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1. AIMS OF THE STUDY 

 

The principal aim of this study was to investigate photochemical internalization (PCI) as 

a means to activate the therapeutic potential of type I ribosome-inactivating proteins 

(RIPs) targeted to cancer cells by EGFR or HER2 binding; i.e. PCI of EGFR- and 

HER2-targeted toxins. It was hypothesized that PCI of EGFR- and HER2-targeted 

toxins could represent an alternative treatment in cancers with limited sensitivity to 

currently available EGFR- and HER2-targeted therapies. PCI has previously been 

shown to potentiate the efficacy of EGFR-targeted toxins based on the biotin-

streptavidin binding between the targeting and toxin moieties. These previous studies 

were, however, proof-of-concept studies and the targeted toxins utilized had little 

potential for clinical use. PCI of HER2-targeted toxins had not previously been 

investigated. 

The present thesis had two overall aims: 

A) To demonstrate the principle of PCI of HER2-targeted toxins. 

 First, as a proof-of-principle study utilizing an antibody-toxin conjugate based 

on the streptavidin-saporin binding. 

 Secondly, to investigate the potential of PCI in improving the efficacy of an 

already established recombinant HER2-targeted toxin.   

 To study PCI of HER2-targeted toxins in relevant cancers with poor 

responsiveness towards already available HER2-targeted therapies.  

 

B) To further develop the concept of PCI of EGFR-targeted toxins. 

 To design and produce a recombinant EGFR-targeted fusion toxin based on the 

type I RIP gelonin for PCI-mediated administration. 

 Document the effect of PCI of an EGFR-targeting recombinant toxin both in 

vivo and in vitro with respect to mechanisms of cytotoxicity, specificity, 

antitumor effects and potential side effects.  

 To study PCI of the established EGFR-targeted fusion toxin in HNSCC cell lines 

and in a clinically relevant HNSCC tumor xenograft. 
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2. INTRODUCTION 

 

2.1 Résumé; Rationale for PCI of toxins targeting the EGFR family 

Cancer represents a major global health problem causing over 8 million deaths 

annually. The global cancer burden is increasing and is expected to nearly double by 

2030 (American Cancer Society). Surgery, chemotherapy and radiotherapy are still the 

three cornerstones of cancer therapy. Major efforts are, however, being put into 

developing new cancer treatments that more precisely identify and attack cancer cells in 

order to improve disease control while reducing damage to healthy tissue. Epidermal 

growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) 

are two of the most utilized cancer-associated proteins for targeted therapy of solid 

cancers. However, currently available EGFR- and HER2-targeted monoclonal 

antibodies (mAbs) and tyrosine kinase inhibitors (TKIs) have clear limitations related to 

induction of drug resistance and treatment specificity (Chong and Janne, 2013; Nahta et 

al., 2006). The ability of EGFR and HER2 to undergo receptor-mediated endocytosis 

combined with their overexpression in several cancers makes them interesting 

candidates for targeted delivery of protein toxins to cancer cells. EGFR- and HER2-

targeted toxins use these receptors as delivery portals of potent cytotoxic agents into the 

cytosol. The mechanistic targets of action for these targeted toxins are ribosomes where 

the toxin inhibits translation. Targeted toxins are, therefore, clinically not necessarily 

limited by the same mechanisms as mAbs and TKIs (Lewis Phillips et al., 2008). An 

extensive number of fusion toxins targeting EGFR and HER2 have been described in 

the literature and many of them have shown anti-tumor effects in human xenograft 

models, including breast cancer (Cao et al., 2012), ovarian cancer (Cao et al., 2009), 

head and neck cancer (Thomas et al., 2004; Barnea et al., 2013; Engebraaten et al., 

2002), brain tumors (Liu et al., 2005; Phillips et al., 1994) and pancreatic cancer (Bruell 

et al., 2005). Dose-limiting toxicity as well as immunogenicity have been demonstrated 

as limitations for clinical use (Pai-Scherf et al., 1999; Azemar et al., 2000; Azemar et 

al., 2003) and no EGFR- or HER2-targeted toxin has so far gained clinical approval 

from the US Food and Drug Administration (FDA) or the European Medicines Agency 

(EMA). There is, therefore, a need for clinically relevant strategies to reduce off-target 

toxicity and immunogenicity provided by such targeted toxins. 
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PCI is a modality for site-specific cytosolic release of drugs entrapped in cellular 

endosomes and lysosomes (Berg et al., 1999; Selbo et al., 2010). Type I RIPs linked to 

targeting moieties are ideal candidates for delivery by PCI, since these are specifically 

taken up in cancer cells, but have severely limited efficacy due to endosomal 

entrapment (Pirie et al., 2011; Yazdi and Murphy, 1994). However, once translocated to 

the cytosol, these toxins are equally toxic to type II toxins (Vago et al., 2005). PCI may 

increase the tumor-specific potential of type I RIP-based targeted toxins by promoting 

cytosolic translocation only in tissue simultaneously targeted by photosensitizer and 

light (Fig. 1) (Weyergang et al., 2011). Hence, the toxin dosage and, subsequently, the 

adverse effects, may be reduced by PCI. PCI may further combat problems with 

immunogenicity associated with iterative administration of fusion toxins, since PCI in 

clinical studies has been shown effective with only one single treatment cycle. In this 

thesis, we hypothesized that PCI may have great potential in improving the efficacy and 

specificity of type I RIP-based EGFR- and HER2-targeted toxins and, hence, may 

represent an interesting alternative for treatment of solid cancers overexpressing EGFR 

and HER2.  

Figure 1: The concept of PCI of type I RIP-based targeted toxins (with targeting of EGFR as an 

example). The targeted toxin is taken into the cell by receptor-mediated endocytosis and localizes to 

endocytic vesicles with the photosensitizer (TPCS2a) in the membrane compartment. Visible light at 

appropriate wavelengths activates the photosensitizer and induces oxidative damage to the membrane. 

The toxin is then released into the cytosol where it may induce potent cytotoxic effects by targeting the 

ribosomes. 
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2.2 Photochemical internalization (PCI) 

Hydrophilic macromolecular drugs with intracellular action points hold great 

promise as novel therapeutics, but their use is often limited by the lack of safe, efficient 

and specific delivery strategies. The plasma membrane act as a barrier to cellular entry 

of such drugs and these are, therefore, taken up by different mechanisms of endocytosis 

(Alberts et al., 2002). The targets of these macromolecular drugs are often located in the 

cytoplasm or nucleoplasm, but usually only a minor fraction of the drug molecules are 

able to escape endosomes before they are degraded in lysosomes (Lloyd, 2000; Pirie et 

al., 2011). This prevents the macromolecular drugs from reaching their therapeutic 

potential and results in the need for dose escalation, which increases the risk of adverse 

effects.  

Photochemical internalization (PCI) is a relatively new treatment modality for 

release of drugs that accumulate in endosomes and lysosomes (Berg et al., 1999; Selbo 

et al., 2002). PCI may be used to potentiate the effect of drugs that do not reach their 

full potential due to lysosomal degradation. PCI utilizes two individually nontoxic 

components; a photosensitive compound (photosensitizer) (Berg et al., 2011) that 

accumulates in the membrane of endocytic vesicles and visible light at specific 

wavelengths (Norum et al., 2009b). In combination, these two components induce 

oxidative damage to the vesicle membrane and subsequently, the drug trapped inside the 

endocytic vesicles is released into the cytosol where it may reach its target. It was 

initially thought that the photosensitizer and macromolecule to be released had to be 

localized in the same endocytic vesicles at the time of light exposure (“Light after” 

principle) (Fig. 2). Later, it was discovered that the endocytic vesicles could very well 

be permeabilized up to 6-8 hrs before delivery of the macromolecule of interest, with 

the advantage of avoiding a prolonged and potential detrimental stay of the molecules in 

the endocytic vesicles (Prasmickaite et al., 2002). The likely mechanism behind this 

effect (called the “Light first” principle) is the fusion of photochemically ruptured 

vesicles with intact vesicles carrying the macromolecules, leading to endosomal release 

of the macromolecules. Which approach leads to the better result seems to depend on 

the macromolecule to be delivered. The two strategies have been shown equally 

effective for delivery of bleomycin and reporter transgenes (Prasmickaite et al., 2002; 

Berg et al., 2005a; Berg et al., 2011), while “Light first” PCI has been found superior 
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for delivery of the protein toxin gelonin (Prasmickaite et al., 2002; Berg et al., 2006). In 

contrast, PCI of targeted protein toxins has only been proven effective when using the 

“Light after” principle (Yip et al., 2007; Selbo et al., 2009; Berstad et al., 2012). 

Photochemical damage to the targeting receptor has been proposed as a mechanism 

behind these findings (Weyergang et al., 2007; Berstad et al., 2012). PCI has been 

shown to stimulate cytosolic delivery of a large variety of drugs, including proteins, 

protein toxins, adenovirus, nucleic acids and chemotherapeutic drugs, reviewed in 

(Selbo et al., 2010) and (Weyergang et al., 2011).  

Figure 2: Schematic illustration of PCI. Without PCI: The drug is taken up by endocytosis and 

transported via endosomes to lysosomes for degradation. PCI “Light after”: The drug is localized in 

endocytic vesicles with photosensitizer (PS) in the vesicle membrane.  Light-induced activation of the 

photosensitizer causes disruption of the membrane and the drug escapes to interact with its target in the 

cytosol. PCI “Light first”: The photosensitizer is first taken up in endocytic vesicles and activated by 

light. Further, the drug is administered and internalized into the cell. Drug-containing vesicles fuse with 

the ruptured vesicles, leading to drug release and interaction with target.  
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2.2.1 Photochemical reaction mechanisms 

A photosensitizer is defined as a chemical entity that upon light absorption initiates 

a photochemical or photophysical alteration of another chemical entity (Dougherty et 

al., 1998). The first scientific reports on the use of photosensitizers in combination with 

light date back to the early 20th century when Raab, von Tappeiner and Jesionek showed 

that light could potentiate the cytotoxic effects of acridine, eosin and hematoporphyrin 

(Von Tappeiner and Jesionek, 1903), a phenomenon described as “Photodynamic 

action”. These findings marked the beginning of what we today know as photodynamic 

therapy (PDT), described in Section 2.2.5 (Agostinis et al., 2011). 

 Following the absorption of light (photons) at the right wavelength, a 

photosensitizer is excited from its ground state (0p) to a short-lived singlet state                             

(1p, Fig. 3) (MacDonald and Dougherty, 2001). From the singlet state, the absorbed 

energy may be emitted as heat (internal conversion), fluorescence or alternatively, the 

photosensitizer can enter a more stable triplet state (3p) through a process termed 

intersystem crossing (ISC). From the triplet state, the energy can be emitted as heat, 

phosphorescence or the photosensitizer can react with molecular oxygen, forming 

singlet oxygen (1O2) (MacDonald and Dougherty, 2001). 1O2 is assumed to be the most 

important ROS in therapeutic utilization of photosensitizers, and 1O2 is the favored 

photoreaction product in an oxygenated environment (type II reaction) (Weishaupt et 

al., 1976). Alternatively, the photosensitizer in its triplet state might exchange an 

electron or a hydrogen atom with a substrate, forming a reactive free radical (Geiger et 

al., 1997; Price et al., 2009). This radical can then react with oxygen, forming oxygen 

radicals, such as superoxide anion, hydroxyl radical and hydrogen peroxide. In areas 

with insufficient oxygen levels, type I reactions might dominate (Ferraudi et al., 1988; 

Moan and Sommer, 1985). However, other factors than O2 also influence on the ratio 

between type I and II reactions, e.g. type of photosensitizer, substrate concentration and 

the binding affinity for the substrate (Foote, 1968). Both 1O2 and type I photoreaction 

products are highly reactive and induce oxidative cellular damage. 1O2 oxidizes several 

types of biomolecules, such as unsaturated fatty acids (Doleiden et al., 1974; Sakharov 

et al., 2005), cholesterol (Geiger et al., 1997), amino acids (tryptophan, histidine, 

cysteine, tyrosine and methionine) (Verweij et al., 1981; Spikes and Straight, 1967) and 

guanine (Simon and Van Vunakis, 1962). 
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Figure 3: Simplified Jablonski diagram of the type II photoreaction leading to production of 1O2. 

