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“Human consciousness arose but a minute before midnight on the geological 

clock. Yet we mayflies try to bend an ancient world to our purposes, ignorant 

perhaps of the messages buried in its long history. Let us hope that we are 

still in the early morning of our April day.” 

        - Stephen J. Gould (1941-2002) 
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In alphabetical order 
 
Akt   - Serine/threonine kinase (also known as protein kinase B) 
ALS   - Amyotrophic lateral sclerosis 
AP complexes  - Adaptor protein complexes 
Atg   - Autophagy related genes 
CCV   - Clathrin coated vesicle 
CHMP   - Charged multivesicular body protein / Chromotin modifying  
    protein 
CI-M6PR  - Cation-independent mannose-6-phosphate receptor 
CME   - Clathrin mediated endocytosis 
ECV   - Endosomal carrier vesicle 
EE   - Early endosome 
EEA1   - Early endosomal antigen 1 
EGF   - Epidermal growth factor 
EGFR   - Epidermal growth factor receptor 
EM   - Electron microscopy 
ER   - Endoplasmic reticulum 
ERK   - Extracellular-signal-regulated kinase 
ESCRT  - Endosomal sorting complex required for transport 
FTD   - Frontolobular dementia 
FTLD-U  - Frontotemporal lobar degeneration with ubiquitin deposits 
FYVE   - Conserved in Fab1, YOTB, Vac1, EEA1 
GFP   - Green fluorescent protein 
GLUE   - GRAM-like ubiquitin-binding in Eap45 
HCRP1  - Hepatocellular carcinoma related protein 1 
HD   - Huntington’s disease 
HIV   - Human immunodeficiency virus 
HOPS   - Homotypic fusion and vacuole protein sorting 
Hrs   - Hepatocyte growth factor regulated tyrosine kinase substrate 
IF   - Immunofluorescence 
ILV   - Intraluminal vesicle 
Lamp1/2  - Lysosomal associated protein 1 and 2 
LBPA   - Lyso-bisphosphatidic acid 
LC3   - Microtubule-associated protein 1 light chain 3 
LE   - Late endosome 
MAPK   - Mitogen-activated-protein kinase 
MEK   - Map-Erk Kinase 
MHC   - Major histocompatibility complex 
MIM   - MIT interacting motif 
MIT   - Microtubule interacting and transport 
MTMR  - Myotubularin-related proteins 
MVE   - Multivesicular endosome 
NCE   - Non-clathrin endocytosis 
PI3K   - Phosphatidylinositol 3-kinase 
PKB   - Protein kinase B 
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PLC-PKC  - Phospholipase C- protein kinase C 
PX   - Phox homology 
PtdIns(3)P  - Phosphatidylinositol 3-phosphate 
PtdIns(3,5)P2  - Phosphatidylinositol (3,5)-bisphosphate 
PtdIns(4,5)P2  - Phosphatidylinositol (4,5)-bisphosphate 
RILP   - Rab7-interacting lysosomal protein 
RTK   - Receptor tyrosine kinase 
siRNA   - small interfering RNA 
SNARE  - Soluble N-ethylmaleimide-sensitive factor attachment protein  
    receptor 
SNX3   -  Sorting nexin 3 
STAM   - Signal-transducing adaptor molecule 
TDP-43  - TAR-DNA-binding protein 43 
TEM   - Transmission electron microscope 
TGN   - Trans Golgi network 
Tsg101  - Tumor susceptibility gene 101 
Tnf   - Transferrin 
UBD   - Ubiquitin binding domain 
UEV   - Ubiquitin E2 variant 
UIM   - Ubiquitin interacting motif 
Vps   - Vacuolar protein sorting 
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Introduction 
 

In order to survive, eukaryotic cells must be in constant communication with the exterior 

environment. Not only is the cell dependent on the uptake of nutrients and the transmission 

of metabolic, neuronal and proliferative signals, it also has to protect itself and the organism 

from microbial invasion. As the vital barrier and the primary interface of the cell with its 

exterior environment, the limiting membrane is important for the detection of and accurate 

response to extracellular signals (e.g. from receptors, ions, nutrients and pathogens) and the 

entry of molecules into the cell, thereby contributing to long-term cell survival. 

 

Endocytosis 
 
Mammalian cells have developed a number of mechanisms to internalize small molecules, 

macromolecules and particles from the cell surface and target them to specific organelles 

within the cytoplasm. Collectively, these processes are referred to as “endocytosis”, which 

comprises phagocytosis (“cell eating”), pinocytosis (“cell drinking”), clathrin-dependent 

receptor-mediated endocytosis and clathrin-independent endocytosis. Endocytosis is an 

important mechanism of the cell to control uptake of nutrients, regulation of cell-surface 

receptors, cholesterol homeostasis, antigen presentation, neurotransmission and the 

maintenance of cell polarity and migration, to name a few. Aberrations in endocytic 

processes have been associated with a large number of disease processes (Mukherjee et al., 

1997). The specific and efficient sorting of membrane proteins and receptors is of great 

importance for proper performance and hence the long-term survival of the individual cell 

and the organism as a whole. For instance, nutrient receptors (e.g. transferrin (Tnf) receptor, 

certain vitamins) are generally recycled, which enables them to undergo several rounds of 

internalization thereby guaranteeing the cell nourishment. Growth factor receptors (e.g. 

epidermal growth factor receptors), on the other hand, are sorted in a well-controlled 

manner in order to regulate their signaling and are preferably degraded at a certain stage. 

Uncontrolled, extensive signaling from these receptors can lead to overgrowth and cell 

proliferation, which are hallmarks of cancer. Additionally, pathogens (e.g. viruses and 

symbiotic microorganisms) and toxins have the ability to exploit endocytic pathways to gain 

entry into the cell, reach their target and perform their virulent or toxin action.  
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The detailed understanding of the endocytic machinery and the sorting and trafficking of 

molecules and pathogens by, and their interaction with this pathway will be important for us 

to gain insight in the pathogenesis of diseases in which endocytosis is involved. Hopefully 

our insight will ultimately lead to more specific drug-targeting and treatment as well as 

improved and cost-efficient disease management.  

 

Clathrin-dependent receptor-mediated endocytosis  
Clathrin-dependent receptor-mediated endocytosis is the fastest, highest regulated and most 

well-characterized of all endocytic pathways. Facilitated by cargo-specific adaptor 

molecules (e.g. adaptor protein (AP) complexes) (Motley et al., 2003), a clathrin lattice 

assembles at the plasma membrane (Ahle and Ungewickell, 1989). Integral membrane 

proteins are concentrated into these specialized clathrin-coated regions, and ligand binding 

accelerates receptor internalization and triggers the membrane to bud inward and pinch off 

by the constricting action of dynamin forming clathrin-coated vesicles (CCVs) (Heuser and 

Kirschner, 1980). CCVs transport their cargo through the cytosol and, after removal of their 

clathrin-coats, fuse with each other and/or with early endosomes. The early endosome (EE) 

serves as the first sorting station in the endocytic pathway, segregates cargo destined for 

recycling to the cell surface and cargo designated for degradation via multivesicular 

endosomes (MVEs) and late endosomes (LE) to lysosomes. Endosomes are closely 

interrelated and highly dynamic structures. By recruiting distinctive sets of endocytic 

proteins to their membranes, endosomes ‘mature’ and acquire their characteristics of 

discrete compartments (Rink et al., 2005). They ultimately fuse with lysosomes thereby 

delivering their contents to the hydrolytic environment of these organelles for degradation 

(Futter et al., 1996). Even though boundaries between two distinguishable compartments in 

the endocytic pathway are generally blurred, both at the molecular and at the ultrastructural 

level, compartments are most commonly divided into early endosomes (EEs), multivesicular 

endosomes or endosomal carrier vesicles (MVEs/ECVs), late endosomes (LEs) and 

lysosomes, successively (Box1: Endocytic compartments in mammalian cells). 

Communication between endocytic organelles requires actin- and microtubule-based 

motility and it has long been proposed that endosomes influence their own motility via 

direct interaction with motor-proteins (Matteoni and Kreis, 1987; Nielsen et al., 1999). 
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BOX 1 Endocytic compartments in mammalian cells 
 

 
EE,  J. Heuser, Nat. Cell Biol. 2001 

 
Enlarged, but typical EE (cryo-immuno-EM)  

 
 

 
J.L. Murk et al.,PNAS 2003, EM tomography 

 
MVEs in different stages of maturation (EM) 

Early endosomes (EEs) 

Morphology 
Compartment of highly complex and pleiomorphic organisation; 
cisternal, tubulo-vesicular; diameter of the irregular shaped 
vacuole lies between 200-500 nm; vacuole is electron lucent with 
only a few ILVs; electron-dense coats sometimes visible. 
 
Functional description 
Highly dynamic structures with high homotypic fusion capability; 
first sorting station to which endocytosed molecules are delivered; 
rapid sorting of cargo for recycling or degradation. 
 
Position in the cell 
Mostly in the cell periphery 
 
Abundant proteins and lipids 
High:  Rab5, PtdIns(3)P, EEA1, Rab4 
Low:  ESCRT-0, Clathrin 
Other: ARF6, cellubrevin, Rab4, COP-I, recycling receptors 
 
Entry of EGF-receptor / cargo 
2-5 minutes (uptake at 37°C, depending on cargo and cell type) 
 
pH 6.0-6.8 

Multivesicular endosomes (MVEs) / 
Endosomal carrier vesicles (ECVs) 
 
 
Morphology 
Regularly shaped and spherical; containing large amounts of 
densely packed ILVs; MVE diameter 300-400 nm, diameter of ILVs 
50-80 nm 
 
Functional description 
Intermediate sorting station for cargo on the way to degradation; in 
certain cell types, cell specific functions, e.g. antigen presentation 
 
Position in the cell 
More towards lysosomes (perinuclear), throughout the cytoplasm 
 
Abundant proteins and lipids 
High:  ESCRT-0, clathrin, PtdIns(3)P (on ILVs), CD63, cholesterol 
Low:  Rab5, Rab7, ESCRT-I, LBPA (on ILVs) 
 
Entry of EGF-receptor / cargo 
10-12 minutes (uptake at 37°C depending on cargo and cell type) 
 
pH < 6.0 
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Late endosomes by conventional EM; LEs can 
contain both ILVs and onion-shaped membranes. 
(By conventional EM) 

 
 

Lysosome, containing onion-shaped internal 
membranes; in this image fusing with another 

compartment .(By conventional EM) 

 
 
 
 
 
NOTE The endocytic pathway is a system of great plasticity and dynamics. It is impossible to recognize the structures 
solely on the basis of morphology or position in the cytoplasm. Endosomes are closely interrelated, so even when 
specific markers are used it can be difficult to distinguish between compartments. It is worth noting that MVEs and LEs 
are sometimes referred to as the same structures in scientific publications. Not mentioned here are the recycling 
endosomes (positive for Rab 11 and Rab8, Tnf receptor containing) which provide an indirect and slower recycling 
route from the EE to the plasma membrane. These data were collected from a number of leading articles in the field. 
(References: (Futter et al., 1996; Griffiths et al., 1989; Gruenberg and Maxfield, 1995; Gruenberg, 2001; Gruenberg and 
Stenmark, 2004; Kornfeld and Mellman, 1989; Mellman, 1996; Sachse et al., 2002a; Tjelle et al., 1996) 

Late endosomes (LEs) 

Morphology 
Pre-lysosomal compartments; more pleiomorphic in shape than 
MVEs, average size 200-500 nm; can contain both multivesicular 
regions and onion-like internal membranes 
 
Functional description 
Sorting stations,e.g. for mannose-6-phosphate receptor to cycle 
back to TGN after delivering lysosomal enzymes, and for MHC-II 
molecules 
 
Position in the cell 
Perinuclear, concentrated near the microtubule organizing center 
 
Abundant proteins and lipids 
High: Rab7, ESCRTs, CD63, LBPA, LAMP1, LAMP2, Rab9 
Low: PtdIns(3)P, cholesterol 
Other: CI-MPR (NB: is also found in TGN) 
 
Entry of EGF-receptor / cargo  
15-30 minutes (uptake at 37°C, depending on cargo and cell type) 
 
pH: around 5.5 

Lysosomes 

Morphology 
Globular shape; lumen is electron-dense, onion-like internal 
membranes; can contain amorphous material and to some extent 
ILVs in different stages of degradation 
 
Functional description 
Lysosomes carry hydrolases that degade nucleotides, proteins, 
lipids, phospholipids, and remove carbohydrate, sulfate, or 
phosphate groups from molecules; can undergo homotypic fusion 
and heterotypic fusion with LEs; functional overlap with LEs 
 
Position in the cell 
Mostly perinuclear 
 
Abundant proteins and lipids 
High: CD63, LBPA, LAMP1, LAMP2 
Other: Hydrolytic enzymes 
 
Entry of EGF-receptor / cargo 
30 minutes and longer (uptake at 37°C) 
pH: 4.5-5 
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As they mature, endosomal compartments become more acidic, with EEs having a pH of 6-

6.8, late endosomes 5-6, and lysosomes 4.5-5 (Mellman, 1996). This pH-dependent gradient 

enables the cellular machinery to manage cargo-specificity, as it allows receptor-ligand 

complexes, with their individual molecular profiles, to dissociate at different stages of the 

endocytic pathway (Skarpen et al., 1998).  

 

Receptor signaling and sorting 
Receptor tyrosine kinases (RTKs) and their ligands (e.g. growth factors) play essential roles 

in a wide variety of cellular processes. Ligand-binding to RTKs initiates conformational 

alterations that trigger the dimerization of receptors and sequentially enables transmission of 

signals across the plasma membrane in order to activate the receptors’ intrinsic tyrosine 

kinase activity. Several tyrosine residues in the cytoplasmic tail of the receptor are 

phosphorylated, thereby creating binding sites for adaptor protein (AP) complexes and 

additional regulatory proteins. Furthermore, alterations at the receptor-site initiate a large 

number of concurrent biochemical cascades that transmit extracellular signals through the 

cytosol to target organelles. The three best characterized signaling pathways that are 

induced by activation of RTKs are i) the Ras-mitogen-activated-protein kinase (Ras-MAPK) 

pathway, which translocates signals to the nucleus for the phosphorylation of specific 

transcription factors leading to changes in gene expression and protein activity, ii) the 

phosphatidylinositol 3’ kinase-protein kinase B (PI3K-PKB/Akt) pathway, which mediates 

proliferation and cell survival, and iii) the phospholipase C-protein kinase C (PLC-PKC) 

pathway, which regulates the release of intracellular Ca2+ from the endoplasmic reticulum 

(ER) and the activation of protein kinase C (PKC) . Additionally, signaling cascades can be 

activated after the internalization of receptor-ligand complexes into endosomal 

compartments (Vieira et al., 1996), which allows more precise temporal and spatial signal 

regulation and the specific targeting of signaling complexes to their site of action 

(Miaczynska et al., 2004b).  

