
UNIVERSITY OF OSLO

Department of Informatics

Transport Layer

challenges in

hybrid military

satellite networks

Andreas Ramstad

Urke

May 3, 2011

Summary

On 26th of March 2010, the Norwegian Parliament approved the Norwegian Armed Forces project

of acquiring a communications satellite. Combined with the increasing use of civilian technology

like the Transmission Control Protocol (TCP) in military networks, research on TCP in military

and satellite environments are required.

This thesis provides a thorough description of TCP, satellite environments, and related challenges

in military networks containing both satellite and radio links. Geostationary satellites introduce

an added delay of around 550 ms, while radio links are prone to high bit error rates. In such

environments, TCP performance may suffer severely - the penalty depends on several factors,

including the TCP flavor utilized at the sender. For Windows 7, the default TCP flavor is TCP

NewReno, while Compound TCP is available. A wide variety of flavors are available for Linux,

including the satellite-tailored variant TCP Hybla - the default flavor is CUBIC.

Evaluation and analysis through emulation has shown the mentioned TCP flavors to exhibit

significant different performances at the sender side. The flavors available to Windows 7 perform

poorly in lossy networks when compared to CUBIC and especially Hybla which outperforms the

other flavors in such environments. CUBIC and Hybla are also seen to be more aggressive than

Windows 7 flavors. If competing on the same bottleneck, this results in an unfair division of

bandwidth - at the cost of Windows 7 flavors. Possible solutions include tuning of the TCP

flavors and avoiding mixed-OS/TCP environments.

Another approach is the use of a Performance Enhancing Proxy at the sender side. The proxy

evaluated, PEPsal, will intercept all TCP flows and forward traffic along a new TCP flow towards

the intended receiver. This new TCP flow utilizes a tailored TCP flavor (e.g. Hybla) in order

to increase performance regardless of the original TCP flavor at the sender. Analysis shows

significant improved performance of Windows 7 flows in lossy networks. The unfair division of

bandwidth is also decreased, but performance issues where observed. In addition, PEPsal break

the end-to-end principle of TCP, and depends on a plaintext TCP header - causing challenges

in encrypted military networks.

i

ii

Preface

This thesis concludes my Masters degree at the Department of Informatics at University of Oslo.

The work has been carried out during the fall and spring of 2010 and 2011.

I wish to thank my supervisors for excellent counseling: Professor Knut Øvsthus at Bergen

University College, and Dr. Lars Erling Br̊aten at Norwegian Defense Research Establishment

(FFI, Forsvarets ForskningsInstitutt). A special thanks to both for providing a thesis within the

topic of my wishes.

Thanks to FFI and their staff for equipment, counsel and hospitality during my lab work. And

to Bergen University College for providing office space for me and my brilliant colleagues: S. K.

Hammerseth, M. A. Lerv̊ag, M. Ringkjøb, A. Skutle, A. Taranger and J.E. Vestbø. Especially,

I would like to thank Jan Egil for being my 24-hour Linux support hotline.

Finally, a thanks to my parents, my brother and my wonderful wife, for their endless support

throughout the entire Masters degree.

iii

iv

Contents

Preface . iii

1 Introduction 1

1.1 Background and motivation . 1

1.2 Scope . 2

1.3 Outline . 4

2 Technical Background 5

2.1 The OSI model . 5

2.2 The Transmission Control Protocol, TCP . 6

2.2.1 History . 7

2.2.2 Header . 8

2.2.3 Connection Establishment and Termination 9

2.2.4 Data flow and flow control . 11

2.2.4.1 Retransmission and retransmission timeout 13

2.2.5 Congestion Avoidance and Control . 15

2.3 Satellite Characteristics . 17

2.3.1 Delay . 17

2.3.1.1 Propagation . 17

2.3.1.2 Buffer . 18

2.3.2 Packet-loss and bit error . 19

v

CONTENTS

2.3.3 Bandwidth Asymmetry . 19

3 Challenges 21

3.1 Bandwidth-delay product - Maximum Window Size 21

3.2 Bandwidth-delay product - Slow Start duration 22

3.3 Segment loss . 24

3.4 RTT Unfairness . 26

4 Proposed Solutions 27

4.1 TCP enhancements . 28

4.1.1 Enhancing mechanisms . 28

4.1.1.1 TCP Window Scale Option . 28

4.1.1.2 TCP Timestamps Option . 30

4.1.1.3 Increasing Initial Window (IW) 32

4.1.1.4 Selective Acknowledgment . 33

4.2 TCP Flavors . 34

4.2.1 TCP NewReno . 35

4.2.2 CUBIC . 37

4.2.3 Compound TCP . 39

4.2.4 TCP Hybla . 41

4.2.5 Space Communications Protocol Specifications - Transport Protocol . . . 42

4.2.5.1 TCP Vegas . 44

4.3 Performance Enhancing Proxies (PEP) . 44

4.3.1 TCP Splitting . 46

4.3.1.1 Transparency and End-to-end argument 47

4.3.1.2 Security . 47

4.3.2 PEPsal . 48

vi

CONTENTS

5 Emulation 49

5.1 Design . 49

5.2 Vyatta routers . 51

5.2.1 Configuration - IPsec . 51

5.2.2 Configuration - Delay and Packet Loss . 53

5.2.3 Configuration - Bandwidth limitation . 54

5.2.4 Packet Error Rate and Bit Error Rate . 55

5.3 FreeBSD with Dummynet . 56

5.3.1 Configuration - Bandwidth limitation . 57

5.4 TCP peers . 58

5.5 PEPsal and MultiTCP . 59

5.5.1 Configuration - PEPsal . 60

5.6 Tools . 60

5.6.1 Wireshark . 60

5.6.2 tcpdump . 61

5.6.3 TCP Probe . 61

5.6.4 Gnuplot . 62

5.6.5 tcptrace . 62

5.6.6 Iperf and Jperf . 63

5.7 Internet Protocol Security (IPsec) . 64

6 Results and Analysis 69

6.1 Emulation characteristics and confirmation . 70

6.1.1 On the performance of CTCP . 71

6.2 Results and analysis . 73

6.2.1 Impact of UDP . 73

6.2.2 Friendliness . 74

6.2.2.1 Implications . 77

vii

CONTENTS

6.2.3 Bit Error Rate (BER) . 79

6.2.3.1 Implications . 80

6.2.4 RTT and buffer . 81

6.2.4.1 Windows 7 Advertised Window problem 81

6.2.4.2 Implications . 88

6.2.5 Webpages, HTTP, short transfers . 91

6.2.5.1 Implications . 93

7 Conclusion 95

7.1 Future work . 96

Appendices 103

A Configuration of Vyatta routers 105

A.1 Router D102 . 105

A.2 Router D103 . 108

B Gnuplot scripts 113

B.1 tcpprint . 113

B.2 Selected script . 114

C PEPsal (iptables) script 115

D Linux Traffic Control 117

E Additional Results 119

viii

List of Figures

2.1 Overview of OSI layer data structures and terminology [12] 7

2.2 Connection establishment/Three-way handshake 11

2.3 Connection termination/Four-way handshake . 12

2.4 TCP flow with sliding window . 13

2.5 Performance of Van Jacobson and Karels RTO algorithm, adopted from [22] . . . 14

2.6 The slow start algorithm . 16

2.7 The congestion avoidance algorithm . 17

3.1 Duration, and data transfered, during slow start 23

3.2 Wireless link errors impact: goodput after 180 s of a GEO satellite connection

(RTT = 600 ms) at different PER values (0 %, 0.1 % and 1 %). Adopted from [30]. 25

3.3 RTT unfairness problem: goodput after 180 s of a satellite connection (variable

RTT, PER = 0 %) in presence of 5 short RTT terrestrial background connections

(Reno, RTT = 25 ms, PER = 0 %). Adopted from [30]. 26

4.1 FTP transfer over high BDP link with TCP Window Scale Option disabled . . . 30

4.2 FTP transfer over high BDP link with TCP Window Scale Option enabled . . . 31

4.3 Improvement of throughput, compared to IW = 1 × MSS, for different values of

IW. Adopted from [34] . 32

4.4 Wireshark capture showing default Initial Window in Windows 7 (TCP NewReno) 33

4.5 Wireshark capture showing Initial Window in Ubuntu 10.10 33

ix

LIST OF FIGURES

4.6 Wireshark capture shows Selective Acknowledgment enabled by default in Win-

dows 7. 35

4.7 The Window Growth Function of CUBIC [16] . 37

4.8 cwnd of CUBIC during FTP transfer over 500 kbps link with 528 ms RTT 38

4.9 Set of equations from Hybla presentation. [17] . 41

4.10 Integrated PEP scheme. 46

4.11 Distributed PEP scheme. 46

5.1 Logical design of emulation . 49

5.2 Physical design of emulation . 50

5.3 Physical design of emulation, with PEP . 50

5.4 Layer 3 design of emulation . 51

5.5 Protocol Operation for ESP [60] . 65

5.6 Wireshark capture of TCP/FTP traffic . 66

6.1 Wireshark capture showing ICMP answer from router to TCP peers Path MTU

Discovery algorithm. 70

6.2 RTT of CTCP flow with 100 % buffer. 72

6.3 Goodput of single TCP flow with and without competing UDP flow. 73

6.4 Link utilization of single TCP flows (marked ”1”), and friendliness between two

competing (marked ”2”) TCP flows of different flavor. 74

6.5 Impact of competing CUBIC flow (introduced at approx. 70sec.) on Windows 7

NewReno flow. 75

6.6 Multiple Windows 7 Reno flows vs. one Linux CUBIC flow. All in steady state. . 76

6.7 Friendliness between CUBIC and Reno for different buffer sizes. 77

6.8 Friendliness between different flavors of TCP, all going through PEPsal utilizing

Hybla. 78

6.9 Impact of Bit Errors on single TCP flows. 79

6.10 Average RTT for different flavors and buffer sizes. 81

6.11 RTT of NewReno flow between two Windows 7 hosts. 82

x

LIST OF FIGURES

6.12 RTT of CTCP flow between two Windows 7 hosts. 82

6.13 RTT of CUBIC and Hybla flows with 1000% BDP buffer. 83

6.14 RTT and Receiver Window Size for NewReno flow between two Windows 7 hosts. 83

6.15 RTT and Receiver Window Size for CUBIC flow between two Linux hosts. 84

6.16 Maximum Advertised Receiver Window for different OS and buffer sizes. 85

6.17 Friendliness between competing flows, with 1000% of BDP buffer. Flow with

Windows 7 receiver in steady-state, except *. 86

6.18 RTT of NewReno and CTCP flow from Windows 7 to Linux with 1000% BDP

buffer. 87

6.19 RTT and goodput of NewReno flow between two Windows 7 hosts with 100%

BDP buffer. 88

6.20 RTT and goodput of CUBIC flow between two Linux hosts with 1000% BDP buffer. 89

6.21 RTT and goodput of NewReno flow between two Win 7 hosts, 1000% BDP buffer. 90

6.22 Time-sequence graph showing first seconds of CUBIC and NewReno transfers. . . 92

E.1 RTT and goodput of NewReno flow between two Windows 7 hosts with 200%

BDP Buffer. 119

E.2 RTT of Hybla flow between two Linux hosts. 120

E.3 RTT and goodput of Hybla flow between two Linux hosts with 100% BDP Buffer. 120

E.4 RTT and goodput of Hybla flow between two Linux hosts with 200% BDP Buffer. 121

E.5 RTT and goodput of Hybla flow between two Linux hosts with 1000% BDP Buffer.121

E.6 RTT and goodput of CTCP flow between two Windows 7 hosts with 100% BDP

Buffer. 122

E.7 RTT and goodput of CTCP flow between two Windows 7 hosts with 200% BDP

Buffer. 122

E.8 RTT and goodput of CTCP flow between two Windows 7 hosts with 1000% BDP

Buffer. 123

E.9 RTT of CUBIC flow between two Linux hosts. 123

E.10 RTT and goodput of CUBIC flow between two Linux hosts with 100% BDP Buffer.124

E.11 RTT and goodput of CUBIC flow between two Linux hosts with 200% BDP Buffer.124

xi

LIST OF FIGURES

xii

List of Tables

2.1 Overview and comparison of OSI and TCP/IP model 6

2.2 TCP header . 8

4.1 Overview of TCP NewReno behavior . 36

5.1 Corresponding BER to configured PER in emulation. 56

5.2 Overview of security mechanisms in emulation . 64

5.3 Length of mandatory headers and trailers in ESP packet, tunnel mode 65

5.4 Maximum goodput of TCP over different IPsec links. 67

6.1 Default parameters of emulation. 69

6.2 Penalty and properties of web page downloading for high RTT. 92

6.3 Average time to download various web pages for different RTT. 93

xiii

LIST OF TABLES

xiv

Chapter 1

Introduction

1.1 Background and motivation

On 4th of December 2009, the Norwegian Ministry of Defense, issued a proposition [1] to the

Norwegian Parliament recommending an acquisition of a communications satellite for the Nor-

wegian Armed Forces. The proposal evaluated several options, but concluded and suggested a

joint acquisition in collaboration with Spain and the Spanish operator Hisdesat. On 26th of

March 2010, the National Parliament adopted the proposal, and allowed the project to begin

immediately within a 982 mill. NOK budget frame. The initiator of this thesis is the Norwegian

Defense Research Establishment (FFI, Forsvarets ForskningsInstitutt).

There is a ongoing shift in military communication environments, from developing own propri-

etary equipment and protocols, to an extended use and modification of open civilian technologies.

An example is the United Stated Department of Defense (DoD) which in 2007 was in the process

of implementing a global Internet-like network for ”warfighters”, called the Global Information

Grid [2]. This network will utilize Internet Protocol (IP) and Transmission Control Protocol

(TCP), and be encrypted using a variant of IPsec. A similar approach is seen in the Norwegian

Armed Forces. In an article in the FFI journal FFI-FOKUS [3], the Network based Defense

(NbF) is described. The network will create a common, converged, Internet/IP-based platform

in which all services may run. Emphasis is put on the use of civilian solutions, and modifications

of these to meet military requirements. As a part of the NbF, the future Norwegian Modular

Network soldier will communicate using IP-enabled handheld PDAs [4].

Another recent example is the April 18th 2011 US Army decision to use the Android operat-

ing system on their Joint Battle Command-Platform, or JBC-P Handheld [5]. The handheld

devices (or smartphones) are used at the front lines identifying enemies, providing navigation

1

1.2. SCOPE

and communication etc. Third-party developers can offer applications and thereby expand the

capabilities of the smartphones rapidly, not unlike the civilian/commercial realm. Illustrating

this new paradigm: ”All of the research dollars are out there in the commercial market. All of

the best minds are at work in these companies to produce these smartphones and this software.

We don’t want to rehash that, we want to leverage it. We want to take advantage of it (...)” (Lt.

Col. Mark Daniels, product manager for JBC-P, in [5]). As for the hardware, both commercial

off-the-shelf and military smartphones are being evaluated.

It is evident that the usage of civilian commercial solutions are getting more common in military

networks. At the transport layer, the dominant protocol in the Internet is the TCP. Consequently,

any challenges or caveats of TCP met in the civilian realm may have to be addressed when

employed in a military network. This renews and facilitate the need for research on the topics

from a military perspective, and results of such efforts can be seen in numerous papers, e.g. [2],

[6], [7] etc.

There is a widespread consensus that the TCP suffers when delay and bandwidth across the

network increase. In addition to reduced throughput, it is difficult to achieve fair division of the

bandwidth between flows with different properties. Combining long delay and high bandwidth

with increased packet losses result in even further degradation. A network with a satellite and

radio link would fit this description. In these networks, the widely deployed and utilized TCP is

heavily penalized, and an alternative is needed. There exist already a wide variety of solutions

ranging from TCP enhancements, new TCP flavors, entirely new protocols, to proxies. There is

still not an universally accepted and standardized solution, and most likely there will never be.

This thesis will explore this topic inside the scope given below.

1.2 Scope

The thesis aims to evaluate several of the solutions, but with the enormous amount of proposals,

it is infeasible to evaluate all transport layer aspects. This section will define the boundaries of the

thesis and how it separates itself from earlier research. The scenario is a network with a satellite

leg introducing long delay (around 500 ms) and loss, but with only a moderate bandwidth

(around 0.5 Mbps) available. In addition, a radio link is added to accommodate a last-hop

radio distribution leg. Such hybrid networks are common in a military scenario. Given the

mentioned background, all tests and evaluations will be conducted in a military-like network with

an encrypted and plaintext portion. Also, a realistic [8] buffer scheme is utilized in the testbed -

a parameter often omitted in modern TCP literature. The solutions should be currently available

and easily or widely employed. With many users, and since it is infeasible to control all of them,

it is especially interesting to evaluate the default schemes shipped with Linux and Windows 7

2

CHAPTER 1. INTRODUCTION

(expected to become widely deployed). Not just the performance of the systems themselves, but

also how they interact with the proposed solutions, e.g. how will a Linux user affect a Windows

user, and vice versa.

The performance of these protocols and proxies will be tested using an emulator. An elaborate

discussion and description on different methods of evaluating TCP can be found in [9]. The

authors presents the alternatives: Simulation, Emulation, and Live Internet Tests. Live Internet

Test were quickly discarded since this requires an actual satellite link, which is both costly

and limits the control of delay, buffers, and bandwidth. Emulations aim to model a selected

piece of the network path between two hosts - in our scenario: A satellite link. The hosts are

real computers with actual TCP implementations (as oppose to simulators) giving the benefit

of (possibly) more accurate results. Emulations also offer control of buffers, queues etc. in

intermediary network equipment like routers and switches. As with hosts, these are actual

equipment and not an abstract implementation. A caveat of emulation is the emulator itself

which may not be able to behave as the piece of the network it is trying to emulate. I.e. an

actual satellite may produce more realistic results than the emulator. FFI utilize tactical routers

in their networks, and it was aimed to utilize these in an evaluation of the TCP flavors. The

difficulty of simulating these routers, and the aforementioned reasons, led to usage of an emulator

in this thesis.

A testbed has been set up to emulate the described scenario and test properties of the solutions

as the scenario, traffic and other parameters are adjusted. The thesis aims to identify any

improvement, threat or solution which can affect the performance of the network.

Mainly, the assessed schemes are different TCP flavors. Each TCP flavor has different mecha-

nisms designed to improve its performance. These are described in Section 4.2. The TCP flavors

evaluated are:

• TCP NewReno: This is the default TCP implementation for Windows 7 and Win-

dows Vista. NewReno is a slightly modified version of TCP Reno which earlier enjoyed

widespread deployment, and is utilized in Windows XP. In most scenarios, their perfor-

mance will be identical.

• CUBIC: Since kernel version 2.6.19, CUBIC has been the default TCP flavor for Linux.

A similar variant, BIC, was used for kernel 2.6.18.

• Compound TCP: Compound TCP (CTCP) is a Microsoft patented TCP version, which

is default in Windows Server 2008. It is also available in Windows Vista and Windows 7

(disabled by default). And via a downloadble patch for Server 2003 and 64-bit XP.

• TCP Hybla: Hybla is especially tailored for satellite environments with high packet loss

and long delays. It is available as a module in the Linux kernel since version 2.6.13, making

3

1.3. OUTLINE

it easily deployable.

In addition, a Performance Enhancing Proxy (PEP) has been evaluated. PEPs are placed in the

network and intercept TCP flows. Dependent on the type of PEP, it perform different operations

on the TCP flow with the aim to improve its performance. A thorough description of PEPs can

be found in Section 4.3. The PEP evaluated in this thesis is:

• PEPsal: PEPsal is an open source, freely available PEP, compliant with existing stan-

dards. It was developed at the University of Bologna, Italy, in 2005, and to the authors

knowledge is the only open source TCP PEP available. A description can be found in

Section 4.3.2.

The thesis also presents several TCP mechanisms which are not necessary tied to a specific TCP

flavor. These mechanisms are usual optional and used independent of the TCP flavor utilized, but

all aim to improve TCP performance. In addition, a relevant transport layer protocol called Space

Communications Protocol Specifications - Transport Protocol, is described and evaluated. It is

mainly a modified version of TCP, but with some important and interesting differences.

1.3 Outline

The rest of this thesis is organized as follows: Chapter 2 presents a technical and theoretical

background on TCP and satellites treating the relevant topics giving the unfamiliar reader a

foundation on which to read the rest of the thesis. The following chapter identifies the problems

- i.e. the challenges which arise and why they occur. Chapter 4 presents related research and

proposed solutions to the challenges described in the previous chapter. Following is a presentation

of the emulation testbed with detailed descriptions to allow reproduction. Chapter 6 presents and

analyzes results from the mentioned emulation. Implications and solutions are also discussed.

Chapter 7 concludes the thesis and presents future work.

4

Chapter 2

Technical Background

This section will explain relevant aspects of the Transmission Control Protocol (TCP) and the

satellite characteristics which cause transport layer challenges over satellite links.

2.1 The OSI model

In 1977 the International Organization for Standardization (ISO) created a new subcommittee

called SC16. They were tasked with creating standards leading up to Open Systems Intercon-

nection (OSI). Up to this date each computer manufacturer developed their own ”protocols”

for interconnection between their own equipment - clearly showing a need for joint and open

standards allowing interconnection. In 1978 the SC16 had its first meeting, and at the end of

1979 the Reference Model of Open Systems Interconnection, popularly called ”OSI model”, was

adopted. After further revision the seven-layered OSI model (Table 2.1) was published in ISO

7498. For more about the history behind the OSI model, see [10].

The OSI model is an abstract reference model dividing the communication system into layers.

Each layer has its own tasks and functions, and provides services to the layer above, and uti-

lizes the services offered from the layer below. The OSI model is a reference model, meaning

that actual communications systems do not strictly follow its structure. A second model was

created using experiences from the ARPANET and culminated in the TCP/IP model (Table 2.1

) described in IETF RFC-1122 and RFC-1123. One might argue that the TCP/IP model more

accurately represents the real world since TCP in fact handles sessions.

The top three OSI model layers are loosely defined in the ISO 7498 standard [11] and will not

be given much attention in this paper, with the exception of the session layer which TCP partly

5

2.2. THE TRANSMISSION CONTROL PROTOCOL, TCP

Layer OSI TCP/IP

7 Application

6 Presentation Application

5 Session

Transport
4 Transport

3 Network Internet

2 Link Link

1 Physical Physical

Table 2.1: Overview and comparison of OSI and TCP/IP model

resides in. Also residing on the transport layer is the User Datagram Protocol (UDP), which

is a connection-less (session-less) transport protocol. Together, TCP and UDP is the transport

protocols on the Internet. Examples of protocols residing at layers above are can be identified in

common services like World Wide Web (HTTP, HTTPS), E-Mail (SMTP,POP,IMAP), Remote

Login (SSH,TELNET) etc. All of these protocols utilize services provided by TCP or UDP.

In the layer below the transport layer we find the network layer where Internet Protocol (IP) is

the dominant protocol and provides routing and relaying of packets/datagrams (with TCP or

UDP segments inside) as a service to the transport layer above. It is worth noting that the IP

protocol is a best-effort protocol and does not guarantee delivery, nor that the order of segments

received is consistent with the order in which they were sent. These responsibilities are left for

the uppers layer. Layer 2 is the link layer, which handles transport of frames (with IP packets

inside) on the link between network-entities. The dominant protocol is the Ethernet protocol,

standardized as IEEE 802.3. The physical layer provides the actual carrying of frames from a

link-entity to another, e.g. fiber, radio waves, copper etc. Figure 2.1 shows an overview of the

terminology and how each layer manipulate the information received from the layer above before

sending it to the layer below. For more detailed information on the different layers of the OSI

model, see [11]

2.2 The Transmission Control Protocol, TCP

TCP is an enormous topic and this paper will only cover selected topics and aspects. The

purpose of this introduction is to give the reader a basic understanding of the key components

and workings of the protocol - with focus on elements which is relevant for the performance of

TCP over networks with long delay and high packet loss and errors.

6

CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.1: Overview of OSI layer data structures and terminology [12]

2.2.1 History

The concepts of TCP were first described by Vinton G. Cerf and Bob Kahn in their paper ”A

Protocol for Packet Network Intercommunication” which was published by IEEE in May 1974.