2.2.2 The photochemistry of PCI 

An optimal photosensitizer for PCI localizes to the membrane of endocytic 

vesicles. To be clinically useful, the photosensitizer should also accumulate selectively 

in tumor tissue, absorb light at preferential wavelengths (600-800 nm) to facilitate tissue 

penetration (Zonios et al., 2001), exert minimal toxicity when not subjected to light, 

produce reactive oxygen species (ROS) efficiently, be chemically without impurities 

and stable in solution, and allow preparation in a clinically useful formulation (Hamblin 

and Mroz, 2008). The best studied and most utilized photosensitizers for PCI are 

disulfonated compounds based on the tetrapyrrole macrocycle (Fig. 4) (Berg et al., 

2011; Selbo et al., 2010; Dietze et al., 2006). This tetrapyrrole ring structure is named 

porphine and comprises four pyrrole subunits connected by methine bridges. 

Derivatives of porphin are termed porphyrins. Substituting porphyrins with sulphonate 

groups alters their hydrophilicity, as well as their cell and tissue distribution (Chan et 

al., 1990; Berg et al., 1990). Photosensitizers used for PCI have two sulphonate groups 

on adjacent phenyl rings, which give the amphiphilicity necessary for PCI. The 

hydrophobic part of the photosensitizer integrates into the plasma membrane and upon 

adsorptive endocytosis, the photosensitizer localizes to the membrane of endocytic 

vesicles with the hydrophilic part facing towards the lumen (Fig. 4E) (Berg et al., 2006). 

This is in contrast to tetrasulfonated hydrophilic photosensitizers (such as TPPS4), 

which are taken up by pinocytosis and localize in the matrix of the endocytic vesicles, 

rendering them inefficient as PCI-photosensitizers (Berg and Moan, 1994). In naturally 

occurring tetrapyrroles, a metal ion is coordinated in the middle of the porphyrin 
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structures (e.g. Fe2+ in Heme). Porphyrin-based photosensitizers are generally devoid of 

paramagnetic ions, since these are known to shorten the lifetime of the triplet state 

lifetime and, consequently, reduce the ability to produce 1O2 (Jori, 2004). Introduction 

of diamagnetic metals (e.g. Al3+, Zn2+) have, however, been shown to improve solubility 

and stability, making them interesting for therapeutic purposes (Berg et al., 2005b). 

Research on PCI has mainly been focused on three photosensitizers, TPPS2a, AlPcS2a 

and TPCS2a (Fig. 4B, C, D), although PCI has also been shown effective with other 

photosensitizers, such as ALA-induced PpIX (Selbo et al., 2001a) and hypericin 

(Adigbli et al., 2007).  

Figure 4: PCI photosensitizers based on the chemical structure of porphin (A); disulfonated meso-
tetraphenylporphin, TPPS2a (B), aluminum phthalocyanine disulfonate, AlPcS2a (C) and meso-tetraphenyl 
chlorin disulfonate, TPCS2a (D). Arrow indicates reduced double bond. E: Intracellular localization of the 
photosensitizers in endosomes/lysosomes. NB! Figure is out of scale. 

 The photosensitizers used in PCI have been shown to retain preferentially in 

malignant tissue, usually with a tumor-to-normal-tissue ratio in the range 2-3:1 

(Dougherty et al., 1998; Sheng et al., 2004; Berg et al., 2011). The biodistribution after 

systemic administration is, however, dynamic (Hamblin et al., 1999) and the 

localization of the photosensitizer at the time of irradiation will determine the sites of 

photodamage (Chen et al., 2005). The drug-light interval is therefore crucial for the 

therapeutic outcome (Castano et al., 2005). The photosensitizer localization is also 

important at an intracellular level due to the extremely short lifetime of  1O2 in 

biological systems (estimated to <0.04 μs by Moan and Berg), which results in a radius 
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of action of less than 0.02 μm (Moan and Berg, 1991). The physiochemical properties 

of a photosensitizer determines the intracellular localization of the photosensitizer, e.g. 

plasma membrane, mitochondria, endocytic vesicles (Berg et al., 1990), and 

subsequently, the intracellular site of photochemical damage.  The short action radius of 

the photochemical reaction is an advantage for PCI at the intracellular level since 

activation of photosensitizer localized in the membranes of endocytic vesicles is able to 

induce rupture of the endocytic vesicles without inactivating the drug located in the 

lumen. Substantial amounts of active lysosomal enzymes have been found in the cytosol 

after subtoxic doses of TPPS2a-PCI, in contrast to cells treated with TPPS4 and light 

where no enzyme activities were released from the lysosomes (Berg and Moan, 1994). 

Studies have, however, shown that photosensitizers might be re-localized after light 

exposure (Berg et al., 1991; Wood et al., 1997), and photodamage might, therefore, also 

be induced at distant subcellular sites (Rodal et al., 1998). 

 

2.2.3 Photochemically-induced toxicity 

Mechanisms of action following PCI treatment is dependent on the drug which 

is released as well as the photosensitized reaction. Photochemical reactions as induced 

by PCI have been shown to target several proteins involved in cellular growth and 

survival, including EGFR (Weyergang et al., 2007; Weyergang et al., 2008a; Yang et 

al., 2013; Ahmad et al., 2001; Tsai et al., 2009), HER2 (Koval et al., 2009; Berstad et 

al., 2012), mTOR (Weyergang et al., 2009), ERK, p38 and JNK (Weyergang et al., 

2008b), and to cause direct tumor damage by inducing necrosis (Piette et al., 2003), 

apoptosis (Oleinick et al., 2002; Reiners, Jr. et al., 2002) or autophagy (Reiners, Jr. et 

al., 2010) in the tumor cells. The balance between these different cell death mechanisms 

depends not only on the cell type (Srivastava et al., 2001), tissue oxygenation (Golab et 

al., 2002) and localization and nature of the photosensitizer (Hsieh et al., 2003; Kessel 

and Luo, 1998; Moor, 2000), but also on the degree of photosensitization 

(photosensitizer dose, light dose/fluence and intensity/fluence rate), with necrosis as the 

principal mode of cell death in strongly photosensitized cells, while apoptosis (and also 

autophagy) predominate when photosensitization is not as extensive (Piette et al., 2003; 

Mroz et al., 2011; Vantieghem et al., 1998). Autophagy may, dependent on the 

circumstances, contribute both in a pro-death and pro-survival manner (Reiners, Jr. et 
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al., 2010; Kessel et al., 2012). In addition to direct tumor cell damage, the 

photochemical treatment has also been shown to induce indirect tumor damage by 

targeting the tumor-associated vasculature, depriving the tumor of oxygen and nutrients 

(Norum et al., 2009a), and to induce inflammatory and immunological responses 

(Castano et al., 2006; Korbelik, 2006). Tumor cells surviving the initial direct cytotoxic 

insult may still be eradicated by these indirect effects, which probably are highly 

important for a long-term tumor control (Castano et al., 2006).   

 

2.2.4 The therapeutic potential of PCI 

PCI is dependent on localization of the drug of interest in endocytic vesicles at 

some stage in the process. All mammalian cells, except mature erythrocytes, exert 

endocytic activity and PCI should therefore be effective in all other types of cells. 

Indeed, the principle of PCI has been documented in >80 cell lines and >12 different 

xenograft models (Selbo et al., 2010). PCI has been shown to stimulate the cytosolic 

delivery and, hence, the potency of a wide range of macromolecules and small drugs 

(Table 1). By activating the potential of endo/lysosomally entrapped drugs only in tissue 

simultaneously targeted by photosensitizer and light, PCI has been indicated to reduce 

the total therapeutic drug dose and PCI should, therefore, represent a strategy to reduce 

the dose-dependent adverse effects of a drug without reducing the clinical efficacy. PCI 

is currently undergoing clinical evaluation for delivery of the chemotherapeutic drug 

bleomycin (www.clinicaltrials.gov). In the two completed clinical trials 

(NCT00993512, NCT01872923), PCI of bleomycin demonstrated highly promising 

results in patients with head and neck neoplasms and a phase II study on recurrent head 

and neck squamous cell carcinomas is currently recruiting patients (NCT01606566). 

PCI of gemcitabine followed by gemcitabine/cisplatin chemotherapy is currently 

assessed in patients with locally advanced inoperable cholangiocarcinomas (phase I/II 

study, NCT01900158). PCI is, however, not only applicable to treatment of the tumor 

parenchyma. Recent publications have investigated the use of PCI targeted to the tumor 

vasculature (Vikdal et al., 2013b; Weyergang et al., 2014) and PCI has also been used in 

autologous vaccination for stimulation of CD8+ T-cell responses (Waeckerle-Men et al., 

2013; Hakerud et al., 2013).  
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Macromolecules Documented References 
Non-targeted 
proteins/polymers 

In vitro, in vivo (Berg et al., 1999; Selbo et al., 2000a; Selbo et 
al., 2001b; Prasmickaite et al., 2002; Dietze et 
al., 2003; Selbo et al., 2006; Berg et al., 2006; 
Fretz et al., 2007; Lai et al., 2008) 

Targeted  
proteins/polymers 
 

In vitro, in vivo (Selbo et al., 2000b; Weyergang et al., 2006; Yip 
et al., 2007; Selbo et al., 2009; Berstad et al., 
2012; Bostad et al., 2013; Lund et al., 2014; 
Bull-Hansen et al., 2014; Weyergang et al., 
2014) 

Nonvirus-mediated genes 
 

In vitro, in vivo (Berg et al., 1999; Prasmickaite et al., 2002; 
Hellum et al., 2003; Kloeckner et al., 2004; 
Ndoye et al., 2006) 

Virus-mediated genes 
 

In vitro (Prasmickaite et al., 2002; Dietze et al., 2003; 
Bonsted et al., 2004; Dietze et al., 2005; Bonsted 
et al., 2006) 

Nucleic Acids In vitro, in vivo (Folini et al., 2003; Oliveira et al., 2007; Oliveira 
et al., 2008; Raemdonck et al., 2010) 

Chemotherapeutic drugs In vitro, in vivo (Berg et al., 2005a; Lou et al., 2006; Norum et 
al., 2009a; Weyergang et al., 2014; Adigbli et 
al., 2007) 

Vaccine antigens In vitro, in vivo (Waeckerle-Men et al., 2013; Hakerud et al., 
2013) 

Table 1: Macromolecules and small drugs delivered by PCI. 

 

2.2.5 Photodynamic therapy (PDT) 

Another treatment modality exploiting the cytotoxic combination of 

photosensitizer, light and oxygen is photodynamic therapy (PDT) (Agostinis et al., 

2011). Contrary to PCI, which primarily utilizes this combination for drug delivery, 

PDT relies solely on ROS-induced cytotoxicity to eradicate the target cells. The 

development of modern PDT began in the 1960s with the work of Lipson and Schwartz 

and truly accelerated in the 1970s with the work of Dougherty et al. (Dolmans et al., 

2003). The first controlled clinical PDT study conducted in 1978 reported on successful 

treatment of skin cancer (Dougherty et al., 1978) and since then more than 200 clinical 

studies have been reported. PDT is today primarily used to eradicate premalignant 

lesions or early-stage cancers with little or no metastatic potential and to reduce the size 

of end-stage tumors (Allison, 2014). The most utilized photosensitizer in clinical PDT is 

porfimer sodium (Photofrin®), which is approved for treatment of several cancer 

indications, including cervical cancer, lung cancer, oesophageal cancer and bladder 

cancer (Brown et al., 2004; Godoy et al., 2013). Other photosensitizers with marketing 

authorization for PDT include temoporfin (mTHPC/Foscan®) for treatment of head and 
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neck cancer (Green et al., 2013; Bredell et al., 2010; Hopper, 2000), benzoporphyrin 

derivate (Visudyne®) for treatment of age-related macular degeneration (Sickenberg, 

2001) and topically administered 5-aminolevulinate acid (Levulan®) and methyl-

aminolevulinate (Metvix®) for treatment of actinic keratosis and basal-cell carcinomas 

(Kormeili et al., 2004; Braathen et al., 2007). Hexyl aminolevulinate (Hexvix®) is used 

for detection of bladder cancer (based on fluorescence from the photoactivated 

photosensitizer) (Witjes and Douglass, 2007; Lange et al., 1999). PDT is today regarded 

as standard therapy within certain subtypes of cancer; however, the method has room 

for improvements with respect to prolonged photosensitivity, tumor selectivity, depth of 

necrosis and light exposure times (Allison, 2014). Investigational approaches within the 

PDT field include combination therapies (Bhuvaneswari et al., 2009), utilization of 

PDT-induced vascular leakiness to facilitate drug delivery (Snyder et al., 2003), 

conjugation of the photosensitizer to targeting moieties, such as mAbs or peptides 

(Master et al., 2012; van Dongen et al., 2004; Bhatti et al., 2008), and encapsulation of 

the photosensitizer in nanoparticle formulations to facilitate drug delivery and improve 

tumor selectivity of the treatment (Solban et al., 2006).  

