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INTRODUCTION 
 
During the last 25 years, our scientific view of adipose tissue physiology has changed 

completely. From solely being described as a depot for uptake and release of 

triglycerides (TG) [1], it is now regarded a complex multifunctional compartment 

with many similarities to an organ [2]. Pioneering experiments in the mid-80s by the 

Spiegelman laboratory [3] and the discovery of the leptin obesity gene in the early 90s 

[4], started this paradigm shift in adipose tissue biology by showing that adipocytes, 

in response to various stimuli, secrete physiologically relevant signaling molecules 

into the circulation which control global energy homeostasis.  Today, we know that a 

wide range of peptide and fatty acid hormones are secreted from adipose tissue 

regulating diverse physiological functions, such as immune responses, blood pressure 

control, bone mass, thyroid and reproductive functions, fat mass and nutrient 

homeostasis [5, 6]. This new knowledge of normal adipocyte biology not only 

increased our understanding of mammalian physiology, it has also awarded us with 

new possibilities to combat major health problems, as it has become evident that 

excess adipose tissue plays central roles in diseases, such as type 2 diabetes, 

atherosclerosis, and cancer [7-9]. 

 

The following overview discusses the developmental origin of adipose tissue and the 

differentiation program that turns precursor cells into functional adipocytes, the 

molecular details of how adipocytes release and store fat, the characteristics and 

functional importance of the many molecules that adipocytes secrete, and how all 

these properties are related to human health and disease. Finally, an introduction to 

the STAMP family connects recent knowledge about these proteins to the growing 

universe of adipose tissue biology. 
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ADIPOSE TISSUE DEVELOPMENT 
  

General features  
 
Adipose tissue is a loose connective tissue located either subcutaneously just under 

the skin, in neck regions, or at several intra-abdominal, or visceral, locations inside 

the thorax and abdomen in close proximity to major internal organs [10] (Figure 1A). 

In mice, the largest visceral adipose depot is, in contrast to the human body, 

connected to the gonads (Figure 1B), but for this exception the adipose tissue 

anatomy is similar [11]. The amount, position and type of adipose tissue can be 

precisely determined by computed tomography (CT), magnetic resonance imaging 

(MRI) or ultrasound (US) imaging techniques [12]. By using these techniques it is 

now evident that increased amount of abdominal adipose tissue, but not subcutaneous 

adipose tissue, is correlated with higher incidence of obesity-related type 2 diabetes 

and atherosclerosis [13]. The visceral depot shows higher gene expression for 

secretory and energy related proteins [14], higher lipolytic activity [15], and secrete 

more protein per adipocyte than subcutaneous adipose tissue [16]. In addition, the 

visceral depot is drained by the portal circulation system connecting it directly to the 

liver [12].  

 

Adipose tissue can be divided into brown adipose tissue (BAT) and white adipose 

tissue (WAT), in addition to depot-specific differences. 

Brown adipose tissue  
 
Brown adipocytes are only found in mammals and have a multilocular distribution of 

TG droplets and a vast number of specialized mitochondria which contain the 

uniquely BAT-expressed protein, uncoupling protein-1 (UCP1), which generates heat 

at the expense of ATP [6, 17].  Until recently, the existence of BAT was thought to be 

restricted to small mammals and infants, but has now been shown to be present also in 

adult humans [18-20].  
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Figure 1. The main types of adipose tissue in humans and mice.  
(A) In humans, visceral adipose tissue is localized in connection with the intestines, subcutaneous 
adipose tissue is under the skin, and brown adipose tissue is located in the neck.  
(B) In mice, the largest visceral adipose depot is in connection to the gonads, also called epididymal 
adipose tissue (nr 6), but there is also large visceral depots in the omental region (nr 3) and in 
connection to the kidneys and other internal organs (nr 4 and 5). Subcutaneous WAT is mainly located 
at the anterior and dorsal ends. The figure was taken from [11] and used with permission from Nature 
Publishing Group. 

White adipose tissue  

The WAT consists mainly of mature white adipocytes, but stromal vascular cells can 

constitute up to 50% of the cellular content [21].  The adipocyte and stromal vascular 

fraction (SVF) can be separated by collagenase digestion followed by floatation of the 

adipocyte fraction by low speed centrifugation [22]. The stromal vascular fraction 

contains endothelial cells, pericytes, monocytes, macrophages, pluripotent stem cells, 

and other cell types, all with important functions to maintain homeostasis in the 

adipose tissue [23].  Pericytes and endothelial cells build up the vascular system that 

also retains adipocyte-committed precursor cells that differentiate into adipocytes 

upon stimulation [24]. The function of immune cells in adipose tissue is still not 

completely understood [25], but probably involves removal of necrotic cells [26].  

Adipose tissues are highly dynamic, expanding and shrinking in response to various 

homeostatic, pharmacologic, and dietary stimuli [27]. A continuous positive energy 

balance will induce hypertrophic adipocytes within the WAT by increasing the size of 

the lipid droplet as more TG is taken up from the blood. But because adipocytes are 

postmitotic, a parallel hyperplastic response will take place to further increase the 
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adipose tissue TG storage capacity. Interestingly, the total number of adipocytes has 

been reported to be constant in adulthood, both in lean and obese subjects, but varies 

between different individuals [28]. Thus, the total adipose tissue number is set during 

childhood and adolescence. However, adipocytes do die and need to be replaced by 

new ones. Consequently, there is a continuous turnover of adipocytes throughout life 

[28]. What are the cellular characteristics of these progenitor adipose stem cells that 

develop into adipocytes and where do they come from?  

 

Stem cells with potential to develop into adipocytes have been argued to occupy 

specific locations outside the adipose tissue, for example in the bone marrow, and 

then be recruited to WAT upon specific stimuli [29], but others argue that only 

adipose resident macrophages show bone marrow origin [30, 31]. Alternatively, 

progenitor cells can co-exist with adipocytes in the adipose tissue itself, as seen for 

neuronal and muscle stem cells [27]; there is currently strong experimental evidence 

that adipose stem cells exist in the WAT itself [27]. Consistently, the SVF contains 

adipose-derived stem cells (ADSCs) that can be differentiated to a variety of cell 

types, including bone, fat, cartilage, muscle, endothelial cells and neurons [32, 33]. 

Importantly, further subdivision of the SVF revealed a specific subpopulation of cells 

with the ability to develop into adipocytes containing a unilocular lipid droplet and to 

form physiologically active WAT in vivo [24, 34]. The Peroxisome Proliferator-

Activated Receptor (PPAR) γ is necessary and sufficient for development of new 

adipocytes [35]. Interestingly, lineage analysis on PPARγ-expressing progenitor cells 

found that these cells reside near the vasculature in close proximity to pericytes [24]. 

The current view is therefore that adipocytes develop from progenitor cells of 

vasculature origin that are present in adipose tissue.   

 

These recently identified precursor cells are not committed to become adipocytes as 

they can also be differentiated into other cell types of the mesenchymal lineage [34]. 

However, several molecules have previously been shown to induce commitment to 

the adipocyte linage by use of bone marrow derived mesenchymal stem cells (MSCs). 

For example, Bone Morphogenic Proteins (BMPs), through their intracellular 

mediators, the Smad proteins, trigger MCSs to enter the osteogenic and/or adipogenic 

lineage, while preventing commitment into the myogenic lineage [31]. Other 
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intracellular proteins, such as Schnurri-2 (Shn-2), modify the action of BMPs in the 

determination of the osteogenic and adipogenic lineages [36]. In addition, the action 

of BMPs can be modulated by members of the heparan sulphate proteoglycan family 

which are cell surface and extracellular matrix proteins [37]. Wnts comprise another 

family of highly conserved secreted proteins that act in a paracrine or autocrine 

manner by binding cell-surface receptors that increase commitment in the myogenic 

and osteogenic lineages and prevent adipogenesis [38]. Once MCSs are committed, 

they give rise to undifferentiated precursors (osteoblast, pre-adipocyte, and myoblast), 

which upon the expression of key transcription factors enter a differentiation program 

to acquire their specific functions [31]. The relationship between MSCs, ASCs and 

the adipocyte precursor cells, however, is still unclear.  

