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4D nucleomes in single cells: what can
computational modeling reveal about
spatial chromatin conformation?
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Abstract

Genome-wide sequencing technologies enable
investigations of the structural properties of the
genome in various spatial dimensions. Here, we
review computational techniques developed to
model the three-dimensional genome in single cells
versus ensembles of cells and assess their underlying
assumptions. We further address approaches to study
the spatio-temporal aspects of genome organization
from single-cell data.
megabase compartments of transcriptionally active or in-
active chromatin (the so-called A and B compartments)
Background
Increasing evidence indicates that the spatial, three-
dimensional (3D) organization of chromatin influences
gene expression and cell fate [1–8]. Chromosome
conformation capture (3C) techniques coupled with high-
throughput sequencing enable interrogations of short-
range and long-range chromosomal interactions on a
genome-wide scale [8–11]. One such technique, Hi-C [8],
involves crosslinking (or ‘freezing’) interacting chromo-
some regions, fragmentation of chromatin, ligation of the
crosslinked fragments, paired-end sequencing of the
ligation products, and mapping of the sequence reads to a
reference genome. A matrix is constructed to map read
pairs that reflect contact between two chromosome re-
gions by binning the genome and ascribing each read pair
into the corresponding bin. The frequency of read pairs in
each bin reflects contact frequencies between loci. These
are optionally transformed into pairwise distances and
used to estimate the position of these loci in a 3D space.
In order to reconstitute 3D models of chromatin, inter-
action frequencies can directly or indirectly be used as
constraints so that genomic regions with high contact
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frequencies are drawn to each other in the nuclear space.
To improve the accuracy of 3D models of chromatin,
other constraints can potentially be incorporated into
structural models based on association of chromatin with
known anchors in the nucleus, such as the nuclear enve-
lope [4, 12], nuclear pore complexes [13, 14], or nucleoli
[15, 16].
Most 3D genome reconstructions are performed on cell

population-averaged Hi-C contact matrices [6, 8, 17–23].
The results consistently provide a hierarchical view of
folding of the genome, with chromatin divided into supra-

[6, 8] and, within these compartments, megabase-scale
topologically associated domains (TADs) [7, 24, 25]. TADs
show distinct boundaries, within which loci interact more
frequently with one another than with loci of adjacent
TADs. Unlike compartments, which can differ between
cell types, TADs are more conserved [6, 8], although
chromosome topology within TADs can vary [26].
The 3D conformation of chromatin is also variable

between cells in a population [27, 28], presumably as a
result of asynchronous gene expression patterns, epigen-
etic variation, and stochastic chromatin movements
[29–33]. Further complicating the issue of structural
variability of genomes between cells is increasing evi-
dence suggesting that even two copies of the same
chromosome in diploid cells vary in structure [26, 34].
This problem is obviously amplified for polyploid cells,
such as some cancer cell types, or if one were to inves-
tigate genome structure in polyploid organisms. As
discussed in this review, computational methods have
been developed to address the structural variability of ge-
nomes between subpopulations of cells. Cell-to-cell het-
erogeneity has also been directly captured in a pioneering
study by applying Hi-C to multiple single cells [35]. Other
emerging single-cell, high-throughput, sequencing-based
technologies provide additional evidence for cell-to-cell
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heterogeneity in associations of chromatin with the
nuclear envelope [36], chromatin accessibility [37–39],
epigenetic states [40–44], and gene expression patterns
[45, 46] (Table 1).
The main purpose of single-cell genome conformation

studies is to assess the heterogeneity in 3D chromatin
structures between cells and, therefore, characterize the
subpopulations of structures. In this review, we first ad-
dress computational approaches that interrogate 3D
chromatin structure from population-based studies; we
evaluate their underlying assumptions and focus on how
these methods tackle the cell-to-cell variability in 3D
chromatin structures. We further examine challenges as-
sociated with inference of chromosome structures from
single-cell interrogations. We address computational
techniques enabling modeling the 3D genome over time
and highlight how single-cell data might benefit this
exercise. Finally, we summarize implications from ap-
plications of computational modeling to study the
spatio-temporal (so-called ‘4D’) and functional aspects
of genome organization.
Assessing genome conformation in cell
populations
Virtually all 3D chromosome-conformation studies are
based on the analysis of millions of cells, with no obvi-
ous way to discern conformations between cells in the
population. As discussed in this section, however, com-
putational methods are very helpful in resolving this
Table 1 Overview of genome-wide high-throughput sequencing-ba