 

Ligand-induced receptor endocytosis and subsequent down-regulation is an important 

mechanism for preserving the fragile balance between the ‘positive’ signals that the cell 

benefits from and the ‘excessive’ or ‘negative’ signals that can potentially harm the cell and 

result in disease. Concomitant with receptor activation, ligand binding initiates a multi-step 

process that ultimately leads to receptor degradation and signal attenuation. Numerous 
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features are required for the receptor to be trafficked correctly and mammalian cells have 

developed a vast amount of elaborate mechanisms for this purpose. Molecular tags are 

required for accurate targeting, as well as adaptor proteins that can recognize both the cargo-

tag and the target. Several structurally distinct tags (signals) have been discovered that 

initiate rapid internalization and target cargo for clathrin-dependent endocytosis and 

degradation in lysosomes (Bonifacino and Traub, 2003). An example of an RTK that is 

targeted for lysosomal degradation in order to regulate its signaling processes is the 

epidermal growth factor receptor (EGFR). Endocytosis of the EGFR is the most frequently 

used model for studying mechanisms and kinetics of the endocytic pathway, its morphology 

and its signaling processes (Carpenter and Cohen, 1976). 

  

The precise mechanism that regulates the internalization of EGFR remains to be elucidated, 

but the C-terminus of the EGFR contains a number of motifs that are capable of interaction 

with the clathrin AP-2 complex which provides a link to clathrin coated pits (Sorkin et al., 

1995). In addition, one of the major interacting proteins of the adaptor Grb2, c-Cbl, has been 

associated with the regulation of EGFR internalization and degradation (Levkowitz et al., 

1998). c-Cbl is an E3 ubiquitin ligase and interaction with phosphorylated tyrosine residues 

of the cytoplasmic tail of EGFR leads to its activation and mediates ubiquitination of the 

receptor by recruitment of E2 ubiquitin conjugated enzymes (Levkowitz et al., 1999). Even 

though ubiquitination of EGFR has been shown to be non-essential for its internalization 

into the cell (Huang et al., 2006), the attachment of mono-ubiquitin to one or several lysine 

residues (multi-ubiquitination) in the cytoplasmic tail of the receptor is known to serve as an 

important intracellular sorting signal for the degradative pathway (Barriere et al., 2006; 

Haglund et al., 2003; Huang et al., 2006; Huang et al., 2007; Levkowitz et al., 1999; 

Umebayashi et al., 2008). 

 

CCVs containing EGF-receptor complexes un-coat and rapidly fuse with EEs. Due to the 

mildly acidic pH in EEs, EGF-receptor complexes do not dissociate substantially (Sorkin et 

al., 1988). Whereas a fraction of the complexes recycle from the EE back to the cell surface, 

mono-ubiquitinated EGF-receptor complexes are internalized from the limiting membrane 

of the endosome and accumulate in the intraluminal membranes of MVEs, known as intra-

lumenal vesicles (ILVs). Once incorporated into ILVs the EGF-receptor complexes are most 

likely prohibited from recycling and are destined for rapid proteolysis by way of fusion of 

the MVE with primary lysosomal vesicles (Futter et al., 1996) (Figure 1).  
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Figure 1 EGFR trafficking 
Ligand binding to monomeric EGFR leads to dimerization and autophosphorylation. Subsequently, 
c-Cbl is phosphorylated and recruited to the receptor where it induces monoubiquitination. 
Ubiquitinated EGFRs accumulate in clathrin coated vesicle (CCV) and are internalized. Before 
fusing with the early endosome (EE), the vesicle loses its clathrin coat. In the EE receptors are 
seggregated:  whereas unubiquinated receptors recycle to the plasma membrane, ubiquitinated 
receptors trigger an endosomal sorting cascade consisting of ESCRT-0, -I, -II and –III, which 
ultimately triggers multivesicular endosome (MVE) formation and the sorting of receptor-complexes 
into intraluminal vesicles (ILVs). Before the ILVs form, ESCRT complexes are recycled to the 
cytoplasmic pool. MVEs mature into late endosomes (LEs), fuse with lysosomes and deliver the 
EGFR-containing ILVs to the proteolytic interior of the lysosome where they are degraded. 
(Adapted from PAPER III) 
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More recent studies have shed light on the mechanisms of sorting of ubiquitinated 

membrane proteins for lysosomal degradation. A key role in this process is allocated to a 

multimeric protein complex that contains several ubiquitin-binding domains (UBDs) and 

will be discussed in the following section. 

 

The ESCRT machinery  
 

Lysosomal targeting of ubiquitinated endocytic cargo is partly mediated by the endosomal 

sorting complex required for transport (ESCRT) machinery, which is well-conserved across 

the eukaryotic lineage (Leung et al., 2008). Initially, a subset of at least 13 class E vacuolar 

protein sorting (vps) proteins required for proper endosomal function and MVE biogenesis 

were discovered in yeast (Odorizzi et al., 1998) (Table 1). Depletion of either one of these 

proteins in yeast leads to the formation of class E compartments, multicisternal prevacuolar 

compartments (analogous to LEs in mammalian cells) (Raymond et al., 1992). The class E 

vps proteins were found to assemble and form three protein complexes, named ESCRT-I 

(Katzmann et al., 2001), ESCRT-II (Babst et al., 2002b) and ESCRT-III (Babst et al., 

2002a), which interact with each other and associate transiently with the endosomal 

membrane to carry out their function. Subsequent studies in mammalian cells and yeast 

have led to the identification of a fourth complex that functions upstream of ESCRT-I, and 

is termed ESCRT-0 (Bache et al., 2003b; Bache et al., 2003a; Bilodeau et al., 2003; 

Katzmann et al., 2003; Williams and Urbe, 2007). In addition, a number of ESCRT-

associated proteins were discovered that mostly associate with ESCRT-III and play a role 

late in the machinery (Williams and Urbe, 2007). 

 

The ESCRT machinery is recruited to endosomal membranes in an ordered manner. In the 

presence of mono-ubiquitinated EGFR the activity of the early endosomal protein Rab5 is 

modulated (Barbieri et al., 2004) which leads to the formation of a micro-environment 

enriched in active Rab5 and recruited Rab5 effectors (Zerial and McBride, 2001). One of 

the effectors clustering in these Rab5 domains is the Class III PI(3)K catalytic subunit 

hVps34, which phosphorylates the lipid phosphatidylinositol in the 3’ position and 

synthesizes phosphatidylinositol 3-phosphate [PtdIns(3)P] on the early endosomal 

membrane (Christoforidis et al., 1999). Recruitment of ESCRT-0 to the endosomal 

membrane is initiated by PtdIns(3)P via an interaction with the FYVE-motif of the ESCRT-



 16 

0 subunit Hrs (Raiborg et al., 2001). The current model, also referred to as the ‘conveyer 

belt model’ (Figure 2), proposes ESCRT-0 to recruit ESCRT-I to the membrane through 

interactions between the P(S/T)AP motif of Hrs and the UEV (ubiquitin E2 variant) domain 

of the ESCRT-I subunit Tsg101 (Bache et al., 2003b; Katzmann et al., 2003; Lu et al., 

2003). ESCRT-I, in turn, recruits ESCRT-II to the machinery, presumably via the 

interaction of Vps28/ESCRT-I with Vps36/ESCRT-II. Additionally, the Vps36 subunit of 

ESCRT-II has the intrinsic capacity to bind to PtdIns(3)P through its GLUE domain 

(Slagsvold et al., 2005). Ultimately, the Vps25 subunits of ESCRT-II facilitate recruitment 

of the ESCRT-III components to the membrane via interaction with Vps20/ESCRT-III. The 

ESCRT-III subunits have the ability to cycle on and off membranes forming polymeric 

filaments on the surface of endosomes (Babst et al., 2002a). Dissociation of the ESCRTs 

from the membrane is facilitated by the AAA+ ATPase Vps4 and allows the recycling of 

ESCRT proteins (Scheuring et al., 2001). 

 
Complex Human 

Homologue 
Yeast 

Homologue 
Domain/Motif Function in endocytic traffic 

HRS Vps27 UIM, FYVE, PSAP, VHS PtdIns3P, Tsg101, cargo interaction ESCRT-0 
STAM1, STAM2 Hse1 UIM, VHS, SH3 Interaction with Hua1 and Rsp5 

TSG101 Vps23 UEV, CC, Steady-box Cargo and Hrs interaction 
VPS28 Vps28  Interaction with Vps36 (ESCRT-II) 

VPS37A, B, C, D Vps37 CC  

ESCRT-I 

MVB12A, B Mvb12   
EAP30; SNF8 Vps22 CC, WH 

EAP20 Vps25 PPXY, WH 
ESCRT-II 

EAP45 Vps36 GLUE / NZF, WH 

Interaction with CHMP6 (ESCRT-III) 
Cargo, PtdIns3P and ESCRT-I 
interaction 

CHMP6 Vps20 Charged, CC, MIM 
CHMP4A, B, C Snf7; Vps32 Charged, CC, MIM 

CHMP2A, B Vps2, Did4 Charged, CC, MIM 

ESCRT-III 

CHMP3 Vps24 Charged, CC, MIM 

Interaction with Vps25 (ESCRT-II) 
Membrane deformation, inward 
vesiculation 

Vps4A, B; SKD1 Vps4 AAA ATPase, MIT ESCRT disassembly and recycling  
ALIX/AIP1 Bro1; Vps31 Bro1 UBPY recruitment, ESCRT-III interaction 

CHMP5 Vps60 Charged, CC ESCRT-III like protein  
CHMP1A, B Did2; Vps46 Charged, CC ESCRT-III like protein 

LIP5 Vta1 2xMIT Positive regulator of Vps4 
Nedd4 Rsp5 C2, WW, HECT Cargo ubiquitination (ubiquitin ligase) 
UBPY Doa4 UBP, Rhod Cargo deubiquitination (enzyme) 
AMSH Ubp7 MIT, JAMM Cargo deubiquitination (enzyme) 

? Hua1  Links Rsp5 to Hse1 

Associated 

? Rup1  Complex with Rsp5 and Ubp2 
Table 1    Class E Vps proteins and complexes 

 

Ubiquitinated cargo is initially selected at the endosomal membrane by Hrs and STAM1/2 

of ESCRT-0, which both contain ubiquitin interacting motifs (UIMs) (Raiborg et al., 2002; 

Urbe et al., 2003). A recently discovered splice variant of Eps15, Eps15b, also contains a 

UIM and is associated with Hrs, possibly providing additional binding sites for 

ubiquitinated cargo (Roxrud et al., 2008). In addition, Hrs recruits clathrin which forms  
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Figure 2 A schematic outline of the conveyer belt model  
(Adapted from Williams R.L. and Urbé S., Nat Rev Mol Cell Biol. 2007 May; 8(5):355-68). The 
FYVE domain of Hrs/Vps27 binds PtdIns(3)P on the endosomal membrane and leads to the 
recruitment of the other components of ESCRT-0. The UIM domains of Hrs/Vps27 and STAM/Hse1 
recognize and bind ubiquitinated cargo for sorting into ILVs of MVEs. ESCRT-0 recruits ESCRT-I 
to the membrane by interactions with the UEV domain of Tsg101/Vps23. Membrane-bound 
ESCRT-I recruits ESCRT-II via interactions between Vps28 and Vps36. In mammalian cells the 
GLUE domain of Vps36 binds to endosomal PtdIns(3)P and to ubiquitinated cargo. Membrane-
bound ESCRT-II recruits the downstream ESCRT-III complex via interactions between Vps25 and 
Vps20. Additionally, Vps24 is capable of binding to endosomal PtdIns(3,5)P2.ESCRT-III forms a 
polymeric lattice on the membrane and recruits the de-ubiquitinating protein UBPY/Doa which 
removes ubiquitin-moieties from the cargo. The ESCRT-III lattice is disassembled by the ATPase 
Vps4 in complex with Vta1 before sorting of cargo into the ILV. 
 
 
bilayered coats on endosomes which leads to the formation of Hrs micro-domains (Sachse et 

al., 2002b). These clathrin coats are different to the ones at the plasma membrane and have a 

crucial function in the clustering of Hrs on the endosomal membrane and hence the 

specialized recognition of ubiquitinated membrane proteins and their efficient sorting 

(Raiborg et al., 2006). Also ESCRT-I and -II bind ubiquitinated cargo: through the ubiquitin 

E2 variant (UEV) domain in the Tsg101 subunit of ESCRT-I and the GLUE domain of 

Vps36 in ESCRT-II (Slagsvold et al., 2005). How exactly the ubiquitinated cargo that is 

trapped in Hrs micro-domains ends up in ILVs of MVEs remains unclear. It has been 

proposed that ubiquitinated cargo is “handed off” from ESCRT-0 sequentially to ESCRT-I, 

-II, and –III complexes (Hurley and Emr, 2006). Despite the slight variety of UBDs, all 

motifs recognize the same hydrophobic patch on the ubiquitin surface implying that one 

ubiquitin moiety can interact with only one ESCRT at a time. Consequently, it seems more 

likely that cargoes cluster on the endosomal membrane, recruiting multiple ESCRTs and 

concentrating the machinery in micro-domains (Hurley and Emr, 2006). Whereas ESCRT-0, 

ESCRT-I and ESCRT-II have the capability to interact with ubiquitinated proteins, ESCRT-

III recruits the de-ubiquitinating enzymes UBPY/Doa4 and AMSH that remove ubiquitin 
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moieties from the cargo before sorting into ILVs of MVEs (Agromayor and Martin-Serrano, 

2006; Row et al., 2007; Zamborlini et al., 2006). Besides a role in the sorting of membrane 

proteins, the ESCRT machinery appears to be essential for the inward vesiculation and thus 

the biogenesis of MVEs in yeast. In higher eukaryotes, however, it is not clear whether 

these processes are exclusively dependent on an interaction with the ESCRT machinery and 

how sequential recruitment results in inward vesiculation. 

 

The conveyer belt model gives a coherent summation of the available data (Figure 2). 

However, a number of aspects of the organization of cargo recognition and MVE biogenesis 

cannot yet be explained, and therefore alternative models have recently been proposed 

(Nickerson et al., 2007).  

 

 

Phosphoinositides 

 

The lipid composition of a typical cell membrane is much more complex than originally 

thought. Membranes are composed of a perplexing variety of 500-1000 different lipid 

species which can assemble into dynamic domains of distinctive composition. By recruiting 

and concentrating accurate protein congregations, these dynamic domains enable the lipid 

bilayer to regulate a large number of cellular processes, such as intracellular transport and 

signaling events (Kobayashi et al., 1998a). 

