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Sammendrag

Bedrifter har ofte problemer med å kvantifisere verdien av ledetidsreduksjoner i forbindelse

med valg av leverandører. I praksis gjøres disse beslutningene kun ved å ta høyde for enhet-

skostnad av vare, samt kostnader knyttet til transport, kapitalbinding og lager. Leverandørens

ledetid kan imidlertid ha stor p̊avirkning p̊a bedriftens eksponering mot usikkerhet i et-

terspørsel, og siden dette kan p̊aføre bedriften store kostnader bør dette prises inn n̊ar

ulike leverandører skal evalueres. Denne masteroppgaven tar for seg et eksempelstudie in-

nen bilindustrien for å vise effektene av eksponering mot usikkerhet i etterspørsel n̊ar ulike

leverandører skal evalueres.

Denne oppgaven bygger videre p̊a arbeidet som ble gjort i Moltu et al. [2013] ved å tilrette-

legge det presenterte Excel-programmet mer for reelle situasjoner i næringslivet. Program-

met er allerede utviklet for to stokastiske prosesser, geometric Brownian motion og Ornstein

Uhlenbeck (OU), og blir forbedret ved å inkludere en diskret ARMA modell. Dermed er pro-

grammet mer fleksibelt med tanke p̊a å knytte sammen etterspørsel og risiko. I tillegg har

leverandørspesifikke variabler blitt lagt til for danne et mer fullstendig bilde av beslutningen

om valg av leverandør.

Kongsberg Automotives fabrikk p̊a Hvittingfoss i Norway (KA) og clutchservoen de pro-

duserer for Scania er grunnlaget for studiet. KAs etterspørselsstruktur blir analysert, og er

funnet å være statsjonær, normal, og best beskrevet av en ARMA(1,3)-modell. For eksempel-

studiet blir imidlertid OU-prosessen med høy reverterings rate og volatilitet benyttet. Dette

skyldes likheten mellom modellene, og OU-prosessens evne til å produsere en kontinuerlig

graf.

Den forventede kostnaden ved avvik i tilbud og etterspørsel sammen med realopsjonsteori

benyttes for å kalkulere kostnadkurven i programmet. Kurven beskriver kostnadene som gjør

deg indifferent mellom to alternativer med ulike ledetider, og benyttes for tre komponenter

av clutchservoen i studiet (stempel, stempelstang og aluminium støp). P̊a bakgrunn av

kostnadskurven konkluderes det at majoriteten av etterspørselserisiko utvikles innen én uke

fra levering og at lite risiko legges til ved lengre ledetid. Dette benyttes s̊a for å bedømme

om KA bør bytte leverandør for hver komponent. Konklusjonen er at KA bør enten ha

ekstremt kort ledetid for å h̊andtere etterspørselsrisikoen, eller ha lang ledetid for å f̊a lavere

innkjøpskostnad. Andre typer risiko blir ogs̊a undersøkt for å vurdere om disse vil endre

utfallet av eksempelstudiet.
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Abstract

Managers often experience problems with quantifying the value of reducing or extending

lead time when assessing different sourcing alternatives. In practice, these decisions are

often made considering only unit procurement cost, transportation cost, capital cost and

storage cost. However, the lead time of suppliers highly influences a business’ exposure to

demand uncertainty. This can yield large monetary values that should be accounted for. This

Master’s Thesis presents a case study within the automotive industry to show the effects of

exposure to demand risk when assessing different sourcing alternatives.

Building on the work done in Moltu et al. [2013], the computer program is further developed

to better fit real life applications. Extending the existing geometric Brownian motion and

mean reverting process, a discrete ARMA model is incorporated allowing for more flexibility

in connecting demand to demand risk. Additionally, new case specific variables are added to

give a more holistic view of the sourcing decision.

Kongsberg Automotive’s plant in Hvittingfoss, Norway (KA), and their clutch servo pro-

duced for Scania is analyzed. A thorough assessment of KA’s demand structure shows

that the demand is stationary, normally distributed and best described by an ARMA(1,3)

model. However, due to the similarity between ARMA(1,3) and the mean reverting Ornstein-

Uhlenbeck process, the latter is used for the case study because of its continuous nature. The

mean reversion rate and demand volatility is found to be high.

Utilizing the expected supply-demand mismatch cost and real options theory enables for

calculation of the cost curve - an indifference curve showing the costs at which you are

indifferent between lead times. Three components of the clutch servo is evaluated - the

piston, piston rod and aluminum casting. Based on the cost curve, this thesis concludes

whether KA should change their supplier for each of them. The cost curves show that the

majority of demand risk develops the last week prior to delivery, and little risk is added at

longer lead times. Therefore, KA should either acquire a short lead time to mitigate this

uncertainty, or choose a long lead time to benefit from the low obtained procurement cost.

An assessment of other sources of risk that potentially could alter this conclusion is also

presented.
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1 Introduction

Making good sourcing decisions is an essential undertaking for most large corpora-

tions. The most obvious reason for this is that the cost of purchased raw materials

and sub-components accounts for more than 60% of the cost of goods sold for man-

ufacturing companies [Gencer and Gürpinar, 2007], hence the supplier selection has

a great impact on the company’s performance. However, the incentive for a sourc-

ing decision can differ, and consequently the foundation for which the decision is

based on varies. For example, some sourcing decisions are primarily a question of

price, while others depend on quality or service level. Regardless of the basis for the

sourcing decision, most sourcing alternatives have, to some extent, an effect on the

company’s lead time. However, the effect of changes in lead time is often a difficult

component of a sourcing decision to evaluate. Thus, practitioners often tend to omit

accounting for these effect. In order to build a complete picture of the situation and

to reach the correct decision, it is therefore important for companies to analyze the

effects of lead time.

Real options theory has recently been proposed as a way to assess and evaluate

reductions in lead time [De Treville et al., 2012]. The underlying concept is that as

lead time increases, companies need to determine their production quantity longer

before the actual demand is known. As an effect, they might over- or underproduce,

which will consequently reduce their profit. Hence, as lead time increases, exposure

to demand risk also increases. By modeling demand as a stochastic process, these

dynamics can be captured and real options theory can be used to evaluate a reduction

in demand risk. This way of analyzing lead time changes was first introduced by

De Treville et al. [2012].

