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1 Introduction

The extraordinary technological advances over the past decades have opened a
world of new opportunities to statisticians. In particular, the increasing access
to big data sets and growth of large databases have required the development of
suited methods for multivariate analysis. This key field of statistics comprises
a multitude of different models and techniques, ranging from regression models
to dimension reduction by principal component or factor analysis, via networks
and spatial models, such as Kriging and Markov Random Fields. Many of these
assume an underlying multivariate parametric distribution.

Due to its many appealing characteristics, the multivariate normal dis-
tribution has been the, without comparison, most popular one. Though it
undoubtedly has many natural areas of use, it cannot account for either heavy
tails, skewness, nonlinear dependence or joint extreme events. Accordingly,
many alternatives have been proposed; in particular multivariate extensions
of well-known univariate distributions. The continuous ones include the mul-
tivariate Student’s t and generalised hyperbolic (Barndorff-Nielsen, 1997), as
well as extensions of the gamma, Pareto and many other distributions (see for
instance Kotz et al. (2000)). While they are able to capture one or several
of the above listed traits, they share the unfortunate feature that their flex-
ibility decreases with the dimension, confining the range of dependence they
are able to portray. Moreover, their univariate marginal distributions are all
of the same type, and tend to be rather similar. For instance, in the multi-
variate Student’s t distribution, all variables are entitled to their own location
and scale parameters, and all pairs have a separate correlation, but share the
degrees of freedom parameter, that governs the often crucial tails.

One manner of addressing these problems, is to transform the original
variables to obtain a mathematically more tractable distribution. Using each
variables own cumulative distribution function (cdf), i.e. the very natural
probability integral transformation, one obtains a copula, which is precisely
the theme of this thesis. More specifically, I have devoted these last years to
studying a method for building flexible multivariate copulae, called pair-copula
constructions (PCCs). Further, I have avoided the troublesome discrete world,
thus restricting my attention to continuous distributions.

Fully aware of the many excellent introductions to the wonderful world
of copulae, among those Nelsen (1999), Embrechts et al. (1999), Frees and
Valdez (1998) and Genest and Favre (2007), I simply provide pieces of this
vast subject, that I find particularly relevant for this thesis (Section 2). More-
over, pair-copula constructions are by no means the only manner of building
multivariate copulae. I therefore consider some of the alternatives (Section
3), before I move on to my structures of choice (Section 4). Subsequently, I
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summarise each of the fours papers constituting the thesis (Section 5). After
that, a discussion is in order (Section 6). Finally, against Buddha’s advice

“Do not dwell in the past, do not dream of the future, concentrate
the mind on the present moment”,

I consider some of the choices I have made along the way, as well as possible
extensions of my work (Section 7).

2 The missing link

The term “copula”, derived from Latin for “link”, comes from linguistics, where
it denotes a word, very often a verb, that joins the subject and predicate of
a sentence. In statistics, copulae may precisely be used to link variables with
different margins.

That was how I was introduced to the concept. During the development
of a risk management model for a bank, some of my colleagues at Norsk Reg-
nesentral, among those my supervisor Kjersti Aas, were asked to construct a
joint distribution having one beta and one log-normal margin, not unlike the
example from Embrechts (2009). They came up with the following idea. Sim-
ulate from a bivariate normal distribution. Transform the samples to uniforms
on [0, 1] with the normal cdf. Finally, transform to beta and log-normal sam-
ples, using their respective quantile functions. A few years later, they found
out that they had in fact used a Gaussian copula.

This illustrates how natural the idea is. Actually, it dates as far back as
the 1940s, at least, with the work of Hoeffding (1940, 1941). Later on, Sklar
introduced the name “copula”. However, copulae were not straight away as
fashionable as today. Genest et al. (2009a) note that their popularity increased
steadily, but cautiously, from the late 1980s. The real boom came a decade
later with the books of Joe (1997) and Nelsen (1999), and the introduction to
finance by Frees and Valdez (1998) and Embrechts et al. (1999).

The definition of a copula is a distribution of d (≥ 2) random variables,
that marginally are uniformly distributed U [0, 1]. According to Sklar (1959),
any d-variate cdf F1...d, with univariate margins F1, . . . , Fd, may be expressed
as

F1...d(x1, . . . , xd) = C1...d (F1(x1), . . . , Fd(xd)) , (2.1)

where C1...d is a copula, which is unique if the distribution is continuous. I
have already mentioned that copulae are well suited for modelling the joint
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distribution of variables with dissimilar marginal behaviour, such as a portfolio
of different types of assets. That is just one of their many areas of use. In
some applications, one knows the margins rather well, but has only a vague
idea about the dependence between them. This is for instance the case in total
risk modelling. Having found an adequate model for each of the risk types,
e.g. market, credit and operational, one can link them with a copula (see for
instance Aas et al. (2007)). Moreover, copulae provide a method for isolating
the dependence structure from the univariate margins. Hence, they allow
you to study how the variables behave jointly, while isolating their individual
behaviour. As a matter of fact, many useful measures of dependence, such as
Kendall’s τ

τ12 =P
(
(X1 − X̃1)(X2 − X̃2) > 0

)
− P

(
(X1 − X̃1)(X2 − X̃2) < 0

)
=4

∫ 1

0

∫ 1

0

C12(u1, u2)dC12(u1, u2),

Spearman’s ρ

ρS,12 =3
(
P

(
(X1 − X̃1)(X2 − X ′

2) > 0
)
− P

(
(X1 − X̃1)(X2 − X ′

2) < 0
))

=12

∫ 1

0

∫ 1

0

C12(u1, u2)du1du2 − 3 = Cor(F1(X1), F2(X2)),

where (X̃1, X̃2) and (X ′
1, X

′
2) are independent copies of (X1, X2), and the co-

efficients

λU,12 = lim
u↗1

P
(
X2 > F−1

2 (u)|X1 > F−1
1 (u)

)
= lim

u↗1

1 − 2u + C12(u, u)

1 − u
,

λL,12 = lim
u↘0

P
(
X2 < F−1

2 (u)|X1 < F−1
1 (u)

)
= lim

u↘0

C12(u, u)

u

of upper and lower tail dependence, respectively, rely only on the copula.

