
UNIVERSITY OF OSLO

Department of Informatics

Regional Disaster

Recovery Using

Asynchronous Virtual

Machine Replication

Amir Maqbool Ahmed

Network and System Administration

Oslo University College

June 5, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30812815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Regional Disaster Recovery Using Asynchronous
Virtual Machine Replication

Amir Maqbool Ahmed

Network and System Administration
Oslo University College

June 5, 2010

Abstract

Disaster recovery solutions for any system are complicated and in most cases
expensive. Implementing DR solutions on service level is also not the best
solution since it requires major efforts on each service. Remus, a recently in-
cluded tool with Xen [1] can be used to implement DR solution on Virtual
Machine level which will provide DR for all the services running on the VM.
Here we will test Remus for regional distances where network speeds vary.

Acknowledgements

The author would like to thank all parties involved in this project without
them it would not be possible to have completed this project. A special thanks
to Gjøvik University College and their IT section for help in setting up the test
system.

1

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Virtualization . 5

1.2.1 Virtualization and Disaster Recovery 5
1.2.2 Remus . 5

1.3 Problem statement . 6
1.4 Thesis outline . 7

2 Background and literature 8
2.1 Disaster Recovery . 8

2.1.1 Disaster Recovery or High Availability 8
2.1.2 Solutions . 9

2.2 Virtualization . 10
2.2.1 Virtualization techniques 11

2.3 Xen . 12
2.3.1 Live migration in Xen . 13

2.4 Using live migration to develop Disaster Recovery Solution -
Remus . 13
2.4.1 How does Remus work 13

2.5 Virtual Private Network (VPN) 15

3 Methodology 17
3.1 Objectives . 17
3.2 Environment . 17

3.2.1 Physical servers and external hardware 18
3.2.2 Virtual Machine Instance 19
3.2.3 Infrastructure Design Challenges 19
3.2.4 Network Infrastructure 20
3.2.5 Storage . 20
3.2.6 Traffic Measuring Techniques 20
3.2.7 Logging . 20

3.3 Testing Scenarios . 21
3.3.1 Scenario 1: Measuring Live migration traffic 22
3.3.2 Scenario 2: Measuring traffic running Remus with no

disk replication, Idle VM 22
3.3.3 Scenario 3: Measuring traffic running Remus with no

disk replication, SSH and Web tests towards the VM . . . 22

2

CONTENTS

3.3.4 Scenario 4: Measuring traffic running Remus with disk
replication, SSH and Web tests towards the VM 23

3.3.5 Scenario 5: Measuring traffic running Remus with disk
replication, running bonnie++, regional only 23

3.4 Test summary . 23

4 Results 25
4.1 System and Network setup . 25

4.1.1 Virtual Network Configuration 26
4.1.2 Virtual Tunnel VTun . 26
4.1.3 VM Creation And Configuration 27

4.2 Testing Scenario Results . 29
4.2.1 Scenario 1: Live migration traffic results 29

4.3 Scenario 2: Remus network traffic results 30
4.4 Scenario 3: Traffic results of running tests on the VM - No disk

replication . 32
4.5 Scenario 4: Traffic results of running tests on the VM and disk

update traffic . 34
4.6 Scenario 5: Traffic results of running disk benchmarking tool . . 35
4.7 Data Uncertainties . 36

5 Discussion 38
5.1 Remus as a disaster recovery system 38
5.2 Remus design . 39
5.3 Integrity of the system . 39
5.4 Disk solution in Remus - under the hood 39
5.5 A different approach of testing Remus 39
5.6 Deciding success factors . 40
5.7 Service types performance . 41

5.7.1 Game server . 41
5.7.2 Mail Server . 41
5.7.3 Database server . 42

6 Conclusions 43
6.1 Future work . 44

A 45
A.1 Configuration files . 45
A.2 Xen configuration files for VM . 47
A.3 Network traffic scripts . 48
A.4 Network traffic log files . 54

3

Chapter 1

Introduction

1.1 Motivation

The demand for service availability and dependency on IT services of modern
societies have made Disaster Recovery(DR) and High Availability(HA) more
important than ever. Some IT services are so critical that they are required to
be up and running even after a natural disaster, like DNS, Email, Internet and
access to public health records for hospitals and health personnel. Actually,
IT communications and service availability becomes even more important in
case of a disaster. This lesson has been learned the hard way after disasters
like 2004 tsunami in Asia and hurricane Katrina in New Orleans[2].

If authorities are to help their citizens effectively and swiftly in case of a dis-
aster, than emergency management systems must continue to function without
any breakdown. In most developed countries health care, fire department and
the law enforcing agencies are heavily dependent on IT communications and
IT services, to be able to work efficiently. So there has to exist DR solutions
for critical IT services, but DR solutions are expensive and complicated and
therefore not affordable by many.

Traditionally, DR and HA has been expensive and hard, since redundant
hardware and customized software is needed to construct such a solution.
Naturally, different approaches exist to solve this challenge of giving a sys-
tem ability to survive a failure. Replication of the whole system is one of the
techniques used today with success but it is considered to be more expensive
than application level check-pointing technique that replicates only the rele-
vant data.

Classical solutions for DR are based on fail-over technologies where a mas-
ter/slave environment is created. A master is operational under normal con-
ditions while slave takes over operations when master fails. Although some
services can be set up in a master/slave environment, like primary and sec-
ondary DNS, SMTP master/slave, not all services are designed this way and
to implement a fail-over solution on the service level for all services will cost
too much in terms of money and technical know how. Therefore these solu-
tions are available to only a few.

4

1.2. VIRTUALIZATION

1.2 Virtualization

A relative new trend in consolidating data-centers today is to use virtualiza-
tion which allows better utilization of the hardware since several Virtual Ma-
chines(VMs) or instances of one or several different Operating Systems(OS)
can run on the same hardware. The benefits and possibilities that virtualiza-
tion offer has really opened eyes of system administrators around the world.
The competition for creating the best virtualization system is tough and al-
ready there are several systems to choose from. For research purposes open
source is a great resource available to researchers and one such open source
virtualization system is Xen [1].

1.2.1 Virtualization and Disaster Recovery

Virtualization can offer a higher level of disaster recovery since it can be imple-
mented on Virtual Machine(VM) level. Which means that all services running
on the VM will automatically have DR capability. But a tool is needed to im-
plement DR of VMs. Live migration can assist in implementing such solutions,
but live migration alone cannot solve this since it requires graceful handover
of VMs. It means that migration has to be initiated from the server which has
the running VM and it will take some seconds(depending on the allocated VM
memory) before receiving server has a running copy of the VM. In this short
period, from initiation on primary until a running copy is available on sec-
ondary, both servers have to be up and running. In fact under live migration,
handover is the most critical phase of the process.

What is needed is an environment where we have one running VM on a
primary server and a true copy of it standing by on a secondary server and VM
on the secondary server takes over operations only when either VM on primary
or the primary server itself fails without warning, then we have achieved our
goal and created an effective DR solution. It sounds simple enough but there
are several challenges that have to be solved like suspending the backup VM
on the secondary server and making sure that backup VM is an exact copy of
the running VM at all times. This will introduce considerable overhead to the
system and is the core of the problem.

1.2.2 Remus

A tool called Remus[3] is recently included in Xen which according to its de-
velopers will provide a way to implement High Availability(HA) or Disaster
Recovery(DR) on running VMs in Xen environment. Remus takes the live mi-
gration feature of Xen to a higher level and takes full advantage of it to protect
a VM. While live migration in Xen has shared storage as a requirement, Re-
mus can protect a VM with and without shared storage therefore Remus has
different levels of protection.

1. No disk replication: Only memory changes are sent to backup when the
VM file system is located on a storage which is shared between the two

5

1.3. PROBLEM STATEMENT

virtualized systems. If the primary VM dies in this mode, existing net-
work connections to the VM will not survive and have to be reconnected.

2. Disk replication: In this mode disk changes are also sent to the backup
along with the memory and existing network connections to the VM will
also survive if primary VM or site is lost.

But since its new, Remus has not yet been tested for regionally separated
systems. In this project a regional setup with Remus will be tested to find
answers to questions like, is it possible to create a regional DR solution using
Remus? What is the network cost(overhead) of running Remus on a VM in
such an environment? How stable is it?

Figure 1.1: Geographical Setup Figure 1.2: Local Setup

1.3 Problem statement

Ever increasing use of virtualized environments in data centers and server
rooms along with high availability demand, demonstrates clearly a need for
disaster recovery solutions for virtualized environments. But keeping an idle
true copy of a running VM between sites separated by large distances, requires
very high network speeds. For the project of testing Remus that has only been
tested in local environments, the problem statement is:

Evaluate Remus, a recently included tool with Xen, for implementing disaster
recovery solution for geographically separated VMs.

6

1.4. THESIS OUTLINE

“Evaluate” here means following

1. Find out whether it is possible to run Remus between two geographically
separated virtualized systems?

2. Run Remus with and without disk replication and measure network traf-
fic created by this proses.

3. Observe stability of Remus.

All tasks mentioned above will be performed first between two local sys-
tems and then between two geographically separated systems for comparison.
See figure 1.2.

Here “Geographically separated” means two different physical locations,
preferably two different cities, see figure 1.1.

System setup and test scenarios

This project is implemented as a realistic system and none of the system ser-
vices are simulated in a local environment. One primary and one secondary
system is setup locally at the Oslo University College and another backup sys-
tem is setup at the Gjøvik University College which is located approximately
120 KM from Oslo University College.

1.4 Thesis outline

This document is structured as follows: The background and related technolo-
gies are introduced in chapter 2. Chapter 3 lists testing scenarios and explains
the methodology mainly used in this project. Chapter 4 are the results of the
experiments while discussion and conclusions are presented in chapter 5 and
6 respectively.

7

Chapter 2

Background and literature

2.1 Disaster Recovery

Fail-over, or a disaster recovery plan typically involves deploying a remote
fail-over scheme which allows a secondary server or site to take over mission-
critical operations in the event of a disaster striking the primary site. What
type of disaster recovery plan is needed and which technique should be used
is heavily dependent on the IT structure of the site and services offered by it.
Since implementing disaster recovery is an expensive undertaking, a thorough
examination is needed before a solution is implemented.

2.1.1 Disaster Recovery or High Availability

Disaster Recovery(DR) and High Availability(HA) are terms often used in IT
to indicate some sort of fault tolerance capability of a site. But there is a small
difference between DR and HA. It can be said that DR grew out of HA ca-
pabilities such as clustering, but for DR, additional solutions were introduced
to achieve for example clustering over metropolitan or global distances. But
it does not mean that DR implies HA or that HA implies DR. For instance
HA can be achieved from the same site using on-site clustering solutions. If
the building is destroyed there is no other site to take over operations. For
DR, if a service is broken on the primary in a way that heartbeat[4] contin-
ues to function properly, the fail-over of the service will not be initiated and
backup server will not take over operations. To make a distinction it can be
said that HA deals with hardware failure while DR deals with disasters where
the whole site is lost[5]. The 1906 earthquake in San Francisco destroyed half
the city and Federal building in Oklahoma city was bombed where data as well
as backup was destroyed. Therefore if DR is to be effective there has to exist
multiple geographically separated sites with same capabilities. These sites are
normally referred to as primary and secondary or backup site, where primary
site provides services until a disaster then the secondary takes over.

8

2.1. DISASTER RECOVERY

2.1.2 Solutions

Here is a brief mention of the techniques used to implement DR solutions but
many of the concepts are the same for HA solutions as well, since DR can be
viewed as an extension of HA. One major aspect of a DR solution is tolerable
loss of data in event of an outage, we will look at methods that allow little
or no loss of data. Generally we can say that most DR solutions involve data
replication in such a way that least amount of data is lost and some logic exist
to avoid data inconsistencies and manage services offered by the system.

Different levels of DR

As mentioned earlier, some services are designed with Disaster Recovery or
High Availability in mind and can be set up with primary and backup nodes.
DNS(Domain Name System) and SMTP(Simple Mail Transfer Protocol) are ex-
amples of such services and these are relatively easy to set up. This is called
Service level DR solution since it is only the service that has DR capability.
In this type of setup, only the service related data is replicated to the backup
node and therefore the overhead is not very high. But more often than not
sites offer different services and in most cases these services does not have DR
or HA capabilities so another type of DR solution is needed to ensure business
continuity.

In system level DR solutions the whole system or disk is replicated to the
backup and therefore the overhead is much more compared to service level DR
solution. In most system level DR solutions if primary server fails a backup
server is booted at secondary site with access to the same data and services
that the primary was running. Therefore services are unavailable until failure
is detected and backup is up and running.

Different types of clusters are used in developing DR solutions and they
are a popular choice.

Cluster types

Following cluster types exist for DR solutions

1. Stretched Cluster

2. Global Cluster

A stretched cluster[5] that spawns over several sites has its limitation in dis-
tance. For distances within three to four hundred KMs stretched clustering so-
lutions are often used and this is possible today because of the network speed
enhancements. For longer distances clustering technology has to be improved
further.

Global cluster is another DR clustering technique where two different clus-
ters are configured at separate sites and a management system decides where
the application should run. The replication of data can be controlled from the
cluster running the application or from the management system.

9

2.2. VIRTUALIZATION

Replication methods

Replication methods can be grouped into three groups

1. OS-based

2. Storage-based

3. Application-based

DRBD (Distributed Replicated Block Device) provided by Linux is an OS-
based replication solution. It is a software based, shared-nothing replicated
storage that mirrors the content of block devices between servers. The block
device is replicated in a master/slave mode and the master server has the full
read/write access to the device whereas the slave server has no access but
replicates all changes made by the master, silently, The replication can be asyn-
chronous or synchronous.