Moltu et al. [2013] have developed a computer program that utilizes this theory to

evaluate different sourcing alternatives. The program features two different stochas-

tic processes for modeling demand; geometric Brownian motion (GBM) and mean

reverting Ornstein Uhlenbeck process (MRP). By using this software, companies are

able to evaluate different sourcing alternatives that reduce lead time.
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The aim of this thesis is to use this program to test the theory on a real life case

study. Hopefully, this will reveal weaknesses with the current theory and detect areas

of improvement. Further, it is believed that a case study will help practitioners see

the value of incorporating demand risk exposure into their sourcing decisions. Also,

earlier case studies within the field have only focused on reducing lead time. The

case study presented here will take a more holistic approach, enabling both lead

time reductions and extensions. This way, the theory can not only be used in cases

where the lead time is reduced but also in cases where lead time extensions is the

alternatives. As a result, the computer program developed in Moltu et al. [2013]

will have to be further developed to incorporate lead time extensions.

The automotive industry has been chosen for the purpose of this case study. This

industry features several characteristics that make it especially interesting. Compa-

nies in the industry tend to outsource a lot of their components and their current

contracts are often reevaluated at expiration. Further, the industry has several layers

of producers that complicate the demand structure the further upstream one goes.

The company analyzed in this thesis is Kongsberg Automotive; a car part manu-

facturer that serves as both a third, second and first tier supplier to the original

equipment manufacturers (OEM). Kongsberg Automotive’s plant at Hvittingfoss,

Norway, will be considered in this thesis, and is hereafter referred to as KA. When

referring to the entire corporation of Kongsberg Automotive, KA Corporation will

be used. The clutch servo that KA produces for Scania, for now on referred to as the

clutch servo, is chosen as the product of interest. This product is produced directly

for the OEMs and consists of 46 parts sourced from different second tier suppliers.

The company has recently, and is currently, working on evaluating their different

sourcing contracts for this product. This thesis will consequently use the presented

theory to assess current sourcing decisions. Through this case, practitioners will

hopefully understand and recognize the importance of taking demand risk exposure

into account when assessing sourcing decisions. A key aspect of the analysis used is

the assumed underlying stochastic process for demand. An extensive data analysis

with the aim of determining a suitable stochastic process is therefore included.
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The thesis is organized as follows. Section 2 presents a literature review, highlighting

research that quantifies the value of lead time, as well as literature on supplier

selection and similar problems in the automotive industry. In Section 3, the industry,

case company, plant and product will be presented, followed by a description of

the program in Section 4. Section 5 provides an in-depth analysis of the sales -

and demand data acquired from the company. This section seeks to determine the

stochastic process for demand. In Section 6, the case study is conducted, followed

by a discussion of the overall thesis in Section 7. Section 8 concludes.
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2 Literature Review

For the purpose of this thesis, a literature review has been performed based on

peer-reviewed articles. The literature review is divided into three sections. The first

section focuses on quantitative tools for evaluating lead time, the second section

targets similar problems in the automotive industry and the third section reviews

current literature on sourcing decisions.

2.1 Literature on Quantitative Tools for the Valuation of

Lead Time

For this contribution to the literature review, a search has been performed within

articles that focus on the following two topics: pricing exposure to demand risk and

the derivation of the demand-supply mismatch cost.

According to Porter [1985], an efficient value chain is a source of competitive advan-

tage. Caputo et al. [2005] underpin this observation by showing that competition

among firms has recently shifted towards competition between supply chains. With

increased complexity and risk in supply chains, companies seek to adopt new ways

to manage supply chain risk. Cucchiella and Gastaldi [2006] present real options

analysis as a framework to hedge a variety of supply chain risk. The framework

describes multiple sources of uncertainty and suggests different real option types

to hedge these risks. By using simulation software, Cucchiella and Gastaldi [2006]

prove that when a company faces uncertain demand they it reduce risk by using

an option to outsource. This option enables the company to change the production

level according to demand.

By showing that supply chain risk can be hedged, Cucchiella and Gastaldi [2006]

have implicitly argued that real options can be used to evaluate different opportu-

nities that reduce supply chain risk. Further, different sources of uncertainty are

considered and the effect of reducing this risk by applying real options is evalu-

ated. One of the major sources of uncertainty in a supply chain is demand. This

5



uncertainty generates demand risk, which can be reduced by improving lead time

[De Treville et al., 2004].

De Treville et al. [2012] use the assumption that as lead time increases, more uncer-

tainty is incorporated into the procurement process, and therefore more risk. Reduc-

ing lead time consequently reduces risk, which further generates value. De Treville

et al. [2012] have developed a real options model that allows for optimization of

production and sourcing choices under demand risk. The model uses the famous

Newsvendor model to calculate optimal order quantity. They assume that lead time

is an endogenous decision variable where demand risk increases with lead time. This

enables them to derive the lowest percent unit-cost reduction needed to compensate

for an increase in lead time. By combining results for different lead times, assuming

demand follows a stochastic process, they are able to generate what they refer to as

the cost differential frontier (CD Frontier). The CD Frontier shows the increase in

unit cost a firm is willing to bear for a reduction in lead time.

Their article derives the CD Frontier for three different models of demand structure;

geometric Brownian motion, Heston model, and heavy tailed distribution. They

show that constant demand volatility makes incremental lead time reductions less

valuable than when assuming stochastic demand volatility. When the demand has

a heavy right tail, the value of reductions depends on the incorporation of extreme

values in the forecasting. De Treville et al. [2012] also state that the cost of capital,

i.e. the discount rate, is irrelevant to the CD Frontier when assuming constant

volatility. The cost of capital in the program refers the monetary cost originating

from the lag between paying for the components and selling the finished clutch servo.

De Treville et al. [2013a] build further on the work done by De Treville et al. [2012],

addressing the case where information arrives at discrete points in time. The ar-

ticle looks at a tender structure, where information arrives at sudden events and

can change the demand drastically. The tender structure is modelled by incorporat-

ing a Poisson process to a constant volatility geometric Brownian motion demand

structure. This is referred to as a jump-diffusion model. De Treville et al. [2013a]

conclude that the value of lead time reduction increases when jumps are present in
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the demand, and that demand following a jump-diffusion process with a positive

jump will always lead to higher mismatch cost than when demand follows a GBM.

In the article “Valuing Lead Time,” De Treville et al. [2013b] respond to the challenge

put out by Joseph Blackburn in Blackburn [2012]. Blackburn demonstrated that the

marginal cost of time is low for many product demand structures, but at the same

time challenged researchers to identify factors that make short lead time valuable.