Later in 1974, Vinton Cerf, Yogen Dalal and Carl Sunshine writes RFC-675, and it described

an extensive protocol named Transmission Control Program with functions ranging over both

layer 3 and 4. Through several revisions the protocol was split (IP becoming the latter part),

changed name and functionality, and version 4 of the Transmission Control Protocol was adopted

by U.S. Department of Defense (DoD) in February 1980 [13]. The protocol was then described

in RFC-793 [14] in September 1981, and the introduction states:

”TCP is a connection-oriented, end-to-end reliable protocol designed to fit into a

layered hierarchy of protocols which support multi-network applications.”

Several extensions and modifications have been proposed since then. Some of them have become

mandatory in TCP implementations, e.g. the Congestion Avoidance and Slow Start algorithm.

Some extensions are optional, such as RFC-2018 ”TCP Selective Acknowledgment Options”.

There also exist a wide assortment of TCP variants, e.g. TCP Vegas [15] , TCP CUBIC [16],

TCP Hybla [17] etc. Some of these variants and extensions are designed to increase performance

in satellite networks and will be discussed thoroughly later in this paper.

7

2.2. THE TRANSMISSION CONTROL PROTOCOL, TCP

2.2.2 Header

For future reference, the TCP header will be presented along with a short description of each

field.

Bit: 0 4 8 16 31

Source Port Destination Port

Sequence Number

Acknowledgment Number

Head. Size Reserved Flags Window

Checksum Urgent Pointer

Options + Padding

Table 2.2: TCP header

Each ”line” in Table 2.2 is 32 bits, making the entire header at least 20 bytes long. Trailing in

the header comes an optional variable length Options field, at last followed by the Application

data - combining all these pieces results in a complete TCP segment. Presented below are an

explanation of each field has they are standardized in RFC-793 [14], including proposed changes

in RFC-3168 [18].

• Source and destination port (16 bits): These 16 bits identify a specific TCP-flow,

and is coupled with the application utilizing it. Thus TCP can offer multiple simultaneous

TCP-flows to the layers above, giving the user the possibility to run multiple applications

utilizing TCP at the same time.

• Sequence Number (32 bits): 32-bits identifies the sequence number of the first byte of

the application data in the TCP segment. If the SYN flag is set, this field identifies the

initial sequence number (ISN), and the first byte of data would have sequence number ISN

+ 1.

• Acknowledgment number (32 bits): If the ACK flag is set, this number identifies the

sequence number of first data byte in the next segment the sender is expecting to receive.

• Offset (4 bits): Since the TCP header has variable length(due to the optional variable

length Options field), the offset field identifies number of 32-bit words in the header. In

other words, this field identify where the application data begins.

• Reserved (4 bits): Reserved for future use. Must be set to zero.

• Flags/Control Bits (8 bits): RFC-793 originally specified 6 flags using 6 bits - however,

RFC-3168 ”The Addition of Explicit Congestion Notification (ECN) to IP”[18] specifies

8

CHAPTER 2. TECHNICAL BACKGROUND

the use of 2 new flags, using 2 bits from the Reserved field. These extensions are widely

supported[19] and will thus be included here. From left to right:

– CWR: The data sender informs the data receiver that the congestion window has been

reduced.

– ECE: ECN-Echo. Used by the data receiver to inform the sender of a received Con-

gestion Experienced (CE) packet.

– URG: Urgent field is significant. Tells the receiver not to ignore the Urgent field.

– ACK: Acknowledgment field is significant. Tells the receiver not to ignore the Ac-

knowledgment field.

– PSH: Informs the receiver that the Push operation (causes TCP to immediately for-

ward all data received by the user) has been invoked.

– RST: Reset the TCP connection

– SYN: Synchronize sequence numbers; start of a new TCP connection.

– FIN: No more data from sender.

• Window (16 bits): The number of data bytes, beginning with the one indicated in the

acknowledgment field, which the sender of this segment is willing to accept (available buffer

space). This field is very important for long-delay TCP transmissions and will be covered

extensively throughout the paper.

• Checksum (16 bits): Computed over the entire TCP segment, plus a pseudo header(outside

the scope of this paper).

• Urgent Pointer (16 bits): This field is read only when the URG-flag is set. It indicates

that this segment is carrying data that needs urgent priority and the segment should be

processed before any other packet in the buffer. The Urgent Pointer points to the sequence

number of the last byte of the urgent data.

• Options (variable length): An example of option is the 16-bit Maximum Segment Size

(MSS) setting the MSS for the transmission at initiation.

2.2.3 Connection Establishment and Termination

The TCP protocol is a connection-oriented protocol, providing reliable and in-order delivery

end-to-end from source to destination. These services are made possible by the use of sequence

numbers and acknowledgments which implies that each peer has synchronized sequence numbers.

Before any data is transferred, two TCP-peers establish a connection where they synchronize

9

2.2. THE TRANSMISSION CONTROL PROTOCOL, TCP

values for sequence number, and other options like Maximum Segment Size (MSS). The process of

setting up a connection is often called three-way handshaking, and if successful, the data transfers

may commence. When both peers are finished sending data, the connection is terminated by

a process called four-way handshaking. The following sections will explain the three-way and

four-way handshake as described in [13].

Three-way handshake As illustrated in Figure 2.2, the connection establishment procedure

consists of three steps:

1. The initiator or client starts the process by sending a TCP segment to a specified port at

the receiver. E.g. a request to a web-server, resulting in port 80 as destination port and

an arbitrary, random port as source.

The segment will have the SYN-flag set; indicating that this is a new TCP connection and

the Sequence Number field contains the client’s Initial Sequence Number (ISN).

2. The receiver or server responds with a TCP segment with e.g. source port 80, and desti-

nation port set to the random source port from the first segment received. Thus, the two

peers have sent segments which can uniquely be separated from other TCP flows.

The segment will have both the SYN and ACK-flag set. The Sequence number field will

contain the server’s ISN. The Acknowledgment number field will contain the client’s ISN+1,

acknowledging the received data and indicating that the next byte of data the server expects

to receive has sequence number ISN+1.

3. Finally, the client will send a TCP segment in return with the ACK-flag set and the

Acknowledgment number field set to the server’s ISN+1. This concludes the handshake -

the connection is established and data may be exchanged between the peers.

Four-way handshake Illustrated in Figure 2.3, the TCP connection termination procedure

consist of four steps:

1. The peer, e.g. client, who are finished sending data and wish to terminate the TCP

connection sends a segment with the FIN-flag set, indicating it wants to terminate the

connection.

2. The recipient, e.g. server, confirms the termination with a segment with the ACK-flag set.

The traffic in the direction from client to server is now stopped. Note, the other direction

is still open and data may still be transfered.

3. The server then sends (when it is ready) a segment with the FIN-flag set.

10

CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.2: Connection establishment/Three-way handshake

4. The client responds with a segment with the ACK-flag set. This closes the communication

in the server-to-client direction, thus closing the connection completely.

A TCP connection is uniquely identified by the port number, making each peer capable of

separating this flow of data from other TCP connections. Applications may request and utilize

one or several TCP connections simultaneously, e.g. a browser downloading a web page is likely

to use multiple TCP connections. A TCP connection is also full duplex, allowing both peers

to send and receive data. Note that the client/server concept may be somewhat confusing in a

full-duplex context - the term TCP peer is often utilized.

2.2.4 Data flow and flow control

The following two sections will focus on the mechanism which is in play during a TCP data

transfer, i.e. the connection has already been established. These mechanisms are described in

RFC-793 [14], RFC-2488 [20], RFC-5681 [21] and ”Congestion Avoidance and Control” by Van

Jacobson and M.J. Karels [22].

As mentioned earlier, TCP puts data (received from the upper layer) into segments, giving each

byte a sequence number and putting the sequence number of the first byte into the header.

However, it is the receiver who governs how much data it is willing to receive and thus how much

the sender can transmit. The receiver set these limits in the Window field and is given as the

number of bytes the receiver is willing to accept. During a transfer the receiver may adjust the

11

2.2. THE TRANSMISSION CONTROL PROTOCOL, TCP

Figure 2.3: Connection termination/Four-way handshake

window size by setting a new value in the Window field. The assumption is that the window size

reflects the available buffer size at the receiver. If the sender ignores the window, i.e. transmits

above the limits imposed by the window, the overflow data should be discarded.

The size of each segment is governed by the amount of data to be transferred, up to the limits

imposed by the Maximum Segment Size (MSS). The MSS can be set in multiple ways: By the

Path MTU (Maximum Transmission Unit) Discovery algorithm described in RFC-1191. By the

receiver via the MSS option in the TCP-header. Or it could be defaulted to 536 bytes as specified

in RFC-1122.

For future reference we will use some of the definitions found in RFC-5681: The last Advertised

Window by the receiver is called Receiver Window (rwnd). Flight Size is the amount of data

that has been sent but has not been acknowledged.

The window scheme used in TCP is called sliding window. This implies that the window ”slides”

forward consecutively to the next data which is ready to be transmitted as the sender receive

acknowledgments, see Figure 2.4. The rwnd is set to 1500, implying that the maximum flight size

is 1500 bytes. After sending three segments, each with 500 bytes, the window is ”full”, forcing

the sender to stop transmission while waiting for an acknowledgment. When a segment arrives

with Ack# = 2000, the receiver has acknowledged the reception of all 1000 bytes from Seq#

1000 to 1999 and is expecting the next byte to have sequence number 2000. This means that the

flight size has decreased by 1000 bytes, the window slides forward, and opens up for 1000 more

12

CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.4: TCP flow with sliding window

bytes to be transferred.

Note however that there exist algorithms which causes the receiver not to reply with an ACK1

immediately. RFC-1122 describes ”Delayed ACK”, which recommends that a receiver wait (max-

imum 500ms) before sending an ACK. It aims to reduce ACK traffic, since the receiver could

potentially acknowledge several segments using one ACK-segment.

2.2.4.1 Retransmission and retransmission timeout

If an acknowledgment has not been received for a given sequence number/segment within a

retransmission timeout (RTO), a timeout will occur, and the segment will be re-transmitted.

Setting a correct RTO is a very important and difficult task. It should not be too short, as this

would cause the sender to prematurely timeout and retransmit a correctly received segment. Yet

it should not be too long as this would decrease throughput since the sender will have to wait

for the RTO to expire before retransmitting. The difficulty of this task is caused by the varying

Round-Trip Time (RTT), which tells how long a segment needs to travel across the network,

and back. In other words, how long time a segment with data needs to reach the receiver, and

how long it takes for the ACK to return (not accounting for other delays like processing time).

If RTT was a constant value, one could roughly set RTO = RTT. However, this is not the case,

and there are several proposals on how to measure RTT and how to set the RTO based on these

measurements. These methods will be discussed later, as they are an important mechanism in

several of the TCP flavors targeted for enhancing TCP over satellite. RFC-793 only suggest one

1A segment with the ACK-flag set is usually referred to as an ACK or an ACK segment.

13

2.2. THE TRANSMISSION CONTROL PROTOCOL, TCP

method, but this was later improved by Van Jacobson and Karels [22]. This method is used in

one of the earlier, more popular TCP flavors: TCP Reno. A presentation of the entire algorithm

is outside the scope of this paper, but Figure 2.5 shows the measured performance. The dotted

line represents actual segments and their RTT. The solid line represents the RTO as set by the

algorithm. As discussed earlier, we can see that the RTO is ”always” greater than RTT, but not

by too much.

Figure 2.5: Performance of Van Jacobson and Karels RTO algorithm, adopted from [22]

For future reference, it should be noted that there is another way to reach timeout. If a segment

is lost in transit but the preceding segments arrive, the TCP receiver will buffer the incoming

segments, but generate an ACK which is a duplicate of the previous ACK sent. RFC-793 states

that this ACK should be discarded when arriving at the sender, but other flavors e.g. Reno and

Tahoe uses these duplicates: Three duplicate ACKs indicate a lost packet.

When recovering from lost or disordered segment, the receiver will sort them according to se-

quence number before the data is delivered to the upper layers. The sorting and retransmis-

sion is the two mechanisms which enable TCP to deliver reliable and in-order transmission of

data.

14

CHAPTER 2. TECHNICAL BACKGROUND

2.2.5 Congestion Avoidance and Control

The previous section described mechanism which makes sure a receiver is not swamped with

incoming traffic beyond what its buffer can handle. However, the receivers adjustment of rwnd

does not take congestion throughout the network into consideration. Without any mechanism

which limits the TCP flows, they will easily overwhelm the network. As Van Jacobson and Karels

states in the introduction to their paper ”Congestion Avoidance and Control” [22], there were

early realizations of this problem:

”In October of ’86, the Internet had the first of what became a series of ‘congestion

collapses’. During this period, the data throughput from LBL to UC Berkeley (sites

separated by 400 yards and two IMP2 hops) dropped from 32 kbps to 40 bps. We

were fascinated by this sudden factor-of-thousand drop in bandwidth and embarked

on an investigation of why things had gotten so bad.”

Their, and other investigations resulted in several new mechanisms. The Slow Start and Con-

gestion Avoidance were made mandatory, while Fast Recovery and Fast Retransmit are recom-

mended, as stated in RFC-1122. This section will only describe the two first. The Slow Start and

Congestion Avoidance mechanisms added two new variables called congestion window (cwnd)

and slow start threshold (ssthresh) to the TCP flows. Where it earlier only was the rwnd who

governed the maximum allowed flight size, it is now set to the minimum of cwnd and rwnd. The

ssthresh determines whether to use the Slow Start or Congestion Avoidance algorithm to govern

the flow. RFC-1122 specifies the algorithms to be used as the ones described in ”Congestion

Avoidance and Control” from 1988. However, several other algorithms has been proposed, and

the difference between flavors of TCP (Reno, NewReno, BIC, CUBIC, Hybla etc.) are often in

their congestion avoidance and control algorithms. This section will describe the algorithms de-

scribed in ”Congestion Avoidance and Control” for reference (used in TCP Tahoe, and form the

foundation for several other flavors), as other flavors and algorithms will be described later.

Slow Start Threshold The ssthresh governs which congestion control algorithm should be

used. The slow start algorithm is used when cwnd ¡ ssthresh, or until congestion is experienced,

while congestion avoidance is used otherwise. ssthresh should initially be set arbitrarily high,

e.g. to the size of the largest possible advertised window. This is to make sure that it is the

network capacity which limits the increase of cwnd, and not the ssthresh. When experiencing

congestion the ssthresh must be reduced to half the current cwnd.

2Interface Message Processor, an equivalent of today’s routers. Connecting the different networks of the

ARPANET together.

15

2.2. THE TRANSMISSION CONTROL PROTOCOL, TCP

Slow Start The slow start algorithm is used in the beginning of a transmission or in the restart

after loss. The purpose is to probe the ”unknown” network to discover its capacity by slowly

increasing the cwnd. It is important that this increase is not too slow or too fast, as this would

make the probing ineffective. The size of the congestion window after the three-way handshake

is called Initial Window (IW) and is set to one segment (proposed to be up to four segments in

RFC-5681).

After the IW has been set, the cwnd is increased by 1 segment for each segment that has been

acknowledged, as depicted in Figure 2.6. Thus, cwnd increases exponentially.

Figure 2.6: The slow start algorithm

Congestion Avoidance During congestion avoidance, the cwnd should be increased by 1/cwnd

(in segments) per received ack as seen in Figure 2.7. This results in an increase of 1 segment

per RTT, and thus it increases linearly, until congestion is experienced. If a timeout (packet

loss/error) occurs, the ssthresh is set to half the current cwnd, and the cwnd is set to 1 seg-

ment which forces slow start. The slow start will then exponentially increase the cwnd until the

ssthresh is reached (which is set to half of the last window size where we ”got in trouble”) - after

which the congestion avoidance algorithm is used.

16

CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.7: The congestion avoidance algorithm

2.3 Satellite Characteristics

This section briefly describes the characteristics of a satellite link which are relevant to TCP

traffic and who cause some of the challenges which will be discussed later.

2.3.1 Delay

The RTT in a transfer consist mainly of two components: Propagation delay, and serialization

delay. One may also experience processing delay at the end-hosts and intermediary network

equipment. Serialization delay is the time it takes for a sender to realize the bits onto the

medium, i.e. the packet size divided by the bandwidth. However, these delays are very small

when compared to the propagation delay across satellite links. Another source of delay appears

when traffic overflows the available bandwidth. The overflow traffic is buffered in front of the

bottleneck while waiting to be transmitted. Depending on the size of the buffer, this will cause

additional delay.

2.3.1.1 Propagation

A satellite link is, because of the distance between the satellite and the earth, prone to propa-

gation delay of various length depending on the altitude of the satellite orbit and the position

of the Earth station. Communication satellite orbits are usually categorized into Low-Earth-

Orbit (LEO), Medium-Earth-Orbit (MEO) and Geostationary orbit (GEO). In a GEO orbit the

17

2.3. SATELLITE CHARACTERISTICS

satellite stays stationary relative to the Earth’s surface, and these satellites are the focus in this

paper.

GEO satellites also have the highest altitude of the three categories; 35768km.

The high altitude consequently forces a signal to propagate over long distances before reaching

the satellite, and back to earth. This propagation delay can easily be calculated:

RTT = 4×
d

c

where d is the distance from the earth station to the satellite and c is the speed of light. Following

is a short example calculating the RTT between Ålesund, Norway (62°N, 6°E), and one of the

several Norwegian THOR satellites in GEO orbit at 1°West:

d =
√

R2
e + r2 − 2Rer cos(γ)

where Re is the radius of the earth, r is the distance from the earth center to the satellite, and

cos(γ) is calculated as follows:

cos(γ) = cos(Le)× cos(le − ls)

where Le is the latitude of the earth station, le and ls are the longitude of the earth station and

satellite, respectively. This yields:

cos(γ) = cos(62)× cos(6− (−1)) = 0, 47

d =
√

63782km+ 421642km− 2× 6378km× 42164km× 0, 47 = 39603km

RTT = 4×
3960.3000m

3× 108m/s
= 528ms (2.1)

This shows that the RTT between two peers in Ålesund, connected via a GEO satellite, should

be at least 528ms. This does not take account any delay on board the satellite or delay induced

by ground equipment like a satellite modem.

2.3.1.2 Buffer

A satellite modem may contain a buffer of substantial size to store overflow traffic trying to enter

the satellite link. There may be several reasons for using such a buffer - one is the delay before

bandwidth becomes available, i.e. the time it takes for resources/bandwidth to be allocated to

18

CHAPTER 2. TECHNICAL BACKGROUND

the modem. In this period, the modem may want to store the incoming traffic. In addition, some

modems use the buffer as a measure of bandwidth requirements. When the buffer utilization

gets close to its maximum capacity, this is interpreted as a sign of too little bandwidth available,

and the modem request more resources. And vice versa when the buffer is emptying.

Packets residing in the buffer cause increased delay, and hence increased RTT. The additional

delay can easily be calculated as data in buffer divided by the rate at which the buffer empties,

or for worst case: BufferSize
Datarate . In [8], where several modems and equipment are evaluated, buffers

of up to 400 kB are mentioned. Delay caused by buffer where for some systems measured as

high as 5.5 seconds, giving a total of 6 seconds RTT. In addition this delay can be, in contrary

to propagation delay, very varying as the buffer fills and empties, giving the transport layer and

TCP difficulties, for example in determining appropriate retransmission timeouts (RTO).

2.3.2 Packet-loss and bit error

Due to channel degradation caused by fading, interference, noise etc., a satellite link may have

a higher average Bit Error Rate (BER) compared to e.g. links utilizing copper and fiber cables.

The BER typically lie between 10-4 and 10-12, which are much higher than wired links [13],

[23], [24], [25], [26], [27]. Packet loss might also occur due to imperfect and variable bandwidth

allocation and control in a satellite. If a link is allocated insufficient bandwidth, or the allocation

is too delayed, this could lead to overflowing queue/buffer at a satellite modem.

2.3.3 Bandwidth Asymmetry

Bandwidth in the forward direction, i.e. from the satellite and down to the earth station, is

usually much higher than in the reverse direction. This asymmetry can be in the order of 10:1 or

more [13]. Some systems also have no uplink at all, in which return traffic must use a terrestrial

network - this is often referred to as a hybrid solution. However, it is important to note that

this is not a physical limitation valid for all satellites; it is merely a satellite design decision.

The design requirements might also vary between civilian/commercial and military use, where a

typical civilian customer usually download more data than he uploads (this conception has been

challenged by the increasing use of peer-to-peer technologies like the torrent protocol). It is fair

to assume that this characteristic is not present in a military setting, and a symmetric link is

more common. Consequently, this characteristic will not be assessed further in this thesis.

19

2.3. SATELLITE CHARACTERISTICS

20

Chapter 3

Challenges

This section will explain the challenges which arise due to the previous explained characteristics

of satellites and TCP. Note that the challenges presented might be de facto solved, or there exist

proposed solution. These solutions are presented in Section 4. The challenges can be summarized

into two main problems:

• TCP transmits a certain amount of data, restricted by cwnd or rwnd, and then has to

wait for an acknowledgment before continuing. As the delay over a link increases, the later

these acknowledgments will arrive - causing the TCP throughput to increase more slowly.

This under-utilization gets worse for high bandwidth links as the sender can fill the flight

size faster and thus wait longer. This penalty is defined by the product of bandwidth and

RTT of the link.

• TCP interprets any lost segment as a sign of congestion and reacts accordingly. For all

TCP variants not especially designed for lossy networks this causes the sender to back

off and reduce its cwnd. This reaction is erroneous if the segment was lost over a lossy

(i.e. channel fading) satellite link and will result in under-utilizing of the bandwidth and

reduced throughput for the user.

3.1 Bandwidth-delay product - Maximum Window Size

The Bandwidth-Delay Product (BDP) tells how much data can be ”in-flight”, i.e. the flight size,

over a link. When this product becomes so large that TCP performance is degraded, the link is

called a long fat pipe, and a network containing such a link is called LFN (Long Fat Network).

The BDP in such a network sets the minimum size of the buffer at each peer if the peer wants

21

3.2. BANDWIDTH-DELAY PRODUCT - SLOW START DURATION

to ”fill the pipe”, i.e. maximize throughput. From earlier sections we have seen that the buffer

limits the amount of unacknowledged data each peer can handle, consequently limiting the flight

size.

A link with a RTT of 528 ms (from previous section) and a bandwidth of 3662 kBps results

in a BDP of 1933 kB. This means that the flight size and hence the cwnd should be at least

1933 kB. However, if a receiver has such a buffer available, could he signal it to the sender? In

Section 2.2.2 we saw that the Window field was 16 bits long, giving the receiver a possibility

to signal a window of maximum 65535 bytes - not nearly enough to ”fill the pipe”. The sender

can consequently transmit 65535 bytes, but then has to wait 528 ms (from the first segment was

sent) before transmitting again. The resulting (and maximum) TCP throughput over this link

can easily be calculated:

throughputmax =
windowsize

RTT
=

65kB

528ms
= 124kbps (3.1)

Clearly, this is a serious under-utilization of the available bandwidth, and presents a challenge to

achieving effective TCP transmission. Note however, that this is the limit of a single TCP flow

and one may assume that a situation where there is only one TCP connection over a satellite

link is fairly rare. Several simultaneous TCP connections might still be able to utilize the entire

bandwidth.

3.2 Bandwidth-delay product - Slow Start duration

As described in Section 2.2.5 the slow start algorithm is used at the start of a transmission,

and the IW is set to 1 segment. The cwnd will then increase exponentially by 1 segment for

each acknowledgment received until a segment is lost. However this has been shown to be too

slow and inefficient on high BDP links - especially for transmissions which are short compared

to the BDP [28]. For reference, the BDP in the previous section was calculated to 1933kB. Any

transmission which transmit less than 1933kB, e.g. HTTP or e-mail transfers, are certain to be

inefficiently transfered.