IBM System Storage DS is an example of Storage-based replication here if
the replication of one particular disk fails, then all disks within the containing
consistency group are protected from further writes to ensure data consistency.

An example of application-based data replication is IBM’s DB2 HADR,
which requires a 2-node setup. One node acts as the primary, and all DB2
clients are connected to it. Updates to the local table on the primary node are
replicated to the secondary, so that the secondary can update its local table.

These replication methods provides a method to preserve data but they do
not provide a means to detect an system outage nor do they provide a means
to deal with a system outage. For that we need additional logic built on top of
these replication methods.

Following methods can be used to detect and deal with an outage at the
primary site.

1. Scripting can be used to detect outage and make decisions about what to
do.

2. DRBD along with Heartbeat can be used to make a responsive system.[6]

3. IBM’s GDPS built on parallel Sysplex and data mirroring technologies,
can be used to provide continuous application availability.

2.2 Virtualization

The idea of sharing computer resources is not new, in fact already in 1959
Christopher Strachey introduced “Time sharing” in computers[7]. This idea
was popular and much discussed during 1960s and after succeeding in isolat-
ing application runtime environment IBM introduced virtualization as early
as in late 1960’s in their mainframe machines, but this technology has taken
off only recently in other IT spheres.

In a distributed server environment a popular trend among system admin-
istrators have been to setup a new server for offering new services, this trend

10

2.2. VIRTUALIZATION

had lead to massive expansion of the infrastructure. The reasons for putting
up new servers varies, it can be compatibility of service with OS or service
needing a special environment.

Virtualization’s ability to consolidate servers to save power and better uti-
lization of the hardware in an environmental focused world have really made
this technology attractive for data-centers and other IT service providers with
high electricity bills. They can now continue to run services on old OSes and
the best part is that many different OSes can run on the same hardware sharing
resources effectively.

Virtualization has evolved rapidly in the last decade and great deal of work
have been done in improving performance, flexibility and management of Vir-
tual Machines (VMs).[8].

2.2.1 Virtualization techniques

Three major virtualization techniques exist today

1. Full Virtualization

2. Operating System Virtualization

3. Hardware Virtualization (Paravirtualization)

Full virtualization

This technique uses full emulation of hardware resources, see figure 2.1. It is
easy to setup and guest OS can be installed directly and used without modi-
fications. But a disadvantage of this technique is 30% less performance than
running directly on the hardware[9]. Most popular products using this tech-
nique are VMware Workstation, Virtual PC and VirtualBox.

Figure 2.1: Full Virtualization Tech-
nique

Figure 2.2: OS Virtualization Tech-
nique

OS Virtualization

In this technique, the host OS is virtualized and the guests are running parallel
on their parent virtualized OS see figure 2.2. This technique provides very
high performance almost the same as running on the physical hardware but

11

2.3. XEN

however the big disadvantage is that all virtual machines have to run the same
OS image as the physical server. Products that use this techniques are Linux
Vserver, OpenVZ and Solaris Containers.

Hardware virtualization (Paravirtualization)

Microprocessors(CPU) today have built in virtualization support that allows
the host OS to expose hardware resources to guest OSes through an abstract
software layer referred to as Virtual Machine Monitor(VMM) or a Hypervi-
sor See figure 2.3. The guest OSes must be modified to communicate with
the hardware through this hypervisor thus limiting deployment on legacy or
proprietary OS.

The most popular products using this technique today are Xen, VMware
ESX server and Microsoft HyperV. Since Xen has an open source version for
academic use, it is the platform of choice for this project.

Figure 2.3: Type 1 Hypervisor

Live migration

A very special feature of hypervisors is live Migration which is the ability to
migrate running VMs from one physical server to another.[10]. This capabil-
ity can be used in new DR solutions and is actually used nowadays. Most
hypervisors support migration of running VMs, Xen is also one of them.

2.3 Xen

Xen is a Virtual Machine Monitor(VMM) tool for the x86 architecture and
falls into the paravirtualization(see fig. 2.3) category of virtualization tech-
niques. It is an open source software, released under the GNU General Public
License(GPL), and developed at the University of Cambridge. Detailed in-
formation about Xen can be found in “Xen and the art of virtualization”[11]
paper.

VMs created in Xen are called Domains, and Domain0 is the host operat-
ing system which is responsible for controlling all the guest VMs. Domain0
therefore is the privileged Domain while VMs created are referred to as un-
privileged Domains, DomU.

12

2.4. USING LIVE MIGRATION TO DEVELOP DISASTER RECOVERY
SOLUTION - REMUS

Figure 2.4: Live migration of a running VM

2.3.1 Live migration in Xen

Relocating running VMs to other Xen servers is called live migration and in
Xen it has following requirements

1. Shared storage, where VM file system resides

2. Similar CPU architecture and identical features

In addition Xen servers that are involved in migration should share the same
subnet segment, but it is not required.

2.4 Using live migration to develop Disaster Recovery
Solution - Remus

As mentioned earlier live migration can be taken advantage of when creating
new DR solutions and that is exactly what Remus[3] has done. To achieve a
DR solution for a VM, a two system setup is needed where one is the primary
system where running VM exists and the other is a backup system where a
true copy of the protected VM exists which is in paused mode. See figure 2.5

2.4.1 How does Remus work

Remus takes advantage of the already existing live migration feature in Xen.
To live migrate a VM, two Xen servers are setup, the VM is started on one
server and its file system is shared by both the Xen servers. See figure 2.4.
Migration is initiated from one of the servers and VM memory is transfered to
the target server. When the transfer is complete, VM on the source server is
destroyed while it is booted on the target server.

Remus initiates live migration of the VM and transfers VM memory to
backup but instead of completing the migration, VM on the backup machine

13

2.4. USING LIVE MIGRATION TO DEVELOP DISASTER RECOVERY
SOLUTION - REMUS

Figure 2.5: Remus high-level Architecture

is set to paused mode while primary VM continues its operation. All the sub-
sequent changes on the primary VM from this point on are transmitted asyn-
chronously to the paused VM at the backup server. This also works as the
heartbeat of the system. If the backup VM doesn’t get updates from the pri-
mary VM within certain amount of time, the backup VM mode is changed to
running. Remus is run from Domain0 in Xen, see section 2.3 and can only
protect one VM at any one time.

One requirement for live migration in Xen is that the VM file system is
shared between source and target systems. But Remus is designed to work in
two different modes:

1. Storage Replication mode.

2. Shared Storage mode.

Storage replication mode

In disk replication mode, VM storage is synchronized between primary and
backup before VM is started and under startup of the VM that is to be pro-
tected, Remus opens an additional network channel through which all disk
changes are replicated to the backup system.

This is done by setting the following command in the Xen configuration
file for the VM in question.

disk = [’ tap : remus : 1 0 . 0 . 0 . 2 : 8 0 0 0 | aio :/ dev/xen−domus/lenny−1,xvda1 ,w’]

When the VM is started it will wait for Remus to open the disk replication
channel. Following command will start Remus:

remus lenny−vm 1 0 . 0 . 0 . 2

Where lenny-vm is the name of the VM and 10.0.0.2 is the IP of the backup
system. The port used for disk replication is 8000. The VM will now continue
to load since the disk replication channel has been established. In this mode

14

2.5. VIRTUAL PRIVATE NETWORK (VPN)

the network connections will also be protected and will exist on the backup if
primary was to fail. Its important that the VM disk exists on the same path on
both primary and secondary systems, in this case /dev/xen-domus/lenny-1 which
is a logical volume, and is synchronized before VM and Remus is started.

Shared storage mode

In this mode the VM disk is shared between primary and backup and there is
no need to replicate disk changes. The command in VM configuration file is
now:

disk = [’ tap : a io :/mnt/nfs/var/nfs/lenny−1. ext2 , xvda1 ,w’]

Command for starting Remus is now:
remus −−no−net lenny−vm 1 0 . 0 . 0 . 2

Where –no-net switch tells Remus that shared storage is used. Network
connections in this case are not protected and will be lost if primary was to
fail. Again the path to shared VM file system must be the same on primary
and backup, in this case a VM file image at /mnt/nfs/var/nfs/lenny-1.ext2.

Another feature of Remus is that the users can set the interval for updates
sent to the backup.

remus − i 100 lenny−vm 1 0 . 0 . 0 . 2

Now the updates are sent to backup every 100 ms instead of 200 which is
the default.

2.5 Virtual Private Network (VPN)

Virtual Private Network(VPN) is a technology used to establish and maintain
a logical network connection. It is based on the idea of tunneling. Packets
constructed in a specific VPN format are encapsulated within some other base
or carrier protocol and de-encapsulated at the receiving side see figure 2.6.
For VPN tunnels through Internet, packets of the VPN protocol used, are en-
capsulated within Internet Protocol(IP) packets. VPN protocols are many and
support authentication and encryption to keep the tunnel secured. Examples
of VPN protocols are L2TP, PPTP and IPSec but for this project an open source
VPN network connection application called VTun is used.[12] . xcg

15

2.5. VIRTUAL PRIVATE NETWORK (VPN)

VTun

According to the developer of VTun

The easiest way to create Virtual Tunnels over TCP/IP networks with
traffic shaping, compression and encryption.

VTun is setup in a client-server environment and a single connection is estab-
lished when client connects to a specified port on the server. A virtual TAP
device is created on both nodes as endpoints for the connection therefore both
nodes share the same Local Area Network(LAN) security.

Figure 2.6: VPN Model

16

Chapter 3

Methodology

This chapter describes the topology design and its implementation. Chal-
lenges facing setting up a centralized network design as well as storage setup
solutions used are also covered here along with techniques used for measur-
ing network traffic. Testing scenarios are then covered in another section at the
end of this chapter.

3.1 Objectives

Based on the concepts introduced in the background chapter, the problem
statements discussed in section 1.3, are reiterated here in a more formal man-
ner.

• Setup the experiment architecture.

• Conduct experiments while running the system and measure network
traffic created.

• Analyze results.

The most important part of this project is measuring network traffic cre-
ated by Remus in different modes for regional distances. The system setup is
configured for that in focus. Network traffic is the main overhead of running
a system like Remus and hence is important.

3.2 Environment

This project is based on cooperation between two parties

• Oslo University College, Norway

• Gjøvik University College, Norway

A regional networking infrastructure needs to be setup in order to con-
nect the two regional servers together. The network connections to outside
world for both Colleges are provided by the same Internet Service Provider

17

3.2. ENVIRONMENT

Alias Host Location CPU Memory Network card(s)

Primary

remus1 Oslo Intel® 1GB Eth0: NetXtreme BCM5754
Dual Core, 2.4GHz (DDR 667MHz, 1.5ns) Gigabit Ethernet PCI Express

Eth1: D-Link DGE-528T
Gigabit Ethernet Adapter

Oslo

remus2 Oslo Intel® 1GB Eth0: NetXtreme BCM5754
Dual Core, 2.4GHz (DDR 667MHz, 1.5ns) Gigabit Ethernet PCI Express

Eth1: D-Link DGE-528T
Gigabit Ethernet Adapter

Gjøvik remus3 Oslo Intel® 1GB Eth0: NetXtreme BCM5751
Pentium® 4 2.8GHz (DDR 533MHz, 1.9ns) Gigabit Ethernet PCI Express

Table 3.1: Xen Servers Hardware Information

Software Version Function
OS Linux 2.6.18.8-xen Linux Kernel image for Xen
VTun 3.0.2-1.1 Virtual tunnel over TCP/IP networks
Xen Xen 4.0.0-rc3-pre Virtual Machine Monitor(VMM)
httperf 0.9.0 HTTP performance measurement tool
openssh-server 1:5.1p1-5 Secure shell server
openssh-client 1:5.1p1-5 Secure shell client

Table 3.2: Xen Servers Software and Operating System

Device Vendor Type Description
Switch Zyxel gs-105b Gigabit Switch Connecting eth1 on Primary to eth1 on Oslo

S
witch D-link DGS-1005D Gigabit Switch Connecting Eth0 on Primary to Oslo

College’s public network

Table 3.3: External Hardware Information

which is an advantage regarding bandwidth available from Oslo to Gjøvik.
The hardware is provided by Oslo University College while Gjøvik is hosting
the regional backup server with gigabit network, allowing incoming connec-
tions only from primary server located in Oslo.

3.2.1 Physical servers and external hardware

As mentioned in section 2.4.1, Remus utilizes live migration feature of Xen
which requires shared storage and similar CPU architecture, all servers have
similar hardware, software configuration and operating systems. Table 3.1
shows hardware information for the servers used at different locations while
software environment for all servers is shown in table 3.2. Aliases used will be
the main naming references throughout the paper. All three physical servers
are used as Virtualization servers, Primary server is additionally used as Net-
work File System(NFS) server as well as virtual tunnel server. Primary and
Oslo servers have two ethernet interfaces (eth0 and eth1) while Gjøvik has one

18

3.2. ENVIRONMENT

Alias Host OS VCPU Memory
VM lenny-vm Debian Lenny 5.0 1 512MB

Table 3.4: Virtual Machine Hardware Information

Software Version Description
bonnie++ 1.03d Hard drive performance testing tool
lighttpd 1.4.19 Webserver with minimum memory footprint
openssh-server 1:5.1p1-5 Secure Shell Server

Table 3.5: Virtual Machine software Information

see table 3.1. Primary and Oslo servers are connected together using their eth1
interfaces through a Gigabit switch which makes it an isolated back-net and
has no other traffic. While another Gigabit switch is used to connect eth0 on
Primary and eth0 on Oslo to Oslo Colleges public network which also pro-
vides Internet access see 3.3. Gjøvik server is connected to Gjøvik Colleges
public network through eth0 interface directly.

