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ABSTRACT: Present approximate second order methods for the analysis of
unbraced multistorey frames may significantly underestimate moments in single
curvature regions. To clarify reasons for this that may not be well understood, the
mechanics of column interaction in single curvature regions are studied. Suitable
tools for sidesway description are derived, including a nearly exact, explicit free-
sway effective length expression, that, when high accuracy is required, eliminates
the need for cumbersome, iterative solutions of exact effective lengths from the
transcendental instability equation. Two reasons for the underestimation are
identified. One is related to the local second order Nδ effects, and the other to
second order effects causing changes in rotational restraint stiffness at column
ends due to vertical, inter-storey column interaction. A modified approximate
storey magnifier approach is proposed that accounts for these local second order
effects through two separate “flexibility factors”. The approach is sufficiently
simple to be viable in practical analyses, and predictions are found to compare
well with more accurate results.

KEYWORDS: Multistorey sway frames; Columns; Storey magnifier method;
Effective lengths; Storey interaction.
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Notation

Bs Sway magnification factor;

EI,EIb Cross-sectional stiffness of column and beam;

Gj Relative rotational restraint flexibility at member end j

H Applied lateral storey load (sum of column shears and bracing force);

L,Lb Lengths of considered column and of restraining beam(s);

N Axial (normal) force;

Ncr Critical load in general (= π2EI/(βL)2)

Ncb, Ncs Critical load of columns considered fully braced, and free-to-sway;

NE The Euler buckling load of a pinned-end column (= π2EI/L2)

Rj Rotational degree of fixity at member end j;

Rm Mean rotational degree of fixity of the two member ends;

S0 First order lateral “storey” stiffness;

SB Lateral bracing stiffness;

V0, V First order and total (first+second order) shear force in a column;

kj Rotational restraint stiffness (spring stiffness) at end j

αcr Member (system) stability index (= N/Ncr)

αb, αs Load index of column considered fully braced, and free-to-sway;

αss Storey (system) stability index

αE Nominal load index of a column (= N/NE)

β Effective length factor (from system instability);

βb, βs Effective (buckling) length factor corresponding to Ncb and Ncs.

γ, γn Flexibility factor in general, and load (N -) dependent flexibility factor;

γs, γ0 Flexibility factor at free-sway, and at zero axial load:

γk Flexibility factor for restraint stiffness correction.

∆0,∆ First order and total lateral displacement;

κj Relative rotational restraint stiffness at end j (=kj/(EI/L)).

1 Introduction

In frame and member analysis, it is often necessary to consider second order load effects

on sway, moments and stability caused by axial loads acting on the displacements of

the frame and frame members. In frames with sidesway, second order effects affect

interconnected members in three ways: (1) in an overall, global sense, due vertical loads

acting on the sidesway of the frame system as such (“N∆” effects), (2) in an individual,

local sense, due to axial member loads acting on the deflections away from the chord

between member ends and thus causing nonlinear (curved) moment distributions along

the members (“Nδ” effects), and (3) in a local sense in multi-level columns and frames

by changing rotational restraint stiffness at member ends due to vertical, inter-level

(inter-storey) column interaction.
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Subdivision into global and local second order effects is very common in approximate

analyses, such as in the socalled N − ∆ type methods, that consider second-order

effects separately following a conventional first-order analysis. A valuable asset of such

methods is their transparency with respect to the important variables, and they have

been dealt with in a number of studies over the last 40 years or so. Some of these are

reviewed in Hellesland [1].

Global effects are well taken care of in such methods, and to some extent also local Nδ

effects, through a factor often labelled “flexibility factor” [2], “bending shape factor”

[3], or “stiffness reduction factor” [4]. In these and other relevant papers, e.g, [5, 6, 7]),

and textbooks, e.g., [8], it is stated or implied incorrectly that the increased column

flexibility may be 1 to 1.22 (1.2) times the first order flexibility. This range is acceptable

for many practical frames, but may not be adequate for unbraced or partly braced

multibay frames that include columns subjected to axial loads far in excess of the free-

sway critical load. For such columns, the flexibility factor may be considerably greater

than indicated by this range. Extensions to include such cases, which require a load

dependent flexibility factor that reflects the transition from sway to braced column

response, have been presented and discussed elsewhere [1].

Even for some frames with reasonably low axial column loads, below the free-sway

critical loads of the columns considered unbraced, local second order effects may be

considerably greater than reflected by a flexibility factor between 1 and 1.22. This is

typically the case in single curvature bending regions of multistorey, unbraced frames,

where conventional N − ∆ type methods may grossly underestimate moments [9].

In such regions there are two effects that will increase the flexibility beyond what is

presently accounted for: (1) Negative restraints will be inflicted at one column end,

which in itself may result in flexibility factors outside the mentioned range. This is

seemingly not well-known. (2) In addition, there is a strong inter-storey interaction,

beyond that reflected in a first order analysis, between columns framing into the same

joint. These interaction effects, resulting from changes in the columns’ rotational re-

straint stiffnesses due to the axial column loads (third type second order effects men-

tioned above), have received little attention.

The emphasis of this paper is on such second order effects in linear elastic two di-

mensional, unbraced multistorey frames with single curvature regions (typical for “stiff

column-flexible beam” frames). Each column has uniform sectional stiffness and axial

load along the length. These properties may vary from storey to storey.

The main objective of the study is directed towards deriving a modified approximate

storey magnifier approach that may account for the second order effects reviewed above.

Towards this goal, (1) the basics of the storey magnifier approach are reviewed, (2) suit-

able tools for sidesway description are derived (sway magnifier, critical load, and first

order storey stiffness expressions), (3) available approximate methods for computing

local second order (Nδ) effects (flexibility factors) are reviewed, and their accuracy

evaluated for a variety of positive and negative end restraint combinations, and (4) the
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mechanics of restraints and vertical column interaction in single curvature regions are

studied to clarify aspects that are not well understood.

2 Second order column analysis

2.1 Unbraced column

In second order analysis, three quantities are normally of interest: the critical load (ef-

fective lengths), and the sway and moment magnifier. Reasonably simple, approximate

expressions for these can be derived using principles of the socalled N − ∆ analysis

approach. The approach is well-known, and only a brief review is given below for the

purpose of deriving and defining the quantities of interest for this study.