Our goal is to use Congestion Avoidance as soon as possible, since this implicitly means that the

links is using close to the maximum bandwidth available (a segment has been lost). As depicted

in [25], the time a connection spends using the slow start algorithm, and the average throughput,

can respectively be calculated (”roughly”) as:

SlowStartT ime = RTT ∗

(

1 + log2

(

BDP

MSS

))

(3.2)

22

CHAPTER 3. CHALLENGES

SlowStartThroughput =
2×B −

MSS
RTT

log2
(

BDP
MSS

) (3.3)

Where MSS is the maximum segment size and B is the bandwidth of the link. Using values from

previous sections and 1460 byte1 TSS results in a 6 second SlowStartTime, a 0.7 MBps average

throughput and a total of 4.2 MB transfered during slow start. Consequently, in our example,

shorter transfers than 4.2 MB would in fact never use Congestion Avoidance and never utilize

the entire bandwidth. Figure 3.1a shows the duration of the slow start algorithm (Eq. 3.2) as

a function of bandwidth, while Figure 3.1b shows data transmitted (Eq. 3.2 multiplied with Eq.

3.3). And the latter can be used as a reference to find the smallest transfer which can potentially

utilize the given bandwidth. The difference between high and low BDP links are clearly shown,

and it is evident that a transfer using LAN will almost certain exit slow start (utilize most of

the bandwidth) and use congestion avoidance. However, one could assume that a single TCP

transmission over satellite would rarely get access to as much as 18 MBps bandwidth, since

satellite links usually are divided among several users, making the upper values of bandwidth for

GEO possibly irrelevant.

(a) Duration (b) Data Transfered

Figure 3.1: Duration, and data transfered, during slow start

The results would get even worsed if the transmission utilized Delayed ACK, described in Section

2.2.4. This causes the receiver to wait for maximum 500 ms (waiting for a new segment) before

11500 byte is the Maximum Transmission Unit for Ethernet. IP and TCP headers are minimum 20 bytes each,

giving a maximum of 1460 bytes Segment Size without fragmentation, jumbo frames, or similar techniques.

23

3.3. SEGMENT LOSS

sending an acknowledgment. The result is even longer slow start duration:

SlowStartT ime = RTT ∗

(

1 + log1.5

(

BDP

MSS

))

3.3 Segment loss

The TCP protocol was designed to be used in networks with low bit error. Thus it was fair by

the designers to assume that when a segment did not arrive, it was caused by a congested router

somewhere in the network which dropped the packet. Especially older TCP flavors, like Tahoe

and Reno, penalize the cwnd harshly when a segment is lost. The algorithms always interpret

the loss as if it stems from congestion and conservatively backs off to avoid network congestion.

Many newer flavors make the same assumptions, but reduce cwnd in a different manner - these

will be described later. For reference, we describe Tahoe and Reno:

• TCP Tahoe: Implemented the scheme described in ”Congestion Avoidance and Control”.

When a segment is lost (a timeout of 1-2 seconds has passed), the ssthresh is set to half

the current cwnd, and the cwnd itself is set to 1 segment. Since cwnd ¡ssthresh this causes

TCP to enter slow start. As described in Section 3.2, this will penalize the throughput.

Three duplicate ACKs will trigger Fast Retransmit which cause the sender to immediately

retransmit the lost segment before reducing cwnd, ssthresh and entering slow start.

• TCP Reno: As with TCP Tahoe, if a timeout occurs the cwnd is set to 1, ssthresh is

set to cwnd/2 and slow start initiated. However, when receiving three duplicate ACKs,

Reno utilize an additional algorithm called Fast Recovery which is initiated after Fast

Retransmit. With Fast Retransmit the cwnd is ”only” halved, and ssthresh is set to

cwnd/2, such that cwnd = ssthresh. In addition, cwnd is increased for each duplicate ACK

received. Consequently, this causes the transmission not to enter slow start but remain in

congestion avoidance.

If the lost segment is caused by network congestion, the actions above are rational. The through-

put is penalized, yet it avoids swarming the network with data and causing situations like the

32kbps-to-40bps throughput drop between LLC and UC Berkeley in 1986, observed by Van Ja-

cobson and Karels. However, when a segment is lost due to bit errors, there would be no need

to back off. The result is an unnecessary drop in throughput. Corrupted packets does not cause

serious problems in most wired network since they a) have a very low BER, and b) have low

latency. The low latency allow them to quickly increase the cwnd after a loss (Figure 3.1a),

thus decreasing impact on the performance.

The situation over a satellite is quite opposite: both BER and latency is significantly higher. In

other words, the throughput drops occur more frequently and last for a longer period. Tahoe

24

CHAPTER 3. CHALLENGES

halves the ssthresh, sets cwnd to 1 segment and initiates slow start. The performance would then

be equal to a brand new connection, as seen in Figure 3.1. In addition, the ssthresh is at least

half the BDP (maximum), and this lowered ssthresh will cause the connection to use congestion

avoidance on a earlier state, thus causing even slower increase in cwnd.

A worse scenario is a packet loss during an initial slow start. This would cause TCP to enter

congestion avoidance, and increase the cwnd even slower as described in Section 2.2.5. The result

would be a TCP connection with very poor throughput which slowly improves.

Shown earlier, TCP Reno is an improvement compared to Tahoe, since its back-off is much

more liberal than the ”cwnd = 1”-behavior of Tahoe (with respect to performance over long fat

pipes). But Reno and even further developments like NewReno, Vegas, Westwood etc. are prone

to reduced performance on lossy links. Research and numerous simulations shows that even a

”small” (∼0.1%) Packet Error Rate (PER) could have a huge effect on their throughput - some

select results may be seen in [29], [30], [31] and [32]. Note the difference between BER and PER:

A PER of 1% could result from a BER as low as 8.3e-7: 1 bit error in every hundred packet,

where each packet is 1500bytes, i.e. 12000bits.

Figure 3.2: Wireless link errors impact: goodput after 180 s of a GEO satellite connection (RTT

= 600 ms) at different PER values (0 %, 0.1 % and 1 %). Adopted from [30].

Figure 3.2 shows measurements from [30] for different PER values. RTT was 600ms, bandwidth

was 10 Mbps, and the measurements were taken after 180 s. The results show the devastating

impact on throughput induced by PER. For all of the TCP flavors (except Hybla) the drop was

in a factor of 2 or more, even at PER = 0.1%. And at PER = 1% the performance was drastically

reduced to only a fraction of the available bandwidth. The authors of [30] also explain this by

the slow cwnd reopening, caused by the long RTT.

25

3.4. RTT UNFAIRNESS

3.4 RTT Unfairness

Measurements have shown that TCP connections with high RTT is heavy penalized in hetero-

geneous networks [30]. E.g. two TCP senders in the same subnet where both are sending data

to the same receiver. The path used by one of the sender contains a satellite link, while the

other path is only wired. In such a scenario the connection using the low-RTT link will get

favored in terms of bandwidth. Figure 3.3 shows measurements from [30] illustrating this effect

for a wide range of TCP flavors. The study used 5 short-RTT connections competing with a 6th

long-RTT (300 or 600ms). An ideal situation would be a fair division of bandwidth between all

6 connections - about 1.67 Mbps each.

Figure 3.3: RTT unfairness problem: goodput after 180 s of a satellite connection (variable RTT,

PER = 0 %) in presence of 5 short RTT terrestrial background connections (Reno, RTT = 25

ms, PER = 0 %). Adopted from [30].

26

Chapter 4

Proposed Solutions

This section will describe existing solutions to the challenges mentioned above. The solutions

can be divided into two main categories:

• TCP enhancements: Changes made to the standardized TCP to improve its perfor-

mance, this results in new mechanisms or entirely new TCP flavors. These solutions only

require changes on the end hosts, and maintain the end-to-end principle of TCP. Some

mechanisms require sender-side modifications only, while other requires both sides. Exam-

ples are Hybla, CUBIC, Westwood, Selective ACK etc. Also optimizing of TCP parameters

fall into this category, e.g. increasing initial window, Window Scale Option etc.

• Performance Enhancing Proxies (PEP): PEPs are intermediary nodes in the network

which intercept the traffic and does ”something” to increase the traffic performance. There

are several different categories of PEPs which all have different mechanism for improving

the performance, these will be discussed later. To illustrate the general concept, consider a

simplified example with a PEP before and after a satellite link. The PEPs would intercept

the un-encrypted TCP traffic, and transmit it over the satellite utilizing a satellite-friendly

protocol (TCP flavor or entirely different transport protocol). The receiving PEP would

then forward the traffic using TCP. The TCP peers are usually unaware of any presence of

PEPs and their operation. Consequently, this approach violates the end-to-end principle

of TCP. In addition, the PEP is dependent on TCP header information, which may be

encrypted, e.g. if IPsec is utilized. Still, PEPs are the most widely adopted solution [30].

27

4.1. TCP ENHANCEMENTS

4.1 TCP enhancements

Enhancements to TCP can be very difficult to implement because of the interoperability re-

quirement with existing standardized TCP implementations. It would do no good to invent a

brilliant TCP version and install it on a server if there are no clients which can understand its

TCP ”dialect”. One way to achieve wide implementation for a new TCP flavor is following a

standardization path - however this can be assumed to be very time consuming. This can be

avoided if one has control over all TCP peers, e.g. military, corporate or diplomatic networks,

and install a new TCP flavor on all hosts and servers. In other words, if we control all peers

communicating through the satellite, we could implement which ever TCP flavor we want. Sadly,

this is rarely the situation. In addition, it would make the use of commercial solutions in a

network difficult since it would require modifications to be interoperable.

If the changes made to TCP are interoperable with existing standards, implementation becomes

much more agile. One example is TCP CUBIC (not standardized by the IETF) which is the

default implementation in the Linux operating system past kernel version 2.6.19 [7]. Another

example is several of the TCP options, which is obviously optional at each end-host. They will

be utilized if both peers support and agree to use them during the three-way handshake. Hence

we can divide the TCP enhancements into two categories:

• Enhancing mechanisms

• TCP Flavors

Each category will be explained and presented in the following sections.

4.1.1 Enhancing mechanisms

This section describes mechanisms which aim to enhance the performance of TCP in various

ways. These mechanisms are standalone, in the sense that they in theory may be applied to any

TCP flavor. Utilizing them in an existing TCP implementation usually does not ”result” in a

new flavor. Such scenarios are often referred to as for example: ”TCP Reno with Window Scale

Option enabled”. A new TCP flavor however, are often characterized by significant changes

from existing implementations, and may or may not utilize one or several of these standalone

mechanisms.

4.1.1.1 TCP Window Scale Option

In Section 3.1 we saw that the receiver can signal a window of maximum of 65535 bytes. For

a large BDP network this result in a significant underutilization of the available bandwidth as

28

CHAPTER 4. PROPOSED SOLUTIONS

seen in Equation 3.1. This limit appears due to the mere 16 bits available in the TCP header to

signal window size. A proposed solution is the TCP Window Scale Option which is described in

Section 2 of RFC-1323, ”TCP Extensions for High Performance” [33].

To solve this problem, one might be tempted to expand the Windows Size field in the TCP

header. However it is infeasible to implement a new TCP header, so the TCP Window Scale

Option is communicated between TCP peers using the options field in the TCP header, see

Section 2.2.2. In a SYN-packet, the sender inserts 3 bytes in the options field, stating it is willing

to use window scaling on both incoming and outgoing segments. The first two bytes identifies

the option (”3” for Window Scale Option), and the length (”3” (bytes)). The last byte identifies

a multiplier which is a number between 0 and 14 and specifies how many bits the Window Size

should be left-shifted. Practically, this expands the Window Size to 30 bits. If the Window

Size is 65535 bytes, and the multiplier is 14, one would multiply 65535 with 214, resulting in a

maximum window of 1073725440 bytes - larger than 1 Gigabyte. Inserting this new value into

Equation 3.1 yields:

throughputmax =
windowsize

RTT
=

1073MB

528ms
∼ 16Gbps (4.1)

This is a major improvement compared to the previous limit of 124kBps. However, as the

bandwidth in future satellites increases, this limit may prove too small in some special scenarios

with very few users. I.e. a single flow has access to more than 16 Gbps over the satellite

link.

Using the emulation setup described in Chapter 5, we can measure the effect of the mechanism.

Figure 4.1 and 4.2 shows result from a FTP transfer between two computers running Windows

7, and are measured over a 2 Mbps link, with 528 ms Round-Trip Time (RTT). The maximum

goodput1 of the link is 1.877 Mbps, or 235 kBps. (see Section 5.7 for details). The link has a

Bandwidth-Delay Product (BDP) of 132 kB, i.e. the Receiver Window (rwnd) should be at least

132kB for the transmitter to be able to ”fill the pipe”. A receiver is not able to signal such a

large rwnd without using scaling. Figure 4.1 shows the effect of this limit as the receiver signal a

maximum rwnd of 65520 bytes (Windows 7). The sender ends up waiting for acknowledgments,

which greatly penalizes the goodput.

Figure 4.2 shows an identical transfer, with Windows Scale option enabled. It is evident that

the limit on goodput is imposed by the link bandwidth and not by the rwnd, as the goodput

reaches the theoretical maximum goodput of the link.

This option is enabled by default on all the most popular operating systems i.e. Linux (since

1Goodput is defined as the rate of correct data delivered to the Application Layer, i.e. the correctly received

amount of TCP segment payload per time unit.

29

4.1. TCP ENHANCEMENTS

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50
 0

 20000

 40000

 60000

 80000

 100000

G
oo

dp
ut

 (
K

B
ps

)

W
in

do
w

 S
iz

e
(B

yt
e)

Time (seconds)

Goodput
Receiver Window Size

Maximum Goodput

Figure 4.1: FTP transfer over high BDP link with TCP Window Scale Option disabled

version 2.2), Windows (for Windows 7, see Figure 4.6) and Mac OS X. It is also recommended in

RFC-2488: ”Enhancing TCP Over Satellite Channels using Standard Mechanisms” [20] - which

has a status of Best Current Practice.

4.1.1.2 TCP Timestamps Option

Timestamps is used for two mechanisms: Round-Trip Time Measurement (RTTM) and Protect

Against Wrapped Sequences (PAWS). These mechanisms are often considered in conjunction

with the TCP Window Scale Option, especially PAWS. They are both recommended in RFC-

2488, which calls them ”companion algorithms” to the Window Scale Option. Timestamps,

RTTM and PAWS are (as Window Scale Option) described in RFC-1323.

The TCP Timestamp Option (kind: ”8”) lets the sender put a 4-byte timestamp in the TCP

header option field. The timestamp is the current value of the timestamp clock at the transmis-

sion of the sender. Note that this is not the actual time-of-day, but a timestamp clock which

values are proportional to a real clock. The receiver will then echo back this timestamp in the

ACK segments.

RTTM subtracts the current value from the timestamps clock from the received/echoed times-

30

CHAPTER 4. PROPOSED SOLUTIONS

 0

 100000

 200000

 300000

 400000

 500000

 0 20 40 60 80 100 120 140 160
 0

 100000

 200000

 300000

 400000

 500000

 600000
G

oo
dp

ut
 (

K
B

ps
)

W
in

do
w

 S
iz

e
(B

yt
e)

Time (seconds)

Goodput
Receiver Window Size

Maximum Goodput

Figure 4.2: FTP transfer over high BDP link with TCP Window Scale Option enabled

tamp, and thus have calculated an accurate RTT. This can be done for every segment, also

retransmissions. For most TCP flavors, RTT measurements is done for one segment per window,

by measuring the time it takes between a segment is sent until its ACK is received. This is suffi-

cient when the window is small. However, RFC-1323 states that a higher frequency of sampling

is needed to assure correct values for RTT when the window is large.

PAWS use the timestamp for a completely different challenge. A fundamental assumption in

TCP is that the sequence numbers uniquely identify a byte, i.e. there will never exist two bytes

with the same sequence number in the network at the same time (for our flow). The network

layer ”guarantees” that a IP packet (containing a segment) will stay in transit no longer than

two minutes [14]. Consequently, if a TCP peer sends a byte, it cannot send a byte with the same

sequence number for at least two minutes. This limits the maximum data rate to 286 MBps or

2.2 Gbps [23]. As a larger window facilitates higher throughput, this limit needs to be addressed:

PAWS uses the timestamp along with the sequence number to uniquely identify and distinguish

bytes with the same segment number.

Windows supports timestamps, RTTM and PAWS, but has different policies on utilizing it. For

example, in Windows Server 2003 it is enabled by default, while in Windows 7 it is disabled.

In Linux, it is enabled by default since version 2.2. Newer versions of Mac OS X also use it by

default.

31

4.1. TCP ENHANCEMENTS

4.1.1.3 Increasing Initial Window (IW)

As discussed in Section 3.2 the slow start algorithm often increases the Congestion Window

(cwnd) too slow, resulting in under-utilizing of the available bandwidth. This is especially

apparent when transfers are short compared to the BDP. One approach to reduce the duration of

the slow start algorithm is to increase the initial value of the cwnd, known as Initial Window (IW).

This would cause more segments to be sent during the first RTT of transmission. Consequently,

more ACKs will be returned to the sender, and this results in a more rapid increase of cwnd.

The value of IW was initially set to 1 × Maximum Segment Size (MSS). However, research has

shown major throughput improvements on TCP transfer over satellite links using larger IWs,

see for example [34] and [35].

Figure 4.3: Improvement of throughput, compared to IW = 1 × MSS, for different values of IW.

Adopted from [34]

Figure 4.3 shows the benefits of increased IW across a 560 ms delayed link. It is evident that

even small increases to IW results in significant improvement. Note the difference between short

and long transfer, and the fact that for longer transfers, a larger IW does not results in any

significant improvement, as expected.

There are several proposals to a standardized value available, and currently the most up-to-date

(October 2002) RFC is RFC-3390: ”Increasing TCP’s Initial Window”. It proposes an increase

32

CHAPTER 4. PROPOSED SOLUTIONS

of IW up to 4 × MSS 2 [36], which is widely used today [37].

Using Wireshark3 one may easily find the Initial Window (IW) behavior of any operating system.

Figure 4.4 and 4.5 shows Wireshark captures of the first segments exchanged in a FTP transfer.

Common for both is the first three segments which constitutes the three-way handshake, i.e.

setting up the TCP connection. Following the setup is the first transfer of actual data - the

amount of segments sent is governed by the IW. Figure 4.4 shows the default IW of Windows

7 (tests shows same IW for Windows 7 with Compound TCP enabled) being 2, while Figure

4.5 shows a value of 3 segments for Ubuntu 10.10. The value for Ubuntu is in accordance with

the values given in RFC-3390, and the Ubuntu manual4 actually states it uses the algorithm

in RFC-2414, which has been obsoleted by RFC-3390 (but the upper limit for Initial Window

remained the same).

Figure 4.4: Wireshark capture showing default Initial Window in Windows 7 (TCP NewReno)

Figure 4.5: Wireshark capture showing Initial Window in Ubuntu 10.10

There is also an ongoing work, initiated by Google Inc., aiming to increase the IW to 10 ×

MSS. This is documented in an Internet draft: ”Increasing TCP’s Initial Window” [38], and

in a corresponding article ”An Argument for Increasing TCP’s Initial Congestion Window”

[37].

4.1.1.4 Selective Acknowledgment

The Selective Acknowledgment option is described in RFC-2018 [39]. As described in Section

2.2.4, TCP acknowledges a received segment with an ACK segment containing the sequence

2The actual algorithms reads: min (4*MSS, max (2*MSS, 4380 bytes)) For Ethernet with MTU at 1500 bytes

and MSS at 1460 bytes, this will result in an IW of 3 × MSS.
3”Wireshark is the world’s foremost network protocol analyzer. It lets you capture and interactively browse

the traffic running on a computer network. It is the de facto (and often de jure) standard across many industries

and educational institutions.” www.wireshark.org. Further described in Section 5.6
4http://manpages.ubuntu.com

33

4.2. TCP FLAVORS

number of the next segment it anticipates to receive. However, the receiver will only send the

ACK if the received segment is at the left (the next segment number) of the receiver window, i.e.

it was the segment it was expecting to receive. Consequently, if the expected segment was lost,

but the preceding segments arrive, the receiver will send a duplicate of the previous ACK. The

sender will retransmit the lost segment, and either continues with the next segments (which may

have already arrived) or wait for an ACK to see how many segments actually arrived. Either

way, TCP uses one RTT to recover for each lost segment in a window. If multiple segments were

lost in the same window, the procedure above would have to been repeated, causing TCP to

use several RTTs before recovering. Since this restricts the flow of ACKs, it would penalize the

expansion of cwnd and the overall throughput of the transfer. Especially for a long-RTT satellite

link, this would be devastating. In addition, TCP over satellite may utilize TCP Window Scale

Option described in Section 4.1.1.1; larger windows increase the possibility of more lost segments

existing within the same window.

A proposed solution is Selective Acknowledgments (SACK). Once the traffic flow has begun;

if the receiver experiences lost segments in a window, it will send an ACK containing (in the

Option field) a list of all received segments, regardless of their position in the receiver window.

Consequently, this identifies all segments which have not been received. The sender can then

retransmit all the lost segments and continue transmitting at the correct segment number, re-

sulting in a period of 1 RTT of penalty for up to 4 missing segments5 in the same window. SACK

utilizes the Option field in the TCP header. During connection establishment, the TCP sender

will send a SYN segment with the SACK-Permitted Option (kind: ”4”) set in the Option Field

- telling the receiver it may use SACK.

The Selective Acknowledgment option is widely accepted and is recommended in RFC-2488.

The option is enabled by default in Linux (since kernel 2.2) and in newer versions of Mac OS X.

Wireshark captures (Figure 4.6) shows this is enabled by default in Windows 7 as well.

4.2 TCP Flavors

This section will present the TCP flavors which are selected for evaluation and for testing through

emulation. It is important to note that each variant implicitly uses most of the mechanisms

explained throughout several of the previous sections. This section will focus on the relevant

and unique characteristics of the flavors, which usually is the congestion algorithm. All flavors

are sender-side modifications only, and are compatible with existing TCP implementations. The

four selected TCP variants are:

5This limitation is due to the maximum 40 byte large Option field. If other options are in use, this amount

may decrease.

34

CHAPTER 4. PROPOSED SOLUTIONS

Figure 4.6: Wireshark capture shows Selective Acknowledgment enabled by default in Windows

7.

• TCP NewReno

• CUBIC

• Compound TCP (CTCP)

• TCP Hybla

In addition, Space Communications Protocol Specifications (SCPS) - Transport Protocol (SCPS-

TP), will be presented for reference and comparison. This is a set of specifications which makes

modifications to TCP and utilize several of the available options. However, in most literature

this is depicted as in a different category than TCP, i.e. not a TCP flavor but a new protocol.

The SCPS-TP is tailored for space and satellite environments, and was earlier standardized

by the USA Department of Defense (DoD), but is today a ISO standard. The focus on space

communication and its military background and standardization makes this protocol a relevant

topic.

4.2.1 TCP NewReno

TCP Reno is by some called the reference TCP flavor, and it has enjoyed wide employment since

it was released. A few changes have been proposed to its Fast Recovery algorithm, and Reno

with these modifications in place are called TCP NewReno. NewReno is described in RFC-2581

[40] and RFC-3782 [41]. As mentioned in Section 3.3, TCP Reno introduced a new mechanism

called Fast Recovery, and also utilizes Fast Retransmit seen in TCP Tahoe.

Fast Retransmit utilizes the duplicate ACKs which a TCP receiver will send if it receives a

segment with a higher sequence number than it expects, i.e. a segment has most likely been lost.

35

4.2. TCP FLAVORS

If the TCP sender receives three duplicate ACKs, it assumes the segment is lost, and immediately

retransmits the lost segment, without waiting for the segment timeout timer to expire. With

TCP NewReno (and Reno), the sender then enters Fast Recovery.

Fast Recovery will not (as with TCP Tahoe) set cwnd = 1 and initiate slow start. It will keep the

connection in Congestion Avoidance, set ssthresh to cwnd / 2, and cut cwnd in half. In addition,

for each duplicate ACK it receives, Fast Recovery increases the cwnd by one segment. This will

diminish the penalty on the throughput since the sender allows itself to send more segments in

spite of the fact that no acknowledgments have been received. Fast Recovery ends when an ACK

for all retransmitted segments has been received - in which the sender will stay in Congestion

Avoidance and cwnd set to ssthresh (which was set to cwnd / 2 when three duplicate ACKs was

received).

When multiple segments are lost in the same window of data, the sender can receive partial

ACKs, an ACK that acknowledge some, but not all of the retransmitted data. Using the old Fast

Recovery (used in TCP Reno), this would cause the sender to exit Fast Recovery. But duplicate

ACKs would still be received, causing a re-entry to Fast Recovery (and halving of cwnd), which

eventually would lead to very small cwnd and a timeout. NewReno interprets this as a loss

of the segment sent immediately after the segment acknowledged in the partial ACK. It thus

retransmits this segment and stays in Fast Recovery until all lost data is acknowledged.