3.2.2 Virtual Machine Instance

For this project, one instance of a virtual machine is used with hardware con-
figuration shown in table 3.4 and software configuration shown in 3.5. The
VM creation is described in section 4.1.3.

3.2.3 Infrastructure Design Challenges

Different technologies are involved in this project and their dependencies must
be satisfied in the regional infrastructure. This increases the difficulty of setting
up the network and storage infrastructure. Network has to be centralized for
migration and storage has both centralized and independent setup for testing
different Remus modes.

Figure 3.1: Setup Overview

19

3.2. ENVIRONMENT

Alias Eth0 Eth1 Virtual Bridge Description

Primary 128.39.75.154/23 10.0.0.1/24 192.168.0.1/24 Primary virtual node
VPN server, Shared Storage server

Oslo 128.39.75.199/23 10.0.0.2/24 192.168.0.2/24 Local Backup virtual node
Gjøvik 128.39.80.80/22 X 192.168.0.3/24 Regional Backup virtual node

Table 3.6: Network Configuration

3.2.4 Network Infrastructure

Primary and Oslo servers have two physical interfaces, one public and one
private interface. Private interfaces of Primary and Oslo are used for Remus
network traffic only. Public interface on Primary is used for Remus traffic to
Gjøvik and VPN traffic to both Gjøvik and Oslo. While public interface on
Oslo is only used for VPN traffic. Gjøvik has one public interface for Remus
and VPN, see figure 3.1. Since Gjøvik has different public subnet than Pri-
mary, special network configuration is needed for VMs to be accessible from
Primary server. To solve this, a private virtual network is created for VMs and
a password protected VPN tunnel is established to connect these networks.
VMs private network traffic must be routed correctly for Internet access but
it is not needed for this project since tests are conducted from Primary server.
Along with connecting private network segments, VPN is also used for shared
storage traffic (NFS).

3.2.5 Storage

Remus has two working modes see section 2.4.1. for testing these modes
shared storage and Logical Volumes are used on all servers. Primary is run-
ning a NFS server sharing the VM filesystem images. Oslo and Gjøvik uses
VPN tunnel to connect to NFS server on Primary. For testing Disk replication
mode, a logical volume with VM’s filesystem was created on each server and
synchronized before it was used.

3.2.6 Traffic Measuring Techniques

A technique for measuring traffic has to be implemented to isolate different
traffic types from other network traffic. For this project iptables [13] rules are
used to filter Remus, http and SSH traffic. Because more often than not, a
server in a normal production environment will use a firewall for protection.
For each traffic type two iptables rules are created, one for outgoing and one
for incoming traffic but only one direction is used f.ex. for Remus, outgoing
traffic to backups from Domain0 on the Primary is used as basis for results.
Traffic in other direction is mostly acknowledgements.

3.2.7 Logging

Iptables reports packets and bytes for traffic that matches a rule. This informa-
tion is logged to a file for both incoming and outgoing traffic along with the

20

3.3. TESTING SCENARIOS

time, using a perl script. Logging is done every second for duration of a test.
An example of logging traffic for live migration of VM follows:
Time TX Packets RX Packets TX Bytes RX Bytes
1271878912 0 0 0 0
1271878918 4512 1864 6739477 96952
1271878919 10995 3097 16463337 161068
1271878920 46195 12282 69260229 649428
1271878921 72052 16877 108044645 888368
1271878922 101026 23255 151501089 1220024
1271878923 126182 29719 189235089 1556152
1271878924 144501 32590 216713589 1705444
1271878925 163859 36568 245749149 1912300
1271878926 191798 43351 287653745 2265016
1271878927 216899 49541 325303221 2586896
1271878928 259192 61217 388734617 3194048
1271878929 302979 72574 454406581 3784612
1271878930 354782 88373 532092033 4606160
1271878931 372436 92962 558565857 4844788

For logging disk activity in the VM, a tool included in Xen called Xentop
[14] is used. Xentop displays real time information about running VMs on a
Xen virtualization system. It can run in different modes. For parsing infor-
mation reported by Xentop from a script, it can be run in batch mode. For
virtual block devices, Xentop will report total reads, sectors read, total writes
and sectors written by a VM.

3.3 Testing Scenarios

In order to measure network traffic created by running Remus in different
modes (see section 2.4.1), various test scenarios are designed. All scenarios
are run from Primary for a virtual machine described in table 3.4. First, Oslo is
used as backup and then same scenario is repeated using Gjøvik as the backup
node.

Different traffic types are involved in each test and it is important to make
distinction between them along with their directions. In general, all traffic
from Domain0 on Primary to backups is referred to as TX traffic while all traffic
from Domain0 on Primary to the protected VM is referred to as RX traffic seen
from the VM perspective. For converting bytes to kilobytes and megabytes

bytes/1024

and
bytes/1048576

are used respectively.
The description of different activities performed towards the test VM for

test scenarios 3.3.3 and 3.3.4 is given under. Two types of activities are per-
formed towards the test VM from Domian0 on Primary:

1. A webserver performance tool called httperf [15] is used to generate http
network traffic

2. A 100 MB file is transfered using ssh

21

3.3. TESTING SCENARIOS

The following command is used to run httperf benchmarking tool:
h t t p e r f −−hog −−server 1 9 2 . 1 6 8 . 0 . 5 −−num−conn 10000 −−ra 100 −−t imeout 5

Using with these options over, the httperf test will run for 100 seconds gen-
erating 100 http connections to the web server running on the test VM asking
for the default index.html file. This file in the VM is the default web page
installed when lighttpd web server is installed and is about 3.5 kilobyte big.

The ssh file transfer is started running following command:
scp t e s t . f i l e root@192 . 1 6 8 . 0 . 5 : / root/

The command over will transfer the test.file to the test VM and save it in
the /root directory. The test.file is exactly 100MB big.

remus1 :/ root # l s −a l t e s t . f i l e
−rw−r−−r−− 1 root root 100000000 2010−03−21 01 :46 t e s t . f i l e

3.3.1 Scenario 1: Measuring Live migration traffic

In this scenario, network traffic created by a live migration process in Xen is
measured. Xen configuration file for the VM is used to start the VM and live
migration is initiated while the traffic measuring script is running. The VM’s
filesystem is shared between the servers. This test is repeated 20 times.

3.3.2 Scenario 2: Measuring traffic running Remus with no disk repli-
cation, Idle VM

For comparison with live migration data, a pure Remus run on a VM is con-
ducted and its traffic recorded. The VM is started with the same Xen configu-
ration file as in 3.3.1 and Remus is started fro the VM while network traffic is
logged. It is important that no operations are performed on the VM since that
will create additional traffic. The VM filesystem is shared and this scenario is
repeated 10 times.

3.3.3 Scenario 3: Measuring traffic running Remus with no disk repli-
cation, SSH and Web tests towards the VM

The intension here is to measure network traffic created by performing dif-
ferent tasks on the VM. The description of these tasks is given in section 3.3.
Which means that after startup, the VM is no longer idle but a web perfor-
mance tool httperf is run to test the performance of the web server running on
the VM. While this test is running, an exactly 100 MB file is transfered to the
VM repeated times.

Following traffic types are logged in this scenario:

• Remus update traffic to the backup

• Http traffic to the VM

• ssh traffic to the VM

22

3.4. TEST SUMMARY

Test description(Measure) Backup Storage type Frequency
Live migration traffic Oslo Shared 20 times
Live migration traffic Gjøvik Shared 20 times
Remus traffic on idle VM Oslo Shared 10 times
Remus traffic on idle VM Gjøvik Shared 10 times
Remus, http and ssh traffic while running tests on VM Oslo Shared once
Remus, http and ssh traffic while running tests on VM Gjøvik Shared once
Remus, http, ssh and disk traffic while running tests on VM Oslo Replicated once
Remus, http, ssh and disk traffic while running tests on VM Gjøvik Replicated once
Remus, disk TX traffic, running disk benchmark from VM Gjøvik Replicated once

Table 3.7: Summary of test scenarios

3.3.4 Scenario 4: Measuring traffic running Remus with disk repli-
cation, SSH and Web tests towards the VM

This scenario is same as scenario 3 in 3.3.3 but now the VM disk is not shared
any more. VM disk is replicated through a communication channel created
by Remus therefore this traffic is in addition to the Remus update traffic to
backup. The following traffic types are logged:

• Remus update traffic to the backup

• Http traffic to the VM

• ssh traffic to the VM

• Disk update traffic to the backup

3.3.5 Scenario 5: Measuring traffic running Remus with disk repli-
cation, running bonnie++, regional only

In this scenario only regional test will be conducted to find out how well Re-
mus can handle extensive disk activity. Test is setup as follows: The test VM is
started with disk replication to Gjøvik. It will start and wait for Remus to start
the disk replication before startup is complete. Remus is started to protect the
VM and after startup of the VM is complete, a disk benchmarking tool called
bonnie++ [16] is run from the VM. Remus and disk TX are then measured.

3.4 Test summary

Although there are five test scenarios described in previous sections, totally
nine tests are conducted since 4 of the scenarios are repeated once for Oslo
and then again for Gjøvik. Test scenario 5 3.3.5 is only conducted for Gjøvik.
A summary of all test scenarios is presented in table 3.7

For all test scenarios, Primary is the main server where the protected VM
is started. Remus is then started for that VM from Domain0 on Primary using
one of the backups. For example to protect the VM using Gjøvik as backup
and using shared storage, following commands are used:

23

3.4. TEST SUMMARY

#To s t a r t the vm
xm c r e a t e lenny−vm. cfg

#To s t a r t p r o t e c t i n g the VM using Remus
remus −−no−net lenny−vm 1 2 8 . 3 9 . 8 0 . 8 0

In shared storage mode Remus should be started with –no-net switch which
will not provide fail-over for network connections and no disk updates are sent
to backup.

24

Chapter 4

Results

In this chapter system and network setup along with final results are pre-
sented. Including building the virtual machine and setting up the testing en-
vironment.

4.1 System and Network setup

Installing and configuring Xen

Operating system used for all servers was Debian Lenny 5.0, which can be
downloaded from its website [17]. In Lenny 5.0, two different ways can be
used to install Xen, through binary package using packet manager or compile
Xen from source that can be downloaded from Xen website [1]. Remus was
not part of any Xen official release when this project was started. Only way to
get Xen with Remus support was to check out Xen unstable from its reposito-
ries and build it manually. The latest official release today is Xen 4.0.0 where
Remus is included which was released after these tests were conducted. The
detailed information on how to build own Xen virtualization system can be
found at the Xen 4.0 Wiki pages [18].

Following support had to be included while building the kernel configura-
tion:

• 802.1d Ethernet Bridging

• IMQ (intermediate queuing device) support

• Universal TUN/TAP device driver support

• Subarchitecture type (Xen-compatible)

Default Dom0 kernel included in Xen is a pvops Linux 2.6.31.x kernel but
for this project an older 2.6.18 kernel was used. When system setup is com-
plete, following entry can be created in grub menu list by running update-grub
command:
t i t l e Xen 4.0.0− rc3−pre / Debian GNU/Linux , kernel 2 .6 .18 .8 − xen
root (hd0 , 0)
kernel /boot/xen−4.0.0− rc3−pre . gz
module /boot/vmlinuz−2.6.18.8− xen root=/dev/sda1 ro console= t t y 0
module /boot/ i n i t r d . img−2.6.18.8− xen

25

4.1. SYSTEM AND NETWORK SETUP

After installation Xend can be configured to start at system startup by run-
ning following commands:
update−rc . d xend d e f a u l t s 20 21
update−rc . d xendomains d e f a u l t s 20 21

Xend Configuration file

Configuration file for Xend (/etc/xen/xend-config.sxp) was edited for correct
setup. Complete Xend configuration file is included in Appendix A.4. Impor-
tant part of the configuration is the relocation server its port and IP addresses
of hosts that are allowed to communicate with Xend.

4.1.1 Virtual Network Configuration

For this project three virtual network segments were created one at each server.
A password protected VPN tunnel was established to connect these segments
together. A virtual bridge was used at each server using brctl tool which is a
part of bridge-utils package. Commands used to create and configure virtual
bridge on Primary:
/usr/sbin/ b r c t l addbr v i r t b r
/sbin/ i f c o n f i g v i r t b r 1 9 2 . 1 6 8 . 0 . 1 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0 up

Same bridge device must exist on each server with IP address from the
same private address range used on Primary.

Figure 4.1: Final virtual network topology

Final virtual network topology is shown in figure 4.1

4.1.2 Virtual Tunnel VTun
Connecting virtual network segments created in section 4.1.1 was done by es-
tablishing VPN tunnels between locations. VTun tool described in section 2.5
was configured with its server running on Primary and Oslo and Gjøvik act-
ing as clients. Complete Vtun server and client configuration files are included

26

4.1. SYSTEM AND NETWORK SETUP

in Appendix A.4. An excerpts follows, showing server side configuration for
tunnel between Primary and Oslo:
#vtund server c o n f i g u r a t i o n f i l e on Primary

.

.