 

Phosphoinositides are derivatives of the lipid phosphatidylinositol that can undergo rapid 

cycles of phosphorylation and dephosphorylation at the 3’, 4’ and 5’ positions of their 

inositol sugar head group. This modification process is dynamically regulated by lipid 

kinases and phosphatases, respectively, and mediates highly localized changes in the levels 

of phosphoinositides. In this way the temporal and spatial regulation of effector proteins is 

carefully controled. Phosphoinositides are present in small quantities but have crucial 

regulatory functions in guiding membrane trafficking and in cell signaling as regulators of 

nuclear functions, cytoskeletal dynamics, and signal transduction (Di Paolo and De Camilli, 

2006; Roth, 2004). The seven different phosphoinositides are located in distinct membrane 

domains, where they associate with specific trafficking and signaling events (LeRoy and 

Wrana, 2005) (Figure 1). The phosphoinositide PtdIns(4,5)P2, for instance, facilitates the 
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recruitment of adaptor proteins that initiate the formation of clathrin-coated pits at the 

plasma membrane, whereas PtdIns(3)P plays an important role in endocytic membrane 

trafficking and autophagy (Rusten and Stenmark, 2006). The different effector proteins of 

phosphoinositides are recruited to phosphoinositides via lipid binding domains that 

specifically recognize the head group of the phosphoinositide and are responsible for a wide 

variety of regulatory functions to be carried out.  

 

PtdIns(3)P is restricted to the endocytic pathway and is most abundant on EEs and on the 

internal membranes of MVEs (Gillooly et al., 2000). Studies in yeast have shown that 

PtdIns(3)P is transported to the vacuole (the yeast equivalent of the lysosome) for turnover 

(Wurmser and Emr, 1998). The effector proteins of PtdIns(3)P contain either a FYVE (for: 

conserved in Fab1, YOTB, Vac1 and EEA1) (Gaullier et al., 1998; Patki et al., 1998) or a 

Phox homology (PX) domain (Cheever et al., 2001; Ellson et al., 2002; Simonsen and 

Stenmark, 2001; Song et al., 2001; Xu et al., 2001). Binding of these domains to PtdIns(3)P 

is very specific and even though the exact function of each of the 38 predicted FYVE-

domain-containing proteins remains to be elucidated, many of these proteins seem to play a 

role in membrane trafficking, regulation of cytoskeletal function and signal transduction 

(Hayakawa et al., 2007). PX domain-containing proteins, of which more than 100 different 

proteins are predicted to exist in the human genome, have a wide variety of functions and 

include t-SNAREs for tethering, mammalian sorting nexins involved in membrane 

trafficking events, kinases implicated in cell survival, and proteins that play a critical role in 

the assembly of the neutrophil oxidase complex.  

 

Regulation of the levels of phosphoinositides by phosphatases and kinases is evidently 

important for endocytic traffic and proper cell functioning. Mutations in myotubularin-

related proteins (MTMRs), a family of proteins recently shown to specifically 

dephosphorylate PtdIns(3)P (Blondeau et al., 2000; Taylor et al., 2000) lead to severe 

disorders such as myotubular myopathy and demyelinating neuropathy. 
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Aims of the study 
 

 

The main objective in this thesis was to gain insight in how ESCRT proteins, both 

individually and in complex, and the phosphoinositide PtdIns(3)P, are involved in MVE 

biogenesis, the endocytic trafficking of cell surface receptors, and in cell processes related 

to pathogenesis. 

 

The more specific aims of the individual papers were as follows: 

 

Paper I:  To elucidate the role of Vps24 (ESCRT-III) in the trafficking and  

  signaling of EGFRs.  

The role of Vps24/ESCRT-III in EGFR trafficking and silencing and MVE 

biogenesis had not yet been investigated in mammalian cells. Therefore we 

were interested to analyze the functions of Vps24/ESCRT-III in endosomal 

sorting and receptor signaling in mammalian cells and to compare these to 

the important role of Tsg101/ESCRT-I in these processes. 

 

Paper II:  To elucidate the role of Vps22/ESCRT-II in the signaling and   

  degradative sorting of ubiquitinated receptors. 

In yeast ESCRT-II mutants, translocation of cargo from the limiting 

membrane into ILVs is found to be inhibited. As mammalian ESCRT-II was 

originally characterized as a complex modifying RNA polymerase-II (a non-

endosomal function), we were interested to study whether the function of 

ESCRT-II in membrane traffic is conserved from yeast to mammalian cells 

and whether it plays a role in receptor signalling and membrane dynamics. 

    

Paper III: To analyze the possible role of ESCRTs in the autophagic clearance of 

  protein aggregates. 

ESCRTs are known to play an important role in the endocytosis of 

ubiquitinated membrane proteins and the proper formation of MVEs. Yet, 

little is known about the correlation of functional MVEs and autophagic 

degradation, and the possible role of ESCRTs therein. With mutations of an 
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ESCRT-III subunit (CHMP2B) recently associated with two 

neurodegenerative phenotypes, and autophagy shown to be an important 

pathogenic mechanism in neurodegenerative diseases, we were interested to 

study the possible link between ESCRTs and autophagy and to relate this to 

neuronal pathogenesis.  

 

Paper IV: To establish whether RILP is required for endocytic trafficking of 

receptors and endosome formation.  

RILP interacts with two ESCRT-II subunits as well as with the dynein-

dynactin motor complex, possibly providing a mechanistic link between 

endosome motility and MVE biogenesis. We were interested to study the 

roles of endogenous RILP in the endocytic sorting of receptors and the 

formation of MVEs.  

 

Paper V: To elucidate the involvement of the ESCRT machinery in MVE 

biogenesis. 

ESCRT proteins appear to be essential for the biogenesis of MVEs in yeast. 

However, it is not clear whether ESCRT-independent pathways of MVE 

biogenesis exist in higher eukaryotes. Therefore we were interested to study 

how multiple depletions of key subunits of all ESCRTs influences MVE 

formation.  

 

Paper VI: To analyze the spatial and temporal localization of PtdIns(3)P in the 

endocytic and autophagic pathway by immunofluorescence and electron 

microscopy. 

PtdIns(3)P plays an important role in the recruitment of various effector 

proteins in the endocytic pathway. We were interested to functionally track 

PtdIns(3)P, in combination with an endocytic cargo and a subset of 

endosomal markers. 
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Summary of the included papers 
 
 

An outline of the included publications is presented in the following sections. The full 

articles are printed at the end of this thesis. 

 

Paper I: The ESCRT-III subunit hVps24 is required for degradation but not silencing 

of the epidermal growth factor receptor 

Since it had previously been demonstrated that the ESCRT machinery is greatly conserved 

from yeast to man (Williams and Urbe, 2007) an important and logical follow-up was to 

elucidate and map the functions of the ESCRTs and their individual components in 

mammalian cells. Expression of an N-terminal fragment of mouse Vps24 (a component of 

ESCRT-III) in human cells was shown to inhibit ligand-induced EGFR degradation (Yan et 

al., 2005), the same effect observed when ESCRT-I subunit Tsg101 (Bache et al., 2003a; 

Bishop et al., 2002) was depleted. However, the effects of Vps24/ESCRT-III depletion on 

EGFR degradation, signaling and the relationship between the two had yet to be clarified. In 

this study we wanted to compare the roles of the ‘upstream/early’ ESCRT-I protein Tsg101 

and the ‘downstream/late’ ESCRT-III protein Vps24 in these processes. Additionally, since 

ESCRTs are thought to be coupled mechanistically to the process of membrane invagination 

(Bache et al., 2003a; Gruenberg and Stenmark, 2004; Lloyd et al., 2002), we were interested 

to study the consequence of Vps24/ESCRT-III depletion on MVE morphology. We found 

that Vps24 is essential for ligand-induced degradative EGFR trafficking, as EGFR is 

retained in EEs in the absence of Vps24 and down regulation is delayed. Even though 

activation of the MAP kinase pathway downstream of activated EGFR was sustained when 

Tsg101 was depleted, the depletion of Vps24 had no such effect. This demonstrates that 

while both have a similar effect on EGFR degradation, the roles of ESCRT-I/Tsg101 and 

Vps24/ESCRT-III are distinct, with Vps24 not being required for silencing of EGFR 

signaling. We wanted to address two potential mechanisms that contribute to the regulation 

of receptor signalling, i.e. i) the dissociation of the ligand-receptor complex by a more 

acidic environment (low pH) (Skarpen et al., 1998) and ii) the internalization of EGFR into 

ILVs of MVEs which disrupts signaling into the intracellular space and targets the ligand-

receptor complex for degradation by fusion with lysosomal hydrolases. Indeed, by using 

fluorescence ratio imaging we found that depletion of Tsg101 and Vps24 differentially 
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affects the pH of EGF-containing endosomes. Whereas similar to the control cells, FITC-

EGF localized mostly to compartments with a pH of 4.5 in Vps24 depleted cells, FITC-EGF 

was more often localized to compartments with a pH of 6.4 in cells depleted of Tsg101. 

This suggests that Tsg101 depletion causes a delay in endocytic trafficking which hinders 

the normal accumulation of EGF in acidic endosomes, possibly leading to sustained 

activation of MEK1/2 and ERK1/2. Next, we studied the morphology of endosomal 

compartments in cells depleted for Vps24 by electron microscopy and observed an 

accumulation of significantly smaller MVEs which did contain ILVs, but were fewer and 

less homogenous in shape. EGFR (labeled by immuno-gold) mostly localized to 

intraluminal membranes even when Vps24 was depleted, suggesting that sorting of EGFR 

does not require Vps24. In conclusion, we found that two ESCRT-subunits, which are both 

required for degradative trafficking, play differential roles in the silencing of EGF-activated 

MAP-kinase activity. In addition to their linear trafficking association, these proteins may 

have more extensive cellular functions which are organized in a less linear fashion. 

 

 

Paper II: Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and 

chemokine receptors destined for lysosomal degradation 

Even though yeast ESCRT-II mutants are known to inhibit the sorting of cargo from the 

limiting membrane into ILVs (Babst et al., 2002b), ESCRT-II appeared to be dispensable 

for degradation of ubiquitinated major histocompatibility complex (MHC)-I molecules in 

mammalian cell (Bowers et al., 2005). Also, in contrast to other ESCRTs which are known 

to play a role in HIV budding, HIV-1 appears to utilize a pathway in which ESCRT-II is not 

involved (Langelier et al., 2006). Hence, we were interested to determine the role of 

ESCRT-II in EGFR signaling and trafficking by depleting cells of the ESCRT-II subunit 

Vps22/EAP30 using siRNA. We found that the levels of the two additional ESCRT-II 

subunits, Vps25 and Vps36, were strongly reduced in cells depleted of Vps22, indicating 

that Vps22 is crucial for the integrity and stability of the ESCRT-II complex. Vps22, like 

other ESCRTs proteins, localized to EEs and MVEs that are involved in the trafficking of 

internalized EGFR. In addition, we found that ESCRT-II was required for the efficient 

degradation of EGF and EGFR in lysosomes. As a possible explanation for this, we 

observed that in cells depleted of Vps22/ESCRT-II the sorting of ubiquitinated cargo into 

the ILVs of MVEs was significantly inhibited, a result that we verified both by quantitative 

immunoelectron microscopy and by utilizing a newly developed biochemical assay for ILV 
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sorting. When we studied the morphology of Vps22-depleted cells by electron microscopy, 

we observed, besides a redistribution of EGFR to the limiting membrane of MVEs, a more 

general alteration of endosome morphology. Two subtypes of EGFR-containing endosomes 

could be distinguished: one of which consisted of compartments resembling EEs, whereas 

the second subtype consisted of smaller structures with a multivesicular appearance. Since 

the requirement of ESCRT-II for cargo degradation may be restricted to RTKs, we studied 

the degradative sorting of another ubiquitinated receptor, the G-protein coupled chemokine 

receptor CXCR4, which was shown to require both Hrs and Vps4 for efficient down- 

regulation (Marchese et al., 2003). We showed that the degradation of CXCR4 was strongly 

inhibited in cells depleted of ESCRT-II, indicating that the ESCRT-II complex is involved 

in degrading a wider range of ubiquitinated receptor families. Since we had previously 

found a distinct role of ESCRTs in regulating EGFR signaling (PAPER I) we wanted to 

determine the role of Vps22/ESCRT-II in this process. Interestingly, we found that, similar 

to Vps24 (ESCRT-III) and in contrast to Hrs (ESCRT-0) and ESCRT-I, Vps22/ESCRT-II 

was not involved in silencing of EGFR signaling. We concluded that ESCRT-II plays an 

important role in the degradative sorting of at least two important receptor families and that 

Vps22-depletion leads to the delayed transport of EGFR along the endocytic pathway. Even 

though each ESCRT is required for the efficient trafficking of EGFRs, only ESCRT-0 and -I 

are needed for silencing of EGF signaling from endosomes. 

  

 

Paper III: Functional multivesicular bodies are required for autophagic clearance of 

protein aggregates associated with neurodegenerative disease 

ESCRTs are known to play an important role in the endocytosis of ubiquitinated membrane 

proteins and, at least in part, in the biogenesis of MVEs. Mutations of the ESCRT-III 

subunit CHMP2B was recently associated with two neurodegenerative phenotypes, 

frontotemporal dementia (FTD) (Skibinski et al., 2005) and amyotrophic lateral sclerosis 

(ALS) (Parkinson et al. 2006). In addition, autophagy has been shown to play an important 

role in the pathogenic mechanisms in neurodegenerative diseases. We were interested to 

investigate a possible link between these factors. We found a dramatic accumulation of non-

endosomal ubiquitin-aggregates in cells depleted of Tsg101/ESCRT-I and Vps24/ESCRT-

III, which labeled positive for p62 and Alfy, two proteins associated with autophagic 

degradation. We hypothesized three likely mechanisms to cause formation of these 

aggregates, i.e. increased protein synthesis, decreased proteasome activity and decreased 
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autophagic degradation, and investigated these possibilities. We found that, whereas protein 

synthesis and proteasome activity remained unchanged, autophagic degradation was 

strongly inhibited in cells depleted for Tsg101 and Vps24. To further study this we used a 

double-tagged mCherry-GFP-LC3 construct (Pankiv et al., 2007) which allowed us to 

confirm that transport of the autophagy-marker LC3 to acidic lysosomes was inhibited in 

ESCRT-depleted cells. Since this is most likely caused by an inhibition in the formation of 

autolysosomes, our data indicated that functional MVEs were required in autophagy. We 

were interested to study i) the precise stage of the pathway in which the impediment 

occurred and ii) further characterize the ubiquitin-positive, autophagic aggregates. We 

utilized electron microscopy analysis and found that clusters of autophagosomes formed and 

that GFP-LC3- and LBPA-positive amphisomes were more numerous in cells depleted of 

Tsg101 and Vps24. This suggests an impediment at a later stage in the autophagic pathway, 

most likely an inhibition of the fusion between amphisomes and lysosomes. The ubiquitin-, 

p62-positive aggregates found in ESCRT-depleted cells were either membrane-free or 

contained clusters of small vesicular-tubular elements and larger structures of typical 

endosomal morphology. Previously, Holm et al. described the presence of ubiquitin- and 

p62-positive cytoplasmic inclusions in the hippocampus and neocortex of FTD patients who 

had a mutation in the ESCRT-III CHMP2B gene (Holm et al., 2007). We overexpressed the 

CHMP2Bintron5 mutant construct in cells and investigated whether these inclusions were 

comparable to the aggregates we found in our ESCRT-depleted cells. Indeed, we found 

similar p62- positive aggregates in cells expressing the CHMP2Bintron5 mutant. In addition, 

overexpression of the CHMP2Bintron5 mutant in HeLa-GFP-LC3 cells led to increased levels 

of GFP-LC3, indicating that autophagic degradation is inhibited by the expression of 

CHMP2B mutants. To further characterize the possible link between ESCRT-proteins, 

autophagy and neurodegenerative disease we studied i) TDP-43, the major ubiquitinated 

protein associated with FTD and ALS, and ii) expanded Huntingtin (Htt) polyQ inclusions 

associated with Huntington’s disease. We found i) TDP-43 to accumulate in the ubiquitin- 

and p62-positive aggregates which were formed in ESCRT-depleted cells and ii) a strong 

reduction in the clearance of Htt polyQ aggregates Vps24-depleted cells, indicating that 

ESCRT-III is required in this process. Our data showed, for the first time, an important link 

between TDP-43-positive inclusions, Htt-polyQ aggregate clearance and therefore 

neurodegenerative disease, and proteins involved in MVE formation and autophagy. 
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Paper IV: RILP is required for the proper morphology and function of late endosomes 

During their maturation into MVEs and simultaneously LEs, endocytic compartments are 

trafficked along microtubules from the periphery of the cell towards the perinuclear region. 

