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Abstract

Multiplayer networked games, since the beginning of their history, have been contin-
uously developing and gaining more and more popularity. Best-effort Internet has
always been a real challenge for interactive online applications. Compared to earlier
dial-up connections, home broadband has really become an improvement in network
capacity, which also triggered the growth of the online games industry. However, due
to higher latency sensitivity of some modern online multiplayer games, Internet la-
tency can still be considered a bottleneck.

In this work we investigate the influence of latency on short- and long-range player
interactions and determine the latency sensitivity of each category. We present find-
ings from related literature and describe the process of the prototype implementation,
considering the issues that were missing in related work.

To obtain the results, we perform user studies and evaluate their outcome. Finally, we
conclude that short-range player interactions can tolerate considerably lower latency
levels than long-range interactions.
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Chapter 1

Introduction

1.1 Background

The popularity of online multiplayer games today is hard to overlook. Online gaming,
being not a particular gaming class, but rather a method used to connect players to-
gether over the Internet, has become a very common source of entertainment. Though
single player online games are also common, the ability to compete and interact with
other players over the Internet has always been more attractive than just confronting a
computer. There are many reasons for that, and it is likely that every gamer can name
their own motivations, but in general, interacting with characters controlled by other
humans can make the game much more challenging and less predictable. Another big
advantage of multiplayer games is social communication between players, which is
missing in singleplayer games.

Multiplayer video games emerged already a few decades ago, though, the earliest
ones supported only two players. Examples of such games are Tennis for Two (1958)1,
Spacewar! (1962)2, Pong (1972)3, and Astro Race (1973)4. Earliest networked multi-
player games, such as Empire (1973), were developed on the system called PLATO (Pro-
grammed Logic for Automated Teaching Operations), designed for computer-based
education.5 As we can see, networked games were introduced long before the Inter-
net became available to the general public, and their development has been growing
rapidly.

Still, mainstream availability of the Internet brought new potential to multiplayer gam-
ing, making it possible to connect players all over the world. The number and variety

1http://scienceblogs.com/brookhaven/2010/12/14/resurrecting-one-of-the-worlds
2http://www.arcade-museum.com/game_detail.php?game_id=9074
3http://www.arcade-museum.com/game_detail.php?game_id=9074
4http://www.arcade-museum.com/game_detail.php?game_id=6949
5http://thinkofit.com/plato/dwplato.htm
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2 The Influence of Latency on Short- and Long-Range Player Interactions

of online multiplayer games currently available is very high. Generally, depending on
the interactivity type, each of them belongs to some particular game model, though
some genres cannot be easily classified. The most common models are Avatar, First
Person,Avatar, Third Person, andOmnipresent. (Claypool and Claypool, 2006)

1.1.1 Avatar, First Person

Avatar, First Person is a model that allows players to experience game world through
the eyes of a game character - avatar. Typically, an avatar is not visible at all, giving a
player the feeling of "replacing" the avatar and being personally present in the game.
The most common genre belonging to this model is First Person Shooter (FPS). In ad-
dition to the first person perspective, FPS games focus on shooting and combat. Most
FPSs have a very fast game flow, enabling players to move around in the game world
and compete with other players by aiming and shooting frequently. Though the avatar
is typically not shown, arms and weapons might be displayed, as well as a status bar
showing health condition and ammunition. Such games often require quick reaction
and focus from the player. Due to advanced 3D graphics with high requirements to
hardware, FPSs only started to spread in 1990s. Some well-known examples of FPSs
are Wolfenstein3D (1992), Doom (1993), and Quake III (1999). Recent FPSs released in
2011 are Bulletstorm and Crysis 2.

(a) Quake III (b) Crysis 2

Figure 1.1: First Person Avatar games

1.1.2 Avatar, Third Person

Avatar games with a third person perspective give players the ability to see the avatar
on the screen and follow it in the game world. One of the most popular third-person
avatar genres is Role Playing Games (RPG). Inspired by an earlier tradition on role-
playing, the genre has developed from being a simple hobby to commercially impor-
tant part of the gaming industry. In RPGs, users typically interact by playing some
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particular roles of the characters in some fictional setting. Role-playing is, in other
words, collaborative story-telling, usually performed by certain actions, skillful think-
ing combined with strategic acting, or character development. Success of a player is
then determined by the game’s rules and guidelines. (Harrigan and Wardrip-Fruin,
2010) The first marketed RPG example is Dungeons & Dragons (1974), while recent ex-
amples are Dragon Age II (2011), illustrated on Figure 1.2(a), and Dogfight (2011).

Some third person avatar genres can be similar to those, belonging to the first person
avatarmodel. For example, Third Person Shooter (TPS) is closely related to FPS, mostly
differing in the view perspective. Similarly, other genres are present in both first and
third person avatar models, such as sports games and racing simulators. However, rac-
ing games are mostly played in a third person avatar view. The genre usually involves
controlling a vehicle, typically, a racing car, though any type of vehicle can be used.
Being a subgenre of simulation video games, racing games can incorporate anything
between simple car races and hardcore simulations; one of the early examples is Space
Race (1973), while a recent one is F1 2011 (2011), shown on Figure 1.2(b).

(a) Dragon Age II (b) F1 2011

Figure 1.2: Third Person Avatar games

1.1.3 Omnipresent

Omnipresent game model is based on player’s ability to be present everywhere. As
opposed to first or third person avatar, varying perspective of omnipresent games often
allows using several views. Typically, a player is able to see the virtual world from the
bird’s eye view, zoom in to see it through the eyes of a character, or zoom in anywhere
to control the desired details. (Claypool and Claypool, 2006) Typical genres belonging
to this model are Real Time Strategy (RTS) and again, different types of simulation
video games.

RTS is one of the four subtypes of the strategy genre, where the main idea is achieving
success by using skillful thinking and strategic planning. Subtypes depend onwhether
the game is real-time or turn-based, and whether it targets strategy or tactics accord-
ingly. (Rollings and Adams, 2003)
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RTS games, as one can see from the title, focus on real-time setting and strategy mode.
As most of the strategy games, RTS are typically war games, offering participants such
features as resource gathering, base construction, technological growth, and control of
units. Units are usually moved to a different location, manipulated to control certain
map areas or destroy enemy’s assets. It is usually possible to add new units during the
game by spending the resources gathered previously. Resource gathering is typically
achieved by controlling certain map points and/or obtaining a particular type of units
or structures, dedicated to this purpose.6 Popular recent RTS games include Warcraft
III (2002) and Starcraft II (2010), illustrated on Figure 1.3.

The variety of simulation games is huge. Generally, they attempt to simulate some
types of real-life activities. Such activities can include building and maintaining an en-
tire city, as in SimCity, released first in 1989 and last in 2013. Omnipresent simulation
games are often used not only for entertainment purposes, but also as educational and
training applications.

(a) Warcraft III (b) Starcraft II

Figure 1.3: Omnipresent games

1.1.4 Massively Multiplayer Online Games

A Massively Multiplayer Online Game (MMOG), like an online game in general, is
not a particular model or genre. Any online video game, capable of supporting hun-
dreds or even thousands of simultaneous players, is considered a MMOG. There are
various genres of MMOGs, as well as their mixtures. Popular MMOGs include such
genres as Massively Multiplayer Online Role Playing Game (MMORPG), Massively
Multiplayer Online First Person Shooter (MMOFPS), and Massively Multiplayer On-
line Real-Time Strategy (MMORTS). The games that were placed on the top of the most
popular MMOGs in 2012 list are Guild Wars 2, Star Wars: The Old Republic, andWorld of
Warcraft 7, depicted on Figure 1.4.

6http://pc.ign.com/articles/700/700747p1.html
7http://www.mmorpg.com/showFeature.cfm/loadFeature/5524
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(a) Guild Wars 2 (b) Star Wars: The Old Republic (c) World of Warcraft

Figure 1.4: MMOGs

1.1.5 Network Latency Challenge

A networked group multimedia application is typically influenced by the network’s
Quality of Service (QoS). The main parameters of QoS, in regard to networked appli-
cations, include throughput, transit delay, delay jitter, error rate, and degree of relia-
bility. Depending on the specific application type and properties, each of these factors
has different influence. For example, a video conference application would be nega-
tively influenced by high jitter, but tolerate high loss level, while a shared whiteboard
would be highly sensitive to loss, but tolerable to low bandwidth. (Mathy et al., 1999;
Henderson and Bhatti, 2003)

A networkedmultiplayer game involves exchangingmessages, usually between clients
and the server. Typically, such messages contain data about players’ states and ideally,
need to be delivered fast. However, encoding data into a message, its delivery, and
processing by the receiver take certain time, with greater part of it spent on delivery.
Therefore, multiplayer games played over the Internet can be significantly influenced
by transit delay, often referred to as network latency.

In a packet-switched network, network latency is either a one-way time delay mea-
sured from the moment a packet is transmitted from the source to the moment it is
received by the destination, or a round-trip (RTT) delay - a sum of one-way latency
from the source to the destination and back. Round-trip delay is used more often and
is typically estimated by using a ping service. Ping does not process packets and only
sends a response back after receiving a packet, which makes it a convenient way of
calculating latency. (Comer, 2000)

Best-effort Internet has always been a real challenge for multiplayer online games.
Compared to earlier dial-up connections, home broadband has really become an im-
provement in network capacity, which also triggered the growth of the online games
industry. However, due to higher latency sensitivity of some modern online multi-
player games, Internet latency can still be considered a bottleneck. Compared to LAN
latency of less than 10 ms, Internet latencies can be relatively high. Dial-up modems
used to add hundreds of milliseconds of latency, while in broadband access networks
(cable or asymmetric subscriber lines), it is reduced to tens of milliseconds. However,
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cable modem latency usually varies and can be even higher than 100 ms. Geograph-
ical location is another factor that influences network latency. Inside the continent,
latencies are typically within 50 ms, getting higher across continents. Overall latency
on the Internet can vary from hundreds of milliseconds to even more than a second.
(Claypool and Claypool, 2006)

A number of studies have determined that network latency can influence player per-
formance. The overall effect depends on the delay rate and latency sensitivity of a
particular game model or genre. Chapter 2 presents more details about the results of
such studies.

Knowing latency sensitivity limits can be useful for:

• game designers, in designing games with regard to it and applying necessary tech-
niques to hide it;

• network designers, in creating proper infrastructures and offering sufficient quality
of Internet connections;

• Internet-based game providers, in planning the locations of game servers;

• players, in making informed Internet provider choice and being aware of their
performance chances in playing a particular game. (Claypool and Claypool, 2006;
Armitage, 2003)

1.2 Problem Definition / Statement

Some research has been done to determine the influence of latency on player perfor-
mance in different game genres, focusing typically on the model properties and player
actions that are common for it. However, new games emerge, often belonging to an
existing game model, but incorporating various details that can significantly influence
latency sensitivity. To the best of our knowledge, no research has been done to deter-
mine latency sensitivity of multiplayer online games that use human models as game
characters and implement player interactions, where distance between avatars plays
an important role in successfully fulfilling an action.

Human characters are already being used in many video games and applications. We
believe that human avatar perspective can become even more popular in future. The
idea of simulating real world has often been a goal of designing certain tools or prod-
ucts. Usage of human avatars significantly contributes to the real-world experience by
allowing users to undertake actions that are possible in real life. It can be applied not
only in video games, but also used for many other non-entertainment purposes, such
as video conferencing applications, where the opponents are represented by avatars,
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or any other types of educational or training simulators.

Natural human behavior during interactions typically involves immediate reaction
and response. Consider a simple example where two persons are having a conver-
sation in real life. Each of them is either listening, talking, articulating, moving, main-
taining eye contact, or simply being present and visible to the opponent. As a result,
we get a complex interaction that has a certain flow and generally, excludes any "gaps",
where any or both opponents are totally inactive. Situations when an opponent sud-
denly stops talking without finishing a sentence, or walks away unexpectedly, are not
perceived as natural. A person cannot suddenly disappear from the view, move over
great distances in a blink of an eye, or do anything that is physically impossible. Thus,
a human interaction typically involves certain constraints and expectations, in addition
to the requirement of immediate response.

As described in Chapter 2, the literature states that in some typical game genres, such
as FPS, different interaction categories are not equally sensitive to network latency. For
instance, it was observed that precision shooting was more sensitive to network de-
lay than other player interactions, due to the importance of knowing correct players’
positions at the time of the shooting event. However, it was not stated whether the dis-
tance between players at the moment of shooting event was of any significance. There-
fore, the purpose of this thesis is to investigate how latency affects user performance
and gameplay experience in a virtual environment with human avatar perspective,
featuring short- and long-range player actions that simulate real-life human interac-
tions.

Simulating full physical presence of a human in interactive applications is by far not an
easy task. Actions assigned to human characters in video games are usually simpler,
but may still require fast response, due to the nature of human behavior that is being
simulated. Therefore, instead of simulating full physical presence, our goal is to define
main categories of player interactions and study the effect of latency on the outcome
of each interaction.

1.3 Limitations

This work requires further analysis in certain areas. One can suggest that high laten-
cies are often caused by long network paths, which means that such paths could have
greater jitter. We do not take the presence of network jitter into account. Therefore, we
do not present data indicating whether it can influence player performance or game-
play experience. Similarly, measuring the influence of packet loss is needed, which is
neither considered in this work.
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1.4 Research Method

The goal of this work is to determine how short- and long-range human interactions,
used as avatar actions, are affected by increased levels of latency. To achieve the desired
outcome, we first study the literature that focuses on the problems related to network
latency in the context of multiplayer online games. Further, we design an interaction
model based on findings from relevant literature, also considering issues that were not
addressed in related work, and implement a prototype. Eventually, we conduct user
studies by performing the experiments in the test environment and evaluate the re-
sults. The metrics selected for analysis is mainly based on the objective score achieved
by players in the end of the game, but also includes observations of players’ behavior
and reaction.

1.5 Main Contributions

In this work we have presented findings from literature that studied the effect of net-
work delay on player performance and introduced the concept of player interaction
range. Since the issue of interaction range was not addressed in the related work, we
have built a prototype, allowing the investigation of short- and long-range player in-
teractions, and presented the details of its design and implementation.

The results of our experiments proved that short-range player interactions are consid-
erably more sensitive to network latency than long-range interactions.

1.6 Outline

The structure of this work is organized as follows.

• In Chapter 2, we discuss literature that focuses on the influence of network delay
on different game genres and point out some important factors that were not
considered.

• Chapter 3 presents the details of designing and implementing a prototype, incor-
porating the issues that were not addressed in the related work, as well as the
discussion of different implementation alternatives and arguments for the solu-
tion choices.

• In Chapter 4, we present our hypothesis and describe the experiments, conducted
to verify it. Further, we discuss the results and explain the metrics.
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• Chapter 5 provides a short summary of the thesis, lists main contributions, and
gives an outlook of remaining work.