.
remus2_1 {

passwd 5 tyhjmik ; # Password
type ether ; # IP tunnel
device tap0 ; # device used
proto udp ; # TCP protoco l

up {
i f c o n f i g

"%% 1 9 2 . 1 6 8 . 0 . 1 1 pointopoint 1 9 2 . 1 6 8 . 0 . 1 2 mtu 1 4 5 0 " ;
program " b r c t l addif v i r t b r %%";

} ;
down{

i f c o n f i g "%% down " ;
} ;

}
.

Commands needed for starting Vtun server and Oslo client are listed be-
low:
#Vtun server command on Primary
/usr/sbin/vtund −f / e t c /vtund−server . conf −m −s

#Command f o r e s t a b l i s h i n g VPN tunnel between Oslo and Primary on Oslo
/usr/sbin/vtund −f / e t c /vtund−c l i e n t−remus1 . conf −m remus2_1 1 2 8 . 3 9 . 7 5 . 1 5 4

Server command will instruct vtun to use /etc/vtund-server.conf file as the
server configuration and -s switch runs it as a server. According to vtund man-
ual pages, -m switch is useful for NFS traffic which was used in this project.
Client side command has in addition the name of the tunnel(remus2_1) on the
server along with the server IP address.

4.1.3 VM Creation And Configuration

The VM used for testing was a Debian 5.0 without graphical user interface
and was created using debootstrap. Information about how to create a VM
filesystem can be found at debian wiki homepage. [19]. Lenny was installed
on an ext3 filesystem image.

After VM filesystem creation, additional software was added and network
configured. VM filesystem can be mounted and software can be added using
packaging tool apt-get. Software included is listed in table 3.5. Since VM was
to be a part of the virtual network described in section 4.1.1, a private static
IP address of 192.168.0.5 was configured for the ethernet interface of the VM
and was connected to virtual bridge created in section 4.1.1, when the VM was
started.

A copy of the VM filesystem was created on a logical volume on each server
for replication. This was done using dd command in Linux. The created logical
volumes and shared storage paths had to be exactly the same on each server.

27

4.1. SYSTEM AND NETWORK SETUP

Xen Configuration file for the VM

Different Xen configuration files for starting VM were created depending on
whether disk was to be replicated or shared storage was to be used. Total
of three files were created, one for replicated storage for Oslo, one for Gjøvik
and a third one with shared storage which was used for both locations. These
are included in Appendix A.2. Kernel used for the VM was same as Dom0
namely 2.6.18.8-Xen. An excerpt of one of the Xen configuration file for the
VM follows, showing the kernel, memory and shared storage used:
kernel = ’/ boot/vmlinuz−2.6.18.8−xen ’
ramdisk = ’/ boot/ i n i t r d . img−2.6.18.8−xen ’
memory = ’512 ’
disk = [’ tap : a io :/mnt/nfs/var/nfs/lenny−1. ext2 , xvda1 ,w’]

For starting the VM with shared storage following command was used:
#Command to s t a r t the VM with shared s torage on Primary
xm c r e a t e −c lenny512−remus−nodisk . c fg

Remus command used for protecting the VM with shared storage, no disk
replicatiopn and no network fail-over:
#Remus command f o r running in shared s torage mode
remus −−no−net lenny−vm 1 0 . 0 . 0 . 2

Where lenny-vm is the VM name and 10.0.0.2 is the IP address of Oslo
backup server.

28

4.2. TESTING SCENARIO RESULTS

4.2 Testing Scenario Results

In this section resulting graphs of various test scenarios described in section
3.3 are presented. Results are best presented with graphs and where possible,
two graphs are shown in the same axis system. Disk TX traffic to backup when
replicated storage is used is shown in separate graphs. Graphs from each test
scenario have same time line on the X axis making comparison of graphs eas-
ier.

There are five different test scenarios listed in section 3.3 and since four
of these scenarios are repeated twice (once for Oslo and then for Gjøvik) a
total of nine tests were conducted see table 3.7. For every graph presented
X axis is used to represent the time in seconds while Y axis represents traffic
in megabytes or kilobytes. For graphs that presents disk writes, the Y axis
represents sectors written to disk in the VM. A closer description of the results
of these scenarios is given with the results.

4.2.1 Scenario 1: Live migration traffic results

This section presents graphs for measured network traffic load for live migra-
tion described in section 3.3.1.

Figure 4.2: Live migration TX traffic to
Oslo

Figure 4.3: Mean and error bars for all
local attempts

Figure 4.4: Live migration TX traffic to
Gjøvik

Figure 4.5: Mean and error bars for all
regional attempts

29

4.3. SCENARIO 2: REMUS NETWORK TRAFFIC RESULTS

Figure 4.2 shows traffic created by migrating a VM with resources de-
scribed in table 3.4 to Oslo while figure 4.3 shows same graphs with mean
values of all the attempts and error bars based on standard deviation. Figure
4.4 and 4.5 shows traffic for migrating the VM to Gjøvik. These scenarios were
repeated 20 times. Hence the mean and standard deviation values are based
on 20 values for each second. For these graphs the X axis represents time in
seconds while Y axis represents network traffic in megabytes. On each graph
One line shows one migration attempt.

What is seen in figures 4.2 and 4.4 is that from one second into the test, the
whole VM memory is transferred to the backup which for Oslo takes between
9 - 10 seconds while for Gjøvik it is between 8 - 15 seconds. It can also be
observed from these graphs that local bandwidth is less than regional band-
width available. The maximum transfer rate achieved for Oslo is about 80MB
while for Gjøvik it is for some attempts almost 100MB. For a Gigabit link, the-
oretically 125 Megabyte should be achieved. Comparing graphs for Oslo and
Gjøvik, it is also clear that network speeds varies much more for Gjøvik than
for Oslo. In this scenario Remus is not involved and it was designed for com-
parison only. These tests were conducted at different times during 24 hours.

4.3 Scenario 2: Remus network traffic results

As described in scenario 2 3.3.2, network traffic created by running Remus on
an idle VM is shown here:

Figure 4.6: Remus TX traffic for idle
VM - local - shared storage

Figure 4.7: Mean and error bars for fig-
ure 4.6

Figure 4.6 shows network traffic created by running Remus on an Idle VM
locally while figure 4.7 includes mean and error bars based on standard devi-
ation for all the attempts in figure 4.6. Same scenario was repeated for Gjøvik,
results are shown in figure 4.8 and 4.9. This scenario was repeated 10 times.
Therefore mean and standard deviation calculations are based on 10 values for
each second. X axis represents time in seconds while Y axis represents network
traffic in megabytes.

In this scenario it can be seen from figure 4.6 and figure 4.8 that after whole

30

4.3. SCENARIO 2: REMUS NETWORK TRAFFIC RESULTS

Figure 4.8: Remus TX traffic for idle
VM - regional - shared storage

Figure 4.9: Mean and error bars for fig-
ure 4.8

VM memory transfer, only memory updates are sent to the backup. For an
idle VM it is minimum 3 MB per second. This test lasted for 80 seconds and
updates after whole memory transfer are shown in figure 4.10 for local and
figure 4.11 for regional. Although for some attempts updates to backup varies
from 3 MB per second to 7 MB per second, for most attempts the transfer rate
is between 3 and 4 MB per second. This is very different from initial memory
transfer which is almost 80 MB per second at its peak.

Figure 4.10: Remus updates to backup
for idle VM - local - shared storage

Figure 4.11: Remus updates to backup
for idle VM - regional - shared storage

Mean and standard deviation calculations

Results presented in figures 4.9 and 4.7 have mean and error bars based on
standard deviation. For these results, 20 migration attempts was made ther-
fore the mean and standard deviation calculated for each x value in these
graphs, are based on 20 different values.

31

4.4. SCENARIO 3: TRAFFIC RESULTS OF RUNNING TESTS ON THE VM -
NO DISK REPLICATION

4.4 Scenario 3: Traffic results of running tests on the VM
- No disk replication

In this section results from scenario 3 described in section 3.3.3 are shown
where traffic is measured while running different tests on the VM. Shared stor-
age was used so there are no disk updates to the backup.

Figure 4.12: Remus TX and ssh RX
traffic - local - shared storage

Figure 4.13: HTTP RX traffic - local -
shared storage

Figure 4.14: Remus TX and ssh RX
traffic - regional - shared storage

Figure 4.15: HTTP RX traffic - regional
- shared storage

In figure 4.12, red graph shows Remus traffic to Oslo and blue graph shows
SSH traffic to the VM. Figure 4.13 shows web traffic to the VM created by run-
ning httperf benchmarking tool. The SSH file transfer in figure 4.12 is repeated
3 times while httperf is run once. Two of the file transfers occurs while httperf
is running.

In both figures 4.12 and 4.13 the X axis represents time in seconds while
Y axis in figure 4.12 represents traffic in megabytes and kilobytes in figure
4.13. After start, first ssh file transfer is initiated about 40 seconds into the
test and it is the only test running at that time. Approximately 54 seconds
after start, httperf test is initiated (see figure 4.13) and while this test is still
running another ssh file transfer is initiated at 60 seconds. The httperf test
is finished after approximately 145 seconds and a new httperf test is initiated
approximately 162 seconds into the test and while it is running, 170 seconds

32

4.4. SCENARIO 3: TRAFFIC RESULTS OF RUNNING TESTS ON THE VM -
NO DISK REPLICATION

after start, a new file transfer is started as well. The second httperf test is
aborted at approximately 188 seconds into the test. Comparing figures for local
tests, it can be seen that each time a file transfer is initiated while httperf test is
running, a peak occurs in web traffic to the test VM because of retransmission
of web connections. The ssh file transfers generates a very high burst of traffic
to the backup while httperf test generates a steady amount. The file transfers
take between 4-5 seconds while the httperf test should last for 100 seconds,
from 54 to 154 seconds from start but is aborted. This whole scenario lasted
for almost 190 seconds and is for the local backup server.

For regional test, red graph in figure 4.14 shows Remus traffic to the Gjøvik
backup server while blue graph shows ssh file transfer traffic to the test VM.
Green graph in figure 4.15 shows web traffic to the test VM created by running
httperf tool. Here again X axis for both graphs represents time in seconds while
Y axis in figure 4.14 represents traffic in megabytes and kilobytes in figure
4.15. Here SSH file transfer is repeated twice and httperf is run once. The first
file transfer is initiated approximately 31 seconds into the test and while this
is running, approximately 34 seconds after test is started httperf is initiated
towards the test VM. But here since the VM is busy handling file transfer, a
burst of web traffic is attempted sent towards the VM which cannot respond
in time leading to a lot of retransmission of http traffic. At second file transfer
which occurs 71 seconds into the test, httperf is running and there is increased
http traffic towards the VM. Here again the file transfers generates high Remus
traffic to the backup while httperf generates a steady amount of update traffic
to the backup. The whole scenario lasted about 155 seconds and is for regional
backup.

To find out how much http and ssh traffic increases the Remus update traf-
fic to backups,figures 4.16 and 4.17 can be studied. These figures shows part
of the scenario 3 results. It can be seen from these figures that the amount of
Remus traffic created by ssh file transfer is approximately twice the size of ssh
traffic. Http traffic to the test VM which is around 50 kilobytes per second,
generates about 10 MB per second to the backup,

Figure 4.16: Remus TX and ssh RX
comparison - local - shared storage

Figure 4.17: Remus TX and ssh RX
comparison - regional - shared storage

33

4.5. SCENARIO 4: TRAFFIC RESULTS OF RUNNING TESTS ON THE VM
AND DISK UPDATE TRAFFIC

4.5 Scenario 4: Traffic results of running tests on the VM
and disk update traffic

Same tests are conducted on the VM and Remus traffic measured in this sce-
nario as in previous scenario 4.4. The only difference here is that Replicated
storage is used instead of shared storage. Consequently, in addition to Remus
traffic to backup, there are disk updates to backup as well.

In figure 4.18 red graph shows Remus and blue graph shows ssh traffic
and Y axis here represents megabytes. The green graph in figure 4.19 shows
web traffic created by httperf and Y axis here represents traffic in kilobytes. In
figures 4.21 and 4.20 disk traffic to backup in megabytes and sectors written
to disk in the VM are shown. All these figures shows traffic to local backup
(Oslo).

Here two file transfers are conducted during the scenario that lasted for 90
seconds and two httperf test are started and aborted. The relationship between
the ssh -> Remus and http -> Remus traffic is approximately same as in pre-
vious scenario. What is different here is that since replicated storage is used
here, Remus will open an additional communication channel to the backup
where storage write updates are sent to the backup. Therefore each time there
is a file transfer to the test VM in figure 4.18 a corresponding update to backup
exist in figure 4.21 of same size as the file which is being transferred, in this
case 100 MB.

In regional part of the test, there are four file transfers to the test VM and
three httperf tests started and aborted in the duration of the test which is about
70 seconds. Ratio between ssh -> Remus and http -> Remus is again approx-
imately same here as previously. But what is interesting here is that in figure
4.22 there are four file transfers to the VM but in figure 4.25 which shows disk
updates to backup, there are only two disk updates corresponding to the file
transfers. There should have been four disk updates to the backup one for each
ssh file transfer to the test VM. This suggests that disk updates to backup have
failed after 36 seconds into the test. It is also worth noticing that Remus up-
date traffic to backup continues to function even when disk updates to backup
fails.

