positive. If
(u + v) = 0, then p1 = 0 and all the pn = 0 for n ≥ 1. This is then to be ruled out of our
potential values for u+v. If u = 0, like suggested for the Poisson distribution, then pn = v

n
pn−1

and

pn =
vn

n!
p0, for all n ≥ 0

From the de�nition of the (u,v,0) class, we know that
∑∞

n=0 pn = 1, which gives us the
following,

∞∑
n=0

pn = p0

∞∑
n=0

vn

n!
= 1

We, recognize
∑∞

n=0
vn

n!
to be the Taylor series of ev,

1 = p0

∞∑
n=0

vn

n!
= p0e

b

We then get that, if u = 0, {pn}∞n=0 is the Poisson distribution with parameter v.

For the recursion of the compound distribution, Panjer proves it for the continuous claim size
distributions, however this proof is similar to the proof for the discrete distributions and is as
follows, we start with the continuous compound distribution function

G(x) =

{∑∞
n=1 pnF

∗n(λ) if x > 0

p0 if x = 0

for arbitrary claim amount distribution F (λ), x > 0. The density of total claims is

g(x) =

{∑∞
n=1 pnf

∗n(x) if x > 0

p0 if x = 0
(4.2)

Panjer uses these two relations in his proof:∫ x

0

f(y)f ∗n(x− y)dy = f ∗(n+1)(x), for n = 1, 2, 3, ... (4.3)

∫ x

0

yf(y)f ∗n(x− y)/f ∗(n+1)(x)dy = x/(n+ 1), for n = 1, 2, 3, ... (4.4)

Relation (4.3) is the recursive de�nition of a convolution. The left side of relation (4.4) is
the conditional mean of any element of a sum consisting of n+ 1 independent and identically
distributed elements, given that the sum is exactly x. The mean is x/(n+1) as a result of the
symmetry in the elements of the sum. Now, the theorem for the recursion, given in Panjer
(1981), is as follows:

27



Theorem 4.1. For pn and g(x) de�ned by the previous comments, and f(x) any distribution
of the continuous type for x > 0, the following recursion holds

g(x) = p1f(x) +

∫ x

0

(u+ vy/x)f(y)g(x− y)dy, for x > 0 (4.5)

The proof is as follows, we start by substituting (4.2) in the right side of (4.5) which gives
us:

p1f(x) +

∫ x

0

(u+
vy

x
)f(y)g(x− y)dy = p1f(x) +

∫ x

0

(u+
vy

x
)f(y)

∞∑
n=1

pnf
∗n(x− y)dy

We develop the right hand side (RHS),

RHS = p1f(x) +
∞∑
n=1

pn

∫ x

0

(u+
vy

x
)f(y)f ∗n(x− y)dy

= p1f(x) +
∞∑
n=1

pn

(
u+

v

(n+ 1)

)
f ∗n(x− y)dy (from (4.3) and (4.4))

= p1f(x) +
∞∑
n=1

pn+1f
∗(n+1)(x) (from (4.1))

= p1f(x) +
∞∑
n=2

pnf
∗n(x)

=
∞∑
n=1

pnf
∗n(x) (since f ∗1(x) = f(x))

= g(x)

This is the result we wanted to prove the relation.

4.2 Implementation

To understand the Panjer recursion, it is important to see how it works by showing some
simple numerical examples. We look at the case where the distribution of the claim size is
Log-normal with parameters µ = 0 and σ = 2. For the "money" (precision) parameter, we
chose h = 1$.

We start with the discretization of the Log-normal distribution:

f0 = F (h/2) = F (0.5) = 0.364

f1 = F (h+ h/2)− F (h− h/2) = F (1.5)− F (0.5) = 0.216

f2 = F (2h+ h/2)− F (2h− h/2) = F (2.5)− F (1.5) = 0.096

...

In order to �nd the discrete version of the log-normal distribution, I have developed a R-
program called "discretize", which �nds the results. The following table is a calculation of the
�rst 5000 fj.
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j fj
0 3.645× 10−1

1 2.159× 10−1

2 9.625× 10−2

3 5.789× 10−2

. .

. .

. .
4999 4.606× 10−9

5000 4.603× 10−9

Table 2: Results for fj using the R program discretize.

Comparing the plots of the simulated log-normal distribution against the discretized version
shows that they are close to each other. This means that the discretized version is giving
accurate enough precision, however it should be noted that the smaller the lattice, the greater
the precision. We will see later that decreasing the increment size increases the computing
time a lot.

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Log−normal(0,2)

Red=Discretized, Black=500 lognormal simulations

De
ns

ity

Figure 3: Simulated Log-normal distribution (black) versus discretized Log-normal distribution (red) using
the R software

For the claim numbers, we assume that they are Poisson distributed with intensity λ = 10.
We know that for the Poisson distribution, which is a member of the (u,v,0) distribution class,
u = 0 and v = λ. Inserting this into the formula for pn we now have all the information we
need to calculate gj:

g0 = p0 · exp(f0b) = exp(−10) · exp(0.3644584 · 10) = 1.7373× 10−3

g1 =

(
b · 1
1

)
f1 · g0 = 3.75× 10−3

g2 =

(
b · 1
2

)
f1 · g1 +

(
b · 2
2

)
f2 · g0 = 5.71× 10−3

...
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When the frequency is large λ ≥ 700, see Cruz (2015) chapter 13, we get numbers outside the
range of the computer (the number is too small), we can overcome this by scaling the Poisson
distribution and calculate for some large m:

G(m)∗(z;λ/m) = G(z;λ)

When computing the recursion, a large number of simulation may be needed in order to
�nd the aggregated loss distribution. In order to implement the Panjer recursion into our
optimal reinsurance problem, I had to build a program computing the recursion. The �rst
programming language I used to build this program was the statistical computing language
R. However, the R-program ran slow when the increment width was small. This forced me to
try another programming language: Fortran.

The �rst computation required is the discretization of the claim size distribution. This is a
straightforward calculation, following the Algorithm 5 and the formula for fj. In R, there
are built-in functions calculating the distribution function of the distributions we need for the
recursion. The discretization program I build in R works as in the following way:

Algorithm 5 The discrete claim size

Input: Integers h, from and to
1: s← sequence(from, to, by = h) . Sequence with increment h
2: f0 = Distribution(h

2
)

3: for j in s do
4: fj ← Distribution(j · h+ h

2
)−Distribution(j · h− h

2
)

5: return fj

When the discretization is done, the recursion for the compound distribution can start.
This is the part of the program which is demanding a lot of computer resources. For each extra
decimal of precision added, the number of calculations is squared. For example, changing h
from 0.01 to 0.001 requires about a 100 more calculations and naturally takes a lot more time
to compute. Again, using Algorithm 4, I build a program computing the gj's. The idea is
to use the fj we get from the discretize program as input and use it in the recursion. We
also need the claim number distribution, which in our case is the Poisson distribution. The R
program developed for this is called PanjerPoisson, and works like this:

Algorithm 6 The discrete claim size

Input: Integer λ, and the fj
1: s← sequence(from, to, by = h)
2: g0 = exp(−λ(1− f0))
3: R← length(j)
4: for j in s do
5: gj ← λ

j

∑j
k=1 k · fj · gj−k

6: return gj

Once the procedures are up and running, the problem of the optimal reinsurance can be
implemented in the program. The R program I build is suited for increments larger than 1,
however when the increments are less than 1, the computations take too long and crash most
of the time. Therefore, a Fortran program was developed in order to have greater precision
without taking too long. We want to �nd the optimal lattices for the a and the b of our
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reinsurance contract, in order to �nd this, we must implement these values and the criteria in
our program, the net claims the cedent must cover after reinsurance is expressed as

Xce =
N∑
i=1

{Zi −Hre(Zi)}

where H is the function for the reinsurance contract.

We are considering the a x b contract, the factors from the contract that can vary the outcome
of the criteria are the retention limits a and b. Now for our Panjer program we introduce the
retention limits induced from the increments in our recursion

a = jah and b = jbh

Just like the Monte Carlo method, we need to decide which pair of a and b that gives optimality
according to the criteria we established. In the Panjer recursion we split the compound
distribution into small intervals with increment size h, letting

gcej = P(Zce = jh).

This con�guration of the recursion gives us the following values for the claims:

Zce
j =


jh if j < ja

jah if ja ≤ j ≤ ja + jb

(j − jb)h if j > ja + jb

This gives us the following function and values for the recursion function:

gcej =


gj if j < ja

gja + ...+ gja+jb if ja ≤ j ≤ ja + jb

gja + ...+ gja+jb if j > ja + jb

The Fortran program, makes us of the recursive bisection method to �nd the optimal criteria.
This method is simple and robust, it works the following way, we start with an interval [ia, ib],
usually the endpoints, from our function gcej . The �rst procedure is to �nd the midpoint of the
interval, if the function value from this point is closer to one of the initial points, you replace
the point with the midpoint and continue until the interval between midpoint and interval
points is below a value we have �xed, see Algorithm 7.