By focusing on selected elements that affect demand-risk exposure, De Treville et al.

[2013b] implement the model of De Treville et al. [2012] in various industry cases to

quantify the benefits of reducing lead time. De Treville et al. [2013b] reveal factors

that can increase the marginal value of time, hence make lead time reduction valuable

to the firms. They show that under the assumption of constant demand volatility,

a reduction in salvage value increases the marginal cost of time. In addition, they

demonstrate that the value of lead time reduction increases when the possibility of

demand falling to zero is present, as in the case of a tender structure. The article

furthermore establishes that the marginal cost of time is highly increased when

information arrives in clusters, under the assumption that demand is stochastic.

Finally, service levels exceeding the profit-maximizing level from the Newsvendor

model will further increase the marginal cost of time. The required cost differential

can increase drastically when firms decide to set high service level requirements.

While the articles De Treville et al. [2012], De Treville et al. [2013b] and De Treville

et al. [2013a]) all use the Newsvendor model as the basis for their results, none of

them explicitly report whether the cost in the model incorporates supplier specific

costs. Supplier specific costs include costs related to supplier selection, such as

transportation cost, capital cost and storage cost. For most cases, as well as for this

case study, supplier selection is a crucial undertaking when evaluating lead time.

This thesis therefore seeks to extend the conducted work in the previous articles by

extracting supplier specific costs from the cost in the Newsvendor model.
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2.2 Literature Dealing with Similar Problems in the Auto-

motive Industry

Clark and Fujimoto [1989] investigate the determinants of lead time performance

in the automotive industry. The article explains the lead time advantage of the

Japanese companies over their European and American competitors. The authors

conclude that shorter lead time is preferable because of the industry’s intense global

competition and volatile market demands. For the case of KA, discussions with the

managers lead to the conclusion that though the competition is tough, shorter lead

time is not always preferable. The managers emphasize that longer lead time might

be better when demand is stable, as they believe is the case for KA’s clutch servos.

Clark and Fujimoto [1989] seek to determine the need for efficient product develop-

ment in order to keep up with rapid technological advances and changing customer

demand. Further, the article points out the need for tight supplier relationships

in the industry, concluding that supplier selection is essential for obtaining a com-

petitive advantage. Fessl et al. [2010] depict the integrated networks that occur in

the automotive industry in order to fulfill the requests of the OEMs. They suggest

that suppliers should focus on core competences and enter into tight relationships

with OEMs in order to position themselves in the industry. Design collaboration

with suppliers is an important part of KA Corporation’s strategy, and the tight

relationships with its suppliers enable KA Corporation to provide the OEMs with

customized products.

Just In Time-production (JIT) is frequently discussed in the literature dealing with

the automotive industry. The ultimate goal of JIT is to eliminate waste, which

can be achieved through actions such as lead time reductions, reducing set-up costs

or improving quality. Ben-Daya and Hariga [2003] show the benefits of lead time

reduction through Toyota’s production method, which is a classical example of JIT-

production. They present lead time reduction as a way to gain a competitive advan-

tage through quick response to customer demand. In Ouyang and Chang [2002], lead

time reduction is claimed to lower the level of safety stock, reduce the loss caused by
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stockouts, as well as increase the service level to the customer. The article considers

the costs related to lead time reduction, which the authors claim to depend both

on the magnitude of the lead time that is reduced and the order quantity. Ouyang

and Chang [2002] assume that demand follows a normal distribution, however they

do not mention their motivation for this assumption. Their objective is to simulta-

neously optimize the decision variables in the model; lot size, reorder point, set-up

cost and lead time. The KA managers have requested that the production facility

at Hvittingfoss should be treated as a black box, hence set-up cost and reorder point

are not relevant for this thesis.

Explicit lead time considerations in the literature dealing with the automotive in-

dustry mainly discuss the value of reducing lead time, typically through implemen-

tation of JIT-production. However, though lead time extension is not as frequently

discussed, it often appears as an effect of the globalization of value chains. Global-

ization of the automotive industry emerged in the 1990s, due to market saturations

and trade liberalization [Sturgeon and Florida, 2000], resulting in complex value

chains across the globe - and consequently longer lead time. This thesis will inves-

tigate the value and cost of lead time, both reduction and extension, on the total

cost throughout the value chain for specific components. This approach has been

worked out in cooperation with the managers at KA. In order to stay competitive,

KA has to obtain a service level of minimum 96%. Thus, the KA managers have

emphasized that lead time extension might be appropriate only if it does not have

a negative effect on the service level.

2.3 Literature on Sourcing Decisions

Many articles in the literature of operations research deal with sourcing decisions.

The literature can be be divided into two strands: research about the decision to

produce in-house or outsource, and literature about selecting suppliers when out-

sourcing has been chosen. A lot of this literature is primarily optimization problems,

where the challenge is to select the correct input variables in order to optimize a
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function, given a set of constraints. The optimization literature consists of both

general models (see e.g. Talluri and Narasimhan [2004], Serel et al. [2001], Demirtas

and Üstün [2008], Yu et al. [2009]) and case studies (see e.g. Gencer and Gürpinar

[2007], Önüt et al. [2009], Smytka and Clemens [1993]). In the following, it will

be focused on literature dealing with supplier selection, especially articles that deal

with demand uncertainty and lead time.

Sislian and Satir [2000] present a framework for stratetic sourcing. When decid-

ing whether to make internally or buy externally, they suggest that two factors

should form the basis of the decision: competitive advantage and demand flexibil-

ity. For the purpose of this case study, only demand flexibility is relevant. Sislian

and Satir [2000] measure demand flexibility in two ways - the time of receival of

orders in relation to the delivery date, and the accuracy of the demand forecasts.

Demand flexibility is highest for the case of make to order, where completely ac-

curate orders are received before production is initiated. Make to stock represents

lower demand flexibility, where the lowest possible demand flexibility occurs when

demand forecasts are uncertain, and production must be initiated before actual or-

ders are received. The time a firm must commit to production depends on the lead

time, where shorter lead time allows the firm to start producing closer to delivery

date. Outsourcing is concluded to be favorable when both demand flexibility is low,

and the product’s contribution to the firm’s competitive advantage is low. While

Sislian and Satir [2000] rate demand flexibility from low to high, this thesis seeks

to evaluate demand flexibility by quantifying the value of lead time reduction and

extension. In KA’s case, Scania is able to update its orders up until the delivery

date, hence KA’s challenge is to be agile to deal with demand changes, as well as

keep the correct amount of safety stock. The choice of a supplier highly affects KA’s

demand flexibility, because the supplier’s lead time influences KA’s ability to cope

with demand uncertainty.