 

Isolation of fibroblasts from Swiss mouse embryos gave rise to the 3T3 cell line that 

can be continuously propagated in culture and which starts to accumulate lipid 

droplets at confluency [39]. Later, subcloning experiments gave rise to the 3T3-

F422A and 3T3-L1 sublines which accumulate high amounts of lipids upon 

adipogenic stimuli and develop into cells of adipocyte morphology although they 

contain multilocular lipid droplets and not the unilocular droplet seen in WAT in vivo 

[40]. Since their original establishment more than 30 years ago, they have been the 

most widely used model systems to study the differentiation of pre-adipocytes into 

mature adipocytes [31, 41].  

 

Differentiation of a preadipocyte into a mature adipocyte is commonly divided into 3 

stages: growth arrest, mitotic clonal expansion (MCE), and terminal differentiation 

[42]. Growth arrest of the pre-adipocytes (in G0/G1 
phase) occurs by contact-

inhibition. At this point, addition of prodifferentiative hormones will signal the 

arrested pre-adipocytes to re-enter the cell cycle and undergo several rounds of cell 

division, known as the MCE. There has been some controversy as to whether the 

MCE is required for differentiation [42]. Following the MCE, pre-adipocytes enter a 

unique growth arrested stage, GD 
(D for differentiation), considered to be a poorly 

defined point of no return for commitment to terminal differentiation. During terminal 

differentiation, 3T3-L1 cells transform from their fibroblastic morphology into the 

appearance associated with mature adipocytes, with a round shape and lipid filled 

vacuoles, as well as with their biochemical characteristics [43]. Below is a review of 
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the most important known transcription factors that influence adipogenesis which are 

summarized in Figure 2.  

The Peroxisome Proliferator-Activated Receptor (PPAR) gamma   
 
The PPAR protein family consists of the α, δ and γ proteins. PPARs belong to the 

nuclear receptor (NR) superfamily and it is only PPARγ that is relevant for 

adipogenesis [44]. In order to bind DNA and regulate transcription PPARγ must 

heterodimerize with the retinoid X receptor (RXR) [45].  Multiple free fatty acids 

(FFAs) and their derivatives, as well as certain eicosanoids (e.g. the prostaglandin J2), 

act as low affinity ligands for PPARγ; however, an endogenous PPARγ ligand of high 

affinity has not yet been identified. Nevertheless, several synthetic agonists are 

available, e.g. the thiazolidinediones (TZD), which are used in the clinic as insulin 

sensitizers [44]. PPARγ is responsible for activating many of the genes involved in 

fatty acid uptake and storage. The PPARγ gene gives rise to three different mRNA 

isoforms. PPARγ1 
 
and PPARγ3

 
code for the same protein but from different 

transcripts that do not affect the open reading frame and are ubiquitously expressed, 

while PPARγ2
 
use a different promoter and alternative splicing and is unique to the 

WAT. The specific role of the different isoforms during adipogenesis is still unclear 

[42, 46]. The important role of PPARγ in adipocyte differentiation has been 

demonstrated through multiple experiments including in vitro overexpression and 

knockdown, as well as in vivo gene targeting in mice [46]. Knowledge drawn from 

these experiments suggests that PPARγ is necessary and sufficient for adipogenesis. 

 

CCAAT/Enhancer Binding Protein (C/EBP) 
 
C/EBP is a family of six highly conserved basic-leucine zipper transcription factors 

(α, β, γ, δ, ε and ζ). They act as homo- or heterodimers, and they have a ubiquitous 

tissue distribution. In adipocytes, three members of the C/EBP family regulate early 

phases of adipogenesis.  C/EBPα acts as an activator for many adipocyte genes, such 

as GLUT4, leptin and aP2 [47]. Studies in fibroblasts lacking PPARγ found that 

C/EBPα alone is unable to induce differentiation, suggesting that C/EBPα and PPARγ 

participate in the same pathway [48]. C/EBPβ and C/EBPδ are expressed early after 

induction of adipogenesis [49]. Ectopic expression of C/EBPβ, but not C/EBPδ alone, 

has proven to be sufficient to induce adipocyte differentiation in vitro [49-51]. In 
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defining the order of actions towards terminal differentiation, recent studies have 

shown that C/EBPβ, but not C/EBPα, induces PPARγ expression. C/EBPβ is induced 

by the cAMP Response Element Binding Protein (CREB) in response to changes in 

cAMP levels [52]. DNA binding of C/EBPβ at the centromeres appears to be a 

prerequirement for initiation of MCE [53, 54].  

 

Krüppel Like Factors (KLFs) 
 
Another group of transcription factors that regulate adipogenesis is the KLFs. Several 

members of this large C2H2-zinc finger family play a role during adipocyte 

differentiation. KLF2 binds the promoter of PPARγ2
 
and represses its activation, 

thereby inhibiting adipogenesis [46]. After induction of differentiation, KLF5 

expression, induced by C/EBPβ and C/EBPδ, dispatch KLF2 which promotes 

PPARγ2 expression. Later in development KLF5 is downregulated and expression of 

the proadipogenic KLF15 increases. KLF15 also promotes PPARγ2
 
expression in 

addition to promoting expression of genes associated with mature adipocytes (e.g. 

GLUT4) [55]. Other KLFs that have been shown to act during adipogenesis are 

KLF3, KLF4, and KLF6 [38]. KLF4 expression has been shown to be induced in 

response to cAMP and in cooperation with KROX20, which is a proadipogenic factor 

[56] that promotes C/EBPβ expression [57].  

 

The Mitogen Activated Protein Kinases (MAPKs)  
 
The MAPKs are ubiquitously expressed, highly conserved serine/threonine kinases 

and involved in pathways controlling embryogenesis, cell differentiation, cell 

proliferation and cell death [58]. In mammals there are three main MAPK families, 

the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and 

p38 [58].  
 

The ERK pathway was linked to adipogenesis in 1991 when it was shown that ectopic 

expression of a constitutively active Ras mutant led to growth arrest and terminal 

differentiation of 3T3-L1 cells in the absence of insulin and IGF-1 [59]. This was later 

confirmed by the discovery that inhibition of ERK expression suppresses 

adipogenesis [60] by inhibition of C/EBPβ [61]. However, in response to various 

growth factors and Preadipocyte Factor 1 (PREF-1), ERK has also been shown to 
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inhibit PPARγ activity by direct phosphorylation and thereby suppressing 

adipogenesis [62, 63]. In vivo studies with ERK1-/- knockout mice have indicated 

that ERK1, but not ERK2, is the isoform active in adipogenesis [121]. ERK1-/- mice 

are protected from insulin resistance and high fat diet-induced obesity supporting the 

in vitro findings [122].  

 

Studies of p38 inhibitors effect in 3T3-L1 cells have linked p38 activation to 

phosphorylation of C/EBPβ leading to its activation, as seen with ERK, and 

subsequent promotion of adipogenesis [64]. Further evidence for p38 acting in a 

proadipogenic manner was shown by overexpression of active MKK6 which is 

upstream of p38 [65]. This dominant active mutant was sufficient to induce activation 

without any hormonal stimulation. However, prolonged overexpression induced 

massive cell death. Two additional reports further support p38 as an enhancer of 

adipocyte development [66, 67]. In contrast to these results, p38 has been found to 

activate CHOP leading to inhibition of C/EBPβ [64]. In addition, a study of p38 

action in adipocyte development using multiple cell lines found that its knockdown 

and inhibition promoted adipogenesis [68]. These conflicting results could be due to 

the different cell lines that are used in these studies [68].  