When the univariate margins are discrete, there is not just one function
that satisfies (2.1), but rather a class of functions, that may be rather broad.
Thus, the copula is unidentifiable. Because of that, many of the standard
results and inference techniques are not valid in the discrete case. Genest and
Nešlehová (2007) show that copula modelling of count data requires extra care
and caution. Still they conclude that this approach may be useful also for
linking discrete margins.

Despite their popularity, copulae have been severely criticised. They have
even been accused of causing the financial crisis, at least the Gaussian one
(Whitehouse, 2005; Salmon, 2009). The guilt of the Gaussian copula lies in its
lack of tail dependence, which entails an underestimation of the joint risk of
defaults. It is however unfair to blame a perfectly good model for practitioners’
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abuse of it. I cannot agree with the charge “mea copula” (Monoki, C.) unless
it is extended to “mea familia mea copula”.

Another famous copula critic is Mikosch (2006), who compares them to the
emperor’s new clothes (from the tale of H.C. Andersen). Among other things,
he objects to the allegedly arbitrary transformation to uniforms on [0, 1], the
lack of sensible copula families and the insufficient statistical theory for these
models. In the discussion, Joe (2006) remarks that for some applications,
other transformations may be more natural. That does not exclude the use
of copulae, since the probability integral transform is an intermediate step to
any other (Genest and Rémillard, 2006). As for statistical theory concerning
copulae, it was already quite extensive in 2006 and has significantly evolved
since then, providing the requested goodness-of-fit tests (for instance Genest
et al. (2009b) and Berg (2009)) and sensitivity studies (e.g. Joe (2005) and
Kim et al. (2007)) for estimation methods. The issue of copula families will
be addressed later on (Sections 3 and 4). Of course, copulae do not answer
all questions on dependence, but neither does any other multivariate model or
method.

3 The great leap

For bivariate models (d = 2), there exists a long and varied list of copula
families (see for instance Joe (1997)). As soon as d ≥ 3, the catalogue of
available copulae is significantly reduced (Genest et al., 2009a). Several of
the well-known Archimedean copulae generalise to higher dimensions (McNeil
and Nešlehová, 2009). However, they are exchangeable. Consequently, all
pairwise dependencies are the same, which makes them unfit for data with
more heterogeneous dependence structures. Moreover, the restrictions on their
parameters, and thus on the range of dependence they can capture, become
more severe with growing d. The other typical alternative in higher dimensions
is an elliptical copula, most likely the Gaussian or Student’s t. The former may
be a good alternative when the pairwise dependencies are rather symmetric
and, more importantly, extremes do not seem to occur jointly. If the data
appear to be tail dependent, the Student’s t copula is preferable. Though
it attributes a separate correlation to all pairs of variables, these share the
degrees of freedom parameter. Just like the multivariate Archimedean copulae,
the Student’s t is therefore best suited when the dependence between all pairs
is rather similar in terms of tail behaviour.

Due to the mentioned shortcomings, Demarta and McNeil (2005) have pro-
posed some extensions to the multivariate Student’s t copula. One of those is
the grouped t copula, which is derived based on the normal variance mixture
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representation of the multivariate Student’s t distribution. If Z ∼ Nd(0, R)
and W ∼ Gamma−1(ν/2, ν/2), where Gamma−1 denotes the inverse gamma
distribution, are independent, then X = W 1/2Z is distributed according to
the d-variate Student’s t distribution with scatter matrix R and ν degrees of
freedom. One clearly sees that the common ν stems from W . The idea is to
partition the variables into m groups, so that the dependence within each group
j may be described by the same degrees of freedom νj. Let V ∼ U [0, 1] be inde-
pendent of Z and Wj = G−1

νj
(V ), j = 1, . . . , m, where G−1

ν is the inverse cdf of

the inverse gamma distribution. Further define X =
(
W

1/2
1 Z1, . . . , W

1/2
m Zd

)
.

Then the dependence structure of X is a grouped t copula. Note that by con-
struction W1, . . . , Wm are perfectly positively dependent, which governs the
dependence between groups. Hence, not only do pairs within a specific group
obey a rather similar dependence, the inter-group dependencies are quite re-
semblant as well.

There are also many suggested generalisations of multivariate Archimedean
copulae, attempting to relax their exchangeability property. These include gen-
eralised multiplicative (Morillas, 2005; Liebscher, 2006) and hierarchical (Joe,
1997; Whelan, 2004; Savu and Trede, 2010) Archimedean copulae. The latter
of these are the most flexible. They are structures consisting of L ≤ d−1 levels
of copulae, each of dimension ≥ 2. Each copula links either some of the original
variables, copulae and variables or just copulae. Figure 3.1 shows an example
with five variables. All the copulae must be Archimedean, but they need not
be of the same type. Archimedean copulae are linked to a generator function,
that must fulfil certain criteria, in particular regarding monotonicity (McNeil
and Nešlehová, 2009). Hierarchical Archimedean copulae are constructed by
combining the generator functions of the copulae it consists of. The resulting
combined generator must satisfy the same criteria (Hofert, 2010). This im-
poses quite a few restrictions on the copula types that can be joined in the
structures. Another result is that the parameter values must be such that the
degree of dependence decreases with the level.

Hierarchical Archimedean copulae assume rather strong intra-group and
considerably weaker inter-group dependence, whereas in grouped t copulae,
the dependence between groups reflects the one within them. Hence, these
models are particularly suited for problems with a natural, known structure,
composed of homogeneous groups of variables. Otherwise, pair-copula con-
structions (Section 4) may be appropriate. They have the additional advantage
that one does not need to know the underlying structure. Actually, I encoun-
tered these constructions in search for a model that is more flexible than the
grouped t copula. The data my colleague Kjersti and I were trying to fit, were
a collection of financial assets. It was natural to partition them according to
type (stocks, bonds, interest rates, etc.). However, the pairwise dependencies
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Figure 3.1: Hierarchical Archimedean copula for 5 variables.

were too heterogeneous to be well captured by the grouped t copula. Moreover,
they were rather symmetric, exhibiting both upper and lower tail dependence.
Hierarchical Archimedean copulae were therefore not an option for that par-
ticular problem. However, Berg and Aas (2009) compared them to pair-copula
constructions in an empirical study involving a set of precipitation series and
a set of equity returns. They conclude that PCCs are more suitable for high
dimensional problems, due to their flexibility. Further, the authors claim that
PCCs are much faster to estimate and simulate. Nonetheless, it should be
noted that they did not use the more efficient algorithms proposed by McNeil
(2008) or Hofert (2011).