Algorithm 7 The recursive bisection method

Input: Integer ia and ib, ia < ib, and the function gj
1: N← 1
2: while N ≤ NMAX do . To avoid in�nite loops
3: ic ← (ia + ib)/2
4: if (ia + ib)/2 <MIN then Output(ic) . MIN is the precision value

5: N ←N+1
6: if g(ic) closer to g(ia) then ib ← ic
7: elseib ← ic
8: return ic
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The way to use the Fortran programs on a Linux command window and some time tests
are explained in the appendix. After doing some tests with the program, we realize that the
more the precision, the more time the program takes to run, however, after varying the h from
1 to 0.001, we notice that there is no major increase in the precision below an increment size of
0.01. However the time increase from 0.01 to 0.001 is very large, for the Gamma distribution
the time it takes to run the program is multiplied by 152 and for the Pareto distribution it is
multiplied by 125 (see Appendix B).

h
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

1 8.4 7.9 4.0 32.0 9.0 7.1 2.0 105 2.0 10.6 1.0 1.0
0.5 8.2 7.8 3.5 31.0 8.5 6.8 1.5 50 6.9 10.9 1.0 1.0
0.1 8.1 7.7 3.8 31.7 8.2 6.6 1.7 67 10.6 10.8 1.2 1.2
0.01 8.1 7.7 3.8 31.4 8.1 6.5 1.7 65.2 10.8 10.8 1.4 1.4
0.001 8.1 7.7 3.8 31.4 8.1 6.5 1.7 65.5 10.8 10.8 1.4 1.4

Table 3: Criteria with and without reinsurance (in percent) and retention limits with varying increment size
h. The parameters are λ = 10, αG = 0.5, ξG = 1,αP = 3, βP = 1, ξLN = 1, σLN = 0.3, γ = 0.2, γre = 0.3 and
ε = 0.01.

h
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

1 9.7 9.9 3.0 3.0 9.0 8.4 4.0 57 10.0 10.1 3.0 3.0
0.5 9.9 9.9 4.0 20.5 8.9 8.3 3.5 57 10.4 10.4 3.5 4.0
0.1 9.9 9.8 4.2 19.2 8.8 8.2 3.6 57.1 10.3 10.3 3.1 3.3
0.01 9.9 9.8 4.5 20.3 8.8 8.2 3.6 57.2 10.3 10.3 3.0 3.2
0.001 9.9 9.8 4.5 20.3 8.8 8.2 3.6 57.2 10.3 10.3 3.0 3.2

Table 4: Criteria with and without reinsurance (in percent) and retention limits with varying increment size
h. The parameters are λ = 10, αG = 2, ξG = 2, αP = 7, βP = 7, ξLN = 1, σLN = 0.5, γ = 0.2, γre = 0.3 and
ε = 0.01.
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Figure 4: Simulated compound Gamma and Poisson distributions (red) with distribution parameters ξ = 1,
α = 0.5 and λ = 10. The vertical bars are, from left to right the a and b retention limits we get from the
increment h = 0.001.

The tables are a synthesis of the results we get from running the Fortran programs we have
(see Appendix B). It shows the retention limits and the criteria for di�erent increment size h.
The tables provide Cce

ε (the criteria with reinsurance) and Cε(the criteria without reinsurance),
with the corresponding a and b, it is interesting to see how reinsurance a�ect the criteria. In
our example, we see that having reinsurance increases the criteria for both the Gamma and
the Pareto distributions. This means that the company will have a larger expected gain for
less required capital when they have reinsurance. This results could be expected, reinsurance
is a stabilizer of risk and is also increasing the companies ability to underwrite more pro�table
risks. All the results in these tables are with the same distribution parameters.

For the Log-normal distribution, the results are not the same, the Fortran program shows
that the optimal situation is no reinsurance. It also shows that it is important to use a small
enough increment size for precision. The results for h = 1, 0.5, and 0.1 are contradicting, the
retention limits tell us that the interval between a and b is 0, which is the same as saying no
reinsurance. However, Cce

ε < Cε, which means that reinsurance gives a higher criteria and is
then optimal for the cedent. But, we can see that when the h < 0.1, the criteria are identical,
the results for the retention limits and the criteria are no longer contradicting.

Changing h changes the criteria, when h varies from 1 to 0.001, Cce
ε goes from 0.0895 to 0.0811

and Cε from 0.0712 to 0.0654 for the Pareto distribution which is not more than a 10% change.
These variation are as small for the Gamma and the Log-normal distributions.

The retention limits seem to vary a lot more, especially for the Pareto distribution: changing
h from 1 to 0.001 changes a from 2.00 to 1.67 and b from 103.00 to 63.85, which is a 38%
variation. Even with the same distributions parameters, loadings and percentiles, a variation
of h can change the value of the retention limits by almost half of its original value. For
the Gamma distribution, the change is less dramatic. An explanation to this is the shape of
the distributions, the Pareto distribution has longer tails, which might go unnoticed if the
precision is not good enough. From �gure (4), we see that the retention limits are more on
the extreme values, could this support the idea that the optimal contract is optimal with an
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in�nite b?

Now that we have the program up and running, we can use the program to investigate the
results with varying parameters.

4.3 Results

Our Fortran programs simulates an a x b contract. It calculates the a and b that optimize
Cce
ε and Cε, the ratios between the expected gain and the net reserve with and without

reinsurance. As we saw in the previous sections, several arguments pointed towards the a x
b contract as optimal for the individualised claims. In this section our main goal is to give
results for di�erent parameters and vary these in order to see if the numerical results validate
the theoretical results. Thanks to the programs, we are now able to vary the distribution
parameters which a�ect both the claim size and the claim numbers. We can also vary the
percentiles for the capital requirements, the loadings for both the cedent and the reinsurer
and �nally the increment size h. This is a very important part of the thesis, here we will be
able to see if the theory �ts with the results from the Panjer recursion.

An interpretation of the tables that will follow is that the larger the di�erence between the
criteria Cε and C

ce
ε the more the reinsurance contract is needed. Usually we will have Cε ≤ Cce

ε .
As for the retention limits, the larger the interval between a and b, the more reinsurance
contract is needed too. We will see that these two values are related.

Variation of distribution parameters

First we vary the λ of the Poisson distribution for the claim number, this parameter describes
the intensity of the claims. How often they occur in a determined time interval. It is therefore
interesting to see how this value varies the retention limits or the criteria. I will present the
results of this in tables and �gures representing the criteria and the retention limits. There
will also be two versions of the tables, each with di�erent claim size distributions. This is
done to have more evidence in case of a trend. I encourage the reader to try the program with
di�erent parameters to see how they vary.
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λ
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

1 3.0 2.5 2.1 31.8 2.4 2.4 42.9 42.9 3.7 3.6 6.7 8.5
2 4.2 3.7 3.1 32.3 4.3 3.3 1.3 16.0 5.1 5.1 7.6 9.7
5 6.3 5.8 3.4 31.7 6.4 4.9 1.5 35.3 7.5 7.4 8.7 10.8
10 8.1 7.6 3.8 31.4 8.1 6.5 1.7 65.2 9.4 9.4 9.7 11.7
20 10.0 9.6 4.4 31.0 9.9 8.4 2.0 116.4 11.4 11.4 10.7 12.4
50 12.3 12.2 5.5 30.5 12.2 10.9 2.5 198.7 13.7 13.7 12.3 13.7
100 14.0 13.9 6.6 30.0 13.8 12.8 3.1 195.3 15.2 15.2 13.9 14.9

Table 5: Criteria and retention limits when varying the intensity λ, the other parameters are h = 0.01,αG =
0.5,ξG = 1,αP = 3,βP = 1,ξLN = 2,σLN = 0.7,γ = 0.2,γre = 0.3 and ε = 0.01. The criteria are in percent.

λ
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

1 4.1 3.9 3.7 21.3 3.5 2.9 2.5 48.3 4.3 4.3 2.3 2.6
2 5.6 5.4 3.8 21.0 4.8 4.1 2.8 58.6 5.9 5.9 2.6 2.9
5 8.0 7.9 4.3 31.7 6.9 6.3 3.2 35.3 8.4 8.3 2.7 2.9
10 9.9 9.8 4.5 20.8 8.8 8.2 3.6 57.9 10.3 10.3 3.1 3.3
20 11.7 11.7 3.9 3.9 10.6 10.2 4.2 56.2 12.2 12.2 3.6 3.8
50 14.0 14.0 4.5 4.5 13.0 12.7 5.2 54.6 14.3 14.3 3.8 3.9
100 15.4 15.4 4.5 4.5 14.5 14.4 6.4 53.2 15.7 15.7 4.2 4.3

Table 6: Criteria and retention limits when varying the intensity λ, the other parameters are h = 0.01,αG =
2,ξG = 2,αP = 7,βP = 7,ξLN = 1,σLN = 0.5,γ = 0.2,γre = 0.3 and ε = 0.01. The criteria are in percent.

In �gure 5, I have plotted the Monte-Carlo simulations of the density of the three distribu-
tions for λ = 1, 10 and 100. I have also included the retention limits we get from the Fortran
program. The retention limits and the claims density with the same λ have the same colors.
The densities seem to be very close to each other, it is not easy to see the di�erence between
them.
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Figure 5: Aggregated distributions with retention limits. λ = 1 (dark blue) λ = 10 (light blue) and λ = 100
(red); h = 0.01,αG = 0.5,ξG = 1,αP = 3,βP = 1,ξLN = 2,σLN = 0.7,γ = 0.2,γre = 0.3 and ε = 0.01

The trend here is that increasing λ increases the need for reinsurance for the Pareto claim
size and decreases the need for reinsurance for the two other distributions. The di�erence
between a and b are increasing when λ is increasing. However, for the Gamma and the Log-
normal distributions, the results are opposite (the Log-normal claims do not vary a lot from
λ = 1 to λ = 100). These are expected results, it seems that they are linked to the compound
claims for the cedent. The three distributions have di�erent characteristics when λ varies.