Technology
(single cell)

Information Throughput (no.
cells)

Strengt

RNA sequencing Transcriptome High (>1000) Resolut

In situ RNA
sequencing

Transcriptome with RNA
localization

High (>1000) Colocal
transcrip

ChIP sequencing Protein association with the
genome

High (>1000) Reduce

Hi-C Global chromatin contact
maps

Low (<100) Global v

DamID Lamina-associated domains Medium (<200) No nee

ATAC sequencing Genome accessibility Medium (<500) Resolut

Bisulfite
sequencing (BiS)

DNA methylation Medium (<400) Base res

Reduced-
representation BiS

DNA methylation Low (<100) Sensitiv

Abbreviations: ATAC assay for transposase-accessible chromatin, ChIP chromatin imm
issue. Although single-cell chromosome conformation
can capture cell-to-cell chromosome structural hetero-
geneity [35], this approach comes with its own chal-
lenges. Before discussing these challenges, we describe
two main methods to infer chromatin 3D structure from
Hi-C data, namely consensus methods and deconvolu-
tion methods. We further evaluate issues in addressing
the heterogeneity of chromosome structures from Hi-C
data averaged from ensembles of cells.
Consensus chromosome structures inferred from
population-average data
Constraint-based 3D chromosome modeling strategies
primarily rely on consensus methods that aim to find a
unique 3D structure averaged over many representative
structures [19–23, 47] (see also recent reviews [11, 48,
49]). Consensus methods typically use a matrix of pair-
wise distances between genomic elements obtained by
transforming Hi-C contact frequencies to visualize these
elements as points in a 3D space. Many of these
methods exploit the property that the distance between
any two points must be smaller than or equal to the
sum of distances of these two points to a third point (tri-
angle inequality principle). However, in data from a cell
population with any degree of heterogeneity, this property
is not met as any given distance between two points is
based on an average of multiple structures in that
population [50, 51]. Thus, a structure inferred from the
average of millions of cells will differ from structures
sed single-cell technologies
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derived from subpopulations of cells and will typically
not represent any of the structures in individual cells
[51, 52].
As a result, consensus 3D structure reconstruction

methods have been devised to assess chromosomal
structural heterogeneity, without estimating the popula-
tion of structures per se. Semi-definite programming
has been applied to identify the best consensus struc-
ture fitting Hi-C data [20]. The approach includes a test
of population homogeneity that examines whether the
triangle inequality assumption is met in the input
distance matrix and how well the distance matrix is
represented by three dimensions as opposed to a higher
number of dimensions [20]. A second approach as-
sumes that structures within TADs vary across cell sub-
populations and estimates this within-TAD variation
using a mixture component model [19]. In this model,
each component represents a unique spatial structure
of these sub-TADs, with the weight of each component
defining the proportion of a given structure in the
population.
The ability to evaluate heterogeneity of chromosome

structures is a significant advance in genome modeling
from consensus methods. However, consensus methods
produce a unique structure and do not escape the (incor-
rect) underlying assumption that structures are homoge-
neous. Moreover, uncertainty remains on the source of
the heterogeneity estimated: for example, a population
from one cell type might be truly more heterogeneous
than another or data for that cell type might simply be
noisier. Thus, consensus modeling techniques do not fully
capture the 3D structural heterogeneity within a cell
population. They might nevertheless constitute a promis-
ing approach to unveiling 3D structures in single cells.

Deconvolution methods identify hidden substructures
Deconvolution methods assume that Hi-C and other
3C-based data arise from many chromatin substructures
present in a cell population and seek to identify these
substructures [53–57] (Fig. 1). These methods demultiplex
the data to identify structurally plausible, unobserved
substructures. Two different deconvolution strategies have
been applied to date: structural deconvolution and matrix
deconvolution.
Structural deconvolution methods occur at the 3D