Chapter 2

Related Work

In this chapter, we analyze related work that focuses on determining how different
game genres react to the impaired network QoS, latency in particular. The chapter
is organized as follows. In the first three sections, we describe related work on First
Person Avatar, Third Person Avatar, and Omnipresent game models, evaluating la-
tency sensitivity of certain player interactions and players’ perceptions of the game
quality under varying network conditions. Further, we discuss and summarize the
results.

2.1 Avatar, First Person

The most common genre belonging to the first-person avatar model is FPS. Since FPS
games typically require quick reaction to the game events from the user, one can as-
sume that the changes in the user state need to be delivered to other players as soon
as possible. For this reason, FPS players often believe that their performance can be
influenced by the network conditions. This assumption is fully justified. Moreover,
several studies that focused on determining the impact of varying network conditions
on the final outcome of FPS games prove that.

Armitage (2003), Henderson (2001), and Henderson and Bhatti (2003) used publicly
accessible game servers to determine how increased delay affected players’ decisions
regarding joining a particular game server or leaving the game due to dissatisfaction.
Generally, the authors observed the behavior of players connecting to the servers at
different levels of latency. It was hypothesized that increased delay could affect the
users in two ways - they would give up to join a game or leave the game after ob-
serving higher delay. At the same time, it was assumed and that players returning
to play again were mostly satisfied with their experience. The studies were based on
popular FPSs, namely, Quake III and Half Life. Armitage (2003) and Henderson (2001)
measured each player’s ping time, while Henderson and Bhatti (2003) also intention-

11
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ally introduced some extra delay. In addition to that, Armitage (2003) and Henderson
and Bhatti (2003) measured the number of times a player was killed or killed an oppo-
nent and investigated how the kills/deaths rate was influenced by impaired network
conditions.

The results of all the three studies were similar. Armitage (2003) figured out that that
Quake III players were unlikely to connect to a server with latency above 150-180 ms,
while the average frag (kill) rate per minute started to decrease already at latency over
50 ms. For Half-Life, Henderson (2001) concluded that delay played an important role
in player’s decision to join and stay on the server, causing users to give up and look
for a different server in case of delay over 225-250 ms. Similarly, Henderson and Bhatti
(2003) observed that additional delay of over 300ms, introduced at the Half-Life server,
started to noticeably reduce the average number of players joining the game, while the
number of players leaving the game increased; quantitative results indicated that as
delay increased from 25 ms to 250 ms, the average number of kills per minute dropped
from 1.456 to 0.6233, and the average number of player’s deaths per minute increased
from 0.6042 to 1.430.

We can clearly see that players’ performance measured by kills/deaths rate was best at
the lowest latency levels. However, even though the authors analyzed a great amount
of data obtained from real-life users, none of them considered players’ skills and ex-
perience, which could also have affected their performance, as well as differences in
hardware used for playing. Also, one can suggest that there were other reasons, apart
from dissatisfaction with the game quality, that could have affected players’ joining
and leaving decisions. Nevertheless, no other factors were examined, since it was im-
possible to obtain additional information about the users. Neither did these studies at-
tempt to categorize player interactions and analyze how each interaction was affected
by varying network environment.

In contrast, the works by Beigbeder et al. (2004), Dick et al. (2005), Wattimena et al.
(2006), Quax et al. (2004), and Zander and Armitage (2004) are based on the con-
trolled environment approach, analyzing player performance and perception of the
game by investigating some factors that were impossible to consider with the public-
server based approach, such as player interaction categories and user skills. The FPSs
used for analysis include Unreal Tournament 2003/2004, Quake III/IV, Counter Strike,
and Halo. Beigbeder et al. (2004) examined delay and packet loss tolerance of differ-
ent player interactions, namely, movement, shooting, and shooting while moving. For
measurements, the authors used Mean Opinion Score (MOS), a quite common mea-
surement of player’s subjective perception of the game, where the game environment
is given a score value between 1 (unacceptable) and 5 (perfect) by the players them-
selves, and objective quantitative performance measurements, based on players’ kill-
s/deaths rate. All the authors, except Quax et al. (2004), took players’ skills into ac-
count.

The overall results were similar to those, derived from public server based works.
Beigbeder et al. (2004) state that simple movement (walking or running in a straight
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line) was not affected by delayed or lost packets, while complex movement (jumping,
spinning, and navigating through obstacles) required the player the use more time to
complete the experiment at latency over 300 ms. Precision shooting appeared to be
generally tolerable to packet loss, but rather sensitive to latency - delays over 75 ms
resulted in a steady hit accuracy decrease. At 100 ms of delay, the number of kills
was decreased, while the number of deaths increased by 35%. When shooting was
combined with movement, the authors observed a downward linear trend in the kills
rate and an upward linear trend in deaths rate at latency over 100 ms, while the total
degradation of performance was approximately 30% at 200 ms of delay.

The results presented by Dick et al. (2005) indicated that on average, players experi-
enced Counter Strike as still playable at the delay of 500 ms, while Unreal Tournament
2004 was perceived as annoying environment at delays over 150 ms; variance in jit-
ter seemed to have no significant effect on players’ perception of the games; objective
score results for Counter Strike were undetermined, while in Unreal Tournament 2004,
the Game Outcome Score (GOS) dropped significantly (by over 50%) at delays over
150 ms; jitter seemed to have no significant effect on GOS score in Unreal Tournament
2004, whereas results for Counter Strike were again undetermined.

Wattimena et al. (2006) concluded that delay and jitter negatively affected gaming ex-
perience and objective score results of only expert and super-expert players participat-
ing in the experiments, while Quax et al. (2004) came to the same conclusion without
considering the differences in players’ skills. Zander and Armitage (2004) discovered
that latency above 200 ms caused degradation of player performance, mentioning that
players with higher skills were affected more than bad players; the subjective ratings
indicated that the perceived game quality started to decrease at latencies over 200-300
ms, resulting in 20-40% of players wanting to leave the game, while quality drops be-
low average occurred in the range of 300-400 ms.

The works discussed in this chapter took different QoS factors into account. As we
can see from the general outcome, latency was the most significant factor that led to
players’ performance degradation and lower subjective ratings of the game quality. In
addition to the research focused directly on FPSs, the study by Claypool and Clay-
pool (2006) compared the effect of network latency on three different game models.
The overall results proved that games belonging to the first person avatar model were
most demanding to QoS, being particularly sensitive to network latency. However,
none of the studies considered which factors in particular contributed to the latency
sensitivity of FPSs, except the high pace of this genre’s gameplay and the necessity to
react quickly. Therefore, it was not determined whether the distance between players
had any significance.
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2.2 Avatar, Third Person

One of the most prominent genres representing the third person avatar model is
MMORPGs (massively multiplayer online role-playing game). The great popularity
of MMORPGs is demonstrated by constantly high number of active users, meaning
that gamers enjoy playing it. Since MMORPGs connect many players throughout the
world, it is a reason to suppose that the genre is not significantly affected by Internet
latencies. Evidence for that is present in the works by Fritsch et al. (2005) and Chen
et al. (2009).

The paper by Fritsch et al. (2005), based on controlled environment approach, focused
on Everquest II, an example of second generation MMORPGs. Two most important
interactions present in the game were pointed out - movement with combat and group
combat. The results of the tests indicated that the game was no longer playable at
latency over 1250 ms. However, combat was still rather accurate even at 500-1000
ms and the player abilities were used coordinated at latency of up to 1000 ms, which
points out that the game tolerated latencies of up to one second. Nevertheless, this
fact does not prove that any third person avatar game has equivalent requirements to
the network QoS. One of the reasons for that is the way player performance was eval-
uated. Everquest II does not define any final goal, while there are some aspects that
can make a player "better", so, the measurement of player’s success can be based only
on certain player characteristics. Interestingly, maintaining constant position consis-
tency seems to have insignificant influence on the game outcome. Though the authors
observed that maintaining consistency of players’ states was still necessary, delivering
updates within a second was acceptable due to the compensating mechanisms used
in the game. The interaction model that we implement employs third person avatar
perspective as well. However, we believe that human interactions are generally de-
pendent on players’ positions consistency and, as a result, have stricter requirements
to network QoS.

In contrast to MMORPGs, in racing video games, a genre that generally uses third
person avatar perspective, maintaining position consistency considerably affects the
outcome of the game; therefore, the genre is more sensitive to network delay. Pantel
and Wolf (2002a) evaluated two racing games - Re-Volt and Need-for-Speed, in two
player mode, using 2 PCs. The results of the tests showed that that delay handling in
these two games was not sufficient already at 100-200 ms of latency, mostly resulting
in the local car leading on each computer respectively or causing a significant discrim-
ination of the car driving behind during collisions. In addition, the authors conducted
some experiments with the car racing simulator developed for investigating the same
problem. Three players with different skill levels participated in the tests, and the
time spent to complete a round was used as a performance measurement. The results
have shown certain differences in influence of higher latency on player performance,
depending on player’s expertise. The beginner faced no degradation in performance
at delays of up to 50 ms, but also seemed to tolerate well latencies of up to 200 ms,
most likely due to not being experienced enough to obtain benefits from a fast and re-
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sponsive system and generally, driving rather slowly. The medium-level driver with a
rough driving style reacted faster to changes in driving direction and could therefore
not tolerate high delays, showing worse results at delays over 50 ms. The experienced
driver performed well until the delay reached 150 ms, but starting from that point,
an almost exponential performance degradation was observed. In general, the results
from all the three players indicate that only delays below 50 ms did not cause sig-
nificant changes in player performance. Since racing simulators typically use similar
interaction models, we can assume that the 50 ms latency limit applies to the genre on
the whole.

It is interesting to observe that related work on third person avatar games presents
completely opposite results in regard to latency sensitivity of different game genres.
Racing simulators, where players’ score depends on how well the position consis-
tency is maintained, are characterized by low threshold of tolerated latency, while
MMORPGs, where position consistency is less important, can in turn tolerate higher
delays. However, no third person avatar games with short-range interactions between
players were evaluated. Mortal Kombat, that has never been released as online game,
is a good example. Being a popular third person avatar fighting game since 1990s, it
is entirely based on short-range player interactions. The game was developed initially
for arcade machines and eventually for home consoles. In April 2011, it became avail-
able for PlayStation 3, and for PlayStation Vita in 2012. During a media event, where
Mortal Kombat was advertised, its co-founder, NetherRealm Studios creative director
Ed Boon, was asked whether the game supported online play. His reply was:

“It’s just theWi-Fi. Fighting games are a really twitchy, latency-sensitive
experience. We don’t want to expose people to the idiosyncrasies of wire-
less carriers and lead them to have a bad experience. So you can get on
Wi-Fi or you can play against someone locally. It’s great on Wi-Fi.” 1

Such answer points out that Mortal Kombat’s developers were aware of the latency
sensitivity problem and considered the game’s delay threshold to be much lower than
typical Internet latencies. Thus, the tolerable latency limit for fighting games that are
similar to Mortal Kombat is unclear.

2.3 Omnipresent

Omnipresent game model is typically represented by the RTS genre. Claypool (2005)
has studied how latency influenced game outcome in such RTSs as Blizzard’s Warcraft
III, Microsoft and Ensemble Studios’ Age of Mythology, and Electronic Arts’ Com-
mand and Conquer: Generals. To determine the effect of latency on user performance,
typical user interactions were divided into three categories - building, exploration, and

1http://www.theglobeandmail.com/technology/gaming/controller-freak/qa-10-minutes-with-
mortal-kombats-co-creator/article547669/
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combat. The overall results of the tests, performed on all the three games, showed that
latency in the range of hundreds of milliseconds to several seconds could still be toler-
ated. While such outcome can seem rather surprising, it can be explained by nature of
the RTS genre, where strategy is much more significant than interactive aspects.

2.4 Discussion

Table 2.1 summarizes the thresholds of latencies tolerable by games belonging to each
of the three models, as presented in related work.

Table 2.1: Tolerable latency thresholds for different game models

Model Game Distance Latency
significance threshhold (ms)

Avatar, First Person

Quake III/IV uncertain 150-200

Half-Life uncertain 225-300

Unreal Tournament 2003/2004 uncertain 100-150

Avatar, Third Person

Everquest II no 1000

Racing simulators yes 50

Mortal Kombat yes N/A

Omnipresent Warcraft, other RTSs no 1000

The third column in the table indicates whether the distance between players in the
game world plays an important role during interactions. For example, if a typical
player interaction is only possible to fulfill at certain (mostly very short) distance be-
tween players, like injuring an opponent inMortal Kombat, or, if winning is dependent
on player’s location, as in Re-Volt or Need for Speed, distance is important, whereas
in games, where player performance is mostly influenced by other factors, distance
between players is not important. Since the distance factor was not taken into account
in evaluating FPSs, as mentioned in Section 2.1, we conclude that, in such case, it is
uncertain whether it is significant.

Looking at the results of commercial games evaluation in Table 2.1, we can observe
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that car racing simulators (Re-Volt, Need for Speed) have low latency threshold (50
ms). We suppose it is caused by the short-range interactions influencing players’ score.
Nonetheless, such correlation was not taken into account in any of the works that an-
alyzed human avatar based games. Moreover, Mortal Combat, based on short-range
player interactions, does not even support online play functionality due to high la-
tency sensitivity, as stated in Section 2.1. Therefore, we believe that further analysis is
needed to determine how short- and long-range interactions in human avatar based
games are affected by varying network delay.

2.5 Summary

In this chapter, we discussed useful findings in the literature that studied the effect of
network latency on different game genres. We pointed out that though related work
differentiated between various types of player interactions and examined latency sen-
sitivity of each type, the difference between short- and long-range player interactions
was not considered. Therefore, in the next chapter we describe design and implemen-
tation of a prototype that takes the missing issue into account.
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Chapter 3

Game Model Design and
Implementation

Since we figured out that related work investigating the influence of latency on player
performance did not consider such issues as human interactions and distance range,
we need to build a prototype that takes these factors into account. This chapter is
based on the details of designing and implementing a prototype of a player interac-
tion model and is organized as follows. In the first two sections, we discuss the alter-
natives for designing a 3D model of a human avatar, animating it and integrating it
into game development environment. Thereafter, we discuss the categories of player
interactions. Further, we describe the details of physics simulation and collision detec-
tion implementation. The third section focuses on client-server protocol, interpolation,
client-side prediction, and latency compensating techniques.

3.1 3D Model of a Human Character

The development of graphic techniques applied in video games started from rather
simple strategies, such as using text characters to depict objects, actions or any other
aspects of a game world. Advances in hardware and power of central and graphics
processing units have continuously been enhancing graphic techniques, making game
world look more real.