Note that for small values of λ, the Pareto distribution �nds that optimality is without rein-
surance, we see that a = b when λ = 1. The densities of the distributions are not much
a�ected by the change of λ, except for the Pareto distribution which sees it tail increase a lot
when λ increases. Another interesting we get from the tables is that it seems that an increase
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in the interval between a and b seems to increase the di�erence between Cε and C
ce
ε .

Now we vary the parameters for the distribution of the claim size, will this a�ect the criteria
and the retention limits the same way as the claim number?

αG ξG
Gamma claims

αP βP
Pareto claims

ξLN σLN
Log-normal claims

Cceε Cε a b Cceε Cε a b Cceε Cε a b
1 2 9.1 8.9 5.9 35 10 4 8.9 8.4 1.4 14.4 1 0.5 10.3 10.3 3.1 3.3
1 4 9.1 8.9 12 70 10 3 8.9 8.4 1.0 10.8 1 1 7.8 7.6 8.8 13.1
1 8 9.1 8.9 23 140 10 1 8.9 8.4 0.3 3.6 2 0.5 10.3 10.3 6.1 6.5
2 2 9.9 9.8 4.5 20 3 5 8.1 6.5 8.4 328 2 1 7.8 7.6 17.5 26.0
3 2 10.2 10.2 3.2 3.2 3 6 8.1 6.5 10 393 2 1.5 4.5 4.5 1315 1315
5 1 10.5 10.5 1.2 1.2 3 7 8.1 6.5 12 459 10 1.5 4.5 4.5 6577 6577
9 0.5 10.7 10.8 0.4 0.4 7 7 8.8 8.2 3.6 54 0 0 0 0 4.2 4.3

Table 7: Criteria and retention limits with varying distribution parameters. The other parameters are
h = 0.01,λ = 10,γ = 0.2,γre = 0.3 and ε = 0.01. The criteria are in percent.

From the table we see that the variation of the distribution parameters a�ect the value of
the criteria and the retention limits a lot, for the Log-normal claims we get proportion di�er-
ences between the retention limits for ξLN = 1 and σLN = 0.5 and ξLN = 10 and σLN = 1.5
to be approximatively 2100. In appendix A, I have plotted the distributions with di�erent
parameters from the table so we can see how the shape of the density a�ects the criteria
and retention limits. It seems that the longer the tail, the less reinsurance is needed for the
Gamma and the Log-normal distributions, the opposite for the Pareto distribution.

We can conclude that the distribution parameters for both the claim number and claim size
a�ect the need for reinsurance. They should be chosen carefully.

Variation of the loadings

The loadings are very important values when considering reinsurance, the reinsurance com-
panies usually don't reveal their loading factors because of the competition, but it is safe to
assume that γ < γre and that the di�erence between these two is normally not very large.
The variation of these values from year to year can be quite substantial. A year where lot of
catastrophic events occur can increase the price of next year's premiums. Therefore it is of
great importance to see how changing these values change the cedent's need for reinsurance
as they appear to be volatile.
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γre
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

0.1 ∞ 7.6 0 17.0 ∞ 6.5 0 107 9.7 9.4 3.2 4.5
0.2 ∞ 7.6 0 17.0 ∞ 6.5 0 107 9.5 9.4 7.4 9.3
0.4 7.8 7.6 5.7 31.1 7.6 6.5 2.7 52.3 9.4 9.4 11.4 13.3
0.6 7.7 7.6 6.8 29.3 7.2 6.5 4.2 33.7 9.4 9.4 13.7 15.4
0.8 7.6 7.6 6.8 6.8 7.0 6.5 5.4 23.8 9.4 9.4 15.3 16.7

Table 8: Criteria and retention limits with varying γre. The other parameters are h = 0.01, λ = 10, αG = 0.5,
ξG = 1, αP = 3, βP = 1, ξLN = 2, σLN = 0.7, γ = 0.2, and ε = 0.01. The criteria are in percent.

γre
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

0.1 ∞ 9.8 0 11.3 ∞ 8.2 0 31.5 12.1 10.3 0.1 0.6
0.2 ∞ 9.8 0 11.3 ∞ 8.2 0 31.5 10.3 10.3 2.1 2.3
0.4 9.8 9.8 4.5 4.5 8.5 8.2 5.3 56.4 10.3 10.3 3.7 3.9
0.6 9.8 9.8 4.5 4.5 8.3 8.2 7.8 55.6 10.3 10.3 4.2 4.3
0.8 9.8 9.8 4.5 4.5 8.3 8.2 9.5 54.9 10.3 10.3 4.2 4.2

Table 9: Criteria and retention limits with varying γre. The other parameters are h = 0.01, λ = 10, αG = 2,
ξG = 2, αP = 7, βP = 7, ξLN = 1, σLN = 0.5, γ = 0.2, and ε = 0.01. The criteria are in percent.

From tables 8 and 9 we get the following results, we see that for the Gamma and Pareto
distributions, a cheap reinsurance contract (loadings equal to 0.1 and 0.2 which is in this case
≤ γ) gives the cedent unlimited criteria, the ratio between the expected gain and the reserve
is in�nite, the interval between the retention limits is also at the largest (see Appendix A for
�gures). This is an arbitrage opportunity. For these two values of γre, the cedent can just
reinsure all the claims and make an unlimited gain for very small capital requirements and
without any risk of losing money. For the Log-normal distribution the results were a little
di�erent. I had to go to as low as γre = 0.05 to get the same results than for the Gamma and
Pareto distributions. The cases where γ > γre are not realistic and we cannot expect to see
these scenarios in the insurance world, see Wahlin (2012).

Now, when the the reinsurance price increases in comparison to the cedent's loading, optimality
is achieved with less reinsurance. The di�erence between Cce

ε and Cε is also shrinking and
even becoming 0 for large enough γre. This means that when the loading of the reinsurance
company is too large compared to the one for the insurance company, the most pro�table
scenario for the cedent is to reinsure as little as possible. This is a very intuitive result. In
tables 8 and 9, I only varied γre, in order to see how the loading factor a�ect the cedent's
optimal reinsurance, we need some more results for other con�gurations of γ and γre. Will we
see the same trend here?
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γ γre
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

0.5 0.5 ∞ 19.1 0 17 ∞ 16.4 0 107 23.7 23.5 7.4 9.3
0.5 1.0 19.6 19.1 5.7 31 19.1 16.4 2.7 52.3 23.6 23.5 11.4 13.3
1.0 1.0 ∞ 38.2 5.7 17 ∞ 32.7 0 107 47.5 47.0 7.4 9.3
1.0 1.1 44.5 38.2 1.4 31 46.3 32.7 0.6 58.7 47.4 47.0 7.9 9.8
1.0 1.3 41.5 38.2 2.8 32 42.4 32.7 1.2 68.5 47.3 47.0 8.8 10.7

Table 10: Criteria and retention limits with varying both γ and γre. The other parameters are h = 0.01,λ =
10,αG = 0.5,ξG = 1,αP = 3,βP = 1,ξLN = 2,σLN = 0.7 and ε = 0.01. The criteria are in percent.

γ γre
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

0.5 0.5 ∞ 24.5 0 11 ∞ 20.4 0 31.5 25.8 25.7 2.1 2.3
0.5 1.0 24.5 24.5 4.5 4.5 21.3 20.4 5.3 56.4 25.7 25.7 3.7 3.9
1.0 1.0 ∞ 49.0 0 11 ∞ 40.8 0 31.5 51.6 51.4 2.1 2.3
1.0 1.1 51.3 49.0 2.3 21 47.8 40.8 1.4 58.8 51.5 51.4 2.4 2.6
1.0 1.3 49.9 49.0 3.8 21 45.0 40.8 2.6 57.7 51.5 51.4 2.7 2.9

Table 11: Criteria and retention limits with varying both γ and γre. The other parameters are h = 0.01,λ =
10,αG = 2,ξG = 2,αP = 7,βP = 7,ξLN = 1,σLN = 0.5 and ε = 0.01. The criteria are in percent.

Tables 10 and 11 con�rm the results we got from tables 8 and 9. We see that when γre = γ,
the cedent still have arbitrage opportunities for the Gamma and the Pareto distributions with
in�nite Cce

ε and large retention limits (see Appendix A for �gures). When γre is increasing
compared to γ, we see Cε getting closer to C

ce
ε and the retention limit interval shrinking.

To conclude, we see that the loading factors have a lot to say on the choice of the reinsurance
retention limits. When a ceding insurance company is looking at di�erent contracts, it should
take a look at the loadings o�ered in the market and also see how much reinsurance is optimal
for given loadings.

Variation of the reserve percentile

Another parameter we can vary in the program is the percentile for the capital reserve. It
seems that requiring a 99% capital reserve is getting more popular in European countries,
however this is not the case everywhere and it surely is interesting to see how the reserve
requirements a�ect the criteria and retention limits. As a reminder, the reserve is de�ned as
the solution to this equation

P[X > qε] = ε

where qε is the estimated capital required at (1 − ε)100 percentile. The values we are going
to vary in our program is ε. At �rst we are going to vary ε from 1% to 10%. When we have
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ε = 1%, qε is the solvency capital (reserve) required.