structure reconstruction level, applying constraints such
as enforced intrachromosomal and interchromosomal
interactions, nuclear boundary or volume exclusion [53,
54, 58, 59]. The constraints are applied such that the
population as a whole should satisfy the constraints [54]
or such that individual structures within the population
should satisfy as many of the constraints as possible [58,
59]. In both approaches, the resulting structural ensem-
ble can be clustered to study the underlying structural
variability and sub-population constituents. By contrast,
matrix deconvolution can be applied directly on contact
frequency matrices using information from, for example,
TADs [57, 60] or similar topological domains [61], to
search for a set of contact frequency matrices that opti-
mally reflects the proportions of each predicted sub-
structure in the cell population. This set of matrices
should, in aggregate, reflect the input data [57]. Illustrat-
ing this point, deconvolution of individual single-cell Hi-
C contact matrices [35] pooled into one mixed matrix
has been shown to successfully recover the single-cell
Hi-C matrices [57]. Although matrix deconvolution is
usually faster than structural deconvolution, the sub-
structures recovered might not be physically plausible. A
major drawback of all deconvolution methods is the re-
quirement of extensive computational resources. It is
also currently not clear how accurate current deconvolu-
tion methods really are and whether the current data
allow for well-determined estimation of structural sub-
populations. We refer to recent reviews addressing these
methods in detail [11, 49, 61].
Although computationally more demanding, deconvolu-

tion techniques seeking an ensemble of 3D structural solu-
tions are better suited than consensus methods to capture
the inherent heterogeneity of chromosome structures in a
cell population. This in turn raises the question of whether
one can evaluate through deconvolution the extent of 3D
structural heterogeneity in a given experimental system
and use this information design for more-rationalized
interrogations of 3D chromosome conformations: for in-
stance, how futile is it to analyze high-throughput 3C data
knowing that chromosome conformation is estimated to
be heterogeneous, and should one rather consider single-
cell approaches?

Inference of 3D chromatin structure from single-
cell Hi-C contact maps
A breakthrough in the field of single-cell genomics came
with the report of a protocol enabling the extraction of
Hi-C contact maps from single cells by allowing several
steps in the protocol to occur inside intact nuclei [35].
From each extracted single-cell contact map, 3D struc-
tures can be inferred using a simulated annealing ap-
proach [35] or other reconstruction approaches [23, 34].
Interestingly, large structural differences are noted be-
tween individual cells, the greatest variance residing in
inter-TAD and interchromosomal contacts, whereas
TAD structures are conserved. In addition, because male
cells were purposely examined in this study (male cells
only bear one X chromosome), repeated 3D reconstruc-
tion of chromosome X from a given cell should result in
one unique structure. This view is, however, challenged
by data sparsity and noise inherent to single-cell Hi-C
experiments. As discussed below, this challenge becomes
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Fig. 1 Ensemble and single-cell Hi-C computational methods. Top: a population of cells gives rise to a dense Hi-C heatmap, consisting of contact
frequencies between all pairs of loci in the genome. The heatmap is typically colored according to the contact frequency, such that red colors
indicate a high number of contacts and blue colors indicate a low number of contacts. This heatmap can be used to construct a single consensus
structure or to computationally construct a set of deconvoluted structures that, in aggregate, describe the ensemble Hi-C heatmap. Middle: both
ensemble Hi-C and single-cell Hi-C can be used to identify three-dimensional (3D) interactions between pairs of elements. For ensemble Hi-C, this
is performed by using statistical models to infer significant interactions. In single-cell Hi-C, interactions are inferred directly. Bottom: multiple single
cells are analyzed by single-cell Hi-C, giving rise to one contact matrix per cell. The contact matrix is typically visualized such that a contact is
highlighted by a blue dot; the matrix shows sparse interaction patterns within the chromosomes. Each single-cell Hi-C contact matrix can
then be used to reconstruct the corresponding 3D structures. The ensemble Hi-C heatmap is from [93]. (Single-cell Hi-C contact maps are
adapted from [35])
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greater in the reconstruction of autosomes, present in two
copies in diploid cells, owing to structural differences be-
tween these two copies.

