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Abstract

A key challenge in Air Tra�c Management (ATM) is to provide a schedule with high
throughput on the runways, and at the same time meet objectives connected to taxiing
times and punctuality while ensuring safe operations within the apron, taxiway, runway,
and terminal manoeuvring area. High throughput is achieved through optimised runway
sequences. These sequences must frequently be revised, for example due to uncertainty in
the available data. Hence, as updated information become available, the �ight scheduling
process continues throughout the day. Furthermore, since many of the activities and
operations at the airport are prioritized and planned due to the previous schedule, it is
important that the scheduling process does not create too much deviation from one plan
to another.

In this thesis we present an approach for rescheduling, where we have modelled stability
requirements in the objective function. We present new distance functions for measuring
stability, and stability is formulated with respect to time and the runway sequence. We
present computational results and analyse the trade-o� between stability and optimality.
Our experimental results indicate that including stability in the objective function greatly
improves the stability without a major decrease in punctuality.
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Chapter 1

Introduction

Air tra�c management (ATM) is a process that involves strategic management of re-
sources, with the goal of guiding aircraft safely and e�ciently in the sky and on the
ground. Over the past century there has been a huge increase in air tra�c volume. In
2010, the European Air Tra�c Management system controlled 9.5 million �ights and
recent forecast predict that this will increase to nearly 17 million �ights per year by
2030 [13]. The possibility for airport expansions or new airports are limited, and as a
consequence, the pressure on existing airports will be higher and the bene�t of using
optimisation technology will increase.

An important step towards successfully meeting the increased air tra�c demand is to
improve the e�ciency of arrival and departure operations. In 2008, airport delays ac-
counted for around 27% of the total delay in air transport network. The origin of airport
delays is mainly related to the ine�ciency of daily airport operations [12]. It is therefore
important to provide a schedule with high throughput on the runways, and at the same
time meet objectives connected to punctuality.

Typically, ATM considers three distinct problems: The Arrival Management Problem
(AMAN), the Surface Management Problem (SMAN) and the Departure Management
Problem (DMAN). These problems are tightly connected, with a common goal of creat-
ing an e�cient and feasible airport �ight schedule. Traditionally, the main objectives for
an airport schedule have been punctuality and throughput. In addition there are many
restrictions, for instance due to safety separation rules on the runway. Despite the com-
plexity of the task and the short decision time available, most of the scheduling today is
performed manually by the controllers.

However, the environment and the available information are rapidly changing, generating
a need for revising the original schedule. Rescheduling may create a schedule that deviate
signi�cantly from the previous one. Since changes in the schedule need to be commu-
nicated from the controllers to the pilots, any change will increase the workload for the
controllers. In addition, several planned activities are based on the original schedule and
may be a�ected by the changes, and can cause confusion among the stakeholders. It may
therefore be a good idea to keep the new solution close to the previous one. Loosely, this
is what characterize stability in scheduling, and recently it has become a more common
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objective in ATM-scheduling.

Overview

The goal of this project is to �nd a mathematical model to represent the scheduling
problem at an airport, and to develop an optimisation algorithm for solving it. Stability
being a relatively new topic in scheduling, it lacks a common de�nition. In this thesis we
will de�ne a way to measure stability and analyse the trade-o� between optimal solutions
and solutions where we take stability into account. Hence, we set before us the following
tasks:

• Present a small survey on scheduling and stability

• De�ne new distance functions for measuring stability

• Establish a linear programming(LP) formulation of a part of the scheduling problem

• Implement this formulation using an LP solver

• Perform simulations, analyse and document experimental results

The thesis is organized as follows:

Chapter 2 introduces some basic concepts and theory. This involves graphs, networks
and linear programming. The theory from this chapter will be applied throughout this
thesis. Chapter 3 will focus on scheduling and stability. There will �rst be a summary of
issues that arise during a scheduling process, followed by a review of literature related to
stability in scheduling, before stability distance functions are de�ned. My contribution
to this chapter is the de�nitions of stability and stability performance measures.

In chapter 4 I present a mathematical description of the problem and a network scheduling
model that will be used for numerical simulations.

In chapter 5 implementation details are discussed and an algorithm for solving the
scheduling problem is developed. In Chapter 5, my contributions are the initial dual solu-
tion algorithm and the corresponding theorem and the discussion about how to reschedule.
The approach presented here for �nding an initial dual solution to a minimum cost �ow
problem have, as far as I know, not been presented in the literature before.

Chapter 6 presents some test runs using the algorithm from Chapter 5. All experiments
and analysis are done by me.

Finally, I end this thesis with a summary and some concluding remarks in Chapter 7,
and suggests some ideas for future work.
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Collaboration with Sintef

This master thesis has been carried out in collaboration with the optimisation group at
Sintef ICT, Oslo. The optimisation group is currently involved in building a decision
support system that includes integrated arrival and departure management This work is
done as part of SESAR (Single European Sky ATM Reseach), which is a European infras-
tructure modernisation programme. The program aims at developing a new generation
of air tra�c management systems.
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Chapter 2

Background theory

Before we start exploring rescheduling and stability, we need some theory to build on. As
will be seen later, our application build on the theory of �ows in networks, and we will use
a network-based implementation of the linear programming simplex method to solve the
scheduling problem. In the �rst section, there will be an introduction to graph theory
with central de�nitions. This section is based on theory from the book of Bertsimas
and Tsitsiklis [3]. In section 2.2 we summarize some of the basic ideas and notation from
linear programming and present the simplex method, before we look at �ows in networks,
and particularly the network simplex algorithm in section 2.3. The linear programming
theory in these two sections are based on theory from Ahuja, Magnanti and Orlin [1],
Vanderbei [14] and Bertsimas and Tsitsiklis [3].

2.1 Graph Theory

A graph G = (V,E) is a mathematical structure used to represent relations between pairs
of objects. It consists of two types of items: vertices (nodes) and edges (arcs). We let V
denote the set of vertices and E denote the set of edges. The usual way to picture a graph
is by drawing a circle for each vertex, and if there is an edge connecting two vertices, we
draw a line between these two. An edge is either directed or undirected. In this thesis we
will only work with directed graphs, i.e., the edges have a direction associated to them.
We will illustrate directed edges using arrows, see �gure 2.1 - 2.3.

a b

cd

e f

Figure 2.1: Disconnected Directed Graph G = (V,E)
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a b

cd

e f

Figure 2.2: Connected Cyclic Graph
G = (V,E)

a b

cd

e f

Figure 2.3: Connected Acyclic Graph
G = (V,E)

We will denote vertex j with vj, and if there is an edge e ∈ E going from vertex i to
vertex j, we will denote this edge by ei,j or simply (i, j). Here, i is called tale and j is
called head. For the following de�nitions it is important to note that the edges can be
traversed in either direction, irrespective of the given direction. For the edge (a, b) in
�gure 2.1, we say that (a, b) is a forward edge and (b, a) is a backward edge.

A walk is de�ned as a sequence v0, v1, . . . , vk of vertices, that are linked together with an
associated sequence of edges, (0, 1), (1, 2), . . . , (k−1, k). A walk is a path if all the vertices
are distinct, and if vi = vj for some i, j, we have a cycle. For instance, the vertices a,b,d
in �gure 2.1 and �gure 2.2 create a cycle. A graph without a cycle is called acyclic. As
in Bertsimas and Tsitsiklis [3], we allow a cycle to consist of only two distinct vertices.
A walk, path or cycle is called directed if it contains only forward edges.

We say that a graph G = (V,E) is connected if there is a path connecting every pair
of vertices. For instance, both �gure 2.2 and �gure 2.3 are examples of graphs that are
connected, while the graph in �gure 2.1 is disconnected. If the graph G = (V,E) is both
connected and acyclic, then we say that the graph G is a tree, see �gure 2.3.

De�nition 2.1. (Spanning Tree) Given a directed graph G = (V,E). A spanning tree
T = (V,E ′) is a connected subgraph of G with every vertex of the original graph, where
T does not contain a cycle.

2.2 Linear Programming and Simplex Method

A linear programming (LP) problem is an optimisation problem, where both the objective
function and the constrains are linear functions. In addition, there is often a set of non-
negativity restrictions on the decision variables. A general linear programming problem
with n decision variables xj and m constraints can be written as
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maximize
n∑
j=1

cjxj

s.t
n∑
j=1

aijxj ≤ bi i = 1, . . . ,m (2.1)

xj ≥ 0, j = 1, . . . , n.

We should note that a linear program can be formulated in several ways. The problem
can be written with both equality and inequality constraints, and the variables can be
non-positive, non-negative or free (non-restricted). Very often it will be practical to
represent the LP problem as a dictionary:

ξ =
n∑
j=1

cjxj

wi = bi −
n∑
j=1

aijxj i = 1, . . . ,m (2.2)

In a dictionary, the variables on the left side of the constraints are called basic variables,
while those on the right side are called non-basic variables. The variables, wi, are called
slack variables or reduced costs, and represent the di�erence between the right-hand side
and left-hand side in (2.1). The slack variables are by de�nition non-negative. Very
often it is convenient to use the same notation for the slack and the decision variables.
Therefore we often add them to the end of the list of x-variables:

(x1, x2, . . . , xn, w1, w2, . . . , wm) = (x1, x2, . . . , xn, xn+1, xn+2, . . . , xn+m)

We say that a solution {xj}nj=0 is feasible if all variables x0, x1, . . . , xn satis�es the con-
straints in (2.1). The set of all feasible points will constitute a convex region, which has
a nice graphical representation. Each corner in the feasible region is called an extreme
point. An extreme point is formed by the intersection of the lines corresponding to dif-
ferent constraints, and it cannot be a convex combination of two other feasible points.
It can even be shown that every linear program always has an extreme point solution as
one of its optimal solutions.

De�nition 2.2. (Extreme point) Let P be a polyhedron. A vector x ∈ P is an extreme
point of P if we cannot �nd two vectors y, z ∈ P , both di�erent from x, and a scalar
λ ∈ [0, 1], such that x = λy + (1− λ)z.

2.2.1 Duality theory

Linear programs come in primal/dual pairs. The two problems are closely connected,
and each constraint in the primal has an associated variable in the dual. In the same way
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will each variable in the primal have an associated constraint in the dual. This gives us
the dual problem:

minimize
m∑
i=1

biyi

s.t
m∑
i=1

yiaij ≥ cj j = 1, . . . , n (2.3)

yi ≥ 0, i = 1, . . . ,m

It can be shown that a feasible solution for one of these two, will give a bound on the
optimal objective function value for the other. This result is known as the Weak Duality
Theorem (see for instance page 147 in [3] for proof):

Theorem 2.3 (Weak duality theorem). If (x1, x2, . . . , xn) is feasible for the primal and
(y1, y2, . . . , ym) is feasible for the dual, then∑

j

cjxj ≤
∑
i

biyi

The weak duality theorem has a number of consequences:

• If the primal problem has an unbounded solution, the dual problem is infeasible.

• If the dual problem has an unbounded solution, the primal problem is infeasible.

• Any feasible solution to a primal LP problem is a lower bound of the optimal value
for the dual.

• Any feasible solution to a dual LP problem is an upper bound of the optimal value
for the primal.

In fact, for linear programming there is never a gap between the primal optimal and the
dual optimal objective value. This is usually referred to as the Strong Duality Theorem
(see page 148-149 in [3] for proof):

Theorem 2.4 (Strong duality theorem). If the primal problem has an optimal solution,

x∗ = (x∗1, x
∗
2, . . . , x

∗
n),

then the dual also has an optimal solution,

y∗ = (y∗1, t
∗
2, . . . , y

∗
m),

such that ∑
j

cjx
∗
j =

∑
i

biy
∗
i .

Another important result from the duality theory, is the Complementary Slackness Theo-
rem. This result gives us an important relation between the primal and the dual problem.
For proof, se page 67 in [14].
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Theorem 2.5 (Complementary Slackness Theorem). Let x = (x1, x2, . . . , xn) be primal
feasible, and y = (y1, y2, . . . , ym) be dual feasible. Let (w1, w2, . . . , wm) denote the corre-
sponding primal slack variables and z1, z2, . . . , zn denote the dual slack variables. Then x
and y are optimal for their respective problems if and only if

xjzj = 0, for j = 1, 2, . . . , n

wiyi = 0, for i = 1, 2, . . . ,m

2.2.2 Simplex method

The simplex method, developed by Dantzig in 1947, use the extreme point property to
�nd an optimal solution. It is a well-known method and a widely used tool for solving
LP problems. Here we will only give a brief outline and resent the basic ideas. For more
details, we refer to appendix C in [1], chapter 3 in [3] or chapter 2�4 in [14].

Algorithm 1 Simplex method

Phase I:
Step 1: Find a feasible point, X, or declare the problem infeasible.

Phase II:
Step 2: Check for optimality. If current X is optimal, STOP.
Step 3: Pivot step. Return to step 2.

The simplex method is an iterative process, starting at a feasible point. After testing
the optimality condition (is the solution both primal and dual feasible), it either stops or
continues. If the solution does not ful�l the optimality criteria, the simplex method will
perform an operation known as a pivot. A pivot means that a basic variable is replaced
by a non-basic variable. Doing this, will give us a new solution with an objective value
greater or equal to the initial one. When iterating we are moving from one dictionary
to another. Since local optimality implies global optimality in linear programming, we
do not need to check all possible solution, we will only inspect the extreme points. The
simplex method will check all the adjacent extreme points and choose one of them as the
next extreme point solution. This step is repeated until the current solution has the most
desirable objective value compared to the adjacent points.

A �nal note to linear programs is that the simplex method will terminate with one of the
following outcomes:

1. The problem has no feasible solution.

2. The problem has a feasible solution, but no optimal solution. The problem is
unbounded, i.e. the optimal value is −∞ (for minimization problems), or +∞ (for
maximization problems).

3. The problem is feasible and bounded, so the simplex method terminates with an
optimal solution.

9



2.3 Network �ow problems

The network �ow problem is a special case of linear programming, and are among the most
frequently solved linear programming problems. The problems are de�ned on graphs, so
in this section we will use the theory from section 2.1.

2.3.1 Formulation of the network �ow problem

A network is a directed graph where we have added some additional data. The added
information is usually numerical data such as the external supply to each vertex i ∈ V
and cost per unit of �ow along edge (i, j). Typically, there will be some vertices where
�ow can enter the network, and some where the �ow can leave. For each i ∈ V , we let bi
denote the amount of material vertex i supply. We will use the convention that negative
supply represent a demand. We say that vertex i is a source if bi > 0, and vertex i is a
sink if bi < 0. If bi = 0 we say that i is a transshipment vertex. xi,j will represent the
�ow from vertex i to vertex j. We will impose the following conditions on the �ow along
the edges: ∑

j: (k,j)∈E

xk,j −
∑

i: (i,k)∈E

xi,k = bk, k ∈ V (2.4)

0 ≤ xi,j ≤ ui,j, (i, j) ∈ E (2.5)

Equation (2.4) states that the amount of �ow into a vertex must be equal to the total
�ow out of the same vertex. If we summarize both sides of this equation over all i ∈ V ,
we obtain

∑
i

bi = 0. This means that the total demand equals the total supply in the

network.