34

4.6. SCENARIO 5: TRAFFIC RESULTS OF RUNNING DISK
BENCHMARKING TOOL

Figure 4.18: Remus TX and SSH RX
traffic - local - replicated storage

Figure 4.19: HTTP RX traffic - local -
replicated storage

Figure 4.20: Disk writes in VM - local
- replicated storage

Figure 4.21: Disk traffic to backup - lo-
cal - replicated storage

4.6 Scenario 5: Traffic results of running disk benchmark-
ing tool

Network traffic results for Remus and disk network traffic transmitted to Gjøvik
are shown here. In figure 4.26 Remus update traffic along with disk updates
in megabyte to backup are shown. While figure 4.27 shows sectors written to
disk for the test VM, reported by Xentop, see 3.2.6. After startup, disk bench-
marking tool bonnnie++ is started at approximately 56 seconds into the test
and lasts for approximately 55 seconds (stops at 111 sec) see figure 4.27. The
whole scenario lasted just over 70 seconds. Looking at figure 4.26 representing
Remus updates and disk updates to backup, it is clear that both Remus and
disk updates failed after just over 70 seconds into the test while the test VM is
still operational after this failure. Since the backup VM on Gjøvik server is no
longer getting updates from Primary, changes mode to running. This leads to
a situation where there are two exactly the same VMs on the network which is
not good.

35

4.7. DATA UNCERTAINTIES

Figure 4.22: Remus TX and SSH RX
traffic - regional - replicated storage

Figure 4.23: HTTP RX traffic - regional
- replicated storage

Figure 4.24: Disk writes in VM - re-
gional - replicated storage

Figure 4.25: Disk traffic to backup - re-
gional - replicated storage

4.7 Data Uncertainties

Every data collecting technique have some kind of uncertainty attached to it.
Using iptables to collect network traffic is no exception. As described in section
3.2.6, iptables rules were used to collect network traffic for test scenarios in
this project. Iptables reports number of packets and bytes for IP packets that
matches a rule, therefore if same packet is retransmitted, iptales will report
that as new packet every time it is retransmitted. This behavior will introduce
uncertainties when measuring network traffic. It is also difficult to calculate
how big or large this uncertainty is, but this will be a considerable problem
for slow networks. In this project, very high performance networks are used
hence it is reasonable to assume that this uncertainty will not have much affect
on results in this case.

As described in section 3.2.6, data used as results for various scenarios is
network traffic in one direction only. For example for memory updates to
backup using Remus, only transmitted traffic is logged responses for this traf-
fic are not included. Same is the case for http and ssh traffic to the VM, only
transmitted traffic is logged not responses. This introduces uncertainties in the
results presented. But since for all results, network traffic in other direction is
much less, the network bandwidth needed will not be affected and therefore

36

4.7. DATA UNCERTAINTIES

Figure 4.26: Remus TX and disk TX
traffic - regional - replicated storage

Figure 4.27: Disk writes in the VM -
regional - replicated storage

this traffic type can be ignored.
As it can be observed from figure 4.26 that initially there was very high net-

work traffic to backup which is similar for all test results(whole VM memory
transfer). On the X axis for both figures time in seconds is represented while
Y axis in figure 4.27 represents traffic in megabytes and in figure 4.27 it rep-
resents sectors written to disk in the VM. After the memory was transferred,
update traffic to backup drops and when bonnie++ is started in the VM which
is approximately 56 seconds into the test the Remus and disk update traffic to
VM goes high again. But there is a problem sending both updates (Remus and
disk) to the backup after 75 seconds. From figure 4.27 it is clear that the test
VM is still running and writing to disk but Remus has stopped working with-
out changing the test VM mode to suspended. Since updates to backup have
stopped the VM at backup will change its mode to running, which means that
there are two exactly the same VM on the network and they will most certainly
step on each other tows.

37

Chapter 5

Discussion

Creating Disaster Recovery solutions is hard and solutions are mostly very
resource costly and Remus seems to be no exception. Looking at the results
from different tests conducted in this project, it is clear that high performance
networks are needed for Remus to work satisfactory. The lower the network
speed the poorer will be the performance of the VM that is protected using
Remus. Even with high network speeds, like in this project, there are other
problems that might occur. For instance, from scenario 5 results 4.6 it can be
seen that both Remus and disk updates to backup failed even when almost
Gigabit network connection existed between Primary and Gjøvik. An expla-
nation for this behavior is given in section 5.4.

5.1 Remus as a disaster recovery system

As mentioned earlier, Remus is now a part of the official release of Xen version
4.0.0 which means that it is accepted as a reliable Disaster Recovery system.
Results from this project shows that Remus alone might not be the best so-
lution to use. There has to exist some other logic around Remus if it is used
to protect a vital VM. For instance, if used in replicated storage mode, users
have to make sure that the disk is always synchronized between Primary and
backup. Another problem to look for is the failing of Remus without suspend-
ing the Primary VM that would lead to both Primary and backup VM to exist
on net which is unacceptable in a production environment. But having said
that, Remus has great potential and with further improvements it can be used
as a transparent disaster recovery solution where users have access to high per-
formance networks regionally. The statement from the Remus paper quoted
under

Our approach may be used to bring HA “to the masses“ as a plat-
form service for virtual machines. [3]

assumes that most people have access to very high performance networks,
which is not the case today. But network advancements will in future will
make this statement true.

38

5.2. REMUS DESIGN

5.2 Remus design

The two mode design solution of Remus is implemented to provide disk repli-
cation or only memory synchronization. What is the reason behind imple-
menting disk replication mode as the only mode where network connections
fail-over is offered, is not so clear. A guess is that it is just a design decision
made by the developers of this tool. Otherwise there is no obvious reason to
implement network fail-over in this fashion. Another design feature of Remus
is that it can only protect one VM at one time on the same Xen server. This
restriction is something that is related to the Xen system.

5.3 Integrity of the system

There is a big concern about integrity of the backup VM which will suffer when
Remus is used in replicated storage mode and disk updates to backup fails but
memory updates continues to be sent to the backup. This is what happened
when running test scenario 4 see figure 4.25. It might be a good idea to do
a whole system fail-over when an error of this kind occurs. Because if users
are not aware of the fact that disk updates have stopped, a corrupted backup
system will take over when disaster happens. In a production environment,
this is unacceptable.

Another behavior observed under testing is that if link to backup server is
lost for some time and restored, Remus continues to send updates to backup
even when some updates are lost when link was down. This will corrupt the
backup VM. It is to be mentioned that Remus released with new Xen 4.0.0. is
not tested for this behavior.

5.4 Disk solution in Remus - under the hood

For disks or VM filesystems, Remus uses the blktap [20] driver in Xen which
is a user level disk IO driver meant to replace the disk loopback driver. Remus
design is based on this driver to intercept disk activity from the protected VM.
This driver has to be used when running Remus in disk replication mode.
Here lies the problem which occurred in test scenario 5 that disk updates to
backup suddenly stops. An error message from blktap driver is logged to
syslog when disk updates to backup stopped. This happened every time disk
benchmarking tool bonnie++ was used in the VM. Therefore, this driver has a
weakness which affects Remus in a negative way. In test scenario 4 (see figure
4.25) it also happened that even the Remus memory updates were being sent
to the backup, disk updates stopped because of blktap driver problem.

5.5 A different approach of testing Remus

In this project, network traffic generated by Remus is been the focus of testing.
But there are other ways that can be used to test this tool. For instance, the pro-

39

5.6. DECIDING SUCCESS FACTORS

tected VM performance can be the focus of testing which will provide valuable
information as well. How different services responses to working under these
conditions, their response times compared with running on a non protected
VM can be tested. But the main resource needed for Remus to work efficiently
is network performance without which all protected VMs will most certainly
perform poorly.

5.6 Deciding success factors

In this section, based on this project’s results factors that decide whether a
regional Disaster Recovery is possible for a system are considered. Which type
of processes will generate what type of traffic and how much.

New processes

A key concept in operating systems is the process. A process has its address
space, a list of memory locations from 0 to some maximum where the process
can read and write. The address space of the process contains the executable
program , open files list and list of other related processes. Also all the other
information it needs to execute/run is included in its address space.

New processes spawned in the system generates memory changes depend-
ing on the type of process. New processes spawned from receiving new con-
nections to the webserver generates less Remus traffic than process that have
more disk activity. Specially in the replicated storage mode where same file
is transferred to backup first when it is created in memory and again through
disk communication channel.

New content Written

Writing new content to disk is a memory consuming process, each byte that is
written to disk is first created in memory leading to memory changes at least
as large as the content that is to be written. Specially when a file is received for
writing to disk through network it is created in the memory each time. Using
Remus in disk replication mode, as seen in the results section 4.4, will generate
network traffic approximately three times the size of the file that is transferred.
Remus update traffic to backup is about twice the size of the file and same file
is transferred again through disk communication channel.

Content Read

Content that is read from storage is uploaded to memory thus leading to mem-
ory change and for Remus memory updates to backup it will create same
amount of traffic as it does for disk writes. But for replicated storage mode,
disk reads will not generate any additional traffic on disk communication
channel since reads are already transmitted to backup in memory update traf-
fic.

40

5.7. SERVICE TYPES PERFORMANCE

Caching

In operating systems caching is a well known technique for improving per-
formance. Generally, the whole work is done first time and results saved in a
cache. For subsequent attempt, cache is checked first and if the result is there
it is used otherwise, the whole work is done again. Cache-manager is respon-
sible for caching and it is a continuous process. For Remus caching in the VM
means more update traffic to backup since memory changes will occur.

Network IO

For Remus, network traffic to VM will create latency, in disk replication mode,
network connections are buffered and external state of VM is not visible until
the backup is updated. This will increase round trip time for network traffic to
the VM.

5.7 Service types performance

In this section different service types running on the protected VM are consid-
ered. How will these services perform running on a VM that is protected using
Remus. Services considered are:

1. Game server

2. Mail server

3. Database server

5.7.1 Game server

For a gaming server response times and network speeds are important. All the
resources needed for users are attempted allocated first time. A game server
wants to avoid disk IO for performance therefore a game server has large ap-
plication footprint and needs high network speeds. If a game server is run
on a VM that is protected using Remus, its performance will depend on what
mode Remus is running. In replicated storage mode network latency will in-
crease and game server performance will suffer. In shared storage mode it can
work satisfactory since very little disk IO is done by the server.

5.7.2 Mail Server

Mail servers are known for their disk activity, each time a mail is received it is
written to disk and read when mail is checked. This will create extensive disk
activity which for Remus means more network traffic. Even in shared storage
mode Remus traffic be high since disk activity is high. If Remus is used in
Replicated storage mode network traffic will increase even more.

41

5.7. SERVICE TYPES PERFORMANCE

5.7.3 Database server

A database server has low network traffic but high disk activity, high caching
and high memory usage. This is the worst type of service to use with Remus.
Extensive memory changes along with high disk activity will cause very high
Remus network traffic for each modes.

Generally, it can be said that services that generates high network traffic
but low disk and memory usage will work best with Remus running in shared
storage mode. Running Remus in replicated storage mode will increase la-
tency for that service. Services that have extensive disk IO and high memory
footprint will have negative impact on Remus update traffic.

42

Chapter 6

Conclusions

Depending on various test results from this project, some conclusions can be
reached which are listed in this section.

High Performance Networks

A very obvious conclusion that can be drawn from this project is that Remus
requires very high performance networks to fully protect a VM effectively.
This can be observed by reading different graphs from the results section 4.2.
The results from test scenario 2 4.3 to 4 4.5 shows that initially Remus will
transfer whole memory allocated to the VM, in this case 512MB, before it sends
updates of memory changes in the VM to the backup. Results from test sce-
nario 2 4.3 shows that although the VM was idle a constant stream of data was
sent to the backup and this was around 3MB per second. This is a high amount
of data for an idle VM specially considering the fact that the VM was isolated
from all other network traffic and there was no outside interference.

This constant stream of data to backup is heavily dependent on what the
VM is doing, the minimum amount of data sent to the backup occurs when
the VM is idle. But if VM activity that leads to memory changes occurs, this
stream of data will increase depending on how much memory has changed.

Another fact supporting this conclusion is that initially Remus will transfer
the whole memory allocated to the VM and the faster it can do this the better
will be the performance and respond time of the VM. The VM is suspended
every time changed memory is read to be transferred to the backup.

Reason for repeating scenario 1 and scenario 2 many times is to get an fairly
accurate idea of the traffic and speeds. Repetitions can be used to calculate
means and standard deviations indicating an error margin. It is reasonable to
believe that for a setup described in this project these speeds are accurate.

Variance in regional network speeds

Looking at figures 4.8 and 4.6 it is clear that regional network speeds will vary
depending on traffic and bandwidth available to Remus will also vary because

43

6.1. FUTURE WORK

of that. For regional test attempts in figure 4.8 maximum speeds reached by
each attempt varies much more than for local test attempts in figure 4.6 and
these tests were conducted at different times of the day. At day time much
more network activity exists on the Universities public network which will
result in lower speeds available for Remus. This will affect the performance of
the protected VM.

Disk activity versus network traffic

Another observation that can be made by studying results from 4.4 and 4.5
is that disk activity will most certainly generate more traffic than network
connections when running Remus in replicated storage mode. Reason is that
when a file is transferred to the VM, first this file will be created in memory
first [21] and these memory changes will result in increased Remus update
traffic to backup. After this the file will be written to the disk which again will
generate Remus traffic but now for the disk update channel. For http network
connections, a file is asked for for each connection and this file(index.html),
is read into memory. There is no disk write and therefore no additional disk
update traffic to the backup.