It should be noted that the Fast Recovery behavior when receiving duplicate ACKs is not neces-

sary when utilizing Selective Acknowledgments (see Section 4.1.1.4), since the sender will know

which segments is lost, and may immediately retransmit them. Selective Acknowledgments are

default in most newer operating systems, but since the mechanisms acquire both sides to support

the option, scenarios may often arise where the NewReno Fast Recovery is needed.

The increasing of cwnd during Slow Start and Congestion Avoidance in TCP NewReno follows

the scheme outlined in Van Jacobson and Karels ”Congestion Avoidance and Control”, i.e. it is

as ”slow” as TCP Tahoe (and as depicted in Section 2.2.5) to increase it cwnd. The behavior is

summarized in Table 4.1.

State Behavior

Slow start cwnd = cwnd + 1 segment each ACK

Congestion Avoidance cwnd = cwnd + 1 segment each RTT

3 dup. ACK Fast Retransmit

Timeout ssthresh = cwnd / 2, cwnd = 1 segment

Fast Retransmit Immediate retransmit lost seg. -¿ Fast Recovery

Fast Recovery ssthresh = cwnd / 2, cwnd = (cwnd / 2) + 1 seg. per dup. ACK.

Table 4.1: Overview of TCP NewReno behavior

36

CHAPTER 4. PROPOSED SOLUTIONS

It is difficult to learn details about TCP implementations in Microsoft operating systems, since

the source code is not open like in Linux. Most information is therefore obtained via official

and unofficial web pages, and published papers. Windows Vista utilize the brand new (in 2006)

designed TCP/IP stack (which included NewReno and CTCP), and the newer Windows Server

2008 also utilize the stack [42]. Consequently, Vista uses NewReno, and it is fair to assume that

it is used in Windows 7.

4.2.2 CUBIC

CUBIC is described in [16] and since kernel 2.6.19 it has been the default TCP flavor in Linux.

It is an improvement over TCP BIC (which was default in kernel 2.6.18), and the authors

claims it ”(...) simplifies the BIC window control and improves its TCP-friendliness and RTT-

fairness.”.

Figure 4.7: The Window Growth Function of CUBIC [16]

The behavior of the Congestion Window (cwnd) when loss occurs is significantly different than

TCP Reno. One of the most fundamental differences is its independence of the RTT. As dis-

cussed, cwnd in Reno is dependent on ACKs being received, which again is dependent on the

RTT. CUBIC on the other hand, increases its cwnd based on the time elapsed since last a segment

was lost.

The cwnd behavior can be seen in Figure 4.7. When a segment is lost, Wmax is set to the value of

the cwnd when the loss occurs. Wmin is set by a multiplicative decrease β of Wmax. The cwnd is

then set to the midpoint between Wmin and Wmax. CUBIC assumes that the ”correct” window

lies somewhere between its current cwnd, but before Wmax (where it ”got into trouble” the last

time), so it starts increasing the cwnd rapidly, before slowing down as it gets closer to Wmax.

37

4.2. TCP FLAVORS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60

S
eg

m
en

ts
 (

cw
nd

, s
st

hr
es

h)

time (seconds)

snd_cwnd
snd_ssthresh

Figure 4.8: cwnd of CUBIC during FTP transfer over 500 kbps link with 528 ms RTT

When it reaches Wmax, CUBIC assumes the correct maximum is further up and therefore begin

to exponentially increase the cwnd. This behavior is governed by the following equation:

cwnd = C(t−K)3 +Wmax (4.2)

Where C is a scaling factor, t is the elapsed time since last a segment was lost, and K is:

K =
3

√

Wmax ×

β

C
(4.3)

Evidentially, RTT is not a part of the equations, making cwnd a function of the time since

last loss, the Wmax, and various constants. The creators point out that for short RTTs, Reno

actually increase its cwnd more aggressively than CUBIC.

Figure 4.8 shows the actual cwnd measured at a Linux TCP sender using CUBIC. snd cwnd

denotes the senders cwnd while snd ssthres is the slow start threshold described in Section 2.2.5.

One may note that every second ”period” the cwnd seems to be heading for a higher plateau,

which should be placed at Wmax. This is due to a modification (details in [43]) of the original

algorithm when implemented in Linux. The plateau is adjusted based on whether the last Wmax

is increasing or declining when compared to the previous Wmax. It should also be noted that

CUBIC has an limitation on how fast the cwnd is allowed to grow. When Wmax is far away,

38

CHAPTER 4. PROPOSED SOLUTIONS

or unknown, CUBIC expands cwnd aggressively, but the limit will constraint the growth to be

linear.

The following are presumably not governed by CUBIC, but is mentioned to correct any miscon-

ception. CUBIC regards three duplicate ACKs as a lost segment and immediately retransmit,

identical to Fast Retransmit. It also utilize the Slow Start algorithm at the start of a transmis-

sion, but has a initial window of 3 segment, compared to 2 segments in Windows 7.

4.2.3 Compound TCP

Compound TCP (CTCP), is developed and patented by Microsoft, and is presented in [44] and

[45]. The protocol is interesting because it is deployed in several operating systems released by

Microsoft. It is enabled by default in Windows Server 2008, while available (but disabled by

default) in Windows 7 and Vista. Also, a hotfix is available which adds CTCP capability to

Windows Server 2003 and 64-bit Windows XP. A Linux implementation (research purposes only,

due to patents) was made by California Institute of Technology (caltech), but due to changes in

kernel 2.6.17 it malfunctioned, and support has been discontinued6.

CTCP aims to improve performance in high BDP networks, while retaining friendliness to other

TCP flavors, and intra-protocol fairness to flows with different RTT. The authors divide efforts

to improve TCP into two categories: Loss-based and delay-based. Loss-based TCP schemes use

loss to indicate congestion, like TCP NewReno, Cubic, etc. On the other hand, delay-based

schemes use variation in RTT to estimate congestion. CTCP proposes to add a delay-based

component on top of a loss-based flavor, e.g. NewReno, to create a Compound TCP. The key

idea is to aggressively expand the window if excess bandwidth is available, and back-off when

the link is getting congested, allowing all flows a fair share. The creators suggest Reno (or other

loss-based flavors) does not achieve this sufficiently by itself.

CTCP introduces a new variable called Delay Window, or dwnd. This is set by the delay-

based component of CTCP. The ”old” cwnd will remain as usual and is set by the loss-based

component, e.g. NewReno, more or less unchanged. The actual window which governs the

amount of unacknowledged data in flight is called win and is set accordingly:

win = min(cwnd+ dwnd, awnd) (4.4)

Where awnd is the advertised receiver window (denoted earlier as rwnd). Initially, dwnd is

set to 0, which results in CTCP using the regular Slow Start algorithm described in several

sections. The delay-based component (i.e. dwnd is not enabled until the transmission enters the

Congestion Avoidance phase and win exceeds a threshold Wlow .

6http://netlab.caltech.edu/lachlan/ctcp/

39

4.2. TCP FLAVORS

The delay-based component measures congestion, i.e. data being buffered using the following

equations:

ExpectedThroughput =
win

baseRTT
(4.5)

ActualThroughput =
win

sRTT
(4.6)

Diff = (Expected−Actual)× baseRTT (4.7)

sRTT is the current measured RTT. baseRTT is the minimal RTT seen this far, up to the

connection was started. This is assumed to be the actual RTT of the connection, i.e. no buffer

or similar is delaying the data. Dividing the actual congestion window win with the baseRTT

gives an expected throughput without congesting the network. Actual throughput is calculated

using sRTT which is approximately the current RTT. Diff is the number of bytes which has

entered the network and presumably fills up a buffer. A congestion is detected if Diff ¿ γ, where

γ is a given threshold. The setting of γ is important, since this decides how many packets should

be allowed to be in the buffer. A too low value would cause unnecessary back-off, while a too

high would cause unfairness and possible congestion. In [44] this value was set to 30 packets,

while in [45] a dynamic algorithm is suggested. It is not known which scheme Windows 7 utilizes,

and if dynamic, it is difficult to calculate since it utilizes parameters which may differ for each

implementation. For details on the dynamic adjustment of γ, see Section 6.1.1 and [45].

A summary of the behavior of the congestion window win during CTCP can be seen below.

When no delay or loss is experienced, i.e. none of the components detects congestion, the win

obeys the following:

win(t+ 1) = win(t) + α× win(t)k (4.8)

Where α and β are tunable parameters. win is expanded by a factored and powered value of the

previous win. Evidently the expansion of wnd depends on the implementors choice of parameter

values. And when a loss is experienced:

win(t+ 1) = win(t)× (1− β) (4.9)

and k are all tunable parameters. Note the multiplicative decrease in case of a packet loss, which

differ (if not set to 0.5) from the behavior of TCP NewReno. One may also express the behavior

of the delay-based component; when γ is larger than diff, i.e. excess bandwidth is available:

dwnd(t+ 1) = dwnd(t) + (α× win(t)k − 1)+, if diff < γ (4.10)

And when increased delay and congestion has been sensed:

dwnd(t+ 1) = (dwnd(t) − ζ × diff)+, if diff < γ (4.11)

40

CHAPTER 4. PROPOSED SOLUTIONS

ζ is a tunable parameter governing how rapid dwnd should decrease. The authors point out that

dwnd never is negative, which results in the loss-based flavor being a lower bound of the window.

Due to the extended use of tunable parameters, it is difficult to outline a specific behavior of

CTCP. Generally, the protocol should be more aggressive than the loss-based flavor it is paired

with, but still retain the loss-based fairness and friendliness.

4.2.4 TCP Hybla

TCP Hybla is presented and described in [17] from 2004 - making it a fairly young TCP flavor.

It aims to provide increased performance in high RTT and lossy networks, e.g. networks with a

satellite leg. In addition, it tries to solve unfairness between TCP flows with different RTT.

Hybla proposes new Slow Start and Congestion Avoidance algorithms, and similar to CUBIC

they are independent of the RTT. A thorough presentation can be found in [17], and Figure 4.9

present a set of equations from this paper where γ = ssthresh, tγ = RTT × log2γ, W is cwnd,

B is throughput, and superscript ”H” denotes Hybla.

Figure 4.9: Set of equations from Hybla presentation. [17]

Equations marked 2 and 3 is the cwnd and throughput of Van Jacobson and Karels Slow Start

(SS) and Congestion Avoidance (CA) algorithms used in e.g. NewReno, described in Section

2.2.5. They depend directly on the RTT, as seen in the equations. To remove this dependence,

the creators of Hybla introduce ρ (equation marked 5). This variable is constantly calculated

during a transmission as the measured RTT is divided by the RTT (RTT0) of a link in which

41

4.2. TCP FLAVORS

we want Hybla to equalize in performance. A reasonable value of RTT0 would be the RTT of

a transmission which include a satellite link, but subtracted the satellite delay penalty. I.e. if

the RTT of a path is 600 ms, and 550 ms of this is caused by the satellite link, RTT0 could

be set to 50 ms. If the value is set too low, it will cause Hybla to penalize TCP flows with

higher RTT. The normalized RTT0 will be multiplied with time and the cwnd, and result in

equation marked 6 and 7. The cwnd and throughput will consequently be independent of time.

The final equation (9) shows the resulting function which governs the update of cwnd as ACKs

are received. It should be noted when the cwnd reaches the estimated BDP of the path, Hybla

reverts back to using Congestion Avoidance in equation marked 2.

Hybla uses some of the mechanisms described earlier - timestamps are recommended and Selective

Acknowledgment are mandatory. Not earlier mentioned, Hoe’s channel bandwidth estimate [46]

tries to calculate the BDP of a path based on the delay of received ACKs, and set ssthresh based

on this value. This mechanism is also recommended. Lastly, packet spacing (also called TCP

pacing) tries to eliminate large bursts of segments which can lead degraded performance, by

spacing them out over the RTT [17]. Packet spacing is also recommended, however, most of the

evaluations of Hybla presented by the creators in [17] is done without spacing enabled.

4.2.5 Space Communications Protocol Specifications - Transport Pro-

tocol

The Space Communications Protocol Specifications7 (SCPS) was originated by the US DoD and

NASA, and further developed by The Consultative Committee for Space Data Systems8. It is

divided into several parts, and the Transport Protocol (SCPS-TP) provides Transport Layer type

service. Initially, the SCPS-TP was a military standard in MIL-STD-2045-44000, but today the

specification is standardized in ISO 15893. A end-host and proxy reference implementation is

available at http://www.openchannelsoftware.com/projects/SCPS.

SCPS-TP is a collection of protocols that provide full reliable service (TCP), best-effort reli-

ability service (TCP with modification), and minimal reliability service (UDP). The protocols

are described in [47]. Although the reliable service is based on TCP, it utilizes a wide range of

enhancements.

Depending on ”mission requirements”, the capabilities of the network and the characteristic of

the links, hosts should and may support a wide range of options. A list containing most of these

are provided below to give an idea of the difference between TCP and SCPS-TP:

• Window Scale Option

7http://www.scps.org, was not available during Spring 2011
8http://www.ccsds.org

42

http://www.openchannelsoftware.com/projects/SCPS

CHAPTER 4. PROPOSED SOLUTIONS

• Timestamp Option

• Selective Acknowledgment Option

• Explicit Congestion Notification

• Header Compression Option

• TCP for Transactions Options

Also, SCPS-TP hosts must implement the Delayed ACK algorithm. Consequently, not every

segment is separately acknowledged, but are sent periodically based on the RTT [27].

In addition to the enhancements above, SCPS-TP adds major improvement to the congestion

control. As described in Section 3.3, TCP interprets all losses as congestion. In fact, there are

no certain ways of separating losses due to congestion from other losses, e.g. channel fading.

How to interpret and react to such unknown segment losses is one of the native TCP challenges.

SCPS-TP aims to solve this, by identifying the cause behind a loss, or a potential lossy situation.

Roughly, it identifies three scenarios:

• Congestion

• Corruption

• Link outage

When a loss is experienced, and no evidence is present which suggest a specific cause, congestion

is assumed. The standard specifies that one of the following congestion control algorithms may

be used:

• Van Jacobson’s Slow Start and Congestion Avoidance (Section 2.2.5)

• TCP Vegas [15]

In addition to congestion control, SCPS-TP tries to identify losses caused by corruption, as

oppose to congestion. This can be identified via ”inter-layer signaling, MIB9-query, or other

mechanism.”. When a connection experience loss due to corruption, the sender must send a

segment with the Corruption Experienced Option to the receiver. The sender will then take

appropriate action in accordance to a corruption (opposed to TCP where loss can be either

congestion or corruption (or something else)).

SCPS-TP also identifies link outages as a separates cause for packet loss. This can also be

identified via inter-layer signaling or MIB-queries. The sender will then take appropriate action

(amongst other, no adjustment to cwnd), until the link has been restored.

9Management Information Base. Database containing a wide array of information on the state of the peer.

See [47].

43

4.3. PERFORMANCE ENHANCING PROXIES (PEP)

4.2.5.1 TCP Vegas

This section will provide a short introduction to the Vegas congestion algorithm as described in

[15]. It consists of three fundamental improvements compared to Reno:

• Faster retransmission

• Anticipate congestion

• Improved slow start

Vegas will use the RTT of duplicate ACKs as an indication if a segment has been lost in transit.

If the RTT fulfills the criteria, Vegas regard the segment as lost, and the segment is retransmitted

immediately without waiting for three duplicate ACKs.

An inherit problem with Reno is that congestion is not detected until a segment is lost, i.e. the

link is already congested. Vegas aim to detect an oncoming congestion and act accordingly before

a congestion occurs and packets are lost. The solution is to measure the increased delay of packets

as they are forced to hold in buffers when the link is overwhelmed. The algorithm is almost

identical to the one described in Section 4.2.3 on CTCP (CTCP is derived from Vegas).

The slow start algorithm works similarly to the congestion avoidance, i.e. it backs off after

congestion has happened, which in turn usually result in multiple losses causing reduction of

the cwnd [15]. The mentioned delay-based solution is applied at the slow start phase (including

a few breaks in the expanding of cwnd to accommodate valid measurements), backing off as

congestion is building up and is detected.

4.3 Performance Enhancing Proxies (PEP)

A PEP is an intermediary node in the network path which aims to improve the performance

of the traffic, usually by intercepting traffic flow and modifying or adding behavior. PEPs can

operate over several OSI layers, including lower ones like the link layer. This paper will focus

on proxies operating at the transport layer, often called TCP PEPs because they interact with

TCP.

PEPs are usually non-standardized and proprietary, and several commercial solutions are avail-

able [48]. RFC-3135 [49] is a survey of the PEP landscape, categorizing and identifying the

different types that exist - with a focus on PEPs that operates with TCP. It is classified as

informational, i.e. it makes no recommendations on the use of PEP, in fact the authors point

out that the use of PEPs should be regarded as an option only when end-to-end approaches are

unavailable.

44

CHAPTER 4. PROPOSED SOLUTIONS

The mechanisms used by PEPs are summarized in [49], and in the section below. Note that an

actual proxy may utilize several of these mechanisms to boost performance:

• TCP ACK Handling: This lets the PEP manipulate the flow of ACKs between sender

and receiver. The behavior can be subdivided into several mechanisms. TCP ACK Spacing

aims to reduce the burstiness of ACKs, while Local TCP Acknowledgments lets the proxy

transmit premature ACKs to the sender. The latter is used by many implementations, and

will be discussed later. Local TCP Retransmission allows the proxy to cache and locally

retransmit lost segments. TCP ACK Filtering and Reconstruction lets a PEP create ACKs

when an asymmetric link has too small bandwidth in the return-direction to accommodate

the flow of ACKs.

• Tunneling: Tunneling lets the proxy encapsulate the packet before transmitting across

the link. Another proxy at the other end then decapsulates before forwarding the packet.

• Compression: This is sometimes the only performance enhancing mechanism included

in the proxy. There are several different compression schemes available, and they may be

applied at several headers and payloads. Depending on the scheme used, security in form

of encryption must be taken into account, and may limit the compression.

• Connection maintenance: The proxy might mitigate periods of link disconnection by

using a cache or an intermediary protocol which keeps the TCP connection between peers

(or between PEP and peer) open. Longer periods of outage will without such a mechanism

cause a timeout and closing of cwnd with all its drawbacks.

• Priority-based Multiplexing: The proxy may perform Quality of Service enforcement,

boosting the performance of selected and prioritized traffic flows. This might be done

natively, i.e. cache non-priority traffic and transmit high-priority, or it could be done in

conjunction with a split TCP scheme.

• Protocol Booster Mechanisms: These are different ways to improve specific protocols

performance, e.g. adding a checksum to UDP segments to improve error detection. Another

example is additional timestamp to measure and control jitter, to assure correct order of

delivery.

The mechanism most relevant in this thesis is the Local TCP Acknowledgments which is an

important part of the TCP splitting approach. TCP splitting is interesting due to its promising

results [31], widespread treatment in literature and research, and the availability of a free, open-

source implementation.

45

4.3. PERFORMANCE ENHANCING PROXIES (PEP)

4.3.1 TCP Splitting

A split connection PEP terminates an initiated TCP connection from a TCP sender at the proxy,

and establishes a new TCP session with the intended receiver. Depending on the distribution

of proxies, a second proxy may be placed at the receiver side, dividing the TCP connection

into three parts. These distributions are called integrated and distributed, respectively, and are

illustrated in Figures 4.10 and 4.11.

Figure 4.10: Integrated PEP scheme.

Figure 4.11: Distributed PEP scheme.

The rationale behind TCP splitting is to replace the sub-optimal TCP variant with a protocol

tailored to perform optimal over satellite links. Using the distributed scheme allows this protocol

to be independent of the abilities and support of the end host, while an integrated scheme

must use a protocol supported by the end host. The latter invites to the usage of sender-side

modifications of TCP, e.g. the TCP flavors described in previous section.

In conjunction with TCP splitting, spoofed ACKs may be generated. This enables the proxy to

send ”fake” ACKs, making the sender increase its cwnd more rapidly. This again will increase

the rate at which the PEP and PEP protocol is fed data. Consequently, the slow opening of

cwnd for some TCP flavors have been mitigated.

46

CHAPTER 4. PROPOSED SOLUTIONS

4.3.1.1 Transparency and End-to-end argument

Some proxies are completely transparent, i.e. the hosts are unaware of its existence and operation.

While other may require signaling, or modification on one or both hosts. These are regarded as

PEPs with some degree of transparency, and are usually harder to implement since they require

control of end hosts.

The end-to-end to principle10 of the Internet states that certain required end-to-end functions

can only be correctly performed by the en systems themselves, i.e. the intelligence should be at

the end hosts, not hidden in the network. A TCP splitting approach breaks this principle, which

is one of the main reasons why PEPs are not recommended for general use [49].

4.3.1.2 Security

It is evident that the TCP Splitting requires the PEP to be able to read the TCP header. This

would normally not be a problem; however there are several security schemes which encrypt

the TCP header, e.g. IPsec in both tunnel (used in emulation) and transport mode. In such

scenarios, TCP Splitting is impossible to employ without any sort of workaround, and is another

argument against the use of PEPs.

There exist several solutions, and maybe the simplest and most obvious is to move the PEP

in front of the cryptographic device, i.e. out of the black portion of the network. This allows

the PEP to inspect the plaintext TCP header before forwarding it to be encrypted. However,

to accomplish this, one must either move the black boundary closer to the satellite gateway, or

move the PEP farther away. The first option is often unacceptable for security reasons. The

second option could lead to sub-optimal performance since the protocol tailored for the satellite

link must be used across large portions of the network [6]. Due to its simplicity and ease of

deployment this is a feasible solution. Surveys on the performance of the PEP protocol across

the wired network portion should be done prior to deployment - this is however outside the scope

of this thesis. For networks containing a radio distribution leg, the sender and black boundary

are often close to the radio link. A PEP aimed to increase performance in lossy networks could

consequently be placed on the red side but still close to the radio link. This could reduce the

length of which the tailored TCP flavor must traverse the network and thus maintain the PEPs

performance.

Another solution is to terminate the IPsec tunnels at the PEP, creating ”red enclaves” inside

the black network [2]. This would allow the PEP to be sited close to the satellite gateway,

while still keeping the broad black boundaries. However, the solution has several challenges. It

breaks the end-to-end security associations, which in turn forces each end host to create security

10RFC-1958: Architectural Principles of the Internet

47

4.3. PERFORMANCE ENHANCING PROXIES (PEP)

associations with the PEP, with all related drawbacks of key management, processing at PEP,

etc. In addition the transparency would be reduced since each end host would have to be aware

and interact with the PEP. Finally, the end host would have to trust the PEP since it would be

able to decrypt the data, and the PEP itself would be an attractive point of attack [50].

There also exists a solution called Split PEP Enabler, which utilizes three PEPs at each side

of the satellite. As the others, this solution has several challenges, and the interested reader is

referred to [2].

Other solutions include modifications of IPsec to make TCP headers available [50] and a multi-

layer IPsec [2] which achieves the same goal. To the best of my knowledge, no available imple-

mentation exist.

4.3.2 PEPsal

PEPsal is an open source PEP implementation freely available for download at http://sourceforge.

net/projects/pepsal/. It is presented, described and tested in [31]. Referring to the sections

above, it is a Transport Layer (TCP) PEP, which is transparent and to be distributed following

an integrated scheme. It utilizes the TCP Splitting approach and spoof ACKs towards the sender

to mitigate TCP penalties at the sender. Since the implementation is based on the Linux oper-

ating system, any available Linux implementation of TCP can be used. The authors recommend

TCP Hybla (which also is created by the creators of PEPsal) described in Section 4.2.4, which is

tailored for satellite environments. The authors also recommend installing the MultiTCP patch

for Linux which is includes the complete implementation of Hybla.

PEPsal operates as described in Section 4.3.1 on TCP Splitting. It intercepts the incoming SYN

packet (segment with SYN flag set), acknowledges it, and establishes a new TCP session using

e.g. Hybla with the intended receiver. The payload is then copied and forwarded using the new

”tailored” session. PEPsal will keep acknowledging data from the sender at a high rate such that

the Hybla session will not be limited by the original senders rate.