4 Three’s a crowd

In the copula world, two is company. As mentioned in the previous section,
the catalogue of bivariate copulae is extensive and diversified. Moreover, these
are generally more flexible than higher-dimensional counterparts. So why not
build a multivariate copula based merely on bivariate ones? That is precisely
the idea behind pair-copula constructions, introduced by Joe (1997).

To avoid trouble, I restrict my attention to the absolutely continuous case,
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where the joint as well as all marginal probability density functions (pdfs) are
defined. Further, I start with dimension d = 3. Let c123 be the copula density
of the triplet (X1, X2, X3), and Fi, i = 1, 2, 3, the corresponding marginal cdfs.
To obtain the corresponding pair-copula construction, simply decompose c123

into the product (consult for instance Aas et al. (2009) or Paper I of this thesis
to see how it is done)

c123 (F1(x1), F2(x2), F3(x3)) =c12 (F1(x1), F2(x2)) c23 (F2(x2), F3(x3))

c13|2
(
F1|2(x1|x2), F3|2(x3|x2); x2

)
.

(4.1)

The last factor c13|2 is the copula density corresponding to the conditional
distribution of (X1, X3), given X2 = x2. It is determined by

c13|2
(
F1|2(x1|x2), F3|2(x3|x2); x2

)
=

f13|2(x1, x3|x2)

f1|2(x1|x2)f3|2(x3|x2)
,

where fk|3 and f13|2 are the conditional pdfs of Xk, k = 1, 3, and (X1, X3),
respectively, given X2 = x2. In general, the shape of this copula depends on
the conditioning variable X2, hence the notation “; x2”. Also note that there
are two other ways of decomposing c123 into a PCC.

A d-dimensional copula density can be decomposed, as described above, in
a product of d(d − 1)/2 pair-copulae organised in d − 1 levels. Each of these
copulae is a function of two conditional cdfs, whose conditioning set has length
0 at the ground (first line of (4.1)) and increases by one variable with each
level.

The key to these constructions is that all copulae involved in the decomposi-
tion are bivariate and can belong to different families, for instance the classical
four shown in Figure 4.1, i.e. the Gaussian, Student’s t, Clayton and Gumbel.
There are no restrictions regarding the copula types that can be combined;
the resulting structure is guaranteed to be valid anyhow. Hence, PCCs are
extremely flexible and able to portray a wide range of complex dependencies
(Joe et al., 2010).

4.1 “Simplify, simplify, simplify!” (Thoreau, H. D.)

Like I mentioned above, the conditioning variables will in the general case
influence the copulae constituting a PCC, not only through the pairs of ar-
guments. In a parametric model, this means that the copula parameters are
functions of them. However, as I will explain later, fast and robust inference
on these structures requires the simplifying assumption that the copula shapes
are constant over the values of the conditioning variables, for instance

c13|2
(
F1|2(x1|x2), F3|2(x3|x2); x2

)
= c13|2

(
F1|2(x1|x2), F3|2(x3|x2)

)
.
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Figure 4.1: Simulations from four different bivariate copulae.

The resulting PCC is denoted simplified. In Paper I, my co-authors and I ex-
plore the consequences of these constraints. We express some conditions under
which a specific pair-copula decomposition of a multivariate copula is of this
simplified form, in terms of standard measures of dependence. Certain copula
families, such as Clayton and Student’s t, turn out to fulfil the assumption,
while others do not. Further, we show that the simplified PCC may be a rather
good approximation, even when the simplifying assumption is far from being
fulfilled. Of course, this is not always the case. But do not despair; PCCs may
still be an option. You can attempt to improve the approximation by letting
the copulae in the second and possibly third levels be of the general form, and
use the estimation procedure proposed by Acar et al. (2012).

In simplified PCCs, the pair-copulae and conditional cdfs are linked via
(Joe, 1996)

F1|2(x1|x2) =
∂C12(F1(x1), F2(x2))

∂F2(x2)
(4.2)

for one conditioning variable, and in general,

Fx|v(x|v) =
∂Cxvj |v−j

(Fx|v−j
(x|v−j), Fvj |v−j

(vj|v−j))

∂Fvj |v−j
(vj|v−j)

. (4.3)

Here, V is a random vector, not containing X, and V −j is the same vector,
reduced by variable Vj. The above formula enables a straightforward recursive
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computation of the conditional distributions, that constitute the pair-copula
arguments. However, this requires that the necessary pair-copulae Cxvj |v−j

are present in the preceding levels, which is not true for all simplified PCCs.
Consider for example the four-variate copula with density

c1234 =c12(F1, F2)c13(F1, F3)c14(F1, F4)

c23|1(F2|1, F3|1)c34|1(F3|1, F4|1)

c34|12(F3|12, F4|12).

To compute F4|12, you need C24|1, but this is not one of the copulae in pre-
vious level. You may recover it by integration. However, the dimension of
the required integrals increases with d. It is therefore highly preferable to
construct self-contained PCCs, that have all the necessary elements available
when needed.

This is guaranteed in the structures of Bedford and Cooke (2001, 2002).
Their regular (R-) vines represent the d-dimensional copula with a collection
of d − 1 trees, corresponding to the PCC levels. The first of these has the d
variables as nodes, and its edges stand for the pairs it connects in the ground
level. Further, the edges of tree j become the nodes of tree j+1. Moreover, two
nodes can only be connected if they fulfil the proximity condition, i.e. that
the corresponding edges in the preceding tree share a node. The interested
reader may consult Figure 1 in Paper III and IV for five-dimensional examples
of R-vines, as well as the two subclasses, canonical (C-) and drawable (D-)
vines.