Graphic techniques used inmanymodern video games are based on a three-dimensional
representation of geometrical data, often in a form of Cartesian coordinates. Entities
in a 3D game world consist of a collection of points in the coordinate system and are
connected by lines, surfaces, and other geometrical objects. Such entities are usually
referred to as 3D models.

19
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There are twomain categories of 3Dmodels representation - solid and shell/boundary.
Solidmodels are generallymore complicated, since they define the volume of an object.
Shell models do not represent volume, but only the surface instead. Generally, most
of the 3D models used in computer games are shell models. The main reason for that
is that computer games mainly make use of object’s visual representation and not its
volume. Also, shell models are easier to develop.

There are different ways of developing 3Dmodels; one of them is polygonalmodeling.
It is widely used for making 3D objects, such as avatars in computer games. The ap-
proach is based on using polygons for representing object’s surfaces. An object repre-
sented by polygons is usually referred to as polygonal mesh. Polygonal mesh includes
vertices, edges, faces, polygons, and surfaces, that determine object’s shape.

Let us consider a simple polygonal mesh, visually representing a cube, as shown on
Figure 3.1. 1

Figure 3.1: Elements of polygonal mesh

In this example, every corner of the cube is a vertex, and a line connecting two vertices
is an edge. Not only angle points are vertices. A vertex is also a point where two or
more lines intersect, for instance, when a line separates different colors or textures. A
closed set of three or more edges forms a face or a polygon. If multiple-sided faces
are supported, then there is no need to differentiate between faces and polygons, but if
rendering hardware supports only three or four sided faces, then polygons are broken
into faces. A surface is an optional element of polygonal mesh. Surfaces are often
referred to as smoothing groups and are used to group smooth regions.

Polygonal mesh data can be stored in different formats. Some of the popular formats
are:

• .blend - Blender file format

• .3ds - 3D Studio Max file format

• .fbx - Autodesk file format

1The figure is inspired byWikimedia Commons file http://en.wikipedia.org/wiki/File:Mesh_overview.svg
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• .dae - Digital Asset Exchange (COLLADA)

• .obj - Wavefront object

• .mesh - OGRE binary mesh format

One can use 3D modeling software for creating a 3D mesh and storing it in some file
format. There are many examples of 3D modeling software, but in terms of use, soft-
ware tools can generally be divided into two main categories - proprietary and free
and/or open source. Popular commercial examples include Autodesk 3D Studio Max
and AutodeskMaya, which are only available forWindows platform. Examples of free
and open source 3D modeling software are Blender and Art of Illusion. Both support
Windows, Linux, and Mac OS. When it comes to software choice, usually, the decision
depends significantly on one’s requirements and expectations.

Blender is an example of quite well-known free and open-source tool, providing almost
equivalent range of features to those, available in high-range commercial software.
It is widely used for 3D modeling, creating animations, interactive applications, and
computer games, including also some other features. Blender was first developed in
1989 as an in-house project by a company called Not a Number Technologies (NaN).
In 2002 NaN went bankrupt and the project was commercialized. Shortly after that,
when enough funds were collected, Blender source code was released under the terms
of GNU General Public License.

It is important to notice that Blender interface and some of its features, such as anima-
tion system, were significantly changed in version 2.5. For this reason, some projects
created in Blender versions before 2.5, in particular those containing animated mesh,
are not anymore supported by the most recent versions, starting from 2.5.

3D modeling in Blender can either be done from scratch or by making use of avail-
able 3D models. 3D mesh obtained as a final result can be animated. There are two
main techniques used to animate a character consisting of a 3D mesh - per-vertex an-
imation, also called morph target animation, and skeletal animation. In a per-vertex
animation, themesh is deformed by changing the positions of its verticesmanually and
interpolating between them. In the context of 3D models used as avatars for computer
games, this type of animation is most commonly used for facial or cloth animation. For
animating avatar’s actions, such as walking, jumping or any other movements, skeletal
animation is typically used.

Skeletal animation implies adding a skeleton to the mesh. A skeleton, (also referred to
as armature), is a set of bones. A bone is simply a group of vertices, while positions of
those vertices define its size, location, and orientation. In a skeleton, bones are usually
represented as a parent-child hierarchy. A bone that does not have a parent is usually
referred to as root bone. Each vertex on the mesh can be weighed to one or more
skeleton bones, creating a parent-child relationship between skeleton and mesh. This
process is referred to as rigging, and a 3D model consisting of mesh and skeleton,
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where the skeleton is parented to the mesh, is called a rig. A rigged character can be
animated by manipulating the positions and orientations of the skeleton bones, which
in turn transform the positions of mesh vertices weighed to them. There are two main
techniques to compute bone positions in skeletal animation - forward kinematics (FK)
and inverse kinematics (IK).

In FK, rotating or translating a bone in a parent-child hierarchy affects all the child
bones (if any) respectively. Total transformation of a bone is then defined by its own
transformation multiplied by total parent transformation. Translating or rotating a
bone in a skeleton thereby only affects the manipulated bone and all its children, but
none of the parent bones. FK is usually the default technique applied to skeletal ani-
mation.

IK implies using end effectors to control a rig. In skeletal animation, an end effector is a
control point, usually assigned to a bone. Any bone can be assigned an end effector, but
most common end effectors for a human character are bones representing feet, hands,
elbows, and knees. Choosing target positions for end effectors creates a problem of
computing the corresponding positions of all the other bones in the skeleton. The
problem can be solved in different ways, and most of the solutions usually come from
robotics applications. (Li et al., 2009)

Blender has an automatic IK solver that uses any selected bone as an end effector.
However, that automatic IK solver is rather inefficient tool for creating animations and
is mostly used for quick demonstrations. The most common way of applying IK in
Blender is adding extra bones used as end effectors and assigning IK constraints to
them. An IK constraint defines which bones in the chain are affected when end effector
is manipulated. 2

Some existing 3D models are already rigged, and sometimes, they include a set of an-
imations. Such rigs often differ in complexity of mesh and armature structure. More
complex mesh structure makes its visual representation more precise and smooth,
while advances in skeleton structure simplify the character animation process. Whether
one should choose more or less advanced structure of a 3D model usually depends on
desired functionality, type of 3D modeling software, and rendering techniques used.

Considering 3D models of human characters, there is a relatively good example called
ManCandy - a rig created with Blender. It contains polygonal mesh and rather ad-
vanced skeleton structure, as shown on Figure 3.2. There were three official versions
ofManCandy (1.0, 2.0 and 2.1), and all of them were developed by Bassam Kurdali, the
director of Elephant’s Dream, the first movie made with Blender. Those versions were
fully functional in Blender 2.45. Due to significant changes in Blender since version 2.5,
some of the ManCandy’s features were not supported anymore. Shortly after Blender
2.5 release,ManCandywas updated by a Blender artist Wayne Dixon and became com-

2Blender user manual describes usage of IK in more detail:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/Posing/Inverse_Kinematics
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(a) Mesh structure (b) Main skeleton bones

Figure 3.2: ManCandy

patible with Blender 2.5.

ManCandy is a complicated rig that requires certain knowledge of Blender features and
experience in 3D modeling to understand its components and make changes to the
rig itself. It is worth noticing that the character itself was created mostly for making
animated videos.

Animating a 3D character in Blender is usually done by using modifiers - automatic
operations that change theway an object is rendered, but not the actual geometry of the
mesh. There are fours groups of modifiers in Blender - modify, generate, deform and
simulate. Modifiers from modify group are used to transform mesh without directly
affecting its shape. Generate groupmodifiers are tools that change the actual geometry
of the mesh by either modifying its appearance or adding new geometry to the object.
The function of deform groupmodifiers is changing object’s shape. Modifiers from this
group are widely used in creating animations, so, it is worth paying more attention to
its members:

• Armature - adds skeletal animation to an object.

• Cast - allows to shift the shape of a mesh, surface or lattice to a sphere, cylinder
or cuboid.

• Curve - enables bending an object using a curve trajectory.

• Displace - uses a texture to deform an object.
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• Hook - adds a hook to vertices to manipulate them externally.

• Lattice - deforms selected object using a lattice object.

• Mesh Deform - deforms a mesh object by changing the shape of another mesh
object.

• Shrinkwrap - allows shrinking or wrapping an object around the surface of an-
other mesh object.

• Simple Deform - used to apply advanced deformations to an object.

• Smooth - smoothens mesh geometry.

• Warp - stretches a mesh object between two specified points.

• Wave - deforms an object to shape waves that can be animated.

Modifiers from simulate group are used to activate simulations. One can add several
modifiers to an object and form a stack of modifiers, and each modifier can be applied
to make the changes permanent. Blender user manual describes modifiers in more
detail. 3

The Mancandy rig combines armature modifier with some other modifiers from the
deform group (curves and lattices), that are supported by Blender, but not always sup-
ported by other software, such as game engines. Using the model as a game character
can require some modifications and optimizations, depending on the game engine one
is going to use. Blender Game Engine (BGE) allows using modifiers, but they can cre-
ate a large computational overhead during runtime. Generally, it is recommended to
apply or disable any modifiers, excluding armature modifier, before using a Blender
model in a game engine.

Optimizing Mancandy to be used in BGE can be done by disabling or applying non-
armature modifiers. In case of using it in a different game engine, .blend format needs
to be converted to the format supported by the chosen software. However, exporting
the rig to a different format is a complicated task.

3More information can be found at Blender Manual webpage about modifiers:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Modifiers
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3.2 Game Engine

3.2.1 Game Development Tools

When first video games emerged, the capabilities and processing power of computers
were rather low. During that time, a game was usually developed as a single entity,
containing all necessary components for communicating with an operating system or
hardware directly. Due to ever-increasing processing power of modern computers and
raising demands to what a computer game should be, different tools were designed to
simplify the process of game development, such as game engines.

A game engine provides a set of game development tools and reusable software com-
ponents for faster and simpler game creation. Apart from graphics rendering func-
tionality, game engines can contain a wide range of components that are commonly
used in games, such as physics engine, sound, animation tools, scripting, networking,
threading, and others. Examples of such game engines are Panda3D, Unity, Adventure
Game Studio, and BGE.

Software providing graphics rendering is often referred to as a rendering engine, or
3D engine, if it is designed to render 3D graphics in particular. Examples of popular
3D engines are OGRE, Irrlicht, Genesis3D, andHorde3D. A 3D engine can be combined
with other libraries to build a game engine functionality. (Zerbst, 2004)

For the purpose of creating a test game model, the factors that significantly influence
the choice of development tools are ease of use, full control over the source code, and,
particularly in our case, the ability to use human characters.

Choosing BGE would have an advantage of using 3D models created in Blender di-
rectly, without the need to export them. Also, it includes an integrated physics en-
gine, sound, and input processing libraries. However, there are some disadvantages.
The engine provides a graphical "logic bricks" interface, consisting of "sensors", "con-
trollers", and "actuators". A sensor is added to a game object and associated with some
event, like keyboard input or collision. A controller processes the input from one or
several sensors and triggers one or more actuators that provide responses. A Python
script can be added to a controller to handle sensor input instead of triggering an actu-
ator, but not all Python modules are fully supported. For example, threading module
can only be used effectively if the threads finish up before the script itself.4 The main
purpose of using the "logic bricks" concept was to make the game engine intuitive and
easy to use for artists, in particular, Blender artists. Creating a game in BGE does not
give a possibility to see entire source code, which makes it difficult to extend, debug or
maintain the project.

4More information can be found on Blender documentation webpage:
http://www.blender.org/documentation/blender_python_api_2_63_14/info_gotcha.html
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An example of an engine that provides intuitive class library and proper documen-
tation is OGRE (Object-Oriented Graphics Rendering Engine) - a 3D engine written
in C++. OGRE is not a game engine, but it can be combined with other libraries to
achieve desired functionality. OGRE has an active community and is well-known for
good object-oriented design and flexible class hierarchy. Though OGRE itself does not
provide any libraries for creating and animating human characters, character models
can be imported from other sources. Blender 3D models can be exported to OGRE
binary format - .mesh.

3.2.2 Exporting from Blender to OGRE

The main difference between data representation in Blender and OGRE is coordinate
systems mismatch, as shown on Figure 3.3.

Figure 3.3: Difference between Blender and OGRE coordinate systems

Exporting from Blender format (.blend) to OGRE mesh format (.mesh) can be done
using a Blender add-on called blender2ogre. The add-on supports conversion of both
static and animated mesh objects. Exporting animated mesh objects requires some
modifications to be done to them in Blender:

• An object with an armature is required to have zero location/rotation/scale trans-
formation. Any transformations on the mesh or the skeleton need to be applied
before adding an armature modifier.

• The maximum supported amount of bones in a skeleton is 256.

• The root bone(s) need(s) to have zero transformation on location and rotation
(can be checked in edit mode in Blender).
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• Each vertex can have blend weights for a minimum of 1 and a maximum of 4
bones.

• Animations need to be converted to non-linear animation (NLA) strips5.

Both original and unofficial versions ofMancandy have more than 256 bones, including
several root bones. To meet the export requirements, the amount of bones has to be
reduced, and all the roots bones need to be adjusted respectively.

We have considered different solutions to meet the necessary requirements. Firstly, we
tried reducing the total number of bones to exactly 256, which made it possible to ex-
port the armature with minimal modifications. Still, the requirement for bone weights
was not fulfilled. ManCandy has vertices weighed to more than four bones. Increas-
ing the value of Trim-Weights threshold option in blender2ogre reduced the number of
bones per vertex, but it resulted in some vertices left without any bone assignments
and caused wrong deformation of the mesh in animations. The problem occurred
due to Blender supporting larger amount of bone weights assigned per vertex than
OGRE.

Another solution we considered was creating a new rig with a simpler structure, which
allowed assigning each vertex to not more than 4 bones in Blender. The mesh was ac-
quired from the originalMancandy rig by exporting it to a common 3Dmesh format (we
used .obj format) and then, importing it into an empty Blender project. Since weights
assignment is usually done automatically by the armature modifier in Blender, we con-
cluded that is was better to use a basic armature with aminimal number of bones. Gen-
erally, an armature can be obtained from some source or created from scratch.

We have observed that it was very important to make all the necessary adjustments
to the created rig before exporting it. Failure to satisfy any of the exporter’s require-
ments can lead to unexpected and undesirable results. Figure 3.4 shows an example of
mesh taken from Mancandy, and armature, adapted from a 3D model generated with
Makehuman6, an open source tool for making 3D characters. Armature was scaled to
match the size of the mesh; the size and position of some bones were adjusted, and
the values of the root bone were reset to meet the requirements. However, the scale
and location transformations of the mesh and the armature were not applied, which
failed to meet one of the exporter’s requirements. Figure 3.4(a) shows that the model
is represented correctly in Blender, whereas on Figure 3.4(b) we can see how the model
looks in OGRE after being exported. Each set of three arrows on the figure represents
a bone. Imagining a line that goes through the origin of each arrow set gives us a vi-
sual representation of the skeleton and makes it obvious that the skeleton is positioned
incorrectly in relation to the mesh.