However, the possible link between the maturation process and the motility of these 

compartments has not yet been elucidated. Recently, a potential candidate arose, when the 

Rab7-interacting lysosomal protein (RILP) was shown to interact both with the ESCRT-II 

subunits Vps22 and Vps36 and with the dynein-dynactin motor complex (Progida et al., 

2006; Wang and Hong, 2006). We wanted to investigate whether endogenous RILP is 

indeed involved in endocytic trafficking of receptors by studying the effects of siRNA-

mediated depletion of RILP on several facets of cellular functions. We found that RILP and 

Vps22 are most likely to exist in a complex in vivo, since depletion of RILP caused co-

depletion of Vps22 and vice versa. In addition, depletion of RILP caused the degradation of 

EGFR to be delayed, and EGFR to accumulate in EEA1-positive early endosomes. This 

indicated that, like Vps22, RILP is required for trafficking of EGFR from EEs to LEs. 

Shuttling of the cation-independent mannose-6-phosphate receptor (CI-M6PR) between the 

trans-Golgi network (TGN) and endosomes was not affected by depletion of RILP, although 

lysosomal degradation of CI-M6PR was markedly inhibited. Endocytosis and recycling of 

the nutrient receptor transferrin (Tnf), on the other hand, was not affected by depletion of 

either RILP or Vps22, indicating that the blockage of transport out of EEs was not of a 

general nature. The data obtained so far, suggested that RILP was mostly involved in the 

degradative sorting of receptors, most likely by regulating the degradative function of LEs, 

perhaps by mediating the fusion of LEs with lysosomes. RILP-depleted cells showed a 

strong increase in labelling to the late endosomal markers LBPA and Lamp1, suggesting 

that RILP was involved in the degradation of late-endosomal proteins and lipids, possibly 

by controlling the maturation- and/or fusion-process of LEs. Interestingly, when comparing 

RILP-depleted and control cells at a higher resolution (by electron microscopy), we found a 

striking difference in the morphology of LEs. Not only were endosomes clearly clustered, 

they were nearly devoid of intraluminal membranes. We concluded that RILP is required for 

i) trafficking of EGFR, and most likely other (ubiquitinated) receptors, for lysosomal 

degradation and ii) the biogenesis of MVEs, perhaps by coordinating this process with 

dynein-mediated endosome motility. 
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Paper V: Multivesicular endosome biogenesis in the absence of ESCRTs 

Previous studies have shown that the depletion of single components of the individual 

ESCRTs leads to defective degradative trafficking of ubiquitinated cargo and alterations in 

endosome/MVE morphology. We wanted to elucidate the function of the ESCRT machinery 

in MVE biogenesis and EGFR sorting by multiply-depleting cells for key subunits of all 

ESCRTs simultaneously thereby supposedly leaving the cells devoid of their ESCRT 

machinery. We found that quadruple depletion (4xKD) of Hrs/ESCRT-0, Tsg101/ESCRT-I, 

Vps22/ESCRT-II and Vps24/ESCRT-III caused a dramatic alteration in the morphology of 

the endocytic pathway, which we defined to 3 main types of distinct structures: i) strongly 

enlarged MVE-like structures, either containing few ILVs or resembling ‘fusion products’ 

of several MVEs, ii) large areas of densely packed membrane folds and sheets and iii) 

autophagosomes and amphisomes. The morphology was most similar to the morphology 

found in cells single depleted of Tsg101/ESCRT-I, but was much more dramatically altered 

and featured the enlarged ‘collection’ MVEs which were only observed in 4xKD cells. 

Additionally, ILVs in enlarged and normal-sized MVEs showed an altered morphology, 

with a larger diameter and less homogenous shape. Even if ILVs were still formed in 4xKD 

cells, EGFR was not sorted into these ILVs and remained predominantly on the limiting 

membrane of endocytic structures. Observing such dramatic structural rearrangements, we 

questioned whether endogenous endocytic proteins were properly distributed in the 

endocytic compartments. We investigated this both by IF and EM using a range of 

endocytic and associated markers, and found that even though early and late endocytic 

markers were strikingly redistributed, components of the endocytic pathway remained 

clearly differentiated. Next, we utilized EM quantitative analysis to investigate the extent to 

which normal endocytic compartments could still be formed after quadruple-depleting cells 

of the ESCRT machinery. We found that the formation of EGF-induced endocytic structures 

was inhibited, as we had previously observed in singly depleted cells, but that EGF-

independent MVEs were still formed, even in the absence of the ESCRT machinery. Our 

data supported the idea of the existence of distinct subpopulations of MVEs and we were 

interested to find hallmarks of these diverse subgroups. We investigated two candidates for 

the regulation of MVE biogenesis, the late-endosomal lipid LBPA (Matsuo et al., 2004) and 

the sphingolipid ceramide (Trajkovic et al., 2008), in combination with our quadruple 

depletion. However, results only led to the speculation that these two candidates most likely 

play an important role in MVE biogenesis, but that besides these, additional mechanisms for 

the formation of ILVs do exist. In conclusion, we found that even though the morphology of 
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endocytic structures is dramatically altered in cells depleted of all ESCRTs, components of 

the endocytic pathway stay clearly differentiated and MVEs can still be formed. The 

formation of ILVs still occurs, indicating that ESCRT-independent pathways for ILV 

formation exist. Our data support a model in which ESCRT proteins, besides their function 

in the sorting of membrane proteins, play an important role in the regulation of membrane 

dynamics. Importantly, our data also support the hypothesis that distinct subgroups of 

MVEs exist. 

 

 

Paper VI: Time-resolved ultrastructural detection of phosphatidylinositol 3-phosphate 

PtdIns(3)P plays an important role in the recruitment of various effector proteins in the 

endocytic pathway. FYVE domains bind PtdIns(3)P efficiently in vitro but isolated FYVE 

domains often fail to localize to endosomes when expressed in cells (Hayakawa et al., 

2004). The ultrastructural localization of phosphoinositides is difficult to study. However, it 

is of interest to clarify the functional localization of PtdIns(3)P in the endocytic pathway in 

the context of distinctive mechanisms for ILV formation and subpopulations of MVEs, as it 

has previously been reported that PtdIns(3)P and LBPA localize to distinct endosomal 

compartments (Gillooly et al., 2000). Therefore we attempted to functionally track the 

distribution of PtdIns(3)P at the ultrastructural level during a defined time window using a 

monomeric dimerizable FYVE probe (GFP-2xFv-FYVE(Hrs)), which binds with high 

affinity to PtdIns(3)P after induced dimerization. We found that the probe localized to early 

and late endocytic compartments according to the time period of dimerization, which 

indicated that PtdIns(3)P is turned over via the endocytic machinery. Dimerization of the 

probe in combination with EGF stimulation led to clustering of mainly early endocytic 

compartments, and left most of the probe localized to the limiting membrane of these 

endosomes. We observed that even though there was little colocalization between the probe 

and LBPA in the clusters, it appeared that in some more matured profiles GFP-2xFv-

FYVE(Hrs) did colocalize with LBPA. Importantly, this suggested that PtdIns(3)P and 

LBPA positive ILVs can reside within the same types of MVEs. The clustered endosomes 

did contain coats positive for the PtdIns(3)P-binding protein Hrs, indicating that recruitment 

of Hrs to the endosomal membrane is not impeded by the binding of GFP-2xFv-

FYVE(Hrs). In addition, we investigated the localization of PtdIns(3)P to the autophagic 

pathway and found very little colocalization with the autophagic marker p62. We concluded 

that the dimeriser-inducible probe could potentially be useful for the time-resolved detection 



 29

of PtdIns(3)P at the ultrastructural level, but that its effect on endosome morphology after 

EGF stimulation need to be taken into account. 
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Discussion 
 

 

In the articles presented in this thesis we have studied the roles of ESCRT proteins and 

PtdIns(3)P in the biogenesis of MVEs, endocytic traffic and in cell processes associated 

with disease. During the past decade, remarkable progress has been made towards the 

elucidation of mechanisms by which the ESCRT machinery operates. The many 

components of the ESCRT machinery are largely identified and structural studies have 

provided insight in how the complexes are assembled. Even though a number of significant 

questions regarding detail of these mechanisms remain unanswered, the role of ESCRTs in 

the lysosomal targeting of ubiquitinated receptors is relatively well-established. The 

functional role of ESCRTs in the biogenesis of MVEs, however, is rather obscure to date. 

Owing to increased focus on the topic and innovations in methods and adjoining fields, 

recent progress has been made in understanding some facets of inward vesiculation and 

MVE biogenesis, and we now seem to be on the verge of a major breakthrough. 

Nevertheless, joint efforts in further research will be needed to elucidate the mechanisms of 

this intriguing process. Exciting as well is the more recently established link between the 

molecular mechanisms of ESCRTs and pathogenesis. Its association with diseases 

highlights the importance of basic medical research and founds one of the major motivations 

to studying the ESCRT machinery. 

 

 

MVE biogenesis 
 

In yeast, depletion of any of the proteins of the ESCRT machinery results in the formation 

of typical class-E compartments (Odorizzi et al., 1998) which has led to the hypothesis that 

the ESCRT machinery plays a crucial role in the inward budding and accordingly the 

biogenesis of MVEs. Although the hypothesis has been carried through into higher 

eukaryotes, no direct evidence has been found so far and our understanding of the 

mechanisms driving inward vesiculation and MVE biogenesis remains limited. Yet, it is 

easy to imagine that with the higher complexity of the organism, additional mechanisms 

may have evolved. 
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In mammalian cell cultures, single depletion of either one of the ESCRTs causes a marked 

and specific alteration in endosome morphology. Depletion of Hrs/ESCRT-0 results in the 

formation of enlarged MVEs which contain few ILVs (Bache et al., 2003a; Razi and Futter, 

2006), while depletion of Tsg101 leads to a profound rearrangement of the early endosome, 

in which enlarged vacuoles either seem to fold into multicisternal structures or tubulate 

(Doyotte et al., 2005). Moreover, even though MVE biogenesis still occurs, Tsg101 

depletion leads to a strong reduction of the MVEs that were formed in response to 

stimulation with EGF (Razi and Futter, 2006). In PAPER I and II we show that depletion 

of the ESCRT-III subunit Vps24 or the ESCRT-II subunit Vps22, respectively, causes a less 

dramatic but significant change in endosome morphology. Vps22/ESCRT-II-depleted cells 

contain an increased number of early endosomal structures in addition to the clusters of 

small MVEs that are comparable to the smaller and clustered MVEs found in Vps24-

depleted cells. Interestingly, even though depletion of ESCRT subunits leads to clear 

morphological changes, MVE biogenesis still occurs and the ultimate requirement of 

ESCRTs in this process remains unclear. In PAPER V we therefore aimed to optimize 

conditions for efficient removal of the ESCRT machinery by depleting cells of key subunits 

of all four ESCRTs simultaneously, using siRNA oligonucleotides against Hrs, Tsg101, 

Vps22 and Vps24. It has been established that ESCRTs lose their integrity and that the 

expression levels of the other subunits are decreased when either of these key subunits are 

depleted (PAPER II and (Babst et al., 2002a; Bache et al., 2003b; Bache et al., 2004)). We 

therefore assumed that by depleting its key subunits we abolished the function of the entire 

ESCRT machinery. The morphology of endocytic structures is dramatically altered in 

ESCRT-depleted cells and, interestingly, depletion of the ESCRT machinery inhibits the 

formation of EGF-induced endocytic structures, but still allows the biogenesis of EGF-

independent MVEs. Our data support a model in which ESCRTs proteins, besides their role 

in membrane protein sorting, play an important role in the regulation of membrane 

dynamics. Importantly, our results indicate that distinct subpopulations of MVEs exist and 

that mainly EGF-induced MVE biogenesis depends on the ESCRT machinery. ILV 

formation, albeit not abolished, appears to be altered in ESCRT depleted cells illustrated by 

the observation of fewer and less densely packed ILVs that are not as homogenous in shape 

and size (PAPER V). Of significant relevance to alternative mechanisms for MVE 

biogenesis, an alternative pathway for MVE sorting was found for the melanosomal protein 

Pmel17, which is sorted into ILVs by a mechanism that is independent of ubiquitination and 
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insensitive to functional inhibition of ESCRT-0 and -I (Theos et al., 2006). Moreover, in a 

recent study an alternative mechanism for the formation of exosomes, the equivalents of 

ILVs in “secretory” MVEs, was described, which operates independently of the ESCRT 

machinery but requires the sphingolipid ceramide (Trajkovic et al., 2008).  

 

Mechanisms of inward vesiculation 
Data found to date are in favor of the hypothesis that ILVs are formed through distinctive 

mechanisms, some of which are ESCRT-dependent whereas others are ESCRT-independent 

(Falguieres et al., 2008; Gillooly et al., 2001; Kobayashi et al., 1998b; Mobius et al., 2003; 

Pons et al., 2008; Trajkovic et al., 2008) and PAPER V). The main candidates that are 

currently proposed to play a role in the inward vesiculation of endosomes are ESCRTs, 

PtdIns(3)P, sorting nexin 3 (SNX3), lyso-bisphosphatidic acid (LBPA), ceramide and 

cholesterol, and will be discussed in this section. 