4.2 All roads lead to Rome

There are numerous ways of estimating pair-copula constructions. In a para-
metric setting, maximum likelihood (ML) estimation is always an option, at
least in theory. Moreover, since PCCs are multivariate copulae, any stan-
dard copula estimator is applicable. The most commonly used ones are the
inference functions for margins (Joe, 1997, 2005), IFM, and the semiparamet-
ric (Genest et al., 1995; Shih and Louis, 1995), SP, estimators. These are
two-step procedures, based on the preliminary estimation of the univariate
margins, either parametrically (IFM) or nonparametrically (SP). Plugging in
the resulting estimates, they maximise the log-likelihood function over all the
copula parameters simultaneously. They also share the property that they
require numerical optimisation.

Of course, the flexibility of PCCs has a price; they have an extensive pa-
rameter vector. The number is at least d(d − 1)/2 if none of the pair-copulae
share parameters, that is without counting the margins. It is needless to
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say that optimisation over the full parameter space becomes both highly time
consuming and numerically challenging with growing dimension. The ML esti-
mator is therefore out of the question for larger models, and even the two-step
procedures IFM and SP necessitate good start values to succeed.

The stepwise semiparametric (SSP) estimator is designed to exploit the
level structure of PCCs, in order to speed up and facilitate the optimisation.
Instead of estimating all the copula parameters at once, it proceeds level by
level. Since the density of a PCC is a product of copulae, the log-likelihood
function is a sum of log-copula densities, whose terms can be grouped according
to the levels of the structure. The SSP procedure starts with the ground level
parameters, maximising the corresponding log-likelihood terms. After that, it
estimates the second level parameters in a similar manner, plugging the ground
level estimates into the relevant terms, and continues level by level until it
reaches the top of the structure. Moreover, the parametric univariate margins
Fi, i = 1, . . . , d, are substituted by their empirical counterparts Fin(y) =
1/(n + 1)

∑n
j=1 I(xij ≤ y), where xij, j = 1, . . . , n, are the observations of

Xi. It can therefore be seen as a stepwise version of the SP estimator. An
equivalent variant of the IFM estimator has also been proposed (Joe and Xu,
1996).

It is precisely the SSP estimator that has the leading role in Papers II and
III. I cannot take the credit for inventing it; it was first mentioned in Aas et al.
(2009). However, Paper II offers the first precise presentation of this estimator,
providing both detailed estimation algorithms and large sample characteristics,
such as consistency and asymptotic normality. Of course, since it performs the
estimation in several steps, it has generally a larger variance than the three
earlier mentioned estimators.

I have mentioned earlier that the SP estimator requires good start values.
That is a perfect task for its stepwise cousin. The question is how much
precision you really gain by doing a subsequent, time consuming SP estimation.
In other words, is it worth it? Unfortunately, the limiting covariance matrix of
the SSP estimator involves a d-dimensional integral, a property it shares with
the full version, SP. Thus, computing it is in practice very difficult or even
impossible. To compare these two estimators, which are the most popular for
pair-copula constructions, I have therefore performed an extensive simulation
study. That had the additional advantage of enabling me to explore their finite
sample characteristics. This study is the theme of Paper III.

So far, I have only mentioned frequentist, likelihood based approaches. Of
course, there are many other possibilities. Among the frequentist ones, you
could consider method of moments type estimators, such as the ones of Clay-
ton (1978); Oakes (1982); Genest (1987); Genest and Rivest (1993). Another
alternative is the Bayesian method presented by Min and Czado (2010, 2011).
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But why should we restrict ourselves to the parametric world? In Paper IV,
my co-author and I propose a nonparametric estimator for simplified PCCs,
that achieves the parametric convergence rate, regardless of the number of
conditioning variables. This method has many potential applications, as I will
discuss in the next section. Naturally, if the parametric model is correctly
specified, it is less efficient than a parametric estimator. On the other hand,
it is more robust.

4.3 Natural selection

The number of possible pair-copula decompositions of a multivariate copula
explodes with the dimension. Even if we restrict the alternatives to R-vines,

there are as many as 2(d−2
2 )−1d! different structures to choose between (Morales-

Napoles, 2011), each one leading to a proper copula density. They can however
be quite different in terms of computational convenience. Moreover, though
it has not been completely confirmed, studies indicate that structures mod-
elling most of the dependence in the first levels have a lower overall parameter
uncertainty.

In order to be able to do inference on these constructions, one must choose
the structure, i.e. the pairs to link in all levels. Further, in a parametric
setting, one also has to select the pair-copula types. In the preceding section,
I simply assumed that these were known. Ideally, though, one should perform
all three (or possibly two) tasks simultaneously. Obviously, this is not feasible
in practice.

The suboptimal solution is to do them step by step. One approach is to
build the structure top down, minimising the dependence in the upper levels.
Kurowicka (2011) proposed such a procedure, based on partial correlation co-
efficients. Another, more popular method is to start at the ground, and choose
the largest possible dependencies in the first levels. The rationale is that these
levels are the most influential for the total dependence. For instance, in the
50-dimensional example of Paper III, one sees that all the unconditional pair-
wise dependencies are well captured although the estimates in the higher levels
are very unprecise. Moreover, the model uncertainty increases with the level,
as I will explain later. Hence, it is preferable to model as much dependence as
possible at the bottom of the structure.

Aas et al. (2009) advocate the choice of pairs with the highest tail depen-
dence at the ground of a D-vine, while Dissmann et al. (2011) suggest an R-
vine selection algorithm, based on Kendall’s τ coefficients. The latter proceeds
level by level, searching among all possible spanning trees, for the one with the
maximum sum of absolute values of τs. At the ground, there are no restric-
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tions, and the τs are estimated empirically from the data. From the second
level on, the admissible trees are the ones that satisfy the proximity condition.
Moreover, the copula arguments are conditional distributions. These must be
computed using (4.2) or (4.3), which requires estimates of the pair-copulae in
the preceding level. Hence, the algorithm involves the simultaneous selection
of pair-copula types and estimation of their parameters.