2.3 Ribosome-inactivating protein toxins from plants 

Ribosome-inactivating proteins (RIPs) produced by plants exert N-glycosidase 

activity against the 60S ribosomal subunit in eukaryotic cells (Barbieri et al., 1993). 

Removal of a specific adenine residue from 28S RNA leads to inhibition of protein 

synthesis and, consequently, cell death (Endo et al., 1987). RIPs from plants are divided 

into type I and type II toxins depending on their chemical structure (Stirpe and Battelli, 

2006). Type I RIPs consist only of the enzymatically active A-chain responsible for 

ribosomal inactivation (Stirpe et al., 1980; Rosenblum et al., 1995; Bergamaschi et al., 

1996), while type II RIPs consist of the A-chain linked to a cell-binding B-chain 

through a disulfide bridge (Nielsen and Boston, 2001). The B-chain mediates cellular 

uptake by binding to glycolipids or glycoproteins with terminal galactose (Sandvig and 

van Deurs, 2005), after which the toxin A-chain is translocated to the cytosol via the 

Golgi complex and endoplasmic reticulum (ER) (Rapak et al., 1997). Unlike bacterial 

toxins, no distinct translocation domain responsible for ER retrieval has been identified 

for type II RIPs (Wesche et al., 1999; Chaudhary et al., 1990). The characteristics of 

type I versus type II toxins are summarized in Table 2.  
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Type I RIPs Type II RIPs 

Chemical structure 

Molecular size ~30 kDa ~65 kDa 

Internalization 
mechanism Mainly pinocytosis Adsorptive endocytosis 

Principal 
intracellular fate Transport to lysosomes Retrograde transport via Golgi to ER and translocation 

to the cytosol 
Ribosome-
inactivating 
activity 

High High

Cytotoxicity to 
intact cells Low High

Suitable for 
delivery by PCI Yes No

Examples Gelonin, Saporin Abrin, Ricin 

Table 2:  Characteristics of type I and type II RIPs from plants. 

It has been indicated that as little as 1-10 RIP molecules in the cytosol are sufficient to 

kill one cell (Eiklid et al., 1980). Once translocated to the cytosol, type I and type II 

RIPs have similar ribosome-inactivating activity. However, due to different intracellular 

transport mechanisms, they differ substantially in their toxicity towards intact cells 

(Barbieri et al., 1993; Vago et al., 2005). To enhance their potency in cancerous tissue 

and minimize toxicity in normal tissue, RIPs have been evaluated as part of targeted 

toxin formulations (Laske et al., 1997; Hirota et al., 1989; Lyu et al., 2010). The escape 

from endo/lysosomal compartments has, however, been shown to be a bottleneck for 

successful delivery of type I RIP-based fusion toxins (Pirie et al., 2011; Yazdi and 

Murphy, 1994). Several attempts have been made in order to utilize endosomal 

acidification and lysosomal processing for cytosolic release of type I RIP-based targeted 

toxins. These include incorporation of cleavable peptides (Heisler et al., 2003), 

reducible disulfide or thioether linkers (Lewis Phillips et al., 2008; Erickson et al., 

2006) and combination strategies with saponins (Weng et al., 2012) or cytolysins (Pirie 

et al., 2013). The two type I RIPs used in the present study, saporin and gelonin, are 

mainly taken up by the passive mechanism of fluid-phase pinocytosis (Barbieri et al., 

1993). Glycosylated natural saporin and gelonin have, however, also been shown to be 

taken up by receptor-mediated endocytosis through the α2-macroglobulin (Cavallaro et 

al., 1995) and mannose receptor (Madan and Ghosh, 1992), respectively. The 

A (Active) domain A (Active) domain - S – S - B (binding) domain
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recombinant version of gelonin is  devoid of the carbohydrate groups present in native 

gelonin that promote mannose-specific uptake (Rosenblum et al., 1995) and is therefore 

taken up exclusively by pinocytosis. 

2.3.1 Targeted protein toxins 

Targeted protein toxins are composed of one cell-binding moiety (antibody, 

endogen ligand or a fragment of one of these) and one toxin moiety (derived from 

bacteria or plant) (Pastan et al., 2007; FitzGerald et al., 2004). The cell-binding moiety 

binds to a surface antigen expressed by cancer cells and triggers receptor-mediated 

endocytosis of the toxin. The toxin moiety must be translocated from endocytic vesicles 

to the cytosol in order to kill the cell by inhibiting protein synthesis (Sandvig and van 

Deurs, 2005; Pastan et al., 1986). The term immunotoxin describes antibodies or 

antibody fragments linked to toxins, while endogenous ligands linked to toxins may be 

termed affinity toxins. Previously, immunotoxins were produced by chemically 

conjugating complete structures of antibodies (fully/partly murine/human) to native 

toxins, resulting in large and heterogeneous products with high immunogenicity (Pastan 

et al., 2007). However, with recent recombinant technology it is now possible to fuse 

smaller DNA fragments coding only the antibody domain responsible for receptor 

binding and the enzymatically active domain of toxins, with the advantages of 

homogenous and less immunogenic products with desired size and reduced production 

costs (Fig. 5) (Kreitman, 2006; Potala et al., 2008).  

Figure 5: Three generations of immunotoxins (Adapted from (Shapira and Benhar, 2010) with 

modifications). 
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Off-target toxicity, usually characterized by hepatotoxicity and vascular injury, 

in addition to immunogenicity after prolonged administration have been identified as 

major limitations for clinical use of both bacterial and plant toxin-based immunotoxins 

(Pai-Scherf et al., 1999; von Minckwitz et al., 2005; Cao et al., 2012; Schmidt et al., 

1999). Several approaches have been investigated in order to reduce nonspecific tissue 

and cellular uptake by reducing aggregation in serum and preventing association with 

negatively charged cellular membranes and receptors specific for protein toxins in 

normal tissues such as blood vessels. These include modifications to mask or remove 

positive surface charge and immunogenic groups such as B-cell epitopes, as well as the 

use of biodegradable carriers containing environmentally (e.g. pH, enzyme) sensitive 

linkages to promote site-specific activity of the toxin moiety (Chen et al., 2008; Onda et 

al., 2001; Onda et al., 2011; Heisler et al., 2003; Erickson et al., 2006). Immunogenicity 

may also be overcome by co-administration with immunosuppressive agents (Siegall et 

al., 1997).  

Only one targeted fusion toxin has so far been approved by the FDA for clinical 

use, namely the IL-2 truncated diphtheria toxin fusion protein, denileukin diftitox 

(Ontak®) for treatment of cutaneous T-cell lymphoma (Kaminetzky and Hymes, 2008). 

The use of fusion toxins to treat nonhematological cancers has, however, not been very 

successful. The distribution to and retention of targeted toxins in solid tumors after 

systemic administration are obtained by a combination of passive and active targeting. 

The leaky and torturous vessels surrounding solid tumors and poor lymphatic drainage 

of the tumor tissue facilitates passive targeting by the enhanced permeation and 

retention (EPR) effect, while  active targeting is mediated by interaction of the targeting 

moiety with receptors on the cancer cells (Jain, 2012). The distribution within the tumor 

has been shown to be influenced by the receptor affinity, as well as the internalization 

and dissociation rate of the targeted toxins (Adams et al., 2001; Rudnick et al., 2011; 

Cao et al., 2012). Due to high interstitial pressure in solid tumors rendering convection 

inefficient, tumor penetration relies on the slow mechanism of diffusion (Jain, 1989). 

Long distances from the tumor vasculature to the target cells and heterogeneous blood 

supply combined with short half-lives of 3rd generation immunotoxins may 

consequently serve as potential barriers for homogenous distribution of fusion toxins 

into solid tumors (Jain, 1989).  



17 
 

2.4 The epidermal growth factor receptor (EGFR/ErbB) family 

The epidermal growth factor receptor (EGFR/ErbB) family comprises four 

receptor tyrosine kinases (RTKs): EGFR (ErbB1), HER2 (ErbB2), HER3 (ErbB3) and 

HER4 (ErbB4). These receptors are expressed in a variety of normal tissues 

(predominantly cells of mesodermal and ectodermal origins) where they control key 

cellular processes, such as proliferation, differentiation, adhesion, migration and 

survival (Yarden and Sliwkowski, 2001). The EGF receptors consist of an extracellular 

region, a transmembrane helix and a cytoplasmic region (Bublil and Yarden, 2007). All 

EGF receptors except HER2 are activated by binding of endogenous soluble ligands to 

their extracellular region. Ligand binding stimulates ErbB receptor homo- or 

heterodimerization and autophosphorylation of tyrosine residues at the cytoplasmic 

domain (Fig. 6) (Olayioye et al., 2000; Rowinsky, 2004; Lemmon, 2008). The 

cytoplasmic domain of HER3 is, however, catalytically inactive; therefore, HER3 is 

dependent on interaction with the other EGF receptors for signal transduction (Jura et 

al., 2009). Phosphotyrosine-binding proteins associate with the cytoplasmic tail of the 

catalytically active EGF receptors and initiate a complex system of signaling cascades, 

including the mitogen-activated protein kinase (MAPK), phosphoinositol-3-kinase 

(PI3K)/Akt and protein kinase C (PKC) pathways and also stress-activated protein 

kinase (SAPK) cascades, eventually leading to transcriptional events in the nucleus 

(Fig. 5) (Yarden and Sliwkowski, 2001). The receptors are internalized and, depending 

on the receptor ubiquitinylation, the ErbB receptors either follow the endocytic pathway 

to lysosomes for degradation or they are recycled back to the plasma membrane (Wiley, 

2003; Austin et al., 2004). Although HER2 itself cannot bind any endogenous ligands, it 

is the preferred dimerization partner for kinase-active EGFR, HER3 and HER4 (Graus-

Porta et al., 1997). HER2 promotes stabilization of the receptor dimers at the plasma 

membrane and increases recycling of internalized receptors to the cell surface, leading 

to prolonged signaling and reduced receptor downregulation (Hendriks et al., 2003; 

Citri and Yarden, 2006). 
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Figure 6: Simplified overview of ErbB receptor activation, dimerization and signaling, as well as 
some of the affected biological processes. 

2.4.1 EGFR and HER2 in cancer 

EGF receptors, particularly EGFR and HER2, have been implicated in the 

development of many types of solid tumors (Yarden and Sliwkowski, 2001; Rowinsky, 

2004). Alterations, including receptor overexpression, mutations or in-frame deletions, 

as well as upregulation of ligands, lead to constitutive receptor activation and have been 

shown to drive cancer development (Slamon et al., 1987; Sok et al., 2006; Grandis and 

Tweardy, 1993). A brief overview of EGFR and HER2 overexpression in cancer is 

presented in Table 3. Large variation in overexpression frequency reported for some of 

the cancers is ascribed to differences in the study methodology and source of material. 

Although overexpression and/or mutation of EGFR or HER2 is correlated with poor 

prognosis in several cancers, including breast (Slamon et al., 1987; Rimawi et al., 

2010), ovary (Verri et al., 2005), non-small cell lung carcinoma (NSCLC) (Hirsch et al., 

2003; Brabender et al., 2001) and head and neck squamous carcinoma (HNSCC) 

(Grandis and Tweardy, 1993; Sok et al., 2006), the relationship between ErbB receptor 

overexpression and patient survival is not straightforward in all cancer types (Rowinsky, 

2004); neither is the correlation between receptor expression and clinical response to 

ErbB-targeted therapies (Dua et al., 2010).
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Cancer type 
Tumors overexpressing References 

EGFR HER2   

Head and neck  Up to 90% Rarely detectable (Grandis and Tweardy, 1993; Hanken et 
al., 2014) 

Non-small cell 
lung carcinoma 34-62% 16-35% (Hirsch et al., 2003; Hirsch et al., 2002; 

Brabender et al., 2001) 

Colorectal 43-80%  6-77% (Spano et al., 2005; Seo et al., 2014; 
Khelwatty et al., 2014) 

Breast 6-18% 20-30% 

(Sorlie et al., 2001; Slamon et al., 1987; 
Rimawi et al., 2010; van, V et al., 1988; 
Bhargava et al., 2005; Lazaridis et al., 

2014) 

Ovarian 48-62% 11-40% (Verri et al., 2005; Tuefferd et al., 2007; 
Nielsen et al., 2004; Lafky et al., 2008) 

Pancreatic 42-69% 61% 
(Uegaki et al., 1997; Tobita et al., 2003; 
Bloomston et al., 2006; Komoto et al., 

2009) 

Glioma 40-50% Rarely detectable (Shinojima et al., 2003; Faulkner et al., 
2014; Haynik et al., 2007) 

Cervical 33-73% 19-42% (Kim et al., 1996; Oka et al., 1994; 
Tangjitgamol et al., 2005) 

Table 3: EGFR and HER2 overexpression in selected human solid tumors. 