Equation (2.5) gives us the restrictions on a �ow along an edge in the network. The �ow
must be non-negative and it cannot exceed the capacity ui,j of the edge. In this thesis
we will assume that ui,j =∞ for all (i, j) ∈ E, meaning that the edges is uncapacitated.

2.3.2 Special cases of the network �ow problem

The network theory provides a set of techniques for analysing graphs. In this section we
will look at two special cases of the network �ow problem, the shortest path problem and
the minimum cost network �ow problem.

Shortest path problem

Given a weighted graph G = (V,E) with edge-cost ci,j, we de�ne the length of a directed
path, p, as the sum of the costs of all edges on the path:

w(p) =
∑

(i,j)∈p

ci,j.
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Then the length of the shortest path is given by:

l(u, v) =

{
min
p∈P

w(p), where P is the set of all paths from u to v

∞, else

This problem is very common in practice and it is often necessary to solve a shortest
path problem before one can start to solve other and more advanced algorithms. There
are several variations of the shortest path problem, but in this thesis we will only meet
single-source shortest problem. The most important algorithms for solving this problems
are Dijkstra's method (algorithm 2) and the Bellman-Ford algorithm (algorithm 3). Both
algorithms are classi�ed as label-setting algorithms. Of these two, Dijkstra is the most
e�cient one when it is implemented good, but it has a drawback since it does not work
for graphs with negative weighted edges.

Algorithm 2 Dijkstra's Algorithm

Input: Directed graph G = (V,E), Edgecost ci,j ≥ 0 and a root vertex r
for every vertex v

yv :=∞;
parent[v] := empty;

end for
yr = 0;
Q := the set of all vertices v in G
while Q 6= ∅ do
u := v ∈ Q s.t. yu is minimized
Q = Q\u
if yu =∞ then
break;

end if
for every neighbor v of u do
if yv > yu + cu,v then
yv = yu + cu,v
parent[v] = u

end if
end for

end while
return y

Minimum cost network �ow

Another important problem in the study of networks is the minimum cost �ow problem.
Here we want to minimize the total cost of sending �ow from the supply vertices to meet
the demand at the sinks. The general minimum cost �ow problem can be stated as:

11



Algorithm 3 Bellman-Ford Algorithm

Input: Directed graph G = (V,E), Edgecost ci,j and a root vertex r
for every vertex v

yv =∞;
end for
yr = 0;
for i =| V | −1 do
for every edge (u,v) in E do
if yv > yu + cu,v then
yv = yu + cu,v
parent[v] = u

end if
end for

end for
for every edge (u,v) in E do
if yv > yu + cu,v then
return Negative cycle

end if
end for

minimize
∑

(i,j)∈E

ci,jxi,j

s.t
∑

j:(k,j)∈E

xk,j −
∑

i:(i,k)∈E

xi,k = bk, k ∈ V (2.6)

xi,j ≥ 0, (i, j) ∈ E

We say that a solution X = {xi,j | (i, j) ∈ E} is primal feasible if it satis�es all constraints
in (2.6).

The minimum cost �ow problem is one of the most fundamental of all network �ow prob-
lems, and it has been studied extensively in the literature. There are several algorithms
for solving this problem, see [1, 10] for detailed descriptions. In this thesis we will use
a linear programming approach for solving the minimum cost �ow problem. This ap-
proach and some important concepts connected to the network simplex algorithm will be
presented in the next section.

As we noted in section 2.2, we can associate another related problem to every LP problem.
For the minimum cost �ow problem, the associated dual problem is:

maximize
∑
i∈V

biyi

s.t yj − yi + zij = ci,j, (i, j) ∈ E (2.7)

zi,j ≥ 0, (i, j) ∈ E (2.8)
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Note that (2.7) and (2.8) can be rewritten as

yj − yi ≤ ci,j, (i, j) ∈ E (2.9)

We say that a solution Y = {yi | i ∈ V } is dual feasible if it satis�es all constraints in
(2.9).

2.3.3 Network Simplex Algorithm

Since the minimum cost �ow problem is a special class of linear programs, we could use
the simplex method to solve it. However, the general simplex method does not take
advantage of the underlying network structure. Therefore we will use a method that
interpret the core concepts of the simplex method, and exploit the network structure.
The method maintains a feasible spanning tree structure at each iteration and moves
from one feasible solution to another feasible solution. The essential steps are given in
Algorithm 4.

De�nition 2.6 (Tree solution). A �ow vector X is called tree solution if it can be
constructed by the following procedure:

1. Find a set T ∈ E with n− 1 edges that form a spanning tree

2. Let xi,j = 0 for all (i, j) /∈ T .

3. Use the �ow balance equations to determine the �ow variables xi,j for (i, j) ∈ T .

A tree solution is called a feasible tree solution if it also satis�es X̄ ≥ 0.

In the section about linear programming (section 2.2), we talked about basic variables.
In a network problem we will also refer to some variables as basic. We say that a variable
xi,j is in the basis if the corresponding edge is in the tree solution.

Theorem 2.7. A �ow vector X is a basic solution if and only if it is a tree solution.

For proof, see page 283 in [3].
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Algorithm 4 Network Simplex

Input: G=(V,E), Edgecost ci,j and Vertex demand bi
Require:

∑
i bi = 0

Find an initial tree
Compute initial �ow
Check for optimality (xij ≥ 0, zij ≥ 0).
if Optimal then
Return

∑
(i,j)∈E

cijxij

end if
while zij < 0 for some (i, j) ∈ E do
primal pivots due to the Primal Network Simplex Algorithm. Here we maintain and
keep improving a primal feasible solution.

end while
while xij < 0 for some (i, j) ∈ E do
dual pivots due to the Dual Network Simplex Algorithm. Here the dual variables
are updated to increase the value of the dual objective, while reduce the infeasibility
of the complementary primal solution.

end while

Primal network simplex

The primal network simplex algorithm is used when the tree solution is primal feasible,
but not dual feasible. The basic idea behind this method, is to pick an edge that is dual
infeasible (i.e. zi,j < 0) and let it enter the tree. Due to complementary slackness, zi,j
will be increased to 0 and the edge (i, j) will become basic. When we let an edge enter
a spanning tree, we will create a cycle, so to remain a tree solution, we have to remove
another edge. The leaving edge is chosen from the set of edges in cycle that are oriented
in the reverse direction as the entering edge. By repeating this procedure, we will move
from one primal feasible solution to another primal feasible solution. The primal network
simplex method can be summarized as:

Algorithm 5 Primal Network Simplex

while zi,j < 0 for some edge (i, j) ∈ E do
• choose the edge with the smallest dual slack variable min zi,j, (i, j) ∈ E
• Let the edge (i, j) with the smallest dual slack enter the tree. With this edge

added, there must be a cycle consisting of the entering edge and some of the
other tree edges.

• To remain a tree solution, we must remove one edge. The leaving edge is
chosen from those edges on the cycle that go in the opposite direction from
the entering edge. If there are more than one edge in the cycle pointing in the
opposite direction, choose the one that have the smallest �ow value.

end while
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Dual network simplex

The dual network simplex algorithm is used when the tree solution is dual feasible, but not
primal feasible. The basic idea behind this approach is to pick a tree edge that is primal
infeasible and let it leave the spanning tree and become non-basic. By the de�nition of a
tree solution, the �ow on this edge will increase to 0, i.e. become feasible. This operation
will split our solution into two subtrees. To maintain a spanning tree solution, we want
to �nd an entering edge that will bridge the two subtrees into a spanning tree. Since
we want the �ow on the leaving edge to increase, we need to �nd an entering edge that
bridge in the opposite direction from the leaving edge. The dual network simplex method
can be summarized as:

Algorithm 6 Dual Network Simplex

while xi,j < 0 for some edge (i, j) ∈ E do
• choose the edge (i, j) with the most negative �ow to leave the tree.
• Let (i, j) be the leaving edge. With this edge removed, our solution is now

split into two subtrees.
• To remain a tree solution, we must bridge these two subtrees. The entering

edge must bridge in the opposite direction to the leaving edge. If there are more
than one edge to choose between, choose the one with smallest dual slack.

end while
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Chapter 3

Scheduling and stability

Scheduling is a decision-making process that is concerned with the allocation of one or
multiple resources over a time period. There are a wide variety of situations in which
schedules or plans are necessary, or at least useful, for example transportation schedules
such as bus schedules. Scheduling theory can be described by the type of scheduling
problems or by the methods used to �nd solutions. Today, there are a number of ways to
attack these problems, and we usually divide the methods into two di�erent categories,
static and dynamic. Static, or o�-line approaches assume that all information about
the scheduling problem is known in advance, and does not change as the schedule is
being computed or carried out. Dynamic or real-time approaches o�er more �exibility
as the scheduling take place as we go along, and we have the opportunity to revise and
recompute the schedule. For both categories, the main objectives have been connected to
makespan, tardiness, earliness and throughput, but recently new measures connected to
the rescheduling process and the relationship between the new and the previous schedule
have been developed.

In this chapter we will �rst summarize some questions that arise during a scheduling
process, before we look more into one of the new measures, stability. In section 3.2 we
will review some literature, particularly related to stability in scheduling and we end
this chapter with section 3.2.2, where we de�ne stability and generate stability distance
functions that will be used in the mathematical model.

3.1 Scheduling

The airport environment is highly dynamic, and the available information are rapidly up-
dated. In this section we will outline some of the questions that arise during a scheduling
process.
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How to schedule/reschedule?

The �rst question determines the way in which schedules are generated and updated.
There are four related issues: scheduling scheme, scheduling horizon, type of response
and performance metric.

How to reschedule

Scheduling horizonScheduling scheme Type of response Performance metric

Figure 3.1: How to reschedule

The �rst issue is what approach we would like to use, i.e. do we want a static (o�-line) or
dynamic (on-line) approach. The second concern is the amount of data used during the
schedule generation process. We often divide this into two groups: full scheduling, where
all available information is used and partial scheduling, where only near-future informa-
tion is used. The next issue is connected to how the process should react to changes. One
approach is to do nothing, or one can perform a rescheduling. Last, we should decide on
which performance metric to use. Traditionally, the classical performance measures (e.g.
makespan and tardiness) have been preferred.

When to reschedule?

An initial schedule is the �rst schedule generated, often before the scheduling horizon
begin. Unexpected disruptions and random events will disturb the system and generate
a need to revise the schedule. The question about when to reschedule has to do with
the timing and frequency of scheduling decisions, and the answer to this question will
determine how fast the system will respond to disturbances.

When to reschedule

Event drivenPeriodic Adaptive

Figure 3.2: When to reschedule

There are several alternative ways to decide on the timing of scheduling decisions. The
�rst alternative is to reschedule periodically, with either a constant or variable period
length. Another approach is to revise the schedule after each major event change. A
third way is to revise when a scheduling decision deviate more than a threshold form the
original schedule.
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De�nition 3.1 (Realized schedule). The schedule which is actually executed is called
the realized schedule.

3.2 Stability

If you look up the word "stability" in a dictionary, you will �nd that it means that
something is stable and resistant to change. Unfortunately, it does not exist a common
de�nition of stability when it comes to scheduling, and traditionally, it has not been given
a very high priority either. Stability is therefore considered as a relative new objective
when it comes to scheduling, and is connected to the impact of disruptions induced by
moving jobs and activities within the schedule. The distance or deviation between two
schedules will be de�ned by a distance function. A schedule who does not deviate "much"
from an earlier schedule, is called stable. As will be seen in the next subsection, when
discussed in papers, stability has been concerned with the di�erence between the initial
and the realized schedule. In this thesis we will mainly focus on the change in each
rescheduling step, but we will also discuss the trend of change.

3.2.1 Stability in literature

Stability analysis of optimisation problems are motivated by the fact that the input data
usually are given with some errors or not su�cient information. It is a relatively new
performance measure, and has therefore not been given a major role earlier. However,
the disturbance of moving jobs have been discussed under di�erent names, e.g. "solution
stability", "plan stability", "schedule stability" and "sensitivity". In recent years, the
topic have started to attain attention from the research community, and there have been
discussions about how to measure it and why. For instance, in Maria Fox et.al. [6] it is
stated that preserving plan stability will reduce the cognitive load on humans working
after the plan, and that plan stability will ensure coherence and constancy of behaviour,
which in turn will lead to less stress.

One of the earlier studies in this area is by Wu et al. [15]. In this paper they consider
a single-machine rescheduling problem with machine disruption. Their objectives are to
minimize the schedule makespan, and at the same time achieve a schedule with high
schedule stability. For stability, the authors consider two di�erent performance criteria.
The �rst is deviation with respect to job starting times and the second is a measure of
sequence di�erence between two schedules.

In another study, Clark and Walker [4] consider nurse rescheduling with shift preferences
and minimal disruptions. When it comes to stability, the authors consider two di�erent
approaches. The �rst approach is to minimize the number of changes, reasoning that
fewer changes cause less disruption. In the second approach, each change is given a
penalty and they want to minimize the sum of these penalties, reasoning that di�erent
types of change will cause di�erent amount of disruption. Furthermore, there is a small
discussion related to fairness among shift changes among the nurses. In addition, they
suggest further research on the time of disturbance [4, page 161]:
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If there is frequent rescheduling then maybe penalties should be based on how
far into the future a change is. For example, with a 4-week planning horizon,
a change at the end of the 4th week may be less problematic than the same
change occurring within the next few days. In fact, detailed scheduling of
later weeks could be a waste of e�ort if this part of the schedule is never
actually implemented.

A penalty approach is also presented in a paper by Petcu and Faltings [11]. They propose
a general notation of solution stability, based on the cost of change from an already
implemented solution to the new one. They argue that the number of changes between
two solutions is irrelevant, and what matters is the total cost these changes induce.
In this process they identify two kinds of commitments: soft commitments and hard
commitments. Soft commitments can be revised and changed if the gain of changing is
greater than the cost one has to pay for changing the current assignment to the new
one. Hard commitments model irreversible processes and are impossible to undo (cost
of changing is in�nite). For uncommitted variables, the cost of changing the current
assignment is 0.

When it comes to ATM-optimisation, James Adam David Atkin is one of the pioneers.
In his PhD thesis from 2008 he argues for sequence stability [2, page 105]:

There are often cases where there are multiple sequences with very similar
costs. In this case, it is better to favour a previously used sequence rather
than allow sequence changes that will have little bene�t. This is especially
important if there is some uncertainty in the data used to make the decisions
as small perceived bene�ts may be purely down to data errors.