Creating a simple armature from scratch and parenting it to the mesh imported from

5Blender user manual explains usage of Non-Linear Animation Editor in more detail:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Animation/Editors/NLA

6http://www.makehuman.org/
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ManCandy was our final solution. One should remember that the root bone of the
armature should have zero transformation on location and rotation, while the position
of the mesh needs to be adjusted accordingly. The total amount of bones cannot exceed
256. Finally, bone sizes have to be adjusted to distribute the weights properly, if the
automatic weights assignment is used. In practice, bigger bones are needed for larger
mesh parts. Parts of the mesh that are supposed to be more flexible require a greater
number of bones. Areas where the mesh has a complex structure (larger amount of
polygons) might need several bones, bigger bones or application of other methods to
achieve proper weights distribution.

(a) Blender view before export (correct) (b) OGRE view after export (wrong)

Figure 3.4: Example of Blender to OGRE export failure

Figure 3.5 shows a basic armature consisting of 50 bones that we created in Blender,
with the mesh borrowed from ManCandy. To obtain a more detailed view, the bones
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are shown by using different bone representations - octahedral (Figure 3.5(a)) and stick
(Figure 3.5(b)). One can start wondering why the head bone is that large. The reason is
that the head is represented as a complex mesh structure, and a larger bone is a simple
solution used to achieve correct weights distribution. The size of this bone could have
been smaller, but then, the weights would have to be adjusted in a different way. Since
bones are not visible during run-time, using a large bone is not a problem, because
it will not affect the visual representation. Another possible solution here would be
using more than one bone for the head, but it could add unnecessary complications
and would be beneficial only if facial animation was desired. Figure 3.5(c) shows that
exporting the rig to OGRE was successful.

3.2.3 Methods of Creating Animations

In a game model, where human characters are used as avatars, animations usually
simulate human interactions. Typically, such interactions involve human articulations,
gestures, and actions. Simulating realistic human motions has been a popular research
topic during the past years, since human figures are widely used not only in computer
games, but also, in many other applications. The techniques used for simulating hu-
man motion can be differentiated as automated methods, involving motion capturing,
and manual animation methods.

Motion capturing is generally based on obtaining data from sensors attached to certain
points on a human body. The locations of sensor placements and the type of informa-
tion collected from the devices varies, depending on the technique applied. A method
that is quite often used for determining sensor placement points is dividing human
body into segments, such as head, torso, upper arm, elbow, etc. To reduce error rate
and possible overhead in calculations, the amount of segments is usually minimal. The
points that join these segments are defined as key points and are used to attach sensors
to. Data collected from a sensor usually contains a vector describing sensor’s position
and a quaternion describing its rotation.(Li et al., 2009). This information can be then
used to change the position and rotation of the corresponding bone on the virtual hu-
man model. Animations generated in such way can effectively simulate human articu-
lations or actions, but the method itself requires a large amount of resources, including
motion sensors and a system of data processing.

Manual creation of animations is usually performed by using 3D modeling software.
The most common method is translating and rotating skeleton bones of the animated
character and storing changed data in key frames. Interpolating between the key
frames generates animations. The method does not require usage of any specialized
equipment, such as motions sensors, which is certainly an advantage. Nevertheless,
creating realistic animations manually is rather time-consuming.

Animating a human figure with a simple skeleton can be done in both described ways.
However, the first method might be expensive due to required equipment and data
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(a) Skeleton shown as octahedral (b) Skeleton shown as stick

(c) Export result

Figure 3.5: Basic armature constructed from scratch in Blender
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processing. Besides, our game model does not allow capturing player movements
using sensors. It could be helpful to apply motion capturing for obtaining a motion
database and use it for generating animations, but it would not influence the research
outcome significantly. Therefore, we consider creating animations manually to be an
optimal solution.

Since ManCandy was created in Blender, it is adequate to use Blender for making ani-
mations. Animating a character in Blender is done in Pose Mode, using Action Editor.
A separate action needs to be created for each animation. Character’s skeleton is ma-
nipulated with FK or IK, and data about each bone manipulation is stored in a key
frame. A detailed overview of the animation process is covered in Blender user man-
ual. 7 For exporting an animation from Blender to OGRE, it is necessary to convert the
action to an NLA strip, as already mentioned in Section 3.2.2.

3.2.4 Categories of Player Interactions

Quality of a multiplayer game significantly depends on the success of player interac-
tions. What we refer to as ’success’ meansmeeting players’ expectations and providing
a smooth and enjoyable gaming experience in general. In any case, most players would
expect an almost immediate response when they trigger an action by using input de-
vices, such as keyboard or joystick. In other words, when a player presses a button,
they expect something to happen. For example, any typical player action, such as
walking, running, jumping or shooting is expected to start right after a player triggers
it. However, since most online multiplayer games implement a client-server model,
the server typically plays an authoritative role in simulating the game. That is, all the
actions performed by a client need to be acknowledged by the server.

If clients have to send requests to the server and wait for acknowledgements before
processing events, a noticeable delay is impossible to avoid, unless the game is played
on LAN. A large delay between triggering an event and its actual execution often leads
to player dissatisfaction and frustration. It is one of the main reasons why multiplayer
games generally implement a strategy, where game events are executed immediately
after they are triggered by the user, assuming temporarily that the server will acknowl-
edge them. In case if the simulation state of the client becomes different from the one
simulated by the server, the client’s state is corrected upon receiving a server response.
Performing such corrections efficiently becomes a harder task as the latency increases.
Firstly, the correction can only start taking place in at least a full round trip time be-
tween the client and server. Secondly, correcting critical actions is not always possible
to do in an unnoticeable to the user way.

As discussed in Chapter 2, different types of game events are not equally sensitive to
increased latency. Performing simple actions that do not affect the states of other play-
ers is usually the easiest task. For this reason, it was observed that most RTS and RPG

7http://wiki.blender.org/index.php/Doc:2.6/Manual/Animation
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games, basedmainly on strategic thinking and skills development, but not on fast-pace
interactions between the players, could generally tolerate rather high latencies. In con-
trast, studies based on FPS games and racing simulators concluded that an increase
in latency caused degradation of user performance. As already mentioned, acknowl-
edging user actions immediately is obviously impossible due to the network delay.
However, the time is takes to process an acknowledgement really matters. Moreover,
we believe that the tolerable latency threshold is not the same for different types of
player interactions.

Consider an example of a game, where avatars are represented by human charac-
ters and can perform such actions as shaking hands, punching each other, playing
a game called "Rock-paper-scissors", and waving at each other. Each action is inter-
active, meaning that two players are involved. Ideally, performing such interactions
would require precise information about players’ kinematic states, but that is impos-
sible due to the network delay. If we execute an action locally on the client, the client
application would use the latest known data about players’ states to decide whether
execution of the action is possible. That is, whether the players are close enough to
each other to do a punch, a handshake, to play "Rock paper scissors", or whether they
can see each other, which is necessary to perform a wave. In case the client decides
that execution of an action is possible, its simulation starts immediately, while a veri-
fication request is sent to the server at the same time. The server checks whether the
positions of both players indeed satisfied the action’s requirements at the time when
it was initiated, and decides whether the action is acknowledged or not. If the server
acknowledges the action, the action request is also forwarded to the other players. If
not, then the client that committed it corrects the score accordingly, after receiving the
server’s message.

Delayed delivery of updates can prevent the clients from continuously having recent
kinematic state information about remote players, which is needed to decide whether
a certain player action is legal or not. Due to the presence of latency, clients can some-
timesmakewrong simulations and eventually perform necessary corrections, affecting
players’ score results negatively. We suppose that at high latency, scoring an action that
requires players to be located within short distance range can become more difficult;
nevertheless, performing actions that do not have strict requirements to players’ loca-
tions might still be feasible. To verify our hypothesis, we implement two categories of
players interactions - close-range interactions and long-range interactions. Inspired
by findings discussed in Chapter 2, we use a third person avatar perspective, since we
believe it is most suitable for representation of human interactions, allowing the users
to have a complete view of avatars’ actions.

The short-range interactions (Figure 3.6) include:

Punch: one player punching another player. Players need to be close to each other for
the action to take place.

Handshake: two players shaking each others hands. Handshake requires that the dis-
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tance between the players does not exceed a certain value, though the distance
limit is slightly higher than in case of punch.

The long-range interactions (Figure 3.7) include:

Rock-paper-scissors: two players playing a hand game. The game is also referred to as
roshambo and enables each player to choose one of the three items - rock, paper
or scissors. Clenched fist represents rock, two extended and separated fingers
represent scissors, and an open hand represents paper. (Fisher, 2008) In our case,
the choice is not made by the player, but determined randomly instead, when the
action is initiated. Rock-paper-scissors requires that the players are able to see
each other well enough to be able to recognize the item choice, but the distance
limit is relatively large.

Waving: a player waving hand to another player. The only requirement for this action
is the ability of both players to see each other.

In addition to the actions listed above, we differentiate between two possible player
states, taking place when no score-earning action is performed:

Walking: gives a player the possibility to move forward or backward or/and turn left
or right.

Idle: takes place automatically, when the latest triggered action was fulfilled, no user
input was done, and no response to other player’s actions is needed.

To express each action’s distance constraints and walking speed numerically, we use
OGRE’s coordinate system units which we refer to as "steps". Considering that each
point in the coordinate system is represented by a vector, the distance between two
vectors can be expressed as a number. For example, the distance between two vec-
tors (0,0,0) and (0,0,1) is equal to 1 (we refer to it as 1 step). The Table 3.1 lists the
characteristics of for each action.

Table 3.1: Actions summary
Action Earns score Range Distance/Speed Other Constraints

Punch

yes

short
150 steps

500 steps away from
last score-earning
action’s location

Handshake 250 steps
Rock-paper-scissors

long
1000 steps

Wave -
Walk

no other
450 steps/sec, absence of collision
35 degrees/sec

Idle - -

Players can walk with the speed of 450 steps per second and turn as fast as 35 degrees
per second. The walking speed is constant as we do not use any acceleration. Each
score-earning action has an additional constraint - a player needs to walk 500 steps
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(a) Punch

(b) Handshake

Figure 3.6: Short-range player interactions
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(a) Rock-paper-scissors

(b) Wave

Figure 3.7: Long-range player interactions
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away from the point where the last score-earning action was performed. This needs to
happen at least once after an action was scored, and after that, the player can perform
another action at any desired location. This requirement is introduced to motivate the
players to change their positions each time a new critical action is executed. If players’
locations do not change, scoring an action becomes simpler, since old positions remain
valid for longer, which in turn reduces the likeliness of inconsistency. Passive behavior
is usually not expected from players in interactive multiplayer games, and we would
like to eliminate such cases from our analysis. In other words, we are interested in
considering the situations where inconsistencies in clients’ simulations of the game
occurred, but not the cases where such inconsistencies were very likely, but did not
take place due to players’ inactivity.

For obtaining a statistically useful score outcome, we define the goal of our test game:
to win, a player has to perform each score-earning action at least 10 times. The game
ends when at least one player has achieved the goal. Also, we introduce a time limit of
350 seconds for each game round, to prevent users from playing endlessly.

3.2.5 Physics Simulation and Collision Detection

Many modern games use physics laws in simulating virtual world. The purpose of
that is making the game world look more real to the users. Physics simulation is usu-
ally performed only as an approximation to the real world physics, and discrete values
are used in computations. Such simulation is typically implemented in physics en-
gines - software, providing the simulation of different physical systems, such as rigid
body dynamics, which defines the movement of object under application of exter-
nal forces, soft body dynamics, focusing on soft and deformable objects’ motion, and
fluid dynamics, generating realistic animations of liquids, smoke, and relative sub-
stances. Physics engines are generally categorized as real-time and high-precision
engines. High precision engines aim at simulating physics rather precisely and there-
fore, require a lot of computational power. Such engines are typically used in scientific
simulations and computer-animated movies. Video games and other interactive ap-
plications use real-time engines, which are based on simplified calculations and some-
what decreased accuracy, which allows to speed up the simulation and maintain an
appropriate gameplay rate. (Eberly, 2003)

Collision detection is rather useful part of physics processing in real-time engines, as
it often defines how game objects interact with each other. Most 3D objects in a virtual
environment that includes physics simulation are represented by two separate meshes.
The main mesh is rather complex and detailed. Since it is used for rendering, it rep-
resents the visible part of the object. For physical computations, it is typical to use a
secondary, simplified mesh, which only defines objects’ shape and properties and is
usually referred to as collision geometry. Examples of collision geometry are bound-
ing box - the smallest box that encloses the object, sphere or convex hull - the smallest
set of points in the Euclidean plane or space that contains the object. A simple way to
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detect a collision of two separate objects is to check whether their collision geometry
meshes intersect. Generally, collision detection is performed as a process involving
two phases: broad phase, where the main task is to simplify computations for objects
that are far away from each other, and narrow phase, where each individual pair of
objects is carefully checked for collision. (Ericson, 2005)

A good example of a popular real-time open-source physics engine is Bullet8. Its appli-
cations include physics simulation in games and producing visual effects for movies.
It is integrated in BGE and can also be combined with OGRE. For the test game model
that we implement, using Bullet physics for collision detection is a possible option. For
this reason, our first solution idea for implementing physics simulation and collision
detection in our test model was based on using Bullet. To combine Bullet with OGRE,
we would need to convert some data (for example, meshes) from OGRE format to the
format used by Bullet and back. There are wrappers that have that functionality, and
one of the most popular ones is OgreBullet9. For the sake of simplicity, we decided to
use OgreBullet to integrate Bullet engine into our project.