48

http://sourceforge.net/projects/pepsal/
http://sourceforge.net/projects/pepsal/

Chapter 5

Emulation

This section will describe the design, equipment, and tools utilized during the emulation. Con-

figurations of equipment have been described to allow easy reproduction (requested by FFI), and

is therefore quite elaborate.

5.1 Design

The logical design chosen for the emulation can be seen in Figure 5.1. The topology is a quite

simple, and common when testing TCP performance. However, it has two characteristics worth

mentioning. Since this evaluation is done with a military scope, the network contains an en-

cryption device. This separates the network into a red and black side to create a more realistic,

secure, environment. In addition, a radio link has been added to accommodate a military hybrid

network with a radio distribution leg, which is a common scenario. Two PCs (i.e. TCP peers),

with different operating systems, is placed at each side of a a satellite link. In front of the satel-

lite modem, a cryptographic device sets up a IPsec VPN tunnel, creating the black side of the

network.

Figure 5.1: Logical design of emulation

49

5.1. DESIGN

Figure 5.2 shows the actual physical implementation of the logical design. The equipment men-

tioned below, its configuration, and software used, will be presented in following sections. On

each end, a tactical router running the Vyatta routing software is placed. The tactical routers

are provided, modified, and used by FFI, making the emulation more closely resemble a military

network. The routers obviously routes traffic, but also provide the delay and loss using Linux

Traffic Control and the built-in network emulator netem. A PC between the routers, running

FreeBSD and the network emulator Dummynet, limits the bandwidth to 500 kbps. Together,

these devices constitute the satellite. In addition, the routers set up the IPsec VPN tunnel (in-

cluded in Vyatta software) between themselves. Each peer is running out-of-the-box versions of

their respective operating systems denoted in the figure. No major software or configuration has

been changed or added which can affect their networking performance. All links has been set to

10 Mbps, full duplex (except, obviously, the rate limitation itself), thus creating a ”10 Mbps to

0.5 Mbps” bottleneck.

Figure 5.3 shows the design when a Performance Enhancing Proxy (PEP), i.e. PEPsal, is utilized.

Note that the PEP must be in the red side of the network since it interacts with the TCP header.

Ideally it should be placed as close to the satellite link since it utilize a TCP flavor tailored for

satellite links.

Figure 5.2: Physical design of emulation

Figure 5.3: Physical design of emulation, with PEP

50

CHAPTER 5. EMULATION

5.2 Vyatta routers

On each end of the ”satellite link” there is a router which both routes and encrypt/decrypt data

, ref. Figure 5.2. The routers are tactical routers provided by FFI (Forsvarets ForskningsInsti-

tutt/Norwegian Defense Research Establishment), running Vyatta1 routing software.

Vyatta is an open source network operating system based on Linux. It is freely available for

download online, but there also exist a series of commercial products available for purchase. The

Vyatta software provides a wide range of basic and advanced services, e.g. routing, firewall,

IPsec VPN, DHCP, NAT etc. In the emulation, routing and IPsec VPN was utilized - as well as

the Linux network emulator netem.

Figure 5.4: Layer 3 design of emulation

5.2.1 Configuration - IPsec

The complete configuration for routers D102 and D103 can be found in Appendix A. As men-

tioned, the routers utilize the IPsec feature and the routing service. The routing configuration is

quite trivial and consists basically of static routes giving routing capabilities between the three

subnets in Figure 5.4. Documentation and commands used for this configuration can be found

in the Vyatta Basic Routing Reference Guide [51]. The resulting routing table (for D102) can

be seen below.

vyatta@D102:~$ show ip route

Codes: K - kernel route, C - connected, S - static, R - RIP, O/M - OSPF(MT),

I - ISIS, B - BGP, > - selected route, * - FIB route, L - OLSR

S>* 0.0.0.0/0 [1/0] via 158.38.122.10, eth0

C>* 10.0.0.0/24 is directly connected, eth1

C>* 127.0.0.0/8 is directly connected, lo

1http://www.vyatta.org, http://www.vyatta.com

51

5.2. VYATTA ROUTERS

C>* 158.38.122.8/29 is directly connected, eth0

S>* 192.168.0.0/24 [1/0] via 158.38.122.10, eth0

Between the two routers a VPN tunnel is set up, providing a more realistic network scenario. The

tunnel is an IPsec Site-to-Site VPN in tunnel mode. Configuration of this service is not as trivial

as routing, however, the Vyatta VPN Reference Guide [52] proves an excellent documentation.

The rationale behind the configuration used on the routers can mostly be found in Chapter 2 of

[52], section ”Configuring a Basic Site-to-Site Connection”.

For reproduction, a short walk-through on the configuration of router D102 of the IPsec tunnel

will be presented. The first step is to enable VPN on the appropriate interface (see Figure 5.4

for interface notation):

set vpn ipsec ipsec-interfaces interface eth0

There are two protocols needed to be configured to enable IPsec. The first is Internet Key

Exchange (IKE), which establish the IPsec tunnel. The peers will initially try to establish IKE

Security Associations (SA). One needs to specify the hash and encryption algorithm used during

the first IKE phase, these will be used to establish the IKE SA. When the IKE SA has been

established, the Encapsulating Security Protocol (ESP) SA negotiation may commence. As for

the IKE SA, the ESP SA needs a encryption and hash algorithm. Obviously, the settings for the

SAs must match on both routers. The emulation uses 256-bit AES for encryption and SHA-1

for hashing.

set vpn ipsec ike-group IKE-D102 proposal 1

set vpn ipsec ike-group IKE-D102 proposal 1 encryption aes256

set vpn ipsec ike-group IKE-D102 proposal 1 hash sha1

set vpn ipsec esp-group ESP-D102 proposal 1

set vpn ipsec esp-group ESP-D102 proposal 1 encryption aes256

set vpn ipsec esp-group ESP-D102 proposal 1 hash sha1

Next we need to specify the authentication mode (Pre-Shared Key ”asd” used), which SA groups

should be used (obviously the ones we just created), as well as remote and local IP addresses

(see Figure 5.4).

set vpn ipsec site-to-site peer 158.38.122.10 authentication mode pre-shared-secret

edit vpn ipsec site-to-site peer 158.38.122.10 /(navigates to node)

set authentication pre-shared-secret asd

set ike-group IKE-D102

set local-ip 158.38.122.9

set tunnel 1 local-subnet 10.0.0.0/24

52

CHAPTER 5. EMULATION

set tunnel 1 remote-subnet 192.168.0.0/24

set tunnel 1 esp-group ESP-D102

top /(navigates out of node)

commit /(enables configuration)

As mentioned, the steps above need to be ”duplicated” at the other router/end of the tunnel.

The configuration should result in an active IPsec tunnel, and two Security Associations, as

shown in the output below from D102:

vyatta@D102:~$ show vpn ipsec status

IPSec Process Running PID: 3451

1 Active IPsec Tunnels

IPsec Interfaces :

eth0 (158.38.122.9)

vyatta@D102:~$ show vpn ipsec sa

Peer Tunnel# Dir SPI Encrypt Hash NAT-T A-Time L-Time

------- ------- --- --- ------- ---- ----- ------ ------

158.38.122.10 1 in be67de76 aes256 sha1 No 1261 3600

158.38.122.10 1 out 5621d630 aes256 sha1 No 1262 3600

The output shows the IPsec tunnel being active and enabled on interface eth0 with IP 158.38.122.9.

PID is the identificator of the IPsec process, as set by the Linux operating system. The second

output shows the list of Security Associations, one for each direction of the tunnel. Listed are

all properties which were configured. A-Time is the time (in seconds) since the association was

negotiated. L-Time is the maximum lifetime of the association (default 3600 seconds).

All traffic between the two subnets, 10.0.0.0/24 and 192.168.0.0/24 should consequently be en-

crypted. A capture of the actual traffic, captured ”mid-tunnel” at the intermediary delay/rate

limitation device can be seen in Figure 5.6b, hence proving the functionality of the configuration

and the tunnel.

5.2.2 Configuration - Delay and Packet Loss

Since the Vyatta routers run Linux, they also include Traffic Control (tc) and netem which is a

Network Emulation utility controlled by tc. netem documentation can be found in [53], while tc

has its own manual. With tc, one configures queues or queueing disciplines (qdisc) for interfaces.

53

5.2. VYATTA ROUTERS

When the kernel wants to send something out an interface, it inserts the frame into the qdisc ”in

front” of the interface. At this point, tc may perform a wide variety of functions like shaping,

different queuing schemes, QoS etc. One may also engage the netem utility. The netem network

emulator can introduce delay, loss, duplication, re-ordering etc. to the segments residing in the

qdisc. In the emulation, delay and loss is used. Referring to Figure 5.4, the following commands

(example at 1 % PER) are issued at both routers D102 and D103:

tc qdisc add dev eth0 root netem delay 264ms loss 1%

tc qdisc add dev eth1 root netem loss 1%

Resulting in a total of 528 ms RTT, as according to the design, and 1% of randomly distributed

packet loss each direction.

5.2.3 Configuration - Bandwidth limitation

It should be noted that large efforts were made by the author to utilize tc for bandwidth lim-

itation. tc has been utilized succesfully at FFI for the purpose of rate limitation. Therefore I

intended initially to use tc in this emulation as well. However, challenges were met during testing

and it was concluded that tc would not fulfill the requirements needed for this specific emulation.

Dummynet were finally chosen for rate limitation. The purpose of this section is to describe the

challenges and experiences drawn from these efforts.

It is not possible to apply both netem and the rate limitation of tc simultaneously to a interface.

I.e. delay and rate limitation cannot be applied simultaneously without some kind of workaround.

To solve this, one has to divert traffic into a tree. The tree need to be configured with at least

two leafs, since either leafs may be configured with either delay or rate limitation. The traffic will

then be filtered such that all traffic enters both leafs. On each leaf, separate rules for delay and

rate limitation are applied, and consequently both rules will be applied to all traffic in the tree.

An example of the scripts used to create the tree and apply the rules can be found in Appendix

D.

However, it was experienced that when using these trees, one lost control of the buffer, i.e. the

buffer became very large although the buffer size was specified at the rate limiter. Troubleshoot-

ing was first focused on tuning of parameters at the rate limiter, which was Token Bucket Filter

(TBF - has its own manual) and Hierarchical Token Bucket (HTB - has its own manual). But

it was later discovered, when the rate limiter was applied directly to the interface, that the tree

was to blame. Using tc -s qdisc show dev eth0 root shows a value backlog which is the number

of packets currently in the buffer. When a tree was in place, this value would climb to hundreds

of packets although the buffer was set to be small at the rate limiter. A solution to control and

decrease this buffer was not found.

54

CHAPTER 5. EMULATION

As can be read in the TBF manual2 the kernel timer frequency sets limits on how ”perfect”

the rate limiter can operate. This is especially important if one wants to control the maximum

burst, i.e. not allow burst above the configured limit. Summarized, to achieve ”perfect” limits

the kernel should only transmit one packet per tick of the clock. If the limit is configured higher

than the timer ”allows”, this would force the kernel to treat several packages each tick, and

reduce the accuracy. Therefore, efforts were made to increase the timer frequency from 250 HZ

(default on Ubuntu) to 1000 HZ. On Linux this requires changes to compiler directives, and

re-compiling the kernel. Although successful, it is a time-consuming task.

Finally, unexplained rate limits where experienced. At smaller, but sufficient buffer sizes (ac-

cording to calculation and manual), the traffic flows were not able to reach the configured rate

limit. The rate could however be achieved by first setting the buffer large, and then reduce it

during a transfer. An explanation or an error in the rationale or calculation could not be found.

Eventually, a choice was made to utilize FreeBSD and the Dummynet network emulator for rate

limitation.

5.2.4 Packet Error Rate and Bit Error Rate

As mentioned, netem was used to add packet loss to the emulation. However, netem only accept

the loss-parameter as a Packet Error Rate (PER), while a satellite link operates with Bit Error

Rate (BER). Consequently, we must calculate the resulting BER from the PER input to get

values which may be applied and compared in a satellite paradigm. The conversion from BER

to PER is easily done:

BER = 1− (1− PER)(1/N) (5.1)

Where N is the length of the packet in bits. In Figure 5.1, the only path for traffic to flow is

via the radio and satellite links. Long segments containing data flows one way, and short ACKs

flow the other way, both being impacted by the packet loss. Since PER is a function of packet

size, we must calculate a separate BER for each direction.

We regard the event of a packet loss in one direction to be independent of the event that a

packet is lost in the opposing direction, which allows us to simply summarize the two BERs.

Note however that this is an assumption made only for the emulation, and in a real-life scenario

this would most likely not be the case. Table 5.1 shows the configured PER and the corresponding

BER used in the emulation. Values for N was 12176 and 1248 bits, or 1522 bytes for data and

158 bytes for ACKs. The rationale behind these values can be found in Section 6.1.

2man TBF, or http://linux.die.net/man/8/tc-tbf

55

5.3. FREEBSD WITH DUMMYNET

Configured PER BER

0.01 % 8.835E-08

0.1 % 8.839E-07

1 % 8.879E-06

2 % 1.785E-05

5 % 4.531E-05

8 % 7.366E-05

Table 5.1: Corresponding BER to configured PER in emulation.

5.3 FreeBSD with Dummynet

FreeBSD3 is a open source UNIX-like operating system. It was chosen for this task due to its

simple network emulator, Dummynet, and the ability to easily adjust the frequency of the kernel

clock. In the emulation it was installed on a PC with two Ethernet interfaces, and was used

for rate limitation and analysis of packets inside the IPsec tunnel. FreeBSD built-in bridging

capabilities were also used, allowing traffic to flow through the PC at Layer 2.

A higher kernel timer frequency allows increased resolution of all operations of Dummynet, i.e.

it allows Dummynet to more precisely limit the bandwidth. In the emulation, the frequency was

set to 40000 HZ, in accordance with suggestions in [54]. This is easily done by adding

kern.hz = 40000

to /boot/loader.conf, and then reboot the computer.

Dummynet is an application which allows the user to shape traffic, impose delay, loss, bandwidth

etc. It is used in conjunction with the firewall ipfw and both are included in the FreeBSD

operating system. In fact, Dummynet only has a small manual itself, the complete manual can be

found in the Traffic Shaper section of the ipfw manual. ipfw inspects and identify packets/frames,

and based on the given rules, forwards them to Dummynet which shapes the traffic before they

leave the bridge.

3http://www.freebsd.org

56

CHAPTER 5. EMULATION

The following is taken from the ipfw manual:

^ to upper layers V

| |

+----------->-----------+

^ V

[ip(6)_input] [ip(6)_output] net.inet(6).ip(6).fw.enable=1

| |

^ V

[ether_demux] [ether_output_frame] net.link.ether.ipfw=1

| |

+-->--[bdg_forward]-->--+ net.link.bridge.ipfw=1

^ V

| to devices |

It shows at which point ipfw inspecst and apply action to the packets. In the emulation this is

done at bdg forward, since net.link.bridge.ipfw is set to 1 (see next section). Consequently, the

traffic shaping is done before any processing is done at Layer 2 or above. This is an important

fact when calculating maximum goodput.

5.3.1 Configuration - Bandwidth limitation

To enable Layer 2 (Ethernet) bridging on FreeBSD, the following commands are necessary.

Initially, the interfaces are set to 10 Mbps/Full duplex, then the bridge itself is created and

its member interfaces assigned (make sure they are up):

ifconfig sis0 media 10baseT/UTP mediaopt full-duplex

ifconfig sk0 media 10baseT/UTP mediaopt full-duplex

ifconfig bridge create

ifconfig bridge0 addm sk0 addm sis0 up

Limiting the bandwidth of the traffic crossing the bridge requires the configuration of ipfw and

Dummynet. Dummynet and ipfw is included in FreeBSD as modules, which must be loaded

before one is able to utilize them. The following commands loads the ipfw and Dummynet

modules, and enable ipfw to inspect packet at Layer 2:

kldload ipfw.ko

kldload dummynet.ko

sysctl -w net.link.bridge.ipfw=1

57

5.4. TCP PEERS

The following commands create filters which match the traffic flowing between the peers - these

are identical to firewall filters used on FreeBSD. However, the action to be taken if traffic is

matched is not to drop or allow, but forward to pipe 1 or 2. Note that the actual IP payload

and head is encrypted, making only the new IP header (appended by IPsec) visible for ipfw.

Consequently the filters must match the IPs at which the IPsec tunnel terminates, ref. Figure

5.4.

ipfw add 9 pipe 2 all from 158.38.122.10 to 158.38.122.9

ipfw add 8 pipe 1 all from 158.38.122.9 to 158.38.122.10

Lastly, the pipes themselves are created. These are a part of Dummynet and enforce the rate

limitation. The exemplars below limit the bandwidth to 500 kbps, as according to the design,

and with a buffer at 100% of BDP.

ipfw pipe 1 config bw 500 Kbit/s queue 33KB noerror

ipfw pipe 2 config bw 500 Kbit/s queue 33KB noerror

5.4 TCP peers

The TCP peers are running Ubuntu 10.10 and Windows 7 Professional. Both have no installed

software or configuration changes which may affect their networking performance.

On both operating systems, all interfaces were set to 10 Mbps and full duplex, according to

the design. In addition, Large Segment Offloading was disabled. If enabled, the interface will

signal a very large Maximum Segment Size to the application layer. These large segments

will obviously be fragmented at the interface before being transmitted. However, Wireshark

inspect these segments before they are fragmented, creating incorrect captures. In Windows

these configurations are done via built-in tools, while for Linux ethtool4 was utilized.

The built-in FTP client was utilized for both systems. On Linux, ProFTPD5 FTP server was

utilized, with default settings. On Windows, the built-in FTP server (must be enabled) was

used, also with default settings.

On Linux, the TCP flavor was viewed and changed using the following commands:

sysctl net.ipv4.tcp_congestion_control

sysctl -w net.ipv4.tcp_congestion_control=cubic

Natively, only Cubic and Reno is available. To add, for example Hybla, one has to add the

module. The following commands add the module, and list the available flavors:

4man ethtool
5http://www.proftpd.org

58

CHAPTER 5. EMULATION

modprobe tcp_hybla

sysctl net.ipv4.tcp_available_congestion_control

All modules available in kernel 2.6.35 are: BIC, HTCP, Illinois, Probe , Vegas, Westwood,

Highspeed, Hybla, Lp, Scalable, Veno and Yeah.

As stated in the introduction of this thesis, the aim was (among others) to evaluate accessible

and easily deployable solutions to the challenges discussed. The current Hybla implementation

in Linux lacks two algorithms which the creators recommend, namely Packet Spacing and Hoe’s

channel bandwidth estimate [46]. Adding support for these algorithms would require exchange

of the Linux kernel (new kernel with MultiTCP patch) on all peers, and is therefore not regarded

as an easily deployed solution. Consequently, the Linux built-in implementation of Hybla is

evaluated on the peers, without the additional algorithms.

5.5 PEPsal and MultiTCP

PEPsal is described in [31] and in Section 4.3.2, while MultiTCP is described in [55]. Since both

are open source, they can be downloaded at http://sourceforge.net/projects/pepsal/ and

http://sourceforge.net/projects/multitcp/, respectively.

While PEPsal is an open source implementation of a Performance Enhancing Proxy (PEP),

MultiTCP is a Linux patch for experimental evaluation of TCP enhancements. The patch

provides several TCP flavors and mechanism like Packet Spacing and Hoe’s channel bandwidth

estimate [46]. In addition it can output information on a variety of TCP variables and parameters

throughout a transmission. The interest in the patch is due to the complete implementation of

TCP Hybla. Although Hybla is included in Linux, it does not incorporate two algorithms which

are recommended by the creators, namely Hoe’s channel bandwidth estimate Set-Up and Packet

Spacing. As mentioned, this is acceptable at the peers, but should be included at the PEP since

this requires minimal effort to deploy.

However, I have not been able to produce a working Linux image patched with MultiTCP. Large

efforts have been made to accomplish this. Numerous images were created utilizing several

different computers, kernel versions, compiler directives and compilers. But sadly, a bootable

image has not been possible to produce. However, there is no doubt that the MultiTCP patch

actually can work, and the problem lies in aforementioned efforts - not in the patch itself. Hybla

in PEPsal is therefore utilized without the recommended algorithms, and performance may be

improved using the complete implementation.

59

http://sourceforge.net/projects/pepsal/
http://sourceforge.net/projects/multitcp/

5.6. TOOLS

5.5.1 Configuration - PEPsal

The emulation has been set up according to Figure 5.3. After being compiled (make) and installed

(make install), some firewall rules (in Linux: iptables) must be added. An example script is

provided by the creators, and this has been used, with a few modifications. The modified script

can be seen in Appendix C. Before running the script, the chains which the script populate and

utilize must be created:

iptables -N TCP_OPTIMIZATION -t nat

iptables -N TCP_OPTIMIZATION -t mangle

To start PEPsal, the following command, with parameters according to script is executed:

pepsal -q 9 -v -p 6009

5.6 Tools

This section will describe the different tools used, tested, and considered in conjunction with

the emulation. In addition, simple explanations on how to use, and specific usage in the emu-

lation are included. Where appropriate, experiences and challenges met during testing will be

described.

5.6.1 Wireshark

Wireshark is an open-source packet capture and analyzer software. Capturing is done using

the pcap API for Linux, and the WinPcap for Windows (installs with Wireshark installer).

Wireshark is openly available for download on the official web site: http://www.wireshark.

org/, and via the APT package handling utility for Ubuntu/Debian. Wireshark will capture and

log all frames leaving or entering a selected interface. In addition, it provides a variety of tools to

analyze the captured frames, e.g. RTT, throughput, TCP flow graph, etc. Also, it will inspect

content in TCP segments (among other) and automatically recognize and mark duplicate ACKs,

retransmissions, resets, and similar, which simplifies analysis. Because of this, Wireshark is the

preferred tool throughout the emulation to for most measurements.

It is outside the scope of this section to explain all uses of Wireshark, but the use is mostly tied to

the ”IO graphs” found in the ”Statistics” menu. Through this tool a major part of the results has

been generated. It should be noted that the tool offers few ways to combine graphs or customize

their graphical appearance, so the results are put into gnuplot or Microsoft Excel.

60

http://www.wireshark.org/
http://www.wireshark.org/

CHAPTER 5. EMULATION

5.6.2 tcpdump

tcpdump is a command-line packet capturer and analyzer. It was used when analyzing packets,

especially Layer 2 (ethernet) information on size and bytes on the wire, as they traverse the

IPsec tunnel at the satellite emulator (FreeBSD PC with Dummynet). This was done to calculate

overhead and maximum throughput through the IPsec tunnel. It is natively included in FreeBSD

and usage was done with:

man tcpdump

tcpdump -v

Which displays (on the command-line) Layer 2 information on each packet traversing the bridge.

5.6.3 TCP Probe

TCP probe is a Linux module which allows ”real-time” values of, amongst other, cwnd and

ssthresh be recorded during a TCP session. A more detailed explanation may be found on The

Linux Foundation TCP Probe website: ”It works by inserting a hook into the tcp recv processing

path using kprobe so that the congestion window and sequence number can be captured.” [56].

TCP probe gives an unique opportunity to study the behavior of different TCP congestion

algorithms, e.g. Figure 4.8, and may allow a further understanding of phenomena seen in the

throughput. Regrettably, no Microsoft Windows counterpart has been found, and it is fair to

assume none exist due to the restrictive nature of the Windows kernel.

TCP Probe is very simple to use, examples may be found on the TCP Probe website. Some

scripts can also be found on the TCP Testing website ([57]), but were not used for the emulation.

The module is included in Ubuntu 10.10, and to load it for FTP (port 20) type:

modprobe tcp_probe port=20

To capture the output from TCP probe into file (TCPreno.out):

cat /proc/net/tcpprobe >TCPreno.out & pid=$!

For each segment sent, TCPreno.out will now contain a line with 10 values, including the cur-

rent cwnd and ssthresh. The website mentions and explain only 9 fields, leaving the 10th un-

known.

To stop the capture:

kill $pid

It has been experienced during testing that TCP probe writes to file in chunks of around 32 kB,

i.e. if it has not captured enough to fill 32 kB, it will not show up in output. Consequently, a

61

5.6. TOOLS

transfer can not contain fewer segments than TCP probe needs to generate 32 kB, or else no

output will be seen at all.