The isolated, laterally loaded unbraced column in Fig. 1 is considered. It has rotational

end restraints, defined by springs with rotational stiffness k1 and k2 at the member ends.

When these represent the interaction with a larger structure, several bending modes

may be possible. The two most common are shown in Fig. 1(b,c). The first, with

one inflection point between ends, will result provided the end restraints have positive

values. This is typically the case for columns in unbraced frames with stiff (strong)

beams. The second, with a negative rotational restraint inflicted at the upper end,

and with no inflection point between ends, is typical for columns in lower stories of

unbraced frames with flexible (weak) beams.
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Figure 1: (a) Laterally loaded unbraced column, (b) moments and

displacement shapes for given positive/positive end restraints, and (b) for

negative/positive end restraints.

Sway magnifier. If the column is subjected to a vertical (axial) load, the relative end

displacement will increase from the first order value ∆0 to

∆ = Bs∆0 (1)

where Bs is the sway magnification factor that reflects the second order (global) over-

turning moment effect, and also the second order member (local) effects through a
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separate factor, here labelled γn. By replacing the overturning moment effect (N∆) by

an equivalent horizontal load (γnN∆/L) and scaling up the first order displacement,

the final displacement can be written, ∆ = ∆0(1 + (γnN∆/L)/V0). Solving for ∆, it

can be written in the form of Eq. (1), with the sway magnifier given by

Bs =
∆

∆0
=

1

1 − αs
(2)

where

αs =
γnN/L

S0
and S0 =

V0

∆0
(3 a,b)

are the sidesway “stability index” and the first order lateral stiffness, respectively. This

sway magnifier can also be established in other ways, including in an iterative, Vianello

type manner (a geometric series).

The γn factor reflects an increased flexibility caused by local (member) second order

effects. It is strictly axial load-dependent, but is most often taken load-independent.

It is discussed in more detail below (Section 4).

Critical load and effective length. The critical load factor, causing infinite dis-

placements, is equal to the inverse of the “stability index” (λcr = 1/αs). The critical

free-sway load (Ncr = Ncs) can therefore be expressed by

Ncs =
N

αs
or Ncs =

V0L

γs∆0
(4 a,b)

where γn is denoted γs at the free-sway condition (i.e., at unbraced buckling of a column

considered in isolation).

Alternatively, the critical compression load of an elastic member of length L and uni-

form cross-sectional bending stiffness EI and axial force along the member may be

written in the conventional form as

Ncr =
π2EI

(Le)2
with Le = βL (5 a,b)

Le is the effective length (or buckling length), and β is the effective (buckling) length

factor of the member. Physically, the buckling length is equal to the distance be-

tween inflection points (points of contraflexure) located on the buckled shape, or on

the mathematical continuation of the buckled shape.

From Eq. (4 a) and (5), the free-sway effective length (β = βs) can then be expressed

by

βs =

√

NE

N
αs with NE =

π2EI

L2
(6)

Moment magnifier. End moments due to lateral and axial loads can be expressed

by

M = BMM0 ≈ BsM0 (7)
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where BM is a moment magnification factor that is commonly approximated by the

sway magnifier. This is a reasonable approximation for unbraced columns, and for

framed columns that contribute to the lateral resistance of the frame, i.e., columns with

axial load levels below the free-sway critical loads. It is such cases that are considered

here.

2.2 Interacting columns

Laterally interacting columns. For frames with laterally interacting columns with

given rotational end restraints, the appropriate “storey sway magnifier” and critical

load can be obtained by replacing αs above by a “storey stability index” αss, obtained

from Eq. (3) by replacing the numerator and denominator by the corresponding sums

over all the interacting columns plus a possible bracing:

αss =

∑

(γnN/L)

S0
with S0 =

H

∆0
=

∑

V0

∆0
+ SB (8 a,b)

S0 is now the lateral storey stiffness, H is the total lateral storey load (including possible

bracing forces), and SB is the lateral stiffness of bracings, if present. The shear stiffness

may be included in S0, but is normally neglected.

Details of the derivation of such sway magnifier formulations, recent advances, sim-

plifications and corresponding limitations, and code adaptions, are available elsewhere

[1].

Vertically interacting columns. The approach is commonly applied also to individ-

ual storeys in multistorey frames. In particular for frames with restraining beams that

are sufficiently stiff to cause inflection points (zero moment) within the column lengths,

the agreement with more accurate methods is good. However, for storeys with columns

in single curvature bending (no inflection points between column ends), the approach

may significantly underestimate the storey stability indices and sway magnifiers [9].

An effort is made in this study to clarify the reason for this, and to propose a mod-

ified approach that may improve predictions in single curvature regions and that is

sufficiently simple to be viable in practical analyses.

3 First order properties

The first order lateral stiffness V0/∆0 in Eq. (3) and (4b) can readily be established

by the differential equation, the moment-area theorem, or by other methods, and can

be found in the literature. Here, first order properties are derived in forms suitable for

use later in the paper.
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Reference is made to the laterally loaded column in Fig. 1. At the ends with posi-

tive restraints, end moments act in the opposite direction to that of the end rotation

and thereby “strengthens” the member by restraining the end rotation. At ends with

negative restraints, rotational disturbances are inflicted as reflected by end moments

acting in the same direction as the end rotations. End moments and end rotations (θ0)

are taken as positive when they act in the clockwise direction, and segment lengths

are defined as positive when they are oriented from the respective column ends toward

the other end, as shown in Fig. 1(b). With this definition, a negative segment length

implies an inflection point outside the member length such as in Fig. 1(c).

Inflection points, moments, restraints. The location of the inflection point, and

a very suitable restraint fixity parameter, can be determined from the slope continuity

condition at the common inflection point C of each of the two cantilever segments in

the figure. Equal slope can be expressed (for instance using the moment-area theorem)

by

θ0C =
(−M01)L1

2EI
+ θ01 =

(−M02)L2

2EI
+ θ02 (9)

Substituting −M0j = V0Lj , which follows from moment equilibrium, and noting that

L1+L2 = L, Eq. (9) can be expressed in terms of one of the unknown member segment

lengths as
Lj

L
=

−M0j

V0L
=

Rj

R1 + R2
j = 1, 2 (10)

where

Rj =
kj

kj + cEI/L
=

1

1 + c/κj
with c = 2 (11)

and

κj =
kj

(EI/L)
(12)

Here, R is a first order “rotational degree of fixity factor”, and κ is the non-

dimensional rotational restraint stiffness.