The estimation is typically performed by the SSP estimator, since it must
be done level by level. Further, there are several strategies for choosing the
copula types. One involves the use of model selection criteria. Grønneberg
(2011) shows that the use of the traditional AIC and BIC combined with
semiparametric estimation is incorrect. Still, these measures appear to work
rather well in practice (Dissmann et al., 2011). Nevertheless, it would be better
to expand the criterion proposed by Grønneberg (2011) to PCCs. An alter-
native approach involves goodness-of-fit tests. At the ground level, one can
for instance apply the ones studied in Genest et al. (2009b) or Berg (2009) to
each of the pair-copulae. However, from the second level, the variables are no
longer normalised ranks, but semiparametric estimates of conditional distribu-
tions. Consequently, the bootstrap procedures of Genest and Rémillard (2008),
needed for the computation of p-values, are no longer guaranteed to be valid.
Luckily, we can use the nonparametric estimator instead. As demonstrated in
Paper IV, the mentioned goodness-of-fit tests with the corresponding bootstrap
procedures can be applied as though the estimated conditional distributions
were normalised ranks.

Because the procedures are stepwise, the selection of copula types and pairs
to link at a certain level depends recursively on the copulae fitted in the lower
levels. Hence the model risk grows with the level, and bad model choices will
propagate throughout the structure. A more robust alternative is the structure
selection procedure proposed in Paper IV, based on the nonparametric PCC
estimator.

Considering that the number of PCC parameters grows fast with the di-
mension, it is highly commendable to reduce it somehow. One strategy is to
prune the structure by identifying the pair-copulae that are not significantly
different from independence. The test for conditional independence, that we
propose in Paper IV, is well suited for that task. It is a Cramér-von Mises test
based on the nonparametric estimator, whose test statistic is distribution free.
Hence, it is easy to implement and computationally fast. A different approach
is the truncation suggested by Brechmann et al. (2012).
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4.4 The proof of the pudding

Since Aas et al. (2009) made pair-copula constructions more accessible, they
have been applied within a number of different fields, including finance, insur-
ance, petroleum, genetics and environmental issues.

A large portion of the publications on PCCs concern financial applications.
In fact, the data example in Aas et al. (2009) involves four daily index re-
turn series. Among the many papers I could have mentioned, I have chosen
two, namely Chollete et al. (2009) and Heinen and Valdesogo (2009). The
former propose a multivariate model for financial time series with a regime-
switching copula. They represent the univariate margins individually with a
skew Student’s t GARCH model. These are linked with a copula, that varies
between two regimes, one corresponding to a multivariate Gaussian copula,
and the other to a PCC. The latter enables them to capture the partly asym-
metric dependence which is characteristic for such data. Applying the model
to the stock indices of the G5 and four Latin American countries, they show
its superiority compared to other popular alternatives.

Heinen and Valdesogo (2009) present an extension of the classical CAPM
model for stock returns, based on a dynamic, truncated C-vine. To allow for
large dimensions, their idea is to capture as much of the dependence between
the stocks as possible via their dependence on a global market index, as well as
on the index of the sector they belong to, just like the CAPM model. Instead
of correlations, they use bivariate copulae. The ground level of the C-vine
represents all pairwise relations between the global index and the sector and
stock indices. All these pairs are modelled with a bivariate DCC GARCH
model with either Student’s t, skew Student’s t or Gaussian margins. A pair-
copula, whose parameters are allowed to vary over time, joins the standardised
error terms. The following levels correspond to the dependencies on the sector
indices, conditioning on the global index. These are modelled with static
bivariate copulae. Finally, the authors link the fluctuations that cannot be
explained by either the global or the sector indices, the so-called idiosyncratic
variations, with a static multivariate Gaussian copula, instead of assuming
them to be independent. They demonstrate the model on a set of 95 stock
indices, belonging to 10 different sectors. Moreover, they compare its ability
to generate in-sample estimates of the Value-at-Risk with that of the classic
DCC model. Overall, the PCC based model outperforms its competitor.

Copulae have already been widely applied within insurance related prob-
lems. Pair-copula constructions are now making their entry into this field.
Erhardt and Czado (2012) suggest a PCC based model for yearly claim totals
from different coverage types in private health insurance. The types in ques-
tion are the ambulant, in-patient and dental. For many patients, at least one
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of the claim totals is zero. This means that there is a positive point mass at
zero, that must be taken into account and substantially complicates matters.
The univariate margins are modelled as functions of a zero claim indicator, the
number of claims, given that it is larger than zero, and the claim frequency. All
three of these follow a glm with covariates, such as the sex, age and zip code of
the patients, with logit, log and identity links, combined with Bernoulli, zero-
truncated negative binomial and log-normal distributions, respectively. The
resulting claim totals from the three coverage types are joined with a PCC,
whose copulae belong to either of four families, namely the Gaussian, Student’s
t, Clayton and Gumbel. The data used by the authors include three years of
claims from a German health insurer, each year being treated separately.

Spatial models are frequently used for petroleum applications, and more
generally in geostatistics. The without question most popular methods are
various forms of Kriging, which assume a multivariate Gaussian distribution
or copula. Kolbjørnsen and Stien (2008) present an alternative Markov model
on a regular grid, with a transition kernel defined by a D-vine. More specif-
ically, the joint pdf of the cells is decomposed into a product of conditional
pdfs, where the conditioning sets are restricted to a predefined neighbourhood
of conditioned cell. Each of these conditional pdfs is constructed with a D-
vine. Further, the authors use a non-parametric estimator, based on bivariate
Gaussian kernels. Finally, they show that method reproduces a mosaic random
field rather well.

Network models have become very popular for uncovering or describing
interactions between gene expressions. These networks are built by testing a
sequence of conditional independence hypotheses. The state of the art is to
base the building algorithm on partial correlations. Kim et al. (2011) pro-
pose a robust estimation procedure for partial correlations, based on a PCC
with Gaussian copulae. They exemplify the method on expressions from eight
histone genes involved in the cell cycle of yeast cells.