De Treville et al. [2004] investigate the role of lead time reduction when improving

demand chain performance. The article focuses on adjusting production to fit actual

demand as it materializes, known as market mediation. The article uses two factors
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that affect the market mediation of a relationship between a supplier and a customer:

the demand information transfer and the lead time. The usefulness of the demand

information depends on both the point of information transfer and the accuracy

of the information. If demand information, for instance results from early sales, is

made available to the supplier after its production has started, the information is

not helpful. On the other hand, if demand information arrives before the produc-

tion is initiated, it is highly useful. The accuracy of the information ranges from full

demand information, where the supplier knows the actual demand as soon as it is

available, to no demand information, where the only demand information received

is the actual order. The article states that good information transfer requires tight

relationships between supplier and customer, while lead time reduction can be done

without involving the customer. De Treville et al. [2004] conclude that lead time re-

duction is a less risky undertaking than demand information transfer improvements,

hence firms should always begin with lead time reduction when attempting to im-

prove the demand chain performance. In compliance with this conclusion, this thesis

will investigate KA’s lead time as the supplier of the clutch servo to its customer

Scania. However, the case study performed will examine the value of extending the

lead time, in addition to examining the value of reducing it.

When the decision of outsourcing is made, the process of selecting a supplier becomes

apparent. While De Treville et al. [2004] focus on the importance of information

sharing when choosing a supplier, Verma and Pullman [1998] focus on which factors

managers actually base their supplier selection on. In their article, the actual factors

are compared to the managers’ stated rating of the perceived importance of different

supplier attributes. The article concludes that there are differences between what

managers say are the most important attributes of a supplier and what they actually

base their decision on. Verma and Pullman [1998] assess five factors in their analysis;

cost, quality, lead-time, on-time delivery and flexibility. The result of the article

shows that while managers perceive quality as the most important supplier attribute,

more weight is assigned to cost and on-time delivery when the sourcing decision is

made. Lead time is neither perceived important or used as the main basis for the
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examined decisions. Taking into account the effects lead time has on both cost and

delivery performance, this thesis will treat lead time as a highly important factor

when making sourcing decisions. Consequently, the case study seeks to express to

KA the importance of taking lead time into account when assessing different sourcing

decisions.
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3 Kongsberg Automotive

The automotive industry has been chosen for the purpose of this case study, and

the company to be analyzed is Kongsberg Automotive and its production facility at

Hvittingfoss, KA.

In this section, the general automotive industry is briefly described, with focus

on the car part manufacturers. Thereafter, KA Corporation is considered briefly,

before the plant at Hvittingfoss is assessed. Finally, the product for the case study

is described, as well as the specific components that are selected for the analysis.

3.1 Industry Description

Since 1998, the automotive industry has, with a few exceptions, experienced a yearly

growth in production of vehicles [International Organization of Motor Vehicle Man-

ufacturers]. According to Sturgeon et al. [2008], the characteristics of the industry’s

value chain have changed a lot during that period. Outsourcing boomed in the 1990s,

generating a complex network of vertical business relationships across the industry.

In addition, consolidation of suppliers and horizontal integration in different parts

of the value chain have led to formation of giant firms. However, local presence has

remained important, due to concepts such as Just In Time-production and design

collaboration. Thus, the car makers, i.e. the OEMs, might prefer suppliers that

are geographically close [Sturgeon et al., 2008]. The automotive industry nowadays

therefore has a distinctive character, with demand for both local and global rela-

tionships. Consequently, trade-offs between costs and lead time must be made and

sourcing decisions are of great importance in this industry.

After the previous financial crisis, the characteristics of the industry have changed

further. According to the Plant Manager at KA Hvittingfoss, Martin Jonsson, car

makers now prefer to order single components rather than systems of multiple com-

ponents, hence their suppliers are forced to make less specialized products. This

reduction in product complexity increases the opportunity of dual sourcing, since it
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is easier for car makers to switch between suppliers. Dual sourcing is the concept of

using two suppliers for sourcing a single component. Dual sourcing, or even multiple

sourcing, is beneficial when lead time and demand is uncertain, and customers can

reduce the risk of stockout by spreading the total order of one product on many

suppliers [Yu et al., 2009]. Consequently, competition has become more intense for

car part manufacturers. Another important effect of dual sourcing is the possibility

of lost sales for suppliers. When only one supplier is used, underproduction would

force the supplier to deliver more on the next delivery to compensate for the un-

derproduction. With dual sourcing, this could instead mean that the other supplier

has to deliver more, resulting in lost sales for the underproducing supplier.

The managers at KA state that the contracts between the car part manufactur-

ers and the car makers are usually long term agreements. Maximum production

quantity is often stated in the agreement, while a minimum level of production is

rarely defined. Car part manufacturers therefore face uncertainty in demand, with

order quantity of zero as the worst case scenario. Usually, the daily demand has

large fluctuations while the accumulated long term level tends to be stable. Car

makers evaluate the car part manufacturers on every delivery, measured on quantity

and time, where both factors have a binary outcome: success or failure. Delivery

precision is then the average value of all deliveries. At termination, the contracts

are completely renegotiated. Precision of delivery, also known as service level, can

thereby be used to rank the car part manufacturers, and hence represents an impor-

tant contribution to customer satisfaction. In addition, technological improvements

play an important role during contract renegotiations. Suppliers risk losing contract

renegotiations if they do not develop their products in accordance to new technology.

The conditions of the automotive industry make it extremely important for compa-

nies like KA to make sourcing decisions that secure a satisfying delivery precision

at a tolerable cost level.
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3.2 Company Description

The KA Corporation is a buy-out of the automotive parts division of Kongsberg

Defence Company. The company consists of two main business areas - Automotive

and Commercial Vehicles. The Automotive business is further divided into interior

and driveline, and the Commercial Vehicles business is divided into fluid transfers

and driver control systems. KA Corporation provides products to the global vehicle

industry. It supplies OEMs, as well as first and second tier suppliers, with products

from its diverse portfolio [Kongsberg Automotive Website]. Figure 1 illustrates the

position of KA Corporation in the general value chain of the automotive industry.