He also argues for penalty costs [2, page 170]:

Not all change has the same cost. For example, the early part of the sequence
is important as these are usually the aircraft that are already within the
holding area and under the control of the runway controller. These are the
only aircraft which would have already been given instructions. It is important
that at least the early part of the sequence is stable over time, rather than
constantly �uctuating between wildly di�erent sequences of similar cost.

In practical all papers, stability is considered as a characteristic that re�ects the degree
the schedule information changes over time, but it does not exist a common de�nition.
It usually refers to the relationship between two solutions and the discussion is often
limited to the phase of the algorithm, where an initial solution has already been found
and additional calculations are being performed. To end this section, here are some of
the performance measures used in literature to de�ne the distance function to measure
the distance between two solutions:

• The number of variables with changed value

• The percent of recalculations required

• The percent of variables that has changed value

• The number of perturbations minus the number of input permutations
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• The total di�erence between the completion (or starting) times in the two solutions

• The average di�erence between the completion (or starting) times in the two solu-
tions

3.2.2 De�nition of stability

In this thesis we will address the problem of rescheduling after a disruption has occurred.
A disruption could be that a �ight is delayed or even cancelled, a runway could be closed
or a new �ight need to be added to the schedule. Due to safety reasons, any of these
events will provoke the need of revising the schedule. We will therefore use a reactive
approach, where the rescheduling process is event driven to maintain a feasible and safe
schedule.

While the �ights are still at the stand, there is a great deal of �exibility in the sequence.
However, as fast as the aircraft has left the gate, the resequencing is limited to the holding
areas and usage of multiple runway entrances. Therefore, the early part of the sequence
is especially important since this part of the schedule contains aircraft that have already
started and have been given instructions. Our scheduling model, which will be presented
in chapter 4, will capture sequence changes that are not possible due to the airport
structure and resource limitations. This will be illustrated by an example in section 5.5.
Nonetheless, any resequencing of aircraft will increase the workload for the controllers.
For this reason, we would like the stability objective to capture the performance of the
controllers and what kind of changes they are capable of communicating in short time.

For stability we will use two distinct measures, one connected to time and another con-
nected to sequence. We will measure the schedule change, using the previously calculated
schedule as a baseline.

Time stability

The discussion above brings us back to our problem, and it is time to de�ne our �rst
stability measure. We say that a schedule, si, is absolute time stable if the planned
activities in schedule si are scheduled to the same time as in the previous plan, si. This
gives us a way to measure time stability :

De�nition 3.2 (Time stability distance function). Assume we have a series of schedules,
s0, s1 . . . si, where s0 is the initial schedule. Let tfj be the time �ight f enter airport

resource j in schedule si, and let τ fj be time �ight f enter resource j schedule si−1. Let

ζfj = max(0, tfj − τ
f
j ) and εfj = min(0, tfj − τ

f
j ). The distance function for time stability is

given by ∑
f∈F

∑
j∈P f

S

bεfj ε
f
j + bζfj ζ

f
j ,

where bεfj and bζfj is the costs of deviate from the previous value and P f
S the set of resources

where we want to measure stability for �ight f .
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De�nition 3.3 (Time stable). Assume we have a series of schedules, s0, s1 . . . si, where
s0 is the initial schedule. Given the time stability distance function, we say that si is
time stable if the time deviation cost between the planned �ight activities in plan si and
si−1 are within a given threshold, T . That is∑

f∈F

∑
j∈P f

S

bεfj ε
f
j + bζfj ζ

f
j ≤ T

Sequence stability

Only measuring time deviation may re�ect the changes in the sequence, but a time
change does not necessarily mean that the sequence has changed. Since some of the
communication between the controllers and the pilots involve information about other
aircraft, the workload for the controllers may also increase if there are sequence changes.

When measuring sequence changes, there are two main approaches:

• Absolute sequence position

• Relative sequence position

In the �rst approach, the importance is connected to the actual position in the sequence
(e.g.. �ight f is third in line), while the second approach emphasize the relative position
(e.g. �ight g is behind �ight f). In communication between the controllers and the
pilots, information about the sequence is conditional and we will therefore use a relative
sequence positioning approach.

When measuring sequence stability on the runway, we will look at two following schedules,
si, si−1 and count the number of �ights that has a di�erent leading �ight in the two
schedules. For this we will use the Hamming distance H I.

De�nition 3.4 (Sequence stability distance function). Assume we have a series of sched-
ules, s0, s1 . . . si, where s0 is the initial schedule. For each schedule, there is given a
sequence vector X, where

xi,j =

{
1, �ight i is the leading �ight of j

0, else

Then the sequence distance between schedule si−1 and si are given by 1
2
H(X i−1, X i)

De�nition 3.5 (Sequence stable). Assume we have a series of schedules, s0, s1 . . . si,
where s0 is the initial schedule. Given the sequence stability distance function, we say
that si is sequence stable if H(X i−1, X i) ≤ T , where T is a given threshold.

IThe Hamming distance of two vectors of equal dimension is equal to the number of coordinates in
which they di�er
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Chapter 4

The model

In the introduction we described the goal of the project, and using the theory from
chapter 2 and 3, we are now ready to go a little further. We will �rst look at some
airport terminology, before we investigate the formulation of the scheduling problem in
section 4.2. In the two following sections we consider the objectives and the constraints.
In section 4.5 we summarize the variables and present the entire problem as one linear
program. In this section we will also associate a special graph to the problem that will
be used when solving the problem.

4.1 Airport terminology

In this section we will formalize some airport terminology that will be used in this thesis.

The �ight schedule is the driving force at an airport. In the schedule there is information
about all �ight movements during a time horizon H. The air tra�c controllers are
responsible for the movements of airplanes at the airport. The responsibility is divided
between the Clearance controller, which provide �ight plan, an Apron controller, which
give instructions for pushback, a Ground controller, responsible for the taxiing, and a
Runway controller, responsible for the runway.

4.1.1 Airport

An airport is divided into several areas. The airside include all areas used by aircraft.
A gate is where passengers board and disembark a plane, while a stand is more general
and refer to an area where aircraft are parked. A runway is a designated area used for
take-o�s and landings, while taxiways are roads that connect the parking areas and the
runways. A manoeuvring area includes both runways and taxiways.
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Figure 4.1: Airport chart - Arlanda

This thesis examines situations at the airport Stockholm-Arlanda, where a number of
�ights are supposed to arrive and departure. The airport is represented by a directed
graph G = (V,E), where the vertices represent places or airport resources (such as stands
and runway exits), and the edges represent airport segments. The airport resources at
Arlanda are represented by 1025 vertices, and the airport segments by 2522 edges. To
distinguish between the di�erent graphs used in this thesis, we will refer to this graph as
an airport graph.
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Figure 4.2: Resource con�ict

We will divide the resources into two categories, holding points and non-stop points. A
holding point is a resource where aircraft are permitted to stop, while they must drive
straight through a non-stop point. In �gure 4.2, two �ights are approaching the same
resource. Since two distinct �ights cannot occupy this resource simultaneously, we say
that this resource is non-shareable. A schedule where no �ights occupy the same resource
simultaneously is called con�ict-free. For all non-shareable resources, a decision on "who
goes �rst" must be taken. Together, these decisions will give us a sequence of the order in
which the �ights occupy the resource. We will call this sequence a precedence sequence.

4.1.2 Flights

Associated with each �ight f , there is a set of information used by the air tra�c controllers
to handle the �ow of tra�c. This information includes airline, call sign of �ight and size,
but it also contains information about gate allocation and major events for the �ight. A
major event is often called a milestone and is a signi�cant event that occur during the
planning or operation of a �ight. Each milestone has an associated target time, which
represent the time we want the milestone to be achieved.

A pushback is when a �ight f backs up from the gate, and take-o� is the phase when a
�ight goes from the ground to �ying in the air. When a �ight departs from its parking
position, we say that the �ight is o�-block. Flight f is called a departure or a departing
�ight if it starts at a gate, does a pushback and then taxi to a runway and perform a
take-o�. A departing �ight has mainly two milestones connected to its route: o�-block
and take-o�. The target o�-block time (TOBT) is the time when f should be ready to
leave the gate. In the same way, f is given a target take-o� time(TTOT), which is the
time f is desired to take o�. The actual o�-block time(AOBT) and the actual take-o�
time(ATOT) represent the time f actually leaves the gate and the time it takes o�. The
take-o� time is measured at a take-o� point.

If f is an arriving �ight, f is approaching the airport in the air, perform a landing and
continues to a gate. The estimated time of arrival, is a prediction of when �ight f will
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land, and the actual landing time is when f actually touch the ground. This point is
called a touch-down point. Landing is the most common milestone for arriving �ights,
with the possibility of also measuring the in-block time. In-block time is the time the
�ight arrives at its parking position. In that case, the actual in-block time (AIBT) is the
actual time �ight f puts the parking brakes on at a gate.

Airport slots are speci�c time periods when an aircraft is permitted to land or take o�.
The most common time slot is a �fteen minute window, where �ve minutes are before
the target time and ten after. Airport slots are often called target windows.

In this thesis we will only work with one runway, used for both arrivals and departures,
and we will only consider �ights taxiing between the runway and the gate, meaning that
for instance �ights on maintenance will not be considered.

4.2 The problem

Given the airport graph of Arlanda, G = (V,E), and information about a set of �ights
that will arrive and depart during a time horizon H, we want to �nd an initial con�ict-free
schedule that minimize the deviation from the given target times. Further, we will revise
the schedule when the available information is changed and recompute the solution with
the goal of �nding a feasible schedule that maintains stability and minimize the deviation
from the given, and possibly updated, target times.

Flight schedule Assignment

ResultUpdated information Create Routegraph&Sequencing

Route

Figure 4.3: The Scheduling Process

We let F = L ∪D be the set of �ights that will arrive and depart during a time horizon
H, where L is the set of arrival �ights and D is the set of departure �ights. For each �ight
f ∈ F , the arrival or departure gate is assigned, and there is a set of feasible routes, R(f),
from the initial position of f to its destination. A �ight route, rf , is simply a sequence of
vertices, rf = (v0, v1, . . . , vk), where v0, v1, . . . , vk ∈ V . The goal is to compute a schedule
vector tf = (tfv0 , t

f
v1
, . . . , tfvk) for each �ight f , where tfi is the time �ight f start using

resource i. Meaning that tf will contain information about the time which a �ight f ∈ F
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should enter every point of its route rf . These schedule vectors are what we refer to as
a schedule.

For every edge (u, v) ∈ E, and every �ight f ∈ F we let cfu,v be the running time for
f through edge (u, v). We assume that the �ights will traverse the edges in �xed time,
and cannot stop within an edge, meaning that waiting is only allowed at vertices. For
non-shareable resources, a precedence decision need to be taken.

The objective function will include several terms. The �rst objective is to minimize the
deviation from the given target times. The second objective will only be used when
we revise the schedule. This objective is to minimize the deviation from the previous
schedule. Deviation from the previous schedule or from target times will be given a cost.
We will call the total cost given by the objective function for schedule cost.

The problem can be summarized as follows:
Problem: For all �ights f ∈ F , �nd the shortest route in R(f), generate a precedence
sequence at all non-shareable resources, �nd a feasible schedule such that the schedule
cost is minimized.

In order to tackle this problem, we decompose it into four solution steps:

1. Find for all f ∈ F the shortest legal route rf ∈ R(f)

2. For all non-shareable resources, �nd a precedence sequence and associated prece-
dence constraints

3. Compute a con�ict-free solution, respecting the context established in step 1 and 2

4. If new information appear, revise the schedule

In the next section we will �nd an LP model to represent the problem in step 3, given
the context established in Step 1 and 2. Step 1, 2 and 4 are discussed in Chapter 5.

4.2.1 Presentation of a simple airport example

Throughout this chapter, we will use a small and simple airport to illustrate algorithms
and key points. This airport has one runway and two stands, and the runway can only
be traversed from left to right. In total the airport consist of 7 resource-points (see
�gure 4.4):

1. = Runway entry.

Holding point only for departing �ights.

2. = Runway exit.

Holding point only for arriving �ights.

3. = Holding area.

Holding point for arriving and departing �ight
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Figure 4.4: Airport chart - Fictive Airport Example

4. = Crossing point.

Non-stop for arriving and departing �ights

5. = Holding area.

Holding point for arriving and departing �ights

6. = Gate 1.

Holding point for arriving and departing �ights

7. = Gate 2.

Holding point for arriving and departing �ights

We will assume that the running time between two airport resources are �xed and equal
for all �ights f :

cf1,2 = 60

cf2,5 = 10

cf3,1 = 10

cf4,3 = 35

cf5,4 = 25

cf4,6 = 40

cf7,4 = 40
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4.3 Constraints

To be executable, the �nal schedule must satisfy taxi route, precedence and separation
constraints. A schedule satisfying all given constraints are called feasible.

4.3.1 Taxi route constraints

As outlined in the last section, each �ight f ∈ F is assigned a taxi route between the
runway and the gate, and we will see how in section 5.1. Let P f

R be the set of airport
resources �ight f visits on its route. The route takes turning restrictions, one-way streets
and other restrictions into account.

Along this taxi route for a �ight f , there are some holding points (P f
H) and some points

�ight f must drive straight trough (P f
6H) . This gives us two types of constraints, that

every feasible schedule must satisfy, to represent the relation between the entering time
at two following distinct resources:

tfj ≥ tfi + cfi,j, i is a holdning-point (4.1)

tfj = tfi + cfi,j, i is a non-stop point (4.2)

These equations and inequalities will make sure that the airport resources are visited in
order, and that the arriving time at resource j cannot be earlier than the arriving time
at resource i plus the time it takes to drive between them.

Example 4.1. Small (�ctive) airport example with two �ights:
Assume that one �ight will land and another will take o� at the airport illustrated in
�gure 4.4. The scheduling horizon will start at 0. Flight A is the arriving �ight and A
will land on the runway after 65 time units. Then it will follow the route 1−2−5−4−6.
Flight B is a departure and starts taxing from gate 2. Flight B will be ready to start taxing
after 70 time units and it will follow the route 7− 4− 3− 1− 2.

This information can be described by the following constraints:

Flight A:

tA1 + 60 = tA2
tA2 + 10 ≤ tA5
tA5 + 25 ≤ tA4
tA4 + 40 = tA6

Flight B:

tB7 + 40 ≤ tB4
tB4 + 35 = tB3
tB3 + 10 ≤ tB1
tB1 + 60 ≤ tB2

Upper and lower bounds

In the example above, there are also given information about when each �ight enter the
system. Observe therefore that some schedule variables need to satisfy a lower or upper
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bound, Lfi ≤ tfi ≤ U f
i , where L

f
i is the earliest time �ight f can arrive at resource i, and

U f
i the latest.