ε
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

0.01 8.1 7.6 3.8 31.4 8.1 6.5 1.7 65.2 9.4 9.4 9.7 11.7
0.025 9.1 8.7 4.2 31.1 9.1 8.1 1.8 25.4 9.4 9.4 9.7 11.7
0.05 10.1 9.9 4.7 30.6 10.1 9.6 2.0 10.9 9.5 9.4 9.8 11.7
0.1 11.6 11.5 5.7 29.3 11.7 11.5 2.3 4.4 9.5 9.4 9.8 11.8

Table 12: Criteria and retention limits when varying the capital requirements, h = 0.01, λ = 10, αP = 3,
βP = 1, αG = 0.5, ξG = 1, ξLN = 2, σLN = 0.7, γ = 0.2, and γre = 0.3. The criteria are in percent.

ε
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

0.01 9.9 9.8 4.5 20.3 8.8 8.2 3.6 57.2 10.3 10.3 3.1 3.3
0.025 10.9 10.8 4.5 19.6 9.8 9.3 3.9 55.9 11.3 11.3 3.0 3.1
0.05 11.8 11.8 4.4 4.4 10.8 10.5 4.4 53.1 12.3 12.3 3.3 3.4
0.1 13.2 13.2 4.5 4.5 12.2 12.1 5.4 15.9 13.6 13.6 4.2 4.3

Table 13: Criteria and retention limits when varying the capital requirements, h = 0.01, λ = 10, αP = 7,
βP = 7, αG = 2, ξG = 2, ξLN = 1, σLN = 0.5, γ = 0.2, and γre = 0.3. The criteria are in percent.

Since the capital requirements are not decided by the cedent, merely imposed, it cannot
be considered as an optimization parameter which the cedent can a�ect. But it is interesting
to see how the criteria and the retention limits vary with the value of ε.

The results from tables 12 and 13 are not controversial for the Gamma and the Pareto dis-
tributions. When the capital requirements decrease, the Cce

ε and Cε increase, which is an
expected e�ect. The need to put away funds for solvency issues is decreasing when capital re-
quirements set by the authorities decreases. The retention limits are forming smaller intervals
too when the capital requirements decrease, the cedent needs less reinsurance to cope with
the ε required by the regulators. For the Log-normal distribution, the capital requirements
don't seem to a�ect the need for reinsurance or the criteria as much. The explanation for this
must be the con�gurations of the distribution. In �gure 8, I have plotted the density and xε
side by side for each distribution.
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Figure 8: Aggregated distributions with retention limits on the left, qε on the right. From top to bottom the
distributions are Gamma, Pareto and Log-normal. The parameters are h = 0.01,λ = 10,αP = 3,βP = 1,αG =
0.5,ξG = 1,ξLN = 2,σLN = 0.7,γ = 0.2, and γre = 0.3. The colour code is the following: ε = 0.1: yellow,
ε = 0.05: red, ε = 0.25: light blue and ε = 0.01: blue.
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The �gures on the left side represent the aggregated distributions (simulated) and the
respective retention limits. On the right hand side we have the reserve versus the percentile.
The retention limits the Log-normal distribution and the as of the Pareto distribution are hard
to see because the numbers are close to each other, the left hand side �gure of the Log-normal
distribution, the retention limits are almost equal (see tables 12 and 13).

One interesting result we can see from each of the couple �gures, is that for the Gamma and
the Pareto distributions, we notice that the retention limits are following qε. It seems that
b is always greater than qε. For example, when ε = 0.01, we get b = 31.4 for the Gamma
distribution and b = 65.2 for the Pareto distribution (table 12). These values are much larger
than the extreme right of the tails of our aggregated distributions on the left. This is actually
an important result because it could mean that the optimal reinsurance contract is the a x
b with in�nite b, which would be another clue for the optimal reinsurance contract. For the
Log-normal distribution, the same cannot be said, the retention limits are very stable when
we vary ε. It can consequently be interesting to investigate the results for stricter capital
requirements.

ε
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

0.0001 5.6 4.9 3.2 31.9 5.7 2.0 1.3 210 6.6 6.3 11.9 20.9
0.0005 6.2 5.6 3.3 31.8 6.3 3.1 1.4 209 9.4 9.4 11.2 17.1
0.001 6.5 5.9 3.4 31.7 6.6 3.8 1.4 209 7.7 7.6 10.9 15.7
0.005 7.5 7.0 3.7 31.5 7.6 5.6 1.6 124 8.9 8.8 10.1 12.8

Table 14: Criteria and retention limits, h = 0.01, λ = 10, αP = 3, βP = 1, αG = 0.5, ξG = 1, ξLN = 2,
σLN = 0.7, γ = 0.2, and γre = 0.3. The criteria are in percent.

ε
Gamma claims Pareto claims Log-normal claims

Cce
ε Cε a b Cce

ε Cε a b Cce
ε Cε a b

0.0001 7.2 7.0 4.0 21.0 6.2 5.0 2.9 59.0 7.5 7.5 3.0 3.4
0.0005 7.9 7.7 4.2 20.9 6.8 5.8 3.1 58.6 8.2 8.2 3.1 3.5
0.001 8.3 8.1 4.3 20.8 7.2 6.2 3.2 58.4 8.6 8.6 3.0 3.3
0.005 9.3 9.2 4.5 20.6 8.2 7.5 3.4 57.7 9.7 9.7 3.0 3.2

Table 15: Criteria and retention limits, h = 0.01, λ = 10, αP = 7, βP = 7, αG = 2, ξG = 2, ξLN = 1,
σLN = 0.5, γ = 0.2, and γre = 0.3. The criteria are in percent.

Tables 14 and 15 have the same structure as tables 12 and 13. We see that the b of all the
distributions seem to converge towards a �xed value as ε goes to zero. The hypothesis of an
in�nite b is backed up by the choice of ε for all the distributions. These last capital require-
ments are not realistic, but they show that in case of extremely large claims, which are rare,
the optimal reinsurance contract is the a x b contract with in�nite b. These types of claims
(rare and large), are exactly the type of claims we are interested in when we introduced the
"per event" principle. The capital requirements are important to verify that the reinsurance
contract we have chosen is really the optimal one.

To conclude this section about using the Panjer recursion as a tool for �nding the optimal
reinsurance contract for the cedent, we can �rst say that the distribution and its parameters
play a very important role for the choice of optimal reinsurance contract. We saw for example
that the behaviour of the Log-normal distribution was not the same as the behaviour of the
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two other distributions. The key is to chose carefully which distribution and parameters we
want to use to model the claim size and claim number.

The loadings of the cedent and the reinsurer also play an important role for optimal reinsur-
ance. They are most of the time decided by market situations and �uctuate a lot from year
to year. The closer γre is to γ, the more pro�ts the cedent can make out of signing up to a
reinsurance contract. The strategy is then to assess the market situation and than decide the
amount of reinsurance.

Lastly, the capital requirements set by the �nancial authorities also play an important role
when choosing the reinsurance contracts. These are not values we can control as easily as the
others, but it is important to be aware that the capital requirements a�ect the optimum a lot,
especially nowadays, when all Europe is preparing to change to the "Solvency II" directive.
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5 Concluding Remarks

In this thesis, a framework for optimizing reinsurance per event has been established. The
known relevant theoretical results for this topic have been introduced and commented. The
conclusion is that there is a lack of numerical examples and of research on the individual
claims case, especially for the reserve criteria Cε. We have also introduced some theoretical
results for the individual claims. All of this pointed us towards an optimal contract of the
non-proportional type, more speci�cally an a x b contract with in�nite b.

In order to investigate the problem of optimal reinsurance we introduced the Panjer recur-
sion for compound distribution. This recursion was used as a tool for optimizing and was
implemented in our optimal reinsurance problem as a Fortran program. We used Cε as the
optimality criteria. The program allowed us to vary crucial parameters such as the distribution
parameters, the loadings, the reserve percentiles ε and the precision increment h. This let us
investigate the e�ect on the criteria and the retention limits of the variation of the parameters
which allowed us to back the idea that the optimal contract is the a x b with in�nite b. We
have seen that varying some of the parameters, such as the distribution parameters, caused
large oscillations in the results.

The research that has been undertaken for this thesis has highlighted the need for better
numerical solutions to the optimal reinsurance contract. Before the industry can base their
choice of reinsurance contracts on this kind of numerical analysis, they should try to include as
many criteria as possible in their calculations. In this thesis, we only investigated Cε and this
alone is not enough to be completely sure about the decision to be made. A careful selection
of input parameters is also required, especially for the distributions. Insurance companies
usually hold a large database of claims which they can use for this. Other tools than the
Panjer recursion can be used for calculations. The Monte Carlo method for simulation and
smoothing splines are possibilities.
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Appendices

A Figures
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Figure 9: Density of the Gamma distribution with di�erent parameters. αG = 0.5, ξG = 1 (black), αG = 1,
ξG = 2 (blue), αG = 1, ξG = 8 (red), αG = 2, ξG = 2 (green), αG = 3, ξG = 2 (pink), αG = 5, ξG = 1 (light
blue).
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Figure 10: Density of the Pareto distribution with di�erent parameters. αP = 3, βP = 1 (black), αP = 10,
βP = 4 (blue), αP = 10, βP = 1 (red), αP = 3, βP = 5 (green), αP = 3, βP = 7 (pink), αP = 7, βP = 7 (light
blue).
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Figure 11: Density of the Log-normal distribution with di�erent parameters. ξLN = 2, σLN = 0.7 (black),
ξLN = 1, σLN = 1.5 (blue), ξLN = 2, σLN = 1 (red), ξLN = 1, σLN = 1 (green), ξLN = 1, σLN = 0.5 (pink),
ξLN = 2, σLN = 0.5 (light blue).
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B Scripts

B.1 R-Scripts

In this appendix, I have listed all the relevant R codes used in the thesis. First, I have the
code used for Monte Carlo simulations of the claims.