The number of supplier-levels varies across the industry, and business can even occur

between suppliers at the same tier. The value chain, however, usually has three

layers upstream of the OEMs: Third tier suppliers provide second tier suppliers

with raw materials. The second tier suppliers make basic automotive components

for the first tier suppliers, and lastly the OEMs receive components from the first

tier suppliers. In Figure 1, first and second tier suppliers are presented together as

Car Part Manufacturers.

Raw Material
Suppliers

Original Equipment 
Manufacturer (OEM)

Car Part 
Manufacturers Dealers End Users

Figure 1: Kongsberg Automotive’s position in the automotive industry value chain.

3.3 Plant Description

KA has 129 employees and its operation is within the Driver Control Systems (DCS)

business. The production at the plant is divided into two lines: one line for gear-

and clutch actuation components, and one line for chassis and components. The

former generates the majority of the revenue. Figure 2 illustrates the position of the
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plant in KA Corporation’s organizational structure.

Fluid Transfers Driver ControlInterior Driveline

Commercial VehiclesAutomotive

Production Line 1: Gear- and Clutch Actuation

Production Line 2: Chassis and Components

Plant Hvittingfoss

Kongsberg Automotive Corporation

Figure 2: KA Corporation’s organizational structure. The plant at Hvittingfoss operates

within the driver control business. Its production is divided into two production lines.

Hvittingsfoss is one of KA Corporation’s largest plants in the DCS business area.

The plant had a total turnover of EUR 44,5 million, with an EBIT of 12,6%, in

2012. In addition to customer deliveries, the plant has a very attractive aftermarket

business that contributes positively to the revenues. Being geographically close to

the headquarters, the plant at Hvittingfoss has established a close collaboration

with the R&D department at Kongsberg, and thereby has the advantage of quick

access to new technology. The plant has successfully utilized advanced production

technology to increase productivity and compensate for the increasing labor costs in

Norway, as well as to attract new business. As a result, the facility at Hvittingfoss

serves as a global center of excellence for Clutch Actuation System production, and

provides other plants within KA Corporation with support.

The plant at Hvittingfoss, however, also faces some challenges. Skilled automotive

workforce is a scarce resource in Norway, and recruitment is increasingly difficult.

In addition, labor costs in Norway are expected to continue to increase far above

the rest of Europe, and the assembly at the factory is labor intensive. The plant

has a large number of different products, customers, incoming parts from suppliers,
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number of suppliers, as well as production processes. Consequently, conducting

correct sourcing decisions is an essential undertaking for the plant in order to remain

competitive.

3.4 Product Description

The case study presented in this thesis will consider different sourcing scenarios

for some of the components of KA’s 125mm clutch servo for Scania. This section

features a description of the 125mm clutch servo.

The main principle for how a clutch servo works is the same for all producers,

however the design may differ across the industry. Scania uses the same clutch

servo design for all its vehicles, but the size of the servo varies. Five different sizes

are offered, with the range from the small 63mm piston to the large 125mm piston.

The clutch servo system is shown in Figure 3.

Figure 3: The clutch system for Scania trucks. The clutch servo supplies compressed air to

the piston when the driver steps on the clutch pedal, hence reducing the required pressure

force needed from the driver in order to actuate the clutch.
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The clutch servo consists of 46 components, all of which are outsourced. Today, KA

procures these components from about 20 different suppliers. All the components

are ready for assembly upon arrival at KA’s factory, except for the aluminum casting

which needs to be machined first. Due to confidentiality concerns, this thesis uses

approximations of the costs and prices that KA actually experiences. The managers

at KA have estimated the total procurement cost of the components for the clutch

servo to be NOK 200 and the sales price of the finished product to be NOK 550.

Deliveries to customers are made twice a week, on Tuesdays and Fridays, but may

occur more often when backlog is present.

As mentioned above, the clutch servo consists of 46 sourced components - potentially

yielding 46 different sourcing decisions. However, for the purpose of this case study

only certain components will be considered. The managers at KA are familiar

with the computer program developed by Moltu et al. [2013], and when presented

with the outlook of the computer program in this thesis, they handpicked three

components to be of special interest. These components are the aluminum casting,

the piston and the piston rod. Together, these components constitute 50% of the

total procurement cost of the clutch servo. The three components are designed by

KA, in cooperation with its suppliers. Hence, KA formally owns the design rights,

and the components are customized for the clutch servo. Due to design creation

and manufacturing adjustments, the process of changing a supplier of a customized

component takes approximately one year.

The purpose of the study is to analyze potential sourcing decisions for these com-

ponents. This is done by using the developed computer program. The computer

program is capable of considering both lead time reductions and extensions. As of

today, KA procures the aluminum casting from Serbia, the piston from South Korea

and the piston rod from France. The case study will evaluate these locations against

potential new sourcing locations.
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4 Program Description

Accompanying this thesis is a computer program that enables firms to evaluate

different sourcing alternatives. This section continues the work done in Moltu et al.

[2013], with the aim of making the program more applicable for real world scenarios

and as realistic as possible for the case of KA. Firstly, the underlying theory and

mathematics behind the program are presented. Then, a description of the Excel-

program follows, where both the general model from Moltu et al. [2013] and the

customization of the model are addressed.

4.1 The Underlying Mathematics and Theory

In this section, the foundation of the model is laid with the derivations of the mis-

match cost function. Firstly, the Newsvendor model is described, which serves as the

basic principle for deriving the optimal order strategy. Then, the general mismatch

cost function for an arbitrary demand structure is introduced. Mismatch cost is

the cost that arises from the mismatch between demand and order quantity. The

general mismatch cost function is derived from the Newsvendor model and can be

used to evaluate lead time reduction [De Treville et al., 2013a]. In practice, the

majority of applications of the standard Newsvendor model assume that demand

is normally distributed. The presented model, however, assumes an arbitrary dis-

tribution, which enables flexibility of use and ability to better match a company’s

risks arising from demand uncertainty. Lastly, the concept of stochastic processes is

introduced. This is the key concept that will enable the transition between under-

standing how the demand evolves and which probability distribution that describes

the demand. In this subsection, the specific mismatch cost is derived assuming that

demand follows (1) an MRP and (2) a GBM.
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4.1.1 The Newsvendor Model

The basic principle used for the derivations of the mismatch cost function is the

Newsvendor model (see e.g. Cachon and Terwiesch [2013c]). The Newsvendor model

models a one-time irreversible business decision. A newsvendor has to determine

how many newspapers to order for the day. If the newsvendor chooses too few

newspapers, the vendor will experience lost sales. Too many newspapers will result

in a stack of newspapers that the vendor will either have to sell at a discounted price

back to the publisher or throw away [Hill, 2011].