Sparseness of single-cell Hi-C contact maps can hamper
high-confidence 3D structure reconstruction
A crucial issue with single-cell Hi-C chromosome con-
tact information is the inherent sparsity of the contact
frequency maps. Approximately 2.5 % of the theoretical
total possible number of ligations has been shown to be
recovered in the only single-cell Hi-C study reported to
date [35].
One approach to alleviate the sparsity of single-cell

Hi-C data is to computationally impute the “missing
data”. This can be achieved by constructing a graph
based on the observed contacts (edges in the graph)
and computing the shortest possible path between the
missing edges (where no contact is found; Fig. 2). The
imputed missing distances have, in fact, the neat prop-
erty that they satisfy the triangle inequality principle
[23]. While this helps circumvent the missing value
problem, it might, however, introduce additional noise
as the imputed values are only rudimentary estimates
of the true distances.
We recently addressed the challenge of missing

values and proposed a method to down-weight contacts
relative to the degree of confidence in their estimates
[34]. To reconstruct 3D structures from single-cell Hi-C
data, a manifold-based optimization method was used that
enables incorporation of such weights. To assess the
implication of data sparsity on the reconstruction of
3D structures, single-cell Hi-C contact matrices were
constructed in silico where 80–98 % of the entries in
the matrices were randomly deleted and the ability to
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Fig. 2 Shortest-path principle. A single-cell Hi-C matrix can be
represented as a graph, where nodes (circles) correspond to genomic
regions and edges (black lines) bear weights corresponding to the
three-dimensional (3D) distance between the bins. For pairs of
nodes with missing data (dotted line; x), a value can be estimated by
finding the shortest possible path (red edges; a + b + c) between the
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Fig. 3 Single-cell Hi-C data sparseness. Ratio of observed values as
a function of the number of bins, that is, the size of the structure
being reconstructed. To assess the effect of sparseness of single-
cell Hi-C data, a known structure is considered and sparse data are
sampled from the structure by randomly selecting a smaller and
smaller subset of the distances (20 %, 10 %, 5 %, 2 %, 1 %; orange
dots). These particular structures are compared with an estimated
curve showing the minimum ratio of observed values for complete
reconstruction (blue line) or partial reconstruction (red line). Data
from Nagano et al. [35] are shown as black circles and the X
chromosome datasets from two individual cells (Cell 1 and Cell 2)
are highlighted in green. (Graph adapted from [34])
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reconstruct the original structure from the sparsely sam-
pled data was examined [34]. This showed that, even with
90 % missing contacts, the reconstructed structure was es-
sentially no different from the original structure. However,
from more sparse data (>95 % missing), the similarity be-
tween the original and reconstructed structures decreases
dramatically [34] (Fig. 3). Comparison of these theoretical
values with existing single-cell Hi-C data shows that Hi-C
data are, at the current bin size resolution (e.g., 50 kb),
too sparse for high-confidence chromosome structure
reconstruction, even under noise-free conditions [34].
However, by enabling increased bin sizes, the robustness
of structure reconstruction can be increased, although at
the cost of reduced structural resolution. Increasing cover-
age will, therefore, either allow for higher-resolution Hi-C
maps (smaller bin sizes) or enable a greater tolerance of
missing data without loss of confidence in the recon-
structed 3D models.
Another important limitation to Hi-C map resolution is

imposed by the genomic distribution of the digestion sites
of the restriction enzyme used. To overcome this, Ma and
colleagues [62] have proposed using DNase I, which
cleaves the DNA into fragments smaller and more frequent
than those from restriction enzymes used in conventional
Hi-C protocols. The increased number of fragments leads
to a higher number of possible proximity ligations and
might increase Hi-C map resolution with sufficient se-
quencing coverage. Additionally, capture arrays can be
used to increase resolution for selected loci [63, 64] at the
expense of compromising full-genome reconstruction.

Autosomal chromosomes further complicate the picture
The human genome consists of two copies of autosomal
chromosomes, yet this has often been overlooked in Hi-C
experiments because it is difficult to distinguish the
two copies. Manifold-based optimization can success-
fully reconstruct 3D structures of a single X chromo-
some in male diploid cells from single-cell Hi-C data
despite their relative noisiness and sparsity [34]. For
autosomal chromosomes, however, reconstruction is
less successful [34]. Simulation of a diploid situation
by summing Hi-C contact maps of the X chromosome
from two different individual cells reveals that 3D re-
construction is compromised. This provides important
clues on specific challenges with genome 3D recon-
struction in mixed Hi-C maps as even two a priori in-
distinguishable autosomes in single cells can hamper
3D reconstruction.
A possible solution might be to recover diploid maps