Surprising results

Network speeds are the surprising part of this project, it is tempting to believe
that network speeds locally will be higher than speeds for regional network.
This is not the case according to figure 4.8 and 4.6. It can be observed from
these figures that highest network speeds reached was for the regional setup.

In this project, it is shown that Remus for regional Disaster Recovery can
be used if high performance networks are available.

6.1 Future work

In this project, network speeds created by running Remus in different modes
is measured. In future work, the test VM can be the focus of attention and
it can be tested for performance, latency and behavior. It is also possible to
do a similar project with lower regional network speeds while testing the test
VM performance and responses. Setting up a test environment using Xen with
Remus support is easier now since Remus is a part of official Xen 4.0.0.

44

Appendix A

A.1 Configuration files

Configuration file for Xen on Primary

#
Xend c o n f i g u r a t i o n f i l e .
#
(xend−r e l o c a t i o n−server yes)
(xend−r e l o c a t i o n−s s l−server no)
(xend−udev−event−server no)
Port xend should use f o r the r e l o c a t i o n i n t e r f a c e , i f xend−r e l o c a t i o n−server
i s s e t .
(xend−r e l o c a t i o n−port 8002)
Port xend should use f o r the s s l r e l o c a t i o n i n t e r f a c e , i f
xend−r e l o c a t i o n−s s l−server i s s e t .
(xend−r e l o c a t i o n−s s l−port 8003)
SSL key and c e r t i f i c a t e to use f o r the s s l r e l o c a t i o n i n t e r f a c e , i f
xend−r e l o c a t i o n−s s l−server i s s e t .
Whether to use s s l as d e f a u l t when r e l o c a t i n g .
(xend−r e l o c a t i o n−s s l no)
Spec i fy ing the empty s t r i n g ’ ’ (the d e f a u l t) al lows a l l connect ions .
(xend−address ’ ’)
Address xend should l i s t e n on f o r r e l o c a t i o n−socket connections , i f
xend−r e l o c a t i o n−server i s s e t .
(xend−r e l o c a t i o n−address ’ ’)
(xend−r e l o c a t i o n−hosts−allow ’ ’)
(network−s c r i p t network−bridge)
(v i f−s c r i p t v i f−bridge)
dom0−min−mem i s the lowest permiss ib le memory l e v e l (in MB) f o r dom0 .
This i s a minimum both f o r auto−bal looning (as enabled by
enable−dom0−bal looning below) and f o r xm mem−s e t when applied to dom0 .
(dom0−min−mem 196)
Whether to enable auto−bal looning of dom0 to allow domUs to be created .
I f enable−dom0−bal looning = no , dom0 w i l l never bal loon out .
(enable−dom0−bal looning yes)
(total_avai lable_memory 0)
(dom0−cpus 0)
(vncpasswd ’ ’)

45

A.1. CONFIGURATION FILES

Configuration file for Vtun server on Primary

options {
port 8006 ;
sys log daemon ;
Path to various programs
i f c o n f i g /sbin/ i f c o n f i g ;
route /sbin/route ;
f i r e w a l l /sbin/ i p t a b l e s ;
ip /sbin/ip ;

}

Defaul t s e s s i o n options
d e f a u l t {

compress no ; # Compression i s o f f
encrypt no ; # ssh does the encryption
speed 0 ; # By d e f a u l t maximum speed
keepal ive yes ;
s t a t yes ;

}

Sect iopn f o r Oslo to Primary
remus2_1 {

passwd 5 tyhjmik ; # Password
type ether ; # IP tunnel
device tap0 ;
proto udp ; # TCP protoco l

up {
i f c o n f i g

"%% 1 9 2 . 1 6 8 . 0 . 1 1 pointopoint 1 9 2 . 1 6 8 . 0 . 1 2 mtu 1 4 5 0 " ;
program " b r c t l addif v i r t b r %%";

} ;
down{

i f c o n f i g "%% down " ;
} ;

}

S e c t i o n f o r GjÃ¸vik to Primary
remus3_1 {

passwd 5 tyhjmik ; # Password
type ether ; # IP tunnel
device tap1 ;
proto udp ; # TCP protoco l

up {
i f c o n f i g

"%% 1 9 2 . 1 6 8 . 0 . 2 1 pointopoint 1 9 2 . 1 6 8 . 0 . 1 3 mtu 1 4 5 0 " ;
program " b r c t l addif v i r t b r %%";

} ;
down{

i f c o n f i g "%% down " ;
} ;

}

46

A.2. XEN CONFIGURATION FILES FOR VM

Configuration file for Vtun client on Oslo

options {
port 8000 ;
sys log daemon ;
Path to various programs
i f c o n f i g /sbin/ i f c o n f i g ;
route /sbin/route ;
f i r e w a l l /sbin/ i p t a b l e s ;
ip /sbin/ip ;

}

Defaul t s e s s i o n options
d e f a u l t {

compress no ; # Compression i s o f f
encrypt no ; # ssh does the encryption
speed 0 ; # By d e f a u l t maximum speed
keepal ive yes ;
s t a t yes ;

}

S e c t i o n f o r Oslo to Primary
remus2_1 {

passwd 5 tyhjmik ; # Password
type ether ; # IP tunnel
device tap0 ;
proto udp ; # TCP protoco l

up {
i f c o n f i g

"%% 1 9 2 . 1 6 8 . 0 . 1 2 pointopoint 1 9 2 . 1 6 8 . 0 . 1 1 mtu 1 4 5 0 " ;
program " b r c t l addif v i r t b r %%";

} ;
down{

i f c o n f i g "%% down " ;
} ;

}

A.2 Xen configuration files for VM

Xen configuration file for starting VM using Gjøvik as backup with disk
replication

#
Configurat ion f i l e f o r the Xen i n s t a n c e lenny , crea ted
by xen−t o o l s 3 . 9 on F r i Mar 27 2 0 : 3 7 : 0 2 2009 .
#

#
Kernel + memory s i z e
#
kernel = ’/ boot/vmlinuz−2.6.18.8−xen ’
ramdisk = ’/ boot/ i n i t r d . img−2.6.18.8−xen ’

memory = ’512 ’

Disk device (s) .
#
root = ’/dev/xvda1 ro ’
disk = [’ tap : remus : 1 2 8 . 3 9 . 8 0 . 8 0 : 8 0 0 0 | aio :/ dev/xen−domus/lenny−1,xvda1 ,w’]
name = ’ lenny512−lvm ’
dhcp = ’ dhcp ’

47

A.3. NETWORK TRAFFIC SCRIPTS

v i f = [’mac = 0 0 : 1 6 : 3 E : 7 6 : 0 0 : AB, bridge= v i r t b r ’]
on_poweroff = ’ destroy ’
on_reboot = ’ r e s t a r t ’
on_crash = ’ r e s t a r t ’
e x t r a = ’2 console= t t y 1 xencons=t ty ’

Xen configuration file for starting VM with shared storage

#
Configurat ion f i l e f o r the Xen i n s t a n c e lenny , crea ted
by xen−t o o l s 3 . 9 on F r i Mar 27 2 0 : 3 7 : 0 2 2009 .
#

#
Kernel + memory s i z e
kernel = ’/ boot/vmlinuz−2.6.18.8−xen ’
ramdisk = ’/ boot/ i n i t r d . img−2.6.18.8−xen ’
memory = ’512 ’
Disk device (s) .
#
root = ’/dev/xvda1 ro ’
disk = [’ tap : a io :/mnt/nfs/var/nfs/lenny−1. ext2 , xvda1 ,w’]
name = ’ lenny512−lvm ’

Networking
#
dhcp = ’ dhcp ’
v i f = [’mac = 0 0 : 1 6 : 3 E : 7 6 : 0 0 : AB, bridge= v i r t b r ’]
on_poweroff = ’ destroy ’
on_reboot = ’ r e s t a r t ’
on_crash = ’ r e s t a r t ’
e x t r a = ’2 console= t t y 1 xencons=t ty ’

A.3 Network traffic scripts

Script for measuring Remus network traffic to Gjøvik for replicated storage

#!/ usr/bin/p e r l

This s c r i p t w i l l f i r s t c a l l a p e r l s c r i p t f o r d e l e t i n g previously created i p t a b l e s r u l e s i f any .
Then new i p t a b l e s r u l e s w i l l be crea ted and t h e i r packets and bytes logged every second when t h i s s c r i p t i s running .
This s c r i p t must be terminated with Ctr l−c . Each t r a f f i c type w i l l be logged to sepera te f i l e ending with . out

#some v a r i a b l e d e f i n i t i o n s
my $ i p t ="/ sbin/ i p t a b l e s " ;
my $in = "INPUT " ;
my $out = "OUTPUT" ;
my $proto = " tcp " ;
my $vmip = " 1 9 2 . 1 6 8 . 0 . 5 " ;
my $remusip = " 1 2 8 . 3 9 . 8 0 . 8 0 " ;
my $webport = " 8 0 " ;
my $sshport = " 2 2 " ;
my $diskport = " 8 0 0 0 " ;
my $migport = " 8 0 0 2 " ;
my $ t a r g e t = "ACCEPT " ;
my ($command , $command1 , $command2) = (null , nul l , n u l l) ;
my @output = n u l l ;

$command = " $ i p t −nvxL $out | grep $remusip | grep $migport " ;
my $ r e s u l t = ‘$command ‘ ;
i f ($ r e s u l t ne " ")
{

48

A.3. NETWORK TRAFFIC SCRIPTS

p r i n t " Cal l ing d e l e t e s c r i p t ! ! \ n " ;
my @myresult = ‘/ usr/bin/p e r l ./ dele te−gjovik−remusNET−web−ssh−ip t−r u l e s . pl ‘ ;

}

p r i n t " Creat ing r u l e s f o r web , ssh and migration . . . \ n " ;
$command = " $ i p t −A $in −p $proto −s $remusip −−sport $diskport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −A $out −p $proto −d $remusip −−dport $diskport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −A $in −p $proto −s $vmip −−sport $sshport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −A $out −p $proto −d $vmip −−dport $sshport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −A $in −p $proto −s $remusip −−sport $migport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −A $out −p $proto −d $remusip −−dport $migport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −A $in −p $proto −s $vmip −−sport $webport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −A $out −p $proto −d $vmip −−dport $webport − j $ t a r g e t " ;
@output = ‘$command ‘ ;

my $remusFILE = " . . / r e s u l t s /lenny512−gjovik−NET−remus . out " ;
my $webFILE = " . . / r e s u l t s /lenny512−gjovik−NET−web . out " ;
my $sshFILE = " . . / r e s u l t s /lenny512−gjovik−NET−ssh . out " ;
my $diskFILE = " . . / r e s u l t s /lenny512−gjovik−NET−diskusage . out " ;
my $diskportFILE = " . . / r e s u l t s /lenny512−gjovik−NET−d i s k t r a f f . out " ;

open (LOGREMUS, " >> $remusFILE ") or die " Error : $!\n " ;
p r i n t LOGREMUS " Time\tTX Packets\tRX Packets\tTX Bytes\tRX Bytes\n " ;

open (LOGWEB, " >> $webFILE ") or die " Error : $!\n " ;
p r i n t LOGWEB " Time\tTX Packets\tRX Packets\tTX Bytes\tRX Bytes\n " ;

open (LOGSSH, " >> $sshFILE ") or die " Error : $!\n " ;
p r i n t LOGSSH " Time\tTX Packets\tRX Packets\tTX Bytes\tRX Bytes\n " ;

open (LOGDISKUSAGE, " >> $diskFILE ") or die " Error : $!\n " ;
p r i n t LOGDISKUSAGE " Time\tReads\tWri tes\ t R s e c t \tWsect\n " ;

open (LOGDISKTRAFF, " >> $diskportFILE ") or die " Error : $!\n " ;
p r i n t LOGDISKTRAFF " Time\tTX Packets\tRX Packets\tTX Bytes\tRX Bytes\n " ;

my $com_xentop = " xentop −b −x − i 1 |grep RD : " ;

while (1) {
my $time = time ;

my $disk_output = ‘ $com_xentop ‘ ; # disk reads and wri tes
my ($rem_txp , $rem_rxp , $rem_txb , $rem_rxb) = (0 , 0 , 0 , 0) ;
my ($web_txp , $web_rxp , $web_txb , $web_rxb) = (0 , 0 , 0 , 0) ;
my ($ssh_txp , $ssh_rxp , $ssh_txb , $ssh_rxb) = (0 , 0 , 0 , 0) ;
my ($disk_txp , $disk_rxp , $disk_txb , $disk_rxb) = (0 , 0 , 0 , 0) ;

my ($read , $write , $ r s e c t , $wsect) = (0 , 0 , 0 , 0) ;

$command = " $ i p t −nvxL $out | grep $migport | grep $remusip " ;
$ r e s u l t = ‘$command ‘ ;
$ r e s u l t = subs t r ($ r e s u l t , 0 , index ($ r e s u l t , ’ACCEPT ’)) ;
@output = ($ r e s u l t =~ m/(\d+) /g) ;
$rem_txp = $output [0] ;
$rem_txb = $output [1] ;
chomp($rem_txp , $rem_txb) ;

$command2 = " $ i p t −nvxL $in | grep $migport | grep $remusip " ;
$ r e s u l t = ‘$command2 ‘ ;
$ r e s u l t = subs t r ($ r e s u l t , 0 , index ($ r e s u l t , ’ACCEPT ’)) ;