In addition, some instability was experienced. At random intervals, TCP Probe will not output

anything at all - no solutions or explanations have been found.

An alternative was considered - the MultiTCP patch described in section 5.5. But TCP probe

was chosen due to its simplicity and ease of use.

5.6.4 Gnuplot

Gnuplot6 is a command-line drive graphing utility. It supports multiple operating systems, but

has been tested in Linux only. On Ubuntu, it installs easily via the APT package handling utility,

and the command:

apt-get install gnuplot

In the emulation, Gnuplot has been used to draw graphs of data retrieved from both tcpprobe

(mainly cwnd and ssthresh), and Wireshark. It was preferred due to its simplicity, and ability

to directly generate Encapsulated PostScript (graphical file format, .eps) which is convenient if

writing in LATEX. No other software was considered for this use.

Scripts used to generate the cwnd and ssthresh graphs were slightly modified (colors and output)

versions of scripts (tcpview and tcpprint) found on The Linux Foundation web site [57]. For all

other, different scripts were written for each graph. There are too many to include in this paper,

but a selected script can be found in Appendix B along with the tcpprint script.

5.6.5 tcptrace

tcptrace is a tool which analyses TCP dump files. It can easily be downloaded via the official web

site: http://www.tcptrace.org/, or via the APT package handling utility for Ubuntu/Debian.

It can analyze dump-files from several capture-programs, e.g. tcpdump or Wireshark. The latter

has been used for this thesis. It is enormously powerful and versatile, and analyzes a wide

variety of parameters, and provides flexible output. A quick peak of the capabilities can be seen

by reading the help:

tcptrace -hargs

Or read the manual available at the web site. The usage has been mainly to provide RTT

calculations of a transmission. This can be done using the following command:

6http://www.gnuplot.info/

62

http://www.tcptrace.org/

CHAPTER 5. EMULATION

tcptrace -R -z WiresharkCapture.pcap

The -R option will generate RTT graphs, while -z will set the time (x-axis) to start at 0 instead

of clock-time at capture. The output will be in form of XPLOT graphs. XPLOT is a sim-

ple graphing program, similar to gnuplot, and installs automatically when installing tcptrace.

For conformity (and reduced workload, not having to learn a new program), a program called

XPL2GPL was used to convert the XPLOT graphs to the gnuplot format. This produces a

separate file for the actual data, called WiresharkCapture.datasets. The data in these datasets

was then used to draw the gnuplot graphs using scripts mentioned in the gnuplot-section.

One important note should be made on the RTT calculations of tcptrace. It utilizes Karn’s

algorithm [58] for measurement. The algorithm states that a measurement taken on a segment

which has been sent more than once, should be discarded. For some emulation results, this

will cause gaps in the measured RTT as retransmission might be common, and will affect the

calculation of average RTT.

5.6.6 Iperf and Jperf

Iperf is a TCP and UDP traffic generator. It also reports, both on the server and client side,

various parameters like throughput, loss, jitter, etc. One may also influence the TCP and UDP

sockets at each side, e.g. buffer size, window size, maximum segment side, and many more. It can

easily be downloaded at their web site: http://sourceforge.net/projects/iperf/ or via the

APT package handling utility for Ubuntu/Debian. Natively, it is only supported for Linux, but

there are several Windows compilation of the source code found online. In addition, one might

use Jperf (also available on the Iperf web site), which is a Java-based graphical extension to

Iperf. Obviously, this runs on any operating system, and offers a graphical interface to the other

command-line driven Iperf. It is important to note that Jperf actually runs Iperf, and no extra

functionality (except real-time drawing of graphs based on output from Iperf) is offered.

In the emulation, Iperf is used, amongst other, to test if a specific bandwidth is obtainable.

This task may be accomplished with the following two commands, for client and server respec-

tively:

iperf -c 192.168.0.30 -u -i 1 -l 1400B -t 30 -b 1000K

iperf -s -u -i 1

This will result in a 1 Mbps UDP stream from the client towards 192.168.0.30, with a segment

size of 1400 bytes, lasting in 30 seconds, and giving a report to output each second. A complete

explanation of all available parameters can be found by displaying the Iperf help:

iperf -h

63

http://sourceforge.net/projects/iperf/

5.7. INTERNET PROTOCOL SECURITY (IPSEC)

One important phenomena has been experienced on all Windows compilations tested (Jperf 2.0.2

and Iperf 2.0.4). For example, over a 2 Mbps link with 528 ms RTT, a maximum throughput

of 393 kbps on TCP traffic is seen. This can be avoided if one adjusts the ”Window Size”

parameter manually. Consequently, it seems that Window Size governs the maximum value of

cwnd in Windows (as Receiver Window on the sender can not affect throughput). The default

value can be calculated to be approx. 26 kB, i.e. the sender is not able to expand its cwnd

beyond 26 kB. This can explain the arbitrary ”roof” met at 393 kbps.

Another minor detail is the misspelling of the bandwidth configured which mislead the user to

think he configures the bandwidth in bytes. It says kBytes/s and Mbytes/s, yet the transfer

itself is done in kbits/s, Mbits/s.

5.7 Internet Protocol Security (IPsec)

As the emulation utilizes a IPsec VPN tunnel, a short introduction on IPsec will be given here,

along with the implications on performance due to overhead.

IPsec is a protocol suite which provides authentication, encryption and data integrity checks

for communication at the IP layer. It can be used to secure end-to-end between two hosts,

between networks and host, or between two networks/routers as in our emulation. IPsec was

first described as early as 1995 in RFC-1825 and RFC-1829, but today the suite is described

in a series of RFCs, most notably in RFC 4301 (Architecture), 4302 (Authentication Header

(AH)), 4303 (Encapsulating Security Header (ESP)) and 4306 (Internet Key Exchange (IKEv2)

. The support of IPsec is mandatory in IPv6, but optional in IPv4. The architecture of the suite

is modular, which allows different mechanisms be used to achieve each security goals. Vyattas

implementation of IPsec can be studied in the Vyatta documentation ”VPN Reference guide”

[52]. The usage of Vyattas IPsec in the emulation is summarized in Table 5.2.

Security Algorithm used in emulation Protocol used in emulation

Confidentiality 256-bits AES7 ESP

Authentication Pre-Shared Key and SHA8-1 ESP and IKE

Data Integrity SHA-1 ESP

Key Management Pre-Shared Key IKE

Table 5.2: Overview of security mechanisms in emulation

As mentioned, IPsec resides on the network layer. It has two modes, tunnel and transport

7Advanced Encryption Standard
8Secure Hash Algorithm

64

CHAPTER 5. EMULATION

mode, as depicted in Figure 5.5. In the emulation, transport mode is used, and this provides

the strictest security. It is the Encapsulation Security Payload (ESP) [59] protocol which is used

on the actual traffic of data. When IPsec is run in transport mode, ESP will encrypt the entire

TCP segment, i.e. data and header, as well as the IP header. It will then append an own ESP

header, a new IP header, an ESP trailer, and an optional ESP Authentication Data Field, as

shown in Figure 5.5.

Figure 5.5: Protocol Operation for ESP [60]

These additional headers and trailers impacts the throughput of TCP and hence the results of the

emulation. It is therefore important to describe and take into account this additional overhead

to assure valid results.

Type Bytes

New IP header 20

ESP header 8

Original IP header 20

TCP header 20

ESP trailer Variable, ¿2

Σ IPsec headers ¿30

Σ All headers ¿70

Table 5.3: Length of mandatory headers and trailers in ESP packet, tunnel mode

Table 5.3 shows the overhead accompanied with IPsec running in tunnel mode. In total, the

packet will have at least 70 bytes of overhead, 30 of which is introduced by ESP. However, the

ESP trailer has a variable size, due to the integrity check and the padding field. The padding

65

5.7. INTERNET PROTOCOL SECURITY (IPSEC)

field can get as large as 255 bytes depending on the requirements of the encryption algorithm,

the optional hiding of actual payload length, and the fact that the trailer must align with the

right end of the header [60].

(a) FTP traffic captured at FTP client (b) FTP/EPS traffic captured at intermediate router

Figure 5.6: Wireshark capture of TCP/FTP traffic

Figure 5.6 shows a Wireshark capture of actual traffic between a FTP client and a FTP server.

Notice the first and second column which shows the packet number and size in bytes. Figure

5.6a shows the packets as they are leaving the interface of the FTP client and Figure 5.6b shows

the packets at an intermediary router which is located at the black side of the network, between

the client and server. Comparing the values of Packet Size between the two figures illustrates the

added overhead of IPsec and ESP. As expected they are very variable, but never drop beneath 30

bytes. Evidentially, it is very hard to precisely determine the amount of extra overhead on a per

flow basis. One might however calculate a upper bound of the possible throughput (there are so

many optional and variable fields making a lower bound difficult (or pointless) to calculate). The

actual bytes on the wire for a Ethernet frame is 1526 bytes10 which with TCP through IPsec in

tunnel mode will result in maximum 1430 bytes of payload. For a 2Mbps link, this yields:

TCPthroughputmax =
2000000bps

1526bytes
× 1430bytes = 1.874Mbps (5.2)

Consequently, the absolute maximum throughput of TCP traffic (or goodput) on a 2Mbps link

is 1.876Mbps. As shown above, the overhead can be assumed to be even higher. Some further

values can be found in Table 5.4. In addition, if smaller frames with smaller maximum payload

10Ethernet Frame consists of: 8 bytes of Preamble + 12 bytes of MAC adresses + 2 bytes of Type + 1500 bytes

of payload (MTU) + 4 bytes of Integrity Check (FCS/CRC) = 1526 bytes on the wire.

66

CHAPTER 5. EMULATION

than 1500 bytes are used, the relative amount of overhead (when compared to data) will increase,

resulting in further reduction of TCP throughput.

Bandwidth Goodput

500 kbps 469 kbps

1000 kbps 937 kbps

2000 kbps 1874 kbps

Table 5.4: Maximum goodput of TCP over different IPsec links.

67

5.7. INTERNET PROTOCOL SECURITY (IPSEC)

68

Chapter 6

Results and Analysis

If not otherwise specified, the following setup has been used:

Bandwidth across satellite 500 kbps (each direction)

Bandwidth in terrestrial network 10 Mbps (each direction)

Round-Trip Time (RTT) 528 ms

Buffer before satellite links 100 % of BDP, i.e. 33 kB (each direction)

Loss 0 %

IPsec Enabled, Tunnel mode

Table 6.1: Default parameters of emulation.

In the default setup, the receiver of a Linux or Windows TCP flow will be an identical host, i.e.

Linux to Linux, Windows to Windows. Buffers at all other equipment has been left at default,

yet there are no other bottlenecks besides the satellite, leaving the buffers (in practice) unused.

Each section specifies the details of how measurements where conducted.

Buffer ahead of the rate limiter (Dummynet in Figure 5.2) will in certain runs of the emulation

be adjusted between 85 % and up to 1000 % of BDP, i.e. between 28 kB and 330 kB. These

larger values represent realistic buffer sizes, as described in [8], where several satellite modems

and vendors are evaluated. The report mentions buffers of up to 400 kB, and buffer delay of up

to 5.5 seconds. It appears that such large buffers are seldom utilized when TCP is evaluated in

research, making the topic both relevant and interesting.

This thesis focuses on TCP flavors which are readily available and widely deployed, i.e. flavors

available on Windows 7 and Linux. Based on that, NewReno (default in Windows 7), Compound

TCP (available in Windows 7 and default on Windows Server 2008) and CUBIC (default in Linux

69

6.1. EMULATION CHARACTERISTICS AND CONFIRMATION

since kernel 2.6.19) has been chosen. In addition, TCP Hybla for Linux has also been tested

since this protocol shows promising results ([30] and [29]), and is specially tailored for satellite

environments. It should be noted that for TCP Hybla, Hoe’s channel bandwidth estimate, and

packet spacing, has not been enabled since this require the MultiTCP patch and recompiling of

Linux, as discussed in Section 5.5.

6.1 Emulation characteristics and confirmation

Each host utilizes the Path MTU (Maximum Transmission Unit) Discovery algorithm, starting

a transmission with a IP packet where the ”Don’t Fragment” flag is set. Any router on the path

which has a too low MTU, i.e. the packet must be fragmented, will respond with an ICMP1

packet suggesting a lower MTU. Figure 6.1 shows the response from one of the routers in the

emulation (D103, see Figure 5.4). Because of the IPsec tunnel, the router advertises a MTU

of 1438, which causes the senders to utilize IP packets of max 1438 bytes (including header).

Consequently, the maximum TCP payload available is 1398 bytes, assuming 20 bytes of TCP

header, i.e. no option fields are utilized.

Figure 6.1: Wireshark capture showing ICMP answer from router to TCP peers Path MTU

Discovery algorithm.

tcpdump on the FreeBSD satellite emulator, shows Layer 2 (Ethernet) information on the traffic

as it is ”inside” the IPsec tunnel. It reports the largest frame to be 1510 bytes, and 156 bytes

for ACKs. This does not take account the 8 bytes of preamble and 4 bytes of integrity check

which has been stripped of the ethernet frame (presumable by the interface hardware). Total

bytes traversing the wire is therefore 1522.

From Figure 6.1 we see 1438 bytes of maximum IP packet size at the TCP peer. Adding 26 bytes

of Ethernet headers and trailers gives a total of 1464 bytes on the wire from the TCP sender.

The difference between bytes on the wire outside compared to inside the tunnel is thus 58 bytes,

which is the added overhead by IPsec. Compared to Table 5.3 (¿30 bytes overhead), this seems

reasonable. The extra overhead can be explained by the 20 bytes of SHA-1 integrity check, up to

1Internet Control Message Protocol

70

CHAPTER 6. RESULTS AND ANALYSIS

15 bytes of encryption block padding (AES uses a 16 bytes block size), and possibly alignment

padding which ensures the fields ends at the correct place in the header.

To calculate the maximum possible throughput across the emulator, one can use Equation 5.2.

As mentioned in Section 5.3.1, Dummynet will measure throughput based on the Ethernet frame,

excluding the preamble and integrity check. 1510 bytes on the wire (perceived by Dummynet)

and 1398 bytes of TCP payload (no options utilized) yields:

TCPthroughputmax =
500000bps

1510bytes
× 1398bytes = 462.914kbps (6.1)

And with UDP (8 byte header) instead of TCP:

UDPthroughputmax =
500000bps

1510bytes
× 1410bytes = 466.887kbps (6.2)

Initial tests to confirm the bandwidth was done using Iperf. A 1 Mbps stream of UDP was sent

across the emulator for 30 second. Measurements at the receiver showed a total UDP throughput

of 466.791 kBps, confirming the capabilities and performance of the emulator. Note that UDP

did not utilize the MTU path discovery, thus sending packets with 1500 byte size. This causes

fragmentation at the Vyatta routers when IPsec headers and trailers where to be appended, and

after a few seconds all traffic stopped - it is believed to be caused by drainage of fragmentation

buffer at the receiver side (the receiver stores fragments waiting for the remaining fragments).

Forcing Iperf to utilize a 1438 bytes MTU solved the problem.

6.1.1 On the performance of CTCP

Throughout the emulation, CTCP seems to have a very similar performance when compared

to TCP NewReno. This is understandable based on the description in Section 4.2.3. Because

CTCPs behavior is heavily affected by tunable parameters which may vary between implemen-

tations, hypothesis and predictions of behavior has been very difficult. Based on Figure 6.9, it

seems the multiplicative decrease β (refer Section 4.2.3) is quite similar to 0.5 found in NewReno,

and/or α and k (which governs the increase of wnd (cwnd)) has been set conservatively.

Another important parameter is the Wlow which is the threshold of how large the cwnd must

be before the delay-based component is enabled. It is possible that the BDP of the emulation is

not large enough to trigger the use of the component. The BDP of the link is 512 kbps × 512

ms, totaling to 33 kB, which is about 22 segments. With a 100% of BDP buffer, which is the

smallest used in the emulation: 66 kB, approx. 44 segments. Or with a buffer at 1000% of BDP,

the total BDP would be 363 kB, approx. 242 segments. The Wlow used by the creators in [45]

71

6.1. EMULATION CHARACTERISTICS AND CONFIRMATION

was 41 segments. If Microsoft uses the same limit, the delay-based component would probably

not be used for 100% buffer.

As described in Section 4.2.3, γ governs how many packets can be buffered before CTCP regards

it as a congestion. If Microsoft uses the static value proposed in [44], this limit would be

30 packets. I.e. 30 packets must be residing in the buffer before CTCP regards the link as

congested. However, the authors of CTCP also suggested a dynamic scheme to govern γ [45].

The dynamic algorithm is seen below:

γ = max(γmin,Wlow ×

κ

1 + κ
) (6.3)

κ =
Rmax −Rmin

Rmin
(6.4)

Assuming Microsoft uses the proposed values in [45], with Wlow at 41 packets and γmin at 3

packet. This would result in γ at approximately 20 packets for 100% buffer, and approximately

37 segments for 1000% buffer. The buffers can contain around, respectively, 22 and 242 segments.

The consequences, for 100% buffer, would be that the delay-based component never could detect

a congestion.

A comparison of Figure 6.2 and the results observed in Figure 6.18 suggest the assumptions

above to be correct. An anticipated, linear, NewReno-like curve is seen at 100 % buffer. And a

faster inclining, CTCP curve is seen with 1000 % buffer.

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 20 40 60 80 100

R
T

T
 (

m
s)

Time (seconds)

Win 7 CTCP

Figure 6.2: RTT of CTCP flow with 100 % buffer.

72

CHAPTER 6. RESULTS AND ANALYSIS

6.2 Results and analysis

6.2.1 Impact of UDP

Figure 6.3 shows the impact of a simultaneous UDP flow on different TCP flavors. Since UDP has

no congestion avoidance, back-off mechanism, or similar, the sender will always submit traffic to

the network at its desired speed. The effect is seen as an effective bandwidth limiter where TCP

acts as if the available bandwidth equals actual bandwidth minus UDP traffic. The maximum

goodput is around 463 Kbps (Equation 6.1).

 150

 200

 250

 300

 350

 400

 450

 500

0 Kbps 100 Kbps 300 Kbps

G
oo

dp
ut

 (
kb

ps
)

Competing UDP traffic

Win 7 NewReno
Linux Cubic

Figure 6.3: Goodput of single TCP flow with and without competing UDP flow.

73

6.2. RESULTS AND ANALYSIS

6.2.2 Friendliness

Friendliness of a TCP protocol is defined as ”its capacity to assure a fair band subdivision among

competing connections that use different protocol variants.” [29]. Fairness considers the same

property, but among protocols of the same version. The measurements have been done as follows:

First, one (or several where applicable) traffic flow is started. The stream is allowed to reach

steady-state, i.e. the sender has exited Slow Start and had several opportunities to expand the

cwnd to its maximum. At this point the competing flow is started, and is equally allowed to

reach its steady-state. Around three minutes into the test, the actual measurement is taken for

a minimum of three minutes and up to six minutes depending on the buffer size. This procedure

is repeated twice to mitigate any random effects.

 0

 20

 40

 60

 80

 100

1 1 1 1 2 2 2 2

U
til

iz
at

io
n

(%
)

of simultaneous flows

Win 7 NewReno
Win 7 CTCP
Linux Cubic
Linux Hybla
Linux Reno

Figure 6.4: Link utilization of single TCP flows (marked ”1”), and friendliness between two

competing (marked ”2”) TCP flows of different flavor.

Figure 6.4 shows the friendliness of all aforementioned TCP flavors with buffer at 100 % of

BDP. First four columns show the performance of each flavor without any competing flow.

Not surprisingly, they are able utilize close to 100 % of the link. The four last columns show

friendliness between two competing flows. It is evident that NewReno and CTCP are heavily

penalized by the more aggressive counterparts, CUBIC and Hybla. The behavior seen is due

to Reno and CTCPs liberal back-off at packet loss, and conservative increase of cwnd which

74

CHAPTER 6. RESULTS AND ANALYSIS

depends on the RTT. As suspected, CTCP shows a performance almost identical to NewReno

as discussed in Section 6.1.1. The unfriendliness of CUBIC and Hybla is seen to be devastating

for other flows. Implicitly this gives the competing flows priority over Windows 7 flows across

the network. Competitors are able to utilize less than 20 % of the available bandwidth. The last

column shows the Hybla flow using around 90 % of the link, at the cost of NewReno.

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120

U
til

iz
at

io
n

(%
)

Time (seconds)

Win7 NewReno

Figure 6.5: Impact of competing CUBIC flow (introduced at approx. 70sec.) on Windows 7

NewReno flow.

A measurement of the throughput as a function of time can be seen in Figure 6.5. This shows

the throughput of a NewReno flow throughout the first 120 seconds of the test - note that

measurements are not initiated until 180 seconds. Most notably the figure shows the transient

phase as the competing CUBIC flow is introduced at approximately 70 seconds. The impact of

CUBIC initiates a fairly rapid decline in throughput. Within 10 seconds, or 20 times the RTT,

the utilization is reduced to around half of its initial value. And after 20 seconds, NewReno

accounts for less than 20 % of the link utilization.

Figure 6.6 shows multiple Reno flows, competing against one CUBIC flow. As more and more

Reno flows are added, the share of bandwidth which the Reno flows receive should follow the

”Fair share” dotted line. However, it is evident that due to the poor friendliness of CUBIC, there

is a gap between actual and fair share. The gap decreases as the number of Reno flow increases,

making CUBIC more friendly the more ”competition” it meets. In a real traffic scenario with

75

6.2. RESULTS AND ANALYSIS

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

U
til

iz
at

io
n

(%
)

Simultaneous Windows 7 Reno flows

Actual share
Fair share

Figure 6.6: Multiple Windows 7 Reno flows vs. one Linux CUBIC flow. All in steady state.

potentially hundreds of flows, CUBIC may prove not be as unfriendly as seen in Figure 6.4 and

6.6

As the buffer size increases, the friendliness-problem becomes emphasized. This is depicted in

Figure 6.7. The buffer allows each flow to potentially increase its cwnd and throughput above the

500 kbps bandwidth limit. Since CUBIC opens it cwnd more aggressively following a loss, and

back-off less than NewReno, it will exploit this at a higher pace than NewReno. Consequently

the buffer will emphasize the difference between the two flows, and worsen the unfriendliness of

CUBIC. For very large buffers, the figure shows an almost devastating performance of NewReno,

utilizing about 5 % of the available bandwidth.

Finally, a PEP has been placed in front of the satellite link, following the design in Figure 5.3.

The measurements themselves are conducted in a similar fashion as before - for large buffers, the

measurement period is increased to six minutes. The flows are terminated at the PEPsal PEP,

where new Hybla sessions are initiated towards the intended receiver of the original flow. Figure

6.8 shows the friendliness of the flows with PEPsal enabled. Compared to 6.4, an improvement

of around 20 % can be seen in the utilization of NewReno for 100 % buffer. Comparing the

second column with Figure 6.7 also shows an increased utilization of about 20 %. Consequently

it may seem that the use of a PEP may correct the unfair division of bandwidth.

However, the throughput measured at each receiver fluctuated with long periods during mea-

surements. I.e. the throughput could be measured at near full utilization for a period, before

falling to almost zero afterwards, and then repeated. The variance of the results in Figure 6.8

is therefore very large - questioning their validity. The cause of these characteristics are hard to

76

CHAPTER 6. RESULTS AND ANALYSIS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

85 %
100 %

150 %
200 %

500 %
1000 %

U
til

iz
at

io
n

(%
)

Buffer size (% of BDP)

Win 7 NewReno
Linux Cubic
Cumulative

Figure 6.7: Friendliness between CUBIC and Reno for different buffer sizes.

pinpoint, but may be caused by bugs in the PEPsal implementation.

6.2.2.1 Implications

The TCP flavors available to Windows 7 (NewReno and CTCP) are harshly penalized when

used simultaneously with a flow originating from a Linux (CUBIC) sender. As the flows must

compete for the scarce bandwidth at the satellite bottleneck, the Linux sender will aggressively

undermine the performance of a Windows 7 flow. Consequently, users would experience an unfair

division of throughput in an environment with a mix of both operating systems at the sender side.