 

MAPK Phosphatases (MKPs) 
 
The dual specificity phosphatases (DUSPs), also known as MAPK Phosphatases 

(MKPs), belong to the superfamily of protein tyrosine phosphatases (PTP) that can 

dephosphorylate both phospho-tyrosine and phospho-threonine residues. It is common 

to separate the MKPs in a group of typical MKPs and atypical MKPs, with 11 and 19 

human family members, respectively [69]. All typical MKPs regulate MAPK activity 

through dephosphorylation of the TXY-motif. Several atypical MKPs have also been 

shown to have MAPK as their substrate, discussed below [70].  

 

MKPs have a catalytic dual specific phosphatase (DSP) domain at the C-terminus 

with the conserved motif HCXXXXXR (histidine, cysteine, X as any amino acid and 

arginine). The DSP motif has no strict preference for any of the MAPKs; therefore, 

typical MKPs have a MAPK binding (MKB) motif at the N-terminal end.  
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Figure 2. Overview of transcription factors that are involved in adipogenesis in the 3T3-L1 cell 
line and some of their regulators. Inducers of adipogenesis (blue) activate intracellular signaling 
cascades that induce transcription factor (TF) mobilization and transcriptional activation at promoters 
of pro-adipogenic factors and metabolic genes with functions in adipocytes. Molecules with a positive 
effect on adipogenesis are shown in green and those with a negative effect in red.  See text for details.   

To date, only two MKPs, MKP-1 and MKP-4, have been studied and found to affect 

adipogenesis and adipocyte function [71-74]. The effect of MKP-1 on adipogenesis 

was tested in both 3T3-L1 and 3T3-F442A cells where MKP-1 was found to regulate 

the essential down-regulation of ERK activity during adipogenesis [161]. MKP1 

knockout mice display resistance to diet-induced obesity. This resistance was 

proposed to be due to lack of MKP-1 nuclear action, and not its cytosolic activity, as 

MAPK action in the cytosol was similar in wild type and knockout mice [75]. MKP-4 

was present in murine adipocytes and was upregulated in ob/ob mice. In addition, 

ectopically expressed MKP4 inhibited adipogenesis and glucose uptake in 3T3-L1 

cells. MKP-1 and MKP-4 were found to be induced by dexamethasone in 3T3-L1 

cells, and a concominant block of p38 was followed by a reduction in insulin-induced 

glucose uptake [74].  In summary, these studies suggested that MKP-1 and MKP-4 

are involved in adipogenesis by modulating MAPK activity.  

ADIPOCYTE FUNCTION 

Adipocytes control whole-body metabolism by regulating 95% of total body TG 

concentration in the body [76]. During fasting, there is a dynamic balance between the 

release of fatty acids from WAT and their uptake and oxidation by, most dramatically, 

the liver and skeletal muscle [77]. In states of high caloric intake WAT will increase 

uptake of fatty acids to avoid hyperlipidema and toxic lipid accumulation in 
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peripheral tissues, which can have devastating effects [6]. How is this dynamic uptake 

and release of fatty acids regulated in the WAT?  

 

Adipocyte metabolism   
 

Insulin signaling  
 
Increased plasma glucose levels induce insulin secretion from pancreatic β cells into 

the bloodstream where it increases fatty acid and glucose uptake in the liver, muscle 

and adipocytes and decreases gluconeogenesis in the liver [78, 79]. In mature 

adipocytes insulin binds to the insulin receptor (IR), which then phosphorylates IR 

substrate 1 (IRS-1) (Figure 3). This leads to the recruitment and activation of the 

phosphatidylinositol-3 kinase (PI3K) and Akt [80]. Akt signaling induces 

translocation of GLUT4 from intracellular compartments to the plasma membrane 

where it facilitates transport of glucose into the cell [81]. Similarly, Akt also induces 

the translocation of fatty acid transport proteins (FATPs) 1 and 4 to the cell surface 

for import of fatty acids [76]. The increased concentrations of glucose and fatty acids 

that accumulate due to insulin stimulation rapidly induce synthesis of TG for long-

term fat storage. In addition, insulin-induced serine-273 phosphorylation of 

phosphodiesterase 3B (PDE3B) inhibits lipolysis [82, 83]. 

 

Adipocyte precursor cells, positioned in the WAT, are also affected by insulin 

signaling. Here, proteins involved in cell proliferation and differentiation, especially 

the ERK and mTOR, are activated and initiate cell division and differentiation of 

precursor cells into adipocytes thereby increasing the storage capacity for fatty acids 

[80]. 
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Figure 3. Insulin increases lipogenesis and inhibits lipolysis in adipocytes. Insulin promotes free 
fatty acid (FFA) esterification into triglycerides through stimulation of glucose transporter type 4 
(GLUT4)-mediated glucose uptake. Glucose can be converted to 3-glycerol phosphate, the main source 
of the glycerol backbone of TG. Peroxisome proliferator-activated receptor-γ (PPARγ) activates 
lipoprotein lipase (LPL) expression and the TG biosynthetic pathway. Secreted LPL hydrolyzes TG 
from circulating very low-density lipoprotein (VLDL), releasing FFAs to be re-esterified. Several 
thiazolidinediones (TZDs) can activate PPAR. Insulin signalling also downregulates TG lipolysis 
through hormone-sensitive lipase (HSL). Insulin stimulation of the phosphatidylinositol 3-kinase 
(PI3K)–AKT pathway leads to activation of the enzyme phosphodiesterase-3 (PDE3). This enzyme 
catalyzes the breakdown of cyclic AMP (cAMP) which in turn reduces activation of HSL. Figure taken 
from [77] with permission from Nature Publishing Group. 

Lipogenesis  

FFAs have multiple essential physiological functions in all living organisms and 

influence the behavior of all cell types. They are the most energy-dense source of 

ATP, they can function as signaling molecules acting both as paracrine factors or as 

hormones that bind specifically to receptor proteins, and they are essential building 

blocks for all lipid synthesis and membrane formation [84]. FFAs can either be 

synthesized de novo from glucose or be recycled from the cytosol and the 

extracellular fluid. Excess FFAs are however toxic and the concentration of FFAs in 

blood and in the cell need to be kept low. This is achieved by conversion of FFAs into 

TG that can be stored as non-toxic lipoprotein complexes in the blood stream or 

inside cells in specialized lipid droplets [10, 85]. These organelles form as out-buds 

from the ER, but whether lipid droplets and ER stay in contact or are physically 

separated is not yet clear [85]. Lipid droplets consist of a core of TG and cholesterol 

esters surrounded by a phospholipid monolayer containing PAT 
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(Perilipin/APRP/TIP47) domain proteins which stabilize the TG storage, in addition 

to trafficking proteins like Rab GTPase and SNARE proteins involved in intracellular 

positioning of the lipid droplet [85]. Although virtually every cell type store 

triglycerides in lipid droplets, adipocytes are by far the most efficient cell type for the 

uptake and release of FFA. In fact, up to 85% of an adipocyte consists of TG, which 

is located in a single unilocular lipid droplet.  Lipoprotein lipase (LPL) is secreted 

from adipocytes and acts on the surface of endothelial cells in the WAT where it 

hydrolyzes the lipoprotein bound TG to FFAs which are then transported into 

adipocytes by passive diffusion [86] or by fatty acid transporter proteins (FATPs) 

[87]. Inside the adipocyte, the fatty acids become chaperoned by adipocyte fatty acid 

binding protein 4 (FABP4 or aP2) for re-esterification and conjugation to coenzyme 

A (coA) catalyzed by acyl CoA synthetases (ACS) [10]. De novo synthesis of TG 

mainly takes place in the liver and to a lesser extent in WAT, but dietary uptake of 

TG contributes, under normal conditions, as the major source of TG accumulation . 