49

A.3. NETWORK TRAFFIC SCRIPTS

@output = ($ r e s u l t =~ m/(\d+) /g) ;
$rem_rxp = $output [0] ;
$rem_rxb = $output [1] ;
chomp($rem_rxp , $rem_rxb) ;

my $logremus = " $time\t$rem_txp\t$rem_rxp\t$rem_txb\t$rem_rxb\n " ;
p r i n t "REMUS:\ t \ t " . $logremus ;

$command1 = " $ i p t −nvxL $out | grep $vmip | grep $webport " ;
$ r e s u l t = ‘$command1 ‘ ;
$ r e s u l t = subs t r ($ r e s u l t , 0 , index ($ r e s u l t , ’ACCEPT ’)) ;
@output = ($ r e s u l t =~ m/(\d+) /g) ;
$web_txp = $output [0] ;
$web_txb = $output [1] ;
chomp($web_txp , $web_txb) ;

$command = " $ i p t −nvxL $in | grep $vmip | grep $webport " ;
$ r e s u l t = ‘$command ‘ ;
$ r e s u l t = subs t r ($ r e s u l t , 0 , index ($ r e s u l t , ’ACCEPT ’)) ;
@output = ($ r e s u l t =~ m/(\d+) /g) ;
$web_rxp = $output [0] ;
$web_rxb = $output [1] ;
chomp($web_rxp , $web_rxb) ;

my $logweb = " $time\t$web_txp\t$web_rxp\t$web_txb\t$web_rxb\n " ;
p r i n t "WEB:\ t \ t " . $logweb ;

$command2 = " $ i p t −nvxL $out | grep $sshport| grep $vmip " ;
$ r e s u l t = ‘$command2 ‘ ;
$ r e s u l t = subs t r ($ r e s u l t , 0 , index ($ r e s u l t , ’ACCEPT ’)) ;
@output = ($ r e s u l t =~ m/(\d+) /g) ;
$ssh_txp = $output [0] ;
$ssh_txb = $output [1] ;
chomp($ssh_txp , $ssh_txb) ;

$command1 = " $ i p t −nvxL $in | grep $sshport| grep $vmip " ;
$ r e s u l t = ‘$command1 ‘ ;
$ r e s u l t = subs t r ($ r e s u l t , 0 , index ($ r e s u l t , ’ACCEPT ’)) ;
@output = ($ r e s u l t =~ m/(\d+) /g) ;
$ssh_rxp = $output [0] ;
$ssh_rxb = $output [1] ;
chomp($ssh_rxp , $ssh_rxb) ;

my $logssh = " $time\t$ssh_txp\t$ssh_rxp\t$ssh_ txb\t$ssh_rxb\n " ;
p r i n t "SSH:\ t \ t " . $ logssh ;

$disk_output =~ m/RD: (. *) WR: / ;
$read = $1 ;
$read =~ s/^\s +//; #remove leading spaces

$read =~ s/\s+$ //; #remove t r a i l i n g spaces

$disk_output =~ m/WR: (. *) RSECT : / ;
$wri te = $1 ;
$wri te =~ s/^\s +//; #remove leading spaces

$wri te =~ s/\s+$ //; #remove t r a i l i n g spaces

$disk_output =~ m/RSECT : (. *) WSECT: / ;
$ r s e c t = $1 ;
$ r s e c t =~ s/^\s +//; #remove leading spaces

$ r s e c t =~ s/\s+$ //; #remove t r a i l i n g spaces

$disk_output =~ m/WSECT: (. *) / ;
$wsect = $1 ;
$wsect =~ s/^\s +//; #remove leading spaces

$wsect =~ s/\s+$ //; #remove t r a i l i n g spaces

50

A.3. NETWORK TRAFFIC SCRIPTS

my $logdiskusage = " $time\t$read\ t $ w r i t e \ t $ r s e c t \t$wsect\n " ;
p r i n t "DISKUSAGE:\ t " . $logdiskusage ;

$command = " $ i p t −nvxL $out | grep $diskport | grep $remusip " ;
$ r e s u l t = ‘$command ‘ ;
$ r e s u l t = subs t r ($ r e s u l t , 0 , index ($ r e s u l t , ’ACCEPT ’)) ;
@output = ($ r e s u l t =~ m/(\d+) /g) ;
$disk_txp = $output [0] ;
$disk_txb = $output [1] ;
chomp($disk_txp , $disk_txb) ;

$command2 = " $ i p t −nvxL $in | grep $diskport | grep $remusip " ;
$ r e s u l t = ‘$command2 ‘ ;
$ r e s u l t = subs t r ($ r e s u l t , 0 , index ($ r e s u l t , ’ACCEPT ’)) ;
@output = ($ r e s u l t =~ m/(\d+) /g) ;
$disk_rxp = $output [0] ;
$disk_rxb = $output [1] ;
chomp($disk_rxp , $disk_rxb) ;

my $ l o g d i s k t r a f f = " $time\t$disk_txp\t$disk_rxp\t $ d i s k _ t x b\t$disk_rxb\n " ;
p r i n t "DISKTRAFF:\ t " . $ l o g d i s k t r a f f ;
p r i n t "\n " ;

p r i n t LOGDISKUSAGE $logdiskusage ;
p r i n t LOGDISKTRAFF $ l o g d i s k t r a f f ;
p r i n t LOGREMUS $logremus ;
p r i n t LOGWEB $logweb ;
p r i n t LOGSSH $logssh ;
s leep 1 ;

}

Script for deleting iptables rules for Gjøvik replicated storage

#!/ usr/bin/p e r l
#some v a r i a b l e d e f i n i t i o n s
my $ i p t ="/ sbin/ i p t a b l e s " ;
my $in = "INPUT " ;
my $out = "OUTPUT" ;
my $proto = " tcp " ;
my $vmip = " 1 9 2 . 1 6 8 . 0 . 5 " ;
my $remusip = " 1 2 8 . 3 9 . 8 0 . 8 0 " ;
my $webport = " 8 0 " ;
my $sshport = " 2 2 " ;
my $diskport = " 8 0 0 0 " ;
my $migport = " 8 0 0 2 " ;
my $ t a r g e t = "ACCEPT " ;
my $command = n u l l ;
my @output = n u l l ;

Reset input output chanins . . .
$command = " $ i p t −Z $in " ;
@output = ‘$command ‘ ;
$command = " $ i p t −Z $out " ;
@output = ‘$command ‘ ;
p r i n t " Delet ing i p t a b l e s r u l e s f o r web , ssh and xen . . . \ n " ;
$command = " $ i p t −D $in −p $proto −s $vmip −−sport $sshport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −D $out −p $proto −d $vmip −−dport $sshport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −D $in −p $proto −s $remusip −−sport $migport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −D $out −p $proto −d $remusip −−dport $migport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −D $in −p $proto −s $vmip −−sport $webport − j $ t a r g e t " ;
@output = ‘$command ‘ ;

51

A.3. NETWORK TRAFFIC SCRIPTS

$command = " $ i p t −D $out −p $proto −d $vmip −−dport $webport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −D $in −p $proto −s $remusip −−sport $diskport − j $ t a r g e t " ;
@output = ‘$command ‘ ;
$command = " $ i p t −D $out −p $proto −d $remusip −−dport $diskport − j $ t a r g e t " ;
@output = ‘$command ‘ ;

e x i t 0 ;

Script for converting and dividing traffic files for use with Mathematica

#!/ usr/bin/p e r l

#
This s c r i p t w i l l read a l l f i l e s . out f i l e s from a d i r e c t o r y and divide them i n t o attempts c a c u l a t i n g
r i g h t values f o r each entry . A f i l e f o r use f o r s t a t i s t i c s w i l l a l s o be created f o r a l l . out f i l e s .
#
#use bignum (p => 50) ;
my $dir = "/ experiments/ r e s u l t s " ;
opendir (DIR , $di r) or die " can ’ t opendir $dir : $! " ;
my @ f i l e s = grep { $_ ne ’ . ’ && $_ ne ’ . . ’ && $_ ne " pa r t s " && !/~/ && $_ ne ’ ping−times ’ && !/ pl /} readdir DIR ;
foreach $ f i l e (@ f i l e s)
{

do something with " $dirname/ $ f i l e "
my $num = 1 ;
my $ l i n e s = 1 ;
my $ i n f i l e = " $dir/ $ f i l e " ;
my $ o u t f i l e = " $dir/p a r t s / " . subs t r ($ f i l e , 0 , index ($ f i l e , ’ out ’)) . $num ;
my $ a l l f i l e = " $dir/p a r t s / " . subs t r ($ f i l e , 0 , index ($ f i l e , ’ out ’)) . " a l l " ;
my $ s t a t f i l e = " $dir/pa r t s / " . subs t r ($ f i l e , 0 , index ($ f i l e , ’ out ’)) . " s t a t " ;
my @raw_times = NULL;
my @real_t imes = NULL;
my $k = 0 ;
my $ k i l o = 1024 ;
my $mega = 1048576 ;

i f ($ARGV[0] ne " ") { $ i n f i l e = $ARGV[0] }

open (IN , "< $ i n f i l e ") or die "USAGE: $0 INPUTFILE \nError : $! " ;
open (OUT," > $ o u t f i l e ") or die "USAGE: $0 INPUTFILE \nError : $! " ;
open (ALL," > $ a l l f i l e ") or die "USAGE: $0 INPUTFILE \nError : $! " ;
open (STAT," > $ s t a t f i l e ") or die "USAGE: $0 INPUTFILE \nError : $! " ;

my @raw_data = <IN >;
my @dif f_data = NULL;
my ($time , $tx_packets , $rx_packets , $tx_bytes , $rx_bytes) = (0 , 0 , 0 , 0 , 0) ;
my ($time1 , $time2 , $tx_packets1 , $tx_packets2 , $rx_packets1 , $rx_packets2 , $tx_bytes1 , $tx_bytes2 , $rx_bytes1 , $rx_bytes2) = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ;
my ($ t o t_ t x_p ack e ts , $ to t_rx_packets , $ t o t _ t x _ b y t e s , $ t o t _ r x _ b y t e s) = (0 , 0 , 0 , 0) ;
$k = 0 ;
p r i n t OUT " Attempts\tTX−PACKETS\tRX−PACKETS\tTX−BYTES\tRX−BYTES\n " ;
$ d i f f _ d a t a [0] = " Time\tTX PACKETS\tRX PACKETS\tTX BYTES\tRX BYTES\n " ;

f o r (my $ i =1; $i <=scalar@raw_data ; $ i ++)
{

($time1 , $tx_packets1 , $rx_packets1 , $tx_bytes1 , $rx_bytes1) = (0 , 0 , 0 , 0 , 0) ;
($time2 , $tx_packets2 , $rx_packets2 , $tx_bytes2 , $rx_bytes2) = (0 , 0 , 0 , 0 , 0) ;
($time , $tx_packets , $rx_packets , $tx_bytes , $rx_bytes) = (0 , 0 , 0 , 0 , 0) ;
($time1 , $tx_packets1 , $rx_packets1 , $tx_bytes1 , $rx_bytes1) = s p l i t (’\ t ’ , $raw_data [$ i]) ;
i f (scalar@raw_data > $ i +1)
{

($time2 , $tx_packets2 , $rx_packets2 , $tx_bytes2 , $rx_bytes2) = s p l i t ("\ t " , $raw_data [$ i + 1]) ;
i f ($time2 =~ /^−?\d/) # I f Time i s a number or i t s the f i r s t row
{

$time = $time2−$time1 ;
$ tx_packets=$tx_packets2−$tx_packets1 ;

52

A.3. NETWORK TRAFFIC SCRIPTS

$rx_packets = $rx_packets2−$rx_packets1 ;
$ tx_bytes=$tx_bytes2−$tx_bytes1 ;
$rx_bytes=$rx_bytes2−$rx_bytes1 ;
$ d i f f _ d a t a [$ i] = " $time\ t $ t x _ p a c k e t s \t $r x_ p ac k e t s\ t $ t x _ b y t e s \ t $ r x _ b y t e s \n " ;

p r i n t OUT " $ l i n e s \ t $ t x _ p a c k e t s \t$ r x_ pa c ke ts\ t $ t x _ b y t e s \ t $ r x _ b y t e s \n " ;
$ l i n e s += 1 ;
$ t o t _ t x _ p a c k e t s += $tx_packets ;
$ t o t _ r x _ p a c k e t s += $rx_packets ;
$ t o t _ t x _ b y t e s += $tx_bytes ;
$ t o t _ r x _ b y t e s += $rx_bytes ;

}
e l s e { # p r i n t OUT " $time2\ t $ t x _ p a c k e t s 2 \t$rx_packe ts2\ t $ t x _ b y t e s 2 \t $ r x _ b y t e s 2\n " ;

$ d i f f _ d a t a [$ i] = " $time2\ t $ t x _ p a c k e t s 2\t$rx_packe ts2\ t $ t x _ b y t e s 2 \t $ r x _ b y t e s 2 " ;
c l o s e OUT;
$num += 1 ;
$ o u t f i l e = " $dir/pa r t s / " . subs t r ($ f i l e , 0 , index ($ f i l e , ’ out ’)) . $num ;
open (OUT," > $ o u t f i l e ") or die "USAGE: $0 INPUTFILE \nError : $! " ;
p r i n t OUT " Attempts\tTX−PACKETS\tRX−PACKETS\tTX−BYTES\tRX−BYTES\n " ;
$ i = $ i +1;
$ l i n e s = 1 ;
p r i n t OUT " $ l i n e s \ t $ t o t _ t x _ p a c k e t s \ t $ t o t _ r x _ p a c k e t s \ t $ t o t _ t x _ b y t e s \ t $ t o t _ r x _ b y t e s \n " ;
($ to t_ t x_pa cke ts , $ to t_rx_packets , $ t o t _ t x _ b y t e s , $ t o t _ r x _ b y t e s) = (0 , 0 , 0 , 0) ;