Senders at a third-party portion of the network (e.g. Internet) can obviously not be dictated.

However, in own networks, a mixed environment should be avoided, or other mechanisms e.g.

QoS-schemes should be deployed to be address the unfairness. Another approach could be the

tuning of CUBIC or NewReno/CTCP to improve its friendliness. PEPs have shown to be a

likely contributor to even out the share, although the performance of PEPsal is to varying to

draw any conclusions.

77

6.2. RESULTS AND ANALYSIS

 0

 20

 40

 60

 80

 100

100 % 1000 % 1000 %

U
til

iz
at

io
n

(%
)

Size of buffer (% of BDP)

Win 7 NewReno
Win 7 CTCP
Linux Cubic

Figure 6.8: Friendliness between different flavors of TCP, all going through PEPsal utilizing

Hybla.

78

CHAPTER 6. RESULTS AND ANALYSIS

6.2.3 Bit Error Rate (BER)

As mentioned in Section 2.3.2, satellite links are generally more prone to bit errors and packet

losses than wired links. In addition, the emulation incorporates a radio link between the user

and the satellite gateway. Since this is a likely scenario, it is interesting to look at TCP per-

formance across lossy links. Measurements are done in a similar fashion as in previous sections;

measurement is done over 5 minutes. Figure 6.9 shows each TCP flavors ability to utilize the link

for different values of BER. Note that there is no competition; each flow can utilize the entire

bandwidth.

 0

 20

 40

 60

 80

 100

8.835E
-8

1.0E
-7

8.839E
-7

1.0E
-6

8.879E
-6

1.0E
-5

1.785E
-5

4.531E
-5

7.366E
-5

0.01 0.1 1 2 5 8

U
til

iz
at

io
n

(%
)

Bit Error Rate (logarithmic scale)

Packet Error Rate (logarithmic scale)

Win 7 NewReno
Win 7 CTCP
Linux Cubic
Linux Hybla

PEPsal(Win7 NewReno, Hybla)

Figure 6.9: Impact of Bit Errors on single TCP flows.

It is evident that Hybla outperform the other flavors as the BER increases. Although CUBIC

performs better at low PER values, Hybla achieve around 15 % gain for higher BERs compared

to CUBIC. Hybla also outperforms the other flavors when BER reaches 7.3E-5 - more than

15 % higher utilization when compared to all other flows. CUBIC also performs well, but its

performance degrades rapidly as the BER becomes high, culminating at around 20 % alongside

the other flavors.

Both flavors available in Windows 7 are harshly penalized and performs around 20 % weaker

79

6.2. RESULTS AND ANALYSIS

than CUBIC for moderate BER levels. Comparing the Windows variants with Hybla shows up

to 40 % differences in utilization. In addition, NewReno is penalized at lower BERs and achieves

close to 90 % utilization for BER at 8.8E-7 - slightly more than PEPsal.

PEPsal running Hybla also achieves Hybla-like performances, with around 10-15 % decrease

when compared. Note that the PEPsal is fed by a NewReno flow, i.e. PEPsal improves the

performance of NewReno with up to 40 %. However, for lower BERs, PEPsal is outperformed

by all other flavors, including NewReno. In a scenario where low BERs are common and higher

values occurs more seldom, this might prove a great disadvantage.

6.2.3.1 Implications

It is evident that the performance in lossy networks varies greatly between TCP flavors. At BER

higher than 1E-6, users will experience uneven performance in a mixed-TCP/OS environment.

If a Linux transmitter should be able to utilize up to 80 % of the link, a BER between 1E-6 and

1E-5 is needed. If senders utilize Hybla, the same performance can be reached for BER as high

as 1.8E-5. To achieve a similar utilization at above 80 %, a Windows sender may not operate

with BERs higher than 1E-6. Such levels of BER are assumed to be easily obtainable across a

satellite link, with some exceptions e.g. jamming. However, a hybrid network containing a radio

leg would find this BER more challenging to achieve. A PEP may improve the performance of

Windows and CUBIC transmitters significantly, at the cost of throughput at lower BERs. To

summarize, the BER should not increase above 1E-6 if ¿80 % utilization is needed. This will

accommodate the needs for ”all” flavors on both operating system.

80

CHAPTER 6. RESULTS AND ANALYSIS

6.2.4 RTT and buffer

Ahead of the satellite link, in each direction, a buffer exists to accommodate overflowing traffic

trying to enter the satellite modem/bottleneck. The size of this buffer can effect the performance

of TCP. An immediate effect is seen in the Round-Trip Time, since it goes up as packets spend

time in the buffer. Figure 6.10 tries to visualize this effect by showing the average RTT for

different flavors and buffer sizes. However, since the measurements are done using TCPtrace

and Karn’s algorithm, large portions of the actual RTT may not be measured and included.

Therefore the figure should only be viewed as an indicator, not a precise representation. Note

that the buffer size is specified as percentage of Bandwidth-Delay Product (BDP). The BDP of

the link is 512 kbps × 512 ms, totaling to 33 kB. A buffer size of 200 % would equal 66 kB, and

330 kB for 1000 %.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

100 200 1000

R
T

T
 (

m
s)

Buffer Size (% of BDP)

Win 7 NewReno
Win 7 CTCP
Linux Cubic
Linux Hybla

Win 7 NewReno to Linux
Win 7 CTCP to Linux

Figure 6.10: Average RTT for different flavors and buffer sizes.

6.2.4.1 Windows 7 Advertised Window problem

Figure 6.10 also shows an interesting discovery made during emulation. Note the short RTT of

both NewReno and CTCP, even for a buffer at 1000 % of BDP. An actual view of the situation

over time can be seen in Figure 6.11 (NewReno) and 6.12 (CTCP), which shows the actual

measured RTT during the transfers. Note that for 1000 % of BDP buffer size, the RTT is

rapidly fluctuating between around 1 and 2 seconds. In order to explain this, it is important to

note that RTT can also be viewed as a measure of buffer utilization: The longer the RTT, the

81

6.2. RESULTS AND ANALYSIS

more data is in the buffer. As all flavors considered in this paper never keeps it sending rate

constant, but tries to increase it, we would expect the RTT, i.e. buffer utilization, to go up to

its maximum:

RTTmax =
Buffersize

Bandwidth
+ Linkdelay =

330kB

500kbps
+ 528ms = 5.8s (6.5)

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 10 20 30 40 50 60

R
T

T
 (

m
s)

Time (seconds)

100% Buffer 200% Buffer 1000% Buffer

Figure 6.11: RTT of NewReno flow between two Windows 7 hosts.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 10 20 30 40 50 60

R
T

T
 (

m
s)

Time (seconds)

100% Buffer 200% Buffer 1000% Buffer

Figure 6.12: RTT of CTCP flow between two Windows 7 hosts.

An expected behavior would be for the transmitter to increase it cwnd until 100 % of the buffer is

utilized. At this point, a packet loss would occur and the transmitter would back off. During this

period, the RTT (which can be seen as a measure of buffer utilization) should grow to around 6

82

CHAPTER 6. RESULTS AND ANALYSIS

seconds before dropping significantly as the sender backs off and the buffer drains. The behavior

should repeat until the transfer is terminated. This expected behavior can be seen Figure 6.13

for CUBIC and Hybla. Note the peak at around 5.8 seconds, indicating a full buffer, and a

packet loss - as expected.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120

R
T

T
 (

m
s)

Time (seconds)

Linux Cubic
Linux Hybla

Figure 6.13: RTT of CUBIC and Hybla flows with 1000% BDP buffer.

The explanation to the strange RTT in both NewReno and CTCP can be seen when comparing

Figures 6.14 and 6.15. The figures show the advertised receiver window (rwnd) signaled by the

receiver towards the sender during the transfer.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25 30 35 40
 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

W
in

do
w

 s
iz

e
(K

bi
t)

R
T

T
 (

m
s)

Time (seconds)

Window Size RTT

Figure 6.14: RTT and Receiver Window Size for NewReno flow between two Windows 7 hosts.

83

6.2. RESULTS AND ANALYSIS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100 120
 0

 1000

 2000

 3000

 4000

 5000

 6000

W
in

do
w

 s
iz

e
(K

bi
t)

R
T

T
 (

m
s)

Time (seconds)

Window Size RTT

Figure 6.15: RTT and Receiver Window Size for CUBIC flow between two Linux hosts.

As described in Section 2.2.4, the rwnd should depict the buffer at the receiver, i.e. how much

data he is willing to accept without acknowledgment. The actual transmission window, or allowed

flight size is set to the minimum of the congestion window (cwnd) and rwnd Typically, the rwnd

is not the limiting factor since buffer at the receiver usually is not a scarce resource. Figure 6.14

shows the Windows 7 receiver signaling a maximum rwnd of around 1000 kbit - compared to

Figure 6.15 where the Linux receiver signals a ten times larger window at about 10000 kbit.

Figure 6.16 compare rwnd for all buffer sizes. ”Minimum to fill link” is calculated as the BDP +

buffer size, i.e. all data which possibly can be in flight. ”Windows 7 Experimental” seen in the

figure is a mode of the Windows 7 Auto-tuning level - the mechanism which control the rwnd

advertised by Windows 7. It can be adjusted using

netsh interface tcp global set autotuninglevel=experimental

at the command line. The help describes experimental mode as ”Allow the receive window to

grow to accomodate extreme scenarios.”. This was tested to see if it is possible to impact the

rwnd. As seen in Figure 6.16, it made no difference.

As Windows 7 does not signal a large enough window, the sender is not able to ”fill the link”,

and thus have to wait for more ACKs as the window fill up, before he can transmit again.

This causes the fluctuation in RTT and buffer utilization. Seemingly, Windows 7 is not able

84

CHAPTER 6. RESULTS AND ANALYSIS

 10

 100

 1000

 10000

100 % 200 % 1000 %

M
ax

. A
dv

er
tis

ed
 R

ec
ei

ve
r

W
in

do
w

 (
K

B
yt

es
)

Buffer size (% of BDP)

Windows 7
Win 7 Experimental

Ubuntu 10.10
Minimum to fill link

Figure 6.16: Maximum Advertised Receiver Window for different OS and buffer sizes.

to adjust its rwnd to accommodate large changes in delay after a transmission has begun. It

is not clear how Windows 7 sets its rwnd but tests have shown that if the delay is present at

the start of the transfer (i.e. the buffer is not empty), the rwnd will be increased sufficiently

throughout the transfer. This effect can be seen in Figure 6.17, column marked ’*’ compared

to first column. The same behavior is experienced if delay is added during a transfer using the

emulation/netem.

Figure 6.17 shows two competing flows, with different kind of receivers. The first column shows

a CUBIC flow vs a NewReno flow, where the CUBIC flow has a Windows 7 receiver. This

puts a constraint on CUBICs aggressiveness, since it will never be able to fill the buffer above

the rwnd, around 125 kB (about one third of the buffer). Comparing the share to Figure 6.7

shows around 20 % drop in favor of NewReno. Second column shows the friendliness between

two competing CUBIC flows; one is transmitting towards Windows 7, the other towards a Linux

receiver. Normally, one would assume an almost equal share of the link. However, the constraints

by the rwnd results in about 20 % penalty for the flow towards Windows 7. The unfair division

in the third column is not caused by the rwnd (cwnd never reaches rwnd), but is rather the

same unfriendliness of CUBIC as seen in Figure 6.7. The measurement in the final column is

done with the Linux-receiver flow in steady-state, i.e. there is data in the buffer when the flow

with the Windows 7 receiver starts. As discussed, this causes Windows 7 to actually increase it

85

6.2. RESULTS AND ANALYSIS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 2 2 2*

U
til

iz
at

io
n

(%
)

of simultaneous flows

Win 7 NewReno -> Linux
Linux Cubic -> Linux
Linux Cubic -> Win 7

Win 7 NewReno -> Win 7

Figure 6.17: Friendliness between competing flows, with 1000% of BDP buffer. Flow with

Windows 7 receiver in steady-state, except *.

rwnd as anticipated. CUBIC will consequently not be penalized, and the division of bandwidth

is identical to 6.7.

Figure 6.18 supports the explanation by depicting the RTT as it would have been without a

restrictive rwnd. These new average values for RTT are included in Figure 6.10.

86

CHAPTER 6. RESULTS AND ANALYSIS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700

R
T

T
 (

m
s)

Time (seconds)

Win 7 NewReno
Win 7 CTCP

Figure 6.18: RTT of NewReno and CTCP flow from Windows 7 to Linux with 1000% BDP

buffer.

87

6.2. RESULTS AND ANALYSIS

6.2.4.2 Implications

A large buffer will in most situations result in a long RTT. The high RTT will not effect the

immediate goodput, as seen in Figures 6.20 and 6.21 On the contrary, a sufficient large buffer can

improve the goodput. As a buffer is completely filled up, one or several packets will inevitably

be dropped. This causes the sender to back off, before again starting to increase the cwnd. If

the buffer contains enough packets, the sender will increase its throughput up to the maximum

bandwidth before the buffer is empty. Consequently, the buffer has ”absorbed” the variation in

throughput at the sender, and 100 % utilization is achieved. Figure 6.19 shows a situation where

the buffer size is 100 % of BDP, and utilization is penalized. Note that these measurements are

done with only a single flow traversing the link. As the number of flows increases, it is fair to

assume that a smaller buffer is needed to mitigate this effect, since a flow backing off allows

another flow to throttle up.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 10 20 30 40 50 60 70 80 90
 500

 600

 700

 800

 900

 1000

 1100

 1200

U
til

iz
at

io
n

(%
)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure 6.19: RTT and goodput of NewReno flow between two Windows 7 hosts with 100% BDP

buffer.

Although there are no penalties to throughput caused by longer RTT, it is fair to assume that

different applications or specific uses of TCP depend on the RTT. These may suffer a degrade

in performance as the RTT grows.

The small rwnd which Windows 7 signals has several implications for TCP transfers towards

88

CHAPTER 6. RESULTS AND ANALYSIS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120
 0

 1000

 2000

 3000

 4000

 5000

 6000
U

til
iz

at
io

n
(%

)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure 6.20: RTT and goodput of CUBIC flow between two Linux hosts with 1000% BDP buffer.

a Windows 7 PC. Note that the occurrence of such a situation may be rare since it requires a

large elevation of RTT after the transmission has started, i.e. the buffer is more or less empty

at start of transfer. However, it is not unlikely. As long as the flow is the only utilizer of the

link, or a competitor is very conservative, e.g. suffers an identical problem, no implications

are experienced. In fact, the receiver will enjoy maximum goodput with a lower RTT than a

Linux receiver could expect. However, when another flow is introduced, e.g. NewReno towards

Linux, the under-utilization of the buffer will result in an unfair division of bandwidth - at the

cost of the original flow. In a mixed-OS/TCP environment with different receivers, it may be

necessary to address this problem (no solution has been found). However, a large number of

users at the receiving end would most likely mitigate the effect since the buffer would frequently

be utilized.

89

6.2. RESULTS AND ANALYSIS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30
 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

U
til

iz
at

io
n

(%
)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure 6.21: RTT and goodput of NewReno flow between two Win 7 hosts, 1000% BDP buffer.

90

CHAPTER 6. RESULTS AND ANALYSIS

6.2.5 Webpages, HTTP, short transfers

The following results try to indicate the impact of a satellite link when downloading various web

sites. There are no significant ways a receiver can impact the performance (within reasonable

boundaries) on these short downloads, so all measurements are done using Windows 7 and

Internet Explorer 8. The web pages where downloaded several times prior to the measurements,

allowing the browser to cache whatever content the default settings enable it to. The pages

where then downloaded 10 times consequently, all packets captured, and results calculated as

an average of the 10 downloads. Duration was measured from the first request or SYN segment

until the final FIN (segment with FIN flag set) segment was received, or an obvious end in the

transfer occurred. This mixed approach is caused by the fact that not all web servers close the

TCP connections when downloading is finished. The type of server and operating system was

found using a free online tool at http://www.netcraft.com. Note that the results should only

be viewed as indications as there are a wide array of parameters and variables which is outside

the control of the testbed.

There are several companies which try to measure the distribution of operating systems and web

servers used at the Internet. By analyzing the responses of a web server one may identify the

type of server and operating system on which it runs. Querying a large amount of servers may

then produce an indicator on the distribution of systems. W3techs.com reports that 64.1 % of

servers are running Unix and 35.9 % Windows, as of April 2011 [61]. Netcraft.com reports 61 %

Unix (assumed most Apache and nginx servers run on Linux), and 18.83 % Windows, as of April

2011 [62]. Similarly, Securityspace.com reports 72.09 % Unix (same assumption), and 17.33 %

Windows, as of July 2009 [63]. The reported distributions vary some, which may be anticipated

considering the method of measurement. It seems fair to assume that Unix-based web servers

has a slightly higher utilization than Windows-based on the Internet.

Table 6.2 shows the penalty induced on download duration in the final column, while the other

columns depict properties of the downloads/website: ”#TCP” is number of TCP connections

utilized during the transfer. ”Size” is the total bytes downloaded. While ”Size/Conn.” is the

size divided by the number of connections. Note that the TCP flavor used in the commercial

vendor F5 BIG-IP servers are unknown.

The download of unik.no are the most penalized, which may be predicted based on the shorter

Initial Window of Windows transmitters (2 segments, compared to 3 for Linux). On the other

hand, the download of ubuntu.com is the second most penalized. This is somewhat surprising

since Linux are utilized, and the average kB per connection is low. As mentioned, these results

should only be viewed as indications due to the range of uncontrollable variables in the tests.

One explanation might be that a single TCP flow is responsible for the bulk of the ubuntu.com

download.

91

http://www.netcraft.com

6.2. RESULTS AND ANALYSIS

Webpage OS #TCP Size Size/Conn. High RTT penalty(%)

cnn.com Linux ≈35 ≈200 kB 5.7 20.4

vg.no F5 Big-IP ≈50 ≈150 kB 3 26.9

facebook.com F5 Big-IP ≈14 ≈180 kB 12.9 74.0

ubuntu.com Linux ≈8 ≈45 kB 5.6 188.9

unik.no Win 2008 ≈5 ≈30 kB 6 379.9

Table 6.2: Penalty and properties of web page downloading for high RTT.

Figure 6.22 shows data transfered (received) during the Slow Start phase of both a Linux and

Windows 7 sender. Measurements are done at the receiver, giving the correct and actual delays

from a SYN is received (Time = 0) until data is transfered. The figure shows the benefits of the

increased Initial Window. Although the senders utilize the same Slow Start algorithm, Linux

is able to transmit a larger amount of data in a shorter period of time. This is solely due to

a Initial Window of 3 segments (2 for Windows 7), which allows the cwnd to grow at a faster

rate since it is increased by one segment for every ACK. This confirms the theory explained in

Section 4.1.1.3.

 0

 50000

 100000

 150000

 200000

 250000

 0 1 2 3 4 5 6

S
eq

ue
nc

e

of
 la

st
 b

yt
e

re
ce

iv
ed

Time (seconds)

Win 7 Reno Linux CUBIC

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 0.5 1 1.5 2 2.5

Figure 6.22: Time-sequence graph showing first seconds of CUBIC and NewReno transfers.

Table 6.3 shows the actual average duration of the downloads. Note however, these values are

92

CHAPTER 6. RESULTS AND ANALYSIS

dependent on a wide range of factors like CPU, web browser, web page content, etc. In addition,

a user might be able to interact, read and consider a web page completely downloaded before all

data is actually transfered. Consequently, the values should not be considered as representative

download durations for these web pages.

Added RTT

Webpage 0 ms 528 ms

cnn.com 25.9 s 31.2 s

vg.no 15.4 19.5

facebook.com 5.8 s 16.5

ubuntu.com 5.7 16.5

unik.no 0.9 s 4.2

Table 6.3: Average time to download various web pages for different RTT.

6.2.5.1 Implications

As mentioned, it is very difficult to measure HTTP performance using actual web pages. Some

indicators may although be pointed out. It is evident that even short HTTP transfers will be

penalized when transmitted across networks with satellite links. The lowest increase in download

time was about 20 %, and ranged up to 380 %. There are no mechanisms available for a receiver

to greatly impact the performance of these short transfers. The senders initial window, and its

expanding of cwnd governs the transmission. Consequently, one may expect an added penalty in

short transfers of up to about 1 second from a Windows sender when compared to Linux. This

can be seen as the gap in between Linux and Windows in Figure 6.22.

93

6.2. RESULTS AND ANALYSIS

94

Chapter 7

Conclusion

This thesis has emulated and measured the performance of TCP NewReno, Compound TCP,

CUBIC, TCP Hybla and PEPsal. These are both widespread implementations and some are pro-

posed solutions to the Transport Layer challenges in a long-delay, medium-bandwidth, high-loss

environment. A thorough description and analysis is presented, including descriptions of similar

technologies like the Space Communications Protocol Specifications - Transport Protocol. The

work has been done in the context of the Norwegian Armed Forces acquisition of a commu-

nications satellite, and the increasing use of civilian technology, e.g. IP and TCP, in military

networks.

There exist a gross unfriendliness from the default Linux implementation CUBIC, towards avail-

able Windows 7 TCP flavors (NewReno and CTCP). Utilizing large buffers, a TCP flow originat-

ing from a Windows 7 computer may be confined to as little as 5 % of the available bandwidth

when competing against a CUBIC flow. Moderate buffers increase the share of Windows 7 flows

up to about 20 %. The satellite-tailored TCP Hybla, shows identical or increased unfriendliness.

Any solutions should be applied to the sender side of a flow, or at an intermediary proxy. Possi-

ble solutions include the use of the Performance Enhancing Proxy PEPsal, tuning of Linux and

Windows 7 implementations, or avoiding mixed-OS/TCP environments.

The thesis has also shown a significant poorer performance of NewReno and CTCP in lossy

networks when compared to CUBIC. A newer protocol, TCP Hybla, shows promising resilience

and good performance, even at large packet losses. The usage of CUBIC or Hybla would greatly

benefit a transmitter in such a network. If such a deployment is difficult, the use of a PEPsal

at the sender side of a satellite link would significantly improve performance regardless of TCP

flavor at sender. PEPsal depends on the ability to read TCP header information, which is

encrypted in the black portion of a military network. Several solutions exist to overcome this

95

7.1. FUTURE WORK

problem, including layered encryption schemes, inter-boundary signaling and red enclaves in the

black portion. A easily deployed solution would be to position PEPsal at the red-black boundary

- however, this may decrease its performance.

Presumably a bug has been identified in the TCP implementation Windows 7. The auto-tuning

of the Receiver Window in Windows 7 seem unable to accommodate a large increase in the RTT

(e.g. buffer filling up) during a transmission. This imposes constraints on the aggressiveness of

the sender, and may penalize the transmission in competition with other flows.

7.1 Future work

This thesis has shown the unfriendliness between a Windows 7 flow competing with a Linux flow

for bandwidth. This phenomenon should be confirmed in a real-life network with realistic traffic

loads and distribution of different TCP flavor flows. Future work may also include a tuning of

the Windows 7 TCP implementation (although assumed to be difficult in a Microsoft operating

system), to match the aggressiveness of Linux. And similarly, an evaluation of the friendliness

of other TCP flavors available to Linux is interesting since deployment is simple. This work

should be done at a sender-intensive node in the network, i.e. a server or computer frequently

transmitting large amounts of data.

For a general approach, an intermediary proxy may be deployed to decrease unfriendliness for all

senders transmitting through it. An evaluation of available implementations is necessary, along

with solutions to the dependence of TCP header information at the proxy.

TCP Hybla has shown to be superior in lossy environments. A future work may include the test

of Hybla-only transmitters in a network with varying degradations, e.g. Mobile Ad-hoc networks

(MANET). These test should also be done in networks without satellite link as this may be

a likely scenario for MANETs. In addition to proving Hybla’s performance in lossy low-RTT

networks, this could indicate its general performance through low-RTT networks - which would

be interesting in scenarios where the proxy must operate far away from a satellite link.

96

Bibliography

[1] Norwegian Ministry of Defense. Acquisition of Communications Satellite for Norwegian

Armed Forces. Proposition 56 S Prop. 56 S, December 2009.

[2] M. Molinari and J. Pezeshki. Approaches to using Performance Enhancing Proxies in the

Gig Black Core. MILCOM 2007, 2007.