 

ESCRTs Primarily components of ESCRT-III are thought to play a role in ILV 

formation. In humans, the ESCRT-III family consists of 11 proteins that are recruited from 

the cytosol to the endosomal membrane where they assemble into large detergent insoluble 

polymers (Babst et al., 2002a; Williams and Urbe, 2007). ESCRT-III associates with the 

endosomal membrane through at least one or a combination of the following interactions: i) 

the Vps20/CHMP6 subunit of ESCRT-III binds to Vps25 of ESCRT-II (Yorikawa et al., 

2005), ii) the ESCRT-associated protein AIP1/Alix can interact with Snf7/CHMP4 of 

ESCRT-III and Tsg101 of ESCRT-I possibly bridging the two proteins under certain 

conditions (Katoh et al., 2003; von Schwedler et al., 2003), and iii) its intrinsic ability to 

bind to membranes, regulated for instance by the autoinhibitory sequences located near the 

C termini (Muziol et al., 2006; Shim et al., 2007; Zamborlini et al., 2006) and/or the 

interaction of Vps24/CHMP3 subunit with PtdIns(3,5)P2 (Whitley et al., 2003). A recent 

study demonstrates crucial roles for Tsg101 and AIP1/Alix as positive and negative 

regulators, respectively, of ILV formation in vitro (Falguieres et al., 2008) which suggests 

the importance of these two proteins in recruitment and potentially removal of ESCRT-III. 

Ultimately, the AAA+ ATPase Vps4 associates with the polymeric lattice through 

interaction of its N-terminal microtubule interacting and transport (MIT) domain with 

conserved sequence motifs, MIT interacting motifs (MIMs), located at the C-termini of 

CHMP1-3 of ESCRT-III, to disassemble the complex (Scott et al., 2005; Stuchell-Brereton 
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et al., 2007). The appropriate combination of Vps4 with its associated protein Vta1 and 

ESCRT-III subunits strongly initiates Vps4 ATPase activity, which is required for 

disassembly of the coat in which cargo is clustered and is thought to be the main 

thermodynamic driving force for the formation of ILVs (Azmi et al., 2008; Hurley and 

Yang, 2008; Sachse et al., 2004). However, the factors that cause membrane deformation 

and ultimately fission of the vesicle from the limiting membrane are still missing from the 

current model. A number of studies have recently shed light on the mechanisms by which 

ESCRT proteins potentially drive inward budding and hence, at least in part, are responsible 

for MVE formation (Falguieres et al., 2008; Ghazi-Tabatabai et al., 2008; Hanson et al., 

2008; Lata et al., 2008; Teis et al., 2008). The ESCRT-III proteins hSnf7-1/CHMP4A and 

hSnf7-2/CHMP4B are reported to assemble into circular membrane-associated polymers 

that can drive deformation of the membrane to which they are attached (Hanson et al., 

2008). Likewise, in vitro studies demonstrate Snf7 and Vps24 to spontaneously form 

ordered polymers which are disassembled by Vps4 (Ghazi-Tabatabai et al., 2008; Lata et al., 

2008). The hSnf7/CHMP4 polymers are proposed to control the distribution of proteins in 

the membrane and thereby contributing to define the content and generate the ILV (Hanson 

et al., 2008). One problem in the search for the right candidate(s) for inward vesiculation is 

that all proteins known to induce membrane deformation act in the opposite direction, 

towards the cytoplasm, driving “positive” membrane curvature (McMahon and Gallop, 

2005). However, the circular shape of the ESCRT-III polymers could potentially promote 

“negative” membrane curvature instead and consequently drive inward vesiculation. 

ESCRT-III contains two functionally distinct subcomplexes: the Vps20/CHMP6-

Snf7/CHMP4 subcomplex is known to bind to the membrane, whereas the Vps2/CHMP2-

Vps24/CHMP3 subcomplex binds to Vps20/CHMP6-Snf7/CHMP4 subcomplex and serves 

to recruit additional components and facilitate protein sorting (Babst et al., 2002a). The 

Snf7/CHMP4 is the major ESCRT-III subunit in the complex. It is reportedly seven times 

more abundant than Vps20/CHMP6 and at least twice more abundant than Vps24/CHMP3 

and Vps2/CHMP2, which exist in a 1:1 stochiometry (Teis et al., 2008). In a recent model 

the Vps25 subunit of ESCRT-II is proposed to induce the conformational changes at the N-

terminal of Vps20/CHMP6 that are required in order for Vps20/CHMP6 to nucleate the 

formation of Snf7/CHMP4 polymers on the membrane. Snf7/CHMP4-subunits continue to 

polymerize until a yet unidentified signal of sufficiency is provided which initiates the 

recruitment of Vps24/CHMP3, and possibly Vps2/CHMP2 concurrently, to the circular 

membrane-associated polymer in order to ‘cap’ and terminate the reaction (Figure 3). 
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Figure 3.  Model for membrane 
deformation by circular arrays of ESCRT-
III protein filaments. Conformational 
changes at the N-terminal of Vps20/CHMP6 
nucleate the formation of Snf7/CHMP4 
polymers on the membrane. Polymerization of 
Snf7/CHMP6 continues until a signal of 
sufficiency is provided which initiates the 
recruitment of Vps24/CHMP3, possibly in 
complex with Vps2/CHMP2, to the array to 
‘cap’ and terminate the reaction. Membrane 
deformation could be caused by the circular 
array or by the ubiquitinated cargo that is 
concentrated within the circular array. The 
exact mechanisms for promoting membrane 
deformation and inward vesiculation and how 
these are functionally coupled to sorting and 
signalling events are not yet known. 

Membrane deformation could be initiated either by the polymer itself or by the ubiquitinated 

cargo that is concentrated within the circular array. No significant amounts of ESCRT-III 

components are found on the intraluminal membranes of MVEs, which suggests the 

polymeric ring to form at the ‘neck’ of the imminent vesicle, and to disassemble before the 

vesicle pinches off. This newly proposed working model provides a nice framework, yet, 

further research is required to bridge the gaps and elucidate the functional role of ESCRTs 

in ILV formation and the mechanistic link between MVE biogenesis and sorting and 

signalling events.  

 

  
 

 

PtdIns(3)P / SNX3 PtdIns(3)P localizes to early endosomal membranes and is known to 

play a role in endocytic membrane traffic and the sorting of signaling receptors (Gillooly et 

al., 2000; Petiot et al., 2003). In addition, PtdIns(3)P is thought to control the formation of 

ILVs, at least in part, by recruiting FYVE- and PX domain containing proteins to the 

membrane of endosomes (Bright et al., 2001; Fernandez-Borja et al., 1999; Fili et al., 2006; 

Futter et al., 2001). The exact mechanisms behind this are not yet fully understood, but 

inhibition of PtdIns3-kinase with wortmannin, and consequently inhibition of PtdIns(3)P 

synthesis, causes a reduction in the formation of ILVs that seem unable to pinch off from 

the limiting membrane of MVEs (Fernandez-Borja et al., 1999; Futter et al., 2001). 

Moreover, the PX domain-containing protein SNX3 was recently found to be required for 

the formation of ILVs (Pons et al., 2008). The molecular mechanism by which SNX3 

regulates membrane invaginations remains to be elucidated but is most likely to be indirect, 
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by the recruitment of yet additional proteins. Interestingly, SNX3 appears not to be involved 

in the degradative sorting of EGF receptor. Hrs, on the other hand, is essential for lysosomal 

targeting but is demonstrated to be dispensable for MVE biogenesis and PtdIns(3)P appears 

to control the complementary functions of Hrs and SNX3 in sorting and MVE biogenesis 

(Pons et al., 2008). How PtdIns(3)P decides which of the effector proteins to recruit at what 

time is not yet understood. The concentration of the phosphoinositide on the membrane 

along with the particular binding affinity of the effector protein or the availability and/or 

concentration of additional proteins for recruitment could be factors involved in this 

selection process. Nevertheless, these data highlight the crucial regulatory functions and 

high flexibility of phosphoinositides. 

 

LBPA  The concept of ILVs of distinctive origins is strongly supported by data from 

previous studies demonstrating that at least two populations of internal membranes with 

different lipid composition can be separated from each other (Kobayashi et al., 2002). One 

of these fractions primarily contains 2-2’-LBPA, a phospholipid that was later shown to 

drive the pH-dependent, spontaneous formation of multivesicular liposomes (Matsuo et al., 

2004). Its inverted cone-shaped structure and seemingly intrinsic capacity to stimulate 

membrane invagination make 2-2’-LBPA an ideal candidate to regulate internal membrane 

biogenesis. The invagination process is likely to be regulated by proteins in vivo and to date 

the main candidate seems to be the ESCRT-associated protein AIP1/Alix, which was 

reported to regulate the organization of LBPA-containing endosomes (Matsuo et al., 2004) 

and control ILV formation by acting as a negative regulator (Falguieres et al., 2008). 

Whether AIP1/Alix plays an exclusive role in combination with LBPA or also interacts with 

other ESCRT proteins in the formation of ILVs is not known. Interestingly, however, 

contrary to AIP1/Alix Tsg101 is demonstrated to be a positive regulator of the inward 

vesiculation and the two proteins appear to jointly coordinate the process of vesicle 

formation in a controled fashion (Falguieres et al., 2008). LBPA localization is restricted to 

the intraluminal membranes of MVEs and does not colocalize with PtdIns(3)P or cholesterol 

but appears to reside in a distinctive pool of ILVs ((Gillooly et al., 2000; Matsuo et al., 

2004; Mobius et al., 2003) and PAPER VI). LBPA is poorly degradable which has led to 

the proposal of a functional mechanism in which LBPA-containing ILVs transport engulfed 

cargo back to the limiting membrane of the MVE, instead of towards the lysosome, in a 

process called “back-fusion” (LeBlanc, I et al., 2005). PtdIns(3)P-containing ILVs, on the 

other hand, would deliver their cargo to the lysosome for degradation. This model seems to 



 36 

be an interesting alternative, however, with the current approaches it has not yet been 

possible to characterize the biochemical and biophysical properties of distinctive 

intraluminal membranes. It is worth noting that to date no LBPA has been detected in yeast, 

which indicates that higher organisms have evolved more complex membrane systems for 

higher efficacy and more specificity. 

 

Ceramide A recent study by Trajkovic et al. describes a mechanism for the formation of 

ILVs which requires the sphingolipid ceramide and is independent of the ESCRT machinery 

(Trajkovic et al., 2008). Ceramide is synthesized by the sphingomyelinase-dependent 

hydrolytic removal of the phosphocholine moiety of sphingomyelin. Cargo is demonstrated 

to segregate into distinct microdomains on the endosomal membrane, which are proposed to 

contain high concentrations of shingolipids from which ceramides are synthesized. Owing 

to its inverted cone-shaped structure, ceramide may, similar to LBPA, induce spontaneous 

negative curvature (Goni et al., 2005). Exosomes, the equivalents of ILVs in “secretory” 

MVEs (Fevrier and Raposo, 2004), are enriched in ceramide and cells depleted of neutral 

sphingomyelinase 2 (nSMase2) show reduced exocytosis of exosomes (Trajkovic et al., 

2008).  

 

Cholesterol Cholesterol is one of three major components of lipid bilayers. It plays a 

crucial role in membrane organization and dynamics and is known to modulate the function 

of various membrane proteins either by specific modular interaction or by altering the 

membranes physical properties (Ikonen, 2008). Besides its requirement for the formation of 

clathrin-coated pits (Rodal et al., 1999), membrane cholesterol is necessary for the structure 

and function of caveolae and microdomains or rafts, which function as sorting platforms in 

endocytosis (Ikonen and Parton, 2000; Mukherjee and Maxfield, 2004). Mammalian cells 

attain the cholesterol required for the membrane synthesis through receptor-mediated 

endocytosis of cholesteryl esters-containing low-density lipoproteins (LDL). In lysosomes 

the cholesteryl esters are hydrolyzed to free cholesterol, which subsequently is used for 

membrane synthesis. Cholesterol levels are tightly regulated by means of feedback 

mechanisms and the endocytic pathway plays an important role in cellular cholesterol 

homeostasis. Membrane cholesterol is unevenly distributed amongst the diverse organelles 

of the cell and is especially abundant in the plasma membrane (Liscum and Munn, 1999). In 

compartments of the endocytic pathway cholesterol is demonstrated to be most abundant in 

the membranes of ILVs (Mobius et al., 2003). There it appears, like PtdIns(3)P, to localize 
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differently in MVEs than LBPA, again indicating that endosomes along the degradative 

pathway may contain at least two types of intraluminal membranes with different lipid 

compositions (Mobius et al., 2003). Whether cholesterol colocalizes with any of the other 

aforementioned candidates for ILV formation is not known and would be of interest to 

investigate. However, owing to its cone-shaped structure, cholesterol prefers positive 

curvature (Huttner and Zimmerberg, 2001) and is unlikely to initiate inward vesiculation by 

itself.  Alternatively, rather than being the driving force of ILV formation, cholesterol more 

probably is a “passive” yet essential membrane component of the ILVs. Two different types 

of MVEs have been described, of which one appears to be cholesterol rich whereas the other 

contains LBPA (Mobius et al., 2003). These typical MVEs could either be representing 

MVEs at slightly different stages of maturation, or, more likely, characterize distinctive 

subpopulations of MVEs. Interestingly, LBPA is known to play a role in the transport of 

free cholesterol (Kobayashi et al., 1999) and was recently reported to control the cholesterol 

storage capacity of endosomes (Chevallier et al., 2008). The accumulation of cholesterol in 

late endocytic compartments, characteristic of the cholesterol storage disorder Niemann 

Pick disease, interferes with endosomal membrane dynamics and reduces bilayer fluidity 

(Kobayashi et al., 1999; Maxfield and Tabas, 2005; Sobo et al., 2007). 

 

Furthermore, the phospholipid-binding protein annexin-1 is shown to be required for EGF-

stimulated ILV formation, but not for inward vesiculation in unstimulated cells (White et 

al., 2005). Annexin-1 can mediate vesicle aggregation in vitro and so a possible role is 

proposed for annexin-1 to bring opposing membranes of the forming intraluminal vesicle 

together to promote scission (Futter and White, 2007).  