Example 4.1 (continued) There are two variables that are assigned bounds, tA1 and
tB7 . Flight A will land at vertex 1 65 time units after the time horizon H has begun, giving
us the following constraint:

tA1 = 65.

Associated with �ight B, we have an earliest o�-block time. This time is given as

tB7 ≥ 70 I

4.3.2 Separation Rules

At Arlanda, there are several separation rules that need to be followed, both on the
taxiways and on the runway. In general, these rules are guidelines for safe manoeuvring
at the airport.

Precedence constraint

When two �ights, f, g ∈ F need to access the same resource i, a decision on "who goes
�rst" must be taken. If f uses resource i before g, then tfi ≤ tgi . Likewise if g goes �rst,
then tgi ≤ tfi . Since two �ights can not occupy the same resource at the same time, the
�rst �ight has to leave i before the second �ight can enter. Therefore we need a way
to represent the time a �ight leaves a resource. Let zfi,j be the holding time for �ight f

at resource i, before it continues against the next resource point, j. Then tfi + zfi,j will

represent the time �ight f leaves resource i. Notice that tfi + zfi,j = tfj − c
f
i,j.

In addition we add a proper time separation at i, sf,gi , between the two �ights. We
therefore have the following precedence constraints:

tfi + sf,gi ≤ tgi , when i non-stop point (4.3)

tfj − c
f
i,j + sf,gi ≤ tgi , when i is a holding point for f (4.4)

Vortex and radar separation

In addition to the precedence constraints that applies to every airport resource, there
are some separation rules that are particularly connected to the sequence on the runway.

IRemember that tfi represents the time �ight f enters resource i. For departing �ights we are often
interested in the o�-block time (the time an aircraft departs from its parking position). The o�-block
time can be calculated from the entering time at the next position in the taxiroute. How to compute the
time �ight f leaves resource i is described under Precedence constraints in section 4.3.2
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The total separation between two �ights are decided by a required separation due to
turbulence and a required radar separation.

Di�erent types of aircraft, depending on their weights, generate di�erent amounts of
turbulences, also known as wake turbulence or wake vortices. The turbulence is especially
hazardous in the region behind an aircraft in the take-o� or landing phases of �ight, and
can cause problems for the following aircraft. We therefore require a minimum separation
time between �ights.

The vortex separation time is based on the maximum take-o� mass, and every aircraft is
placed into a category. The general rule is that an aircraft of a lower wake vortex category
must not be allowed to take o� less than two minutes behind an aircraft of higher wake
vortex category. For arriving �ights, the required radar separation is often greater than
the required vortex separation time. The radar separation requires separation between
�ights both horizontal and vertically.

At Arlanda the separation rules in table 4.1 are used, but most of the aircraft in use at
this airport, are categorized in the same size. We have therefore simpli�ed the rules as
given in table 4.2.

D-D: a) If the same departure procedure is used and the speed of
the the trailing �ight is higher

150 sec

b) If a heavier aircraft is in front of a lighter aircraft 120 sec
c) Otherwise 60 - 80 sec

D-A: From the start of the departure roll until the arriving �ight
starts landing

78 sec

A-D: The start of departure roll can start after the runway is free 30-50 sec
A-A: a) If the �rst �ight is heavier than the second 128 sec

b) Otherwise 78 sec

Table 4.1: Vortex Separation table

First Aircraft Second Aircraft Runway Separation
A A 80 seconds
A D 40 seconds
D A 80 seconds
D D 80 seconds

Table 4.2: Generalized Separation Rules

With these rules in mind, the separation on the runway are particularly interesting. There
will be precedence constraints for entering the runway, and there will be safety separations
for take-o� and landing. Depending on the sequence, the separation constraints may vary
a little. Notice that the runway entry is a holding point for departing �ights, while the
runway exit is a holding point for arriving �ights. Based on the precedence constraints
(4.1, 4.2), we get the runway separation constraints in table 4.3.

The separation constraints in table 4.3 are illustrated later in this chapter, see �gure 4.8
- 4.11.
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First Aircraft Second Aircraft Separation constraint

Arrival Arrival t2E ≥ t1T − c1E,T + s1,2E

Arrival Departure t2E ≥ t1T − c1E,T + s1,2E

t2IN ≥ t1IN + s1,2IN

Departure Arrival t2E ≥ t1T + s1,2E

Departure Departure t2E ≥ t1T + s1,2E

t2IN ≥ t1IN+1 − c1IN,IN+1 + s1,2IN

Table 4.3: Separation constraints on the runway

Example 4.1 (continued) In addition to the taxi route constraints we have special
separation constraints. For simplicity, here are two examples that will illustrate both
precedence and safety constraints discussed above:

• Flight B has to pass vertex 4 at least 20 time units before �ight A.

• Flight A has to exit the runway at least 45 time units before �ight B can start driving
on the runway (i.e. leave vertex 1)

Giving us the following constraints:

tB4 + 20 ≤ tA4

tB2 − 60 ≥ tA2 + 45

which can be rewritten as

tB4 − tA4 ≤ −20

tA2 − tB2 ≤ −105

4.4 Objectives

Our objective function will include several terms, divided into two categories: punctuality
and stability.

4.4.1 Punctuality

The �rst goal is to minimize deviation from wanted target times. In aviation the most
important target times are: target o�-block time, target take-o� time and target time of

32



arrival (TTA). We de�ne o�-block, take-o� and landing as milestones and the milestone
position is where we measure the actual time for these events. Usually, the actual o�-
block time will be measured at the gate, the actual take-o� time at a take-o� point and
the actual landing time at a touch-down point. Since the take-o� point and the touch-
down point may vary from �ight to �ight, we have simpli�ed this and the runway exit
will be the point where we measure the actual take-o� time and the actual landing time
will be measured on the runway entry. We de�ne P f

M be the set of milestone positions
for �ight f , and we let T fi denote the target time for �ight f at milestone i. Then the
deviation is given by:

|tfi − T
f
i |, i ∈ P f

M , f ∈ F

Observe that tfi − T
f
i will be negative when �ight f arrives early at i and positive when

f is delayed. There can be reasons to give di�erent penalty cost for deviation, depending
if the �ight is early or late. We therefore de�ne the following variables:

δfi = max(0, tfi − T
f
i ) (4.5) εfi = min(0, tfi − T

f
i ) (4.6)

where δfi represent tardiness and εfi earliness for �ight f at a milestone i. For each time
unit �ight f deviates from target time at i, there is an associated cost. If the �ight arrives
early the cost per time unit is given by bεfi , and if the �ight arrives late the cost per time
unit is given by bδfi . By de�nition δfi ≥ 0 and εfi ≤ 0, which implies that bδfi ≥ 0 and
bεfi ≤ 0. Then, the objective function is given by:

min
∑
f∈F

∑
i∈P f

M

(
δfi b

δf
i + εfi b

εf
i

)
.

The next step is to translate the non-linear expressions for earliness and tardiness into a
set of linear equations:

δfi ≥ tfi − T
f
i (4.7)

εfi ≤ tfi − T
f
i (4.8)

δfi ≥ 0 (4.9)

εfi ≤ 0 (4.10)

Equations (4.9) and (4.10) make sure that at least one of δfi and εfi will be zero, since
(4.5) and (4.6) can not be non-zero simultaneously.

Example 4.1 (continued) In our example, the �nal destination for �ight A is vertex
6, while the �nal destination for �ight B is vertex 2. Each �ight f has a target time T fi
for arriving at resource i. The deviation for �ight A is given by (tA6 − TA6 ), and for �ight
B the deviation is given by (tB2 −TB2 ). With the above de�nition, the deviation constraints
for our airport example will be:
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Flight A:

εA6 ≤ tA6 − TA6
δA6 ≥ tA6 − TA6
εA6 ≤ 0, δA6 ≥ 0

Flight B:

εB2 ≤ tB2 − TB2
δB2 ≥ tB2 − TB2
εB2 ≤ 0, δB2 ≥ 0

In the example above, we are only considering whether there is a deviation from target-
time, and since we are measuring both the tardiness and the earliness, we have the
opportunity to set di�erent cost whether the �ight is early or late. At real airports,
departing �ights are often given a take-o� window or time-slot, in which the �ight is
permitted to take-o�. The window usually starts �ve minutes before the target take-o�
time and ending ten minutes after. If a �ight misses its slot, the �ight is considered
dropped and can be given a new slot later that day. Dropping a �ight will give additional
cost.

In this thesis we will model this by adding an extra cost if a �ight f reaches its milestone
outside the target window. The target window is given by [T fi − l

f
i , T

f
i + ufi ], where l

f
i

and ufi represent the distance between the bounds of the target window and the target
time. If f arrives i later than T fi + ufi , this will be represented by δfui, and if f arrives
earlier than T fi − l

f
i , the extra earliness is represented by εfli. This gives us the following

equations:

δfui = max(0, δfi − u
f
i )

εfli = min(0, lfi + εfi )
(4.11)

In the same way as the deviation equations, these can be transformed into a set of linear
equations:

δfui ≥ (δfi − u
f
i )

εfli ≤ (lfi + εfi )

δfui ≥ 0

εfli ≤ 0

(4.12)

4.4.2 Stability

The second objective, stability, was introduced in chapter 3. We will use two distinct
measures, one connected to time and another connected to the �ight sequence on the
runway.
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Figure 4.5: Sequence stability illustration

Time Stability

Let P f
S be the set of airport resources where we want to measure time stability for �ight

f . By using the de�nitions from section 3.2.2 we get:

ζfi = max
(

0, tfi − τ
f
i

)
, i ∈ P f

S , f ∈ F

εfi = min
(

0, tfi − τ
f
i

)
, i ∈ P f

S , f ∈ F

which can be rewritten as:

ζfi ≥ tfi − τ
f
i , i ∈ P f

S , f ∈ F
εfi ≤ tfi − τ

f
i , i ∈ P f

S , f ∈ F
ζfi ≥ 0, i ∈ P f

S , f ∈ F
εfi ≤ 0, i ∈ P f

S , f ∈ F

(4.13)

Sequence Stability

Sequence stability was also discussed in section 3.2.2. We will measure sequence stability
by counting the number of �ights that have a di�erent leading �ight on the runway after
rescheduling. This measure will not be included in the linear programming model, but
it will be used to distinguish between sequence solutions with very similar costs. Since
each sequence change need to be communicated, it is better to favour a previously used
sequence rather than allow changes with little bene�t.

Example 4.2. Assume we have an initial sequence, s0 as given above the line in �g-
ure 4.5. After an update, we are left with three possibilities s1, s2 and with almost the
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same cost. In the �rst alternative there are only one �ight (black) with a new leading
�ight. The second sequence demands 5 �ights with a new leading �ight, while the last
alternative only demands 2.

4.4.3 Piecewise linear term

So far we have introduced a convex piecewise linear term for stability (as given in �g-
ure 4.6a), and another for punctuality (see �gure 4.6b). In section 4.4.2 we introduced
costs per time unit if �ight f deviated from the target time at a resource i, given by
bδfi and bεfi . If we let bδfi = 0 and bεfi = 0, the term for punctuality will take the form
depicted in �gure 4.6c. This will give us a window, such that if a �ight takes-o� or lands
inside the window, there are no cost. α and β illustrate that earliness and tardiness can
be given di�erent costs (weights).

T fi T fi + ufiT fi − l
f
i

α◦β◦

(a)

T fi T fi + ufiT fi − l
f
i

α◦β◦

(b)

T fi T fi + ufiT fi − l
f
i

α◦β◦

(c)

Figure 4.6: Piecewise linear costs

4.5 Summarizing the linear programming model

To end this chapter we will connect all the constraints and the objectives together and
present the problem given in step 3 as a linear programming problem. We will also
introduce a routegraph, which will be important in the following chapters.
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Notation De�nition
D The set of departing �ights
L The set of landing �ights
F The set of �ights, F = L ∪D

R(f) The set of legal routes for �ight f ∈ F
P f
H The set of holding points �ight f ∈ F visits on its route

P f
6H The set of non-stop points �ight f ∈ F visits on its route, P f

H ∩ P
f
6H = ∅

P f
R The set of airport resources �ight f ∈ F visits on its route, P f

R = P f
H ∪ P

f
6H

P f
M The set of milestones for �ight f ∈ F , P f

M ⊆ P f
R

P f
S The set of stability points for �ight f ∈ F , P f

S ⊆ P f
R

Table 4.4: Set de�nitions

Notation De�nition

cfi,j The driving time for �ight f between resource i and resource j

zfi,j The holding time for �ight f between resource i and resource j

sf,gi The minimum separation between �ight f and g at resource i,
where �ight f goes before �ight g

T fi Target time at resource i for �ight f

lfi , u
f
i Target window bounds, given the target window T fi ∈ [T fi − l

f
i , T

f
i + ufi ]

bδfi The cost per time unit of �ight f being late at resource i

bεfi The cost per time unit of �ight f being early at resource i

bδfui The cost per time unit of �ight f being later than ufi at resource i

bεfli The cost per time unit of �ight f being earlier than lfi at resource i

bζfi The cost per time unit of changing the time �ight f enter resource i

bεfi The cost per time unit of changing the time �ight f enter resource i

τ fi The scheduled time for �ight f to enter resource i in the previous schedule

Table 4.5: De�nitions of parameters, {i, j} ∈ V, {f, g} ∈ F

Notation De�nition

δfi Tardiness for �ight f at resource i

δfui The delay for �ight f at resource i leading to a higher cost
(delay outside target window)

εfi Earliness for �ight f at resource i

εfli The earliness for �ight f at resource i leading to a higher cost
(earliness outside target window)

ζfi Stability tardiness for �ight f at resource i

εfi Stability earliness for �ight f at resource i

tfi The time �ight f enter resource i

Table 4.6: De�nitions of variables, i ∈ V, f ∈ F
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The problem

Throughout this chapter we have presented constraints and objectives as linear equations
and inequalities. If we put all equations together, we get the linear program (4.14).