Both de novo synthesized FFA and recycled FFA are joined with 3-glycerol 

phosphate (G3P) by G3P acyltransferases (GPAT), 1-acylglycerol-3-phosphate 

acyltransferases (AGPAT), and diacylglycerol acyltransferases (DGATs) to produce 

TG. Adipocytes have very low glycerokinase activity and cannot recycle glycerol for 

the TG synthesis process and therefore use glucose as the main source of G3P.  

 

Lipolysis 
 
TG are released from lipid droplets by the action of TG hydrolases and their 

associated proteins in a process called lipolysis [84]. Prolonged fasting empties the 

TG content in most non-adipose tissues and induce lipolysis of TG in WAT. The end 

products of lipolysis are FA and glycerol, which are delivered to tissues with high 

energy demand, such as muscle and liver. The two main enzymatic reactions in TG 

release are adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). 

HSL was for a long period thought to be the only TG hydrolase that could cleave TG. 

Activation of perilipin by phosphorylation of at least 5 different serine residues, 

achieved by protein kinase A (PKA), 5′-AMP activated protein kinase (AMPK) or 

ERK translocates HSL to the lipid droplet. In 2004 ATGL was discovered to be an 

additional TG hydrolase with specific activity for the first step in TG hydrolysis [88]. 
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Activation of ATGL also seems to involve PKA and perilipin but the molecular 

details are still unclear [84]. 

Endocrine action of the adipocyte  
 
The basics for the fat storage and metabolism in the adipocyte have been known since 

the 1970s. However, the adipocyte gained much more attention after the surprising 

discoveries in the 1990s made it clear that WAT also acts as an endocrine organ 

playing a major part in the systemic regulation of energy balance by the release of 

adipocyte specific hormones called adipokines.  

 

After the identification of leptin as an adipocyte secreted protein, several additional 

hormones and secreted products of WAT origin have been identified called 

adipokines. These molecules regulate whole body metabolic homeostasis by signaling 

to the brain, pancreas, liver, muscle, reproductive tract, immune system, and the 

vasculature [23]. The main known adipokines are reviewed briefly below. 

 

Leptin 
 
On a normal diet, the ob/ob and db/db strains of mice weigh three times more than 

wild type mice and contain five times more fat mass [89]. It was not until 1994 that 

the cause of the ob/ob phenotype was found to be a mutation in the gene encoding 

leptin [4], which is highly expressed in WAT and from where it is secreted into 

circulation. When WAT accumulates during periods of a positive energy balance, 

leptin concentration in plasma also increases. Similarly, in periods of energy 

insufficiency, leptin levels increase [90]. In addition to fat mass, insulin signaling and 

PPARγ agonists induce secretion of leptin. The db/db locus was found to contain the 

receptor for leptin shortly after the discovery of leptin itself [91]. The leptin receptor 

is highly expressed in hypothalamic neurons involved in regulation of food intake and 

is probably the most physiologically relevant target for leptin since brain specific 

deletion of leptin receptor is sufficient to cause severe obesity [92] (Figure 4). From 

the circulation, leptin is transported across the blood brain barrier to reach the brain 

where binding to the leptin receptor activates intracellular JAK/STAT3 (Janus 

kinase/Signal Transducer and Activator of Transcription) signaling which stimulates 

energy expenditure and inhibits food intake and weight gain [93].  
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Figure 4. Leptin action. Leptin is released from adipocytes and binds to leptin receptors in the 
mediobasal hypothalamus, which then stimulate a systemic decrease in food intake and increase in 
energy expenditure. Afferent nerves can signal to adipocytes so that communication is bidirectional. 
The figure was taken from [6] with permission from Nature Publishing Group. 

 

Except for hypothalamic expression, leptin receptor is present in a variety of tissues 

such as cancer cells, hepatocytes, heart muscle, pancreatic β cells, several types of 

immune cells and adipocytes; however, the functional significance of leptin action in 

these cells is still being explored [93]. Interestingly, in lean animals leptin 

administration induces complete loss of WAT by STAT-3 induced fatty acid 

oxidation in adipocytes [94, 95]. However, mice on a high fat diet very early develop 

leptin resistance and continue to store triglycerides although circulating leptin levels 

increase [96]. A recent report, however, raise doubts about the hypothesis that leptin 

directly binds leptin receptor in WAT to induce lipolysis by showing that instead it is 

the sympathetic innervation signals from the hypothalamus to the WAT that may be 

responsible for this effect [97].  

Adiponectin 

Adiponectin is an adipocyte specific protein that belongs to the collagen superfamily 

and is the adipokine secreted in highest amounts [98]. In contrast to leptin, 

adiponectin levels are reduced with obesity and elevated during starvation. 

Biologically, adiponectin is rarely found as a monomer; instead it forms homotrimers, 

which then dimerize to yield adiponectin hexamers and even higher molecular weight 

complexes [93]. Adiponectin impacts body metabolism by increasing insulin 

sensitivity in metabolic tissues, such as muscle, WAT and liver. In muscle it binds to 
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Adiponectin Receptor 1 (AdipoR1) and promotes glucose uptake and FFA oxidation; 

in liver it binds AdipoR2, promotes FFA oxidation and decreases gluconeogenesis 

[99]. Downstream signaling of AdipoR1 is not well characterized, but is known to 

involve activation of p38 and PPARα [100]. Aside from metabolic effects, 

adiponectin executes anti-inflammatory effects through inhibition of NF-κB signaling 

and reduced secretion of several inflammatory cytokines released from monocytes, 

macrophages and dendritic cells [98].  

 

Retinol binding protein 4 (RBP4) 
  
RBP4 is a plasma transport protein for retinol and is up-regulated in WAT in mice 

deficient in GLUT4 [101]. RBP4 is elevated in obese and obese-diabetic human and 

mice, and overexpression of RBP4 in mice leads to increased insulin resistance [102]. 

RBP4 secretion by WAT is suggested to be a response to low glucose blood levels 

detected by GLUT4. RBP4 suppresses insulin signals in muscle inhibiting the activity 

of PI-3K and IRS-1 phosphorylation, while increasing the glucose production in the 

liver leading to higher plasma glucose concentration [101] .  

 

Visfatin  
 
Visfatin, originally identified as pre-B-cell colony-enhancing factor (PBEF) over a 

decade ago, is expressed in bone marrow, liver and muscle, and has been re-identified 

in WAT as a factor that is up-regulated during development of obesity. The visceral 

tissue specificity of visfatin is still controversial, and its supposed role in binding and 

activation of the insulin receptor need further proof, but its connection to adiposity is 

still strong [103, 104].  

 

Plasminogen Activator Inhibitor-1 (PAI-1)  
 

PAI-1 regulates the coagulation cascade as an inhibitor of fibrinolysis and inactivation 

of urokinase- and tissue-type plasminogen activator. PAI-1 also has proposed roles in 

atherogenesis and angiogenesis. PAI-1 is expressed in many cell types within the 

WAT and its levels correlate with visceral adiposity [105, 106].  
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Monocyte chemoattractant protein 1 (MCP-1)  
 
MCP-1 is involved in recruiting monocytes and T lymphocytes to sites of injury and 

infection. This chemokine is expressed in multiple cell types including endothelial, 

skeletal and smooth muscle cells, as well as adipocytes. The target of MCP-1 is 

chemokine CC motif receptor 2 (CCR2). Expression of MCP-1 rises with obesity in 

most fat tissue types, especially in visceral fat. Insulin, TNFα, GH and IL-6 all induce 

MCP-1 expression in 3T3-L1 cells [107, 108].  