 

Whether ILVs of distinctive origin can localize to the same MVE or rather localize to their 

specific MVE-subtype remains unclear and would be of great interest to clarify. Our data in 

PAPER VI suggest that LBPA positive ILVs and PtdIns(3)P positive ILVs can localize to 

the to the same MVEs.  And in PAPER V we demonstrate that, unlike previously reported 

(White et al., 2005), LBPA positive ILVs are confined to the same MVE as EGFR positive 

ILVs that are most likely formed by mechanisms involving PtdIns(3)P (Pons et al., 2008). 

However, we could also identify a small quantity of MVEs that contained either LBPA-

positive ILVs or EGFR-positive ILVs alone or ILVs of unidentified origin. On one hand, 

considering the specific cell-type associated functions of exosomes (van Niel et al., 2006), it 

seems clever for “homogenous” MVE subtypes to exist, whereas on the other hand 
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“heterogenous” MVEs would be more cost-efficient for the cell. As our data suggest some 

cells may adopt the golden mean and combine the two alternatives while, for instance, cell 

types with specific functions may lean towards more explicit MVE subtypes (Figure 4). 

 

 

 
 
Figure 4 Models for MVE biogenesis  
(A) In the presence of ESCRTs, formation of MVEs that contain homogenous ILVs occurs. The 
sorting of receptors, for instance EGFR, into these ILVs is facilitated by the ESCRT machinery. 
Presumably, the ESCRT-III complex is disassembled before inward budding and does not follow 
into the newly formed vesicle. (B) In the absence of ESCRT function, biogenesis of MVEs does still 
occur by (an) alternative mechanism(s), which results in the formation of a less homogenous ILV 
population. (C) It is not excluded that the proposed ESCRT-independent mechanism could function 
in parallel with the ESCRT-dependent process. Micrographs are depicting an MVE in HEp-2 control 
cells (A) and an enlarged MVE in cells depleted of all ESCRTs (B/C) and are corresponding to the 
model shown to the right. Scale bars, 200 nm.  
 

 

Subpopulations of MVEs 
An alternative or complementary possibility to MVE subpopulations is the existence of 

independent and parallel routes from the early endosome of which at least one is ESCRT-

independent. By freeze-etch electron microscopy it is demonstrated that early endosomes 

(EEs) are complex structures of great pleomorphism, and consist of a central cisternal 

region from which heterogeneous tubules originate (Gruenberg, 2001). On the molecular 

level, EEs are known to be highly dynamic compartments that are composed of a mosaic of 

functional and structural lipid-protein domains (Gruenberg, 2001). For instance, the small 

GTPase Rab5 interacts with a multiplicity of effectors and is thought to build defined 
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effector-platforms on the EE-membrane which in turn can conduct their specific roles in 

membrane dynamic processes (Zerial and McBride, 2001). It is imaginable how distinctive 

lipid-protein domains execute their specific functions and form the cornerstone for parallel, 

distinctive subpopulations of MVEs and possibly LEs. For instance, ESCRT proteins are 

found to localize to confined endosomal microdomains which also contain ubiquitinated 

cargo and clathrin, whereas EEA1 and Tnf are found on distinct microdomains in 

Rab5Q79L mutant cells (Raiborg et al., 2002). Evidently, the localization to these particular 

microdomains could merely reflect the segregation of cargo for lysosomal targeting or 

recycling, but could alternatively denote the prospect of the formation of distinctive 

subpopulations of MVEs. Moreover, it has been demonstrated that a subgroup of EEs exists 

that is EEA1-negative and instead operates via APPL1 and APPL2, two Rab5 effectors 

(Miaczynska et al., 2004a). APPL-positive endosomes, like EEA1-positive endosomes, 

contain Rab5 and are accessible to both EGF and Tnf, but function with different kinetics 

and lower efficiency than the EEA1-containing compartments. There appears to be a certain 

degree of overlap between these distinctive compartments though and whether these 

“subpopulations” coalesce during maturation is not known. They appear to have different 

objectives however; whereas EEA1-containing EEs traffic cargo along the canonical 

endocytic route, the APPL-positive compartments function as intermediates in signaling 

between the plasma membrane and the nucleus (Miaczynska et al., 2004a). One more study 

reports the coexistence of two distinct populations of EEs of which one is dynamic, highly 

mobile and rapidly maturing whereas the other is static and matures more slowly 

(Lakadamyali et al., 2006). Both EEA1 and Rab5 are used as early endosomal markers and 

show approximately 80% colocalization. However, whether the Rab5-positive, EEA1-

negative compartments contain APPL is not investigated in this study and it could, hence, 

refer to comparable subpopulation as proposed by Miaczynska et al. (Miaczynska et al., 

2004a). Furthermore, EGFR and LBPA were previously described to localize to distinct 

subpopulations of MVEs (White et al., 2005). However, as previously mentioned, in 

PAPER V we used quantitative immuno-EM methods to demonstrate that EGFR and LBPA 

colocalize in more than 70% of the MVEs.  

 

In conclusion, it seems most likely for ESCRT-dependent and -independent mechanisms of 

ILV formation, and possibly pathways, to function in parallel. ILVs of distinctive origin 

presumably coexist in MVEs and provide an alternative mechanism when the preferred 

mechanisms fail. In this respect it is worth noting that strongly enlarged MVEs form in cells 
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quadruple-depleted of all ESCRTs (PAPER V). In these cells sorting through the ESCRT 

machinery may be completely abolished and additional mechanisms for receptor sorting 

may be upregulated in order to rescue the integrity of the cell. The enlarged MVEs may thus 

reflect the upregulation of additional, ESCRT-independent machineries or pathways. Even 

though not much solid data on the topic has been found to date, it seems very plausible that 

cells provide back-up mechanisms in the pathways that are as important to their viability 

and integrity as the endocytic pathway.  

 

Endosome maturation 
Acquisition of endosome maturity depends both on the accurate spatial and temporal 

recruitment of proteins and lipids to the endocytic pathway and their removal, and appears 

to be a highly regulated process in which many factors are involved. For instance, a recent 

study reports in vitro vesicle budding into the endosome lumen to be dependent on 

membrane components and cytosolic factors, as well as on time, temperature, pH and 

energy (Falguieres et al., 2008). Additionally, movement of the endosomal compartment 

from the cell periphery to the perinuclear area appears to be coordinated with its maturation 

process and, ultimately, its fusion with the lysosome (Gruenberg and Stenmark, 2004). This 

minus-end-directed transport along microtubules is mediated by the motor protein dynein 

(Aniento et al., 1994). In PAPER IV we show Rab7-interacting lysosomal protein, RILP, to 

be the mechanistic link between endosome motility and MVE biogenesis. RILP is an 

effector of the small GTPase Rab7 and controls trafficking of late endosomes through its 

interaction with the dynein-dynactin motor complex (Cantalupo et al., 2001; Jordens et al., 

2001). Additionally, RILP was found to interact with the ESCRT-II subunits Vps22 and 

Vps36 (Progida et al., 2006; Wang and Hong, 2006) and appears, like ESCRT proteins, to 

be crucial for degradative functions of LEs (PAPER IV and (Wang and Hong, 2006)). 

Importantly, RILP depletion leads to the clustering of endosomal structures that are virtually 

devoid of intraluminal membranes and to elevated levels of resident late endosomal lipids 

and proteins. This indicates that RILP is required for both the normal distribution of LEs 

and lysosomes and for the formation of ILVs (PAPER IV). The exact functional 

mechanism of RILP and ESCRT-II in MVE biogenesis and microtubule-dependent 

endosome motility are yet to be established. Depletion of RILP leads to co-depletion of 

ESCRT-II and vice versa and, hence, individual contribution of these factors to degradative 

sorting and MVE biogenesis could be discussed. However, the morphological differences 



 41

between endosomes in RILP-depleted cells (PAPER IV) and endosomes in Vps22-depleted 

cells (PAPER II) strongly indicate separate functional roles for these proteins. How exactly 

dynein-dynactin-motility and distinctive localization play a role in endosome maturation is 

not known, and is presumably a tactic to bring together MVEs and lysosomes and, 

consequently, to promote fusion. However, maturing MVEs can move to the perinuclear 

region before Rab5-Rab7 conversion (Driskell et al., 2007; Rink et al., 2005) and dynein 

may not be the only motor regulating lysosome motility (Loubery et al., 2008). This 

indicates the participation of yet additional mechanisms in endosome maturation and 

motility. 

 

 

Receptor trafficking and signaling 
 

Ligand-induced activation of the epidermal growth factor receptor (EGFR) leads to 

initiation of several intracellular signaling cascades. For instance, the Ras-MAPK pathway 

is activated in response to EGF stimulation, which results in the phosphorylation of 

MEK1/2 and consequently the activation and phosphorylation of ERK1/2 which then 

translocates into the nucleus and regulates the activity of several transcription factors 

(Murphy and Blenis, 2006). In PAPER I and II we demonstrate that depletion of ESCRT-II 

(Vps22) and ESCRT-III (Vps24), like depletion of ESCRT-0 (Hrs) or ESCRT-I (Tsg101) 

(Raiborg et al., 2008), results in retarded downregulation of EGFR. Interestingly, however, 

whereas depletion of ESCRT-0 or ESCRT-I leads to prolonged downstream signaling of 

EGFR, depletion of ESCRT-II (Vps22) or ESCRT-III (Vps24) does not appear to interfere 

with signal attenuation (PAPER I and II). In theory, receptor silencing will most likely be 

attained by one or a combination of the following mechanisms: i) dissociation of the 

receptor-ligand complex at low pH, ii) sequestration of the receptor-ligand complex into 

ILVs of MVEs or, iii) preventing access of signaling mediators to the cytosolic tail of the 

receptor. Firstly, by using fluorescence ratio imaging we demonstrate that EGF accumulates 

in endosomes with a close to neutral pH in Tsg101- depleted cells and in endosomes with a 

low pH in Vps24-depleted cells (PAPER I). Tsg101 depletion appears to cause a delay in 

endocytic trafficking and to hinder the normal accumulation of EGF in acidic endosomes 

thereby possibly impeding the dissociation of the receptor-ligand complex, consequently, 

resulting in prolonged signaling. Secondly, endosome morphology is more dramatically 
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altered after depletion of Tsg101, than after depletion of Vps22 or Vps24 (Doyotte et al., 

2005; Razi and Futter, 2006) and PAPER I and II). In particular, Tsg101 is required for 

ILV formation (Falguieres et al., 2008; Razi and Futter, 2006), whereas Vps24 alone does 

not seem to be critical in this mechanism possibly due to functional support of the Vps20-

Snf7-subcomplex of ESCRT-III. This raises the possibility that EGFR can signal from the 

multicisternal endosomes in Tsg101-depleted cells, but not from ILVs in Vps24-depleted 

cells. Contradictory, however, whereas EGFR is mostly localized to intraluminal 

membranes in Vps24-depleted cells, the sorting of ubiquitinated cargo into the ILVs of 

MVEs is significantly inhibited in cells depleted of Vps22/ESCRT-II and EGFR 

redistributes from the intraluminal membranes to the limiting membrane of MVEs (PAPER 

I and II). Even though this discrepancy raises doubt regarding the sequestration of the 

receptor-ligand complex into ILVs of MVEs as a possible mechanism of signal attenuation, 

one plausible explanation could be the differences in experimental set-up used in these 

studies. Instead of the approach of pre-embedded labeling with EGFR-gold that we used in 

the Vps24 study (PAPER I), we chose for an immunocytochemistry EM approach in the 

Vps22 study, labeling cryo-sections to EGFR and immuno-gold (PAPER II). Antibody 

binding most likely competes with ligand binding to the receptor and almost certainly alters 

the fate and kinetics of internalized EGFR. Therefore the internalization of directly labeled 

EGF would probably have been a more appropriate approach, even if the affinity of labeled 

EGF may be altered as well. A possible explanation for the attenuation of signaling even 

when the receptor is not sorted into ILVs, as was demonstrated in Vps22-depleted cells, 

could be that the access of signaling mediators to the cytosolic tail of the receptor is 

prevented, possibly by ESCRT-I subunits.  

 

In the context of EGF signaling, it is worth noting that at low doses of EGF (1.5 ng/ml), 

EGFR is predominantly internalized through clathrin-mediated endocytosis (CME), whereas 

at higher doses (� 20ng/ml) the receptor is internalized both through CME and non-clathrin 

endocytosis (NCE) (Sigismund et al., 2005). Interestingly, a recent study reports that 

EGFRs internalized through CME are not targeted for degradation, but instead are recycled 

to the plasma membrane, thereby determining the duration of signaling. NCE-internalized 

EGFRs, on the other hand, are trafficked through the canonical endosomal pathway which 

ultimately results in the degradation of receptors in lysosomes (Sigismund et al., 2008). 

However, when (part of) the degradative pathway falls short recycling of endocytosed 

EGFRs is enhanced (Sigismund et al., 2008) as was demonstrated in cells depleted of 
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Hrs/ESCRT-0 Tsg101/ESCRT-I (Babst et al., 2000; Doyotte et al., 2005; Razi and Futter, 

2006). Interestingly, however, neither Vps22/ESCRT-II-depletion nor Vps24-depletion 

appears to have an effect on EGFR recycling (Raiborg et al., 2008). These data show good 

correlation between the effects of ESCRT depletion on EGFR recycling and prolonged 

signaling and support a model in which ESCRT-0 and ESCRT-I function relatively early in 

the endocytic pathway, at a stage where receptors recycling still is an option, whereas 

ESCRT-II and –III function at a later stage where the receptors’ fate can no longer be 

altered.  

 

Interestingly, inactivation of the Vps25 subunit of ESCRT-II is demonstrated to enhance 

activation of two other signaling pathways, Notch and Dpp, in Drosophila (Thompson et al., 

2005). Whether these differential data merely account for the distinction of signaling 

pathways between organisms or  perhaps reflect the existence of endosome subpopulations 

that express specific subsets of proteins important for regulating signaling and sorting of 

distinct receptors, is unknown and would be of interest to investigate. 

 

 

ESCRTs and disease 
 

With the improvement of methods for large genome-wide screenings and medical 

diagnostics, an increasing number of genes associated with human diseases is identified. 