It is necessary to mention that Bullet provides quite extensive functionality, including
collision detection, simulating motion of rigid bodies, and dynamics of soft bodies.
The only feature that would be useful for us is collision detection, since simulating
realistic physical world is not that important in our work. To make use of Bullet’s
collision detection library, we need to simulate a collision world, which can be done in
the following way:

// gravity vector for Bullet

Vector3 gravityVector = Vector3(0,-500,0);

// Bullet dynamics world wrapped by OgreBullet

OgreBulletDynamics::DynamicsWorld *mWorld;

mWorld = new OgreBulletDynamics::DynamicsWorld(mSceneMgr,

AxisAlignedBox

(Vector3 (-10000, -10000, -10000),Vector3 (10000, 10000,

10000)), gravityVector);

The physics animation needs to be updated every time a new frame is rendered:

mWorld->stepSimulation(evt.timeSinceLastFrame);

Each time we create an object with physical properties, we need to add a rigid body
object and assign some collision shape to it. That is useful for non-animated objects,
that do not change their shape over time. Consider a very simple example: we would
like our avatar to be able to throw balls and implement it as follows:

8More information about Bullet can be found on the official website:
http://bulletphysics.org/wordpress/

9http://www.ogre3d.org/tikiwiki/tiki-index.php?page=OgreBullet
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// starting position of the ball - avatar’s position + 10

Vector3 position = localPlayer->playerNode->getPosition() + 10;

// starting orientation of the box

Quaternion orientation = localPlayer->playerNode->getOrientation();

// create OGRE mesh for the ball

Entity *entity = mSceneMgr->createEntity(

"Ball" + StringConverter::toString(mNumEntitiesInstanced),

"Sphere.mesh");

entity->setCastShadows(true);

entity->setMaterialName("Examples/BumpyMetal");

// we need the bounding box of the ball to set the size of the

Bullet container

AxisAlignedBox boundingB = entity->getBoundingBox();

SceneNode *node =

mSceneMgr->getRootSceneNode()->createChildSceneNode();

node->attachObject(entity);

// the ball is too small for us, make it bigger

node->scale(10, 10, 10);

// approximate radius of the ball, adjusted manually

Real radius =

(boundingB.getCenter().distance(boundingB.getMaximum()))*6;

// create the Bullet sphere shape with the calculated radius

OgreBulletCollisions::SphereCollisionShape *sceneShape =

new OgreBulletCollisions::SphereCollisionShape(radius);

// and the Bullet rigid body

OgreBulletDynamics::RigidBody *defaultBody =

new OgreBulletDynamics::RigidBody("defaultRigid" +

StringConverter::toString(mNumEntitiesInstanced),

mWorld);

// set physical properties of the ball

defaultBody->setShape(node,

sceneShape,

0.0f, // dynamic body restitution

100.0f, // dynamic body friction

25.5f, // dynamic bodymass

position,

orientation);

mNumEntitiesInstanced++;

// speed of the ball’s motion when it is thrown

defaultBody->setLinearVelocity(position.normalisedCopy() * 7.0f);
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// push the created objects to the deque, so that we can delete them

at exit

mShapes.push_back(sceneShape);

mBodies.push_back(defaultBody);

Figure 3.8: Using Bullet with OgreBullet for collision detection: collision shapes

As a result, created balls behave correctly in the physical world (Figure 3.8). We set a
Bullet container around the avatar, in a similar way we did with the ball objects, which
makes it possible for the avatar to interact with the physical objects (in this example
- balls). If the player collides with a ball, the ball gets a physical impulse and moves
in the corresponding direction. If a ball falls on the avatar, it bounces off. However,
the avatar itself is not be affected by balls’ movements. We do not want player object’s
motion to be defined by other physical objects, since it is controlled by user input.
Therefore, we set the avatar’s rigid body to be kinematic, which means it can affect
other physical bodies, but not vice versa:

playerRididBody->setKinematicObject(true);

While simulating physics, as in the example discussed, creates nice effects in a game
world in general, we do not have a need for such functionality in our test game model.
What we do need is detecting collision of an avatar with another avatar, since play-
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ers should not be able to walk through each other, and also, with some static world
objects.

Originally, we intended to use Bullet for narrow-phase collision, creating shape con-
tainers around avatar’s bones. In that way, the collision containers would follow the
bones during animations, which could be a rather useful feature when dealingwith hu-
man interactions. OgreBullet has a class that performs conversion of animated mesh
to Bullet format and can be used to make containers for bones of an animated entity, in
our case - avatar. That can be done in the following way:

//create a converter to make containers for animated mesh

OgreBulletCollisions::AnimatedMeshToShapeConverter *cont =

new OgreBulletCollisions::AnimatedMeshToShapeConverter(

localPlayer->playerEnt,

*(localPlayer->playerEnt->_getBoneMatrices()));

// get pointer to the avatar’s skeleton instance

SkeletonInstance *skel = localPlayer->playerEnt->getSkeleton();

int numBones = skel->getNumBones();

int i;

// skip the root bone which has handle 0

for (i = 1; i < numBones; i++)

{

Bone* bone = skel->getBone(i);

//create a SceneNode for the collision shape as a child of

avatar’s SceneNode

SceneNode *node =

mSceneMgr->getRootSceneNode()->createChildSceneNode(

StringConverter::toString(mNumEntitiesInstanced),

bone->_getDerivedPosition());

// create capsule collision shape for each bone

OgreBulletCollisions::CapsuleCollisionShape *boneShape =

cont->createOrientedCapsuleCollisionShape(

bone->getHandle(),

bone->_getDerivedPosition(),

bone->_getDerivedOrientation());

// add Bullet rigid body

OgreBulletDynamics::RigidBody *boneRigidBody =

new OgreBulletDynamics::RigidBody(

"defaultBoxRigid" +

StringConverter::toString(mNumEntitiesInstanced),

mWorld);
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// no physical properties are needed, set only position and

orientation

boneRigidBody->setShape(node,

boneShape,

0.0f,

0.0f,

0.0f,

bone->_getDerivedPosition(),

bone->_getDerivedOrientation());

mNumEntitiesInstanced++;

// we do not want the body’s motion to be affected by physics

boneRigidBody->setKinematicObject(true);

// push the created objects to the deque for deleting at exit

mShapes.push_back(static_cast

<OgreBulletCollisions::CollisionShape *> (boneShape));

mBodies.push_back(boneRigidBody);

}

Aswe can see on Figure 3.9, we created a container for each bone, but the result was not
satisfactory. First of all, the containers did not follow the bones during animations, as
we expected. Instead, they seemed to stay on bones’ original positions (before any an-
imation was applied). In addition to that, not all the collision shapes had correct sizes
and rotations. The container for the right hip bone was placed and rotated correctly,
while the container for the left hip bone had wrong rotation. One of the containers was
shifted to the side, while all the others were too small (visible as small green dots in
the background). We would not need a collision geometry for every single bone, but
in any case, this solution did not give us the expected result.

Unfortunately, there is no official documentation for the OgreBullet project. Therefore,
it is often unclear which objects need to be passed to its classes. For example, to create
a converter for animated mesh, we need an entity and a transformation matrix:

AnimatedMeshToShapeConverter(Ogre::Entity *entity, const

Ogre::Matrix4 &transform = Ogre::Matrix4::IDENTITY);

In the example dicussed above, we used bone matrix information as the transforma-
tion matrix. We also tried to use the full transformation of the entity’s parent node
instead:

OgreBulletCollisions::AnimatedMeshToShapeConverter *cont =

new OgreBulletCollisions::AnimatedMeshToShapeConverter(

localPlayer->playerEnt,

localPlayer->playerEnt->_getParentNodeFullTransform());
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Figure 3.9: Misplaced collision shape containers (using bone matrix information for
the animated mesh converter)
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Figure 3.10: Misplaced collision shape containers (using full transformation matrix of
the entity’s parent node for the animated mesh converter)
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The result was similar (Figure 3.10), except that all of the containers seemed to be too
small.

To figure out why the solution did not produce expected results, we could approach
the problem from different perspectives. One possibility would be to analyze the Ogre-
Bullet’s source code more thoroughly and spot possible reasons for the problem. As
a different option, we could use another wrapper for Bullet, like BtOgre10. However,
the problem could also originate from Bullet itself. When using some of the collision
shapes, we got the following message at runtime:

"Overflow in AABB, object removed from simulation. If you can repro-
duce this, please email bugs@continuousphysics.com

Please include above information, your Platform, version of OS.

Thanks."

In any case, since creating a simple collision geometry without taking animated mesh
into account produces correct results, we consider that option to be more effective.
An optimal way to implement collision detection for an avatar could be using Bul-
let’s Kinematic Character Controller11, since it provides functionality for controlling a
game character and collision handling. However, there is no wrapper class for it in
OgreBullet.

A simple way to perform broad phase collision with Bullet is calling Bullet’s collision
dispatcher directly:

// get the pointer to Bullet’s dynamics world object

btDynamicsWorld *bulletWorld = mWorld->getBulletDynamicsWorld();

int numberOfManifolds = btWorld->getDispatcher()->getNumManifolds();

btSimpleBroadphase *simpleBroadphase = new btSimpleBroadphase();

for (int i = 0; i < numberOfManifolds; i++)

{

btPersistentManifold* contactManifold =

btWorld->getDispatcher()->getManifoldByIndexInternal(i);

int numberOfContacts = contactManifold->getNumContacts();

for (int j = 0; j<numberOfContacts; j++)

{

btManifoldPoint& contactPoint =

contactManifold->getContactPoint(j);

if (contactPoint.getDistance() < 0.f)

{

// collision: do something if necessary

}

10https://github.com/nikki93/btogre
11http://www.continuousphysics.com/Bullet/BulletFull/classbtKinematicCharacterController.html



The Influence of Latency on Short- and Long-Range Player Interactions 45

}

}

Figure 3.11: Example of simple collision geometry for avatars (using Bullet)

It is necessary to note that for determining exactly which objects collide, we need to
keep track of all Bullet rigid bodies that are created by OgreBullet. Although, if we
only want to detect collision occurence (for example, if we only add collision geometry
to no other physical objects than avatars and want to know when they collide), then
using the above algorithm is sufficient. An example of simple collision geometry that
we considered to use for the avatar objects is shown on Figure 3.11. As we can see, the
container around the avatar object is slightly bigger than the mesh, since we adjusted
its size to the entity’s possible animated states. For instance, if a smaller container size
would have been used, then avatar’s feet could move outside the box during walk-
ing. We considered this solution satisfactory, however, it required considerably more
computational power and therefore, reduced application’s responsiveness.

To avoid significantly decreasing the frame rendering rate by expensive collision detec-
tion computations, we decided to use essentially simplified collision detection method
instead. Every timewe change the position of a movable object (avatar) A in the virtual
world, we calculate the distance between its new position and every other object it can
collide with. Collision occurs if the distance between A and any other object exceeds
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Figure 3.12: Detection of avatar’s collision with game world objects

Figure 3.13: Detection of avatar’s collision with another avatar
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a certain limit. For detecting collision of A with any of the static game world objects,
we calculate the distance between A’s position and any point of the colliding world
object’s bounding box (Figure 3.12). To check whether avatars collide with each other,
we only use their positions in calculations. We do not use avatar’s bounding box ge-
ometry, since a bounding box typically encloses the object’s mesh in its original state,
before any animation is applied. Therefore, using the distance to avatar object’s center
is easier for adjusting calculations (Figure 3.13). If collision occurs, we move A back to
its previous position.

Most physics engine also simulate gravity. In our game world, all dynamic objects
can only move on a plane, along X and Z axes in OGRE’s coordinate system, and
never along the Y axis. Therefore, we do not need to simulate gravity and can only
translate the objects to the required positions, according to user input or kinematic
state updates.

3.3 Protocols

3.3.1 Client-Server Protocol

Most multiplayer networked games are based on a client-server model. Initially, game
clients in early client-server game models served only for user input sampling, send-
ing the commands to the server and processing the game simulation data received from
the server. In that case, a client was basically responsible for sampling user input and
rendering the objects, while the server was executing user commands and moving the
objects in the game world. Such architecture is not suitable for modern video games
played on the Internet, where users can experience some latency, since waiting for
server acknowledgements is usually not acceptable. For this reason, most multiplayer
games, particularly those based on Quake III and the Unreal Tournament engines, as
well as their descendants, implement amodified client-server model. The implementa-
tion details of such architecture are usually adjusted, depending on the specific game
model, but the basic principle is illustrated on Figure 3.14: each client process user
input commands, executes them locally, assuming for a while that the server will ac-
knowledge them. The server receives clients’ messages, executes the commands, sim-
ulates the world accordingly, and sends the outcome to the clients. Each client corrects
the simulated state of the game world, if necessary. (Bernier, 2001)

The client-server protocol that we implement in our test game model is based on a
similar principle - there is an authoritative server and clients connected to it. The server
is running several concurrent threads:

• Main: continuously accepts new connections;
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Figure 3.14: Basic client-server architecture

• SocketReader (separate thread for each client): receives messages from the
client;

• BufferHandler: processes the messages received by clients, packages them
into a single buffer, and sends an update to each client;

The client implementation is based on four concurrent threads:

• Main: manages the frame rendering loop (simulates and renders the gameworld),
processes user input;

• Sender: sends messages to the server;

• Receiver: receives server updates;

• Delay simulator: simulates specified network latency by delayed processing
of received messages;

The Main thread on the server accepts connections from clients and creates a separate
TCP socket for every client that joins. We use TCP because we need reliable deliv-
ery of all messages. To start a game, a client establishes connection with the server.
The server assigns a numerical identifier (ID) to every client that joins and to every
game session that is started by the first connected client. The session is ended when
the last connected client leaves the game. Each client (Sender thread) sends a state
update message to the server with the interval of 200 ms or right after a new action is
performed, containing the following data:

• timestamp: time when the player state snapshot was taken by the client

• position: x and z coordinates (y coordinate is fixed and does not need to be trans-
mitted)
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• rotation: orientation quaternion

• current action: idle, walk, punch, handshake, rock-paper-scissors or wave

• opponent player: ID of the player participating in the action (if any)

The SocketReader thread on the server listens continuously on the socket and re-
ceives messages. The BufferHandler thread checks every message that is received
on each client socket. If the message contains a score-earning action request (punch,
handshake or rock-paper-scissors), it is verified by calculating the distance between
interacting players and comparing it to the maximum distance allowed to perform the
corresponding interaction. If the distance is within the allowed range, the action is
acknowledged and the state update message is added to a buffer. Otherwise, if the
distance is greater than the maximum allowed distance, the action is discarded and re-
moved from the message. Once all received messages are read and added to the buffer,
the contents of the buffer is forwarded to all clients as a state update message.

The Receiver thread on the client side dispatches every received message and marks
it with a delivery deadline, equal to the sum of current time and the simulated network
delay. The Delay simulation thread checks every message and sleeps until the
time of the deadline before processing it. The data is afterwards delivered to the Main
thread that performs necessary changes to the player objects.