 

ADIPOSE TISSUE AND OBESITY 
 
It is estimated that there are currently more than 400 million obese adults worldwide 

and that this number can rise to 1.12 billion by 2030 if the current trend continues 

[109]. In the Unites States the prevalence of obesity (assessed by Body Mass index 

(BMI) ≥30, which is the weight in kilograms divided by the square of the height in 

meters) for people older than 20 years was 33.9% in 2008 [110], more than twice as 

many reported in 1962 [111]. In Europe there are large regional differences with a 

BMI ≥30 prevalence ranging from 4% to 28.3% in men and 6.2%-36.5% in women 

with highest rates in Central, Eastern and Southern Europe [112]. In parallel 16.9% of 

children in the United States were at or above the 95th percentile in the BMI-for-age 

growth charts [113]. Although these latest data suggest that the upward trend in 

obesity is slowing, the numbers are still alarmingly high [114].  

 

As noted above, abdominal adipose tissue expansion is closely associated with 

chronic diseases while excess subcutaneous adipose tissue accumulation show no 

such association [13]. The BMI measurement does not accurately take this important 

difference into account and measuring the waist-to-hip ratio is a better indicator for 

the amount of adipose tissue in relation to its health effects. Current guidelines 

recommend measuring the waist circumference in persons with a BMI between 25.0 

and 34.9 and proposing cutoff points for waist circumference of 102 cm in men and 

88 cm in women [115].  
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Figure 5. Obesity has been associated with a wide range of diseases. On the right side are organ 
systems/disease states with an unclear relationship to obesity. Positioned on the left side are diseases 
which have been more robustly linked to obesity [116, 117].  

Obesity is a disorder of energy balance. Excess energy intake and less energy 

expenditure eventually lead to an accumulation of adipose tissue and deregulation of 

metabolic activity. Environmental factors probably play the most significant role in 

the development of obesity, but polygenic inheritance also contributes to this [118]. A 

wide range of genome–wide association studies have been targeted to identify the 

genetic contributors for development of human obesity, but a clear picture have not 

yet emerged from these studies [118]. Whatever the causes for obesity, the 

consequences are development of metabolic syndrome, insulin resistance, and other 

defects in metabolism that can lead to cardiovascular disease, type 2 diabetes, certain 

forms of cancer, reduced fertility, asthma, and muscle degeneration, all of which 

significantly can reduce life expectancy [7, 13] (Figure 5).  

There are several different definitions of metabolic syndrome and also some 

discrepancies regarding medical diagnosis, but the definition by the International 

Diabetes Federation is currently the most prevailing [119]. It defines a person to have 

the metabolic syndrome if central obesity as well as two of the following conditions 

are present: 

• Raised plasma triglycerides 

• Reduced HDL cholesterol 



 23 

• Raised blood pressure 

• Raised fasting plasma glucose  

 

In addition, a proinflammatory state and prothrombotic state are considered to be 

signs of metabolic syndrome. Patients with metabolic syndrome have a 2-fold 

increased risk of developing cardiovascular disease and a 5-fold increased risk of 

developing type 2 diabetes [120]. However, a large portion of patients diagnosed with 

cardiovascular disease and type 2 diabetes is non-obese and many severely obese 

subjects do not develop any chronic diseases. This tells us that it is not the 

accumulation of adipose tissue itself that causes metabolic syndrome, but that 

functional disruption of normal metabolic tissue causes the onset of disease [121]. 

Current non-obese risk factors for metabolic syndrome, type 2 diabetes and 

cardiovascular disease, are stress, a sedentary lifestyle, aging, diabetes mellitus, 

coronary heart disease, and lipodystrophy. Consequently, there is some confusion as 

to how the term metabolic syndrome should be used in a clinical setting and if it is a 

good term at all [120].  

 

Insulin resistance and type 2 diabetes 
 
The hallmarks of insulin insensitivity are decreased glucose uptake into skeletal 

muscle, impaired insulin-mediated inhibition of glucose production in the liver, and a 

reduced ability of insulin to inhibit lipolysis in adipose tissue [7]. These impairments 

precede the development of systemic hyperglycemia [122]. In general, increased 

adipose tissue mass, either by hypertrophy or hyperplasia, will increase the storage 

capacity for FAs and this alone is not associated with onset of metabolic disease [6]. 

But as chronic nutritional overload continues, adipocytes can no longer take up all the 

circulating FAs and liver and muscle FA disposal will increase [7]. FAs entering 

muscle and liver can either be broken down by β-oxidation in the mitochondria or 

they can be stored as TG in the lipid droplet. In the liver, the TG pool can either be 

stored intracellularly in hepatocytes or in VLDL TG pools, which is released into to 

the circulation. The consequence of increased FA uptake in liver and muscle is 

accumulation of various metabolic by-products, which over time induce insulin 

resistance [7].  
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Under chronic over-nutrition, infiltration of activated macrophages into adipose tissue 

is observed [123, 124]. Exactly why this happens is not completely understood, but 

both adipocytes and resting macrophages secrete cytokines and chemokines such as 

CCL2, Interleukin-6 (IL-6), IL-1β, and TNF-α under stress conditions and this could 

attract more immune cells.  In addition, increased adipose cell death caused by 

various forms of stress has been suggested to serve as a signal for infiltration of 

immune cells into adipose tissue [7]. Interestingly, increased numbers of infiltrating 

immune cells could also explain why cytokines such as TNF-α and IL-6 are 

overexpressed in adipose tissue of obese mice and humans [116]. Mechanistic insight 

into the inflammatory cytokine action in adipocytes was first shown for TNF-α, 

which induces activation of the JNK kinase followed by phosphorylation of specific 

serine residues on IRS-1 to inhibit downstream insulin signaling [125]. In later 

studies, a wide range of molecules, such as fatty acids and amino acids, have been 

shown to inhibit IRS-1 signaling by a similar mechanism or by activation of another 

pro-inflammatory signaling cascade, that involving NF-κB [126, 127].  

 

Despite this knowledge, exactly what causes the inflammatory state in adipose tissue 

is unclear. One initiating mechanism could be ER stress. The ER is a vast network of 

membranes in which all the secretory and membrane proteins are assembled into their 

secondary and tertiary structures [116]. Proper folding, maturation, storage and 

transport of these proteins take place in this organelle. Unfolded or misfolded proteins 

are detected, removed from the ER and degraded by the 26S proteasome system in a 

process called the unfolded protein response (UPR).  

 

The UPR is mediated by three different stress-sensing pathways that are initiated by 

three transmembrane proteins which are located in the ER: pancreatic ER kinase 

(PERK), inositol-requiring kinase 1 (IRE1), and activating transcription factor 6 

(ATF6) [128]. Activation of PERK leads to the phosphorylation of eukaryotic 

translation initiation factor 2α (eIF2 α) and inhibition of translation [129]. In addition 

to its kinase activity, which leads to autophosphorylation, IRE1 also possesses 

endoribonuclease activity that splices X-box binding protein 1 (XBP1) mRNA; this 

results in the production of the active transcription factor XBP1s [130, 131]. The 

ATF6-mediated branch of the UPR cooperates with IRE1 by upregulating the 
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expression of XBP1 mRNA [132]. The expression and activation of XBP1s, as well 

as the production of active ATF6 and its translocation to the nucleus, where it acts as 

a transcription factor, leads to a complex transcriptional programme that has a central 

role in the UPR. This programme includes the upregulation of ER-resident chaperone 

proteins, which promote protein folding, and the production of components of the 

protein-degradation apparatus that assist in the re-establishment of ER homeostasis 

[129].  