 

It was originally thought that EGFR amplification promoted tumor growth 

exclusively by enhancing signaling through wild-type EGFR. Since then, several EGFR 

mutations in both the intracellular and extracellular domain have been identified as 

predictors for response to EGFR-targeted therapies (Sok et al., 2006; Kobayashi et al., 

2005). Interestingly, EGFR has been found upregulated not only in the tumor 

parenchyma, but also in tumor-associated endothelial cells compared to normal 

vasculature, suggesting EGFR as a contributor in tumor angiogenesis and as a potential 

target in antiangiogenic therapy (Amin et al., 2006). EGFR is associated with 

radioresistance (Akimoto et al., 1999) and has also been implicated in epithelial-to-

mesenchymal transition (EMT), which contributes to therapeutic resistance (Thomson et 

al., 2005; Ren et al., 2014).  

HER2 is recognized as a more potent oncoprotein than other members of the 

EGFR family and its overexpression has been shown to result in constitutive ligand-

independent receptor signaling (Ghosh et al., 2011). HER2-HER3 dimers have been 

identified as a particularly strong oncogenic unit activating both MAPK and PI3K/Akt 

signaling (Amin et al., 2010; Lee-Hoeflich et al., 2008). The role of HER2 as a 
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prognostic marker is highly recognized in breast cancer, where HER2 is associated with 

poor overall survival and short time to relapse (Slamon et al., 1987). HER2 has also 

been recognized as a predictive marker for response to HER2-targeted therapies (Ross 

and Fletcher, 1998). An increasing number of publications suggest, however, that also 

other factors influence on the therapeutic response to HER2-directed therapies (Esteva 

et al., 2010).  

 

2.4.2 EGFR- and HER2-targeting cancer therapeutics 

An enormous effort has been put into developing therapies that target the EGF receptors 

and their signaling pathways. Successful approaches used in the clinic include 

monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs) (Imai and 

Takaoka, 2006), and recently also an antibody-drug conjugate (Lewis Phillips et al., 

2008). MAbs are ~150 kDa proteins that bind to the extracellular domain of the receptor 

and thereby block ligand-induced downstream signaling (Schaefer et al., 2006; Li et al., 

2005). Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent 

cytotoxicity (CDC) induced through the Fc domain of mAbs have in addition been 

implied as important mechanisms of action in vivo (Clynes et al., 2000; Cooley et al., 

1999). TKIs are small lipophilic drugs that diffuse through the plasma membrane and 

bind to the intracellular ATP binding site of the kinase, thereby blocking downstream 

signaling of the ligand-receptor complexes (Grunwald and Hidalgo, 2003; Herbst et al., 

2004). Antibody-drug conjugates combine an antibody as the targeting molecule with a 

cytotoxic agent (Carter and Senter, 2008). In addition to inhibition of receptor signal 

transduction by the antibody, this treatment approach takes advantage of receptor-

mediated endocytosis to deliver a cytotoxic agent into the cell. Currently approved 

mAbs, antibody-drug conjugates and TKIs targeting EGFR and HER2 are listed in 

Table 4. To this date, the most utilized EGFR family-targeted drugs in the clinic are the 

humanized IgG1 anti-HER2 mAb trastuzumab (Herceptin®), which received FDA-

approval for treatment of HER2+ metastatic breast cancer already in 1998 (Vogel et al., 

2002; Baselga et al., 2006; Tokuda et al., 2009) and the chimeric IgG1 anti-EGFR mAb 

cetuximab (Erbitux®), which was approved by the FDA for treatment of metastatic 

colorectal cancer in 2004 (Baselga, 2001; Vincenzi et al., 2008). 
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Table 2: EGFR- and HER2- targeting therapies approved for cancer treatment 
 Targeting receptor Clinical use 
Monoclonal antibodies   
Cetuximab (Erbitux®) EGFR Head and neck cancer, 

Colorectal cancer 
Trastuzumab (Herceptin®) HER2 Breast cancer (HER2+), 

Gastric cancer 
Panitumumab (Vectibix®) EGFR Colorectal cancer 
Pertuzumab (Perjeta®) HER2 Breast cancer (HER2+) 
Nimotuzumab (BIOMAb EGFR®*) EGFR HNSCC 
Antibody-drug conjugates   
Ado-trastuzumab emtansine (Kadcyla®) HER2 Breast cancer (HER2+) 
Tyrosine kinase inhibitors   
Erlotinib (Tarceva®) EGFR NSCLC, Pancreatic cancer 
Gefitinib (Iressa®) EGFR NSCLC 
Afatinib (Gilotrif®) EGFR/HER2 NSCLC 
Lapatinib (Tykerb®) EGFR/HER2 Breast cancer (HER2+) 
Vandetanib (Caprelsa®) EGFR (RET, 

VEGFR2) 
Medullary thyroid cancer 

*Only approved in certain countries (not by the FDA or EMEA). 

Table 4: Currently approved EGFR and HER2 targeting therapeutics. 

 

The introduction of mAbs and TKIs targeting EGFR and HER2 have 

revolutionized cancer management and opened up for more individualized treatment 

regimens. However, de novo or acquired resistance in a significant number of patients is 

a major clinical limitation for both mAbs and TKIs (Nahta et al., 2006; Lu et al., 2007; 

Chong and Janne, 2013; Kim et al., 2010) and this have stimulated the development of 

alternative ErbB-targeted treatment approaches, including dual receptor targeting 

(Konecny et al., 2006; Waldron et al., 2012), irreversible or mutant-specific inhibitors 

(Chandramohan et al., 2013), antisense oligonucleotides and siRNA, immunoconjugates 

(Gelardi et al., 2010), ligand or antibody-cytotoxic drug conjugates (Lewis Phillips et 

al., 2008) and recombinant toxins (Azemar et al., 2000; Thomas et al., 2004; Cao et al., 

2009). Ado-trastuzumab emtansine (T-DM1) received FDA approval for treatment of 

HER2-positive breast cancer in 2013 (Table 3). This is an antibody-drug conjugate 

consisting of trastuzumab linked via a thioether linkage to the microtubule-

depolymerizing maytansinoid, mertansine (Lewis Phillips et al., 2008).  
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3. GENERAL EXPERIMENTAL CONDITIONS 

 

3.1 Cell lines 

The 15 cell lines used in this thesis was mainly chosen based on their expression of 

the targeting receptors, EGFR and/or HER2. The cell lines selected to prove the 

principle of PCI of HER2-targeted trastuzumab-saporin (Paper I; ZR-75-1, MDA-

MB231) or MH3-B1/rGel (Paper II; SK-BR-3) were of breast cancer origin, since 

HER2-targeted therapeutics are approved for this indication (Table 3). PCI of MH3-

B1/rGel (Paper II) was also evaluated in three ovarian cancer cell lines, SKOV-3, 

MOC-7 and Nu-Tu19, to explore if PCI could overcome the resistance towards 

traditional HER2-targeted therapies in HER2+ ovarian cancers. 

Of the >80 cancer cell lines that have been demonstrated sensitive to PCI (Selbo et 

al., 2010), A-431 epidermoid carcinoma cells are among the most utilized (Weyergang 

et al., 2006; Yip et al., 2007; Oliveira et al., 2007; Kloeckner et al., 2004). This cell line 

is also among the most frequently used in EGFR research (Merlino et al., 1984; Aerts et 

al., 2009) and was therefore chosen as an EGFR-positive model for characterization of 

the rGel/EGF construct and for evaluation of PCI of rGel/EGF (Paper III). WiDr 

(colorectal adenocarcinoma) was included as a control with more moderate EGFR 

expression, since the A-431 cells are debated for their remarkably high EGFR 

expression (Haigler et al., 1978; Fabricant et al., 1977). PCI has been shown efficient in 

WiDr cells for delivery of MOC31-gelonin (Selbo et al., 2000b) and free gelonin, both 

with the “light first” and “light after” strategy (Selbo et al., 2001b; Berg et al., 2006), 

and the WiDr cells were therefore also used as a positive control in Paper I for 

demonstration of the “light first” PCI principle. Two cell lines, MES-SA human uterus 

sarcoma and MDA-MB-435 melanoma were used as EGFR-negative controls in Paper 

III.  

HNSCCs were chosen as clinically relevant models for PCI of rGel/EGF based on 

the presence of EGFR as a validated target and indicator of poor prognosis in ~90% of 

HNSCC patients (Grandis and Tweardy, 1993; Ang et al., 2002), as well as the 

promising preliminary results on PCI of bleomycin in head and neck cancer in clinical 

studies (NCT00993512, NCT1872923). Also, the overall survival of HNSCC patients 
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has not changed much the last 50 years, emphasizing the need for new and improved 

treatment strategies (Gregoire et al., 2010). Four HNSCC cells lines derived from 

tumors with diversities in site of origin, stage and differentiation (Martin et al., 2008), as 

well as EGFR expression levels, were used for in vitro studies on PCI of rGel/EGF.  

3.2 Tumor xenograft models 

HER2-targeted therapies have to this date yielded disappointing clinical results in 

HER2-positive ovarian cancer (Bookman et al., 2003; Sheng and Liu, 2011). The 

exploration of novel HER2-targeted approaches in this type of cancer is therefore of 

clinical interest. To investigate the in vivo potential of PCI of MH3-B1/rGel in ovarian 

cancer, human SKOV-3 tumor xenografts were selected. The growth of SKOV-3 

tumors have previously been shown to be inhibited by repeated administration of 

HER2-targeted immunotoxins consisting of Herceptin or its derived scFv, 4D5, fused to 

recombinant gelonin (Cao et al., 2014).  

 To demonstrate the EGFR-specific toxicity of PCI of rGel/EGF in vivo, human A-

431 tumor xenografts were selected. This is, as already stated, a well-known EGFR-

overexpressing model extensively investigated both in vitro and in vivo (Hirota et al., 

1989; Phillips et al., 1994). 

The rationale for choosing HNSCC as a clinically relevant model for evaluation of 

PCI of rGel/EGF is already discussed in the previous section (3.1). The literature on 

HNSCC xenografts is modest. Effort was therefore put into establishing new HNSCC 

xenograft models. Of the four HNSCC cell lines used in vitro, two of these (SCC-026 

and SCC-040) formed tumors after s.c. inoculation in athymic nude mice. Both SCC-

026 and SCC-040 tumor xenografts developed as fluid-filled cystic structures, which 

was clearly evident after reaching a tumor size of approx. 900 and 400 mm3, 

respectively (3-4 weeks after injection) (Fig. 7). These findings are in agreement with 

previous reports describing cystic metastasis from HNSCC in patients (Goldenberg et 

al., 2006). The SCC-026 xenograft model was selected for in vivo evaluation of PCI of 

rGel/EGF. The SCC-026 cells express EGFR at moderate levels compared to the A-431 

cells, which has been estimated to express up to 25-30 times more EGFR compared to 
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other epidermal cells (Haigler et al., 1978; Fabricant et al., 1977; Merlino et al., 1984). 

This further emphasizes the clinical relevance of the SCC-026 HNSCC model.  

All tumor xenografts were grown s.c. in the left thigh of athymic nude mice.  

Figure 7: Characterization of HNSCC xenografts. A, B: Photos of ~1000 mm3 SCC-040 tumors 38 

days after inoculation. C, D: H&E staining of SCC-040 tumor harvested 38 days after inoculation. a; rim 

of viable tumor cells; b, areas of drained fluid. 

3.3 Photosensitizer and light source 

TPCS2a (Fig. 4D) was applied as the photosensitizer in the present studies. 

Dependent on the incubation procedure, TPCS2a will be integrated in the plasma 

membrane or in the membrane of endosomes and lysosomes (Fig.8).  