Interestingly, these include genes encoding components of the ESCRT machinery and, so 

far, ESCRT subunits have been associated with three main categories of pathogeneses, i.e. 

neurodegeneration, cancer and infection (Table 2), which will be discussed in the following 

sections. Additionally, missense mutations in the ESCRT-III subunit CHMP4B have 

recently been found in families with autosomal dominant cataracts, in which it appears to 

contribute to lens transparency (Shiels et al., 2007). These data emphasize that ESCRTs are 

crucial players of a wide variety of physiological cell processes and that their aberration 

potentially results in diseases of distinctive origin. In addition to a role of the ESCRT 

machinery through the assurance of accurate and efficient endocytic traffic and signaling 

and MVE formation, ESCRT- and ESCRT- associated proteins may play more “individual”, 

machinery-unrelated, roles in pathogenesis through their interaction with disease-related 

proteins or pathogens. 
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Neurodegeneration and autophagic clearance 
Endocytosis is crucial for signaling, trafficking, metabolism and the integration of inter-

cellular communication in the majority of mammalian cells. Neurons in particular have 

extensive and specialized needs for endocytosis. Firstly, their extreme polar shape places the 

sites most active in signal transduction, the axons and dendrites, at great distance from the 

soma where many targets and effectors of these signaling effects are located. This spatial 

burden also affects structural maintenance of axons, dendrites and synapses and complicates 

the transport and recycling of membrane components back and forth from these distant 

regions (Parton et al., 1992). Secondly, synaptic transmission itself relies to a great extent 

on rapid endocytic processes which i) ensure the maintenance of adequate numbers of 

synaptic vesicles and ii) control the recycling and degradation of pre- and post-synaptic 

membrane proteins. With endocytosis playing such prominent roles in neurons it is not 

surprising that even subtle aberrations in its mechanisms can potentially lead to severe 

symptoms derived from dysfunction of the brain or central nervous system. In particular, 

endocytosis and lysosomal degradation appear to be important factors in the protection 

against neurodegeneration and were recently reported to be dysfunctional in a number of 

neurodegenerative diseases, e.g. Alzheimer’s diseases, Parkinson’s diseases and Niemann-

Pick type C disease (Nixon, 2005). 

 

Besides the endocytic pathway, a second pathway that plays an important role in the 

protection against neurodegeneration, as for instance was demonstrated in human cell 

models and in Drosophila and mouse models for Huntington’s disease (HD), is autophagy 

(Ravikumar et al., 2004; Yamamoto et al., 2006). Autophagy is the major pathway for 

clearance of potentially toxic aggregate-prone proteins and the only known pathway to 

degrade damaged organelles (Box 2: Autophagy: a short introduction). Basal autophagy is 

required for preventing the accumulation of abnormal proteins which can ultimately lead to 

neurodegeneration, even in the absence of disease-associated mutant proteins (Hara et al., 

2006; Komatsu et al., 2006). A number of neurodegenerative disorders are characterized by 

the accumulation of cytosolic protein-aggregates and dysfunctional autophagic 

compartments, which raises the possibility that inefficient removal of aggregated proteins is 

at least contributory to the disease (Rubinsztein, 2006). 
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Box 2  Autophagy: a short introduction 

 
 

Autophagy is a strictly regulated lysosomal pathway that degrades cytoplasmic material, 
long-lived proteins and organelles and is essential for survival, differentiation, 
development and homeostasis. A basal level of autophagy is important for cell 
homeostasis and the pathway is upregulated under conditions of stress caused by for 
instance amino acid starvation, unfolded protein response or viral infection. 
 
Four different autophagic routes are distinguished: (1) macroautophagy (hereafter 
referred to as autophagy) in which a portion of cytoplasm is engulfed by a specialized 
organelle, the autophagosomes, which subsequently fuses with the lysosome and 
delivers the cytoplasm for degradation (Mortimore et al., 1983); (2) microautophagy, in 
which the lysosomal membrane directly sequesters a portion of the cytoplasm (Ahlberg et 
al., 1982); (3) chaperone-mediated autophagy, in which proteins are directly translocated 
across the lysosomal membrane (Cuervo and Dice, 1996), and (4) organelle specific 
autophagy, for instance; crinophagy in which secretory vesicles fuse directly with 
lysosomes, and mitophagy, in which mitochondria fuse directly with lysosomes 
 
The control of autophagy is nutritionally, hormonally and developmentally regulated 
through multiple signalling pathways (Levine and Klionsky, 2004). The induction by a 
stress-signal leads to the elongation of a flat membrane cistern, the phagophore or 
isolation membrane, which engulfs a portion of cytoplasm, thereby forming an 
autophagosome. The elongation process requires an elaborate molecular machinery in 
which autophagy related genes (Atg) play a crucial role. Two protein conjugation systems 
are known to be required for autophagosomes formation, the Atg12-Atg5 conjugation and 
Atg8/LC3-phosphatidylethanolamine conjugation systems (Ohsumi, 2001), that are both 
activated by Atg7 (Mizushima et al., 2003). Upon activation, Atg12 is transferred to Atg5 
whereas Atg8/LC3 is conjugated to phosphatidylethanolamine and by this means to the 
membrane. Atg8/LC3 localizes to the limiting membranes of autophagosomes (Kabeya et 
al., 2000) and mediates membrane tethering and elongation of the phagophore 
(Nakatogawa et al., 2007). Ultimately, the autophagosome fuses with a lysosome or with 
an endosome, forming an autolysosome or amphisome, respectively (Berg et al., 1998; 
Gordon and Seglen, 1988), to deliver the engulfed cytoplasm for degradation. The 
degradation products are transported back to the cytoplasm for reuse (see figure). 
 
Autophagy is an adaptive event and serves to protect organisms against diverse 
pathologies, including infection, cancer, neurodegeneration, aging and heart disease.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Adapted from: (Eskelinen, 2008) 



 47

Recently, mutations in the ESCRT-III subunit CHMP2B/Vps2 were associated with a rare 

form of autosomal dominant frontotemporal dementia (FTD) (Skibinski et al., 2005) and 

amyotrophic lateral sclerosis (ALS) (Parkinson et al., 2006), two neurodegenerative diseases 

that present with ubiquitin- and p62/Sequestosome-1 positive inclusions in affected neurons 

(Holm et al., 2007). p62/Sequestosome-1 is a common component of protein inclusions 

associated with neurodegenerative disease (Talbot and Ansorge, 2006) and owing to its 

interaction with the autophagic protein LC3/Atg8 as well as its aptitude to bind 

polyubiquitin through its UBA domain, p62 provides a possible link between protein 

aggregation and autophagic clearance (Bjørkøy et al., 2005; Pankiv et al., 2007; Vadlamudi 

et al., 1996). The role of ESCRTs with regard to autophagy, on the other hand, was 

relatively unexplored until recently. In PAPER III we demonstrate that depletion of 

ESCRT subunits in mammalian cells causes accumulation of autophagosomes and 

ubiquitin-, p62-, LC3 positive protein-aggregates. The inhibition of autolysosome formation 

in ESCRT-depleted cells and in cells expressing CHMP2B mutants indicates a role for 

ESCRTs in the efficient fusion between autophagosomes and lysosomes. How ESCRTs 

mediate fusion is not yet clarified. However, failed recruitment of the class C vps/HOPS 

complex was previously demonstrated to be required for the fusion between 

autophagosomes/amphisomes and endo-lysosomal compartments (Lindmo et al., 2006; 

Pulipparacharuvil et al., 2005). Interestingly, Vps18, a subunit of the class C Vps/HOPS 

complex, is known to interact with Hrs/ESCRT-0 and Tsg101/ESCRT-I (Kim and Akazawa, 

2007). In the context of membrane fusion it is worth mentioning that a syntaxin N-terminus 

domain is predicted in Tsg101 (NP_006283, NCBI protein database). A member of the 

syntaxin family, syntaxin 1, is known to be one of three crucial soluble N-ethylmaleimide-

sensitive factor attached protein receptors (SNAREs) implicated in membrane fusion 

(Ungermann and Langosch, 2005). Nevertheless, the dramatic alterations of endosome 

morphology and the formation of membranous stacks after Tsg101 depletion, suggest a 

specific role of Tsg101 in membrane dynamics, possibly by regulating fission and fusion of 

membranes. Furthermore, proper maturation of endosomes and accurate performance of 

endocytic traffic may be required in order to provide membrane proteins and lipids 

necessary for either tethering or fusion between compartments of the endocytic pathway and 

the autophagic pathway. Even though the possibility that non-MVE related ESCRT 

functions affect autophagic clearance can not be excluded, our data, strengthened by studies 

in Drosophila (Lee et al., 2007; Rusten et al., 2007), strongly indicate that dysfunctional 



 48 

MVEs inhibit autophagic degradation and lead to the formation of cytosolic protein 

inclusion that ultimately may cause neurodegenerative disease. 

 

TAR-DNA-binding protein 43 (TDP-43) is identified to be the major ubiquitinated 

component of protein inclusions found in affected cells of patients with the most common 

type of FTD, frontotemporal lobar degenerations with ubiquitin deposits (FTLD-U), and 

ALS and is the common pathological substrate linking these neurodegenerative disorders 

(Neumann et al., 2007). In PAPER III we demonstrate that TDP-43 accumulates in the 

p62- and ubiquitin-positive aggregates in cells depleted of ESCRT-subunits, suggesting a 

link between TDP-43-positive inclusions and proteins required for MVE formation and 

autophagic degradation. However, in contrast to other cases of FTLD-U, protein inclusion in 

cells from patients with the CMMP2B mutation are TDP-43 negative (Holm et al., 2007) 

and this may suggest for MVEs to have distinctive effects in TDP-43-positive and TDP-43-

negative FTLD-U. It is worth noting that depletion of ESCRT subunits in cellular or 

Drosophila models for HD inhibits clearance of expanded polyglutamine aggregates 

(PAPER III, and (Rusten et al., 2007)). This suggests a wide-ranging functional role for 

ESCRTs in mechanisms for autophagic clearance. 

 

In addition to CHMP2B, a number of indirect links between the ESCRT machinery and 

neurodegeneration were recently found. For instance, a null mutation of the Tsg101 

ubiquitinating E3 ubiquitin ligase Mahogunin was reported to cause spongiform 

neurodegeneration, a hallmark of prion-like disease, in mice (Kim et al., 2007). SIMPLE, 

another Tsg101 interacting protein, is mutated in Charcot-Marie-Tooth type 1C, a hereditary 

disease causing demyelinating peripheral neuropathy in humans (Shirk et al., 2005). 

Furthermore, the putative ESCRT-III interacting proteins spastin and spartin are mutated in 

hereditary spastic paraplegia, a group of diseases characterized by length-dependent 

degeneration of the distal end of long axons (Patel et al., 2002; Reid et al., 2005). 

 

 

Cancer 
The dysregulation of growth factor receptor signaling by constitutive overexpression, 

overstimulation or mutational activation is known to be strongly contributory to the 

pathogenesis of various types of cancer (Yarden and Sliwkowski, 2001). Owing to its 
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important role in the down-regulation and signal attenuation of several growth factor 

receptors (PAPER I and II), the ESCRT machinery is a critical factor in the control of cell 

growth and proliferation and is consequently associated with carcinogenesis. Interestingly, 

the mammalian ESCRT-I subunits Tsg101 and Vps37A/HCRP1 are located to chromosomal 

regions that frequently are either deleted or mutated in cancers, and were proposed to 

function as tumour suppressors accordingly (Li and Cohen, 1996; Xu et al., 2003). 

Downregulation of TSG101 in mouse fibroblasts is found to initiate cell tranformations, and 

injection of these cells into nude mice results in metastatic tumour growth (Li and Cohen, 

1996). Contradictory, however, conditional knock out of TSG101 in mice is demonstrated to 

result in increased apoptosis, but does not lead to neoplastic transformation or 

tumourigenesis (Krempler et al., 2002; Wagner et al., 2003). Conversely, Tsg101 is reported 

to be upregulated in a variety of malignant tumours, i.e. papillary thyroid carcinomas, 

gastrointestinal stromal tumors, ovarian carcinomas and a subset of mammary carcinomas, 

and is suggested to serve as a prognostic indicator (Koon et al., 2004; Liu et al., 2002; Oh et 

al., 2007; Young et al., 2007a; Young et al., 2007b). Besides its functions in endocytosis as 

a component of the ESCRT machinery, Tsg101 is known to be critical for normal 

proliferation and growth by regulating the levels of proteins that are involved in controlling 

the cell cycle (Carstens et al., 2004; Krempler et al., 2002; Li et al., 2001; Oh et al., 1998). 

Through which mechanisms and interactions exactly Tsg101 affects proliferation and 

carcinogenesis remains to be elucidated. However, Tsg101 is highly conserved among 

species, maintained at steady-state levels and is found to interact with a considerable 

number of diverse proteins through its variety of binding domains. This strongly indicates 

Tsg101 to be a protein of versatility and of great importance to cell function. The 

requirement of Tsg101 for autophagic degradation (PAPER III) in combination with the 

role of autophagy in carcinogenesis (Levine, 2007)  provides another link between Tsg101 

and cancer and allows us to draw an even more complex, yet more interesting picture. 

 

Expression of the other ESCRT-I subunit associated with tumor suppression, 

Vps37A/HCRP1, was found to be strongly reduced in hepatocellular carcinomas. Even 

though the exact pathogenesis remains unclear, data suggest that Vps37A/HCRP1 plays a 

role in suppressing proliferation and malignant transformation in addition to preventing cell 

invasion and tumor metastasis (Xu et al., 2003; Yokota et al., 1999). Also subunits from 

other ESCRTs and ESCRT-associated proteins are implicated in tumor growth, either 

directly or indirectly. For instance, the ESCRT-0 subunit Hrs is involved in the development 



 50 

of benign brain tumors (e.g. Schwannomas, meningiomas, ependymomas), through 

interaction with the neurofibromatosis 2 tumor suppressor protein Schwannomin and 

regulation of STAT signaling (Gutmann et al., 2001; Scoles et al., 2002). Similarly, the 

ESCRT-III-subunit Vps24/CHMP3 is, in concert with insulin growth factor-binding protein 

related protein 1, found to induce neuroendocrine cell differentiation resulting in 

progressive cancers, i.e. prostate cancer and non-small cell lung cancer, with poor prognosis 

(Walker et al., 2006; Wilson et al., 2001). Finally, CHMP1A, which encodes an ESCRT-III-

associated protein, was recently reported to function as a novel tumour suppressor gene in 

ductal pancreatic tumour cells (Li et al., 2008). 

 

The role of ESCRTs in malignant tumour growth has been strengthened by data from 

studies in the model organism Drosophila melanogaster. In this organism, clonal loss of 

Tsg101 in epithelia is demonstrated to cause massive hyperplasia of surrounding wild type 

tissue even though the mutant cells undergo apoptosis (Moberg et al., 2005). A similar 

phenotype is found upon loss of ESCRT-II subunit Vps25, whereas loss of the ESCRT-0 

subunit Hrs has no such effect (Thompson et al., 2005; Vaccari and Bilder, 2005). The 

tumour growth is most likely a result of hyperactivation of Notch and growth factors which 

accumulate in aberrant endosomes, in combination with the loss of epithelial polarity in 

mutant cells. The discrepancy of data found in flies and in mammals is not apparent but 

could be related to the more complex cellular mechanism in higher eukaryotes. 