A consequence of the threats of global warming, is the increasing interest for
renewable energy, and wind power in particular. To place the wind turbines
optimally, it is important to assess the spatial dependence of wind speed.
Grothe and Schnieders (2011) represent the dependence structure of daily wind
velocities from weather stations all across Germany by a PCC. The margins
are ARMA models with seasonal mean and volatility. An analysis of the
resulting residuals, shows that the dependence is highly non-Gaussian and
heterogeneous. A classic spatial model is therefore not suitable. Instead the
authors build a PCC, consisting of Gaussian, Clayton, Clayton survival and
Frank copulae, based on goodness-of-fit tests. To assess the optimal locations
for the turbines, they maximise a set of lower tail quantiles. They conclude
that the capacity should be expanded offshore, on the coast and in the South.
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With a couple of co-authors, including my supervisor Arnoldo Frigessi, I
am currently working on a project concerning down-scaling methods for pre-
cipitation. These methods distribute the precipitation from a global climate
model, in this case ERA40, on a finer grid, according to certain criteria. This
is necessary to assess the potential local impact of future climate change. The
aim of our project is to compare how the different methods manage to repro-
duce the spatial dependence between the precipitation amounts in different
grid cells, using ground data as a benchmark. For the dependence structures,
we use regular vines.

5 PCC – A leitmotiv

This thesis consists of four papers. As the reader will discover, the link between
them (or should I say “copula”) is the pair-copula construction. The synopsis
constitutes the remainder of the section.

5.1 Paper I: On the simplified pair-copula construction
– Simply useful or too simplistic?

Hobæk Haff, I., Aas, K. and Frigessi, A. (2010). Journal of Multivariate Anal-
ysis, 101:1296–1310.

When doing inference on pair-copula constructions, the state of the art is
to assume that they are of the simplified form. More specifically, this signifies
that the copulae linking conditional distributions depend on the conditioning
variables, merely via their arguments. As explained in Section 4.1, it is not
only a convenient, but a necessary assumption for practical use, at least in
the higher levels of the structure. In this paper, we present some examples of
models that can be represented by a simplified PCC, and others that cannot.1

Further, we propose some conditions under which a specific decomposition
is not of the simplified form, expressed in terms of Kendall’s tau, Spearman’s
rho and the coefficients of tail dependence. As it turns out, these measures
cannot be functions of the conditioning variables. Moreover, we provide the
required form of the bivariate conditional pdfs, corresponding to the pair-

1In Example 4.1, we state that all elliptical distributions with a positive definite scale
matrix can be represented by a simplified PCC. This is unfortunately not correct. In fact,
it is only valid for the Gaussian and Student’s t distributions, and more generally for the
corresponding copulae. Alas, humanum est errare!
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copulae, for the PCC to be simplified, if all copula arguments belong to a
location-scale family, whose location and scale parameters are functions of the
conditioning variables.

In practice, the true distribution will seldom be exactly a simplified PCC,
but it may still be approximated by one. Therefore, we tried such an approxi-
mation on one of the example models, that is not of the simplified form. This
was quite successful. The results from the true distribution and the approxi-
mated one were rather similar, even when the former was far from simplified.
Hence, even if the dependence structure one is trying to model does not fulfil
the assumption, it is not necessary to exclude PCCs of the simplified form.
More work is however needed to understand how dense the simplified models
are in the class of general PCCs.

5.2 Paper II: Parameter estimation for pair-copula con-
structions

Hobæk Haff, I. (2012). Bernoulli, in press.

There are many different estimators suited for pair-copula constructions,
assuming they are of the simplified form. In this paper, I focus on some of
the most popular parametric ones, including the classical maximum likelihood,
the inference functions for margins and the semiparametric estimators. Their
characteristics are already well-known, so they are included mostly for compar-
ison. The stepwise semiparametric estimator, which is the last one I consider,
has been suggested earlier, but has never been formally introduced. That is
precisely what I do in this paper. More specifically, I present its large sam-
ple properties, and provide estimation algorithms for D- and C-vines, the two
most commonly used PCC types. As one would expect, the SSP estimator
is consistent and asymptotically normal. Since the limiting covariance matrix
involves a multi-dimensional integral, one must resort parametric bootstrap in
order to compute confidence intervals. This is explained for a precipitation
data set.

Compared to the considered alternatives, the SSP estimator is, in general,
asymptotically less efficient. The reason is that during the estimation at a
certain level, it discards information further down in the structure about the
parameters in question. Nonetheless, the loss of efficiency may be rather low,
as I show in a few examples. For the set of five precipitation series, the SSP
estimates are actually almost indistinguishable from the SP ones. Finally, the
SSP estimator turns out to be semiparametrically efficient for the Gaussian
copula.
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The most attractive property of the SSP estimator, is that it, unlike its com-
petitors, is computationally tractable even in high dimensions. Additionally,
it can provide start values for the other estimators, when they are applicable.
Finally, it is a natural part of parametric structure selection algorithms.

5.3 Paper III: Comparison of estimators for pair-copula
constructions

Hobæk Haff, I. (2012). Journal of Multivariate Analysis, 110:91–105.

In Paper II, I considered four of the prevailing estimators for pair-copula
constructions. Although their limiting distributions are known, the covariance
matrices are difficult to compute in practice. To compare their relative perfor-
mance thoroughly, I therefore had to perform an extensive simulation study,
which is the theme of this paper. That also allowed me to explore finite sample
characteristics.

Two of the estimators I focussed on in the previous paper, the ML and
IFM estimators, rely on the parametric specification of the univariate mar-
gins. The two semiparametric ones, SP and SSP, on the other hand, use the
corresponding empirical distribution functions. Since the effect of the margins
on the estimation of copula parameters has already been thoroughly studied
(Joe, 2005; Kim et al., 2007), I have restricted my attention to the latter two,
which are also the most popular in applications. In general, the SSP estimator
is asymptotically less efficient than the SP one, but on the other hand much
faster, and therefore frequently applied to produce start values for the latter.
Hence, it is highly relevant to assess whether a subsequent SP estimation really
is worth the extra time spent.