Figure 8: TPCS2a localization in Zr-75-1 cells. Phase contrast pictures (A, C, E) and fluorescence 

micrographs (B, D, F). 18 hrs incubation (37ºC) targets TPCS2a to the plasma membrane in addition to 

endocytic vesicles (A, B).  18 hrs incubation + 4 hrs chase in drug free medium (both at 37ºC) targets 

TPCS2a primarily to the endocytic vesicles (C, D). 30 min incubation at 4ºC targets the photosensitizer 

only to the plasma membrane (E, F). 
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The chemical structure of TPCS2a is virtually identical to that of TPPS2a, which has been 

used in previous studies on PCI of EGFR-targeted toxins (Weyergang et al., 2006; Yip 

et al., 2007). However, a reduced double bond in the porphyrin backbone (red arrow, 

Fig. 4) characterizes TPCS2a as a chlorin and results in an absorption peak in the red 

part of the absorption spectrum (650 nm), rendering TPCS2a advantageous for clinical 

use (Fig. 9). TPCS2a is patented for use in combination with PCI and is currently 

undergoing clinical evaluation for PCI of the chemotherapeutic drug bleomycin 

(www.clinicaltrials.gov). TPCS2a is present as three isomers dependent on the 

arrangement of the sulfonate groups relative to the reduced double bond.  

Figure 9: Absorption spectrum for TPPS2a (left) and TPCS2a (right). 

The absorption spectrum of TPCS2a allows photosensitizer activation by both blue light 

and red light. LumiSource® (PCI Biotech), equipped with four light tubes (18W/tube, 

Osram L 18/67) emitting blue light with a peak wavelength at approximately 435 nm 

and an irradiance of 11.7 mW/cm2, was used for illumination of cells in vitro. Red light 

penetrates skin more efficiently than blue light (Zonios et al., 2001). Therefore, a 652 

nm diode laser (Ceramoptec GmbH, Bonn, Germany) equipped with a laser fiber 

(Medlight SA, Eclubens, Switzerland) with an irradiance of 90 mW/cm2 was used for 

illumination of tumors in vivo. The tumors were irradiated 72 hrs after injection of 5 

mg/kg TPCS2a via the tale vein. The animals were covered with aluminum foil with a 

margin of about 2 mm to the visible tumor.  
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3.4 Assays for cytotoxicity measurements 

In the present study, cellular viability was mainly assessed using the MTT assay, 

which is based on cleavage and conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) to blue formazan crystals by cellular 

dehydrogenases. The cells were incubated 2-4 hrs with the MTT reagent, after which 

the formazan crystals were dissolved in DMSO and measured colorimetrically at 570 

nm. Viability was expressed as percentage of controls. The MTT assay is fast, cheap 

and easy to carry out. However, an important limitation of the MTT assay is that it 

measures enzymatic activity as a surrogate viability marker rather than direct cell 

survival, and therefore, dying cells with some remaining mitochondrial activity might 

be identified as viable cells. The potential of underestimating dying cells is therefore 

substantial at low time intervals after treatment (Komissarova et al., 2005). Cellular 

viability was evaluated 48 hrs after the photochemical treatment for all cell lines except 

the slowly proliferating SKOV-3 cells, for which viability was measured 96 hrs after 

treatment. The MTT assay was, however, also performed at 72 hrs to exclude the 

possibility that altering the time before MTT assessment would significantly influence 

on the viability results. The clonogenic cell survival assay has been suggested as the 

gold standard among in vitro cytotoxicity assays (Roper and Drewinko, 1976; 

Sumantran, 2011). This assay measures the ability of a single cell to form a viable 

colony, thus estimating the long-term effects of a drug, including the sum of all cell 

death modes and delayed growth arrest. No significant difference has, however, been 

observed in previous PCI studies when comparing cytotoxicity data measured by MTT 

2-5 days after treatment to clonogenic cell survival assessed 7-14 days after treatment 

(Yip et al., 2007; Bostad et al., 2014; Bostad et al., 2013). MTT can be assessed in 96 

well plates, while the clonogenic assay is usually performed in larger wells to achieve a 

sufficient sample size for statistical significance. The MTT assay thus demands much 

less material and is also less time consuming compared to clonogenic cell survival. 

Considering the limited amount of targeted toxins available for the present studies, the 

MTT assay was chosen as the standard assay. The results obtained by MTT on MH3-

B1/rGel and rGel/EGF with and without PCI were, however, confirmed by the crystal 

violet staining method (Paper II and III). The dye in this assay, crystal violet, binds to 

sugar type molecules, such as DNA. Upon solubilization of the dye, the color intensity 

will be proportional to the cell number (Vega-Avila and Pugsley, 2011). After removing 
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the culture medium, the remaining adherent cells were incubated 30 min with the crystal 

violet solution (0.5% in 20% methanol), and after a thorough washing and drying 

procedure, the stained cells were solubilized with Sørenson's buffer (0.1 mol/L sodium 

citrate, pH 4.2, in 50% ethanol). Absorbance was measured at 595 nm. As an alternative 

to the clonogenic assay, long-term effects of the antibody cetuximab (Paper II) were 

assessed using the Incucyte kinetic imaging system (Essen BioScience, Hertfordshire, 

UK), which measures well confluence as an estimate for cellular proliferation.  

Neither the MTT nor crystal violet assay is able to discriminate between different 

cell death modes. Molecular characteristics of autophagy, apoptosis and necrosis were 

therefore investigated in order to obtain information on the mechanisms of cell death 

(Kepp et al., 2011). Autophagic cells were identified by detecting the conformation of 

cytosolic LC3-I into membrane-bound LC3-II associated with autophagosomes (Kabeya 

et al., 2000). Apoptotic cells were identified by detecting cleavage of the caspase 

substrate PARP in addition to a TUNEL assay identifying DNA fragmentation. Unlike 

apoptosis, where the integrity of the plasma membrane is retained until secondary 

necrosis intervenes or apoptotic bodies are cleared, primary necrosis is characterized by 

an early membrane collapse. Necrotic cells were therefore identified by measuring 

uptake of the exclusion dye propidium iodide (PI) 6 hrs after treatment.  

 

3.5 Quantification of PCI targeting efficacy  

The in vitro potency of a drug is commonly measured by its 50% inhibitory 

concentration.  When comparing the efficacy of a targeted toxin among different cell 

lines as a result of receptor targeting (i.e. targeting efficacy), the cell line sensitivity to 

the non-targeted toxin should, however, be correlated for. The relationship between 

efficacy of the targeted toxin and the non-targeted toxin in a specific cell line may be 

expressed as the targeting index (TI): 
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Accordingly, when comparing the efficacy of PCI of targeted toxins among 

different cell lines, the cell line sensitivity towards the non-targeted toxin should be 

correlated for. In Paper II, the PCI efficacy of MH3-B1/rGel was corrected for rGel 

sensitivity according to this formula: 

 

 

where the photochemical treatment is the combination of photosensitizer and light 

without any protein toxin added, and LD50 is the light dose where PCI or the 

photochemical treatment induces a 50% reduction in cell viability. 

The rGel-corrected PCI efficacy estimated in Paper II correlates the efficacy of PCI 

of the targeted toxin for sensitivity to the photochemical treatment (photosensitizer + 

light) and non-targeted rGel as monotherapies. In Paper III, a PCI targeting index (TIPCI) 

was established which corrected the reduced viability obtained by PCI of the targeted 

toxin for the cell line sensitivity to PCI of non-targeted toxin (i.e. photosensitizer + light 

+ rGel). The TIPCI was assessed at IC90 (90 % reduction in cell viability) in experiments 

where the photochemical treatment itself reduced the viability by 30-60%.   

 

 

 

 Low toxicity of the targeted toxin against cells not simultaneously targeted by 

photosensitizer and light contributes to the specificity induced by PCI and, 

consequently, a large gap between the TI and TIPCI is expected to be advantageous in 

the clinical setting. The ratio between the TI with and without PCI was therefore used as 

an estimate of the potential of PCI to augment the cytotoxic effect of the targeted toxin 

in target cells.  



30 
 

  



31 
 

4. SUMMARY OF PUBLICATIONS 

 

4.1 Paper I 

This is the first publication on PCI of a HER2-targeted toxin. The HER2-targeted 

mAb trastuzumab was linked to saporin through a streptavidin-biotin linker. HER2-

selective uptake and cytotoxicity of PCI of trastuzumab-saporin was demonstrated by 

increased cytotoxicity of PCI of trastuzumab-saporin compared to PCI of saporin in 

HER2-positive Zr-75-1 cells, while the difference was much smaller in the HER2 low-

expressing MDA-MB231 cells. HER2-specificity of PCI of trastuzumab-saporin was 

also confirmed by the ability to reduce the cytotoxic effect by blocking HER2 with an 

excess of free trastuzumab. PCI of trastuzumab-saporin was much more efficient when 

using the “light after” procedure compared to the “light first” procedure. This could be 

correlated to photochemically-induced HER2 damage, which inhibited internalization of 

trastuzumab-saporin. The photochemical HER2 damage was shown to be dependent on 

the photosensitizer localization, with TPCS2a inducing more severe effects on total 

HER2 when targeted to the plasma membrane as compared to endocytic vesicle 

membranes. The ability of HER2 to become phosphorylated at Y1221/1222 was, 

however, reduced to the same extent using both targeting procedures. The data obtained 

with trastuzumab-saporin suggest that, in principle, PCI of HER2-targeted 

immunotoxins should be a valid approach for treatment of HER2-overexpressing 

cancers in general, such as breast, ovary, stomach, colon and esophagus. The present 

results emphasize, however, that the order of the different steps in the PCI protocol is of 

vital importance, with administration of the HER2-targeted immunotoxin prior to light 

exposure (i.e. “light after” procedure) as a prerequisite for successful PCI therapy. 
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4.2 Paper II 

This paper explores the in vitro and in vivo potential of PCI of a recombinant 

HER2-targeted immunotoxin for treatment of ovarian cancer, a type of cancer where 

HER2-targeted therapy generally has demonstrated limited efficacy. The immunotoxin 

comprise a single-chain variable fragment (scFv) of an anti-HER2 mAb (MH3-B1) 

fused to recombinant gelonin (rGel) through a GGGGS linker. In vitro efficacy of PCI 

of MH3-B1/rGel was demonstrated in three HER2-expressing ovarian cancer cell lines, 

SKOV-3, HOC-7 and NuTu-19. The SKOV-3 cells, although found relatively resistant 

to both trastuzumab and MH3-B1/rGel, responded strongly to PCI of MH3-B1/rGel and 

were found equally sensitive to this treatment as the SK-BR-3 breast cancer cells, 

although the SK-BR-3 cells were 10-fold more sensitive to MH3-B1/rGel monotherapy 

(when correlating for rGel sensitivity). Lysosomal degradation was indicated as the 

mechanism of resistance to MH3-B1/rGel monotherapy in the SKOV-3 cells, as shown 

by the positive correlation between localization of MH3-B1/rGel and Lysotracker in 

these cells. Significant growth inhibitory effects of PCI of MH3-B1/rGel were 

demonstrated in vivo on SKOV-3 xenografts as measured by tumor size 16 days post 

treatment. The in vivo effect induced by PCI of 2 mg/kg MH3-B1/rGel was, however, 

smaller than expected based on the presented in vitro results and it was concluded that 

the in vivo protocol must be optimized with respect to MH3-B1/rGel dose. In 

conclusion, the efficiency of PCI of MH3-B1/rGel in SKOV-3, HOC-7 and NuTu-19 

cells supports general applicability of this PCI approach in ovarian cancer and indicates 

PCI of MH3-B1/rGel as a possible HER2-targeted treatment approach for ovarian 

cancers resistant to HER2-targeted therapeutics. 

 

 

 

 

 



33 
 

4.3 Paper III 

This paper is the first report on the development and production of an EGFR-

targeting recombinant fusion toxin specifically designed for cytosolic delivery by PCI. 

It is also the first study showing antitumor effects of a gelonin-based EGFR-targeted 

toxin in head and neck tumors. Recombinant gelonin (rGel) was fused to the epidermal 

growth factor (EGF) through a flexible GGGGS linker. The fusion protein was 

expressed in Escherichia coli and purified by immobilized metal affinity 

chromatography (IMAC). Despite significantly reduced ribosome-inactivating activity 

of rGel/EGF compared to that of rGel in a cell-free reticulocyte lysate system, rGel/EGF 

exerted increased cytotoxicity against EGFR-expressing A-431 and HNSCC cell lines. 