The entire game simulation, including input processing and executing user commands,
as well as moving and rendering the world and player objects, is managed by the Main
thread on the client side. World objects include some static entities (landscape, trees,
buildings, pavements, etc.) and five dynamic entities (four running cats and one flying
skeleton). They do not influence the outcome of the game, serving only as background
objects. Themain components of the client-server architecture, chosen for the test game
model, are summarized in Figure 3.15

Every player object is represented by an avatar entity. The state of a local player is
controlled by user input, while the states of remote players are reconstructed from the
state updates data. By using the control keys (arrow keys for moving and turning,
P, H, R, W for punch, handshake, rock-paper-scissors, and wave respectively), a
player can either move or execute a score-earning action. There are two constrains for
moving:

• absence of collision

• no score-earning action currently being executed

If any of these constraints are not satisfied, moving is not possible. Player’s abil-
ity to execute any of the score-earning actions is restricted by the following require-
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Figure 3.15: Client-server architecture chosen for the test game model
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ments:

• presence of at least one remote player within the corresponding action distance
range

• no score-earning action currently being executed

• if a score-earning action was executed previously, the player should have moved
500 steps away from the position, where the last action was performed (the infor-
mation is displayed on the screen for player’s convenience)

The following score-earning actions need to be approved by the server: punch, hand-
shake, and rock-paper scissors. These actions require both interacting players to be
within the required distance interval. Since player state information on each client
may be outdated due to the network delay, inconsistency can occur in clients’ deci-
sions on whether an interaction can be performed. It is therefore necessary to let a
single authoritative entity make the final decision. Thus, every action is verified by
the server after having been performed by a client. A client application is not wait-
ing for the acknowledgement and simply executes the operation, using the last known
state of the simulation and assuming that it will be approved. In case the operation is
discarded, corresponding player’s score is corrected on the client side.

The requirements for the wave action are somewhat different. There is no distance
constraint assigned, but both interacting players need to be able to see each other. For
the sake of simplicity, we use Ogre::Camera12 object to check if this requirement is
fulfilled. To determine whether two players playerA and playerB can interact by
performing a wave action, we call a function implemented in Ogre::Camera:

bool isVisible (const Vector3 \&vert, FrustumPlane *culledBy=0) const

Both participating players can see each other if both of the following function calls
return true:

playerA->playerCam->isVisible(localPlayer->playerNode->getPosition())

playerB->playerCam->isVisible(current->playerNode->getPosition())

The server is not replicating the entire simulation state; instead, it makes calculations
based on the latest data received from the players. To be able to verify a wave action,
the server would need to access the camera objects of the corresponding players, which
is not possible. We can solve this problem in two different ways:

• by setting up OGRE framework on the server and let the server access desired
objects, when necessary

12http://www.ogre3d.org/docs/api/html/classOgre_1_1Camera.html



52 The Influence of Latency on Short- and Long-Range Player Interactions

• by letting the client itself verify the wave action

Considering that the only application of simulating the game world on the server
would be the ability to verify wave action, this solution could introduce much un-
necessary overhead. Therefore, we decide to let the action be approved on the client
side. To achieve that, we implement a method that allows a client application to by-
pass the simulated delay and access the updated state information, when verifying a
wave:

bool Game::canWave(Player* player)

{

Vector3 prevPos = player->playerNode->_getDerivedPosition();

Quaternion prevOrient =

player->playerNode->_getDerivedOrientation();

// temporarily change the player state to what is currently on

the server

player->playerNode->setPosition(player->realPos);

player->playerNode->setOrientation(player->realOrient);

bool canwave = false;

Vector3 myPosition = localPlayer->playerNode->getPosition();

// check if players can see each other

if (player->playerCam->isVisible(myPosition) &&

localPlayer->playerCam->isVisible(player->realPos))

canwave = true;

// restore the state to what is currently seen by the client

player->playerNode->setPosition(prevPos);

player->playerNode->setOrientation(prevOrient);

return canwave;

}

Each time a state update message is received, the Receiver thread stores the corre-
sponding remote player’s position and rotation information in player->realPos

and player->realOrient respectively. This data is only accessed by the Main

thread when verifying a wave action initiated by the local player. In this way we sim-
ulate a verification procedure equivalent to the server’s acknowledgements for other
types of actions.
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3.3.2 Entity Interpolation

Anymotion in a virtual world is performed by shifting the positions of movable objects
and producing an image that reflects how the world looks like. Typically, a virtual
camera defines from which perspective the "picture" of the world is taken. That image
is then being rendered to the screen and is usually referred to as a frame. Normally,
to display motion that a human eye would perceive as smooth and realistic, at least 24
frames should be rendered per second. However, that is not the only requirement. In
contrast to reflecting real world motion on a video, where motion happens naturally,
in virtual world, we also simulate the motion itself.

Rendering engines, like OGRE, are usually based on a frame event loop, where neces-
sary calculations and changes to the world objects are being done in between render-
ing the frames. An OGRE application should first go through the initialization process,
which is well described by Junker (2006) in Chapter 4. A simple way to manage the
frame rendering loop in OGRE is creating a subclass of Ogre::Framelistener class
and overriding one or more of its following functions:

• virtual bool frameStarted (const FrameEvent &evt) - called when
a frame is about to start rendering;

• virtual bool frameRenderingQueued (const FrameEvent &evt) - called
after all render targets have issued their rendering commands, but before the ren-
dering buffers get flipped over;

• virtual bool frameEnded (const FrameEvent &evt) - called right af-
ter a frame is rendered.

The frame rendering loop in our test game implementation is managed by a class that
inherits Ogre::FrameListener. We do all the necessary changes to the movable ob-
jects in the game and process user input in frameRenderingQueued function:

bool Game::frameRenderingQueued(const FrameEvent &evt)

{

moveWorldObjects(evt);

printStepsLeft();

printPlayerScore();

printTime();

if(!processUnbufferedInput(evt))

return false;

managePlayerStates(evt);

return BaseApplication::frameRenderingQueued(evt);

}
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By updating motion states of the objects each time a new frame is queued for ren-
dering and taking into account the time that passed since last frame was rendered in
calculating new positions of the objects, we simulate motion that is smooth. While the
local player entity is being controlled by user input, all the remote player entities are
not. The information about their kinematic states is extracted from the state update
messages, which are generally received with the interval of 200 ms. If we updated the
positions of remote players only upon an update message arrival, the motion would no
longer look realistic and the user would see remote players jumping from one position
to another. Doing that should be avoided, therefore, remote players’ motion needs to
be evenly interpolated between the known positions.

For interpolating between avatar’s positions in the virtual world space, we have con-
sidered two different solutions:

• linear interpolation, where the interpolant is a linear polynomial.

• spline interpolation, where the interpolant is a spline (special type of piecewise
polynomial)

To perform linear interpolation, we draw a straight line between the points, and then,
gradually move the object along the obtained path; for spline interpolation, we draw a
curve through the points. Connecting two points with a straight line is rather simple
and does not need detailed explanation. However, spline interpolation is more com-
plex. Firstly, there are different types of splines. Cubic spline and Cubic Bezier curve
(Figure 3.16 13 ) are quite often used for calculating motion paths in computer graphics
and related fields. Another representative of the cubic splines family is Catmull-Rom
spline (Figure 3.1714). In a Catmull-Rom spline, the tangent at each point is calculated
by using the previous and the next point on the spline, which causes the curvature
to vary linearly over the curve segment’s length. (Catmull et al., 1974) Secondly, we
typically need at least three points to build a cubic spline.

Whether linear or spline interpolation is a better choice generally depends on the in-
terval length between the points and, of course, on the physical characteristics of the
object’s motion. For a vehicle object, spline interpolation might be a better choice, since
the path of a vehicle’s motion is usually a curve. For an avatar, it depends on the char-
acterictic features of its motion.

The first solution alternative we tried was Ogre::SimpleSpline15 that implements
a Catmull-Rom spline. We used three control points to create a spline:

13The figure is inspired by Wikimedia Commons files
http://upload.wikimedia.org/wikipedia/commons/e/e2/Cubic_splines_three_points.svg
http://upload.wikimedia.org/wikipedia/commons/d/d0/Bezier_curve.svg

14The figure is inspired by the "Introduction to Catmull-Rom Splines" article
http://www.mvps.org/directx/articles/catmull/

15http://www.ogre3d.org/docs/api/html/classOgre_1_1SimpleSpline.html
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(a) Cubic "natural" spline

(b) Cubic Bezier curve

Figure 3.16: Common splines used in computer graphics

Figure 3.17: Catmull-Rom spline
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• 1: avatar’s previous position, received as position update before it moved to the
current position (if last received update is un, then previous position is un−2)

• 2: avatar’s current position

• 3: last received position update (destination)

In addition, we used the option of calculating the tangents automatically, when a new
point is added to the spline. As a result, in some cases, the interpolated motion path
contained excessive curvature; thereby, avatar’s motion was not smooth and some-
what tottering. Troubleshooting in this case appeared to be not that straightforward
for several reasons:

• It is not possible to access tangents at control points or along the spline’s length.
Therefore, we could not determine whether the problem occured due to miscal-
culated tangents.

• SimpleSpline::interpolate(Real t) does not seem to produce accurate
interpolation, if the control points are not spaced evenly.

• There is no way to check the spline’s length.

Finally, we decided that such interpolation type was not optimal for our prototype.

Thus, we conluded that for a fine-grainedmotion path of an avatar, linear interpolation
can be more effective, provided that the interval between the points is short enough,
like in our case. Therefore, linear interpolation was our final choice, since it produced
the desired smooth motion, while the outcome was stable. The algorithm we imple-
mented is rather simple:

// player’s current position

Vector3 currentPos = player->playerNode->_getDerivedPosition();

// player’s last known position, received as an update

Vector3 destinationPos = player->positionUpdate;

// the distance that an avatar would have covered since last frame

Real perFrameDistance = SPEED_PER_SECOND*evt.timeSinceLastFrame;

// total distance to the destination

Real totalDistance = distanceToPosition(destinationPos, currentPos);

// for smooth motion, only move the avatar if the total distance is

significant enough

if (totalDistance >= perFrameDistance)

{
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Vector3 direction = destinationPos.operator-(currentPos);

direction.normalise();

player->playerNode->translate(direction*perFrameDistance,

Node::TS_WORLD);

}

Position interpolation only is not enough to make an avatar’s motion look smooth and
realistic. It is important to make sure that rotations are handled correctly. There are
different alternatives that can be used as a solution for that. Again, the choice would
generally depend on the avatar’s motion properties. Since we use linear position in-
terpolation, it is convenient to interpolate between rotations linearly as well. Rotation
interpolation is implemented as follows:

Real perFrameRotation = evt.timeSinceLastFrame;

Quaternion nextOrient = player->orientationUpdate;

Radian totalRotation = nextOrient.getYaw();

Quaternion curOrient = player->playerNode->_getDerivedOrientation();

Radian curRotation = curOrient.getYaw();

// difference between current rotation and destination rotation in

radians

Real rot =

Math::Abs((totalRotation.operator-(curRotation)).valueRadians());

// rotation per frame - converted from degrees to radians

Real rotPerFrame = (DEGREES_PER_SECOND* 0.0174532925)*
evt.timeSinceLastFrame;

Real rotAngle = rotPerFrame / rot;

if (rot > 0)

{

if (rotAngle < 1 && rotAngle > rotPerFrame)

{

Quaternion dest = Quaternion::nlerp(rotAngle, curOrient,

nextOrient, false);

player->playerNode->setOrientation(dest);

}

// the difference is too small for interpolation

else

{

player->playerNode->setOrientation(nextOrient);

player->orientInterpolation = 0;

}

}

When using any kind of interpolation, it is important to remember that interpolating
between known positions of a remote player causes certain delay in replicating its mo-
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tion path. Firstly, it takes time for the update message to be delivered. Secondly, we
do not immediately place the player to the last known position; instead, the object is
moved there gradually, which causes additional delay. Thismeans that remote player’s
position will normally deviate from its correct position. In case player’s position itself
does not significantly influence the game outcome, such deviation can be acceptable.
However, it still leads to certain inconsistencies in presentation of the player’s state on
different clients. Most video games use client side prediction and latency compensat-
ing techniques to solve the problem.

3.3.3 Client Side Prediction and Latency Compensation

An important factor in most distributed virtual environments is providing consistency.
The concept of consistency has received much attention in both theory and practice.
Mostly, the work done in this area focused on applications that are discrete and change
their states only according to user input. Examples of such applications are shared text
editors or drawing tools. However, some distributed environments, such as computer
games and virtual reality simulators, are continuous, which means that they do not
only change their state in response to user operations, but also, with passing time. For
this category of applications, the issue of consistency is still not clearly defined. Since
approaches that are usually applied to achieve consistency in discrete applications ig-
nore the state changes caused by passing time, they will not give the same result when
used in continuous applications. At the same time, the issue of consistency itself can
be categorized as short-term consistency and long-term consistency. Whether the goal
is maintaining short-term or long-term consistency depends on the characteristics of
the application as well. (Mauve et al., 2004)

In the context of distributed networked virtual environments, such as games or simu-
lation applications, we refer to consistency as maintaining correct kinematic states of
all entities on every client. Such consistency is often difficult to achieve due to the net-
work transmission delay, since latency may lead to incorrect state of distributed objects
on remote clients. The problem is usually approached by using latency compensating
techniques on the client side. There is, unfortunately, no universal method to achieve
consistency for any environment, neither it is always possible to provide full consis-
tency at all times. A typical solution is attempting to reduce the deviations as much
as possible, and eventually, correct the situation. The choice of the right technique for
that depends on the type and properties of the environment itself, while, in almost any
case, there is a tradeoff between consistency and application’s responsiveness.

Dead Reckoning

The most common client side prediction method is dead reckoning. Dead reckoning
combines state prediction and state transmission, and does not necessarily require a
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centralized server. The main principle of this technique is predicting the current state
of an entity according to its last known state. Examples of such entities are vehicles,
such as a car or a plane, avatars or bullets. The parameters used in predicting new
state of an entity include last known position, direction, and velocity. Errors in com-
putations are likely in almost any case, since remote entities are usually controlled by
their users. The accuracy of dead reckoning is considerably dependent on how much
the physics laws influence entity’s motion behavior. The maximum possible threshold
in difference between actual and predicted state depends on how fast the state updates
are being delivered in correlation to how fast the changes in entity’s state can take
place. For example, predicting new state of an airplane would be simpler than esti-
mating new state of an avatar. An airplane can take off, accelerate, slow down, fall or
land. However, it cannot suddenly stop and hang in the air, so, changes in airplane’s
velocity, as well as direction, cannot exceed certain limits, which narrows down the
range of possible changes in its state.

Figure 3.18: Predicting the motion path of an airplane by using dead reckoning

Consider a simple example shown on Figure 3.18, where we illustate an approxima-
tion of calculating the motion path of an airplane from the point t1 to the point t9
on the timeline. The solid line is the object’s actual path, while the dotted line is the
predicted path. State updates are sent by the client application A that is steering the
object and are denoted as pn. Each update is received by another client application (B)
with some delay and is used to extrapolate the object’s current position (p′n). When B
receives the first update p1, it extrapolates the airplane’s position at the current time
(t′1) and continues the extrapolation until next update(p2) is received. At that moment,
the airplane’s direction has changed slightly, so the extrapolation continues from the
current object’s position (p′2) to the next predicted position (p′3). The same strategy is
applied each time a new state update has arrived. As we can see, the predicted path
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deviates slightly from the actual path, but the deviation is not drastic, since the error
rate is reduced by the restrictions of the environment’s physical model. Therefore, it
can be suggested that using dead reckoning for prediction of a smooth motion (such
as motion of a vehicle) is rather effective.