The first order fixity factors R are seen to be directly proportional to the end moment,

and to the first order inflection point distance from the end at which the factor is

computed. It is, consequently, a very useful parameter. Its definition evolves naturally

from the mathematics of the problem and is closely related to the physics of the column

response. At a rotationally fixed end, R=1, and at a pinned end, R=0 (zero fixity).

A negative R at an end implies an inflection point located away from the end, outside

the column length. Similar factors defining the approximate inflection point locations

of a buckled column, obtained by replacing c=2 in Eq. (11) by c=2.4, is given and

discussed in Hellesland [10].

Lateral displacement and stiffness. The total relative lateral displacement can be

given by the sum of that of each cantilever segment (∆0 = a01 + a02, Fig. 1):

∆0 =
(−M01)L

2
1

3EI
+ θ01L +

(−M02)L
2
2

3EI
+ θ02L (13)
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Expressing Lj and −M0j = V0Lj in terms of the R-factors (Eq. (10)) and substituting

into Eq. (13), the first order relative displacement can be written as

∆0 =

(

6

R1 + R2
− 2

)

V0L
3

EI
(14)

and the corresponding first order lateral stiffness as

V0

∆0
= cv

EI

L3
; cv =

12Rm

3 − 2Rm
(15 a,b)

where Rm = 0.5(R1 + R2) is the mean first order fixity factor. The lateral stiffness

is consequently a function of the sum of the fixity factors, and not of the individual

components.

Restated in terms of the restraint flexibility parameters G, Eq. (15) becomes

cv =
12(G1 + G2 + 6)

2G1G2 + 4(G1 + G2) + 6
(16)

where

Gj = bo
(EI/L)

ki
=

bo

κi
j = 1, 2 (17)

which, in this general form, allows for both positive or negative restraint values [10, 11].

The coefficient bo is a reference restraint stiffness coefficient, normally taken equal to

bo=6 corresponding to that of a beam bent in antisymmetrical curvature. This reference

value is also adopted here. Apart from the generalised G factor definition, the lateral

stiffness coefficient Eq. (16) is on a similar form previously derived along different lines

by others (e.g., [4]).

4 Flexibility factors for Nδ effects

4.1 Background

An axial force give rise to a nonlinear moment distribution along a column. These

local second order (Nδ) effects lead in turn to a reduction in lateral column stiffness

(or increased flexibility) and to a sideways displacement that is greater than that due

to a linear moment distribution. This effect can be accounted for through a factor often

denoted γ, and previously (1976) labelled flexibility factor by the author [2]. It reflects,

in other words, the reduced lateral column stiffness of an axially loaded member as

compared to that of a column with a (first order) linear moment distribution.

This flexibility factor is one of two local second order aspects of importance for correct

predictions of column and frame response to lateral loads. It will be considered in some

detail, both with regard to alternatives available and accuracy.

8



The flexibility factor factor is strictly a function of the column axial load (the normal

load). A subscript “n” is added, to give γn, in order to indicate this dependence in the

general case. In its most general form, γn is given in Hellesland [1]. Normally, like in

this study, simplifications are warranted.

For axial loads approaching zero and the critical free-sway load, γn takes on values that

for convenience will be labelled γ0 and γs, respectively. Between these two axial load

levels, the variation in γn is very modest. In this range, which is the one of main interest

in this paper, the flexibility factor may, with good accuracy, be taken independent of

axial loads, and for instance equal to γs or γ0.

In multibay frames, where some columns may have axial loads far in excess of the

free-sway critical load, γn for a column may be still be approximated by γs, but the

accuracy decreases with increasing axial load, in particular as the axial load approaches

the critical load of the column considered braced [1].

Common for earlier studies of the flexibility factor [2, 3, 4, 5, 6, 7, 12], is that they deal

with positive end restraints only, and that they, with one exception [12], state without

any reservations that γs is limited to values between 1 and 1.22, or 1 and 1.2 for γ0. This

is a common misconception. As shall be seen below, it is correct for the special case

of isolated free-sway columns, for which end restraints always will be positive, but not

necessarily correct for other cases, such as framed columns for which also negative end

restraints may be inflicted through the interaction with other members in the frame.

4.2 Exact γs variation

Evaluated at the free-sway (zero shear) condition, the resulting γs can be determined

by equating Ncr in Eq. (4) to the exact free-sway critical compression load Ncr (Eq.

(5)) and given by

γs =
(V0L/∆0)

Ncr
=

cvβ
2
s

π2
(18)

The exact βs can be found from the transcendental instability equation (Eq. (23)).

Results obtained in this manner are shown in Fig. 2 for various positive and negative

end restraint combinations. The restraints are conveniently defined in terms of fixity

factors R, Eq. (11). For positive restraint stiffness values κ, the R values will always

be positive and take on values between 0 (pinned end) and 1.0 (fully fixed end). For

large negative κ values (strong negative restraints), the R values will become greater

than 1.0, and for small negative κ values (weak negative restraints), the R values will

become negative. Results are symmetrical about the the +45 degree diagonal RA = RB .

Therefore, only those above the line are shown.

End restraint combinations giving infinite effective lengths represent outer limits and

can be given by [10]
1

κ1
+

1

κ2
= −1 or R1 + R2 = 0 (19)
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Figure 2: The flexibility factor γ = γs (at the free-sway condition) in terms of

first order rotational restraint fixity factors at ends A and B.

in terms of κ and R factors (and G1 + G2 = −6 in terms of G factors with bo = 6).

This restraint combination is shown by the −45 degree diagonal. In the figure, γ = γs

values have arbitrarily been terminated at 1.44. This is probably beyond the range of

practical interest.