 
Figure 6. ER stress perturbs insulin signaling. The UPR is mediated by three different pathways that 
are initiated by three transmembrane proteins that are located in the ER — activating transcription 
factor 6 (ATF6), pancreatic ER kinase (PERK) and inositol-requiring kinase 1 (IRE1). ER stress is 
linked to inflammation through the activation of the JUN N-terminal kinase (JNK) and the IκB kinase 
(IKK)–nuclear factor-κB (NFκB) pathways, and through cyclic-AMP-responsive-element-binding 
protein H (CREBH) activation by the UPR. These pathways result in the induction of an inflammatory 
response. Activation of JNK can also serine phosphorylate insulin receptor substrate 1 (IRS1), resulting 
in altered metabolic responses. Key organelles for cellular metabolism, such as the ER, Golgi, 
mitochondria and peroxisomes (not shown) are connected through an endomembrane network, which 
provides functional continuity between organelles that can therefore share functional information in the 
form of lipids and proteins at specific contact sites. This functional and molecular integration between 
the organelles can mediate the spread of stress from one organelle to the other, resulting in 
exacerbation of inflammation and cytotoxicity during chronic metabolic stress conditions such as 
obesity and dyslipidaemia. AP1, activator protein 1; eIF2α, eukaryotic translation initiation factor 2α; 
IKKB, inhibitor of NFκB; XBP1s, spliced X-box binding protein 1. The figure was reprinted from [25] 
with permission from Nature Publishing Group. 

In addition to these protective responses and stimulation of ER synthesis, these UPR 

pathways can also induce important inflammatory signals. If ER homeostasis can not 

be restored, the ER activates apoptotic pathways to initiate cell death [129]. ER stress 
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activates both JNK and NF-κB signaling in adipose tissue and liver, which are 

directly linked to development of insulin resistance. Indeed, mice on a high fat diet 

show increased levels of ER stress and JNK-mediated insulin resistance [133]. 

Furthermore, deficiency of one Xbp1allele is sufficient to induce insulin resistance 

[133]. 
 

Atherosclerosis 
 
Increased amount of visceral adipose tissue is associated with increased 

cardiovascular morbidity and mortality including stroke, congestive heart failure, 

myocardial infarction and cardiovascular death, and this is independent of the 

association between obesity and other cardiovascular risk factors [8]. Increased levels 

of very low-density lipoprotein (VLDL) cholesterol, triacylglyerols, and total 

cholesterol together with decreased levels of high-density lipoprotein (HDL) 

cholesterol are characteristics of obesity [134].  

 

The link between insulin resistance and atherosclerosis is more controversial [8]. 

Although increased adiposity is directly linked to heart failure, it probably involves 

malfunction of other aspects of adipose function, in addition to insulin resistance. 

Several of the possible mechanisms linking obesity to cardiovascular disease, such as 

increased levels of FFA, lipotoxicity and disturbances in adipokine secretion, are 

believed to be related to insulin resistance [8]. Increased levels of FFA might also 

affect endothelial nitric oxide production, thereby impairing endothelium-dependent 

vasodilation. They may also increase myocardial oxygen requirements — and 

therefore lead to ischaemia — decrease myocardial contractility and induce cardiac 

arrhythmias [135]. To what extent visceral fat exerts a direct effect on risk, of 

mortality in particular, or indirect effects, through insulin resistance or the effects of 

adipokines, remains an open question [8]. Ectopic fat storage in the heart, blood 

vessels and kidneys can impair their function, contributing to the increased 

cardiovascular risk in obesity [136].  
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Cancer 
 
The association between increased adiposity and cancer may not be as strong and is 

less well characterized than for type 2 diabetes and cardiovascular disease [137], but 

nevertheless a wide range of cancer types has a connection to obesity. This includes 

some forms of colon cancer, postmenopausal breast cancer, endometrial cancer, 

kidney cancer, adenocarcinoma of the oesophagus, adenocarcinoma of the gastric 

cardia, gallbladder cancer, liver cancer, pancreatic cancer, haematopoietic cancers , 

and advanced prostate cancer [9, 138]. An estimated 15-20% of all cancer incidents 

have been linked to obesity [139, 140]. Below is a more detailed description of 

evidence that link obesity to individual types of cancer.  

 

Breast Cancer and Obesity 

Obesity has been consistently shown to increase rates of breast cancer in 

postmenopausal women by 30 to 50% but in premenopausal women there is an 

inverse relationship [139, 141]. Some studies have found central adiposity to be an 

independent predictor of postmenopausal breast cancer risk beyond the risk attributed 

to overweight alone, but a recent systematic review has indicated that this is not the 

case [138]. Both BMI and weight gain are more strongly related to risk of breast 

cancer among postmenopausal women who have never used hormone replacement 

therapy, compared with women who have used hormones [138]. This finding lends 

support to the hypothesis that adiposity increases breast cancer risk through its 

estrogenic effects. Studies of breast cancer mortality and survival among breast 

cancer cases illustrate that adiposity is associated with both increased likelihood of 

recurrence and reduced likelihood of survival among those with the disease, 

regardless of menopausal status and after adjustment for stage and treatment. There 

are substantial data to suggest that adiposity is associated with a more aggressive 

tumor; obese women are more likely than lean women to have increased tumor size, 

lymph node involvement, and later stage disease at diagnosis [138].  

 

Colorectal Cancer and Obesity 

Obesity increases the risk of colorectal cancer in men by approx 50-100% and in 

women by 20-50% in both case–control and cohort studies [142].  A gender 

difference, in which obese men are more likely to develop colorectal cancer than 



 28 

obese women, has consistently been observed across studies and populations. The 

reasons for this gender difference is not clear, but one hypothesis is that central 

adiposity, which occurs more frequently in men, is a stronger predictor of colon 

cancer risk than peripheral adiposity or general overweight. Support for the role of 

central obesity in colorectal cancer comes from studies reporting that waist 

circumference is related strongly to risk of colorectal cancer and large adenomas in 

men [142]. One mechanistic hypothesis is that high body mass, and central obesity in 

particular, increase colon cancer risk through their effect on insulin production [143]. 

Insulin and Insulin-like Growth Factors (IGFs) have been shown to promote the 

growth of colonic mucosal cells and colonic carcinoma cells in in vitro studies [138]. 

Elevated levels of serum leptin have recently been found to be associated with 

increased risk of colon cancer, independent of circulating insulin levels [144]. Low 

levels of plasma adiponectin have also been found to be associated with increased risk 

of colorectal cancer and colorectal adenoma. 

 

Liver Cancer and Obesity 

Studies that have examined obesity and liver cancer or hepatocellular carcinoma 

(HCC) have found excess relative risk in both men and women in the range of 50-

400%, but the magnitude of the observed relative risk from existing studies is not 

consistent [138]. Obesity, and especially visceral adiposity, is strongly associated with 

nonalcoholic fatty liver disease (NAFLD), a chronic liver disease that occurs in 

nondrinkers but that is histologically similar to alcohol-induced liver disease [145]. 

NAFLD is characterized by a spectrum of liver tissue changes ranging from 

accumulation of fat in the liver to fatty liver disease, nonalcoholic steatohepatitis 

(NASH), and HCC. Visceral adiposity thus likely contributes to the risk of HCC by 

promoting NAFLD and NASH [146]. 

 

Pancreatic Cancer and Obesity 

Several recent studies suggest that high body mass is associated with increased risk 

for pancreatic cancer in men and women, with relative risk estimates for obesity 

generally in the range of 50-100% [139]. However, other studies found smaller 

positive associations or, in some cases, no association [138]. Smoking is an important 

potential confounder of the relationship between adiposity and pancreatic cancer, and 



 29 

the smoking habits of the various study populations and differential adequacy of 

control for smoking may partly explain differences across studies [138].  

 

Prostate Cancer and Obesity  

There are conflicting results regarding an association between body mass and prostate 

cancer incidence [10, 142]. However, there is accumulating evidence that obesity is 

associated with an increase in risk of advanced prostate cancer or death from prostate 

cancer [147]. Recent studies consistently indicated that obese men with prostate 

cancer are more likely to have aggressive disease that recurs after radical 

prostatectomy than non-obese men. As with breast cancer, “nonbiological” issues of 

screening, detection, and treatment are important to the evaluation of the impact of 

adiposity on prostate cancer prognosis. It can be harder to perform a digital rectal 

examination in obese men because of their general adiposity in combination with 

larger prostate size [148]. Additionally, despite larger prostate sizes, obese men may 

have lower serum levels of prostate-specific antigen (PSA) [149], potentially biasing 

them toward later stage at diagnosis even in the presence of PSA screening. Surgery is 

more difficult to perform in obese men, with a greater risk of positive surgical 

margins [150].  