PCI further increased the cytotoxicity of rGel/EGF in EGFR-expressing cells and was 

shown to increase the EGFR-targeting index of rGel/EGF up to 40-fold in HNSCC cell 

lines resistant to cetuximab (Erbitux®). EGFR-specific cytotoxicity PCI of rGel/EGF 

was verified by control experiments on EGFR-negative MES-SA and MDA-MB435 

cells, in addition to receptor blocking with an excess of free cetuximab. LC3 lipidation, 

PI uptake, PARP cleavage and DNA fragmentation (TUNEL) was demonstrated 

following PCI of rGel/EGF in A-431 cells in vitro. Control experiments suggested that 

apoptosis and necrosis were induced by rGel/EGF after photochemical release, while 

the photochemical treatment (TPCS2a + light, no drug) induced autophagy. In vivo, PCI 

of rGel/EGF induced antitumor effects at an rGel/EGF dosage of only 0.1 mg/kg, as 

shown by a significant growth delay of A-431 tumor xenografts and a reduction of 

tumor perfusion and necrosis induction in SCC-026 HNSCC tumors. A dose-dependent 

effect was, however, seen in the A-431 tumors as doubling the rGel/EGF dose resulted 

in synergistic effects. The data obtained suggest that there is three tumor-specific 

aspects of PCI of rGel/EGF; i) preferential retention of the photosensitizer in tumor 

tissue, ii) light exposure confined to the cancerous area, and iii) EGFR-targeting 

properties of rGel/EGF. Tumor specificity is further supported by minimal toxicity of 

rGel/EGF in off-target cells due to lysosomal degradation. It was concluded that PCI of 

rGel/EGF has potential for further preclinical development towards treatment of patients 

with HNSCC, although with optimization of the rGel/EGF product as a prerequisite for 

further preclinical evaluation. 
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5. GENERAL DISCUSSION 

 

The molecular pathways of EGFR and HER2 have attracted considerable attention 

as therapeutic targets for solid tumors. To this date, the most successful EGFR- and 

HER2-targeted therapeutic strategies (i.e. mAbs and TKIs) exert their pharmacologic 

action via inhibition of receptor activation (Ciardiello and Tortora, 2008; Nielsen et al., 

2009). EGFR and HER2 are, however, also investigated as delivery portals for cytotoxic 

agents into the cells (Pastan et al., 2007). EGFR- and HER2-targeted toxins based on 

the bacterial toxins, Pseudomonas exotoxin (PE) or Diphteria toxin (DT) have 

demonstrated in vivo antitumor effects in several cancers, including brain cancer 

(Phillips et al., 1994; Engebraaten et al., 2002; Chandramohan et al., 2013; Liu et al., 

2005), pancreatic cancer (Bruell et al., 2005), gastric cancer (Batra et al., 1992) and 

head and neck cancer (Thomas et al., 2004; Waldron et al., 2012; Barnea et al., 2013; 

Azemar et al., 2000). Off-target effects with these highly potent targeted toxins, as well 

as formation of neutralizing antibodies have, however, been demonstrated as obstacles 

for clinical use (Pai-Scherf et al., 1999; von Minckwitz et al., 2005; Cao et al., 2012; 

Azemar et al., 2003) and, so far, no targeted toxin has been approved for treatment of 

nonhematological cancers. In order to obtain toxin-based treatment strategies that are 

clinically viable, it is necessary to preserve the potency of the toxins in tumor cells 

while sparing normal cells. 

The present study explores PCI as a method to increase the tumor-specific toxicity 

of EGFR- and HER2-targeted toxins. PCI induces site-specific cytosolic release of 

drugs that are entrapped in endocytic vesicles. PCI of targeted toxins based on PE and 

DT is little effective since these bacterial toxins have translocation domains for 

endosomal escape (Weyergang et al., 2011). Type I RIP-based targeted toxins are, 

however, ideal for tumor-selective activation by PCI, since these are equally potent as 

PE and DT once entering the cytosol (Eiklid et al., 1980), but lack an effective 

mechanism for endosomal escape (Barbieri et al., 1993; Vago et al., 2005). Prior to this 

thesis, PCI was shown to increase the EGFR-specific cytotoxicity of the type I RIP-

based targeted toxins EGF-saporin and cetuximab-saporin based on streptavidin-saporin 

(Weyergang et al., 2011; Yip et al., 2007; Weyergang et al., 2006). These studies 

formed a strong rationale for optimizing PCI of EGFR-targeted toxins for in vivo 
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applications. The overexpression of HER2 in several cancers and its ability to undergo 

internalization was the reason why also this receptor was included as a potential target 

for PCI-induced toxin delivery in the present project. 

 

5.1 Construction and characterization of the targeted toxins 

 The present thesis includes three reports on PCI of type I RIP-based targeted 

toxins. The first report proves the principle of PCI of a HER2-targeted toxin, a concept 

which is further explored both in vitro and in vivo in the second report using a more 

clinically relevant recombinant toxin. The third report describes the design, production 

and preclinical evaluation of an EGFR-targeted toxin custom-made for delivery by PCI. 

The targeted toxins used in the present study were constructed and prepared using 

different techniques. Their characteristics are summarized in Table 5.  

 

 
Paper I Paper II Paper III 

Targeting receptor HER2 HER2 EGFR 

Targeted toxin Trastuzumab-saporin MH3-B1/rGel rGel/EGF 

Production method 
Noncovalent 

bioconjugation 

Recombinant DNA 

technology 

Recombinant DNA 

technology 

Targeting moiety Humanized IgG1 mAb scFv Endogenous ligand 

Toxin moiety Natural saporin Recombinant gelonin Recombinant gelonin 

Linker Biotin-streptavidin GGGGS GGGGS 

Size 280 – 730 kDa 55 kDa 42 kDa 

Table 5: Targeted toxins used in the present thesis. 

 

The HER2-targeted immunotoxin described in Paper I was established by linking 

trastuzumab to saporin through the biotin-streptavidin binding. This binding is 

essentially the strongest noncovalent biological interaction known. The extraordinarily 
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high affinity between streptavidin and biotin (Ka = 1015 L/mol) ensures rapid and 

essentially non-reversible formation of trastuzumab-biotin-streptavidin-saporin 

complexes (Diamandis and Christopoulos, 1991). Each streptavidin tetramer has four 

binding sites for biotin, and streptavidin-saporin was therefore combined with biotin–

trastuzumab at a biotin:streptavidin ratio of 4:1. This method offers an easy and 

convenient way to establish targeted toxins for proof-of-principle studies. However, 

with two saporin per streptavidin molecule and the ability to bind four biotinylated 

compounds, steric hindrance and, consequently, formation of heterogeneous products 

with different ratios between trastuzumab and saporin is likely. In theory, the conjugate 

size may exceed 700 kDa and, thus, these products have little potential for clinical 

utilization.  

MH3-B1/rGel (Paper II) and rGel/EGF (Paper III) were prepared by recombinant 

DNA technology, a technique that allows joining of DNA fragments from different 

species (recombination) and insertion into a host organism to produce large quantities of 

the encoded protein. The technique makes it possible to introduce a peptide linker to 

obtain distance between the targeting and toxin moiety and also enables genetic 

alterations such as insertions and deletions. The carbohydrate groups responsible for 

mannose-specific uptake of natural gelonin (Madan and Ghosh, 1992) are not a part of 

recombinant gelonin, reducing the unspecific uptake of the EGFR- and HER2-targeted 

toxins (Rosenblum et al., 1995). MH3-B1 and EGF were fused to opposite ends of rGel, 

the N- and C-terminal, respectively, through a flexible GGGGS linker. The sequences 

were constructed by overlapping PCR, inserted into a plasmid vector and transformed 

into Escherichia Coli for expression. Recombinant production allows strict control of 

the size, homogeneity and purity of the products and gives great opportunities for 

optimizing and tailoring targeted toxins for clinical utilization (Kreitman, 2006; Potala 

et al., 2008).  

The MH3-B1/rGel fusion protein has been described previously and has been 

shown to have high purity in solution (Cao et al., 2012). The enzymatic activity of 

MH3-B1/rGel has not been reported, although similar IC50 values of rGel and MH3-

B1/rGel in HER2-negative cells suggest that the ribosome-inactivating ability of rGel 

and MH3-B1/rGel is comparable (Cao et al., 2012). The rGel/EGF product described in 

Paper I was the result of a preliminary production and this fusion protein was upon 
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characterization found to have low purity and considerably reduced N-glycosidic 

activity compared to recombinant gelonin (rGel). Several approaches must be 

considered in future studies to optimize the rGel/EGF production, such as re-optimizing 

the codon choice to improve protein expression in E. coli and modifying the 

experimental conditions during protein expression (e.g. temperature, OD and IPTG 

concentration) to increase the rGel/EGF yield. Secondly, considering the low enzymatic 

activity of the toxin moiety, the current configuration of rGel/EGF may not be the 

optimal one. The presence of inclusion bodies in the rGel/EGF solution and the 

disability to form trimers after incorporating an isoleucine-zipper trimer indicated 

misfolding of the protein. Comparisons should therefore be made with EGF fused to the 

N-terminal of rGel (EGF/rGel). Of note, effort was also put into developing a EGFR-

targeting fusion toxin based on the scFv425 (Bruell et al., 2003; Bruell et al., 2005). 

Although the N-glycosidic activity of the rGel/scFv425 fusion toxin was found virtually 

identical to that of rGel, the uptake was found to be EGFR-nonspecific. The 

rGel/scFv425 fusion toxin product was therefore discarded, but should certainly be 

reconsidered as a modified version, e.g. reoriented with rGel positioned in the C-

terminal. 

Nonetheless, PCI potentiated the cytotoxic effect of rGel/EGF in an EGFR-

specific manner and was found 70-fold more effective compared to PCI of rGel in A-

431 cells (Paper III). The promising results demonstrated by PCI of rGel/EGF despite 

reduced ribosome-inactivating activity indicate that rGel/EGF has great potential for 

further optimization. Considering the already demonstrated EGFR specificity of PCI of 

rGel/EGF, increasing the ribosome-inactivating ability of rGel/EGF 65-fold (i.e. to the 

level of rGel) should result in an EGFR-specific treatment alternative with striking 

potency in targeted cells. The low molecular weight of the 42 kDa monomer might, 

however, present an obstacle for systemic delivery due to renal clearance. Although not 

absolute, the threshold for renal clearance as described in the literature ranges from 

approximately 40-65 kDa (Noguchi et al., 1998; Schneider et al., 2009). Thus, also 

MH3-B1/rGel (55 kDa) might be susceptible to rapid excretion through the kidneys. 

Indeed, MH3-B1/rGel has been found to accumulate in the kidneys after systemic 

administration (Cao et al., 2012). Future work should include attempts to optimize the 

size (e.g. by incorporating a peptide/protein linker), as well as to increase the purity, 

ribosome inactivating activity and stock concentration of the final rGel/EGF product.  
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5.2 PCI of targeted toxins; impact of the toxin moiety 

Several targeted toxins based on the type I RIPs saporin and gelonin have been 

evaluated for PCI administration (Weyergang et al., 2011). These toxins are highly 

potent as it has been estimated that only 1-10 type I RIP molecules in the cytosol may 

be sufficient to kill a cell (Eiklid et al., 1980). PCI has been shown to greatly enhance 

the efficacy of saporin-containing targeted toxins in vitro, as shown for EGF-saporin 

(Weyergang et al., 2006), cetuximab-saporin (Yip et al., 2007) and trastuzumab-saporin 

(Paper I). Up to 1000-fold enhanced therapeutic effect of EGF-saporin was 

demonstrated upon activation by PCI (Weyergang et al., 2006). Saporin has, however, 

been shown to have approximately 10 times higher ribosome-inactivating activity 

compared to gelonin and correspondingly higher toxicity to mice (LD50 = 4.0 vs. 40.0) 

(Battelli et al., 1990; Barbieri et al., 1993). Saporin is therefore likely to induce more 

off-target effects in vivo compared to gelonin. 

The targeted toxins evaluated in the present study contain either natural saporin or 

the recombinant, unglycosylated version of gelonin (Rosenblum et al., 1995). 

Recombinant gelonin (rGel) is less toxic to intact mammalian cells compared to natural 

gelonin due to lack of mannose-specific uptake (Rosenblum et al., 1999). However, 

immunoconjugates comprising rGel has been shown to demonstrate identical N-

glycosidic activity compared to immunoconjugates produced with natural gelonin, as 

well as improved in vivo pharmacodynamics and tissue distribution (Rosenblum et al., 

1999). Studies have indicated that for every 107 gelonin-based immunotoxin molecules 

that are internalized, only one reaches the cytoplasm (Yazdi and Murphy, 1994). In 

another study, it was estimated that ~5 x 106 rGel molecules must be internalized in 

order to kill a cell (Pirie et al., 2011). The high ribosome-inactivating ability of rGel 

combined with its low toxicity to normal cells, as well as improved in vivo performance 

compared to natural gelonin, suggest rGel as an ideal candidate for design of targeted 

toxins custom-made for PCI application. 