#Parameters

m <− 100000 #Number o f s imu la t i on s
JmuT <− 10 #Poisson parameter ( lambda )

a <− seq ( 0 . 4 , 2 . 5 ,by=0.1) #Retent ion
b <− 2 .5 #Retent ion upper

#S t o c h a s t i c i t y in the model , we must remove the ze ros from
#N because o f pmin pmax func t i on s in R.
#N[N == 0] t h i s code to show number 0 in vec to r

N <− rpois (m,JmuT)
mm <− length (N)
remove0 <− c (0 )
id0 <− which(N %in% remove0 )
i f ( i s .na( id0 [1])==TRUE) {

N <− N
} else {
N <− N[− id0 ]

}

m <− length (N)
ns <− sum(N)
S <− rlnorm ( ns , 1 , 0 . 3 )

#The ZRE funct ion , c a l c u l a t e s Zre f o r each po is son output
#Returns m numbers f o r each d i f f e r e n t a ( re−con t rac t ) , l o s s
#Taken by r e i n su r e r s

ZRE <− function ( a ){
Zre <− function ( x ) {pmin(pmax(S [ x]−a , 0 ) , b)}
X <− array (0 ,m)
s2 <− 0
i <− 1
while ( i<=m){

s1 <− s2+1
s2 <− s1+N[ i ]−1
X[ i ] <− (sum(mapply ( Zre , s1 : s2 ) ) )/N[ i ]
i <− i+1
}
return (X)

}

LossRe <− lapply ( a ,ZRE)
meanLossRe <− mapply (mean, LossRe )
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The next code calculates the mean of the claims, organized in each of the Poisson Ni.

#We need t h i s to c a l c u l a t e the premium paid to the
#Cedent , and then the gain .

Z <− function ( x ){
X <− array (0 ,m)
s2 <− 0
i <− 1
while ( i<=m){

s1 <− s2+1
s2 <− s1+N[ i ]−1
X[ i ] <− (sum(S [ s1 : s2 ] ) ) /N[ i ]
i <− i+1
}
return (X)

}

Loss <− lapply ( a , Z)
meanLoss <− mapply (mean, Loss )

The next code is the discretize program mentioned in section 4.2, it should be noted that this
particular code only works for round numbers.

d i s c r e t i z e <− function (mu, sigma , from , to , d e l t a ){
d <− seq ( from , to ,by=(de l t a ) )
d i s c <− array (0 , length (d)−1)
d i s c [ 1 ] <− plnorm( d e l t a/2 ,mu, sigma )
for ( i in ( 2 : to ) ) {

d i s c [ i ] <− plnorm ( ( i −1)*de l t a+de l t a/2 ,mu, sigma)−
plnorm ( ( i −1)*de l ta−de l t a/2 ,mu, sigma )

}

return ( d i s c )
}

ab <− d i s c r e t i z e ( 0 , 2 , 0 , 2 2 , 0 . 5 )
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#This i s the code f o r p l o t t i n g the r e s e r v e s
m <− 10000
JmuT <− 10
theta <− −0.5
sigma <− 1
a <− 5

Xce <− array (0 ,m)
N = rpois (m,JmuT)
for ( i in 1 :m) {
Z = rlnorm (N[ i ] , theta , sigma )
i f (N[ i ]>0) Xce [ i ]=sum(pmin(Z , a ) )
}

r e s f unc <− function ( x ){
r e s <− sort (Xce ) [ ( x )*m]

return ( r e s )
}
aa <− seq (0 , 1 ,by=0.0001)

#Reserve f o r Log−normal
theta <− −0.5
sigma <− 1
plot ( seq ( 0 , 0 . 9999 ,by=0.0001) , yl im=c ( 0 , 30 ) , r e s f unc ( aa ) , type=' l ' ,
col=' blue ' , x lab=' Pe r c en t i l e ' , y lab='x_ep s i l o n ' )

#Reserve f o r Pareto
alpha <− 3
beta <− 1
for ( i in 1 :m) {
Z = rpare to (N[ i ] , alpha , beta )
i f (N[ i ]>0) Xce [ i ]=sum(pmin(Z , a ) )
}
l ines ( seq ( 0 , 0 . 9999 ,by=0.0001) , r e s f unc ( aa ) , type=' l ' )

#Reserve f o r Gamma
x i <− 0 .5
sigma<− 1
for ( i in 1 :m) {
Z = rgamma(N[ i ] , xi , sigma )
i f (N[ i ]>0) Xce [ i ]=sum(pmin(Z , a ) )
}
l ines ( seq ( 0 , 0 . 9999 ,by=0.0001) , r e s f unc ( aa ) , col=' red ' , type=' l ' )

PanjerPoisson <− function (p , lambda )
{

cumul <− f <− exp(−lambda*sum(p ) )
r <− length (p)
j <− 0
repeat
{ j <− j+1
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m <− min( j , r )
l a s t <− lambda/ j * sum( 1 :m * head (p ,m) * rev ( t a i l ( f ,m) ) )
f <− c ( f , l a s t )
cumul <− cumul + l a s t
i f ( cumul >0.999999) break
}

return (m)
}

PanjerPoisson ( ab , 1 0 )
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B.2 How to use the Fortran Programs

Here is a brief explanation of how to use the Fortran programs developed for the Panjer
recursion. There are also some descriptions of the di�erent parameters. In order to run the
Fortran programs, we must �rst compile them using a command window. This is done by
calling

> gfo r t r an pareto . f −o pareto

> g f o r t r an gamma. f −o gamma

Once the programs are compiled, we must put the parameters in separate �les: 'gamma.par'
and 'pareto.par'. For each of the programs, the parameters we can vary are the distribution
parameters, λ, the loading γ and γre, the lattice width h and the percentile ε:

gamma. par :
lam a l f x i gam gamre
10 1 2 0 .2 0 .3

h eps
0 .1 0 .05

pareto . par :
lam a l f bet gam gamre
10 3 1 0 .2 0 .3

h eps
0 .1 0 .05

When the wanted parameters are selected we get the following output in our command
window, �rst the lower retention limit of our a and b contract:a, then we get the length of the
interval between a and b. In order to �nd the value of the second retention limit b, you sum
a and the length of the interval.

Figure 12: Model of the retention limits we get from the Fortran program

Finally we get the value of the ratio between the expected gain and the net reserve of the
cedent:
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> . /pareto
Lower l im i t ( a ) Length o f i n t e r v a l (b) Value r a t i o

2 .0000 9 .0000 0 .1017
Value r a t i o without r e i n su rance

0 .0960

> . /gamma
Lower l im i t ( a ) , Length o f i n t e r v a l (b ) , Value r a t i o

7 .1000 26.0000 0 .1115
Value r a t i o without r e i n su rance

0 .1105

Here is the time it takes to run the program, using linux built-in function:

#With h=0.01
>time . /gamma

Lower l im i t ( a ) , Length o f i n t e r v a l (b ) , Value r a t i o
4 .6700 25.9400 0 .1010

Value r a t i o without r e i n su rance
0 .0989

r e a l 0m2.572 s
user 0m2.533 s
sys 0m0.001 s
#With h=0.001
>time . /gamma

Lower l im i t ( a ) , Length o f i n t e r v a l (b ) , Value r a t i o
4 .6720 25.9830 0 .1009

Value r a t i o without r e i n su rance
0 .0989

r e a l 6m20.075 s
user 6m19.999 s
sys 0m0.007 s

#h=0.01
>time . /pareto

Lower l im i t ( a ) Length o f i n t e r v a l (b) Value r a t i o
2 .0300 8 .8400 0 .1010

Value r a t i o without r e i n su rance
0 .0955

r e a l 0m1.491 s
user 0m1.447 s
sys 0m0.001 s
#h=0.001
>time . /pareto

Lower l im i t ( a ) Length o f i n t e r v a l (b) Value r a t i o
2 .0340 8 .8810 0 .1009

Value r a t i o without r e i n su rance
0 .0954

r e a l 3m6.994 s
user 3m6.940 s
sys 0m0.003 s
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B.3 Fortran Programs

The program for the pareto function:

implicit none
real* 8 lam , a l f , bet , gam , gamre , h , eps , f (0 : 1000000)
real*8 func , c r i t , c r i t o , ao , bo , fo , fao , a , b , f f ao , fac , ffaom
integer i , ia , ib , iao , ibo , imax , ia1 , ia3 , n i t e r
parameter ( n i t e r =20)

open(unit=10, f i l e=' pareto . par ' )
open(unit=20, f i l e=' pareto . r e s ' )

read (10 ,* )
read (10 ,* ) lam , a l f , bet , gam , gamre
read (10 ,* )
read (10 ,* )h , eps

ca l l dens i ty ( a l f , bet , h , imax , f )