based on haplotype information [6, 26, 65, 66]. This, how-
ever, requires information on allele-specific sequence vari-
ations (polymorphisms), which is typically not available
for most cell lines. Haploid cell lines might also be suitable
for modeling the spatial genome conformation in single
cells, such as those used to map genome-wide chromatin
nuclear lamina interactions [36] or multi-locus chromatin
contacts [67].
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Distinguishing biological variation from technical
noise
An intriguing characteristic of genome-wide 3C-based
data is that the data can be used in various kinds of
analyses in addition to reconstruction of 3D structures.
Importantly, not all types of analyses are prone to the
effects of averaging subpopulations. For instance, when
one is interested in studying 3D contacts between indi-
vidual loci (e.g., contacts between promoters and en-
hancers), the goal is to identify the statistically enriched
contacts above an average background [68–71]. To do
so, a model considering both the decreased chance of
contacts with increasing linear genomic distance between
loci and the variance of the contact frequencies is
required.
A corresponding type of analysis in single-cell Hi-C

would be to consider any ligation event between two
restriction fragments as a contact or rely on multiple
contacts in near proximity [35]. Yet, in such an analysis,
how to reliably estimate the variance of contact frequen-
cies for a given pair of loci is not clear, so it can be more
appropriate to use ensemble Hi-C to study individual
contacts. One way to estimate the variance in single-cell
Hi-C studies could be to base the analysis on a large ag-
gregate of multiplexed single-cell Hi-C datasets by, for
example, using DNA barcoding [40]. However, this raises
the question of how many single-cell datasets are re-
quired to obtain biologically relevant insights and how
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Towards the 4D nucleome
Inferring pseudotime 3D conformational trajectories from
cross-sectional data
Increasing experimental evidence supports a view of local
and global alterations in spatial genome conformation as
cellular states change during development and differenti-
ation [2, 26, 74] or in disease [75–77]. However, there are
to date no truly longitudinal (developmental) studies of 3D
chromatin conformation in single cells because 3C tech-
niques are destructive to cells. Single-cell interrogations
could prove useful to a posteriori recapitulate pseudo-
developmental changes, or ‘trajectories’, in 3D chromosome
conformation and thereby infer a pseudo-4D view of chro-
matin dynamics (Fig. 4). Support for this approach comes
from developmental gene expression studies using single-
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cell RNA sequencing [78–80]. As expected from cell-to-
cell heterogeneity within populations, single cells analyzed
at any time-point in a time-series show variations in tran-
script levels [81–84]. At consecutive time-points, individ-
ual cells will be expected to show both similar and distinct
transcript levels across cells. This information can be used
to computationally reorder cells a posteriori in order to
find a pseudotime trajectory; see especially the perspective
by Trapnell [52] for an excellent assessment of this
approach.
A similar strategy could conceivably be used to reorder

cells in a pseudotime trajectory based on single-cell Hi-C
data (Fig. 4a, b). Instead of gene expression data for each
cell, information can be extracted from single-cell Hi-C
contact maps to construct a matrix consisting of distances
between pairs of bins in each single-cell genome. This
would in principle allow an a posteriori reconstruction of
a path of changes in chromatin structures between two
consecutive time-points at which Hi-C data are actually
collected (Fig. 4b). Such pseudotime reordering of chro-
matin structures from single-cell Hi-C contact maps
might provide more accurate information on the specific
trajectories that genome topology takes during develop-
ment or differentiation.