The models in the study are D-vines. Moreover, all except one are five-
dimensional. In order to explore how the type of dependence (symmetric versus
asymmetric, tail dependence versus no tail dependence) affects the estimators,
I have alternated between three copula families, namely the Gaussian, the
Student’s t and the Clayton. Moreover, I have varied the parameter values,
to assess the effect of the degree of dependence. Further, I have reduced the
sample size first from n = 5000 to 500, and then from 500 to 50. Since both
estimators are based on the empirical distribution functions, they are robust
towards misspecification of the univariate margins. Nevertheless, they assume
that the specified dependence structure is the true one. Therefore, I have also
studied how they perform when the model assumptions are not completely
correct. Finally, I have explored how the stepwise estimator copes with large
dimensions (d = 50). The full version (SP) is not included in that part, since
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it is much too time consuming, and probably would be numerically unstable.

As expected, the finite sample bias and mean squared error (MSE) of the
SSP estimator are generally higher than its competitor’s, due to its lower
asymptotic efficiency. When the degree of dependence increases, so does the
difference between the two estimators, in favour of SP. This difference also
augments with the level of the structure when the dependence is strong. One
explanation for this is that the SSP estimator is more sensitive to the repeated
transformations of the data, that follow from the recursive procedure. Overall,
though, it performs rather well, compared to SP. In addition, it is consistently
faster, especially for high-dimensional parameter vectors.

Obviously, the variance of both estimators increases when the sample size
decreases. They manage rather well with 500 observations, but n = 50 is sim-
ply too small to get accurate estimates from either. Moreover, the difference
between them becomes smaller. That also happens when the true model is
not exactly as specified. Neither estimator is particularly robust towards mis-
specification of the dependence structure. However, the SP estimator appears
to suffer more. Thus, SP estimation may not be worthwhile on small samples
and under inaccurate model assumptions.

Up to level 20 to 30 in the 50-dimensional model, the SSP estimates are
rather good. After that, however, the finite sample bias and MSE explode.
The reason is that the upper levels of the structure correspond to high order
dependencies, which are very difficult to estimate. Fortunately, this does really
affect the corresponding lower order dependencies. The estimated distribution
is in fact rather similar to the true one, even though the top level estimates
are completely off. All in all, the simulation study therefore supports the use
of the SSP estimator in most applications.

5.4 Paper IV: Nonparametric estimation of pair-copula
constructions with the empirical pair-copula

Hobæk Haff, I. and Segers, J. Submitted for publication.

The estimators considered in Papers II and III are all parametric. In partic-
ular, the two semiparametric ones, SP and SSP are robust towards misspecifi-
cation of the margins, but not of dependence structure, as illustrated in Paper
III. Moreover, the required selection of the d(d−1)/2 copulae constituting the
PCC is done sequentially, conditioning on choices in preceding levels. That
may propagate errors throughout the structure.

In this paper, we propose an alternative, namely a nonparametric PCC
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estimator, and present its asymptotic distribution at a general level of the
structure. This empirical pair-copula is very similar to the classical empirical
copula, only based on nonparametric estimates of conditional distributions,
instead of normalised ranks. For the conditionals, we use a kind of nearest
neighbour smoother, requiring a bandwidth parameter hn. Despite that, our
estimator achieves the parametric rate of convergence, regardless of the number
of conditioning variables, thanks to the simplifying assumption, described in
Paper I.

To substantiate our conjecture on the estimator’s asymptotics, we have
conducted a simulation study. The results certainly support our allegations.
Choosing a sensible bandwidth hn is however important. Since the smoothing
is done on the uniform (0, 1) scale, this parameter does not depend on the
margins, but only on the dependence structure. As it turns out, it is advisable
to undersmooth. Actually, the value 0.5n−1/3 appears to work rather well
overall.

Further, we propose a resampling scheme, which is required for estimating
confidence intervals or computing critical values for hypothesis tests. The
approach, inspired by the multiplier bootstrap of Rémillard and Scaillet (2009),
is fast and easy to implement. We have tested the procedure, and compared it
to parametric alternatives. Obviously, a parametric estimator is more efficient
under correct model assumptions. The nonparametric method is, on the other
hand, more robust.

The empirical pair-copula has a number of potential applications. Among
others, we can construct nonparametric estimators of dependence measures,
such as conditional Spearman rank correlations. Actually, we suggest a selec-
tion algorithm for regular vines based on these estimates, highly influenced
by the procedure of Dissmann et al. (2011). The differences are that we es-
timate the copulae and conditional distributions nonparametrically, and that
we use Spearman’s ρ as a measure of dependence instead of Kendall’s τ . As
these two measures quantify the same type of dependence, the substitution
should not influence the results too much. Hence, when the parametric model
is well specified, we expect the two algorithms to select virtually the same
structure, as shown in an example involving nine financial series. Further,
the empirical pair-copula can be applied in tests for conditional independence,
aiming at pruning the structure. We propose a Cramér-von Mises test, whose
statistic is distribution free. Hence, critical values are fast and straightforward
to compute. Again, simulations indicate that the test works well. We also
demonstrate its use on a set of five series of daily precipitations. Finally, we
suggest a goodness-of-fit test, which may facilitate the selection of parametric
copulae in a given structure. The test in question is again a Cramér-von Mises
test. It is actually the one of Genest and Rémillard (2008), where we adopt
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the same bootstrap procedure for computing critical values, simply replacing
normalised ranks by estimated conditional distributions. This approach is also
supported by simulations.

6 Closing

The fewer restrictions a model imposes, the more flexible it becomes. However,
this usually also implies more complexity, for instance a greater number of
parameters. The PCC is a very malleable model, that can portray a wide range
of dependencies. Obviously, this has a cost, both in terms of computational
effort and model uncertainty. Therefore a PCC should only be applied on
problems that call for such flexibility. If the dependence structure in question
is rather homogeneous, at least when split into groups, then a multivariate
elliptical or Archimedean copula, possibly a grouped or hierarchical version
thereof, may be a more sensible model. And why not consider the multivariate
normal distribution, if it seems suitable? The moral is: do not crack a nut with
a sledgehammer. Still, if one is not certain that a simpler model is adequate,
it is advisable to at least compare it with a PCC, to check that the results
from the two really are similar.