The concept of the Newsvendor model is applicable beyond the simple case of news-

papers. Many firms have to decide on how much to order before they are able to

observe the actual demand at a later point in time. Once the demand is known, the

firm will observe if the order quantity was too high - the order quantity exceeding

the demand, or too low - the demand exceeding the order quantity. The firm will

not be able to sell all the products when the order quantity is too high, and therefore

faces costs related to this, such as inventory holding cost and cost of obsolescence.

In some businesses, firms have the possibility to sell the excess inventory back to

the suppliers or in a different market. In that case, the price is often less than the

original price of the product, and is referred to as the salvage value [Cachon and

Terwiesch, 2013b]. A more thorough assessment of salvage value is given in Section

6.2.3. Although the firm will be able to sell all its products with a too low order

quantity, there are also costs related to this, such as cost of lost sales and cost of

lost goodwill.

The profit function of the Newsvendor model depends on the sales price of the

product, p, the ordering cost, c, the salvage value, s, the actual demand at the

delivery date, D, and the order quantity, Q. The profit function can be written as

π(D,Q) = pE[min(D,Q)]− cQ+ sE[max(Q−D, 0)] (1)

= (p− c)E[D]− (c− s)E[max(Q−D, 0)]− (p− s)E[max(D −Q, 0)]︸ ︷︷ ︸
Cost(Q)

.

(2)
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The goal is to maximize the profit function with respect to Q. This is equal to

minimizing the cost of supply and demand mismatch, denoted Cost(Q) in Equation

(2). The cost of supply and demand mismatch of the Newsvendor model depends on

the level of actual demand. If the ordered quantity exceeds actual demand, the firm

experiences a cost of overage, Co, per unit of excess order. When actual demand

exceeds the ordered quantity, the firm faces the cost of underage, Cu, for each unit

short of order. Thus, Co is defined as the difference between cost and salvage value,

while Cu is the difference between price and cost. The expected supply and demand

mismatch cost function is therefore equal to

E[Cost(Q)] = Co

Q∫
0

(Q−D)f(D)dD + Cu

∞∫
Q

(D −Q)f(D)dD, (3)

where Co = c− s,

Cu = p− c,

f(D) is the demand density function, and D is the demand at delivery date. In the

deterministic case, i.e. when lead time is zero and demand is known, Cost(Q) is

equal to zero. Solving the integrals in Equation (3) and taking the first derivative

of E[Cost(Q)] with respect to order quantity Q and setting it equal to zero yields

dE[Cost(Q)]

dQ
= CoF (Q)− Cu(1− F (Q)) = 0

⇒ F (Q) =
Cu

Cu + Co
,

where F (·) is the cumulative probability distribution function [Hill, 2011]. Conse-

quently, F (Q) is equal to

F (Q) =
Cu

Cu + Co
=

p− c
(p− c) + (c− s)

=
p− c
p− s

. (4)

The optimal order quantity, Q∗, is the inverse of F (Q). It is the order quantity that

minimizes the expected supply and demand mismatch cost function and is equal to

Q∗ = F−1

(
p− c
p− s

)
. (5)

The optimal order quantity is therefore dependent on the choice of demand distri-

bution and the relationship between the cost of under- and overproduction.
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4.1.2 The Expected Demand-Supply Mismatch Cost Function

In this subsection, the foundation of the computer program is laid through the

derivation of the expected demand-supply mismatch cost function. The function

originates from the concept of expected demand-supply mismatch cost (see e.g. Ca-

chon and Terwiesch [2013a]), hereafter referred to as mismatch cost, and is closely

related to the profit function of the Newsvendor model shown in Equation 1. Costs

related to demand-supply mismatch appear when a firm has to commit to its suppli-

ers or the production quantity before it can observe actual demand. Consequently,

mismatch cost considers overproduction and underproduction. The former repre-

sents the tangible cost of leftover inventory, while the latter estimates the intangible

cost of not meeting the demand. According to the Newsvendor model, as previously

discussed, the mismatch cost function is equal to

MC(Q) = (p− c)E[max(DT −Q, 0)] + (c− s)E[max(Q−DT , 0)], (6)

where DT is the realized demand at the delivery date T. The expression is twofold,

where the first term considers the expected cost of lost sales due to underproduction,

and the second states the expected cost of overproduction. The function will be

described in detail later in this section.

Mismatch cost depends on the operation mode. Make to order and make to stock

generate the two extreme values of mismatch between supply and demand, where

the latter represents the highest mismatch cost. For the case of make to order,

production starts after customer orders have been received, hence the production

level is based on realized demand and not on estimates. Consequently, the mismatch

cost is zero for make to order.

Factors that drive the mismatch cost are the critical ratio, i.e. Cu
(Co+Cu) , whether the

process is stationary or not, and the parameters of the process, i.e. measurements of

mean level and volatility. As the critical ratio decreases, excess inventory becomes

costly relative to lost sales, and the mismatch cost increases. In addition, as the

volatility increases, demand is harder to predict, hence the mismatch cost increases.

Non-stationarity further contributes to an increase in the mismatch cost.
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The mismatch cost function is derived as the difference between maximum expected

possible profit, i.e. the case of make to order, and the expected profit, considering

that demand follows a probability distribution g(DTi). Therefore, it is the difference

between the expected net present value of the profit when lead time is zero, and the

expected net present value of the profit when lead time is equal to τ = T − Ti. Ti
is the point where you have to commit to an order in order to be ready to deliver

at delivery time, T . Rearranging Equation (6), the mismatch cost function can be

stated as

MCg(Q) = (p− c)e−rτE[DT ]︸ ︷︷ ︸
Profit with zero lead time

− VTi(Q),︸ ︷︷ ︸
Profit with lead time τ

(7)

where VTi(Q) = e−rτ

(
pE[min(DT , Q)]︸ ︷︷ ︸

↓

−cQ+ sE[max(Q−DT , 0)]

)

= e−rτ

(︷ ︸︸ ︷
−pE[max(Q−DT , 0)] + pQ−cQ+ sE[max(Q−DT , 0)]

)

= e−rτ

(
(p− c)Q− (p− s)E[max(Q−DT , 0)]

)
. (8)

The profit with lead time τ , denoted by VTi(Q), assuming a lead time τ > 0, is a

function of revenues from sales, cost of actual production, and the salvage value of

overproduction if produced quantity exceeds actual demand.