PCI of rGel-based targeted toxins is believed to exert superior tumor selectivity 

through the tumor-targeting potential of the targeted toxin, the tumor-selective 

accumulation of the photosensitizer (as shown in Paper III), as well as light exposure 

confined to the tumor area. By controlled cytosolic release, PCI may reduce the toxin 

dosage necessary to kill the targeted cells. PCI-enhanced delivery of rGel-based targeted 
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toxins has been shown to induce significant antitumor effects in several tumor xenograft 

models using fusion toxin and photochemical treatment dosages that did not induce 

significant effects as monotherapies. This was demonstrated with scFvMEL/rGel in A-

375 non-pigmented skin melanoma (Selbo et al., 2009), VEGF121/rGel in CT26.CL25 

murine colon carcinoma (Weyergang et al., 2014), MH3-B1/rGel in SKOV-3 ovarian 

carcinoma (Paper II) and rGel/EGF in A-431 epidermoid carcinoma and SCC-026 

HNSCC (Paper III). The fusion toxins were administered i.v. at 2 mg/kg 

(scFvMEL/rGel, MH3-B1/rGel) or 4 mg/kg (VEGF121/rGel) or intratumorally at 0.1 

mg/kg (rGel/EGF). Tumor growth suppression has previously been demonstrated by 

several gelonin-based fusion toxins with different targeting moieties at a total dose of 20 

mg/kg or higher administered as multiple i.v. injections (Cao et al., 2009; Zhou et al., 

2011; Cao et al., 2012; Cao et al., 2012; Zhou et al., 2012). Altogether, these results 

indicate that PCI may reduce the effective dose and thereby increase the therapeutic 

window of rGel-based targeted toxins. In all the mentioned in vivo PCI studies, the 

photosensitizer and targeted toxin was administered as single injections and light was 

applied only once. Also in clinical studies, PCI has been shown effective using only one 

treatment cycle (NCT00993512, NCT01872923). These findings, therefore, suggest that 

PCI may abrogate immunogenicity problems related to prolonged treatment with 

targeted toxins, such as formation of neutralizing antibodies (Pai-Scherf et al., 1999; 

Azemar et al., 2003).   

 

5.3 EGFR and HER2 as targets for PCI-induced toxin delivery 

 Both EGFR and HER2 are endocytosed as a part of their physiological 

mechanism. This, combined with their high expression in several cancer types, makes 

them interesting targets for delivery of toxins to cancer cells. Although EGFR and 

HER2 share common characteristics, they differ in their trafficking patterns (Wiley, 

2003) and in their distribution and function in normal tissue (Yarden and Sliwkowski, 

2001), which is of relevance when evaluating their potential as candidates for efficient 

and selective delivery of toxins to cancer cells.  

Upon ligand stimulation, EGFR alters its trafficking pattern towards accelerated 

internalization and enhanced lysosomal targeting (Wiley, 2003; Baulida et al., 1996). 
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EGFR has been found in early endosomes as soon as 2-5 minutes after EGF stimulation 

(Haigler et al., 1979; Miller et al., 1986) and its first appearance in lysosomes has been 

detected already after 20 minutes (Beguinot et al., 1984). The internalization rate of 

HER2 appears slower than that of EGFR and is, on the contrary, similar in empty and 

occupied states (Sorkin et al., 1993; Baulida et al., 1996). It is therefore reasonable to 

believe that rGel/EGF is more rapidly internalized into the cells compared to 

trastuzumab-saporin and MH3-B1/rGel. rGel/EGF may, however, also be more rapidly 

degraded due to increased lysosomal accumulation. Unlike EGFR, HER2 is not 

efficiently sorted to lysosomes, but rather recycled back to the plasma membrane. 

Trastuzumab has been found to efficiently recycle with HER2 after endocytosis (Austin 

et al., 2004), suggesting that trastuzumab-saporin follows the same route. The lysosomal 

localization of MH3-B1/rGel demonstrated in SKOV-3 cells (Paper II) suggests, 

however, that MH3-B1/rGel might be able to dissociate from HER2 after entering 

endocytic vesicles. Thus, the amount of targeted toxin localized in endocytic vesicles at 

the time of light exposure is not only determined by the internalization rate of the 

receptor, but also on the intracellular trafficking route of the toxins. As a consequence, 

the amount of toxins available for PCI-induced cytosolic release is not necessarily 

higher after EGFR-targeting compared to HER2-targeting. The picture is also further 

complicated by the fact that homodimers and heterodimers of receptors in the EGFR 

family appear to have different trafficking patterns (Shankaran et al., 2008; Lenferink et 

al., 1998). Dependent on the relative expression of EGFR and HER2, the intracellular 

fate of EGFR-HER2 dimers may be shifted in favor of lysosomal targeting or recycling, 

respectively (Worthylake and Wiley, 1997; Worthylake et al., 1999; Hendriks et al., 

2003; Hartman et al., 2013). A rationale for the increased lysosomal localization of 

MH3-B1/rGel in the SKOV-3 cells compared to the SK-BR-3 cells (Paper II) may 

therefore be the higher EGFR:HER2 ratio documented in the SKOV-3 cells.  

PCI of trastuzumab-saporin (Paper I) was found to induce cytotoxic effects 

comparable to that demonstrated with PCI of cetuximab-saporin (Yip et al., 2007). A 

higher concentration of trastuzumab-saporin compared to cetuximab-saporin was, 

however, required to achieve similar effects with PCI (100 pM and 3 pM, respectively). 

These findings are in agreement with the lower rate reported for trastuzumab-induced 

HER2 endocytosis (Zhu et al., 2007) compared to cetuximab-induced EGFR 

endocytosis (Bhattacharyya et al., 2010). PCI was found to enhance the effect of MH3-
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B1/rGel in SKOV-3 cells with higher lysosomal targeting of MH3-B1/rGel compared to 

SK-BR-3 cells (Paper II) and has also been found  highly effective in HER2-low 

expressing MDA-MB-231 cells (Bull-Hansen et al., 2014). Altogether, these results 

indicate that PCI can potentiate the cytotoxicity of type I RIP-based targeted toxins over 

a wide range of internalization rates and that even a low number of toxins present in 

endo/lysosomal vesicles at the time of light exposure may be sufficient to induce 

cytotoxicity with PCI. PCI of MH3-B1/rGel (Paper II) and PCI of rGel/EGF (Paper III) 

were found to induce similar cytotoxic effects at a comparable toxin dose (2 nM and 1 

nM, respectively). Presuming that the enzymatic activity of MH3-B1/rGel is similar to 

rGel itself, these results are in agreement with the lower N-glycosidic activity of 

rGel/EGF compared to rGel, which is believed to counteract a possibly higher uptake of 

rGel/EGF by EGFR-mediated compared to MH3-B1/rGel by HER2-mediated 

endocytosis. The higher concentrations of MH3-B1/rGel and rGel/EGF compared to 

trastuzumab-saporin and cetuximab-saporin required to induce cytotoxicity with PCI are 

in agreement with the 10-fold higher ribosome-inactivating activity of saporin compared 

to gelonin (Battelli et al., 1990). Although the results of the present study indicate that 

EGFR-targeting may be more effective compared to HER2-targeting for receptor-

mediated uptake of toxins, both receptors seem to have sufficient endocytosis for 

targeted PCI-induced delivery. 

Expression of EGFR and HER2 in normal tissue constitutes a potential risk for 

adverse effects of targeted toxins directed against these receptors. Cutaneous toxicity, 

such as acne and rash, a common adverse effect of EGFR-targeted mAbs and TKIs, has 

been linked to EGFR expression in the epidermis (Liu et al., 2013; Petrelli et al., 2013) 

and hepatotoxicity, which has limited the clinical dose-escalation of several HER2-

targeted toxins, is presumably related to the presence of HER2 on hepatocytes (Pai-

Scherf et al., 1999; Cao et al., 2012). The correlation between cardiotoxicity induced by 

trastuzumab and HER2 expression is not well defined, although HER2 has been 

implicated in cardiac development and function. However, trastuzumab-induced 

cardiotoxicity is largely reversible in the majority of cases (Ewer et al., 2005) and 

adverse effects resulting from EGFR inhibition are generally mild and not clinically 

limiting. Both EGFR- and HER2-related adverse effects have been shown to correlate 

with the administered dose and the duration of treatment (Grunwald and Hidalgo, 2003; 

Herbst et al., 2004; Azemar et al., 2003; Pai-Scherf et al., 1999). PCI is expected to 
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increase the specificity and reduce the therapeutic dose of type I RIP-based EGFR- and 

HER2-targeted toxins by activating their effect only in illuminated areas of the body. 

Existing data suggest that PCI may be efficient with only one or very few 

administrations of the targeted toxin (Berg et al., 2005a; Selbo et al., 2009; Weyergang 

et al., 2014). Consequently, it is expected that off-target toxicity due to the presence of 

EGFR and HER2 in normal tissue should be reduced compared to prolonged targeted 

toxin monotherapy. The accumulation of PCI-photosensitizers in the skin (Berg et al., 

2011) constitutes, however, a potential challenge for delivery of EGFR-targeted toxins, 

since surface illumination may activate EGFR-targeted toxins accumulated in the 

overlying epidermis. This problem may, however, be resolved by delivering the light 

directly into the tumor through interstitial laser fibers. Interstitial laser light application 

is currently explored in patients with recurrent head and neck squamous cell carcinoma 

(NCT01606566). 

EGFR, but not HER2, has been shown to be more highly expressed in tumor 

endothelial cells compared to skin endothelial cells (Amin et al., 2006) and amphiphilic 

PCI-photosensitizers have been demonstrated to accumulate in cells of the tumor 

vasculature (Vikdal et al., 2013b; Weyergang et al., 2014). The DCE-MRI results in 

Paper III indicated that also EGFR expressed by the tumor vasculature may be targeted 

by rGel/EGF, which may contribute to the tumor inhibiting effect of the treatment by 

depriving the tumor of oxygen and nutrients. Such tumor-specific vascular effects may 

represent an advantage with EGFR-targeted toxins compared to HER2-targeted toxins.  

 

5.4 Inhibition of endocytic processes by the photochemical treatment; 
implications on the PCI protocol  

PCI induces cytosolic release of drugs that are entrapped in endocytic vesicles. The 

two protocols developed for PCI are based on photochemical disruption of endocytic 

vesicles either before (“light first”) or after (“light after”) administration of the drug to 

be delivered (Prasmickaite et al., 2002). The “light first” procedure may be 

advantageous in that it reduces the risk of potential harmful effects induced by the 

photochemical treatment (photosensitizer and light) or by lysosomal enzymes on the 

drug. It has, however, previously been shown that photodamage targeted primarily to 
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endosomes and lysosomes may suppress plasma membrane endocytosis (Kessel et al., 

2011). Any such interference of the photochemical treatment with endocytic processes 

is likely to interfere with the PCI “light first” procedure.  

 

5.4.1 PCI of non-targeted toxins 

Type I RIPs like gelonin and saporin are predominantly taken up by fluid-phase 

endocytosis and localize to the lumen of endocytic vesicles. The amphiphilic PCI-

photosensitizers are taken up by adsorptive endocytosis with the hydrophobic part 

integrated into the outer leaflet of the plasma membrane. PCI of gelonin with AlPcS2a as 

the photosensitizer has been shown substantially more efficient using the “light first” 

compared to the “light after” procedure both in vitro (Prasmickaite et al., 2002) and in 

vivo (Berg et al., 2006). These studies indicated that the photochemical treatment 

directed against endosomes and lysosomes does not inhibit subsequent fluid-phase 

endocytosis. However, the fact that PCI was found superior with gelonin administered 

after the photochemical treatment indicated that co-administration of gelonin with 

AlPcS2a may reduce uptake, alter trafficking or partially inactivate gelonin. Using 

dextran as a surrogate marker for non-specific endocytosis, it was, indeed, confirmed 

that AlPcS2a in a dose-dependent manner strongly reduced uptake and altered trafficking 

of fluid-phase endocytosed drugs in both HT1080 tumor cells and vascular endothelial 

cells (HUVECs) (Vikdal et al., 2013a). Co-incubation with TPPS2a did, however, not 

significantly attenuate the dextran uptake. Hence, the interference of PCI-

photosensitizers with fluid-phase endocytosed drugs seems to vary with the type of 

photosensitizer and photosensitizer dose. 