minimize
∑
f∈F

∑
i∈P f

M

bδfi δ
f
i + bεfi ε

f
i + bδfui δ

f
ui + bεfli ε

f
li +

∑
i∈P f

S

bfiζζ
f
i + bfiεε

f
i


such thatII tfj − t

f
i ≥ cfi,j, i ∈ P f

H , j ∈ P
f
R, f ∈ F

tfj − t
f
i = cfi,j, i ∈ P f

6H , j ∈ P
f
R, f ∈ F

tfi ≥ Lfi , i ∈ P f
R, f ∈ F

−tfi ≥ −U f
i , i ∈ P f

R, f ∈ F
tgi − t

f
i ≥ sf,gi , i ∈ P f

6H , i ∈ P
g
R, f, g ∈ F

tgi − t
f
j ≥ sf,gi − c

f
i,j, i ∈ P f

6H , j ∈ P
f
Ri ∈ P

g
R, f, g ∈ F

δfi − t
f
i ≥ −T fi i ∈ P f

M , f ∈ F
δfui − δ

f
i ≥ −ufi i ∈ P f

M , f ∈ F
tfi − ε

f
i ≥ T fi i ∈ P f

M , f ∈ F
εfi − ε

f
li ≥ lfi i ∈ P f

M , f ∈ F
δfi ≥ 0, i ∈ P f

M , f ∈ F
δfui ≥ 0, i ∈ P f

M , f ∈ F
−εfi ≥ 0, i ∈ P f

M , f ∈ F
−εfli ≥ 0, i ∈ P f

M , f ∈ F
ζfi − t

f
i ≥ −τ fi i ∈ P f

S , f ∈ F
tfi − ε

f
i ≥ τ fi i ∈ P f

S , f ∈ F
ζfi ≥ 0, i ∈ P f

S , f ∈ F
−εfi ≥ 0, i ∈ P f

S , f ∈ F

(4.14)

Notice that almost every constraint in (4.14) take the same form. We want to rewrite
(4.14) into an equivalent form as the dual of the minimum cost �ow problem, since this
will allow us to use tools and properties from the network �ow theory. Therefore, we
want to represent the upper and lower bounds as potential constraints, so we add an
extra variable, r, giving us the following model:

IIassuming �ight f goes before �ight g, and vertex j is visited immediately after vertex i
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minimize
∑
f∈F

∑
i∈P f

M

bδfi δ
f
i + bεfi ε

f
i + bδfui δ

f
ui + bεfli ε

f
li +

∑
i∈P f

S

bfiζζ
f
i + bfiεε

f
i


−
∑
f∈F

 ∑
i∈P f

M∪P
f
S

(bδfi + bεfi + bδfui + bεfli + bfiζ + bfiε)r


such that tfj − t

f
i ≥ cfi,j, i ∈ P f

H , j ∈ P
f
R, f ∈ F

tfj − t
f
i = cfi,j, i ∈ P f

6H , j ∈ P
f
R, f ∈ F

tfi − r ≥ Lfi , i ∈ P f
R, f ∈ F

r − tfi ≥ −U f
i , i ∈ P f

R, f ∈ F
tgi − t

f
i ≥ sf,gi , i ∈ P f

6H , i ∈ P
g
R, f, g ∈ F

tgi − t
f
j ≥ sf,gi − c

f
i,j, i ∈ P f

6H , j ∈ P
f
Ri ∈ P

g
R, f, g ∈ F

δfi − t
f
i ≥ −T fi i ∈ P f

M , f ∈ F
δfui − δ

f
i ≥ −ufi i ∈ P f

M , f ∈ F
tfi − ε

f
i ≥ T fi i ∈ P f

M , f ∈ F
εfi − ε

f
li ≥ lfi i ∈ P f

M , f ∈ F
δfi − r ≥ 0, i ∈ P f

M , f ∈ F
δfui − r ≥ 0, i ∈ P f

M , f ∈ F
r − εfi ≥ 0, i ∈ P f

M , f ∈ F
r − εfli ≥ 0, i ∈ P f

M , f ∈ F
ζfi − t

f
i ≥ −τ fi i ∈ P f

S , f ∈ F
tfi − ε

f
i ≥ τ fi i ∈ P f

S , f ∈ F
ζfi − r ≥ 0, i ∈ P f

S , f ∈ F
r − εfi ≥ 0, i ∈ P f

S , f ∈ F

(4.15)

Programs (4.14) and (4.15) are equivalent. Every feasible solution (t′, δ′, ε′, ζ ′, ε′) in (4.14)
can be transformed into an equal cost feasible solution (t′, δ′, ε′, ζ ′, ε′, r′) in (4.15) by
letting r′ = 0. In the same way, every feasible solution (t′, δ′, ε′, ζ ′, ε′, r′) to (4.15) can be
converted to an equal cost feasible solution (t̄, δ̄, ε̄, ζ̄, ε̄) to (4.14) by letting t̄ = t′− r′, δ̄ =
δ′ − r′, ε̄ = ε′ − r′, ζ̄ = ζ ′ − r′, ε̄ = ε′ − r′.

Notice that all the constraints given in (4.15) are written in the same form, and to write
this problem as the dual of the minimum cost �ow problem, we only need to change all
the signs:
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maximize−
∑
f∈F

∑
i∈P f

M

bδfi δ
f
i + bεfi ε

f
i + bδfui δ

f
ui + bεfli ε

f
li +

∑
i∈P f

S

bfiζζ
f
i + bfiεε

f
i


+
∑
f∈F

 ∑
i∈P f

M∪P
f
S

(bδfi + bεfi + bδfui + bεfli + bfiζ + bfiε)r


such that tfi − t

f
j ≤ −cfi,j, i ∈ P f

H , j ∈ P
f
R, f ∈ F

tfj − t
f
i ≤ cfi,j, i ∈ P f

6H , j ∈ P
f
R, f ∈ F

tfi − t
f
j ≤ −cfi,j, i ∈ P f

6H , j ∈ P
f
R, f ∈ F

r − tfi ≤ −Lfi , i ∈ P f
R, f ∈ F

tfi − r ≤ U f
i , i ∈ P f

R, f ∈ F
tfi − t

g
i ≤ −sf,gi , i ∈ P f

6H , i ∈ P
g
R, f, g ∈ F

tfj − t
g
i ≤ cfi,j − s

f,g
i , i ∈ P f

6H , j ∈ P
f
Ri ∈ P

g
R, f, g ∈ F

tfi − δ
f
i ≤ T fi i ∈ P f

M , f ∈ F
δfi − δ

f
ui ≤ ufi i ∈ P f

M , f ∈ F
εfi − t

f
i ≤ −T fi i ∈ P f

M , f ∈ F
εfli − ε

f
i ≤ −lfi i ∈ P f

M , f ∈ F
r − δfi ≤ 0, i ∈ P f

M , f ∈ F
r − δfui ≤ 0, i ∈ P f

M , f ∈ F
εfi − r ≤ 0, i ∈ P f

M , f ∈ F
εfli − r ≤ 0, i ∈ P f

M , f ∈ F
tfi − ζ

f
i ≤ τ fi i ∈ P f

S , f ∈ F
εfi − t

f
i ≤ −τ fi i ∈ P f

S , f ∈ F
r − ζfi ≤ 0, i ∈ P f

S , f ∈ F
εfi − r ≤ 0, i ∈ P f

S , f ∈ F

(4.16)

4.5.1 Constructing a routegraph G = (V ,E )

Next, we associate in a standard fashion �ow network G = (V ,E ) with the linear program
(4.16) above, which we have constructed as the dual of a minimum cost �ow problem. In
section 2.3 we de�ned this problem as follows:

maximize
∑
i∈V

biyi

s.t yj − yi ≤ ci,j, (i, j) ∈ E

We also noted that network �ow problems are de�ned on graphs, where ci,j is the edge
cost of the edge (i, j) and bi is the amount vertex i supply. Therefore, each variable in
(4.16) gets associated a vertex v. With each vertex we associate a supply, which equals
the coe�cient of the associated variable in the objective function, giving us the following
cases:

• Original vertices: v is associated with variable tfi . There is no associated coe�cient
in the objective function, so its supply will be 0.
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• Delay vertices: v is associated with the lateness variable δfi and the associated
coe�cient is bδfi .

• Early vertices: v is associated with the earliness variable εfi and the associated
coe�cient is bεfi .

• Additional delay vertices: v is associated with the lateness variable δfui and the
associated coe�cient bδfui .

• Additional early vertices: v is associated with the earliness variable εfli and the

associated coe�cient bεfli .

• Tardiness stability vertices: v is associated with the stability lateness variable ζfi
and the associated coe�cient is bζfi .

• Earliness stability vertices: v is associated with the stability earliness variable εfi
and the associated coe�cient is bεfi .

• Root vertex: v is associated with the variable r, its supply will be

−

∑
i∈P f

M

bδfi +
∑
i∈P f

M

bεfi +
∑
i∈P f

M

bδfui +
∑
i∈P f

M

bεfli +
∑
i∈P f

S

bζfi +
∑
i∈P f

S

bεfi


In the same way, for each constraint v − u ≤ C in (4.16) we associate a directed edge
(u, v) ∈ E with edge cost C. The edges in the network can be classi�ed as follows:

• Original edges: For each constraint tfj − t
f
i ≤ −c

f
i,j, let u be the vertex representing

�ight f entering resource i and v be the vertex representing �ight f entering resource
j. Then there is an edge (u, v) in E with cost −cfi,j. Similar, for t

f
i − t

f
j ≤ cfi,j there

is an edge (v, u) with edge cost cfi,j.

• Separation edges: For each constraint tfi −t
g
i ≤ −s

f,g
i let u be the vertex representing

�ight f entering resource i and v be the vertex representing �ight g entering resource
i. Then there is an edge (v, u) in E with cost −sf,gi . When i is a holding vertex for
�ight f , tfj − t

g
i ≤ cfi,j − s

f,g
i will give us an edge from the vertex representing �ight

g entering i to the vertex representing �ight f entering j with edgecost cfi,j − s
f,g
i .

• Delay edges: For each constraint tfi − δfi ≤ T fi we add a delay edge. If u is the
delay vertex associated with the variable δfi , and v is the original vertex associated
with the variable tfi , then there is an edge (u, v) ∈ E with cost T fi , where T

f
i is

the target time for �ight f at point i in the airport graph. For each constraint
δfi − δ

f
ui ≤ ufi there is an edge from the additional delay vertex representing δfui to

the delay vertex representing δfi with edgecost ufi .

• Early edges: For each constraint εfi − t
f
i ≤ −T

f
i we add an early edge. If u is the

early vertex associated with the variable εfi , and v is the original vertex associated
with the variable tfi , then there is an edge (v, u) ∈ E with cost −T fi , where T

f
i

is the target time for �ight f at point i in the airport graph. For each constraint
εfli−ε

f
i ≤ −l

f
i there is an edge from the early vertex representing εfi to the additional

early vertex representing εfli with edgecost −lfi .
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• Lower bound edges: For each constraint r − tfi ≤ −L
f
i we associate u with the

variable tfi and v with r, then there is an edge (u, v) ∈ E with cost −Lfi .

• Upper bound edges: For each constraint tfi −r ≤ U f
i we associate u with the variable

tfi and v with r, then there is an edge (v, u) ∈ E with cost U f
i .

• Late stability edges: For each constraint tfi − ζ
f
i ≤ τ fi we add a late stability edge.

If u is the tardiness stability vertex associated with the variable ζfi , and v is the
original vertex associated with the variable tfi , then there is an edge (u, v) ∈ E with
cost τ fi , where τ

f
i is the time �ight f was calculated to arrive at point i in the last

schedule.

• Early stability edges: For each constraint εfi − t
f
i ≤ −τ

f
i we add an early stability

edge. If u is the earliness stability vertex associated with the variable εfi , and v is
the original vertex associated with the variable tfi , then there is an edge (v, u) ∈ E
with cost −τ fi , where τ

f
i is the time �ight f was calculated to arrive at point i in

the last schedule.

• Positive delay/positive tardiness stability: if u is a delay or tardiness stability vertex
(associated with the variable δfi , δ

f
ui or ζ

f
i ), then there is an edge (u, r) ∈ E with

cost 0.

• Negative early/negative earliness stability: if u is an early or earliness stability
vertex (associated with the variable εfi , ε

f
li or ε

f
i ), then there is an edge (r, u) ∈ E

with cost 0.
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Figure 4.7: Routegraph - Example 4.1
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Routegraph example

Example 4.1 (continued) The complete linear program for this example is given by:

minimize
∑
f∈F

(∑
i∈PD

bfiδδ
f
i + bfiεε

f
i −

∑
i∈PD

(bfiδ + bfiε)r

)

tA2 − tA1 = 60

tA5 − tA2 ≤ 10

tA5 − tA4 ≤ −25

tA6 − tA4 = 40

tA1 − r = 65

εA6 − tA6 ≤ −TA6
tA6 − δA6 ≤ TA6

εA6 − r ≤ 0

r − δA6 ≤ 0

tB4 − tA4 ≤ −20

tB7 − tA4 ≤ −40

tA3 − tB4 = 35

tB3 − tB1 ≤ −10

tB1 − tB2 ≤ −60

r − tB7 ≤ −70

εB2 − tB2 ≤ −TB2
tB2 − δB2 ≤ TB2

εB2 − r ≤ 0

r − δB2 ≤ 0

tA2 − tB2 ≤ −105

Applying the instructions on page 40 will give us the routegraph in �gure 4.7.

Illustration of separation constraints

We are now ready to illustrate the separation constraints on the runway, as given in
table 4.3. As noted in section 4.3.2, the separation constraints will vary depending on the
sequence. Here we will look at two �ight, A and B, where we assume that �ight A will
use the runway before �ight B. In total, we need to visualize four vertices for each �ight:
three representing positions on the runway (runway entry, the second runway position
and runway exit) and the �rst taxiway position after the runway. Some vertices appear in
all four cases (e.g. the runway exit for �ight B), while other only appear in one situation
(e.g. the runway entry for �ight A). To make it easier to compare the four cases, only
the separation edges are illustrated. In addition, only three vertices will represent the
runway.

In �gure 4.8 we look at the separation constraint when there is two arriving �ights after
each other. From table 4.3 this separation is given by tAT − tBE ≤ cAE,T − sA,BE , and is

represented by an edge in the routegraph. This edge has a cost of cE,T − sA,BE . The same
idea lies behind �gure 4.9 - �gure 4.11.

In �gure 4.9 we look at the separation constraints when there is a departing �ight after
an arriving, and in �gure 4.10 when there is a departing �ight before an arriving. The
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�nal �gure (�gure 4.11) represent the separation constrains that is active when there are
two departing �ights after each other. Notice that there are two separation constraints
when the second �ight is a departing �ight.
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Figure 4.8: Runway Separation: Arrival - Arrival
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Figure 4.9: Runway Separation: Arrival - Departure
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Figure 4.10: Runway Separation: Departure - Arrival
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Figure 4.11: Runway Separation: Departure - Departure
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Chapter 5

Algorithm and implementation details

In this chapter we will present some implementation details and prepare for the test runs
in chapter 6. The implementation in this thesis was done using using C#.