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c Optimizing with r e sp e c t to the l im i t s o f the r e i n su rance t r e a t i e s

c F i r s t f i nd the i n i t i a l bracket on i a
f a c=imax/50 .0
ffaom=−1000
do i =0,9

i a=i * f a c
f f a o=fao ( lam , a l f , bet , gam , gamre , h , imax , f , eps , ia , ib )
i f ( f f a o . gt . f faom ) then

f faom=f f a o
iao=ia
ibo=ib

endif
enddo

c Then the optimum with r e sp e c t to i a i t s e l f
i a1=iao−f a c
i f ( i a1 . l t . 0 ) i a1=0
ia3=iao+fac
i f ( i a3 . gt . imax ) i a3=imax
do i =1, n i t e r

i a =0.5* ( i a1+iao )
f f a o=fao ( lam , a l f , bet , gam , gamre , h , imax , f , eps , ia , ib )
i f ( f f a o . gt . f faom ) then

i a3=iao
iao=ia
ffaom=f f a o
ibo=ib

else
i a1=ia

endif
i f ( iao−i a1 . eq . 1 ) i a1=iao
i a =0.5* ( i a3+iao )
f f a o=fao ( lam , a l f , bet , gam , gamre , h , imax , f , eps , ia , ib )
i f ( f f a o . gt . f faom ) then

i a1=iao
iao=ia
ffaom=f f a o
ibo=ib

else
i a3=ia

endif
i f ( ia3−i ao . eq . 1 ) i a3=iao

i f ( ia3−i a1 . l t . 2 ) goto 1
enddo

1 continue

c Writing r e s u l t s
write (* , 101)
write (* , 100)h* iao , h* ibo , ffaom
write (* , 102)
write (* , 100) func ( lam , a l f , bet , 2 0 , 0 , gam , gamre , h , imax , f , eps )
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write (20 ,101)
write (20 ,100)h* iao , h* ibo , ffaom
write (20 ,102)
write (20 ,100) func ( lam , a l f , bet , 2 0 , 0 , gam , gamre , h , imax , f , eps )

101 format (1x , '    Lower l im i t  ( a )    Length o f  i n t e r v a l  (b)    Value ra t
     1 i o ' )
102 format (1x , ' Value r a t i o  without  r e i n su rance ' )
100 format (1x , f14 . 4 , f24 . 4 , f17 . 4 )

end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real*8 function f ao ( lam , a l f , bet , gam , gamre , h , imax , f , eps , ia , ibo )
implicit none
real* 8 lam , a l f , bet , gam , gamre , h , eps , f (0 : 1000000)
real*8 a , b , r e sce , xeps , ece , ere , func , f2 , fo , f 1
integer ia , ibo , imax , ib1 , ib2 , ib3 , i t e r , n i t e r , ia1 , ia2 , ia3 , i t e r 2
parameter ( n i t e r =20)

c Optimizing with r e sp e c t to ib us ing b i s e c t i o n

ib1=0
f1=func ( lam , a l f , bet , ia , ib1 , gam , gamre , h , imax , f , eps )
ib3=imax−i a
ibo=0.5* ib3
fo=func ( lam , a l f , bet , ia , ibo , gam , gamre , h , imax , f , eps )
do i t e r =1, n i t e r

ib2=0.5* ( ib1+ibo )
f 2=func ( lam , a l f , bet , ia , ib2 , gam , gamre , h , imax , f , eps )
i f ( f 2 . gt . f o ) then

ib3=ibo
ibo=ib2
fo=f2

else
ib1=ib2

endif
i f ( ibo−ib1 . eq . 1 ) then

i f ( f o . gt . f 1 ) then
ib1=ibo

else
ibo=ib1

endif
endif
ib2 =0.5* ( ib3+ibo )
f 2=func ( lam , a l f , bet , ia , ib2 , gam , gamre , h , imax , f , eps )
i f ( f 2 . gt . f o ) then

ib1=ibo
ibo=ib2
fo=f2

else
ib3=ib2

endif
i f ( ib3−ibo . eq . 1 ) ib3=ibo
i f ( ib3−ib1 . l t . 2 ) goto 1

enddo
1 continue

f ao=fo
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real*8 function func ( lam , a l f , bet , ia , ib , gam , gamre , h , imax , f , eps )
implicit none
real* 8 lam , a l f , bet , gam , gamre , h , eps
real*8 re sce , xeps , ece , ere , f ( 0 : 1000000)
integer ia , ib , imax , i

c Expected gain d iv ided on cedent net r e s e r v e returned

ece=lam*gam* ( bet/ ( a l f −1))
e r e=lam*gamre* ( bet/ ( a l f −1))*((1+ ia*h/bet )**(− a l f +1))

1 *(1−((1+ ib*h/ ( i a*h+bet ) )**(− a l f +1)))
xeps=r e s c e ( lam , ia , ib , h , imax , f , eps )
i f ( xeps . l t . 0 . 0 00001 ) then

i f ( ece . gt . e r e ) then
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func=1000000
else

func=−100000
endif

else
func=(ece−e r e )/xeps

endif

end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
real*8 function r e s c e ( lam , ia , ib , h , imax , f , eps )
implicit none
real*8 lam , h , eps , dens i ty , d i s t
real*8 f (0 : 1000000 ) , g (0 : 1000000 ) ,sum, f 1 (0 :1000000)
integer i , ia , ib , imax , i1 , j , imf , img , imf2

c Cedent net r e s e r v e us ing the Panjer r e cu r s i on

do i =0, ia−1
f1 ( i )= f ( i )

enddo
f 1 ( i a )=0.0
do i=ia , i a+ib

f1 ( i a )= f1 ( i a )+ f ( i )
enddo
imf=imax−ib
do i=i a +1, imf

f 1 ( i )= f ( i+ib )
enddo

img=imf* ( lam+6.0*dsqrt ( lam ) )
g(0)=dexp(−lam+lam* f 1 ( 0 ) )
sum=g (0)
do i =1,img

i 1=i−1
i f (sum . gt .1− eps ) goto 1
g ( i )=0
imf2=min( i , imf )
do j =1, imf2

g ( i )=g ( i )+ j* f 1 ( j )*g ( i−j )
enddo
g ( i )=g ( i )*lam/ i
sum=sum+g ( i )

enddo
write (* , 100) ia , ib , imax

100 format (1x , ' Error :  h too  l a r g e  or  imax too  smal l ' ,4 i 6 )
stop

1 continue
i f ( i 1 . gt . 0 ) then

r e s c e =(( i1−1)+(1−eps−(sum−g ( i 1 ) ) )/g ( i 1 ) )*h
else

r e s c e =0.0
endif
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subroutine dens i ty ( a l f , bet , h , imax , f )
implicit none
real*8 a l f , bet , h , f ( 0 : 1000000 ) ,sum, eta , dold , dnew
integer imax , i
parameter ( eta =0.0000001)

c Computes the input dens i ty function

imax=(eta**(−1.0/ a l f )−1)*bet/h

c Former ve r s i on
c sum=0.0
c do i =0,imax
c f ( i )=( a l f /bet )*(1+ i *h/bet )**(−1− a l f )
c sum=sum+f ( i )
c enddo
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c do i =0,imax
c f ( i )= f ( i )/sum
c enddo

c New ve r s i on
dold=0
do i =0,imax

dnew=1−(1+( i +0.5)*h/bet )**(− a l f )
f ( i )=dnew−dold
dold=dnew

enddo

end
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The program for the gamma function:

implicit none
real*8 lam , a l f , xi , gam , gamre , h , eps , f (0 : 1000000)
real*8 func , c r i t , c r i t o , ao , bo , fo , fao , a , b , f f ao , fac , ffaom
integer i , ia , ib , iao , ibo , imax , ia1 , ia3 , n i t e r
parameter ( n i t e r =20)

open(unit=10, f i l e='gamma. par ' )
open(unit=20, f i l e='gamma. r e s ' )

read (10 ,* )
read (10 ,* ) lam , a l f , xi , gam , gamre
read (10 ,* )
read (10 ,* )h , eps

ca l l dens i ty ( a l f , xi , h , imax , f )

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c Optimizing with r e sp e c t to the l im i t s o f the r e i n su rance t r e a t i e s

c F i r s t f i nd the i n i t i a l bracket on i a
f a c=imax/50 .0
ffaom=−1000
do i =0,9

i a=i * f a c
f f a o=fao ( lam , a l f , xi , gam , gamre , h , imax , f , eps , ia , ib )
i f ( f f a o . gt . f faom ) then

f faom=f f a o
iao=ia
ibo=ib

endif
enddo

c Then the optimum with r e sp e c t to i a i t s e l f
i a1=iao−f a c
i f ( i a1 . l t . 0 ) i a1=0
ia3=iao+fac
i f ( i a3 . gt . imax ) i a3=imax
do i =1, n i t e r

i a =0.5* ( i a1+iao )
f f a o=fao ( lam , a l f , xi , gam , gamre , h , imax , f , eps , ia , ib )
i f ( f f a o . gt . f faom ) then

i a3=iao
iao=ia
ffaom=f f a o
ibo=ib

else
i a1=ia

endif
i f ( iao−i a1 . eq . 1 ) i a1=iao
i a =0.5* ( i a3+iao )
f f a o=fao ( lam , a l f , xi , gam , gamre , h , imax , f , eps , ia , ib )
i f ( f f a o . gt . f faom ) then

i a1=iao
iao=ia
ffaom=f f a o
ibo=ib

else
i a3=ia

endif
i f ( ia3−i ao . eq . 1 ) i a3=iao

i f ( ia3−i a1 . l t . 2 ) goto 1
enddo

1 continue

c Writing r e s u l t s
write (* , 101)
write (* , 100)h* iao , h* ibo , ffaom
write (* , 102)
write (* , 100) func ( lam , a l f , xi , 1 0 , 0 , gam , gamre , h , imax , f , eps )
write (20 ,101)
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write (20 ,100)h* iao , h* ibo , ffaom
write (20 ,102)
write (20 ,100) func ( lam , a l f , xi , 2 0 , 0 , gam , gamre , h , imax , f , eps )