Deriving and simplifying (see Moltu et al. [2013] for further explanations), the mis-

match cost function is equal to

MCg(Q) = e−rτ

(
(p− s)

∞∫
Q

(DT −Q)g(DT )dDT + (c− s)(Q− E(DT ))

)
. (9)

As for the optimal order quantity, the mismatch cost function requires an assump-

tion about the demand probability distribution. This will be discussed in the next

section.
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4.1.3 Stochastic Processes

In order to calculate the mismatch cost for different lead times, the corresponding

probability distribution of the demand at each lead time needs to be determined.

This can be seen as the process of predicting the demand distribution for different

lead times, given the current situation. In practice, firms tend to make lead time de-

cisions implicitly assuming that demand follows a normal distribution. Firms do not

always have a clear opinion about their demand distribution or how their demand

evolves, and this assumption is sometimes even made unknowingly. In many cases,

however, firms face demand structures that are far from being stationary and nor-

mally distributed. In this thesis, the demand evolution and probability distribution

is determined by utilizing the concept of stochastic processes. A stochastic process

is a family of time indexed random variables Z(ω, t), where ω belongs to a sample

space and t belongs to an index set, i.e. different points in time (see Wei [2006]). By

holding t constant, Z(ω, t) becomes a random variable, and by holding ω constant,

the function is called a sample function. A time series is a sample function from a

certain stochastic process (Wei [2006]).

Different stochastic processes are related to different probability distributions, mean-

ing that a variable following one particular stochastic process will have a distinct

probability distribution at every point in time. The prediction of the demand vari-

able’s distribution at different lead times will be related to the current situation.

This probability distribution depends on the parameters of the process. Another

important issue related stochastic processes is stationarity. A stationary process is

a process where statistical properties remain constant over time. A non-stationary

process will experience changes in either the mean, the variance or both (Wei [2006]).

Accordingly, the choice of stochastic process will have large impact on the mismatch

cost.

The computer program will be fitted with the option of using two different stochastic

processes: a mean reverting Ornstein Uhlenbeck process and a geometric Brownian

motion. In the following sections the derivations and results for the mismatch cost
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function, assuming that demand is following each of these processes, are shown.

Additionally, a rationale for why these processes have been chosen is presented.

Stationary Process: Mean Reverting Ornstein Uhlenbeck Process

To capture the characteristics of a stationary stochastic process, the mismatch cost

function is derived assuming that demand follows an MRP. In this thesis, we focus

on the so-called Ornstein Uhlenbeck process, which is a particular MRP defined as

dDt = α(µ−Dt)dt+ σdZt, (10)

where α is the mean reversion rate, µ is the long run equilibrium price and σ is the

volatility. A large mean reversion rate results in a quick reversion to the mean. Zt de-

notes a Wiener process. The Wiener process is normally distributed with mean zero

and a variance growing linearly with extensions of the time horizon, Zt ∼ N(0, t).1

The increment of a Wiener process is then represented as dZt, where dZt ∼ N(0, dt).

It is important to note that the expected change in Dt depends on the difference

between µ and Dt. Though it satisfies the Markov property, meaning that the proba-

bility distribution of demand at a later point in time is only dependent on its current

value, the presented process does not have independent increments. A variable that

follows an MRP is normally distributed, DT ∼ N
(
µ+(Dt−µ)e−ατ , (1−e−2ατ ) σ

2

2α

)
.

The MRP has characteristics that enable it to capture the dynamics of markets

where supply and demand forces are strong. In such markets, prices tend to revert

towards an equilibrium level [Weron, 2000]. The reason is that when prices are high,

suppliers will find it more profitable to produce and fewer consumers would want

buy. A higher level of supply, along with a lower level of demand, will consequently

lead to a price fall. If prices are initially low, more consumers will want to buy and

fewer suppliers will find it profitable to produce. This will lead to high demand and

low supply, hence prices will rise. The MRP is particularly well suited to model such

markets as it allows for reversion towards an equilibrium level. Dynamics of price

sensitive demand is characteristic for many markets. Examples are airline travel

1The notation X ∼ N(µ, σ2) means that the random variable X is normally distributed with

mean and variance equal to µ and σ2, respectively.
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[Pindyck and Rubinfeld, 2001] and soft drinks [Brownell et al., 2009].

Moltu et al. [2013] show that the expected mismatch cost when demand is assumed

to follow an MRP is equal to

MCg(Q) = (p− c)e−rτ (µ+ (DTi − µ)e−ατ )︸ ︷︷ ︸
(p− c)e−rτE[DT ]

−
(

(p− s)(Λ− Θ̂)− (c− s)Q
)
e−rτ︸ ︷︷ ︸

Vt(Dt, τ, Qt)

,

(11)

where

Λ = Q

(
1− Φ

(
(Q−M)√

V

))
(12)

and

Θ̂ =

√
V√
2π
e−

(Q−M)2

2V −MΦ

(
(Q−M)√

V

)
. (13)

The mean and variance of DT is, for simplicity, represented as M and V in Equation

(12) and (13), such that DT ∼ N(M,V ). As mentioned above, when demand

follows an Ornstein-Uhlenbeck process, it holds that the demand variable is normally

distributed, i.e. DT ∼ N
(
µ+ (Dt − µ)e−ατ , (1− e−2ατ ) σ

2

2α

)
.

Non-Stationary Process: Geometric Brownian Motion

The dynamics of a non-stationary stochastic process is captured by deriving the

mismatch cost function for demand that is assumed to follow a GBM. The GBM is

given by

dDt = µDtdt+ σDtdZt, (14)

where µ is the drift rate, σ is the volatility and Z(t) denotes a Wiener process.

The rationale for representing the demand as a variable following a GBM is based

on the fact that there are some fundamental similarities between the properties of

this stochastic process and a demand time series. Dixit and Pindyck [1994] explain

three properties of the Wiener process, also known as Brownian motion. Firstly, the

Brownian motion is a Markov process. When modelling stock prices, this property is

very useful because it implies that only current information determines the forecasts
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of the stock price. Thus, the past pattern of the price is of no value to the forecast.