}
}

}
p r i n t DIFF @dif f_data ;

#Now c r e a t e the f i l e f o r s t a t i s t i c use
$row =1;
$co l =1;
my @part = () ;
f o r (my $ i =1; $i < s c a l a r @ d i f f _ d a t a ; $ i ++)
{

i f ($ d i f f _ d a t a [$ i] =~ m/TX/)
{

$co l ++;
$row =0;

}
e l s e {

$part [$co l] [$row]= $ d i f f _ d a t a [$ i] ;
$row++;

}
}
my $ l e a s t e n t r i e s =100000000;
my @resul t=n u l l ;
my $head =" Sec\ t " ;
p r i n t "# part IS $# part\n " ;
f o r $ i (1 . . $# part) {

$head = $head . " T e s t $ i \ t " ;
f o r $ j (1 . . $ # { $part [$ i] }) {

i f ($ # { $part [$ i] } < $ l e a s t e n t r i e s) { $ l e a s t e n t r i e s =$ #{ $part [$ i] } ; }
}

}
$head = $head . " Mean\tStDev " ;
f o r $ i (1 . . $ l e a s t e n t r i e s) {
my $ t o t _ t x b = 0 ;
my $mean = 0 ;
my $stddev = 0 ;
my $sum = 0 ;
my @tx_values = NULL;
f o r $ j (1 . . $# part) {

($time , $tx_packets , $rx_packets , $tx_bytes , $rx_bytes) = s p l i t ("\ t " , $part [$ j] [$ i]) ;
$ r e s u l t [$ i] = $ r e s u l t [$ i] . $ tx_bytes . " \ t " ; #add a comma at the end here i f comma seperated i s needed
$ t o t _ t x b = $ t o t _ t x b + $tx_bytes ;

}
c a c u l a t e mean value

53

A.4. NETWORK TRAFFIC LOG FILES

$mean= $ t o t _ t x b /$# part ;
@tx_values = s p l i t ("\ t " , $ r e s u l t [$ i]) ;
f o r (my $x =0; $x<sca lar@tx_va lues ; $x ++){
$sum = $sum + ($tx_values [$x]−$mean) ;

}
$sum = $sum * * 2 ;
i f (sca lar@tx_values−1 != 0) { $stddev = s q r t ($sum/(sca lar@tx_values − 1)) ; }
e l s e { $stddev = 0 ; }
$ r e s u l t [$ i] = $ r e s u l t [$ i] . " $mean\t$stddev " ;
}

p r i n t STAT $head . " \ n " ;
f o r (my $ i =1; $i < s c a l a r @ r e s u l t ; $ i ++){

p r i n t STAT " $ i \ t $ r e s u l t [$ i]\n " ;
}
p r i n t ALL @dif f_data ;
c l o s e ALL;
c l o s e IN ;
c l o s e OUT;
c l o s e STAT ;

}
c l o s e d i r (DIR) ;
e x i t 0 ;

A.4 Network traffic log files

An example network traffic log file

Time TX Packets RX Packets TX Bytes RX Bytes
1272324555 0 0 0 0
1272324556 0 0 0 0
1272324558 0 0 0 0
1272324559 26 10 31584 544
1272324560 4545 1839 6798556 95652
1272324561 54402 17113 81567516 889900
1272324563 114921 35900 172330748 1879388
1272324564 181617 54895 272355788 2867128
1272324565 245429 72920 368056928 3804428
1272324567 312157 93464 468127724 4872716
1272324568 376805 108883 565076848 5674504
1272324569 399010 112198 598380376 5846884
1272324570 422345 114171 633378976 5949480
1272324572 439546 116116 659177044 6050620
1272324573 460077 118293 689968488 6163824
1272324574 469554 118946 704178352 6197780
1272324575 472576 119283 708706840 6215304
1272324576 474810 119584 712054428 6230956
1272324577 477669 119944 716336640 6249676
1272324579 481624 120270 722266520 6266628
1272324580 484507 120640 726586880 6285868
1272324581 488707 121004 732882224 6304796
1272324582 517399 124197 775916056 6470832
1272324583 548508 126295 822576976 6579928
1272324585 579483 126931 869034248 6613000
1272324586 606255 127094 909191248 6621476
1272324587 640366 127919 960354668 6670640
1272324589 655985 128266 983779324 6688684
1272324590 663091 128837 994432380 6718376
1272324591 670028 129915 1004834748 6774432
1272324592 699732 131655 1049385588 6864912
1272324594 727110 131958 1090449248 6880668
1272324595 768212 132544 1152095520 6911140
1272324597 794177 135060 1191037348 7041972
1272324598 816452 138995 1224446768 7246592

54

A.4. NETWORK TRAFFIC LOG FILES

1272324600 818826 139045 1228006320 7249965
1272324601 826986 139732 1240246320 7347331
1272324602 835334 140371 1252764696 7422361
1272324603 843239 140544 1264619600 7431357
1272324605 850702 140624 1275811920 7435517
1272324606 858262 140707 1287148684 7439833
1272324607 865879 140785 1298570412 7443889
1272324608 873323 140962 1309733044 7453093
1272324610 879558 141130 1319081984 7461829
1272324611 887214 141366 1330563140 7474101
1272324612 895220 141575 1342566796 7484969
1272324613 902210 141772 1353048264 7495213
1272324614 908469 141945 1362432808 7504209
1272324616 915993 142170 1373714400 7515909
1272324617 923287 142357 1384651932 7525633
1272324618 931079 142576 1396336960 7537021
1272324619 938229 142775 1407057904 7547369
1272324620 942389 142895 1413293768 7553609
1272324622 958673 143966 1437718076 7609301
1272324623 990481 145687 1485425824 7698793
1272324625 1029284 148655 1543630048 7853129
1272324626 1056802 150243 1584905484 7935705
1272324627 1071569 151227 1607052144 7986873
1272324628 1073795 151291 1610387016 7990201
1272324629 1076711 151376 1614754192 7994621
1272324630 1079581 151477 1619053376 7999873
1272324632 1081838 151545 1622434960 8003409
1272324633 1098978 152326 1648141012 8044021
1272324634 1125343 153346 1687682824 8097061
1272324636 1166767 154804 1749812300 8172877
1272324637 1197682 156418 1796180600 8262337
1272324638 1214574 157135 1821514452 8299621
1272324639 1218206 157245 1826956160 8305341
1272324641 1220421 157313 1830274060 8308877
1272324642 1223271 157400 1834543504 8313401
1272324643 1225596 157470 1838027024 8317041

An example network traffic log file converted for drawing graphs

Time TX Packets RX Packets TX Bytes RX Bytes
1272324555 0 0 0 0
1272324556 0 0 0 0
1272324558 0 0 0 0
1272324559 26 10 31584 544
1272324560 4545 1839 6798556 95652
1272324561 54402 17113 81567516 889900
1272324563 114921 35900 172330748 1879388
1272324564 181617 54895 272355788 2867128
1272324565 245429 72920 368056928 3804428
1272324567 312157 93464 468127724 4872716
1272324568 376805 108883 565076848 5674504
1272324569 399010 112198 598380376 5846884
1272324570 422345 114171 633378976 5949480
1272324572 439546 116116 659177044 6050620
1272324573 460077 118293 689968488 6163824
1272324574 469554 118946 704178352 6197780
1272324575 472576 119283 708706840 6215304
1272324576 474810 119584 712054428 6230956
1272324577 477669 119944 716336640 6249676
1272324579 481624 120270 722266520 6266628
1272324580 484507 120640 726586880 6285868
1272324581 488707 121004 732882224 6304796
1272324582 517399 124197 775916056 6470832
1272324583 548508 126295 822576976 6579928
1272324585 579483 126931 869034248 6613000
1272324586 606255 127094 909191248 6621476

55

A.4. NETWORK TRAFFIC LOG FILES

1272324587 640366 127919 960354668 6670640
1272324589 655985 128266 983779324 6688684
1272324590 663091 128837 994432380 6718376
1272324591 670028 129915 1004834748 6774432
1272324592 699732 131655 1049385588 6864912
1272324594 727110 131958 1090449248 6880668
1272324595 768212 132544 1152095520 6911140
1272324597 794177 135060 1191037348 7041972
1272324598 816452 138995 1224446768 7246592
1272324600 818826 139045 1228006320 7249965
1272324601 826986 139732 1240246320 7347331
1272324602 835334 140371 1252764696 7422361
1272324603 843239 140544 1264619600 7431357
1272324605 850702 140624 1275811920 7435517
1272324606 858262 140707 1287148684 7439833
1272324607 865879 140785 1298570412 7443889
1272324608 873323 140962 1309733044 7453093
1272324610 879558 141130 1319081984 7461829
1272324611 887214 141366 1330563140 7474101
1272324612 895220 141575 1342566796 7484969
1272324613 902210 141772 1353048264 7495213
1272324614 908469 141945 1362432808 7504209
1272324616 915993 142170 1373714400 7515909
1272324617 923287 142357 1384651932 7525633
1272324618 931079 142576 1396336960 7537021
1272324619 938229 142775 1407057904 7547369
1272324620 942389 142895 1413293768 7553609
1272324622 958673 143966 1437718076 7609301
1272324623 990481 145687 1485425824 7698793
1272324625 1029284 148655 1543630048 7853129
1272324626 1056802 150243 1584905484 7935705
1272324627 1071569 151227 1607052144 7986873
1272324628 1073795 151291 1610387016 7990201
1272324629 1076711 151376 1614754192 7994621
1272324630 1079581 151477 1619053376 7999873
1272324632 1081838 151545 1622434960 8003409
1272324633 1098978 152326 1648141012 8044021
1272324634 1125343 153346 1687682824 8097061
1272324636 1166767 154804 1749812300 8172877
1272324637 1197682 156418 1796180600 8262337
1272324638 1214574 157135 1821514452 8299621
1272324639 1218206 157245 1826956160 8305341
1272324641 1220421 157313 1830274060 8308877
1272324642 1223271 157400 1834543504 8313401
1272324643 1225596 157470 1838027024 8317041

56

Bibliography

[1] XEN, 2009. http://www.xen.org/.

[2] Brett J. L. Landry and M. Scott Koger. Dispelling 10 common disaster
recovery myths: Lessons learned from hurricane katrina and other disas-
ters. J. Educ. Resour. Comput., 6(4):6, 2006.

[3] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield. Remus: high availability via asyn-
chronous virtual machine replication. In NSDI’08: Proceedings of the
5th USENIX Symposium on Networked Systems Design and Implementation,
pages 161–174, Berkeley, CA, USA, 2008. USENIX Association.

[4] Daniel Bartholomew. Getting started with heartbeat. Linux J., 2007(163):2,
2007.

[5] Th. Lumpp, J. Schneider, J Holtz, M. Mueller, N. Lenz, A. Biazetti, and
D. Petersen. From high availability and disaster recovery to business con-
tinuity solutions. IBM Syst. J., 47(4):605–619, 2008.

[6] Pedro Pla. Drbd in a heartbeat. Linux J., 2006(149):3, 2006.

[7] Christopher Strachey. Time sharing in large fast computers. Proceedings
of the International Conference on Information processing, 1959.

[8] Kirk L. Kroeker. The evolution of virtualization. Commun. ACM, 52(3):18–
20, 2009.

[9] Reinhold KrÂ¨oger Dan Marinescu. State of the art in autonomic com-
puting and virtualization, 2007. http://wwwvs.cs.hs-rm.de/downloads/
extern/pubs/techreports/STAR.pdf.

[10] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live migration
of virtual machine based on full system trace and replay. In HPDC ’09:
Proceedings of the 18th ACM international symposium on High performance
distributed computing, pages 101–110, New York, NY, USA, 2009. ACM.

[11] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 164–177, New York, NY, USA, 2003.
ACM.

57

BIBLIOGRAPHY

[12] Maxim Krasnyansky. Vtun-virtual tunnels over tcp/ip networks, 1999.
http://vtun.sourceforge.net/.

[13] Netfilter.org. The netfilter.org iptables project., 2010. http://netfilter.
org/projects/iptables/index.html.

[14] unixref.com. Xentop - display real time info about xen, 2010. http://

www.unixref.com/manPages/xentop.html.

[15] L.P. Hewlett-Packard Development Company. Welcome to the httperf
homepage, 2009. http://www.hpl.hp.com/research/linux/httperf/.

[16] Tim Bray and Russel Coker. Bonnie++ documentation, 1999. http://

www.coker.com.au/bonnie++/readme.html.

[17] debian.org. Debian - the universal operating system, 2010. http://www.
debian.org/.

[18] xen.org. Xen 4.0 - wiki, 2010. http://wiki.xensource.com/xenwiki/

Xen4.0.

[19] debianWiki. Debian - wiki, 2010. http://wiki.debian.org/xen.

[20] Andrew Warfield and Julian Chesterfield. blktap - xen wiki, 2008. http:
//wiki.xensource.com/xenwiki/blktap.

[21] Andrew S. Tanenbaum. Modern Operating Systems., pages 275–278. Pear-
son Education Inc., Chicago, Illinois, United States of America, third edi-
tion edition, 2009.

58