It may be useful for the understanding of these results, to relate them to selected column

bending (buckling) shapes presented and discussed in [10], and shown in Fig. 3. Results

in the lower right quadrant, for 0 < RMAX < 1 and 0 < RMIN < 1, correspond to

bending shapes such as illustrated in Fig. 3 (c,d), and those in the lower left quadrant,

for 0 < RMAX < 1 and −1 < RMIN < 0, to bending shapes of the type in Fig. 3 (e).

Results in these two quadrants represent the most common bending shapes. Results
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Figure 3: Selected buckling modes of an unbraced compression member.
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in upper right quadrant for RMAX > 1 and 0 < RMIN < 1, correspond to buckling

shapes of the type in Fig. 3 (b), and those in the upper left quadrant for RMAX > 1

and −1 < RMIN < 0 to bending shapes of the type in Fig. 3 (f). The label “limk” in

the figure refers to the limits given by Eq. (19).

4.3 Approximate γs factors

L

∆

u u

deformed

= u/ uγ p

rigid 

p

Figure 4: A flexibility factor definition.

Flexibility factor expressions can be derived in various ways, for instance, and sim-

plest, by combining Eq. (18) with approximate free-sway effective length expressions,

or alternatively, to establish them directly by other means. The latter approach is

considered below.

Based on results obtained using the principle of minimum potential energy, Rubin [3, 13]

defined the factor, as illustrated in Fig. 4, as the ratio of the vertical displacements at

the top of a flexurally deformed column and a column rotating as a rigid pendulum,

γ = u/up. For a column with given end moments and lateral displacement ∆, a

deflected shape approximated by that corresponding to a linear moment variation (i.e.,

a third degree parabola), and neglecting axial deformations, he derived a factor, here

denoted γ0 and expressed by

γ0 = 1 +
L4

180(EI∆)2
[

M1M2 + 4(M1 − M2)
2
]

(20)

Also based on energy considerations, Girgin et al. [7] recently derived along similar

lines a factor that may be expressed in the exact same form as that above. In the

elastic case with positive end restraints, Eq. (20) gives values between 1 and 1.2, which

are correct for columns with negligible axial loads for which the third degree parabola

assumption is correct. At the free-sway critical load, which is the state of interest here,

the correct range for positive restraints is 1 to 1.216 (1.22), as seen in Fig. 2. This

minor difference, which is of no practical importance, is adjusted for below by replacing

the numeral 180 in Eq. (20) by 167.

In the elastic case, the first order values of ∆, end moments and restraints can be

adopted. In this case, the expression can also be rewritten in terms of first order fixity

factors R (Eq. (11)) or G factors (Eq. (17)) using the the first order properties, Eq.
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(10) and Eq. (15), or these equations in terms of G factors (with bo = 6). The three

following alternative forms of the modified factor then result:

γs = 1 +
L4

167(EI∆0)2
[

M01M02 + 4(M01 − M02)
2
]

(21 a)

γs = 1 + 0.216
R1R2 + 4(R1 − R2)

2

(R1 + R2 − 3)2
(21 b)

γs = 1 + 0.216
(G1 + 3)(G2 + 3) + 4(G1 − G2)

2

[(G1 + 2)(G2 + 2) − 1]2
(21 c)

Values at the zero axial load limit, γ0, can be obtained by replacing 0.216 above by

0.2. The latter expression with 0.216 replaced by 0.2, has also been presented before

in [9],also there based on Eq. (20).

5 Effective length factor expressions

Approximate effective length factors for unbraced columns, β = βs, can now be obtained

from Eq. (6) with the γs factors above and with first order lateral stiffness given by

V0/∆0, Eq. (15) or (16). They may be given in any of the three following, convenient

alternative forms:

βs =

[

π2EI

L2
·

γs∆0

V0L

]1/2

(22 a)

βs =

[

γsπ
2

12

(

3

Rm
− 2

)]1/2

(22 b)

βs =

[

γsπ
2

12
·

2G1G2 + 4(G1 + G2) + 6

G1 + G2 + 6

]1/2

(22 c)

The accuracy of the γs expressions is investigated implicitly by comparing predictions

by Eq. (22) with exact results for an unbraced member. Exact effective length results

of a column with uniform section stiffness and axial force along the member, can be

obtained from the well-known instability condition (transcendental equation) given by

(π/β)2 − κ1κ2

κ1 + κ2
=

(π/β)

tan(π/β)
(23)

Selected comparisons with exact results given in [10], are presented in Table 1 for

combinations of positive/positive, positive/negative and negative/negative rotational

restraints. The most relevant results in the table are those for positive/positive end re-

straint combinations in the lower left quadrant, corresponding to the buckling shapes in

Fig. 2 (c,d), and those with positive/negative combinations in the lower right quadrant,

corresponding to the buckling shapes in Fig. 2 (e).

For combinations of positive restraints, which are most common in practical cases,

results are generally within 0.1% of exact results. This is an extremely good accuracy,
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TABLE 1. Unbraced columns – Evaluation of effective length factor

formula: Ratios of βAPPROX,Eq.(22)/βEXACT .

κ1 (R1)κ2 (R2)
∞ 24 6 1.5 0 −0.3 −0.4 −0.6 −0.75

(0 0.92 0.75 0.43 1 −.18 −.25 −.43 −.60)

−12 (1.20) 1.016 1.015 1.013 1.009 1.008 1.008 1.008 1.008 1.009

−24 (1.09) 1.004 1.003 1.003 1.002 1.002 1.003 1.004 1.005 1.007

∞ (1.00) 1.000 0.999 1.000 0.999 1.000 1.001 1.002 1.004 1.006

24 (0.92) 0.999 0.999 0.998 0.999 1.001 1.001 1.003 1.005

6 (0.75) 1.000 0.999 0.999 1.000 1.001 1.002 1.004

1.5 (0.43) 1.000 1.000 1.001 1.001 1)

0.75 (0.27) 1.000 1.001 1.001

• Results that can be obtained by reversing κ1 and κ2 are not shown.

• Rj = 1/(1 + (2/κj)) • Gj = 6/κj • 1) Exact eff. length is infinite

and may for most practical cases be considered “exact”. Thus, in cases when

exact or nearly exact results are required, the tedious iterations required to obtain

solutions from the transcendental equation (Eq. (23)), can be avoided. In the

lower right quadrant (positive/negative), the accuracy is not quite as good, but

still very good and generally exact to two decimals.