Pantel and Wolf (2002b) have studied the suitability of dead reckoning schemes for
games, using sports, 3D-action, and racing games for investigation. The authors have
considered various position and input prediction schemes, as well as a scheme with
no prediction. Measurable differences were noticed in the results produced by differ-
ent schemes, where the most complex schemes did not always give the best results.
The authors pointed out that the choice of prediction scheme was significantly de-
pendent on the game type. Their measurements showed that input prediction was
rather successful in racing games, where the player objects were represented by vehi-
cles. However, the authors figured out that prediction of players’ movements in sports
games, where the motions were not as smooth and dependent on the physics as in the
vehicle-like movement model, was not so easy to handle. Therefore, using prediction
schemes was concluded to be ineffective for such gamemodels, and presentation delay
was suggested to be used instead. Nevertheless, it was mentioned that the proposed
method would introduce an additional delay and could only be used in game models
that would tolerate it.

Figure 3.19: Predicting the motion path of an avatar by using dead reckoning

The situation is indeed different when it comes to prediction of motion that is not
significantly affected by intertia or other physical constraints, like motion of an avatar.
Consider an example of an avatar that simulates a human being in a distributed virtual
environment, where several clients replicate its actions, receiving updates about its
kinematic state with certain frequency. Each update is sent by the client controlling
avatar’s actions at the time tn, with an interval of tn − tn−1, and is delivered to the
other clients with some latency l at the time t′n, which is calculated as follows:

t′n = tn + l

The avatar can move with the velocity v, change its direction d or remain motionless.
In contrast to the airplane object discussed previously, the avatar can stop moving
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any time and change its direction unexpectedly. For the sake of simplicity, we assume
that there is no acceleration in the object’s velocity, so, it either moves with constant
velocity or remainsmotionless. Figure 3.19 shows possible development of the avatar’s
kinematic state over time. The solid line represents its actual state, while the dashed
line is the state predicted by using dead reckoning. Dead reckoning assumes that the
object will continue moving in the same direction. Therefore, if we receive a state
update, indicating that at the point t1 in time the avatar was at position p1, moving
in direction d with constant velocity v, we assume that by current time, the avatar has
moved to position p′1, which is calculated as follows:

p′1 = p1 + (d ∗ v ∗ (t′1 − t1)

Using the same method, we continue the extrapolation until the next state update is
received, moving the avatar to position p′2. However, once the state update is received
at t′2, we figure out that instead of moving in the same direction, as we expected, the
avatar had turned around and moved in the opposite direction. The maximum pos-
sible error in the calculation of avatar’s position at t′2 (the distance between the actual
and predicted positions) is therefore the maximun distance that can be covered by
the avatar in a time interval equal to the sum of the time between two updates and
delay time multiplied by two, since the avatar could have moved in the opposite di-
rection:

error ∼ v ∗ (tn − tn−1 + l) ∗ 2

Efficiently correcting the error by interpolating between the avatar’s current position
and its real position is not possible if the speed is constant - the distance that we need
to move the avatar to within certain time limit is then greater than what the avatar is
able to move to. It might also increase the maximum error in the long run. On the other
side, forcefully placing the avatar to the desired position cannot be left unnoticeable to
the user and would no longer provide a smooth user experience.

If we do not use any prediction and simply interpolate between the positions that we
get in each state update message, the path of the avatar’s motion does not change, but
rendering of all the movements is delayed by the latency time plus interpolation time.
Nevertheless, in this case, the maximum difference between the avatar’s real position
and its current position, as presented at the remote client replicating the avatar’s ac-
tions, at the time t′n is constant and equal to the distance that the avatar can cover in
the time it takes to interpolate between avatar’s current position and the latest state
update (the time interval between two updates), plus the latency time:

error ∼ v ∗ (tn − tn−1 + l)

Since the maximum possible error in position estimations by using dead reckoning
in such case is about twice as large, comparing to using no prediction at all, dead
reckoning appears to be wrong choice for a virtual environment model where player
objects behave in a similar way.
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AntReckoning

Obviously, prediction of avatar’s actions based on last known state only can be rather
ineffective, especially if there is little or no influence of physics on the motion. Predic-
tion, if used, should therefore take other factors into account. Generally, the behavior
of players in a game is influenced by their goals and interests. Considering player’s
goals and interests is a key aspect in AntReckoning - an interest-based approach to
dead reckoning introduced by Yahyavi et al. (2011). AntReckoning is a dead reckoning
algorithm inspired by the behavior of ant colonies. The algorithm is based on incor-
porating players’ interests and goals into dead reckoning calculations. Pheromones, or
attraction forces, are used to model such interests, considering also temporal and spatial
factors. Each entity in the game is assigned a certain level of attractiveness, which leads
to spreading pheromones in the game world. The game world is in turn divided into
non-overlapping segments called cells. The attractiveness of each particular cell influ-
ences the dead reckoning decision of whether the player will be interested in moving
towards or away from it. For example, a player might want to approach its opponent
when attacking or move away when being attacked. Pheromones are also generated
by other objects that might be of some interest to the player, such as health packages.
The attraction forces are spread in the game world, which means that their concentra-
tions in neighboring cells are mutually dependent. Pheromones fade over time, which
avoids infinite accumulation of them in the game world.

Yahyavi et al. (2011) evaluated AntReckoning both in comparison to traditional dead
reckoning, to estimate any potential gains, and independently, by performing the sen-
sitivity analysis. Traces collected from Quake III and World of Warcraft were used
for evaluation. The methodology was based on dividing time in frames, setting play-
ers’ positions for every frame as last position updates in the matching time interval,
and then, performing both traditional dead reckoning and AntReckoning to figure out
which algorithm would give better results. Since the actual positions were known, the
performance of each method was evaluated by comparing the calculated distance be-
tween the estimated and the actual positions. The basic version of AntReckoning was
used, where only players generated pheromones, and equal amount of pheromones
was generated by each player, regardless of the state; dissemination of the pheromones
was not considered, meaning that only the cells that players went through contained
pheromones. The following factors were considered in the sensitivity analysis: the
diameter of the region of attraction, the attractiveness of players to each other, the
evaporation factor, and the duration of the prediction step.

The results of the experiments formed a rather interesting outcome. In general, AntReck-
oning introduced an up to 30% improvement in prediction accuracy over traditional
dead reckoning, according to the results on Quake III and World of Warcraft. Nev-
ertheless, the sensitivity evaluation showed that the outcome was dependent on the
suitability of values chosen for certain parameters. Increasing the size of the attraction
region and taking larger number of attraction forces into account improved the qual-
ity of predictions only within certain size limit. Increasing the size beyond that limit
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appeared to be counterproductive and affected the performance negatively. Similarly,
considering attraction forces to certain extent improved the accuracy of prediction,
while overestimating those resulted in decreased efficiency. Evaporation appeared to
have insignificant effect in Quake III, which seemed to be caused by the fast pace of the
game, while in slower-pacedWorld ofWarcraft where players were motivated by long-
term goals, the evaporation factor had a higher impact: slower evaporation improved
the performance.

It was stated that AntReckoning had no effect on predicting human interactions, since
they were an order of magnitude slower than game events. For this reason, it was pro-
posed to only use inertia for predicting avatars’ movements in short periods of time
(such as 50 ms). AntReckoning performed better in long-term prediction, where play-
ers’ goals further in the future (up to seconds) were considered. All in all, AntReck-
oning appeared to be an effective prediction algorithm only if it was fine tuned to a
particular game model and if players’ long-term objectives could be considered, while
failures in tuning could even lead to negative influence on the game outcome. (Yahyavi
et al., 2011)

Local-Lag

Local-lag is a method based on voluntarily decreasing the application’s responsiveness
to eliminate short-term inconsistencies. The method delays an operation by certain
amount of time instead of executing it immediately. Consider an example where a
user U1 performs an operation that is replicated by a user U2. The current time is t0,
and the operation is due for execution at t∗, provided that t∗ > t0. If the difference
between t∗ and t0 is large enough for U2 to be able to receive the operation before t∗,
bothU1 andU2 would execute the operation at the right moment in time and eliminate
short-term inconsistencies. On the other hand, even though inconsistency is prevented,
the operation is not executed immediately at U2, which may be noticeable or even
distracting for the user. Therefore, local lag is only effective if the sufficient value
is assigned to time interval by which all operations are delayed. It should be large
enough for an operation to be delivered on time, but also, short enough to prevent
user dissatisfaction. (Mauve et al., 2004)

Local lag is used in many networked computer games. However, the tradeoff between
responsiveness and eliminating inconsistencies is not always successfully achieved. It
is often hard to estimate correct operation delay time to be used by local lag, since net-
work delays can vary, depending, for example, on the player location. For the purpose
of keeping the local lag delay as low as possible but still sufficient, generally, no con-
stant delay interval is used. Instead, it is defined dynamically by the operation delivery
acknowledgement, meaning that user operation is executed only after it has been ap-
proved, which, in some cases, decreases the playability of the game significantly.
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Timewarp

While client-side prediction methods and local-lag are used to prevent possible incon-
sistencies, they still do not guarantee error-free states of replicated objects. Timewarp
is a method of repairing the states after an inconsistency has occurred. It requires that
an application instance i maintains a list of performed operations Loi and a list of states

Lsi . Each application instance is initialized at a certain point in time tIi with the correct
state si,ti I = sP,tIi

. It is assumed that the lists are sorted by t∗ and t. At initialization, Loi
is set to be empty and Lsi is set to only contain si,ti I . With these preconditions, Mauve
et al. (2004) describe the timewarp algorithm as follows:

• Step 1. Define T as constant frequency of calculating and presenting new state to
the user. Wait for T, receiving local and remote operations and storing them in
Loi . Mark tw

o as the smallest t∗ of any operation that was performed during T.

• Step 2. Find the state that directly precedes the earliest operation received in step
1, denote the time when this state was valid as tsw.

• Step 3. Apply all the operations to the state determined in step 2 that happened
after the time that state was valid (tw

s) in a fast-forward mode. To do that, de-
termine the state before each operation should have been performed and then,
execute it; replace the states in the list by updated versions that consider the
events arrived during step 1.

• Step 4. Provided that tc is the current time, use the state obtained at step 3 to
calculate the state at tc, save it to the list of states Lsi , and display to the user.

Discussion

The client-side prediction, latency compensation, and state correction methods aim
for the same target - eliminating or reducing the effect of network transmission delay
that usually leads to inconsistencies. The choice of the right technique to solve the
problem depends on the characteristics of the virtual environment model. In our test
game model, we do not implement any of the techniques discussed above. We can-
not use dead reckoning effectively, because the physical model of the game has too
little influence on avatar’s motion. AntReckoning requires rather clear definition of
the attraction forces, which cannot be applied to our game model. Local lag could be
used in cases when latency is relatively small, but it would unacceptably decrease the
game’s responsiveness at higher latencies. Therefore, we only use entity interpolation
on the client side. Nevertheless, since the players’ positions are key determinants in
deciding whether an interaction is possible, we use players’ last known (instead of in-
terpolated) positions in calculating the distance between them when an interaction is
requested. Still, it does not prevent the client from making wrong decisions, because
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the last known position can be outdated due to the delay in updates delivery.

In our test implementation, we only have two factors that reflect the simulation status
of a player entity (in this context, we do not refer to player’s kinematic state, but rather
to the characteristics that determine player’s progress in the game):

• objective status that is represented by the player’s score only

• user’s subjective perception of the player’s status, according to the operations
that were seen to be executed

To repair the simulation state in case of an error on the client side, we use a simple
correction method that can be described as follows:

• Step 1. Process user input at current time tc and determine whether the currently
requested operation oc is legal, according to the current client state. If the opera-
tion is legal, save the current state of the local player in sc. Execute the operation,
making necessary changes to the states of involved players.

• Step 2. Send a state update sc immediately and let the server make the final deci-
sion on whether the operation oc was legal tc.

• Step 3. If a score correction request is received from the server, it means the op-
eration was illegal. To correct the state, replace player’s score with the value
received from the server.

Ideally, on the server side, we need to use a mechanism that keeps a list of operations
performed during a certain period of time in the past, starting from current time (sim-
ilar to timewarp). Assuming that any client’s operation request arrives to the server
with some delay, we denote the time of delivery as td and the corresponding state of
simulation as sd. To decide whether an operation oc was legal at the time tc, the server
would need to revert the state of the whole simulation to the state sc that corresponds
tc, and make a decision afterwards. In our client-server prototype, the network latency
is only simulated on the client side upon message reception, but never when a client
sends a message to the server. Since we perform experiments in a LAN where the net-
work delay is smaller than 1 ms, we assume that the difference between tc and td is
insignificant. Therefore, we expect that the difference between sd and sc is neither con-
siderable and suppose that sd ∼ sc. Thus, the server can use sd to verify the operation
oc.

The method described above corrects inconsistencies in the player’s score, but it does
not influence player’s nonobjective observations. Once an operation is executed and
seen by the user, there is obviously no way to correct the user’s subjective perception
of the player’s status.
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3.4 Summary

In this chapter, we went through the details of game model design and implementa-
tion. We argumented for the choice of human avatar design and animation tools, game
development tools, physics simulation method, and explained the process of integrat-
ing each separate component into the prototype that we use for experiments. Also, we
described the categories of player interactions and client-server architecture, as well
as alternatives for client-side prediction and latency compensation techniques. In the
next chapter, we discuss our experiments and evaluate the results.



Chapter 4

Evaluation and Discussion

In this chapter, we present our hypothesis, describe the experiments constructed to
verify it, and analyze the results. The chapter is organized as follows. In the first
section, we state our expectations to the outcome of the experiments; in the second
section, we describe the details of the experiments; in the third section, we analyze the
results; finally, we describe observed user behavior and feedback.

4.1 Hypothesis

Related work that focused on the latency sensitivity of different player interaction
types suggests that fast-paced interactions, such as, for example, precision shooting,
are more sensitive to network delay than events that do not require immediate re-
sponse, such as building or exploration. To the best of our knowledge, and as already
mentioned in previous chapters, no research has been done to establish whether the
distance range is a determinant factor in estimating latency sensitivity of a particular
interaction category.

We hypothesize that distance range plays an important role in determining latency
sensitivity of a player interaction. The latency sensitivity is defined by the influence of
delay on player’s performance, namely, player’s ability to fulfill corresponding interac-
tion. Latency-sensitive actions are expected to be much harder to perform at increased
levels of latency, meaning that if player performance depends on such interactions, it
degrades when the network delay increases. In contrast, we expect that the possibility
of performing latency-insensitive interactions is not significantly affected by increased
levels of latency, provided that the increase is within reasonable limits.