In Chapter 4 we outlined four solution steps for our main problem:

1. Find for all f ∈ F the shortest legal route rf ∈ R(f)

2. For all non-shareable resources, �nd a precedence sequence and associated prece-
dence constraints

3. Compute a con�ict-free solution, respecting the context established in step 1 and 2

4. If new information appear, revise the schedule

We will look at the �rst step, the problem of �nding the shortest legal route for a �ight,
in the �rst section. Then we will discuss how to �nd a precedence sequence (step 2) and
how to solve any potential con�icts. In chapter 4 we described the problem in step three
as the dual of the minimum cost �ow problem. In section 5.3 we will focus on �nding
an initial tree solution to this problem. In section 5.4 we will discuss some issues and
approaches related to rescheduling (step 4) and in section 5.5 we look at feasibility and
negative cycles. We will end this chapter presenting the main algorithm for solving the
overall scheduling problem, and discuss the performance.

5.1 Shortest legal route

As discussed earlier, each �ight f ∈ F is assigned a taxi route between the runway and a
gate in the second solution step, see �gure 4.3 at page 26. To be feasible, the taxi route
should take the taxi route procedures into account. These are presented and illustrated
in appendix A.

In order to quickly �nd the shortest feasible route for each �ight, the airport graph
presented in section 4.2 contains information about the direction each segment can be
used. One-way streets are represented with directed segments which can only be traversed
in one direction and undirected segments can be traversed in both directions. In �gure 5.1
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Figure 5.1: Airport graph of the manoeuvring area outside terminal 4

we zoom in on a particular area of the airport graph (�gure 4.1) to get a better view.
This area is a part of the manoeuvring area outside terminal 4 at Arlanda, and gate 42
and 44 are marked with two orange dots in the bottom right corner. Here the undirected
segments are drawn in orange, while the directed segments are drawn as blue arrows.

Using the interpretation that a movement at a directed edge is only permitted from the
start vertex to the end vertex, whereas movements are permitted in both directions at
an undirected edge, any shortest path algorithm can be applied to the airport graph to
�nd the shortest feasible route for a �ight f .

5.2 Non-shareable resources

For most of the airport resources, only one aircraft can use it at time, so a precedence
decision on "who goes �rst" need to be taken. For the experiments we wanted a complete
search algorithm, to guarantee to �nd the bes possible solution. Therefore, a simple
sequencing algorithm we chosen and we enumerate all possible sequences on the runway.
Given a list of �ights that will use an airport resource i, the algorithm given in listings 5.1
will return all possible permutations. This is time-consuming, but by enumerating all
possible precedence sequences, we are guaranteed to �nd an optimal solution to the main
problem.

The idea behind this, was that we want to compare the optimal solution, when only
considering punctuality, against the optimal solutions, when also considering stability.
Using a heuristic, we are to able to �nd good solutions, but we have no guarantee that
we get an optimal solution.

When the number of �ights are high, enumerating all possible solutions is not executable
since the growth rate are factorial.
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An alternative approach to �nding all precedence sequences would be to �nd a solution
that satis�es the taxi route constraints presented in section 4.3.1. Then, search through
the schedule vectors and look for potential con�icts, that is two or more �ights use the
same resource simultaneously. Solve the con�ict by choosing "who goes �rst" after some
given rules, for example a departure goes before an arrival, add a constraint and then
recompute. See section 5.4 for a further discussion of adding constraints.

Listing 5.1: Complete seach algorithm for �nding all possible precedence sequences

/// <summary>
/// This f unc t i on t ake s a l i s t o f i n t e g e r s as input and re turns
/// a l l p o s s i b l e permutat ions .
/// e . g .
/// Input : L i s t wi th i n t e g e r s 1 ,2 and 3
/// Output : A new l i s t wi th e lements : (1 ,2 ,3) , (1 ,3 ,2) ,
/// (2 ,1 ,3) , (2 ,3 ,1) , (3 ,1 ,2)
/// </summary>
public stat ic IEnumerable<List<int>> Permutations ( Lis t<int>l i s t )

{
i f ( l i s t . Count == 1)
{

y i e l d return l i s t ;
y i e l d break ;

}

for ( int index = 0 ; index < l i s t . Count ; ++index )
{

int element = l i s t [ index ] ;
L i s t<int> r e s t = new List<int>( l i s t ) ;
r e s t . RemoveAt( index ) ;

foreach ( var perm in Permutations ( r e s t ) )
{

perm . I n s e r t (0 , element ) ;
y i e l d return perm ;

}
}

}

5.3 Initial tree

After generating a routegraph, as described in section 4.5.1, we want to �nd an initial
spanning tree. There are a number of algorithms available for �nding a tree solution, but
since our problem is given as a dual network simplex problem, we would like to start with
a dual feasible solution.
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5.3.1 Bellman-Ford Steps

The Bellman-Ford algorithm, presented in chapter 2, is a method that computes the
shortest paths from a single root vertex, to all other vertices in the graph. In this section
we will use the same notation and assumption as given in Algorithm 3 at page 12.

De�nition 5.1. A shortest paths tree is a directed subgraph G′ = (V ′, E ′) of G = (V,E),
where V ′ ⊆ V and E ′ ⊆ E, such that

1. V ′ is the set of vertices reachable from a source s in G,

2. G′ form a rooted tree with root s, and

3. for all v ∈ V ′, the unique simple path from s to v in G′ is a shortest path from s to
v in G.

Lemma 5.2. Given a connected graph G = (V,E) with edgecosts ci,j, such that the
Bellman-Ford algorithm terminates with a minimum path length yi < ∞ for all i ∈ V ,
then the associated tree is dual feasible.

Proof. If the Bellman-Ford algorithm terminates with a length yi < ∞ for all vertices
i ∈ V , then yj − yi ≤ ci,j is satis�ed for all (i, j) ∈ E, hence the associated tree is dual
feasible.

The problem is that there are often some vertices in the graph that are not reachable
from the root, and since all lengths are set by default to in�nity in the beginning of the
Bellman-Ford algorithm (Algorithm 3), it will return in�nity as value on the shortest path
between the root and these vertices. In �gure 5.2 at page 52 we see that vertex b and c
are reachable from a, but d and e are not. In this, and in similar cases, the Bellman-Ford
algorithm will not give us an associated spanning tree. However, yj − yi ≤ ci,j is satis�ed
for all vertices reachable from root vertex r. Using Bellman-Ford repeatedly, each time
with a di�erent root vertex and only visiting vertices that have not yet been visited, will
create subtrees G′ of G, and each subtree satisfy yj − yi ≤ ci,j for all i, j ∈ V ′

If we are able to reconnect every subtree G′ of G such that yj−yi ≤ ci,j also is satis�ed in
the cut between each pair of subtrees, then the corresponding tree solution will be dual
feasible.

Theorem 5.3. Given a connected graph G = (V,E) with edgecosts ci,j, the initial dual
solution algorithm (Algorithm 7) will terminate with a dual feasible spanning tree, if such
exist.

Proof. Case 1: all vertices reachable from a root vertex r: If all vertices are
reachable from r, Algorithm 7 equals the Bellman-Ford algorithm, and from Lemma 5.2
we know that this algorithm terminates with a dual feasible spanning tree.
Case 2: not all vertices are reachable from a root vertex r: Let V1 be he vertices
reachable from r and let V2 be the vertices reachable from r′, where r′ is the new root
vertex (the �rst vertex not reachable from r). For simplicity, we assume that V1∪V2 = V .
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Algorithm 7 Initial Dual Solution Algorithm

Input: Connected Directed graph G = (V,E), Edgecost ci,j and a root vertex r
1. for every vertex v

yv =∞;
visitedv = false

end for
go to step 2

2. yr = 0;
let V1 be the vertices reachable from r
for i ∈ V1

�nd shortest path p from r to i using the Bellman-Ford algorithm. The
length of the path is given by yi

end for
go to step 3

3. if V1 = V
return yi, i ∈ V

else
let j be the �rst vertex not visited (visitedj = false), s.t. there is at least
one edge from j to V1, and let V2 be the vertices reachable from j, not yet
visited
r′ = j;
go to step 4

end if
4. yr′ = 0;

for i′ ∈ V2
�nd shortest path yi′ from r′ to i′ using the Bellman-Ford algorithm

end for
∆ = min(cu,v − yv + yu′), u ∈ V2, v ∈ V1
for each i ∈ V2

yi = yi′ −∆;
end for
V1 = V1 ∪ V2
go to step 3
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Figure 5.2: Connected directed graph

Running Bellman-Ford twice will create two subtrees with the property that:

yj − yi ≤ ci,j, i, j ∈ V1

and

yv − yu ≤ cu,v, u, v ∈ V2.

Since G is connected, there is at least one edge in the cut between V1 and V2. Let E
′ ⊂ E

denote the set of these edges. If we can prove that yj − yi ≤ ci,j for (i, j) ∈ E ′, then the
initial dual solution algorithm will terminate with a dual feasible solution.

Depending on the values in the two subtrees, the edges in the cut may lead to the following
equations:

yv − yu = cu,v, u ∈ V2 and v ∈ V1, (5.1)

yv − yu < cu,v, u ∈ V2 and v ∈ V1, (5.2)

yv − yu > cu,v, u ∈ V2 and v ∈ V1. (5.3)

Since yv−yu ≤ cu,v is equivalent to (yv+∆)− (yu+∆) ≤ cu,v, we can adjust the variables
in the second subtree with ∆, and the new variables, y′u = yu + ∆, will still satisfy the
dual feasibility equation for vertices in V2.

Let ∆u = cu,v− yv + yu represent the distance between the left and the right hand side of
the equations above. Then ∆u = 0 for equation 5.1, ∆u > 0 for equation 5.2 and ∆u < 0
for equation 5.3. Let ∆ = min

u
∆u, and update the dual variables in V2 as follows:

y′u = yu + ∆, u ∈ V2.

Then yv − yu ≤ cu,v for (u, v) ∈ E ′, with at least one edge satisfying with equality. If
there are more than one equation at equality, choose one of them to enter the tree.

Remark 1. If there are some vertices that have not been visited after step 4, repeat step
3 and 4. The proof will be analog to what has been proven above.
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Example 5.4. Let G = (V,E) be given as �gure 5.2, with edgecost as given in the graph.
Running Algorithm 7 with a as root vertex, the algorithm will return ya = 0, yb = 3, yc =
−1, and vertex d and e are not visited after step 1. In step 2 we set Rnew = d, giving
yd = 0, ye = 2]. Now, V1 = {a, b, c} and V2 = {d, e}, and in the cut between the two
subsets, we �nd two edges, (d, b) and (d, c). The ∆−variables for the two edges:

• ∆d,b = cd,b − yb + yd = −1− 3− 0 = −4

• ∆d,c = cd,c − yb + yd = 2− (−1)− 0 = 3

This gives us ∆ = −4, so yd = 0−∆ = 4, ye = 2−∆ = 6, such that yc− yd = −1− 4 =
−5 < 2 = cd,c and yb − yd = 3− 4 = −1 = cd,b.

Remark 2. If e had been chosen as the new root vertex instead of d in the example above,
then V1 = {a, b, c} and V2 = {e}. Since there are no edges in the cut between V1 and V2,
we would not be able to connect these subsets in one operation. This could be solved by
creating a third subtree, V3 = {d}, and then connect V1 and V3 �rst. This is why step 3
in Algorithm 7 demands that there is an edge from the root vertex in V2 to a vertex in
V1.

5.4 Rescheduling

Another important question in the scheduling process, is how to reschedule, and this is
the fourth solution step for our main problem. As discussed brie�y in section 3.2.2, any
disruption may provoke the need of revising the initial generated schedule. In this section
we will assume that an initial schedule has been generated, and we will refer to this as the
original schedule or original dual solution. Since the scheduling problem from the thirds
solution step is the dual of the minimum cost �ow problem, there is also an original
primal solution associated with this problem. Here we will look at some disruptions and
how the schedule can be revised to assure that the realized schedule is feasible.

Change a constraint-value

The �rst change we will consider, is when the controller receive updated information about
the �ight movements. If a �ight is delayed from gate, has received a new landing time or
a new target take-o� time, we need to update the right-hand side of the corresponding
constraints in the problem formulation (4.16).

By the way we constructed the routegraph in section 4.5.1, a change of the value of the
right hand side, will result in a change of the edgecost of the corresponding edge in the
routegraph, meaning that the original schedule may not longer be feasible. However, since
the supply at each vertex stays unchanged, the original primal solution is still feasible,
and this solution can be used as an initial primal solution in the rescheduling problem.
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Additional constraints

Another change in the problem formulation is when new information leads to additional
constraints. When we add a new constraint, we also need to add an edge in our route-
graph. Since adding a new edge does not change the supply of any vertex, the original
primal solution will still be primal feasible in the rescheduling problem.

Remove �ight from schedule

When a �ight is cancelled or does not make any manoeuvre during the time horizon H,
it can be removed from the scheduling problem. When we remove a �ight, we simply
remove all vertices and edges corresponding to this �ight. In addition, we might need
to update the supply at the root vertex, r, such that the total supply still sum up to
zero. Changing the supply at r will change the primal problem constraints, but the dual
problem will still maintain the same, so we can use a part of the original dual solution as
the initial solution in the rescheduling problem.

Add �ight to schedule

When a new �ight is added to the schedule, we need to introduce new variables and new
constraints. As in the case where vertices are removed, we may need to update the supply
at the root vertex, r.

The original dual solution, corresponds to a dual feasible tree for this part of the reschedul-
ing problem, and it is not necessary to recompute this part. If we let V1 be the vertices
in this tree, and say that all the new vertices are unvisited, we can use the initial dual
solution algorithm (Algorithm 7), starting at step 3. As proven earlier in this chapter,
the initial dual solution algorithm, terminates with a dual feasible tree solution, which
can be used as an initial solution to our rescheduling problem.

Reorder sequence

In most of the cases discussed above, it is not necessary to reorder the sequence to get a
good solution. However, in some cases a resequencing might give a more e�cient schedule.

Since changing the sequence, de�nitely means that the separation constraint are changed,
we cannot use the original dual solution, since this is no longer feasible. Whether we can
use the original primal solution as an initial solution in the rescheduling problem, will
depend on whether the separation edge we want to remove appear in the optimal solution
tree or not. If the edge does not appear in the tree, the �ow on this edge is zero by the
complementary slackness theorem, and we can remove this edge and still have a tree
solution.

The same is true if the separation edge appear in the optimal tree solution, but have a
�ow equal to zero. Then we can remove this edge and replace it with another edge with
�ow equal to zero, such that we still have a tree solution.
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On the other hand, if the separation edge appear in the optimal solution tree and the
�ow on this edge is greater than zero, we cannot remove this edge and replace it with an
edge in the opposite direction because this will lead to a negative �ow on the new edge,
and this tree will not be primal feasible. In this case we need to compute a new initial
solution.

5.5 Feasibility

From linear programming theory, we know that an LP problem can be either feasible or
infeasible. In this section we will explore when our problem is (dual) infeasible.