This effective length factor will be used later in this study. However, when the

high accuracy of this factor is not required, a number of other, simpler approx-

imate effective length factors [10] that are valid for both positive and negative

restraints, may be used.

6 Alternative approximate γs and γ0 factors

Prior to learning of the work by Rubin, the author derived a general, but cumber-

some γs expression based on γs = V0L/(∆0Ncr), Eq. (18), with Ncr expressed by

an approximate expression for cantilever column segments [2]. Written in terms

of G factors, it breaks down into the two following simple expressions

γs = 1 +
0.216

(1 + 0.5G2)2
and γs = 1 +

0.216

(1 + G2)2
(24 a, b)

for the special case of a column pinned at one end (κ1=0, G1 = ∞), and the case

with equal end restraints (G1 = G2), respectively. The same expressions were

derived independently in still another way by LeMessurier [4]. It may be noted

that Eq. (21 c) breaks down into the exact same expressions for these two cases.

13



A simple, yet reasonably accurate, expression for γs can be given by

γs = 1 + 0.108
1 + [1 − (0.5Gmax)

p ]3

(1 + 0.5Gmin) 2
(25)

where p = 1 for |Gmax| ≤ 2 and p = −1 for |Gmax| > 2. Gmax is the larger

and Gmin the smaller of the G-factors at the column ends. The absolute signs are

included to cover cases with negative end restraints. In such cases, the expression

above require the following, rather special rule: Gmax should be taken as the G

factor with the greater absolute value, but submitted into the expression with

its true sign. For instance, in a case with G1 = −10 and G2=1, one should set

Gmax = −10 and Gmin=1.

This expression was proposed by the author (during a research stay in 1981 at

the University of Alberta, Edmonton), based on observation of the variation of γs

with changing restraints. For a column pinned at one end (Gmax = ∞), it breaks

down into Eq. (24a).

From an effective length factor (and magnification) expression given by Lui [5] in

1992, an expression for local second order effects can be extracted and written in

terms of the flexibility factor

γ0 = 1 +
H/∆0

5η
with η =

EI

L3

[

3 + 4.8
M01

M02
+ 4.2(

M01

M02
)2

]

(26)

The moment ratio is between the smaller and larger end moment, and is to

be taken positive when the moments act in the same direction (giving double

curvature bending). For positive end restraints it gives values between 1 and 1.2.

For a multibay frame, H is the sum of column shears, and η is replaced by the

sum
∑

η over all columns in the storey. The resulting factor is in this case a sort

of mean flexibility factor (γ0) for all the columns in the summation.

In 1994, Aristizabal-Ochoa [6] presented critical load and effective length ex-

pressions for unbraced and partially braced columns from which the following

flexibility factor can be extracted:

γs =
12

π2
·

40 + 8(ρ2
1 + ρ2

2) + ρ1ρ2(ρ1 + ρ2 + 3ρ1ρ2 − 34)

3(4 − ρ1ρ2)2
(27)

where

ρj =
kj

kj + 3EI/L
=

1

1 + 3/κj
j = 1, 2 (28)

is a restraint fixity factor. It is similar, but not equal, to the rotational fixity

factor defined previously by Eq. (11). The latter is directly related to the first

order inflection point location in a laterally loaded column, while that above is

not related to any column property as such.

14



Still another factor, also expressed in terms of the ρ factors above, can be obtained

from an approximate elastic lateral column stiffness expression obtained in 2002

by Xu and Liu [12] from a second order Taylor series expansion of the exact

lateral stiffness. With symbols used here, a load dependent flexibility factor and

its value at zero axial load can be extracted and expressed by

γn = 12(d1 + d2π
2αE) and γ0 = 12d1 (29 a, b)

The first is linear in the axial load. The factors d1 and d2 (denoted β1 and β2 in

[12]) are quite cumbersome functions of the end fixity factors ρ. At the free-sway

load (αE = 1/β2
s ), the resulting values of γn(= γs) become close to those obtained

with Eq. (27). The γ0 expression can be written in the same form as Eq. (27),

but with 12/10 instead of 12/π2 in the first fraction. Xu and Liu concluded that

the simplified, load independent expression was sufficient for the examples they

considered, and recommended the simpler form for use in design practice.

For practical analysis and design, all of the presented flexibility factors (here and

above) provide acceptable results. It will be a question of preference which of

them to use.

7 Restraint mechanics–Vertical interaction

Another local second order aspect that is of great importance for correct pre-

dictions of column and frame response to lateral loads, in particular in single

curvature situations, is connected to the vertical inter-column (inter-storey) in-

teraction. A brief review relevant to the present work is considered useful.

The rotational end restraint stiffness of a column at a joint “j” may be defined

accurately by

kj = −
Mj

θj

(30)

or

kj = fj kbj with fj =
Mj

(
∑

Mcol)j
(31 a, b)

In the first definition above, Mj is the end moment and θj the rotation, both

including second order effects, caused at the considered column end by the other

members framing into it. For later discussions in this study, this definition is

most useful. Moments and rotations are defined positive when they act in the

same direction (here taken as the clockwise direction). The restraint stiffness

kj becomes positive when the end moment (Mj = −kjθj) acts in the opposite

direction to the end rotation, and negative otherwise.
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In the second definition, kbj is the rotational stiffness (equal to the moment giving

a unit rotation) of the restraining beams, tension members, etc., at joint j, and

f is the fraction (or multiple) of kb that is provided to, or “demanded” by, the

considered column end. This factor, given by Eq. (31b), is determined from

moment equilibrium and rotation compatibility requirements at joint j. The

summation in the denominator is over all column (compression member) moments

at joint j. The rotational restraint offered by beams etc. at the joint is in other

words shared between (or distributed to) the columns meeting at the joint in

proportion to their end moments at the joint.

Normally, of course, moments and rotations that include the second order effects

are not known, and they are therefore often replaced, such as in storey magnifier

approaches, by first order values. Inherent in first order analyses are the restraint

stiffnesses obtained from Eq. (30) or (31b) when the total moments and rotations

are replaced by the respective first order values (M0,j , M0,col, θ0j). Eq.(31b) has

been given with first order values before for braced frames [14], but it is valid at

any frame joint.