Locus tracking in living cells by real-time imaging
Even though high-throughput sequencing-based methods
do not currently enable true 4D studies of chromatin
organization in single cells, emerging microscopy-based
cell-imaging techniques provide opportunities. For ex-
ample, locus tracking, relying on modifications of CRISPR/
Cas9-mediated genome-editing approaches to tag fluores-
cent molecules to specific loci, enables the visualization of
movements of loci in the nuclear space in living cells
[85, 86]. Targeting of a nuclease-deficient dCas9 mutant
fused to a fluorophore-encoding protein [e.g. enhanced
green fluorescent protein (EGFP)] to a given locus with
sequence-specific guide RNAs can be achieved for
intergenic repeat regions (e.g., telomeres) or genes. This
approach is non-disruptive and, pending that low-
intensity fluorescence emission is used to avoid photo-
bleaching, it can be applied to track changes in locus posi-
tioning, for example, in response to a stimulus. A current
limitation of this approach, however, is the relatively low
fluorescence intensity of the tags, making their detection
above background at single loci difficult. This often re-
quires the use of several guide RNAs to target sufficient
dCas9–EGFP molecules (or other fusions of dCas9 with
fluorescent proteins) to the locus of interest [85, 86].
Continuous development of increasingly more-potent
fluorophores will probably remedy this issue. Multi-color
tagging of several loci simultaneously [87] in combination
with super-resolution live-cell microscopy could also en-
able visualization of interactions between genomic regions
in real time. Dynamic interactions can in turn be corre-
lated with gene expression patterns [88]. Furthermore,
new strategies for real-time simultaneous observation
of gene localization and expression are emerging [89],
providing some functionality to spatial locus position-
ing and chromosomal interactions. In addition, analysis
of epigenetic states over time has been reported with
the advent of live-cell imaging techniques for monitor-
ing DNA methylation changes using a reporter-based
system [90]. Although currently low throughput, these
live-cell techniques do enable real-time investigations
of chromatin conformation.

Conclusions
Advancements in wet-lab high-throughput genomics and
computational methods in the past 15 years have taken
our understanding of the genome to a whole new level by
allowing genome-wide assessments of chromatin con-
formation in the 3D space. Single-cell high-throughput
genomics is still in its infancy and most computational
techniques are developed for ensemble-cell Hi-C data.
Variation is, however, an inherent property of genome
structures in a cell population. We have highlighted in this
review challenges in the interpretation of Hi-C data aris-
ing from this variation. As a result, a number of computa-
tional methods have been proposed to take on board this
heterogeneity. Consensus methods of modeling chromatin
in 3D poorly address structural heterogeneity because they
produce a single chromatin structure based on data ob-
tained from millions of cells. By contrast, deconvolution
techniques, despite being computationally more demand-
ing, enable inference of the main substructures that exist
in an ensemble of cells.
To disentangle the heterogeneity in cell populations, it

will be essential to seek improvements in the efficiency
of laboratory methods and in the streamlining of com-
putational techniques to explore chromatin dynamics
from down-sized cell populations or from single cells.
When studying chromatin dynamics in subpopulations,
structures from single-cell Hi-C datasets provide more
information on structural variance than deconvoluted
structures from ensembles of cells, pending that hun-
dreds of single-cell structures are determined. In time-
course studies, laboratory and financial resources might
rather be used to examine more time-points, albeit from
down-sized cell populations. This, however, requires the
development of appropriate deconvolution methods to
assess the main subpopulations and their chromatin
dynamics.
Arguably, the most significant weakness in single-cell

Hi-C analyses to date is sparsity of the values in the
distance matrix. We have shown that this data sparsity
does not necessarily prevent structure modeling [65]. Yet
the question remains of how to distinguish significant
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interactions from mere random (albeit cross-linkable)
contacts in single cells. Deep sequencing of single-cell
Hi-C ligation products will be necessary to enable the
reconstruction of 3D chromatin conformations with
high confidence.
By analogy to single-cell gene expression and pseudo-

developmental trajectory reconstitutions in developmental
studies, another advantage of single-cell high-throughput
chromosome conformation queries is the foreseen ability
to re-order single-cell structures to infer a developmental
path of changes in chromatin conformation—for example,
as cells go through the cell cycle or differentiate. This is
expected to constitute an important step in our under-
standing of the spatial dynamics of the 4D nucleome. Fur-
thermore, with the emergence of additional single-cell
technologies that allow interrogations of the epigenome
[40, 41, 43], chromatin accessibility [38, 39] or associations
of loci with the nuclear periphery [36] (Table 1), we fore-
see the emergence of more-sophisticated (and arguably
more accurate) models of genome architecture. Finally,
fluorescent tagging of multiple loci simultaneously in
single cells, even though this approach is currently not
high-throughput in terms of the number of identifiable
loci that can be examined, unveils possibilities to interro-
gate the dynamics of relative positioning of loci in real
time.
We can look forward to exciting developments in the

combination of high-throughput sequencing-based tech-
niques and imaging methodologies to interrogate the
functional significance of chromatin folding in space and
real-time in single cells. Efficient methods to estimate het-
erogeneity within a given cell population and to enable in-
tegration of several types of single-cell ‘omics’ data will aid
in developing improved models of genome conformation
at various scales.
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