Nevertheless, these data support the idea that ESCRT proteins, either individually or in 

complex, are involved in carcinogenesis in humans. However, additional studies are 

required to unravel their specific functional mechanisms. It is worth mentioning that 

ESCRTs are known to play a role in cytokinesis (Carlton and Martin-Serrano, 2007; Morita 

et al., 2007). Cytokinesis is the process by which cells separate after the duplication and 

spatial segregation of their genetic material (Barr and Gruneberg, 2007), and incomplete 

cytokinesis can result in aneuploid cells, which is a characteristic of cancer. 

 

 

Infections 
The relation between ESCRTs and infection is rather double-sided. On one hand, endocytic 

and autophagic pathways are important actors in innate immunity and the ESCRT 

machinery appears to be crucial for the elimination of certain bacteria by lysosomal 
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degradation. For instance, Mycobacteria have the capacity to prevent fusion of the 

macrophagic phagosomes in which they reside with lysosomes and are hence able to survive 

and replicate intracellularly. Several ESCRT components were recently identified to restrict 

microbial replication and impediment of ESCRT function was found in cells prone to 

mycobacterial infections (Philips et al., 2008; Vieira et al., 2004). How ESCRTs intervene 

with mycobacterial replication is not yet known, but is likely related to phagosome 

formation and/or phagosome-lysosome fusion and would be highly consistent with the 

proposed function of ESCRTs in the fusion reaction of autophagosomes with lysosomes 

(PAPER III).  

 

On the other hand, however, enveloped RNA viruses (e.g. HIV-1, Ebola, rabies virus) have 

the ability to exploit the ESCRT machinery in favor to their budding (Morita and Sundquist, 

2004). Their structural proteins contain one or two of the three different classes of “late” (L) 

domains, i.e. P(S/T)AP, PPXY or YP(X)nL, through which they interact with their target 

protein. For instance, the P(S/T)AP motif of HIV-1 Gag binds directly to the N-terminal 

UEV domain of the ESCRT-I subunit Tsg101  and this interaction is required to facilitate 

HIV-budding (Pornillos et al., 2002). Interestingly, Hrs also contains a PSAP motif and 

recruits Tsg101 in the same manner (Bache et al., 2003a). However, HIV-1 Gag was 

demonstrated to have a sevenfold higher affinity than Hrs for Tsg101 (Pornillos et al., 

2003). Moreover, HIV-1 Gag recruits the ESCRT-III associated protein AIP1/Alix through 

interaction with its YP(X)nL L-domain (Strack et al., 2003). Like Tsg101, AIP1/Alix is 

demonstrated to be involved in MVE biogenesis and inward budding (Falguieres et al., 

2008; Odorizzi et al., 2003). Current data suggests that enveloped RNA viruses ultimately 

recruit ESCRT-III and Vps4 in order to initiate final abscission of virions from the plasma 

membrane (Martin-Serrano, 2007). The exact functions of ESCRT-III and Vps4 in this 

process are yet to be clarified. However, clear similarities with the inward budding of 

vesicles into MVEs are brought to mind and point out the great value of models and virus 

studies in the elucidation of molecular cell mechanisms. 

 

The double-sided influence of ESCRTs on the host’s immunity and the potential 

carcinogenicity of ESCRT disruption bring about challenges in the development of antiviral 

drugs targeting the ESCRT machinery. Nevertheless, bearing in mind the relatively recent 

discovery of the ESCRT machinery (Katzmann et al., 2001) and the astonishing progress 

that has been made during the past decade in acquiring knowledge of the biochemical and 
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physiological properties of the ESCRT machinery, we should nurture our ambitions and be 

nothing but optimistic for the future.  

 

Methodological considerations 
 

The majority of methods used in this work are well-established and well-described in 

textbooks and scientific publication. This section will therefore not contain a detailed 

description of these methods, but will rather be used to discuss a number of aspects and 

pitfalls worth noting. 

 

Electron microscopy vs. Immunofluorescence Confocal Microscopy? 

The electron microscope has profoundly influenced our understanding of the cell. Electron 

microscopes utilize the much smaller wavelength of the electron (i.e. < 0.005 nm (at 60kV) 

compared to a wavelength of 380 nm for violet light), thereby permitting not only another 

thousandfold increase in magnification but, importantly, also a parallel improvement in 

resolution capacity. This led to the visualization of viruses, DNA and smaller organelles for 

the first time and allowed biologists to both define and expand the world of light 

microscopy. Initially, in the field of biology, electron microscopy (EM) was used 

predominantly for the purpose of describing cell structures and components. However, in 

time many new techniques for sample preparation were developed, including several good 

immuno-EM methods that allowed the localization of molecules within their cellular 

environment, which led to the increased popularity of functional and analytical approaches 

(Slot and Geuze, 1985). During the nineties, however, with new and better techniques for 

light microscopy developing, interest in EM declined steadily. However, it should be 

stressed that, no matter how far the limits of light microscopy will be pushed, it will never 

be an adequate alternative for the use of EM approaches. The resolution that can currently 

be achieved by immunofluorescence (IF) microscopy is, under specialized circumstances, 

around 100 nm (Klar et al., 2000). In comparison to the down to 0.3 nm resolution provided 

by transmission electron microscopes (TEMs) used for applications in life sciences, it is 

obvious that these two methods are in separate leagues and are by no means meant to 

replace each other (see example in Figure 5).  
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Figure 5 (A) IF confocal microscopy of control cells shows punctuate endosomal labelling to 
the early endosomal marker EEA1 (green) and the late endosomal marker CD63 (red) (left panel). 
By EM endosomal compartments are visible as individual compartments of normal size (300-400 
nm) (right panel). In (B) endosomal labelling of Rab5Q79L transfected cells is shown. 
Overexpression of this constitutively active form of Rab5 leads to the enlargement of endosomes 
due to an increased fusion rate. By IF microscopy, the enlarged endosomes are clearly visible 
through labelling to EEA1 (green) and CD63 (red). There is some colocalization (yellow) between 
the two markers. By EM (right panel B) strongly enlarged endosomes are visible, representing the 
red and green labelled structures in the left panel IF image. In (C) the pattern of IF labelling (EEA1 
is red, CD63 is green) is largely similar to the labelling pattern in (B). There appears to be no 
colocalization between the two markers, but structures are strongly enlarged. However, the EM 
image in (C) shows a completely different morphology than in (B), with large areas of membrane 
sheets and folds (C) in addition to enlarged endosomal structures (not shown) with a different 
morphology to the enlarged endosomes in (B). This shows that even though one can get comparable 
images by IF confocal microscopy, one can observe very different morphological features by EM. 
Scale bars, 200 nm. (IF image (B) by C. Sem-Jacobsen). 
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Immunofluorescence confocal microscopy has developed into one of the most popular 

techniques used in the field of cell biology and adjoining fields during the past decade. Not 

only is nearly any research group keen to use the method, it has been increasingly difficult 

to publish in scientific journals without colorful IF images to support your data. In part this 

is understandable: IF microscopy is a powerful method which allows fully hydrated 

specimens to be visualized under natural environmental conditions. Even though the direct 

imaging of, for instance, protein molecules is impossible, those may be localized by use of 

probes with specific binding properties (e.g. antibodies, enzyme substrates, etc.). 

Importantly, IF microscopy can be used for life cell imaging, which allows the study of 

labeled protein molecules in a spatial and temporal matter under functionally changing 

circumstances. These methodological advantages in combination with the relatively easy 

preparation methods and quick data acquisition make IF confocal microscopy a widely used 

and highly appreciated method. However, the facts that the confocal microscope occupies 

such a prominent position in nearly every research facility and that the microscope is readily 

used by anyone with or without an understanding of the basic physics principles of the 

microscope lead to the acquisition of great errors instead of great images all too frequently 

(North, 2006).  

 

Even though the vast amount of advantages, like in any other method used in life sciences, 

there are a few limitations to the use of EM. The biggest disadvantage of EM in life sciences 

is that direct monitoring of dynamic processes in samples is not possible. Since visualization 

by TEM has to be performed under vacuum conditions in order for the electron beam to 

travel through, the sample is either dehydrated or frozen, and so inactive. It is however a 

misconception that EM can only provide a static picture of events. Similar to other 

biochemical methods, kinetic data of a protein can readily be acquired by studying the 

protein at a few different time-points, as for instance in a pulse-chase experiment. In 

combination with immunogold labeling of cells and quantitative analyses, this approach is 

equally or possibly even more reliable than any other and is providing a large amount of 

(detailed) data. This, however, leads to two potential drawbacks of EM, i.e. i) it is more 

time-consuming than several other methods used in cell biology and biochemistry, and ii) 

the amount of data acquired by EM is huge and can potentially be overwhelming and 

confusing at first sight. Owing to stereology – the mathematically based approach for 
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quantifying structural parameters such as for instance cell surface areas, and length and 

volume of structures – the large amounts of data can be efficiently interpreted in an 

unbiased manner (Mayhew, 1991). It does nevertheless also highlight where EM differs 

from many other cell-biology approaches: EM is based largely on experience, it takes a 

well-trained eye to distil specific data from the quantity, and the training to acquire this 

experience takes years (Geuze, 1999; Griffiths, 2004). 

 

In conclusion, novel approaches for both electron microscopy and IF confocal microscopy 

are under constant development, and are very likely to provide us with more exciting new 

data in the near future. The relatively recent introduction and nowadays more regular used 

method of 3D-EM-tomography, for instance, has already led to novel structural insights in 

the field of cell biology. In particular, in the first 3D reconstruction of the eukaryotic cell (of 

the yeast Schizosaccharomyces Pombe) it was shown that mitochondria form extended 

tubular networks (Hoog et al., 2007) and are no individual entities as was initially assumed. 

Moreover, ILVs in the MVEs of B-lymphocytes and dendritic cells were shown to be free 

vesicles and not stay attached to the limiting membrane (Murk et al., 2003). These are only 

two recent examples that are promising for further discoveries generated by the use of 

microscopy. Additionally, with the mapping of whole genomes, an enormous number of 

gene products require elucidation to which localization data often provides the first clue. It 

is therefore worth emphasizing that electron microscopy and IF confocal microscopy are 

complementary and irreplaceable methods and especially, that it is crucial for the research 

community to continue investments in EM facilities and the training of EM-experts. 
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Conclusions, Perspectives and Outstanding Questions 
 

 

In this thesis we have focused on the role of ESCRT proteins and phosphoinositides in MVE 

biogenesis, endocytic traffic and pathogenesis. The included work has led to the following 

main conclusions: 

 

I The ESCRT-III subunit Vps24 is, similar to the other ESCRTs characterized so far, 

required for degradative trafficking of EGFR. However, in contrast to Tsg101/ESCRT-I, 

Vps24 does not play a role in the attenuation of receptor signaling.  

 

II  ESCRT-II plays an important role in the degradative sorting of at least two important 

receptor families. Similar to Vps24/ESCRT-III and in contrast to ESCRT-0 and ESCRT-I, 

ESCRT-II is not involved in the silencing of EGF signaling from endosomes. 

 

III Depletion of ESCRT subunits or the overexpression of CHMP2B mutants inhibits 

autophagic degradation, leading to the accumulation of ubiquitin-positive aggregates that 

contain proteins associated with neurodegenerative disease. 

 

IV  RILP is required for the trafficking of EGFR, and most likely other (ubiquitinated) 

receptors, for lysosomal degradation. RILP is involved in the biogenesis of MVEs, perhaps 

by coordinating this process with dynein-mediated endosome motility. 

 

V Depletion of the ESCRT machinery leads to a dramatic alteration in morphology of 

components of the endocytic pathway, yet, compartments stay clearly differentiated. MVEs 

can still be formed, indicating that ESCRT-independent mechanisms for the formation of 

ILVs and/or MVEs exist. 

 

VI Results demonstrate the usefulness of the dimerizer-inducable GFP-Fv-FYVE(Hrs) 

probe in time-resolved ultrastructural mapping of PtdIns(3)P but also caution that 

PtdIns(3)P sequestration may cause unexpected disturbance of endosomal functions. 
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During the past decade, parallel studies in yeast, Drosophila and mammalian cells have led 

to the elucidation of a great deal of the sophisticated machinery that is responsible for the 

degradative sorting of ubiquitinated receptors and, at least in part, the biogenesis of MVEs. 

Moreover, a number of additional functional roles of this machinery were discovered in, for 

instance, viral budding, cytokinesis and autophagy. With the accumulation of knowledge the 

complexity of cellular processes becomes apparent and brings along the challenge to fit all 

the acquired data, often from different model organisms, into one coherent model. 

 

A recent comparative genomic analysis shows that ESCRT factors are well conserved 

across the eukaryotic lineage and complexes I, II, III and III-associated are almost 

completely retained, indicating an early evolutionary origin (Leung et al., 2008). 

Interestingly, homologues of eukaryotic ESCRT-III components and the ATPase Vps4 were 

found to play a crucial role in the process of cell division in the prokaryote Sulfolobus 

acidocaldarius of the domain of Archaea (S.D. Bell, ESCRT meeting Cambridge 2008, 

unpublished). This is proposed to be reflective of an ancesteral role for at least part of the 

ESCRT machinery in cell division and supports data found in eukaryotes that besides their 

role in the sorting of membrane proteins, ESCRT proteins play an important role in 

regulating membrane dynamics. Their regulation mechanisms are not yet clarified, however, 

and two crucial questions that remain unanswered are how ESCRTs promote inward 

vesiculation of the endosomal membrane and how sorting and signaling events and MVE 

biogenesis are coupled mechanistically.  

 

In mammalian cells, MVEs play other pivotal roles besides their functions in the sorting of 

cargo for lysosomal degradation and growth regulation. In several cell types, for instance B 

cells and T cells, dendritic cells, neuronal cells and tumor cells, MVE are known to have the 

capability to fuse with the plasma membrane and secrete their ILVs, now called ‘exosomes’, 

into the extracellular environment (van Niel et al., 2006). The protein and lipid composition 

of exosomes reflects the specialized function of their original cell. For instance, B 

lymphocytes are known to secrete exosomes during exocytic fusion of the multivesicular 

MHC class II compartment with the plasma membrane, hereby mediating antigen 

presentation and activation of the immune response  (Raposo et al., 1996). Additionally, the 

release of exosomes provides a mechanism of intercellular communication and can 
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potentially function as disease biomarkers and vaccine candidates (Schorey and Bhatnagar, 

2008). 

 

Given the complexity of the ESCRT machinery, it seems surprising that not more ESCRT 

subunits are found to be mutated in diseases to date. It is, however, important to emphasize 

that the ESCRT machinery is essential for viability (Komada and Soriano, 1999) and that 

dominant ESCRT mutations may cause prenatal death. The more recently established link 

between the molecular mechanisms of ESCRTs and pathogenesis highlights the importance 

of unraveling the biochemical properties of the ESCRT machinery and its role in physiology 

and pathogenesis. Ultimately, the ESCRT machinery may be a beneficial marker in 

diagnostics and an advantageous target for therapy within cancer, neurodegeneration and 

viral infection. 
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