 
Biological mechanisms for a link between obesity and cancer 

As described above, obesity-induced insulin resistance in liver and muscle increase 

insulin secretion from the pancreas and thereby raising plasma insulin levels.  This 

also increases insulin-like growth factor (IGF) secretion from the liver [151] (see 

Figure 7 for an overview of IGF and insulin action). IGFs are cell proliferation 

inducers that regulate energy-dependent growth processes at the whole organism and 

at the cellular level [152]. IGF-I stimulates cell proliferation and inhibits apoptosis 

and has been shown to have strong mitogenic affects in a wide variety of cancer cell 

lines. The synthesis of IGF-I and its main binding protein, IGFBP-3, are regulated 

primarily by growth hormone (GH) [152]. In the circulation, more than 90% of IGF is 

bound to IGF binding protein 3 (IGFBP-3). Chronic hyperinsulinemia results in 

elevated blood glucose levels, decreased levels of IGFBP and higher levels of free 

plasma IGF. Obesity does not increase absolute plasma IGF-I levels, and the mild 

decrease in IGF-I levels observed in obese and hyperinsulinemic individuals can be 

explained by the negative feedback of free IGF on GH secretion, which is also lower 
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in obese individuals [138]. Insulin and free IGF interact with and regulate the 

synthesis and bioavailability of sex steroids that affect the development and 

progression of certain cancers [153]. Chronic hyperinsulinemia inhibits hepatic 

synthesis of sex hormone-binding globulin (SHBG), which increases the 

concentration of androgens and estrogens freely available in the circulation. This free 

fraction determines the actual biological activity of androgens and estrogens, 

hormones essential for the growth, differentiation and function of many tissues in 

both men and women, and implicated in breast and prostate cancer, respectively. 

There is a strong inverse association between the amount and distribution of body fat 

and circulating levels of SHBG [138].  

At the whole organism level, circulating IGF1 and IGF2 are produced mainly in the 

liver (the former under dominant growth hormone control), whereas the pancreatic β 

cells produce insulin. In general, the only source of insulin in neoplastic tissue is that 

delivered by the circulation, whereas IGF1 and IGF2, as well as being delivered from 

the circulation, are also frequently produced in autocrine and paracrine manners 

[152]. 

 
Figure 7. Systemic Insulin-growth factor (IGF) regulation. At the whole organism level, circulating 
IGF1 and IGF2 are produced mainly in the liver, whereas insulin is produced by the pancreatic β-cells. 
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In general, the only source of insulin in neoplastic tissue is that delivered by the circulation, whereas 
IGF1 and IGF2, as well as being delivered from the circulation, are also frequently produced in an 
autocrine and paracrine manner. GH, growth hormone; GHRH, GH-releasing hormone; SMS, 
somatostatin. The figure is reprinted from [152] with permission from Nature Publishing Group.  
 

Adipokines and Cancer  

Adiponectin levels are decreased in obese and type II diabetic subjects and low levels 

of circulating adiponectin has been associated with increased angiogenesis, increased 

hyperinsulinemia and also increased proliferation of neoplastic tissue [141]. In vitro 

experiments has confirmed this by showing that adiponectin receptors are expressed 

in breast cancer cell lines and that recombinant adiponectin treatment suppresses cell 

proliferation and induces apoptosis through increased AMPK signaling and inhibition 

of MAPK signaling [154, 155].  Additionally, adiponectin has anti inflammatory 

properties that also could explain its anticancer effect [156]. Leptin treatment seems 

to have the opposite effect as it increases the growth of both normal and malignant 

cells by stimulating the MAPK and JAK2-STAT3 pathway, at least in breast, colon 

and prostate cancer cell lines in vitro [157-159]. 

 

SIX TRANSMEMBRANE PROTEINS OF PROSTATE (STAMPS) 

General features of the STAMPs 
 
Androgens and the androgen receptor (AR) are cornerstones in prostate 

carcinogenesis [160]. However, the molecular details as to how AR function directly 

connects to prostate biology are still incomplete. Especially, the physiological and 

biochemical functions of the many target genes that are transcriptionally controlled by 

AR remain elusive. While screening for new AR regulated genes, STAMP1 was 

discovered [161]. Sequence databases indicated that at least two other proteins share 

sequence similarity to STAMP1. cDNA cloning of these two sequences and their in 

silico analysis confirmed them to belong to the same family and thus they were 

named STAMP2 and STAMP3 (reference [162], and Saatcioglu laboratory, 

unpublished data). STAMP proteins are known by several other names assigned by 

different groups which cloned them in different species: STAMP1 (STEAP2) [161, 

163], STAMP2 (STEAP4, TIARP) [162, 164], and STAMP3 (STEAP3, TSAP6, 

pHYDE) [165, 166].  
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All three STAMPs share the putative six transmembrane (6TM) region flanked by a 

large amino-terminal and a short carboxyl-terminal domain, a structure reminiscent of 

channel and transporter proteins [162]. The STAMP family members have significant 

similarity at the C-terminal 6TM domain to the TM domains of the yeast FRE 

metalloreductases [167, 168] which have heme-binding capabilities and are involved 

in electron transfer chains [169]. In addition, they share high sequence similarity at 

the N-terminus to the archaeal and bacterial F420:NADP+ Oxidoreductase (FNO) 

binding proteins [167, 168]. STEAP (Six-Transmembrane Epithelial Antigen of the 

Prostate) does not belong to the STAMP family, but is a STAMP-related gene. STEAP 

contains the conserved 6TM domain as in the STAMP family members, but does not 

have the FNO domain at its N-terminal portion.  The STAMP family members have 

been suggested to function as ferrireductases and cupric reductases [167, 168]. They 

reduce iron from the ferric (Fe3+) to ferrous (Fe2+) state, copper from the cupric (Cu2+) 

to cuprous (Cu+) state, and stimulate cellular uptake of both iron and copper in 293T 

cells, suggesting that they may play potential roles in metal metabolism [167, 168]. 

Whether STAMPs have these activities in vivo, and whether this is linked to their 

biological function is currently under investigation. Below is a general background on 

each STAMP member and their known roles in non-metabolic tissue, followed by 

possible roles of STAMPs in adipose tissue. 

 

STAMP1  
 
STAMP1 is located on chromosome 7 (Chr7q21). This region contains a cluster of 

genes predicted to encode 6TM proteins. In addition to STAMP1, STAMP2 and 

STEAP both lie in this locus. STAMP1 is transcribed in the same direction as STEAP, 

but in the opposite direction to STAMP2 [162]. The use of GFP-tagged STAMP1 in 

quantitative time-lapse and immunoflourescence confocal microscopy imaging 

studies indicated that STAMP1 is primarily localized to the Golgi, trans-Golgi 

network and the plasma membrane. It also co-localizes to the early endosomes, but 

not late endosomes or lysosomes, and shuttles between the Golgi and the plasma 

membrane, suggesting that it may be involved in secretory/endocytic pathways [161, 

163].  
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STAMP1 is not detected in AR-negative prostate cancer cell lines PC-3 and DU145, 

but is highly expressed in the androgen-sensitive prostate cancer cell line LNCaP; 

however, its expression is not significantly androgen regulated. In human prostate 

cancer xenograft models, STAMP1 showed significant expression in androgen-

independen CWR22R tumors and lower levels of expression in androgen-dependent 

CWR22 tumors [161]. In situ hybridization of human prostate cancer specimens 

showed that STAMP1 is expressed only in the epithelial cells of the prostate and its 

expression is significantly increased in prostate tumors compared with normal glands, 

suggesting that STAMP1 may play a role in prostate cancer development and may 

serve as a potential diagnostic marker [161, 163]. 