In its most general form, the PCC is very little restrictive, but that much
less useful, since inference is virtually impossible. Without the regular vine
building algorithm, the computational effort becomes too large, even in lower
dimensions. Another central assumption is the simplifying one, which is essen-
tial to virtually all inference methods for PCCs. For instance, the parametric
convergence rate of the nonparametric estimator is only obtained under this
assumption. Even when the true distribution is far from simplified itself, such
a PCC may serve as a good approximation. Otherwise, the approximation may
be improved by relaxing this condition for the copulae at the second level, us-
ing the estimator of Acar et al. (2012). In any case, it is a good idea to apply
their method as a diagnostic, to test whether the assumption is reasonable.

When choosing an estimator for PCCs, one is generally faced with conflict-
ing concerns, for instance precision on one hand versus computing time and
convenience on the other. The stepwise semiparametric estimator appears to
be a good tradeoff between the two, in most applications. Overall, it performs
rather well. It is very fast and moreover numerically stable, as long as the
amount of data is sufficient. Further, it copes with high dimensions, as op-
posed to most other relevant estimators. However, the performance of SSP
relative to SP, reduces when the dependence becomes strong. In such cases,
it is advisable, whenever possible, to use the full version, with SSP estimates
as start values. If the sample size is very low in view of the dimension, e.g.
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n = 50 for d = 5, both the SP and the SSP estimators perform poorly. ML and
IFM are likely to get the same problems. Further, there is no reason to believe
that the nonparametric estimator will behave any better; quite the contrary,
since it imposes fewer restrictions on the copulae to estimate. In such cases,
a Bayesian estimator, preferably with a prior that is not too vague, may be a
better option. I would also recommend to consider a less complex model.

Another potential clash is the one between efficiency and model uncertainty.
Selecting both the structure and copula types is non-trivial. The state of the
art is to use stepwise, parametrically based algorithms. These suffer under a
model uncertainty that increases with the level and a potential propagation of
errors throughout the structure. The nonparametric estimator may serve as
a remedy for the latter, since it does not rely on a parametric specification.
Then again, parametric estimators are asymptotically more efficient when the
assumed model is reasonable. One alternative is to use the two in combination.
Choose the vine structure and copula types with the nonparametric estima-
tor. Afterwards, estimate the copula parameters with a suitable parametric
estimator, for instance SP or SSP. This procedure may reduce the model risk,
which is important since the parametric estimators generally are not robust
towards misspecifications of the model. An extra step in the nonparametric se-
lection algorithm, could be the detection of independence copulae. By pruning
the structure, one reduces the parameter vector, and consequently the model
complexity.

Most applications of PCCs involve data that are dependent not only across
variables, but also in time. That violates the assumption of independent,
identically distributed observations, which is made by virtually all inference
methods for PCCs. The standard procedure is to apply some time series model
to the data, e.g. ARMA or GARCH, and model the residuals with a PCC.
This is a useful approach, but perhaps not entirely satisfying. It will always be
asymptotically less efficient than estimating the entire model simultaneously,
and may lead to an underestimation of the dependence parameter uncertainty.
Chen and Fan (2006) showed that, under certain conditions, the properties of
the SP estimator are unaffected by the preliminary time series filtration step,
and Rémillard (2010) did likewise for goodness-of-fit tests based on the em-
pirical copula. Corresponding results for the SSP estimator are however not
established. That is certainly an important subject for future research, con-
sidering the extensive use of this estimator. Alternatively, one could develop
an extended, dynamic PCC model, such as the model of Heinen and Valdes-
ogo (2009), that takes into account not only the dependence between variables
observed simultaneously, but also across time.
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7 Backing into the future

It is always easy to be wise after the fact. As Thoreau says

“Never look back unless you are planning to go that way”.

Still, I would like to dwell a little longer on the choices I have made during
this almost four year long journey.

The first thing that I would like to point out, is that the definition of a pair-
copula construction is not completely consistent. In Paper I, we denote the
full joint distribution a PCC, whereas as in the remaining papers, this term
is reserved for the dependence structure. The latter is in my opinion more
correct. It was however convenient to include the margins in Paper I, since we
were particularly interested in the characteristics of conditional distributions
of the original variables. In any case, we left more questions unanswered in
that paper than we would have liked. For instance, how does one know, or
at least test, whether the simplifying assumption is reasonable? And if one
decomposition is not of the simplified form, does there exist an alternative
one that is? The first question is partly treated by others (Acar et al., 2012),
whereas the last one remains to be investigated.

Paper II was, to be quite honest, a lot of hard work. Despite the huge
improvements due to the excellent comments and suggestions of the associate
editor and two referees, it still reveals my lack of experience for writing such
papers. More specifically, I am thinking about the incredibly cumbersome
notation and the somewhat clumsy proof in the appendix. Naturally, this
paper also leaves a few loose ends. For convenience, I only considered the
sub-categories C- and D-vines. Obtaining equivalent results for more general
regular vines is however straightforward. More importantly, one should study
the effects of a preliminary time series filtration of the data, as discussed in
Section 6.

Generalising the results from limited cases in a simulation study feels some-
what risky. The choices I made in Paper III seemed reasonable at the time,
but I cannot exclude that other choices might have lead to at least partly
different conclusions. Nevertheless, I think my simulation study can be useful
for practitioners and a starting point for future investigations. Again, I have
restricted my attention to D-vines. Though I believe the results would be sim-
ilar for C- and more general R-vines, this remains to be tested. Moreover, I do
not provide any alternatives for small sample sizes. I leave that responsibility
to others.
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The procedures suggested in Paper IV are mostly fast and easy to imple-
ment. An exception is the goodness-of-fit test, which is nowhere near fast
enough for high-dimensional PCCs. If the influence function of the parametric
estimator in question is known and possible to compute, a multiplier boot-
strap approach could be an option. Otherwise, it is necessary to come up with
some smart way of speeding up the current routine. Moreover, we do not pro-
vide a procedure for selecting the bandwidth parameter. Though the constant
value we have used appears to work rather well overall, one should investigate
whether there is a more optimal method for choosing it in each case. Finally,
our original plan was to write a more theoretical paper, with formal proofs
of the asymptotics. Unfortunately, that turned out to be much more difficult
than anticipated. Therefore, we contented ourselves with an “AOK proof”(to
cite Andrew Patton’s presentation at the copula conference in Montréal in
June last year), based on simulation. We have however not quite given up the
hope of providing the proof sometime in the future.
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