101 format (1x , '    Lower l im i t  ( a ) ,    Length o f  i n t e r v a l  (b ) ,    Value r
     1 a t i o ' )

100 format (1x , f14 . 4 , f24 . 4 , f19 . 4 )
102 format (1x , ' Value r a t i o  without  r e i n su rance ' )

end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real*8 function f ao ( lam , a l f , xi , gam , gamre , h , imax , f , eps , ia , ibo )
implicit none
real* 8 lam , a l f , xi , gam , gamre , h , eps , f (0 : 1000000)
real*8 a , b , r e sce , xeps , ece , ere , func , f2 , fo , f 1
integer ia , ibo , imax , ib1 , ib2 , ib3 , i t e r , n i t e r , ia1 , ia2 , ia3 , i t e r 2
parameter ( n i t e r =20)

c Optimizing with r e sp e c t to ib us ing b i s e c t i o n

ib1=0
f1=func ( lam , a l f , xi , ia , ib1 , gam , gamre , h , imax , f , eps )
ib3=imax−i a
ibo=0.5* ib3
fo=func ( lam , a l f , xi , ia , ibo , gam , gamre , h , imax , f , eps )
do i t e r =1, n i t e r

ib2=0.5* ( ib1+ibo )
f 2=func ( lam , a l f , xi , ia , ib2 , gam , gamre , h , imax , f , eps )
i f ( f 2 . gt . f o ) then

ib3=ibo
ibo=ib2
fo=f2

else
ib1=ib2

endif
i f ( ibo−ib1 . eq . 1 ) then

i f ( f o . gt . f 1 ) then
ib1=ibo

else
ibo=ib1

endif
endif
ib2 =0.5* ( ib3+ibo )
f 2=func ( lam , a l f , xi , ia , ib2 , gam , gamre , h , imax , f , eps )
i f ( f 2 . gt . f o ) then

ib1=ibo
ibo=ib2
fo=f2

else
ib3=ib2

endif
i f ( ib3−ibo . eq . 1 ) ib3=ibo
i f ( ib3−ib1 . l t . 2 ) goto 1

enddo
1 continue

f ao=fo
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real*8 function func ( lam , a l f , xi , ia , ib , gam , gamre , h , imax , f , eps )
implicit none
real* 8 lam , a l f , xi , gam , gamre , h , eps
real*8 re sce , xeps , ece , ere , f ( 0 : 1000000)
real*8 a , b , p1 , p2 , p3 , p4 ,gammp
integer ia , ib , imax , i

c Expected gain d iv ided on cedent net r e s e r v e returned

ece=lam*gam*x i

a=ia*h
b=ib*h
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p1=gammp( a l f +1,a* a l f /x i )
p2=gammp( a l f +1 ,(a+b)* a l f /x i )
p3=gammp( a l f , a* a l f /x i )
p4=gammp( a l f , ( a+b)* a l f /x i )
e r e=lam*gamre* ( x i* (p2−p1)−a* ( p4−p3)+b*(1−p4 ) )

xeps=r e s c e ( lam , ia , ib , h , imax , f , eps )
i f ( xeps . l t . 0 . 0 00001 ) then

i f ( ece . gt . e r e ) then
func=1000000

else
func=−100000

endif
else

func=(ece−e r e )/xeps
endif

end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
real*8 function r e s c e ( lam , ia , ib , h , imax , f , eps )
implicit none
real*8 lam , h , eps , dens i ty , d i s t
real*8 f (0 : 1000000 ) , g (0 : 1000000 ) ,sum, f 1 (0 :1000000)
integer i , ia , ib , imax , i1 , j , imf , img , imf2

c Cedent net r e s e r v e us ing the Panjer r e cu r s i on

do i =0, ia−1
f1 ( i )= f ( i )

enddo
f 1 ( i a )=0.0
do i=ia , i a+ib

f1 ( i a )= f1 ( i a )+ f ( i )
enddo
imf=imax−ib
do i=i a +1, imf

f 1 ( i )= f ( i+ib )
enddo

img=imf* ( lam+6.0*dsqrt ( lam ) )
g(0)=dexp(−lam+lam* f 1 ( 0 ) )
sum=g (0)
do i =1,img

i 1=i−1
i f (sum . gt .1− eps ) goto 1
g ( i )=0
imf2=min( i , imf )
do j =1, imf2

g ( i )=g ( i )+ j* f 1 ( j )*g ( i−j )
enddo
g ( i )=g ( i )*lam/ i
sum=sum+g ( i )

enddo
write (* , 100) ia , ib , imax

100 format (1x , ' Error :  h too  l a r g e  or  imax too  smal l ' ,4 i 6 )
stop

1 continue
i f ( i 1 . gt . 0 ) then

r e s c e =(( i1−1)+(1−eps−(sum−g ( i 1 ) ) )/g ( i 1 ) )*h
else

r e s c e =0.0
endif
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subroutine dens i ty ( a l f , xi , h , imax , f )
implicit none
real*8 a l f , xi , h , f ( 0 : 1000000) ,sum, eta , gammp, z , dnew , dold
integer imax , i
parameter ( eta =0.00000001)

c Computes the input dens i ty function
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imax=x i +4.0*x i/dsqrt ( a l f )
do i =1 ,1000

z=imax*h* a l f /x i
i f (gammp( a l f , z ) . gt .1− eta ) goto 1
imax=imax+(x i/dsqrt ( a l f ) )/h

enddo
1 continue

c Former ve r s i on
c sum=0.0
c f (0)=0.0
c do i =1,imax
c f ( i )=dexp ( dlog ( i*h)* ( a l f −1)− a l f * ( i *h)/x i )
c sum=sum+f ( i )
c enddo
c do i =0,imax
c f ( i )= f ( i )/sum
c enddo

c New ve r s i on
dold=0
do i =0,imax

z=( i +0.5)*h* a l f /x i
dnew= gammp( a l f , z )
f ( i )=dnew−dold
dold=dnew

enddo

end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real*8 function gammp(a , x )
implicit none
real*8 a , x , gammcf , gamser , g ln

i f ( x . l t . a+1) then
ca l l g se r ( gamser , a , x , g ln )
gammp=gamser

else
ca l l gc f (gammcf , a , x , g ln )
gammp=1.0−gammcf

endif

end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subroutine g se r ( gamser , a , x , g ln )
real*8 a , gamser , gln , x , eps , ap , del ,sum, gamfl
integer itmax , n
parameter ( itmax=100 , eps=3.0d−7)

g ln=gamfl ( a )
i f ( x . le . 0 ) then

gamser=0
return

endif
ap=a
sum=1.0/a
de l=sum
do n=1, itmax

ap=ap+1
de l=de l*x/ap
sum=sum+de l
i f ( dabs ( de l ) . l t . dabs (sum)*eps ) goto 1

enddo
pause ' a too  la rge ,  itmax too  smal in  g s e r '

1 continue
gamser=sum*dexp(−x+a*dlog (x)−g ln )

end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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subroutine gc f (gammcf , a , x , g ln )
implicit none
real*8 gammcf , a , gln , x , eps , fpmin , an , b , c , d , del , h , gamfl
integer itmax , i
parameter ( itmax=100 , eps=3.0d−7, fpmin=1.0d−30)

g ln=gamfl ( a )
b=x+1.0−a
c=1.0/fpmin
d=1.0/b
h=d
do i =1, itmax

an=−i * ( i−a )
b=b+2.0
d=an*d+b
i f ( dabs (d ) . l t . fpmin )d=fpmin
c=b+an/c
i f ( dabs ( c ) . l t . fpmin ) c=fpmin
d=1.0/d
de l=d*c
h=h*de l
i f ( dabs ( del −1 .0 ) . l t . eps )goto 1

enddo
pause ' a too  la rge ,  itmax too  smal l  in  gc f '

1 continue
gammcf=dexp(−x+a*dlog (x)−g ln )*h
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real*8 function gamfl ( z )
implicit none
real*8 z , c o e f ( 6 ) , tmp ,sum, stp , x
integer j

c o e f (1)=76.18009173
co e f (2)=−86.50532033
co e f (3)=24.01409822
co e f (4)=−1.231739516
co e f (5)=0.0012085003
co e f (6)=−0.536382/(10**5)
stp =2.50662827465

x=z−1
tmp=x+5.5
tmp=(x+0.5)*dlog (tmp)−tmp
sum=1.0
do j =1,6

x=x+1
sum=sum+coe f ( j )/x

end do

gamfl=tmp+dlog ( stp*sum)

end
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The program for the Log-normal function:

implicit none
real*8 lam , s ig , xi , gam , gamre , h , eps , f (0 : 1000000)
real*8 func , c r i t , c r i t o , ao , bo , fo , fao , a , b , f f ao , fac , ffaom
integer i , ia , ib , iao , ibo , imax , ia1 , ia3 , n i t e r
parameter ( n i t e r =20)

open(unit=10, f i l e=' logn . par ' )
open(unit=20, f i l e=' logn . r e s ' )

read (10 ,* )
read (10 ,* ) lam , s ig , xi , gam , gamre
read (10 ,* )
read (10 ,* )h , eps

ca l l dens i ty ( s ig , xi , h , imax , f )