 

STAMP2  
 
Similar to STAMP1, STAMP2 is primarily localized to the Golgi, trans-Golgi 

network, the plasma membrane, vesicular-tubular structures in the cytosol and early 

endosomes, but not late endosomes or lysosomes [162]. It also shuttles between the 

plasma membrane and the Golgi, suggesting that it may be involved in the 

secretory/endocytic pathways. Differently from STAMP1, STAMP2 also displays an 

ER-specific localization. STAMP2 has a tissue-restricted expression with high levels 

in placenta, WAT, lung, heart, liver and prostate. STAMP2 expression is highly 

androgen regulated in the androgen-sensitive, AR-positive prostate cancer cell line 

LNCaP, but in androgen receptor-negative prostate cancer cell lines (PC-3, DU145, 

CA-HPV10, PZ-HPV7 and YPEN-1) its expression was not detected. Moreover, in 

human prostate specimens STAMP2 is over-expressed in cancer cells compared with 

normal prostate epithelial cells suggesting that it may be useful as a diagnostic marker 

and may have a role in prostate cancer progression [162].  

 

STAMP3  
 
STAMP3, also known as TSAP6 (tumor suppressor activated protein 6), Steap3 (in 

mouse) and pHyde (in rat) is a p53-inducible human protein which regulates 

apoptosis and the cell cycle via direct interactions with Nix (a BCL-2 related protein) 

and Myt1 kinase (a negative regulator of the G2/M transition) [165]. STAMP3 is also 

reported to interact with and facilitate secretion of the translationally controlled tumor 
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protein (TCTP, also called histamine-releasing factor, HRF) by a nonclassical 

pathway, independent of the ER and Golgi apparatus [170]. The rat homologue of 

STAMP3, pHyde, has been shown to cause apoptosis in prostate cancer cells upon 

ectopic expression through a caspase-dependent pathway [166]. Adenoviral delivery 

of pHyde into human prostate cancer cells caused growth suppression and induced 

apoptosis synergistically with the chemotherapeutic agent cisplatin [171]. These data 

suggest that STAMP3 functions in the opposite direction to STAMP1 and STAMP2 

in prostate carcinogenesis. Steap3 was shown to be the major ferrireductase having an 

important role in iron uptake in erythrocytes [168]. Consistently, mice lacking Steap3 

exhibit hypochromic microcytic anemia [168]. 

 

STEAP1  
 
Although formally not part of the STAMP family, some brief information on 

STEAP1 is also included here. STEAP1 was originally identified as a prostate-

specific cell-surface antigen and found to be located at the cell-cell junction of the 

secretory epithelium of the prostate and overexpressed in prostate cancer [172]. 

STEAP1 is also overexpressed in multiple cancer cell lines, including bladder, colon, 

ovarian, and Ewing sarcoma, compared with normal cells [172]; it could therefore be 

a potential diagnostic/prognostic marker or a therapeutic target in cancer [173, 174]. 

Consistent with this hypothesis, STEAP1 mRNA is detectable in serum of patients 

with different solid tumours whereas it is not found in donors without known disease 

[175]. 

 

STAMPs’ role in adipose tissue and metabolism  
 
At the time STAMP2 was discovered as an androgen-regulated gene in prostate 

cancer cells, evidence was provided for a role of the murine STAMP2 ortholog 

TIARP in adipocytes [164]. Mouse STAMP2 shares the same general predicted 

protein domains and tissue expression profile as the human gene, but with some 

significant differences. Expression in lung tissue, for example, is high in human 

samples [162], but in contrast could not be detected in the mouse lung. STAMP2 is 

not expressed in 3T3-L1 pre-adipocytes, but is induced to high levels three days after 

initiation of adipogenesis. Interestingly, TNF-α increased STAMP2 expression 
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several fold in differentiated adipocytes. This is somewhat surprising as TNF-α 

presumably inhibits most adipocyte-specific gene expression and STAMP2 is induced 

during adipogenesis [176]. Immunofluorescence staining showed localization of 

STAMP2 to the plasma membrane and perinuclear regions and addition of TNF-α 

two days after differentiation increased plasma membrane specific staining [164].  

Subsequently, several other hormones and cytokines have been reported to induce 

STAMP2 in differentiating 3T3-L1 cells, including growth hormone [177], 

interleukin-6 [178] and interleukin-1β [179]. Although these results suggest a role for 

STAMP2 in inflammatory signaling in metabolic tissue, they rely on in vitro data that 

do not provide any mechanistic model for the link between STAMP2 and the 

inflammatory cytokines.  

 

To further characterize STAMP2 function in metabolic tissues, experiments were 

performed in cultured adipocytes in vitro and in mouse models of obesity. It has been 

postulated that regulatory molecules would respond to nutritional status and 

inflammatory signals. Investigation of STAMP2 expression in 3T3-L1 adipocytes by 

various nutritional stimuli showed that STAMP2 expression was markedly induced by 

high serum and fatty acids whereas there was minimal regulation in response to 

glucose or insulin [180]. Additional experiments established that fluctuations in 

nutritional status also results in regulation of STAMP2 expression in vivo. In lean 

mice, STAMP2 expression was elevated in the fed, as compared to fasted, state, 

particularly in visceral adipose depots, a site often considered as the most relevant 

depot for metabolic pathologies [13, 180].  
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Figure 8. Potential functions of STAMP2 in adipose tissue. Based on the initial characterization of 
STAMP2 knockout mice [180], several functions of STAMP2 have been suggested: 1. Inhbition of 
pro-inflammatory signalling, e.g. JNK and NF-κB. 2. Increased insulin sensitivity and glucose uptake. 
3. Decreased secretion of pro-inflammatory mediators (autocrine effect). 4. Decreased macrophage 
infiltration (paracrine effect). 5. Increased metabolic function of liver and muscle (systemic effect). 
TLR, Toll-like receptors. Figure was taken from [181] and used with permission from Nature 
Publishing Group. 

To explore the role of STAMP2 function in vivo, a STAMP2 knockout mouse model 

was established. Characterization of these mice showed elevated levels of 

inflammatory cytokines and reduced levels of metabolic markers selectively in the 

visceral WAT at 3 months of age on a regular chow diet [180] (Figure 8). In addition, 

glucose uptake in muscle, WAT and liver was impaired in STAMP2 knockout 

animals in vivo, as well as in an adipocyte cell line upon siRNA-mediated knockdown 

of STAMP2. Tissue sections of the visceral WAT and liver from the same mice 

demonstrated high macrophage infiltration into WAT and lipid accumulation in the 

liver even though the body weight did not differ significantly between the knockout 

and the control groups [180]. Macrophage infiltration and fatty liver are commonly 

seen in obese subjects on a high fat diet and are both involved in the development of 

local metabolic inflammation and insulin resistance, but are not common in mice on a 

chow diet [116, 182]. These results therefore indicate that STAMP2 plays an 

important role in limiting local stress that is induced by feeding; long term 

accumulation of such stress in the absence of STAMP2 results in the metabolic 
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syndrome. Oxidative stress could be one type of stress that STAMP2 normally 

counteracts as elevated levels of TBARS and NADPH oxidase was reported in 

STAMP2 knockout animals as a sign of accumulated oxidative stress [180].  

 

Expression of STAMP2 is high in human WAT ([183], T Lindstad, unpublished 

data). However, it remains to be determined whether the nutritional regulation of 

STAMP2 is disrupted in obese humans in the same manner as in mouse models of 

obesity, as there are conflicting reports on this [183, 184]. Addressing this question is 

crucial, but is also challenging, as the nutritional regulation of STAMP2 expression 

occurs in the visceral WAT which is generally not readily available in experimental 

protocols [25].  
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