Several investigators (e.g., [9]) have documented that the storey magnifier ap-

proach, implying first order restraint properties, gives good moment predictions

in “flexible column-stiff beam” frames, in which the beams (kb) are sufficiently

stiff to provide double curvature bending of the columns (inflection point between

ends). The stiffness definitions of Eq. (30) or (31), are in other words not much

affected by the second order axial load effects in such cases.

The same is not the case for “stiff column-flexible beam” frames, in which the

beams are not stiff enough to provide double curvature bending. Such a case is

illustrated by the four storey frame Fig. 5, where the columns of the three lower

storeys are bent in single curvature. The first order stiffness approximation for

such cases are studied in more detail below.

M0

M−diagramSystem

F F

2

1

N

V

∆ i

M

(b)(a)

Column in
single curvature

(c)

H M1
k1

k2

θ2

θ1

−M2

Figure 5: Multistorey “stiff column-flexible beam” frame
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8 Frames in single curvature bending

8.1 4-storey unbraced frame

The extreme case of a frame with very flexible beams is obtained by neglecting

the beams altogether. The restraint at the bottom of a column in one storey is

then required to be provided entirely by the column in the storey below. Such

a case is illustrated by the cantilever column shown by the insert in Fig. 6.

The column is fixed at the base and can be divided into an arbitrary number

of “storeys”, or segments. First order and second order analysis solutions for

the cantilever column can easily be obtained from rather straightforward hand

calculations. Details of the analyses will not be given.

k > 0

k < 0

k  = − M  / θ0 0 0 k = − M / θ

x/h 0 0

0.5331.133

0.50 0.75 0.95

0.100k  /(EI/h)0 3.429

0.25

0+−

1.3

1.2

1.1

1

H
P

h

x/h=

0.75

0.5

0.25

xk
k0

0.50 1

0

= N / N cr,exactcrα

Figure 6: Rotational stiffness of cantilever column at various sections vs. axial

load level

Resulting rotational stiffness k(x) at various heights (x) and axial load levels,

given as fractions of the exact critical load of the column (αcr = N/Ncr,exact ;

Ncr,exact = π2EI/(4h2) are shown in the figure. They are computed from the

corresponding moments and rotations (Eq. (30)), and are given in the figure in

terms of the corresponding first order values k0(x).

Once rotational stiffnesses are known, all quantities of interest can be computed

using the previously developed expressions (Section 2). They will become ap-

proximate values if the correct stiffnesses, corresponding to the appropriate load

level of the situation studied, are not used. This will be illustrated below.
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8.2 Effective lengths

Effective lengths will be computed based on the lowest Column (segment) S1 of

the 4 “storey” frame in Fig. 7(a). At the fixed base, κ2 = ∞ and R2 = 1. The

rotational restraint stiffness at the upper end are obtained from Fig. 6 and given

in Table 2 for three different axial load levels, αcr = 1, 0.5 and 0. The first of

these corresponds to buckling, the last to the first order case, and the middle one

to a level at which it might be of interest to compute the sway magnifier.

TABLE 2. Effective length computations of Column S1

(Fig. 7) for different end restraints (load levels).

αcr = N/Ncr,exactCol.1
1 0.5 0

κ1 -0.948 -0.899 -0.857

R1 -0.901 -0.816 -0.750

γs 1.348 1.337 1.329

βs 8.066 5.804 4.905

Le/h 2.017 1.451 1.226

Le/Le,exact 1.008 0.725 0.613

• R2=1 • First order results for αcr = 0

• Results at buckling for αcr = 1.

Although the restraint stiffness at the upper end 1 does not seem to be too

different for the different load levels, it is obvious from the effective length results

(βs = Le/L; Le/h) that they have significant effects. With restraints pertaining to

the true buckling condition (αcr = 1), the predicted effective length is very good

(0.8% above exact result) even though R1 is strongly negative, and significantly

outside the range for which comparisons were made in Table 1. On the other

hand, the use of restraint stiffnesses at loads below the critical, αcr = 0.5 and

αcr = 0 (first order), give poor predictions that are 30 to 40% below exact results.

Otherwise it may be noted that the flexibility factor γs (between 1.33 and 1.35)

is very little affected by the different load levels. So, the example serves to

demonstrate that it is the restraint stiffness that is the most important parameter

in isolated analysis of column segments in single curvature like here. The same

will be the case for frames with stiff columns-flexible beams where there will still

be strong interaction between columns in adjacent stories.

When restraint stiffnesses unlike here are not known, methods that include the

stiffness as an unknown could have been employed (e.g., Hellesland [10], Tong et

al. [15]). However, except for smaller systems, these are generally cumbersome.

An alternative approach will be pursued here.
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8.3 Moments for first order restraint stiffness

(a) (b) (c) (d)

BsBM

1.821.23
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Figure 7: (a) 4-“storey” column; (b) Sway magnifiers; (c) Moments based on

1st order stiffness; and (d) Moments based on exact stiffness. (Exact and 2nd

order approximate effects for N = 0.5Ncr).

In order to study the accuracy of using first order restraints in moment predic-

tions, the same four “storey” column in Fig. 7(a) is considered, but now subjected

at the top to a lateral load H and an axial load N = 0.5Ncr,exact (αcr = 0.5).

Magnified moments are first computed using sway magnifiers obtained in a con-

ventional storey analysis based on first order analysis. A sample calculation of

the lowest segment is demonstrated below.

Sample computation of S1. Based on the first order rotational stiffnesses κ02 = ∞

at the base, κ01 = k01/(EI/L) = −3.429/4 = −0.857 at the top of S1 (from Fig.

6), and γn taken equal to γs, the following quantities are computed:

(1) Rotational fixity factors, Eq. (11): R02 = 1.0, R01 = −0.750; (2) First order

relative displacement between the ends of S1, Eq. (14): ∆0 = 1.837 HL3/EI;

(3) Flexibility factor, Eq. (21b): γs = 1.329; (4) Sway stability index, Eq. (3):

αs = 0.188; (5) Sway magnifier, Eq. (2): Bs = 1/(1 − 0.188) = 1.231.