PCI of saporin with TPCS2a as the photosensitizer was found less efficient using 

the “light first” compared to the “light after” procedure in Zr-75-1 cells (Paper I). This 

has also previously been shown in NuTu-19 cells with TPPS2a as the photosensitizer. 

Studies on the uptake of Alexa488-dextran indicated that fluid-phase endocytosis in Zr-

75-1 cells was inhibited by the TPCS2a-based photochemical treatment (Paper I). No 

inhibition of dextran uptake could, however, be seen following the photochemical 

treatment in WiDr cells where “light first” PCI of gelonin has previously been shown 

highly efficient (Berg et al., 2006). These findings indicate that inhibition of non-
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targeted endocytic processes by the endo/lysosomally targeted photochemical treatment 

is not only determined by the photosensitizer, but is also cell line dependent.  

 

5.4.2 PCI of targeted toxins with the “light first” procedure 

PCI of targeted toxins is highly dependent on functional binding of the targeting 

moiety to the receptor followed by receptor-mediated endocytosis. The PCI “light first” 

procedure has repeatedly been found inefficient for delivery of targeted toxins 

(Weyergang et al., 2006; Yip et al., 2007; Selbo et al., 2009; Berstad et al., 2012). 

Photochemical damage to the targeting receptor or nearby mediators has been proposed 

as a rationale behind this observation, likely caused by remaining photosensitizer in the 

plasma membrane at the time of light exposure (Weyergang et al., 2007; Weyergang et 

al., 2008a). Receptor damage to HER2 was therefore studied following photochemical 

treatment with TPCS2a targeted either primarily to endocytic vesicles or to the plasma 

membrane (Paper I). Activated TPCS2a was shown to reduce the phosphorylation of 

HER2 at Y1221/1222 irrespective of the amount of photosensitizer on the plasma 

membrane, while photochemical damage of total HER2 was most severe when TPCS2a 

was localized to the plasma membrane. These findings are in agreement with studies by 

Weyergang et al. on the effects of TPPS2a-induced photodamage on total and phospho-

EGFR (Y1068) in NuTu-19 cells (Weyergang et al., 2007). The observed photodamage 

on EGFR in NuTu-19 cells and HER2 in Zr-75-1 cells correlate positively with the lack 

of effect following “light first” PCI of EGF-saporin (Weyergang et al., 2006) and 

trastuzumab-saporin (Paper I) in these cell lines. In A-431 cells, PCI of EGF-saporin 

was, however, shown equally efficient with the “light after” and “light first” strategy, in 

agreement with the lack of photodamage on EGFR observed in this cell line 

(Weyergang et al., 2008a). Altogether, these findings suggest that photochemical 

receptor damage is a predictive factor for the responsiveness towards PCI of targeted 

toxins applied with the “light first” procedure.  

The results in Paper I suggest that the photochemical HER2 damage abrogates the 

“light first” PCI effect by inhibiting uptake by receptor-mediated endocytosis. However, 

whether the observed effects on HER2 (Paper I) and EGFR phosphorylation 

(Weyergang et al., 2007; Weyergang et al., 2008a) are due to direct receptor 
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photodamage is still unknown. The impairment of the photochemical treatment on 

EGFR and HER2 phosphorylation could also be a result of photodamage to nearby 

mediators in the plasma membrane, such as cholesterol, which is a known substrate for 

singlet oxygen (Geiger et al., 1997). Both EGFR and HER2 have been shown to reside 

in cholesterol-rich, low-density domains called lipid rafts (Pike, 2005; Orr et al., 2005).  

 

5.4.3 PCI of targeted toxins with the “light after” procedure 

Although photochemical receptor damage presumably does not inhibit PCI-

induced release of targeted toxins administered prior to light (“light after” strategy), it is 

likely to contribute to the mechanistic action following the PCI treatment if the targeting 

receptors are involved in cellular growth and survival. The differential photodamage to 

EGFR observed in NuTu-19 and A-431 cells indicates that the susceptibility to receptor 

damage induced by endo/lysosomally targeted photochemical treatment is cell line 

dependent (Weyergang et al., 2007; Weyergang et al., 2008a). In Paper III, A-431 was, 

despite its high EGFR expression, found to be less sensitive to PCI of rGel/EGF than 

what could be expected based on a linear correlation. It was therefore argued that the 

efficacy of PCI of rGel/EGF may not only be determined by the amount of receptor 

available for binding to the targeting moiety, but also on the cell line sensitivity to 

photochemical damage to EGFR and the dependency on EGFR for growth and survival. 

The lack of photochemical damage to EGFR seen in A-431 cells after TPPS2a-based 

photochemical treatment (Weyergang et al., 2008a) suggest that the effects on EGFR 

induced by the TPCS2a-based photochemical treatment might be correspondingly. Lack 

of photochemical EGFR-targeting in A-431 cells therefore represents a plausible 

explanation for the low efficacy of PCI of rGel/EGF in these cells despite their high 

EGFR expression. Accordingly, the remarkably high PCI efficacy in HNSCC SCC-026 

cells may indicate strong dependency on EGFR signaling in these cells, and hence, the 

photodamage on EGFR in these cells should be explored in future studies. 

In conclusion, the general trend has been that drugs taken up by fluid-phase 

endocytosis can be successfully delivered by PCI using both protocols (Dietze et al., 

2003; Berg et al., 2005a), while PCI of targeted therapeutics is most effective using the 

“light after” strategy (Selbo et al., 2010; Weyergang et al., 2011). However, the 
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efficiency of “light after” versus “light first” PCI seems to depend not only on the 

mechanism of drug-induced endocytosis, but also on the photosensitizer and the cells 

susceptibility to photodamage. 

 

5.5 The in vivo protocol for PCI of targeted toxins 

The ability to administrate the targeted toxin right before or right after illumination 

would be advantageous in a clinical setting, since this reduces the number of treatment 

steps to two, i.e. injection of photosensitizer (step 1) and injection of targeted toxin + 

illumination (step 2), and thereby simplifies the PCI treatment protocol. However, 

current knowledge obtained from in vitro studies indicates that in most cases, targeted 

toxins must be given prior to light exposure in order to obtain successful PCI effects. 

The drug-light interval should be determined based on the biodistribution of each 

targeted toxin and the trafficking pattern of the targeting receptor. An interval of 24 hrs 

from drug administration to illumination has previously been proposed as suitable for 

i.v. injection of toxins targeting gp240 or VEGFR (Selbo et al., 2009; Weyergang et al., 

2014). Although maximal tumor concentration of MH3-B1/rGel has been demonstrated 

48 hrs post injection (Cao et al., 2012), PCI of MH3-B1/rGel was found equally 

effective using a 24 or 48 hrs drug-light interval (Paper II). The antitumor effects 

induced by PCI of MH3-B1/rGel were, however, disappointing compared to the 

promising effects demonstrated in vitro.  

Tumors that are easily accessible, e.g. in the head and neck region, may be injected 

directly with the targeted toxin. A drug-light interval of 6 hrs has been indicated as 

proper for intratumoral injection of gelonin (Selbo et al., 2001b) or rGel/EGF (Paper III) 

for delivery by PCI. The ideal drug-light interval for intratumoral delivery is, however, 

likely to vary with the molecular weight and affinity of the targeted toxin, as well as the 

trafficking pattern of the receptor (Adams et al., 2001; Rudnick et al., 2011). The 

intratumoral administration route offers potential advantages compared with the 

systemic route, such as high local drug concentration and minimal systemic drug levels 

(Lammers et al., 2006). Homogenous distribution throughout the tumor remains, 

however, a substantial challenge as the targeted toxin might be quickly cleared into the 

blood supply of the tumor interstitial space (Goldberg et al., 2002).  
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6. CONCLUSIONS 

 

PCI of targeted protein toxins exploits tumor-associated proteins for delivery of 

highly cytotoxic payloads into target cells. The surface protein targets are merely 

utilized as delivery portals providing receptor-mediated endocytosis of the toxin moiety, 

while the pharmacological target is the ribosomes localized in the cytosol. Targeted 

toxin treatment approaches exert different mechanisms of action compared to currently 

approved mAbs and TKIs and may therefore not be restricted by resistance mechanisms 

associated with these therapies. Hence, PCI of EGFR- and HER2-targeted toxins may 

potentially represent an alternative treatment in cancers resistant to EGFR- and HER2-

targeted mAbs and TKIs. 

 PCI was in the present study shown to strongly enhance the efficacy of type I 

RIP toxins taken up by both EGFR- and HER2-mediated endocytosis. PCI of HER2-

targeted toxins was demonstrated in breast cancer and in ovarian cancer with low 

sensitivity to trastuzumab (Herceptin®). PCI of EGFR-targeting rGel/EGF was 

demonstrated in several EGFR-expressing solid cancers from different origins, 

including HNSCC that were resistant to cetuximab (Erbitux®). However, while the in 

vivo efficacy of PCI of 2 mg/kg MH3-B1/rGel was concluded as low compared to 

promising in vitro results, the antitumor effects of PCI of 0.1 mg/kg rGel/EGF were 

surprisingly effective considering the low activity and purity of the preliminary 

rGel/EGF product. Both previous and present studies suggest EGFR as a more efficient 

delivery portal for PCI-mediated toxin delivery compared to HER2. This is likely due to 

differences in ligand-induced endocytosis rate, since EGFR is internalized at a much 

higher rate compared to HER2, and intracellular trafficking (i.e. recycling vs. lysosomal 

targeting) of these two receptors. 

The photochemical treatment utilized to induce endosomal rupture with PCI was 

found to attenuate HER2 and, consequently, HER2-mediated endocytosis. These 

findings stress the influence of the treatment protocol on the therapeutic outcome. In 

agreement with previous studies on PCI of EGFR-targeted toxins, it was concluded that 

PCI of HER2-targeted toxins should be applied using the “light after” strategy where 

the targeted toxin is administered prior to the photochemical treatment.   
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7. FUTURE PERSPECTIVES 

 

This thesis has contributed to broader insight into how the treatment protocol and 

target expression may influence on the therapeutic outcome of PCI of targeted toxins. 

There are, however, several unanswered questions regarding the photochemical 

treatment responsible for the cytosolic drug release, such as which specific targets are 

subject to oxidation by the photochemical treatment and what determines the sensitivity 

among different cell lines to the ROS-induced damage. The observed attenuation of 

HER2 may be an indirect effect of photodamage to nearby mediators, such as 

cholesterol. The same holds true for previously demonstrated damage on EGFR 

(Weyergang et al., 2007; Weyergang et al., 2008a). The outcome of PCI is not a result 

of two separate treatments (photochemical treatment and drug), but rather an interaction 

between these two. Hence, future studies are warranted to determine the contribution of 

the photochemical treatment to the overall therapeutic effect of PCI.  

The recombinant fusion toxins utilized in this study were produced in Dr. 

Rosenblums lab at MD Anderson, Houston, Texas. In order to improve and expand the 

development drugs for PCI-mediated delivery, it would, however, be highly beneficial 

to establish similar production facilities at the Institute for Cancer Research, Oslo 

University Hospital. The ability to produce and purify fusion proteins in our own 

facilities would allow us to more heavily invest in tailoring drugs that do not exert 

toxicity without PCI. Both the present and previous studies suggest EGFR as a more 

efficient candidate for targeted PCI compared to HER2 and the main focus of following 

studies should, therefore, be on the optimization of EGFR-targeting protein toxins for 

PCI application. Firstly, the rGel/EGF fusion product and its production process should 

be optimized to allow i.v. administration and large scale testing. Secondly, rGel/EGF 

should be compared with a redesigned version of the rGel/scFv425 fusion toxin 

mentioned in Section 5.1. Both rGel/EGF and rGel/scFv425 should be reoriented with 

rGel placed in the C-terminal to see if this may improve the N-glycosidic activity and 

EGFR specificity of the two fusion proteins, respectively. Thirdly, to decrease the 

cytotoxicity of gelonin-based targeted toxins without PCI, the recombinant gelonin 

sequence should be optimized with the aim of completely inhibiting its cytosolic 

translocation. PCI of fusion toxins based on the new and optimized version of gelonin 
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should be evaluated in relevant tumor xenografts models with the aim of development 

towards clinical trials. 
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