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c Optimizing with r e sp e c t to the l im i t s o f the r e i n su rance t r e a t i e s

c F i r s t f i nd the i n i t i a l bracket on i a
f a c=imax/40 .0
ffaom=−1000
do i =0,9

i a=i * f a c
f f a o=fao ( lam , s ig , xi , gam , gamre , h , imax , f , eps , ia , ib )
i f ( f f a o . gt . f faom ) then

f faom=f f a o
iao=ia
ibo=ib

endif
c write (* ,* ) ia , ib , f f a o

enddo
c stop

c Then the optimum with r e sp e c t to i a i t s e l f
i a1=iao−f a c
i f ( i a1 . l t . 0 ) i a1=0
ia3=iao+fac
i f ( i a3 . gt . imax ) i a3=imax
do i =1, n i t e r

i a =0.5* ( i a1+iao )
f f a o=fao ( lam , s ig , xi , gam , gamre , h , imax , f , eps , ia , ib )
i f ( f f a o . gt . f faom ) then

i a3=iao
iao=ia
ffaom=f f a o
ibo=ib

else
i a1=ia

endif
i f ( iao−i a1 . eq . 1 ) i a1=iao
i a =0.5* ( i a3+iao )
f f a o=fao ( lam , s ig , xi , gam , gamre , h , imax , f , eps , ia , ib )
i f ( f f a o . gt . f faom ) then

i a1=iao
iao=ia
ffaom=f f a o
ibo=ib

else
i a3=ia

endif
i f ( ia3−i ao . eq . 1 ) i a3=iao

i f ( ia3−i a1 . l t . 2 ) goto 1
enddo

1 continue

c Writing r e s u l t s
write (* , 101)
write (* , 100)h* iao , h* ibo , ffaom
write (* , 102)
write (* , 100) func ( lam , s ig , xi , 1 0 , 0 , gam , gamre , h , imax , f , eps )
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write (20 ,101)
write (20 ,100)h* iao , h* ibo , ffaom
write (20 ,102)
write (20 ,100) func ( lam , s ig , xi , 2 0 , 0 , gam , gamre , h , imax , f , eps )

101 format (1x , '    Lower l im i t  ( a ) ,    Length o f  i n t e r v a l  (b ) ,    Value r
     1 a t i o ' )

100 format (1x , f14 . 4 , f24 . 4 , f19 . 4 )
102 format (1x , ' Value r a t i o  without  r e i n su rance ' )

end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real*8 function f ao ( lam , s ig , xi , gam , gamre , h , imax , f , eps , ia , ibo )
implicit none
real* 8 lam , s ig , xi , gam , gamre , h , eps , f (0 : 1000000)
real*8 a , b , r e sce , xeps , ece , ere , func , f2 , fo , f 1
integer ia , ibo , imax , ib1 , ib2 , ib3 , i t e r , n i t e r , ia1 , ia2 , ia3 , i t e r 2
parameter ( n i t e r =20)

c Optimizing with r e sp e c t to ib us ing b i s e c t i o n

ib1=0
f1=func ( lam , s ig , xi , ia , ib1 , gam , gamre , h , imax , f , eps )
ib3=imax−i a
ibo=0.5* ib3
fo=func ( lam , s ig , xi , ia , ibo , gam , gamre , h , imax , f , eps )
do i t e r =1, n i t e r

ib2=0.5* ( ib1+ibo )
f 2=func ( lam , s ig , xi , ia , ib2 , gam , gamre , h , imax , f , eps )
i f ( f 2 . gt . f o ) then

ib3=ibo
ibo=ib2
fo=f2

else
ib1=ib2

endif
i f ( ibo−ib1 . eq . 1 ) then

i f ( f o . gt . f 1 ) then
ib1=ibo

else
ibo=ib1

endif
endif
ib2 =0.5* ( ib3+ibo )
f 2=func ( lam , s ig , xi , ia , ib2 , gam , gamre , h , imax , f , eps )
i f ( f 2 . gt . f o ) then

ib1=ibo
ibo=ib2
fo=f2

else
ib3=ib2

endif
i f ( ib3−ibo . eq . 1 ) ib3=ibo
i f ( ib3−ib1 . l t . 2 ) goto 1

enddo
1 continue

f ao=fo
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real*8 function func ( lam , s ig , xi , ia , ib , gam , gamre , h , imax , f , eps )
implicit none
real* 8 lam , s ig , xi , gam , gamre , h , eps
real*8 re sce , xeps , ece , ere , f ( 0 : 1000000)
real*8 a , b , p1 , p2 , p3 , p4 , z
integer ia , ib , imax , i

c Expected gain d iv ided on cedent net r e s e r v e returned

ece=lam*gam*x i

a=ia*h
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b=ib*h
z=dlog ( ( a+b)/x i )/ s i g −0.5* s i g
ca l l cumnorm( z , p1 )
z=dlog ( a/x i )/ s i g −0.5* s i g
ca l l cumnorm( z , p2 )
z=dlog ( ( a+b)/x i )/ s i g +0.5* s i g
ca l l cumnorm( z , p3 )
z=dlog ( a/x i )/ s i g +0.5* s i g
ca l l cumnorm( z , p4 )
e r e=lam*gamre* ( x i* (p2−p1)−a* ( p4−p3)+b*p4 )

xeps=r e s c e ( lam , ia , ib , h , imax , f , eps )
i f ( xeps . l t . 0 . 0 00001 ) then

i f ( ece . gt . e r e ) then
func=1000000

else
func=−100000

endif
else

func=(ece−e r e )/xeps
endif

end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
real*8 function r e s c e ( lam , ia , ib , h , imax , f , eps )
implicit none
real*8 lam , h , eps , dens i ty , d i s t
real*8 f (0 : 1000000 ) , g (0 : 1000000 ) ,sum, f 1 (0 :1000000)
integer i , ia , ib , imax , i1 , j , imf , img , imf2

c Cedent net r e s e r v e us ing the Panjer r e cu r s i on

do i =0, ia−1
f1 ( i )= f ( i )

enddo
f 1 ( i a )=0.0
do i=ia , i a+ib

f1 ( i a )= f1 ( i a )+ f ( i )
enddo
imf=imax−ib
do i=i a +1, imf

f 1 ( i )= f ( i+ib )
enddo

img=imf* ( lam+6.0*dsqrt ( lam ) )
g(0)=dexp(−lam+lam* f 1 ( 0 ) )
sum=g (0)
do i =1,img

i 1=i−1
i f (sum . gt .1− eps ) goto 1
g ( i )=0
imf2=min( i , imf )
do j =1, imf2

g ( i )=g ( i )+ j* f 1 ( j )*g ( i−j )
enddo
g ( i )=g ( i )*lam/ i
sum=sum+g ( i )

enddo
write (* , 100) ia , ib , imax

100 format (1x , ' Error :  h too  l a r g e  or  imax too  smal l ' ,4 i 6 )
stop

1 continue
i f ( i 1 . gt . 0 ) then

r e s c e =(( i1−1)+(1−eps−(sum−g ( i 1 ) ) )/g ( i 1 ) )*h
else

r e s c e =0.0
endif
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subroutine dens i ty ( s ig , xi , h , imax , f )
implicit none
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real*8 s ig , xi , h , f ( 0 : 1000000 ) ,sum, z , dnew , dold , g
integer imax , i

c Computes the input dens i ty function
imax=x i*dexp (−0.5* s i g* s i g +6.0* s i g )/h

c Former ve r s i on
c sum=0.0
c f (0)=0.0
c do i =1,imax
c f ( i )=dexp ( dlog ( i*h)* ( a l f −1)− a l f * ( i *h)/x i )
c sum=sum+f ( i )
c enddo
c do i =0,imax
c f ( i )= f ( i )/sum
c enddo

c New ve r s i on
dold=0
do i =0,imax

z=dlog ( ( i +0.5)*h/x i )/ s i g +0.5* s i g
ca l l cumnorm( z , g )
dnew=1−g
f ( i )=dnew−dold
dold=dnew

enddo

end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subroutine cumnorm(x , g )
implicit none
real*8 x , g , z , q , y

c The function computes 1− the standard normal i n t e g r a l by a method
c provided by H.P. Langtangen ( i t seems to be one o f the a lgor i thms
c g iven in Abramowitz and Stegun : Handbook o f mathematical f un c t i on s ) .
c I t has been checked aga in s t Owen ' s  t ab l e s  and found to  be c o r r e c t
c     to  6 dec imals  in  the  range  −4.0 to  4 .0  f o r  the  argument .
c
c     Input  va r i ab l e :  x = the  argument to  the  i n t e g r a l .
c
c

      z=1.0/ (1 .0+0.2316419*abs (x ) )
      q=z*(0.127414796+ z*(−0.142248368+z*(0.7107068705+
     *  z*(−0.7265760135+z*0 .5307027145) ) ) )*exp (−0.5*x*x )
      y=q
      i f ( x . l e . 0 . 0 )  y=1.0−q

      g=y

      end
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