Primal \ Dual Optimal Unbounded Infeasible
Optimal X − −

Unbounded − − X
Infeasible − X X

Table 5.1: Feasibility and Unboundedness

5.5.1 Negative cycle

A negative cycle is a directed cycle whose edges sum up to a negative value. If a graph
contains a negative cycle, then the corresponding constraints are inconsistent, and no
feasible solution exist. The problem is infeasible.

Example 5.5. In �gure 5.3 and in �gure 5.4 there are given two examples of a runway
sequence between two arriving �ights at runway 19R at Arlanda. Runway 19R is repre-
sented by 8 vertices (12, 19, 129, 128, 121, 109, 861, 42) in the Arlanda airport graph,
illustrated by a chart in �gure 4.1 at page 24. We let the scheduling horizon begin at
07:00:00, and the �rst �ight, A, has a Target Time of Arrival at 07:22:00 and the second
�ight, B, at 07:25:00. Both �ights follow the same landing procedure, and will use the
same amount of time on the runway. We assume that an arriving �ight can land 1.5
minute before or after the target time. This means that �ight A can land between 1230
and 1410 and �ight B between 1410 and 1590. We are now going to consider two possible
sequences on the runway.

In �gure 5.3 we look at a sequence where �ight B will try to land before �ight A. If we
sum up the edgecosts in the highlighted cycle, we get a negative value of −80, meaning
that this sequence is not allowed. There is no way that �ight B can land before �ight A.

In �gure 5.4 we illustrate that �ight A land before �ight B. Here, there are no negative
cycles, meaning that this sequence is allowed, and �ight A can land before �ight B.

55



0

A 1
2

A 1
9

A 1
2
9

A 1
2
8

A 1
2
1

A 1
0
9

A 8
6
1

A 4
2

A 4
3

B 1
2

B 1
9

B 1
2
9

B 1
2
8

B 1
2
1

B 1
0
9

B 8
6
1

B 4
2

B 4
3

−
12

30

−
15

−
6

−
3

−
6

−
12

−
8

−
14

−
7

15
90

15
6

3
6

12
8

14

14
10

15
6

3
6

12
8

14

−
14

10

−
15

−
6

−
3

−
6

−
12

−
8

−
14

−
7

−
73

Figure 5.3: Negative cycle in Routegraph - Two Planes
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5.6 Main Algorithm

We started this chapter by repeating the four solution steps for our problem. The �rst
step was to �nd the shortest legal route for each �ight, this was discussed in section 5.1.
The second step was to �nd all non-shareable resources and generate precedence sequences
for using these. This was the topic of section 5.2. The third step was to �nd a con�ict-
free solution, respecting the context given from the two �rst steps. This was mainly
discussed in Chapter 4, and we presented an algorithm for �nding an initial solution in
section 5.3. The �nal step, rescheduling, was discussed in section 5.4. Together, they
give Algorithm 8.

Algorithm 8 Main Algorithm

Input: Connected airport graph G = (V,E), �ight list F
1. for all �ight f ∈ F

(a) if not given, assign runway and gate
(b) �nd shortest legal route r∗f ∈ R(f)

end for
2. for all �ight f ∈ F

�nd all non-shareable resources, and generate precedence sequences for using
these. If there are more than one sequence to be tested at a resource, test
one by one

end for
3. Given a route for each �ight f ∈ F and precedence constraints at each non-

shareable resource: create a routegraph G = (V ,E ) using the instuctions on page
40. Note: If a routegraph already has been given, it may be updated according
to the discussion in section 5.4. Then, skip step 4.

4. Find an initial dual solution using the initial dual solution algorithm (Algo-
rithm 7, page 51).

5. Solve the scheduling problem using the network simplex algorithm. If the initial
solution is primal feasible, choose the primal simplex algorithm. If dual feasible,
choose the dual network simplex algorithm.
• If there are more than one sequence to be tested in step 2, repeat step 3 -
4 for each alternative, and choose the one with the best result
• When new information appear, repeat step 1- 5.

5.7 Algorithm performance

In this section we will discuss the performance of Algorithm 8. In computer science, the
usual way to do this is to count the number of steps it takes to complete the problem
and present the result using Big-O-notation.
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5.7.1 Big-O-notation

The Big-O-notation is used to give an upper bound on the asymptotic behaviour of a
function. The Big-O-notation has the following de�nition:

De�nition 5.6 (Big-O-notation). If f(n) = O(g(n)), then there exists constants c,N > 0
such that f(n) ≤ c(n) for all n ≥ N .

When we say that an algorithm is O(g(n)), we mean that the algorithm is a member of
the set O(g(n)). By this we mean that the time it takes for the algorithm to complete
the problem, in worst case, is bounded by this expression g(n), where n is the size of our
input (e.g. the number of edges in a graph).

5.7.2 Performance of the main algorithm

The main algorithm calls on several other algorithms, so the total performance will depend
on how each step are being solved. In this section we will refer both to the Arlanda airport
graph (G = (V,E)) and the routegraph (G = (V ,E )).

Since gate and runway often has been allocated in the �ight schedule, the performance
of the �rst three steps is the sum of �nding the shortest path for each �ight, �nding all
non-shareable resources and constructing the routegraph. The number operations in the
two last steps will depend on the total route length we �nd in the �rst. For �nding all
non-shareable resources, we need to go through the list of resources each �ight will use.
The length of this list is less than |V |, since V also includes delay and early vertices.

As noted earlier in this chapter, any shortest path algorithm can be used for �nding
the shortest legal route for each �ight f ∈ F . In chapter 2 we described two di�erent
algorithms for solving this, Dijkstra and Bellman-Ford algorithm, where Dijkstra is the
fastest one. In fact, we can achieve a running time of O(|V | log(|V |) + |E|)) [5, page 599].

The performance of the Bellman-Ford algorithm depends on the how many times the set
of edges is visited. Its worst case performance is given by O(|V ||E|). If all vertices are
reachable from the root, this will also be the worst case performance of the initial dual
solution algorithm described earlier in this chapter, since the algorithm will return a tree
solution after the �rst two steps.

If not all vertices are reachable from the root vertex, Algorithm 7 will perform the
Bellman-Ford algorithm on multiple disjoint trees. Since the trees are disjoint, the com-
plexity for these steps is still O(|V ||E|). However, step 4 also involves operations for
combining the disjoint trees. δ = min(cu,v − yv + yu) takes 2 additions for all edges in
the cut between V1 and V2, and yi = y′i − δ requires 1 addition for all vertices in V2.
We do not know in advance how many subtrees, so the worst case performance for this
will be O(|E|) for computing the residual cost, and O(|V − 1|) for updating the tree. In
total, a worst case performance of algorithm 7 is O(|V ||E|) +O(|V − 1|) +O(|E|), where
O(|V ||E|) will come to dominate.

For the network simplex algorithm, it is more di�cult to give a good approximation on
the performance. Due to degeneracy, the algorithm may cycle, and even when it does
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not, there is no polynomial bound on the computations. We can however give a rough
count of the computational requirements for each iteration:

• It take O(|V |) computations to evaluate the dual vector (Y )

• It take O(|E |) computations to evaluate all the reduced costs (Z)

• It take O(|V |) computations to e�ect the change of basis

However, the running time for the network simplex algorithm can be improved by using
more e�ective ways to update the variables or using scaling algorithms.

Finally, the most time-consuming in our algorithm may be the number of sequences we
would like to explore. For instance, for 10 �ights using the same resource (e.g. the
runway) there are 10! = 3628800 possible sequences. Therefore, when the number of
�ights increases, we need good heuristics to �nd suitable sequences, and not all possible
ones.
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Chapter 6

Test Runs

Throughout this thesis we have worked with a model for representing the scheduling
problem at an airport. In the previous chapter we described an algorithm that can
compute a feasible schedule. In this chapter we describe some experiments and test runs
using this algorithm.

5 main sets of experiments are described in this chapter. Together they illustrate the
behaviour of the problem when di�erent weights are given to the two objectives. The e�ect
of changing the weights are important as an analysis of this could aid in understanding
how the two objectives work together. This in turn may improve the realized schedule
and reduce the workload for the controllers.

We will start this chapter by presenting the actual con�guration used in , before we
analyse how the schedule is a�ected by adjusting the weights. In section 6.2.2 we will
focus on the time changes in our sequence when we revise, and then we look at the
correspondence between the objective function and sequence changes in 6.2.3. We will
end this chapter with a small summary of the results in section 6.3.

6.1 Experimental con�guration

The aim in this section is to detail the actual con�guration used for the experiments.

Dataset

The input data for the experiments can be found in Appendix B, while some details are
presented in table 6.1.

Time unit

We will use seconds as time unit, and we will use the start time of the time horizon H as
a reference point. For dataset 1 and 2 the time horizon starts at 07:00:00, meaning that
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Dataset Runway Nr. of Aircraft Nr. of Arrivals
1 19R 10 6
2 19R 10 7

Table 6.1: Dataset details

7 am is the reference point for these datasets. So, when a �ight f has a target time at
07:15:00, we say that the target time for �ight f is 900 (15*60).

Simulation step size

A step size of one minute was used in these experiments. Since the opportunities for
resequencing are limited when there are �ights in the manoeuvring area, we have assumed
that all �ights are still airborne or parked at the gate when the resequencing took place.

Milestones

As milestones we will use landings for arrivals and take-o�s for departures, with the
corresponding target landing time and target take-o� time.

Target window

Due to small datasets, we have chosen to use a smaller target window than the controllers
usually work with. The target window will start 2 minutes before the target time and
end 3 minutes after ([T fi − 120, T fi + 180]), where T fi is the target time for �ight f at
milestone i. The target window bounds are given by li = 120, ui = 180.

Sequence stability

Sequence stability is not included in the linear programming model presented in Chap-
ter 4. In this chapter we will �rst present results where sequence stability is not consid-
ered, before this is included in later experiments.

Separation rules

The separation rules on the runway were as in table 4.2.

6.2 The e�ect of changing the weights

There are 6 weights, for each �ight f in the objective function which can be changed in
the model and in simulation Here, we will �rst repeat some of the notation presented in
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Chapter 4, before we present experimental results.

• bεfi - The cost per time unit of �ight f being early at resource i

• bδfi - The cost per time unit of �ight f being late at resource i

• bεfli - The cost per time unit of �ight f being earlier than T fi − l
f
i at resource i

• bδfui - The cost per time unit of �ight f being later than T fi + ufi at resource i

• bεfi - The cost per time unit of changing the time �ight f enter resource i

• bζfi - The cost per time unit of changing the time �ight f enter resource i

When presenting the results, we will refer to a cost vector of the weights in the objective
function, Bf , where Bf = (bεfi , b

δf
i , b

εf
li , b

δf
ui , b

εf
i , b

ζf
i ). Since we do not distinguish between

�ights, we will use the same cost vector for all �ights.

When presenting the results, we will use the following notation:

•
∑
f∈F

∑
i∈P f

M

|δfi + εfi | - Total deviation from target times (in seconds)

•
∑
f∈F

∑
i∈P f

M

|δfui + εfli| - Total deviation outside the target window (in seconds)

•
∑
f∈F

∑
i∈P f

M

|ζfi + εfi | - Total deviation from the previous solution (in seconds)

• Total Cost - The total cost

• Cost P - Cost associated with not being punctual

• Cost S - Cost associated with not being stable

Experiments

In section 4.4.3 we described several variants of the cost function, and the experiments
in this chapter are based on these. The �rst three experiments are carried out without
considering sequence stability. In experiment 1 - 4, one rescheduling step is carried out,
while the schedule is revised three times in experiment 5.

In �rst two experiments, deviation from target times are penalised with a cost term as
given in �gure 4.6c, meaning that there is an interval around the target time which will
not give any cost. For stability we will use a cost term with same form as in �gure 4.6a.
For both objectives, a deviation will give the same cost regardless of the deviation is
positive or negative, that is bδfi = −bεfi , b

ζf
i = −bεfi .

In the third experiment deviation from target times are penalised with a cost term as
given in �gure 4.6b. The stability cost term are still as in �gure 4.6a.

In the fourth experiment, sequence stability will be considered. We will use the same
cost terms as in experiment one and three, with only few exceptions.
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The �nal experiment does not have a general setup. Here we will use a collection of
di�erent cost vectors and revise the schedule three times.

6.2.1 Experimental results

In our �rst experiment we used dataset 2 as an input and we only penalized deviation
outside the target window (B = (0, 0, 0, 0,−100, 100)), see �gure 4.6c.

Type Target Time
for Arrival

Planned Ar-
rival Time

Target Take-
O� Time

Planned Take-
O� Time

Flight 1 D - - 1200 1374
Flight 2 A 1320 1390 - -
Flight 3 A 1440 1470 - -
Flight 4 A 1500 1550 - -
Flight 5 D - - 1500 1654
Flight 6 A 1680 1670 - -
Flight 7 A 1740 1750 - -
Flight 8 A 1800 1830 - -
Flight 9 D - - 1800 1934
Flight 10 A 1860 1950 - -

Table 6.2: Optimal Initial solution - Dataset 2 with cost vector B = (0, 0, 0, 0,−100, 100)

Type Target Time
for Arrival

Planned Ar-
rival Time

Target Take-
O� Time

Planned Take-
O� Time

Flight 1 D - - 1200 1380
Flight 2 A 1320 1276 - -
Flight 3 A 1440 1447 - -
Flight 4 A 1500 1567 - -
Flight 5 D - - 1500 1551
Flight 6 A 1680 1664 - -
Flight 7 A 1740 1904 - -
Flight 8 A 1800 1744 - -
Flight 9 D - - 1800 2008
Flight 10 A 1860 1824 - -

Table 6.3: Optimal Recomputed solution - Dataset 2 with cost vector B =
(0, 0, 0,−100, 100)

The initial optimal solution is given in table 6.2 while the optimal recomputed solution
is given in table 6.3. If we look at these two schedules, almost 12 minutes (709 seconds)
deviates the planned landing and take-o� times in the two solutions. In addition, 9 �ights
got a new leading �ight.
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Experiment 1

In our �rst attempt to avoid deviations as presented above, we �rst added a cost of
deviation from the previous value (introduced time stability cost term). Since this term
only a�ect the rescheduling part, we got the same initial solution as in table 6.2 for all X.
We let B = (0, 0,−X,X,−100+X, 100−X), meaning that the cost term for punctuality
decreases when the stability term increase. We let X varies between 0 and 99. When
X = 0, we will get the solution given above. The results are given in table 6.4 and
illustrated in �gure 6.1.