Sway magnifiers obtained in this manner, Bs=1.23, 1.62, 2.11 and 2.53 for S1

to S4, respectively, are compared to corresponding exact moment magnifiers,

BM=1.82, 2.00, 2.14 and 2.22, in Fig. 7(b). Approximate total moments com-

puted by

M = BsM0

are shown by the stepped line in Fig. 7(c). Also shown are exact moments. The

correspondence is good in the upper half (S3 and S4), but considerably below

exact moments in the lower half (−32 and −19% in S1 and S2, respectively).

This example confirms results of previous studies that the conventional storey
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magnifier approach is not applicable, or at best very approximate, in single cur-

vature bending regions, or in this particular case, in the lower half of the region.

8.4 Moments for exact restraint stiffness

The inaccuracy in the flexibility factor due to the approximation γn(αcr = 0.5) ≈

γs, is quite small (about 1-1.5% below the exact value). The reason for the large

discrepancy in moments above must therefore be due to the first order stiffness

properties implied by the first order analysis. To verify this, magnified moment

computations are repeated using sway magnifiers obtained based on the exact

restraint stiffnesses at the considered axial load level.

Modified first order quantities are now computed in exactly the same manner as

above, but for the different restraint stiffnesses. A prime is added to distinguish

modified quantities from the conventional first order quantities above.

Sample computation of S1: Nondimensional rotational stiffnesses (from Fig. 6)

at the actual axial load level αcr=0.5 are κ02 = ∞, κ01 = k01/(EI/L) = −1.048 ·

3.429/4 = −0.899. These give the modified quantities:

R ′

2 = 1.0, R ′

1 = −0.816; ∆′

0 = 2.554 HL3/EI; γ ′

s = 1.337; α ′

s = 0.263,

and, finally, B ′

s = 1/(1 − 0.263) = 1.358.

In order to obtain total moment predictions, the modified magnifier (1.358), which

is only about 10% greater than that based on first order stiffness (1.231), must

be applied to the modified first order moments. The latter are given by Eq. (10)

with the fixity factors R ′

1(2) above. Expressed in terms of the total height h = 4L,

the modified first order moments become M ′

01 = −(−0.816/(1−0.816))0.25Hh =

1.109Hh, and M ′

02 = (−1/(1 − 0.816))0.25Hh = −1.359Hh. The corresponding

approximate, sway magnifier based, total moments

M = B ′

sM
′

0

become M2 = −1.846 Hh and M1 = 1.506 Hh.

These, and similar results for the other column segments, are summarized and

compared to exact moment results in Table 3. The accuracy is seen to be very

good (within 0 to +1.6%). Similarly, total relative displacements, ∆ = B′

s∆
′

0,

are summarized in Table 4, and are seen to be within -0.1 and +0.7% of exact

displacements.

Modified first order moments and total moment predictions (filled dots) are also

shown in Fig. 7(d). The stepped first order moment distribution was to be
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expected as the slope of the individual portions must be the same since the shear

is constant (=H) along the segments.

This last exercise clearly demonstrates, as was to be expected, that the storey

magnifier approach as such is applicable provided the correct stiffnesses values

are used.

TABLE 3. Moment computations of Column S1-S4 (Fig. 7(a)) for αcr = 0.5.

x/h κj Col. R ′

2
/R ′

1
∆′

0 γ ′

s B ′

s M ′
02 M2,exact

B ′

sM ′

02

M2,exact

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1.0 0 S4 0.069/0 7.136 1.002 2.237 -0.250 0.556 1.006

0.75 ±0.147 S3 0.153/-0.079 6.630 1.005 2.057 -0.520 1.069 1.000

0.5 ±0.361 S2 0.301/-0.220 5.402 1.027 1.747 -0.863 1.502 1.004

0.25 ±0.899 S1 1/-0.816 2.554 1.337 1.358 -1.359 1.817 1.016

0 ∞

• κj = kj/(EI/L) • ∆′ = ∆′/(HL3/EI) • M = M/Hh • M ′

01 = −M ′

02 − 0.25Hh

TABLE 4. Relative sway computations of Column S1-S4 (Fig. 5)
for αcr = 0.5.

x/h κj Col. R ′

2
/R ′

1
∆′

0 γ′

s B′

s B′

s∆
′
0 ∆exact (8)/(9)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1.0 0 S4 0.069/0 7.136 1.002 2.237 15.955 15.866 1.006

0.75 ±0.147 S3 0.153/-0.079 6.630 1.005 2.057 13.645 13.651 0.999

0.5 ±0.361 S2 0.301/-0.220 5.402 1.027 1.747 9.440 9.408 1.003

0.25 ±0.899 S1 1/-0.816 2.554 1.337 1.358 3.468 3.443 1.007

0 ∞

9 Modified sway magnifier method (MSM)

9.1 General remarks

In order to extend the use of the conventional storey magnifier approach to single

curvature regions, means of estimating stiffnesses reasonably accurate at column

ends are required, or more approximate procedures must be used in single curva-

ture regions. In this study, the latter alternative is pursued.

In the lower half of the structure in Fig. 7(c) in single curvature, where the con-

ventional storey magnifier approach storey severely underestimated the moments,

the change in restraint stiffness caused by the axial loading cause an increase of
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approximately 10% in the sway magnifier B′

s and 39% in the first order displace-

ment ∆′

0. In the second storey, the increases are smaller (8 and 12%), but together

quite significant. The stiffness change manifests itself in increased flexibility.

Based on these observations, a simple approach has been studied whereby a “re-

straint correction flexibility factor” can be introduced to account for the local

effects of axial forces on the rotational restraint stiffnesses k in single curvature

bending regions. Indications are that it might be a viable approach, and a pro-

posal on this basis is presented below.

9.2 Proposal

In single curvature regions, it is proposed to replace γn in the sway stability index

expressions, Eqs. (3) and (8), by a combined flexibility factor γc such that

αs =
γcN/L

S0

and αss =

∑

(γcN/L)

S0

(32 a, b)

where

γc = γn γk (≈ γs γk) (33)

and

γk = (c1
L0

x
+ c2)

g ≥ 1 (34)

Then, γn and γk are the flexibility factors accounting for second order effects of

axial forces acting on the bended shape (Nδ effects) and on the rotational restraint

in single curvature bending regions (vertical interaction effects), respectively. As

mentioned previously, γn may be approximated by γs (or γ0).