[3] T. Maseng and K. Øvsthus. Telecommunication in tomorrows military. FFI-FOKUS, 5,

November 2003.

[4] FFI. NORwegian Modular Network Soldier. FFI FACTS, November 2006.

[5] C. Heininger. Army develops smartphone framework, applications for the front lines.

http://www.army.mil/-news/2011/04/18/, April 2011.

[6] F.D. Kronewitter et.al. HAIPE Compliant TCP Performance Enhancing Proxy for

Bandwidth-On-Demand Enviroment. MILCOM 2008, pages 1–7, 16–19, 2008.

[7] H. Yousefi’zadeh, X. Li, and A. Qureshi. A Comparison of TCP Unfriendly-Region Conges-

tion Control Solutions. 2010 Military Communications Conference - Unclassified Program

- Networking Protocols and Performance Track, 2010.

[8] B. Rossow et. al. Effective use of SatCom in encrypted networks - Final Report. Thales

Norway, 2011.

[9] M. Allman and A. Falk. On the Effective Evaluation of TCP. ACM SIGCOMM Computer

Communication Review, 29, October 1999.

[10] H.Zimmermann. OSI Reference Model - The ISO Model of Architecture for Open Systems

Interconnection. IEEE Transactions on Communications, COM-28(4), April 1980.

[11] ISO/IEC. 7498-1 Information Technology - Open Systems Interconnection - Basic Reference

Model: The Basic Model, 1994.

[12] D. Roddy. Satellite Communications. McGraw-Hill, fourth edition edition, 2006.

97

http://www.army.mil/-news/2011/04/18/

BIBLIOGRAPHY

[13] M. Hassan and R. Jain. High Performance TCP/IP Networking. Alan R. Apt, 2004.

[14] J. Postel. RFC-793 Transmission Control Protocol, DARPA Internet program protocol

specification, September 1981.

[15] L. S. Brakmo, S.W. O’Malley, and L.L. Peterson. TCP Vegas: New Techniques for Con-

gestion Detection and Avoidance. ACM SIGCOMM Computer Communication Review, 24,

October 1994.

[16] I. Rhee and L. Xu. CUBIC: A New TCP-Friendly High-Speed TCP Variant . ACM SIGOPS

Operating Systems Review - Research and developments in the Linux kernel, 42, 2008.

[17] C. Caini and R. Firrincieli. TCP Hybla: a TCP enhancement for heterogeneous networks.

International Journal of Satellite Communications and Networking, 22:547–466, 2004.

[18] K. Ramakirshnan. RFC-3168 The Addition of Explicit Congestion Notification (ECN) to

IP, September 2001.

[19] S. Floyd and K. K. Ramakrishnan. ECN (Explicit Congestion Notification) in TCP/IP.

http://icir.org/floyd/ecn.html, June 2009.

[20] M. Allman, D. Glover, and L. Sanchez. RFC-2488 Enhancing TCP Over Satellite Channels

using Standard Mechanisms, January 1999.

[21] M. Allman, V. Paxson, and E. Blanton. RFC-5681 TCP Congestion Control, September

2009.

[22] Van Jacobson and M. J.Karels. Congestion Avoidance and Control. ACM SIGCOMM,

November 1988.

[23] C. Partridge and T.J. Shepard. TCP/IP Performance over Satellite Links. IEEE Network,

September/October 1997.

[24] S. Fu, M. Atiquzzaman, and W. Ivancic. Evaluation of SCTP for Space Networks. IEEE

Wireless Communications, October 2005.

[25] Y. Zhang, editor. Internetworking and Computing over Satellite Networks. Kluwer Academic

Publishers, 2003.

[26] W. Zhenyong, G. Qing, and G. Xuemai. Comprehensive Computational Analysis on TCP

in Satellite Links. Conference on Innovative Computing, Information and Control, 2006.

[27] Z. Zhou and J. S. Baras. TCP over GEO satellite hybird networks. IEEE/ACM Trans.

Netw., 14:753–766, 2006.

[28] S. Dawkins et.al. RFC-2760 Ongoing TCP Research Related to Satellites, February 2000.

98

BIBLIOGRAPHY

[29] C.Caini and R. Firrincieli. End-to-end TCP enhancements performance on satellite links.

11th IEEE Symposium on Computers and Communications, 2006.

[30] C. Caini, R. Firrincieli, and D. Lacamera. Comparative Performance Evaluation of TCP

variants on Satellite Enviroments. IEEE ICC 09, 2009.

[31] C. Caini, R. Firrincieli, and D. Lacamera. PEPsal: a Performance Enhancing Proxy designed

for TCP Satellite connections. IEEE, 2006.

[32] H. Obata, S. Takeuchi, and K. Ishida. A New TCP Congestion Control Method Considering

Adaptability over Satellite Internet. 25th IEEE International Conference on Distributed

Computing Systems Workshops, 2005.

[33] V. Jacobson, R. Braden, and D. Borman. RFC-1323 TCP Extensions for High Performance,

May 1992.

[34] M. Allman. Improving TCP Performance over Satellite Channels. Master’s thesis, Ohio

University, 1997.

[35] M. Marchese. Study and performance evaluation of TCP modification and tuning over

satellite links. International Journal of Satellite Communications, 19:93–110, 2000.

[36] M. Allman, S. Floyd, and C.Partridge. RFC-3390 Increasing TCP’s Initial Window, October

2002.

[37] N. Dukkipati et. al. An Argument for Increasing TCPs Initial Congestion Window. ACM

SIGCOMM Computer Communication Review, 40(3), July 2010.

[38] J. Chu, N. Dukkipati, Y. Cheng, and M.Mathis. Increasing TCPs Initial Window. Internet

Draft: draft-hkchu-tcpm-initcwnd-01.

[39] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanov. RFC-2018 TCP Selective Acknowledg-

ment Options, October 1996.

[40] M. Allman, V. Paxson, and W. Stevens. RFC-2581 TCP Congestion Control, April 1999.

Obsoleted.

[41] S. Floyd, T. Henderson, and A. Gurtov. RFC-3782 The NewReno Modification to TCP’s

Fast Recovery Algorithm, April 2004.

[42] J. Davies. New Networking Features in Windows Server 2008 and Windows Vista.

http://technet.microsoft.com/en-us/library/bb726965.aspx, February 2006.

[43] D.J. Leith, R.N. Shorten, and G. McCullagh. Experimental evaluation of Cubic-TCP. Pro-

ceedings of the 6th International Workshop on Protocols for Fast Long Distance Networks,

2008.

99

BIBLIOGRAPHY

[44] K. Tan et. al. A Compound TCP Approach for High-speed and Long Distance Networks.

Microsoft Research, 2005.

[45] K. Tan et. al. Compound TCP: A Scalable and TCP-Friendly Congestion Control for High-

speed Networks . 4th International workshop on Protocols for Fast Long-Distance Networks,

2006.

[46] J.C. Hoe. Improving the start-up behavior of a congestion control scheme for TCP. Pro-

ceedings of ACM SIGCOMM ’96, pages 270–280, 1996.

[47] CCSDS. SPACE COMMUNICATIONS PROTOCOL SPECIFICATION (SCPS) - TRANS-

PORT PROTOCOL (SCPS-TP), October 2006.

[48] J. Doffoh, R. Mereish, and M. Puckett. Analysis and Comparison of Acceleration Protocol

for TCP over Satellite. MILCOM 2005, 1:279–285, 2005.

[49] J. Border et. al. RFC-3135 Performance Enhancing Proxies Intended to Mitigate Link-

Related Degradations, June 2001.

[50] I. Thomson, A. O. Waller, and G. Jones. Performance enhancing proxies and security. IEE

Digest, 2003.

[51] Vyatta. Vyatta System - Basic Routing Reference Guide. http://vyatta.org/documentation,

February 2009. Document Revision VC5 v03.

[52] Vyatta. Vyatta System - VPN Reference Guide. http://vyatta.org/documentation, February

2009. Document Revision VC5 v03.

[53] The Linux Foundation. netem. http://www.linuxfoundation.org/collaborate/

workgroups/networking/, November 2009. Visited in January 2011.

[54] M. Carbone and L. Rizzo. Dummynet Revisited. ACM SIGCOMM Computer Communica-

tion Review, 40, 2010.

[55] C. Caini, R. Firrincieli, and D. Lacamera. A Linux Based Multi TCP Implementation for

Experimental Evaluation of TCP Enhancements. Proc. SCS SPECTS, pages 875–883, 2005.

[56] The Linux Foundation. TCP probe. http://www.linuxfoundation.org, November 2009.

Visited in January 2011.

[57] The Linux Foundation. TCP testing. http://www.linuxfoundation.org, November 2009.

Visited in January 2011.

[58] P. Karn and C. Partridge. Improving Round-Trip Time Estimates in Reliable Transport

Protocols. ACM SIGCOMM Computer Communication Review, 17, 1987.

[59] S. Kent. RFC-4303 IP Encapsulating Security Payload (ESP), December 2005.

100

http://www.linuxfoundation.org/collaborate/workgroups/networking/
http://www.linuxfoundation.org/collaborate/workgroups/networking/
http://www.linuxfoundation.org
http://www.linuxfoundation.org

BIBLIOGRAPHY

[60] W.Stallings. Cryptography and Network Security - Principles and Practice. Prentice Hall,

fifth edition, 2011.

[61] W3 Techs. Usage of operating systems for websites. http://w3techs.com/technologies/

overview/operating_system/all, April 2011. Visited in April 2011.

[62] Netcraft. April 2011 Web Server Survey. http://news.netcraft.com/archives/

category/web-server-survey/, April 2011. Visited in April 2011.

[63] Security Space. Web Server Survey. https://secure1.securityspace.com/s_survey/

data/200907/index.html, August 2009. Visited in April 2011.

101

http://w3techs.com/technologies/overview/operating_system/all
http://w3techs.com/technologies/overview/operating_system/all
http://news.netcraft.com/archives/category/web-server-survey/
http://news.netcraft.com/archives/category/web-server-survey/
https://secure1.securityspace.com/s_survey/data/200907/index.html
https://secure1.securityspace.com/s_survey/data/200907/index.html

BIBLIOGRAPHY

102

Appendices

103

Appendix A

Configuration of Vyatta routers

A.1 Router D102

vyatta@D102:~$ show version

Version : 999.deltattr.07281008

Description: 999.deltattr.07281008

Copyright: 2006-2010 Vyatta, Inc.

Built by : Jon.Andersson@Thales.no

Built on : Wed Jul 28 08:04:40 UTC 2010

Build ID : 1007280804-317b46a

Boot via : disk

Uptime : 20:12:07 up 4:22, 1 user, load average: 0.07, 0.03, 0.01

vyatta@D102:~$ show interfaces

Interface IP Address State Link Description

eth0 158.38.122.9/29 up up

eth1 10.0.0.1/24 up up

vyatta@D102# show

interfaces {

ethernet eth0 {

address 158.38.122.9/29

duplex full

hw-id 00:10:f3:1b:8c:a8

105

A.1. ROUTER D102

speed 10

}

ethernet eth1 {

address 10.0.0.1/24

duplex full

hw-id 00:10:f3:1b:8c:a9

speed 10

}

ethernet eth2 {

duplex auto

hw-id 00:10:f3:1b:8c:aa

}

ethernet eth3 {

duplex auto

hw-id 00:10:f3:1b:8c:ab

}

loopback lo {

}

}

protocols {

static {

route 192.168.0.0/24 {

next-hop 158.38.122.10 {

}

}

}

}

service {

ssh {

port 22

}

}

system {

gateway-address 158.38.122.10

host-name D102

login {

user root {

authentication {

106

APPENDIX A. CONFIGURATION OF VYATTA ROUTERS

encrypted-password $1$06yETpK5$FLkPZtj/C2J.TnP7ywcCG1

plaintext-password ""

}

}

user vyatta {

authentication {

encrypted-password 1DlkUAo.g$XqhSUu5vufL9oKXbMo1MI0

}

}

}

ntp-server 0.vyatta.pool.ntp.org

package {

auto-sync 1

repository community {

components main

distribution stable

url http://packages.vyatta.com/vyatta

}

}

syslog {

global {

facility all {

level notice

}

facility protocols {

level debug

}

}

}

}

vpn {

ipsec {

esp-group ESP-D102 {

compression disable

proposal 1 {

encryption aes256

}

}

107

A.2. ROUTER D103

ike-group IKE-D102 {

lifetime 28800

proposal 1 {

encryption aes256

}

}

ipsec-interfaces {

interface eth0

}

site-to-site {

peer 158.38.122.10 {

authentication {

mode pre-shared-secret

pre-shared-secret asd

}

ike-group IKE-D102

local-ip 158.38.122.9

tunnel 1 {

allow-nat-networks disable

esp-group ESP-D102

local-subnet 10.0.0.0/24

remote-subnet 0.0.0.0/0

}

}

}

}

}

A.2 Router D103

vyatta@D103:~$ show version

Version : 999.deltattr.07281008

Description: 999.deltattr.07281008

Copyright: 2006-2010 Vyatta, Inc.

Built by : Jon.Andersson@Thales.no

Built on : Wed Jul 28 08:04:40 UTC 2010

Build ID : 1007280804-317b46a

108

APPENDIX A. CONFIGURATION OF VYATTA ROUTERS

Boot via : disk

Uptime : 19:10:53 up 4:23, 1 user, load average: 0.00, 0.00, 0.00

vyatta@D103:~$ show interfaces

Interface IP Address State Link Description

eth0 158.38.122.10/29 up up

eth1 192.168.0.1/24 up up

eth2 - up up

eth3 - up down

lo 127.0.0.1/8 up up

lo ::1/128 up up

vyatta@D103# show

interfaces {

ethernet eth0 {

address 158.38.122.10/29

duplex full

hw-id 00:10:f3:1b:8c:e4

speed 10

}

ethernet eth1 {

address 192.168.0.1/24

duplex full

hw-id 00:10:f3:1b:8c:e5

speed 10

}

ethernet eth2 {

address dhcp

hw-id 00:10:f3:1b:8c:e6

}

ethernet eth3 {

duplex auto

hw-id 00:10:f3:1b:8c:e7

}

loopback lo {

}

}

protocols {

109

A.2. ROUTER D103

static {

route 10.0.0.0/24 {

next-hop 158.38.122.9 {

}

}

route 192.168.1.0/24 {

next-hop 192.168.0.2 {

}

}

}

}

service {

nat {

rule 1 {

outbound-interface eth2

source {

address 192.168.0.0/24

}

type masquerade

}

rule 2 {

outbound-interface eth2

source {

address 10.0.0.0/24

}

type masquerade

}

rule 3 {

outbound-interface eth2

source {

address 192.168.1.0/24

}

type masquerade

}

}

ssh {

port 22

}

110

APPENDIX A. CONFIGURATION OF VYATTA ROUTERS

}

system {

gateway-address 158.37.91.1

host-name D103

login {

user root {

authentication {

encrypted-password 1JQu2U4kr$Y2snGU6aaTKM/FN6/Cpsx.

plaintext-password ""

}

}

user vyatta {

authentication {

encrypted-password 1TwAtQV8q$yfoC1.4J85q578HUW11eX/

plaintext-password ""

}

}

}

ntp-server 0.vyatta.pool.ntp.org

package {

auto-sync 1

repository community {

components main

distribution stable

url http://packages.vyatta.com/vyatta

}

}

syslog {

global {

facility all {

level notice

}

facility protocols {

level debug

}

}

}

}

111

A.2. ROUTER D103

vpn {

ipsec {

esp-group ESP-D103 {

compression disable

lifetime 1800

proposal 1 {

encryption aes256

}

}

ike-group IKE-D103 {

lifetime 3600

proposal 1 {

encryption aes256

}

}

ipsec-interfaces {

interface eth0

}

site-to-site {

peer 158.38.122.9 {

authentication {

mode pre-shared-secret

pre-shared-secret asd

}

ike-group IKE-D103

local-ip 158.38.122.10

tunnel 1 {

allow-nat-networks disable

esp-group ESP-D103

local-subnet 0.0.0.0/0

remote-subnet 10.0.0.0/24

}

}

}

}

}

112

Appendix B

Gnuplot scripts

B.1 tcpprint

#! /bin/bash

if [$# -ne 2];

then

echo "Usage: tcpprint data output"

exit 1

fi

gnuplot <<EOF

set style data linespoints

set style line 1 lc rgb "black" pt 1

set style line 2 lc rgb "grey" pt 8

#set title "$1"

set key right bottom

set xlabel "time (seconds)"

set ylabel "Segments (cwnd, ssthresh)"

#set terminal png

set terminal post eps

set output "$2"

plot "$1" using 1:7 ls 1 title "snd_cwnd", \\

"$1" using 1:(\$8>=2147483647 ? 0 : \$8) ls 2 title "snd_ssthresh"

113

B.2. SELECTED SCRIPT

EOF

B.2 Selected script

#! /bin/bash

(cat <<EOF

set style data histograms

set style fill solid 1.0 border -1

set datafile separator ","

set style line 1 lc rgb "black" pt 1

set style line 2 lc rgb "grey" pt 8

set key reverse top outside

set boxwidth 0.6

set terminal post eps

set output "$2"

set size 0.9,0.9

set ylabel "Utilization (%)"

set xlabel "Size of buffer (% of BDP)"

set yrange [0 : 100]

#set style histogram cluster gap 5

set key autotitle columnhead

set style histogram rowstacked

plot "$1" using (\$2/4691.60):xticlabels(1) ls 2, \\

"$1" using (\$3/4691.60) ls 2 fs pattern 1, \\

"$1" using (\$4/4691.60) ls 1

EOF

) | gnuplot -persist

114

Appendix C

PEPsal (iptables) script

#!/bin/bash

echo "8192 2100000 8400000" >/proc/sys/net/ipv4/tcp_mem

echo "8192 2100000 8400000" >/proc/sys/net/ipv4/tcp_rmem

echo "8192 2100000 8400000" >/proc/sys/net/ipv4/tcp_wmem

SAT_RECV="192.168.1.0/24"

NQ=9

OUT_IFACE="eth1"

CLIENTS_IFACE="eth0"

iptables -t mangle -F

iptables -t nat -F

iptables -t nat -F TCP_OPTIMIZATION

iptables -t mangle -F TCP_OPTIMIZATION

/sbin/iptables -I PREROUTING -t mangle -p tcp --syn -j TCP_OPTIMIZATION

/sbin/iptables -I PREROUTING -t nat -p tcp --syn -j TCP_OPTIMIZATION

iptables -t mangle -I TCP_OPTIMIZATION -i eth0 -s 192.168.1.0/24

-p tcp -j NFQUEUE --queue-num=9

iptables -t nat -A POSTROUTING -s $SAT_RECV -o $OUT_IFACE -j MASQUERADE

iptables -t nat -I TCP_OPTIMIZATION -i eth0 -s 192.168.1.0/24

-p tcp -j REDIRECT --to-port 6009

115

116

Appendix D

Linux Traffic Control

#!/bin/bash

tc qdisc add dev eth0 handle 1: root htb

tc class add dev eth0 parent 1: classid 1:1 htb rate 2Mbps

tc class add dev eth0 parent 1:1 classid 1:11 htb rate 2Mbps

tc qdisc add dev eth0 parent 1:11 handle 10: tbf rate $1kbit buffer $2

peakrate $3kbit mtu $4 limit $5

tc qdisc add dev eth0 parent 10:1 handle 101: netem delay $6ms

tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32

match ip dst 0.0.0.0/0 flowid 1:11

117

118

Appendix E

Additional Results

This appendix includes results generated, but not utilized, or considered abundant, in analysis.

They are appended here for the interested reader.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90
 400

 600

 800

 1000

 1200

 1400

 1600

 1800

U
til

iz
at

io
n

(%
)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure E.1: RTT and goodput of NewReno flow between two Windows 7 hosts with 200% BDP

Buffer.

119

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120

R
T

T
 (

m
s)

Time (seconds)

100% Buffer 200% Buffer 1000% Buffer

Figure E.2: RTT of Hybla flow between two Linux hosts.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90
 500

 600

 700

 800

 900

 1000

 1100

 1200

U
til

iz
at

io
n

(%
)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure E.3: RTT and goodput of Hybla flow between two Linux hosts with 100% BDP Buffer.

120

APPENDIX E. ADDITIONAL RESULTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90
 400

 600

 800

 1000

 1200

 1400

 1600

 1800
U

til
iz

at
io

n
(%

)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure E.4: RTT and goodput of Hybla flow between two Linux hosts with 200% BDP Buffer.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120
 0

 1000

 2000

 3000

 4000

 5000

 6000

U
til

iz
at

io
n

(%
)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure E.5: RTT and goodput of Hybla flow between two Linux hosts with 1000% BDP Buffer.

121

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 10 20 30 40 50 60 70 80 90
 500

 600

 700

 800

 900

 1000

 1100

 1200

U
til

iz
at

io
n

(%
)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure E.6: RTT and goodput of CTCP flow between two Windows 7 hosts with 100% BDP

Buffer.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90
 400

 600

 800

 1000

 1200

 1400

 1600

U
til

iz
at

io
n

(%
)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure E.7: RTT and goodput of CTCP flow between two Windows 7 hosts with 200% BDP

Buffer.

122

APPENDIX E. ADDITIONAL RESULTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30
 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200
U

til
iz

at
io

n
(%

)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure E.8: RTT and goodput of CTCP flow between two Windows 7 hosts with 1000% BDP

Buffer.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120

R
T

T
 (

m
s)

Time (seconds)

100% Buffer 200% Buffer 1000% Buffer

Figure E.9: RTT of CUBIC flow between two Linux hosts.

123

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90
 500

 600

 700

 800

 900

 1000

 1100

 1200

U
til

iz
at

io
n

(%
)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure E.10: RTT and goodput of CUBIC flow between two Linux hosts with 100% BDP Buffer.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90
 400

 600

 800

 1000

 1200

 1400

 1600

 1800

U
til

iz
at

io
n

(%
)

R
T

T
 (

m
s)

Time (seconds)

Goodput RTT

Figure E.11: RTT and goodput of CUBIC flow between two Linux hosts with 200% BDP Buffer.

124

	Preface
	Introduction
	Background and motivation
	Scope
	Outline

	Technical Background
	The OSI model
	The Transmission Control Protocol, TCP
	History
	Header
	Connection Establishment and Termination
	Data flow and flow control
	Retransmission and retransmission timeout

	Congestion Avoidance and Control

	Satellite Characteristics
	Delay
	Propagation
	Buffer

	Packet-loss and bit error
	Bandwidth Asymmetry

	Challenges
	Bandwidth-delay product - Maximum Window Size
	Bandwidth-delay product - Slow Start duration
	Segment loss
	RTT Unfairness

	Proposed Solutions
	TCP enhancements
	Enhancing mechanisms
	TCP Window Scale Option
	TCP Timestamps Option
	Increasing Initial Window (IW)
	Selective Acknowledgment

	TCP Flavors
	TCP NewReno
	CUBIC
	Compound TCP
	TCP Hybla
	Space Communications Protocol Specifications - Transport Protocol
	TCP Vegas

	Performance Enhancing Proxies (PEP)
	TCP Splitting
	Transparency and End-to-end argument
	Security

	PEPsal

	Emulation
	Design
	Vyatta routers
	Configuration - IPsec
	Configuration - Delay and Packet Loss
	Configuration - Bandwidth limitation
	Packet Error Rate and Bit Error Rate

	FreeBSD with Dummynet
	Configuration - Bandwidth limitation

	TCP peers
	PEPsal and MultiTCP
	Configuration - PEPsal

	Tools
	Wireshark
	tcpdump
	TCP Probe
	Gnuplot
	tcptrace
	Iperf and Jperf

	Internet Protocol Security (IPsec)

	Results and Analysis
	Emulation characteristics and confirmation
	On the performance of CTCP

	Results and analysis
	Impact of UDP
	Friendliness
	Implications

	Bit Error Rate (BER)
	Implications

	RTT and buffer
	Windows 7 Advertised Window problem
	Implications

	Webpages, HTTP, short transfers
	Implications

	Conclusion
	Future work

	Appendices
	Configuration of Vyatta routers
	Router D102
	Router D103

	Gnuplot scripts
	tcpprint
	Selected script

	PEPsal (iptables) script
	Linux Traffic Control
	Additional Results