X
∑
f∈F

∑
i∈P f

M

|δfi + εfi |
∑
f∈F

∑
i∈P f

M

|δfui + εfli|
∑
f∈F

∑
i∈P f

S

|ζfi + εfi | Total cost cost S Cost P

0 829 28 709 2800 0 2800
1 856 28 316 3088 316 2772
5 856 28 316 4240 1580 2660
8 856 28 316 5104 2528 2576
10 856 28 316 5680 3160 2520
11 856 28 316 5968 3476 2492
12 856 28 316 6256 3792 2464
13 856 28 316 6544 4108 2436
14 856 28 316 6832 4424 2408
15 892 34 280 7090 4200 2890
16 892 34 280 7336 4480 2856
17 892 34 280 7582 4760 2822
18 892 34 280 7828 5040 2788
19 892 59 170 8009 3230 4779
20 892 59 170 8120 3400 4720
21 892 59 170 8231 3570 4661
30 892 59 170 9230 5100 4130
40 892 59 170 10340 6800 3540
50 892 59 170 11450 8500 2950
99 892 59 170 16889 16830 59

Table 6.4: Solution data after one resequencing - Dataset 2 with cost vector B =
(0, 0, X,−100 +X, 100−X)

In �gure 6.1a we have plotted how much the reoptimised schedule deviates from the target
windows, while we have plotted how much this solution deviates from the initial one in
�gure 6.1b. We let X increase along the x-axis, while the total deviation in seconds is given
along the y-axis. From �gure 6.1 it seems like there is a trade-o� between punctuality
and stability. When we increase X, the new solutions deviate less from the previous one,
while the punctuality decreases and the solutions deviate more from the target window.

Observe in table 6.4, that by introducing a cost for deviating from the previous solution
in the objective function (X > 0), we get a solution that is far more stable than when
this is not considered (X = 0). The deviation between the schedules decreases from 709
seconds to 316, meaning that the deviation is reduced with 55, 4%.
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(a) Punctuality - deviation from target window in sec (b) Stability - deviation from initial solution in sec

Figure 6.1: Coherence between the X-value and deviations

Experiment 2

In our next approach, we let the cost term for punctuality be constant, while we are
using di�erent values for the stability term. This gives us the general cost vector B =
(0, 0,−X,X,−5, 5), for some X ∈ [0, 20]. The results from this experiment are given in
table 6.5 and in �gure 6.2.

X
∑
f∈F

∑
i∈P f

M

|δfi + εfi |
∑
f∈F

∑
i∈P f

M

|δfui + εfli|
∑
f∈F

∑
i∈P f

S

|ζfi + εfi | Total cost Cost S Cost P

0 829 28 709 140 0 140
1 892 34 280 450 280 170
2 892 59 170 635 340 295
3 892 59 170 805 510 295
4 892 59 170 975 680 295
5 892 59 170 1145 850 295
6 892 59 170 1315 1020 295
20 892 59 170 3695 3400 295

Table 6.5: Solution data after one resequencing - Dataset 2 with cost vector B =
(0, 0, X,−5, 5)
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(a) Punctuality - deviation from target window in sec (b) Stability - deviation from initial solution in sec

Figure 6.2: Coherence between the X-value and deviations

Also here we can observe the same trade-o� tendency as in the previous example, and
there are some results appearing in both experiments above, plotting these will give us
the following curve:

Figure 6.3: Pareto front, experiment 1 and 2

In �gure 6.3 we see that you can not improve stability without depress the punctuality.
However, the real e�ect of changing the weights is di�cult to measure since the algorithm
using these cost vectors, does not favor between solution values that lies inside the target
window. This is investigated in the next experiment.

67



Experiment 3

Next we add a value to bδfi and bεfi , meaning that we will penalize any deviation from
the target times, not only outside the target window. This will give us a cost term of
not being punctual as in �gure 4.6b. For this experiment we are using the cost vector
B = (−1, 1,−X,X,−5, 5), for some X ∈ [0, 20]. The rescheduling solutions from this
experiment are given in table 6.6 and illustrated in �gure 6.5.

X
∑
f∈F

∑
i∈P f

M

|δfi + εfi |
∑
f∈F

∑
i∈P f

M

|δfui + εfli|
∑
f∈F

∑
i∈P f

S

|ζfi + εfi | Total cost Cost S Cost P

0 530 28 602 670 0 670
1 530 28 586 1256 586 670
2 579 28 537 1793 1074 719
3 579 28 537 2330 1611 719
4 596 28 532 2864 2128 736
5 596 28 532 3396 2660 736
6 596 28 532 3928 3192 736
20 616 59 520 11311 10400 911

Table 6.6: Solution data after one resequencing - Dataset 2 with cost vector B =
(−1, 1,−X,X,−5, 5)

(a) Punctuality - deviation from target window in sec (b) Stability - deviation from initial solution in sec

Figure 6.4: Coherence between the X-value and deviations

In this example, it could be better to compare stability against the total deviation from
target times. The reason is that in this example, any deviation is penalised, while we in
the two previous examples only penalised deviation outside the target windows.
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(a) Punctuality - devition from target in sec (b) Stability - deviation from inital solution in sec

Figure 6.5: Coherence between the X-value and deviations

Also in this example it seems to be a trade-o� between stability and punctuality, but the
changes are far less than in the two previous examples. The trade-o� can also be seen
in �gure ??, where we have plotted the deviation from the previous solution against the
total deviation from target times.

Figure 6.6: Pareto front

Experiment 3 where also performed using dataset 1 as input. It gave the following result
where we also can se the trade-o� tendency:
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Figure 6.7: Coherence between the X-value deviations, using Dataset 1 and cost vector
B = (−1, 1,−X,X,−5, 5)

Experiment 4

Here we have repeated experiment 1, but also considered sequence stability. The results
given in table 6.7 are almost equal to the results in table 6.4. The most important
di�erence occur when X = 0. In the experiment with sequence stability, we got a solution
with 32% less deviation in seconds from the previous solution than in experiment 1.

X
∑
f∈F

∑
i∈P f

M

|δfi + εfi |
∑
f∈F

∑
i∈P f

M

|δfui + εfli|
∑
f∈F

∑
i∈P f

S

|ζfi + εfi | Total cost Cost S Cost P

0 752 28 476 2804 0 2800
1 856 28 316 3092 316 2772
5 856 28 316 4244 1580 2660
10 856 28 316 5684 3160 2520
20 892 59 170 8122 3400 4720
21 892 59 170 8233 3570 4661
30 892 59 170 9232 5100 4130
50 892 59 170 11452 8500 2950
99 892 59 170 16891 16830 59

Table 6.7: Solution data after one resequencing - Dataset 2 with cost vector B =
(0, 0,−X,X,−100 +X, 100−X) and sequence stability
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Here we have repeated experiment 3, but also considered sequence stability. The results
given in table 6.8. Also here, the results are almost similar to those in table 6.6.

X
∑
f∈F

∑
i∈P f

M

|δfi + εfi |
∑
f∈F

∑
i∈P f

M

|δfui + εfli|
∑
f∈F

∑
i∈P f

S

|ζfi + εfi | Total cost Cost S Cost P

0 530 28 602 674 0 670
1 530 28 586 1260 586 670
2 579 28 537 1797 1074 719
4 579 28 537 2871 2148 719
5 596 28 532 3403 2660 736
6 596 28 532 3935 3192 736

Table 6.8: Solution data after one resequencing - Dataset 2 with cost vector B =
(−1, 1,−X,X,−5, 5) and sequence stability

Experiment 5 - Changes in the sequence

In the experiments above, we have seen that there is a trade-o� tendency between stability
and punctuality. In addition to this, it is also interesting to compare how the sequence
changes when there is more than one resequencing. In �gure 6.8 - �gure 6.11 we have
illustrated how the sequence evolve for 4 di�erent setups.

The runway sequencing is worst when not including any stability distance function and
only penalising deviation outside the target window (�gure 6.8). In the three other setups,
the sequence is much more stable. There are however di�cult to say whether one of these
three approaches is better than the other, since the total sequence changes is the same.

6.3 Result summary

In all the experiments presented in this chapter, it seems to be a trade-o� between
stability and punctuality. When the cost of deviating from the previous value increases,
the time stability increases, while the punctuality decreases. The results also indicates
that including stability in the objective function, greatly improves the stability without a
major decrease in punctuality, illustrated by the steep drop in the pareto curves (�gure 6.3
and �gure 6.6). However, this e�ect should be investigated further to give more precise
conclusions.
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Figure 6.8: Picture of runway sequencing, B = (0, 0, 0, 0,−5, 5)

Figure 6.9: Picture of runway sequencing, B = (0, 0, 0, 0,−5, 5), with sequence stability
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Figure 6.10: Picture of runway sequencing, B = (0, 0,−2, 2,−5, 5), with sequence stabil-
ity

Figure 6.11: Picture of runway sequencing, B = (−1, 1, 0, 0,−5, 5)
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Chapter 7

Summary and further research

In the introduction we introduced ATM operations and their need for stable solutions.
We also presented the goal of the project. After covering some background theory in
chapter 2, we presented a small survey on literature on scheduling and stability in chap-
ter 3. In chapter 4 we established an LP formulation of the scheduling problem under a
given context, where the �ight routes and precedence constraints were known. In chapter
5 we implemented this linear program using a minimum cost �ow solver. We also pre-
sented the main algorithm. Finally, in chapter 6 we performed simulations and presented
experimental results.

With no earlier experience using C#, a great amount of time have been spend trying to
learn the language. The �rst algorithms were implemented using matrix notation, and
worked �ne for 1-6 �ights, which was the �rst thing we tested. However, when the we
looked at larger instances with more �ights, the computational performance was not good
enough. Due to lack of time, there was no time to re-implement these using more e�cient
data structures.

From the results in chapter 6, it does seem like there is a trade-o� between punctuality
and stability. When the cost of deviating from the previous value increases, the time
stability increases while the punctuality decreases. This can be seen in all our experi-
ments. Especially in experiment 1 and 2, the solutions are far more time stable as fast
as we include stability in the objective function. This trend can also be seen in the other
experiments, but the e�ect is smaller.

However, we have only investigated 2 datasets and performed 5 types of experiments, so
we should be careful to draw any conclusion before we have investigated this problem
further.

7.1 Further research

In the experiments performed in chapter 6, a lot of time goes to generating all possible
sequences and test whether they are feasible or not. Finding a good heuristic that generate
feasible sequences at non-shareable resources, instead of enumerating all theoretically
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possible ones, would improve the computational workload and we would be able to test
greater and more complicated datasets.

In addition to use larger dataset, it would be interesting to do some experiments where
tardiness and earliness are penalised di�erently, using di�erent weights in piecewise linear
terms. This might give us more understanding about how the di�erent weights a�ect the
recomputations.

An interesting extension to the model would be to include more of the in-�ight part of the
operations or even the whole �ight, including capacities on the origin- and destination
airports. Since there are speci�c separation rules in the air, this would give us a more
accurate model. An other extension would be to not use �xed running times between
two airport resources, but instead use more �exible upper and lower bounds.

With a more accurate model and more e�cient implementation of the algorithm, we
would be able to perform more advanced experiments. Doing this would lead us one step
closer to �nding good values for the weights in the objective function and drawing more
precise conclusions.
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Appendix A

Arlanda Information

The airport we chose to use as a case study for this thesis is Stockholm-Arlanda. The
airport is the largest one in Sweden, located about 40 km north of Stockholm. As of Mars
2014, it has 3 runways and 4 terminals and the tra�c density are described as medium
to heavy

The movements on the ground are mainly decided by the characteristic and restrictions
on the taxiways. Some of the taxiways are one-way directed, meaning that both arriving
and departing aircraft must traverse them in the same de�ned direction. There are
some segments only for arrivals and segments used only for departures. Complementary
information about the taxiway structure can be found in the following charts. As can
be seen from these, the normal taxi-route procedure, both for arrival and departures, is
clockwise taxiing where parallel taxiways are established [9].
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THR ELEV TDZ ELEV RWY DIMENSIONS STRENGTH SURFACE
(FT) (FT) (m) PCN GP MEHT

593814.12N 61.4 ft
0175447.61E 18.7 m
593959.05N 56.4 ft
0175525.56E 17.2 m
593735.03N 57.3 ft
0175702.67E 17.5 m
593854.48N 57.3 ft
0175731.49E 17.5 m
593930.31N 56.4 ft
0175610.08E 17.2 m
593950.03N 60.0 ft
0175844.95E 18.3 m

RWY BRG MAG THR COORDINATES

01L 005° Left 3.0°

54x10338116.711°581R91 120 F/A/X/T ASPH Left 3.0°

98.1 100 3301x45 120 F/A/X/T ASPH

98 2500x45 90 F/B/X/T ASPH

54x00527314.731°500R10

PAPI

Right 3.0°

Left 3.0°

Left 3.0°

Left 3.0°

90 F/B/X/T ASPH

54x00524213.421°15262 90 F/B/X/T ASPH

54x0052801°17080

90 F/B/X/T ASPH

4.89°581L91

1
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Appendix B

Datasets

B.1 Dataset 1

Flight Type Gate Runway TOBT TLT/TTOT TIBT
1 D 7 19R 07:05:00 07:15:00
2 D 68 19R 07:05:00 07:15:00
3 A 10 19R 07:17:00 07:27:00
4 A 57 19R 07:18:00 07:28:00
5 A 44 19R 07:19:00 07:29:00
6 D 62 19R 07:10:00 07:20:00
7 D 4 19R 07:10:00 07:20:00
8 A 32 19R 07:22:00 07:32:00
9 A 5 19R 07:24:00 07:34:00
10 A 15 19R 07:25:00 07:35:00

Table B.1: Dataset 1

Deviation time Flight Type Gate Runway UOBT
07:01:00 1 D 7 19R 07:10:00
07:01:00 7 D 4 19R 07:13:15

Table B.2: Deviations Dataset 1

UOBT is an updated o�-block time.
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B.2 Dataset 2

Flight Type Gate Runway TOBT TTA/TTOT TIBT
1 D 4 19R 07:10:00 07:20:00
2 A 32 19R 07:22:00 07:32:00
3 A 5 19R 07:24:00 07:34:00
4 A 15 19R 07:25:00 07:35:00
5 D 12 19R 07:15:00 07:25:00
6 A 41 19R 07:28:00 07:38:00
7 A 42 19R 07:29:00 07:39:00
8 A 54 19R 07:30:00 07:40:00
9 D 35 19R 07:20:00 07:30:00
10 A 34 19R 07:31:00 07:41:00

Table B.3: Dataset 2

Deviation time Flight Type Gate Runway UOBT UTA
07:01:00 1 D 4 19R 07:13:15
07:01:00 5 D 12 19R 07:20:00
07:01:00 7 A 42 19R 07:31:05
07:01:00 9 D 35 19R 07:26:00
07:02:00 6 A 41 19R 07:24:55
07:03:00 3 A 5 19R 07:25:35
07:03:00 10 A 34 19R 07:29:00

Table B.4: Deviations Dataset 2

UOBT is an updated o�-block time and UTA is an updated time for arrival.
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