In Eq. (34), L0 is the distance along the structure from the base to the first

order inflection point (at the top of the single curvature region), x is the distance

from the base of the structure to the top of the storey considered, c1, c2 and

the exponent g are constants that will be dependent on several factors including

horizontal and axial load distribution and axial load level. Several combinations

of the constants have been considered. Tentatively, the values

c1 = 0.11, c2 = 0.89, g = 3

are suggested, and used below, for computation of sway magnifiers in the practical

range of about Bs=1.3-1.5. For storeys above the single curvature region (x >

L0), where γk=1, predictions are not affected by stiffness changes.
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10 Applications to single curvature regions

10.1 4-“storey” column in single curvature

First, the proposal is applied to the 4-”storey” continuous column in Fig. 7(a),

with L0 = h = 4L, x = L, 2L, 3L and 4L for stories S1 to S4, respectively, and

γc = γsγk.

The calculations now follow the same routine described in Section 8.3, and the

values of ∆0 and γs are the same used there. Results of the calculations are

summarized in Table 5 for two axial load levels of αcr=0.3 and 0.5. These give

sway magnifier predictions in the ranges 1.4-1.6 and 1.8-2.5, respectively.

Compared to the exact moment magnifiers in the table, the predictions are seen

to be good, and best for the lower load level (αcr=0.3), which is most realistic in

practical cases. It should be noted that the predictions for S4 is not affected by

the γk factor.

TABLE 5. Moment computations by approx method of Column S1-S4
(Fig. 7(a)).

αcr = 0.5 αcr = 0.3

Col. ∆0 γs γk Bs BM,exact (5)/(6) Bs BM,exact (8)/(9)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

S4 7.834 1.000 1.0 2.525 2.223 1.136 1.568 1.522 1.031

S3 6.829 1.004 1.114 2.436 2.138 1.139 1.547 1.486 1.041

S2 4.832 1.024 1.368 2.091 2.001 1.045 1.456 1.429 1.019

S1 1.837 1.329 2.353 1.789 1.817 0.984 1.360 1.351 1.007

• ∆ = ∆/(HL3/EI) • αcr = N/Ncr,exact (Ncr,exact = π2EI/(2h)2)

10.2 24-storey frame

The applicability of the method is now demonstrated for a symmetrical 24-storey,

1-bay frame with equal storey heights previously analysed by Lai and MacGregor

[9]. The lower 17 storeys are shown in Fig. 8(a). The column stiffnesses are

identical within three sets of eight storeys, but significantly different for the three

sets. The columns of the lower eight storeys are considerably stiffer than the

beams (EI/L of columns are about 15 times EIb/Lb of beams). Thus, the frame

represents an example of a “stiff column-flexible beam” frame. The same vertical

loading is applied at all storey levels, and it seems that only a single lateral load is

applied at the top of the frame. The first order bending moment diagram shows
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Figure 8: Magnifiers for 24-storey “stiff column-flexible beam” frame

single curvature bending in the bottom four storeys.

Exact moment magnification factors (BM = M2/M02) at the column end with

maximum moment, and corresponding sway magnification factors based on con-

ventional storey stability indices (here denoted Bs,lai), were computed and pre-

sented in diagram form by Lai and MacGregor. Such magnification values, read

from an enlarged version of this diagram (considered sufficiently accurate for the

present purpose), are replotted in Fig. 8(b) for the lower seven storeys. The

estimated inflection point location from the base is L0 = 4.7L, where L is the

storey height.

Compared to the exact moment magnifiers (solid, stepped lines), the conven-

tional storey magnifiers (filled circles) are seen to significantly underestimate the

moments in the lower stories. This is typical, as also mentioned previously, for

regions with single curvature bending.

Modified stability indices are calculated from the results in Lai and MacGregor

(“lai”): αs,lai = 1 − (1/Bs,lai) and αs,mod = αs,lai · γsγk/γ s,lai ≈ αs,lai · γk. The

present γs values are here for simplicity approximated by the γ s,lai values (1.2

in the bottom storey and 1.05 in the others [9]), although a more correct γs

value for the lower storey probably is somewhat greater than 1.3. For L0 = 4.7L

and L0/x=4.7, 2.35, 1.57, 1.18 and 0.94 for stories S1 to S5, respectively, the

corresponding γk values become 2.79, 1.52, 1.20, 1.06 and 1.0.

Modified storey sway magnifier results, corresponding to Bs (Eq. (2)) defined

with αs,mod, are also shown in the figure (dashed, stepped lines). They are in

good agreement with the exact moment magnifiers (5% above to 2% below).
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11 Summary and conclusions

Present approximate second order storey magnifier methods for the analysis of

unbraced multistorey frames may significantly underestimate moments in single

curvature regions. To provide a better understanding of the reasons for this, the

mechanics of column interaction in single curvature regions have been studied.

For this purpose, suitable tools for sidesway description were derived, including

a nearly exact, explicit free-sway effective length expression, that, when high

accuracy is required, eliminates the need for cumbersome, iterative solutions of

exact effective lengths from the transcendental instability equation.

Two reasons for the underestimation are identified, and their relative importance

have been clarified. One is related to the local second order Nδ effects, which

may be greater than commonly assumed, and the other, and most important one,

is related to second order effects causing changes in rotational restraint stiffness

distributions at column ends due to vertical, inter-storey column interaction.

A modified approximate storey magnifier approach is proposed that accounts for

these local second order effects through two separate “flexibility factors”, γn (γs)

and γk. Both factors increase the flexibility of the columns of the frame beyond

their first order values. The first factor may typically vary between 1 and about

1.35. The second (“restraint correction flexibility factor”) may vary between

much wider limits, such as 1 and 2.8 in the examples considered.

The proposed approach has been found to provide predictions that compare well

with more accurate results. It is appealing in that it is sufficiently simple to be

viable in practical analyses. Comparisons with accurate analysis results for a

wider range of frame parameters are recommended prior to possible inclusion in

relevant codes and standards.
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