Both short- and long-range interactions are implemented in our prototype, each cate-
gory being represented by two different actions. Since the distance range varies even
for actions within same category, each of them is assigned a range index for the conve-
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nience of evaluation. The indices are listed in Table 4.1

Table 4.1: Distance range indices

Category Action Range index

Short-range
Punch 1.5

Handshake 2.5

Long-range
Rock-paper-scissors 10

Wave inf

Each range index is derived from the distance range constraint applied to the corre-
sponding action. Short-range interactions have indices below 2.5, while long-range
interactions have indices over 10. We set a range distance of the wave action to infi-
nite, since there is no distance constraint assigned to it.

We expect the latency sensitivity of each action to be inversely proportional to its range
index (the higher the index, the lower the latency sensitivity). Therefore, we believe
that short-range interactions will not be able to tolerate a significant increase in la-
tency, in contrast to long-range interactions, which are expected to tolerate large delays
(within reasonable limit). Inspired by latency sensitivity findings in literature (dis-
cussed in Chapter 2), we establish expected tolerable latency threshold values (listed
in Table 4.2).

Table 4.2: Expected tolerable latency thresholds

Category Action Latency threshold

Short-range
Punch 100-200 ms

Handshake 200-300 ms

Long-range
Rock-paper-scissors 500 ms

Wave 1000 ms

Since scoring each action a certain amount of times is a requirement to win, we be-
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lieve that players’ winning probability will be negatively affected by increased latency.
Therefore, we expect that the total number of winners among all participants will be-
come smaller at higher delays.

Our hypothesis can be summed up by the following expectations:

• short-range player interactions are more latency sensitive than long-range inter-
actions

• winning a game becomes harder as the latency increases

• completing a game round takes longer as the latency increases

4.2 Experiments

To verify our hypothesis, we performed a series of experiments with 22 participants.
We did not take participants’ age, gender, skills, or gaming experience into account.
Nevertheless, all the participants were unfamiliar with our game model, therefore,
we assume that users’ skills, gaming experience or similar factors could generally not
influence the outcome of the tests.

We used 7 Ubuntu machines, each of them had at least 2 GB of RAM; 6 machines were
running client applications, and 1 machine was running the server on three different
ports (in case we needed to use all the client machines at the same time). All the tests
were performed on a LAN with latency less than 1 ms. Each experiment involved two
participants playing against each other and consisted of 6 rounds. During each round,
we simulated various network delays, as listed in Table 4.3.

Table 4.3: Test rounds sequence

Round number Simulated latency (ms)

1 0
2 100
3 200
4 300
5 500
6 1000

Generally, the simulated values of latency would need to be shuffled throughout the
rounds sequence. That is usually done to prevent the users from guessing what and
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how is being simulated, and also, to avoid giving them an impression that the situation
is getting worse. However, our case is somewhat different from a typical case. We
do not use a game that the participants have played before. Therefore, we want the
testers to become familiar with the game model in the beginning. To let them get an
appropriate impression of the game, we do not want to simulate any delay during
the first round. If we simulate large delay already in the second round, for example,
the testers may get unmotivated too early. Therefore, we believe that increasing the
delay value gradually is a suitable solution for our experiments. Like that, the users
will most likely feel some difference during last rounds, and that is something that we
want to investigate. If we shuffle the simulated delay values, we risk to prevent the
players from getting any subjective impression, except confusion.

Before we started the experiments, all the participants were informed about the rules of
the game and encouraged to win. Winning requirements were presented to the players
as follows:

• score 10 punches, 10 handshakes, 10 rock-paper-scissors, and 10 waves

• fulfill the score requirements within the time limit of 350 seconds

The players were not informed of the delay simulation and were only asked to play
6 separate rounds, trying to fulfill the requirements. During every round, we logged
the number of player’s attempts to perform each type of action and the number of
times the corresponding action type was acknowledged by the server. For example, if
a player attempted to perform 10 punches, but 4 of them were discarded by the server,
the number of punches in the final score statistics was logged as 10:4.

Initially, we intended to use both objective and subjective measurements for player
performance evaluation, namely, objective score statistics and subjective MOS ratings
(discussed in Chapter 2). To obtain MOS, we planned to ask each player to rate their
perception of the gameplay quality during each round by giving the corresponding
score value. Nevertheless, it turned out that many players considered it difficult to
provide such subjective ratings. We believe that possible reasons for that included
players being unfamiliar with the game and uncertain regarding which factors should
be considered while giving the evaluation. Therefore, we decided to omit asking play-
ers to provide subjective ratings and observed their behavior during each round in-
stead.

Though all players were encouraged to win, we expected that only some percentage
of the participants would be able to achieve that. Therefore, we logged every player’s
success or failure to win and total duration of the round in seconds.
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4.3 Results

The results of the experiments supported most of our expectations. Figure 4.3 shows a
median score statistics per player for every round. The short-range player interactions
are represented by the shades of red, while the long-range interactions are expressed
by the shades of blue. Generally, we noticed that the score earned for performing short-
range interactions (punch and handshake) had a tendency to decrease as the latency
increased. It means that most players managed to score more punches and handshakes
while the network delay was low or zero, but when we introduced more latency, scor-
ing a punch or a handshake appeared to be much harder. In contrast, the long-range
interactions score remained relatively stable, regardless of increase in latency. The rea-
son is that scoring a long-range action at higher network delay was still feasible.

Delayed delivery of updates enabled a client application to use outdated positions in
making decisions. The higher the delay, the greater the possibility of wrong decision
on the client side. All wrong decisions were eventually corrected by the server; as
a result, the players scored less actions than they attempted to perform. Figure 4.2
illustrates the influence of latency on the amount of actions discarded by the server
(the statistics is represented by a median result for all participating players).

According to the outcome of the tests, the percentage of discarded punch attempts
increased proportionally to the increase in delay, starting from latency of 100 ms (as
expected). There was a similar trend with handshakes, but it started at 500 ms, slightly
later than we expected. Long-range interactions appeared to be rather resistant to
latency, though when the delay reached 500 ms, a small percentage of rock-paper-
scissors attempts was also discarded. Since the degradation was insignificant at the
delay of 500 ms, we assume that rock-paper-scissors action would be able to tolerate
latencies of up to ∼400 ms. Waves remained rather tolerable to different levels of la-
tency throughout the entire set of tests, keeping a median result of 100% of all action
attempts approved by the server. We did not use higher delay than 1000 ms in our
experiments, and all the estimations were done in regard to the prototype we have im-
plemented. Since the participants were able to perform any type of action, the latency
ranges had to be adjusted to fit the game model on the whole. Therefore, we consid-
ered that simulating delays above 1000 ms would no longer keep the game playable.
As 1000 is the highest latency we tested, we conclude that the tolerable delay for the
wave action is at least 1000 ms.

As a result of the observed trend in players’ score statistics, the winning probability
appeared to be dependent on the simulated latency. During the entire series of exper-
iments with all participants, there were 66 game rounds in total (11 for each level of
simulated latency). Among those, only 17 were won, meaning that one of the partici-
pating players in those rounds succeeded in fulfilling the requirements. The winning
statistics over all performed experiments is shown on Figure 4.3. The largest amount
of the rounds that were won (5) had zero simulated latency; 4 rounds were won in
each set of experiments with 200, 300, and 500 ms of simulated latency respectively;
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nevertheless, no players managed to fulfill the winning requirements when latency
reached one second. Such outcome has to some extent reflected our hypothesis, since
the overall winning performance was best when zero latency was simulated and worst
at maximum simulated latency. However, the trend was not linear, while the results
seemed to be somewhat undetermined.

The duration of each round was limited to 350 seconds, meaning that even if players
needed more time to fulfill the requirements, they would not be able to get that. At
the same time, according to our expectations, a player would, on average, need at least
200-250 seconds to achieve the required score. Therefore, the duration of every round
was generally between 200 and 350 seconds. The average round duration for each level
of simulated latency is shown on Figure 4.3. There was a slight linear increase in the
round duration, starting from latency of 100 ms. That points out that players needed
more time to score the required amount of actions when the delay was higher, which
we consider to be a degradation in performance.

It is interesting to notice that player performance in general was slightly worse in the
first round, when zero latency was simulated, than in the second round, with addi-
tional 100 ms of latency. We can observe this trend in the median score statistics per
player on Figure 4.3: there were somewhat less punches and handshakes scored in the
first round than in the second. Also, on Figure 4.3, we see that the average duration
of first round was to some degree longer than that of the second round. We suppose
that such phenomenon can be explained by the fact that players were getting used to
the game controls and rules in the first round, as well as learning how to play, which
in turn had to some degree negative influence on their performance.

4.4 User Feedback

Since we decided to omit asking participants to provide subjective ratings of their user
experiences, we observed their behavior and considered any feedback or comments
they provided. Most of the players admitted that scoring a short-range interaction
was considerably harder than performing a long-range one. In fact, most players con-
sidered that doing a punch was hardest due to the requirement of short distance be-
tween the interacting players. As we noticed, the players tended to perform rock-
paper-scissors and waves first, because it was easier, and only then proceed with the
short-range actions.

The majority of the players (∼ 80%) noticed a strange correlation between the amount
of actions they tried to perform and the resulting score. Most of them also attempted
to inform us about possible bug in the implementation of the game model, since, as
they claimed, they did not get the score for all the actions performed. The participants
also mentioned that it was mostly happening when they tried to score a punch or,
sometimes, a handshake. At the same time, we observed that while some players tried
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hard to get the required score, even though they noticed that not all of their action
attempts were acknowledged, others were simply discouraged from performing short-
range actions during the last rounds, getting an impression that they would not be able
to fulfill that by any means.

Player behavior observations led us to the conclusion that increased latency had a neg-
ative influence not only on the objective score results, but also, on the players’ subjec-
tive perception of the gameplay quality. Hereby, the players seemed to be somewhat
frustrated while playing the last 2-3 rounds, since the application’s response to their
actions did not seem to meet their expectations anymore.

4.5 Summary

In this chapter, we presented our hypothesis and described the experiments that were
performed to verify it. We hypothesized that short range-range player interactions
were more latency sensitive than long-term interactions. In cases when player success
was dependent on short-range interactions (like in the prototype we implemented),
we expected that increased latency would cause player performance degradation and
negatively influence the gameplay experience. Generally, results we derived from the
experiments’ outcome confirmed our hypothesis. We observed that the players’ score,
game duration, and winning probability were negatively affected by increased latency.
The maximum tolerated latency (the highest delay at which the performance was gen-
erally not affected) for each action that we implemented in our test game model is
listed in Table 4.4.

Table 4.4: Established tolerable latency thresholds

Category Action Latency threshold

Short-range
Punch 100 ms

Handshake 300 ms

Long-range
Rock-paper-scissors ∼400 ms

Wave (at least) 1000 ms
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Chapter 5

Conclusion

5.1 Summary

In this work, we have investigated the effect of latency on short- and long-range player
interactions. To address the problem, we have first studied the related work that fo-
cused on similar issues and derived some elements of the desired interaction model
from the relevant literature. We figured out that in the related work, the principle of
interaction ranges was not considered; at the same time, none of the works focused
on determining the influence of latency on games that used human characters and
human interactions characterized by various distance ranges. Therefore, we have im-
plemented a prototype that included the missing parts. We have described the process
of developing our test game model stepwise. While we proceeded with the implemen-
tation, different options for various parts of it were considered.

We described our solution for the 3D model of a human character, discussing different
solution variants we considered, and evaluated two frameworks against their suitabil-
ity for being used in our prototype - BGE and OGRE. Though BGE featured several
useful components, it had somewhat inconvenient development interface, where there
was no possibility to have full access to the source code; besides, the threading module
could not be used efficiently, which was a known problem in BGE. OGRE appeared
to be rather flexible and well documented, and was thereby chosen as the final solu-
tion.

While attempting to achieve the desired functionality in our implementation, we con-
sidered integrating a physics simulation library in our project. Bullet was one of the
options that we evaluated, but for combining it with OGRE, we needed a wrapper.
While we considered Bullet itself to be a rather useful and well documented frame-
work, most of the wrappers did not provide clear documentation, which introduced
a number of complications. A simple broad phase collision detection with the use of
Bullet and OgreBullet was still a solution we looked into, but since it created much un-
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necessary overhead, we implemented a simple collision detection algorithm that only
used OGRE instead.

We defined short- and long-range interactions in regard to their representation in our
test model. To implement player interactions and the functionality they required, we
considered different solutions for client side prediction and figured out that interpo-
lation only was a better choice for our game model. We tried both spline and linear
interpolation, while linear interpolation appeared to be more effective, in regard to our
prototype. In addition, we implemented a simple method to correct score inconsisten-
cies caused by latency.

Finally, we performed a series of experiments to establish the effect of network delay
on each interaction we have implemented, as well as player performance and game-
play in general. We concluded that short-range interactions were considerably more
latency sensitive than long-range interactions. Since short-range interactions were one
of the factors that influenced player success, we noticed that player performance, win-
ning probability, and subjective perception of the gameplay quality were negatively
influenced by increased network delay.

5.2 Main Contributions

In this work, we have considered the literature that addressed relevant problems and
implemented a prototype that included the issues that were not considered in the re-
lated work. Finally, we conducted user studies and figured out that distance range
was an important factor in determining latency sensitivity of a particular player inter-
action. We established latency thresholds for each interaction that we implemented,
based on obtained results. Generally, we concluded that short-range interactions can
tolerate significantly lower latencies than long-range interactions.

5.3 Future work

This work requires further analysis in certain areas. Firstly, since we originally had an
idea of creating custom animations for human characters during runtime, this issue
may require some additional research. The functionality of steering different parts of
the character’s body can be easily implemented in our prototype, but an appropriate
solution for the input system should be considered.

Secondly, there are certain optimizations that can be done to the existing interactions
in our prototype. We have received some feedback from the participants regarding the
speed of avatars’ movements and rotations. Some users considered that the avatars
could move and rotate a little bit faster. Therefore, further research can be done on
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whether the speed of movements and rotations would have an influence on the overall
results.

Thirdly, we believe that performing experiments with a game model that the partici-
pants are well familiar with might influence the outcome. Thus, further investigation
in this area is needed.
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Appendix A

CD-ROM

The attached CD-ROM contains:

• source code for the final version of the test game model implementation (client
and server)

• source code for the implementation of alternative solutions discussed in this
work

• Blender files, containing the 3D-model and animations used in our project

• log files generated during experiments and used to derive the results

• installation instructions

A README.txt file in each folder (if applicable) provides the description of the con-
tents.

Alternatively, the contents of the CD-ROM can be obtained from the following Git
repository: git://git.uio.no/private-olgabo.git (Available until January 2013)
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