However, when forecasting demand, trends are often valuable. Seasonality, e.g. ice

cream sells better during the summer, and the demand for snow mobiles is greater

during periods with snow, represents valuable trends. Seasonality effects are not

captured by the GBM. However, Hausman [1969] shows that both theory and em-

pirical results suggest that ratios of successive forecasts are independent lognormally

distributed variables. The second property of a Wiener process is that its increments

are independent, which means that the probability distribution is independent of any

other time interval. This property enables conversion of the stochastic process to a

continuous-time version of a random walk. The third property is that changes are

normally distributed. When considering a GBM, the assumption is a lognormally

distributed underlying process, thus changes in the natural logarithm of the demand

are normally distributed. This is appropriate for a demand process, since it prevents

the demand from going negative.

As derived in Moltu et al. [2013], the mismatch cost function assuming that demand

follows a GBM is equal to

MCg(Q) = e−rτ

(
(p− s)

(
DTie

µτΦ(d1)−QΦ(d2)
)

+ (c− s)
(
Q−DTie

µτ
))

(15)

=

(
p− c

)
DTie

−(r−µ)τ

︸ ︷︷ ︸
(p− c)e−rτE[DT ]

− e−rτ
(
Q
(

(p− c)− (p− s)Φ(−d2)
)

+ (p− s)DTie
µτΦ(−d1)

)
︸ ︷︷ ︸

Vt(DTi , τ, QTi )

,

(16)

where d1 =
ln(

DTi
Q )+(µ+σ2

2 )τ

σ
√
τ

and d2 = d1 − σ
√
τ .2 Note that Equation (16) is

represented on the same form as equation (7).

2d1 and d2 are the same as in the famous Black Scholes Option Pricing formula [Black and

Scholes, 1973].
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4.2 The Build-up of the Program in Microsoft Excel

This section describes the build up of the computer program. The output generated

by the program is described first. The aim is to give an understanding of what

the program generates before describing how it is generated. Thus, the general

mathematics behind the output is then explained. Lastly, the customization of the

program, to make it more applicable to real world situations and the case of KA, is

presented.

4.2.1 The Output of the Program

The program developed in Moltu et al. [2013] generates two curves as output - the

CD Frontier and the cost curve. The objective of the CD Frontier is to quantify the

lowest percent unit-cost reduction/increase needed to compensate for a percentage

increase/reduction in lead time. The frontier accordingly represents an indifference

curve, where every point on the curve is equally good.

In contrast to the CD Frontier, the cost curve shows the absolute cost level a firm

would accept for each lead time. Consequently, the cost curve is also an indifference

curve. The area below the cost curve represents the favorable part of the graph,

while the area above the indifference curve makes up the unfavorable section. The

cost curve is an alternative way of presenting the CD Frontier. Encounters with

managers have shown that practitioners find the cost curve more intuitive than the

CD Frontier. The argument has been that it is easier to relate to absolute cost levels

rather than a relative cost differential. At the request of the managers at KA, this

thesis will use the cost curve to present the results from the case study. However,

the computer program generates both curves as output, but only the cost curve will

be reported in the thesis. Figure 4 shows examples for both the CD Frontier and

the cost curve.
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Figure 4: The graph to the left is the cost curve, where the absolute cost for each lead

time, cτ , is plotted against the respective lead time τ . The graph to the right is the cost

differential frontier, and shows the cost differential, 1 − cτ
c̄

, as a function of lead time τ .

Both graphs are plotted for demand assumed to follow a GBM, and they have the same

input parameters. The price is 192.50, cost is 70 and salvage value is 69. Drift rate and

volatility for 18 days is 0% and 6.66%, respectively.

4.2.2 The General Model

The computer program is based on the work of De Treville et al. [2013a]. In the

article, they define the mismatch cost function as the difference between the maxi-

mum expected net present value (NPV) of the profit when lead time is zero, and the

maximum expected NPV of the profit when lead time is equal to 0 < τ ≤ 1, where

τ = T −Ti. They use τ as a relative lead time. Assuming that the ordered quantity

matches the optimal order quantity from the Newsvendor model, Q∗, the mismatch

cost is calculated for each lead time. Orders must be placed at the commitment time

Ti. However, at the commitment time the demand at delivery, DT , is not known,

unless you have a make to order operation mode. Hence, the demand at delivery

is an expectation, E[DT ], and depends on the distribution of the demand process.

The mismatch cost is evaluated for each lead time, and both profit terms of the

mismatch cost function, i.e. Equation (7), must be compared at the same reference

point for each τ . Thus, the expected NPV of the mismatch function is the value at

Ti.

In the case of make to order, both lead time and mismatch cost are zero. However,
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the value of demand at delivery depends on the commitment time. When Ti = T ,

demand at delivery is known; DTi = DT . However, DT is not known when DTi 6=

DT , and one must use the specific demand distribution to find the expected demand

and discount it back to the commitment time. For instance, if demand is assumed

to follow a GBM, the expected demand at time Ti is equal to E[DT ] = DTie
−(r−µ)τ .

Mismatch cost is an expected value, not a realized value, hence the first term of

Equation (7) represents the expected NPV of the make to order case for an arbitrary

demand distribution, discounted back to the commitment time.

The cost curve is generated by allocating a specific cost to each of the lead time

cases, so that a firm will be indifferent between the alternatives on the curve. To

generate the cost curve, the fact that different lead time scenarios can be compared

is used. If a firm is to be indifferent between make to order and make to stock,

the two operation modes should obtain the same expected NPV, hence Equation

(7) has to equal zero. Generally, the cost c increases as lead time decreases. The

maximum cost accepted for zero lead time therefore represents the maximum cost

for all possible lead time cases, and will be denoted by c̄ hereafter. Hence, in the

program, c̄ is constant for a given stochastic process, while the cost for each lead

time τ , cτ , varies.

Geometric Brownian Motion

Following the argument above, the cost curve for a demand assumed to follow a

GBM is constructed by using that the mismatch cost is equal to

MCg(Q
∗) =

(
p− c̄

)
DTie

−(r−µ)τ

︸ ︷︷ ︸
maximum expected NPV
of the profit when τ = 0

− e−rτ
(
Q
(

(p− c)− (p− s)Φ(−d2)
)

+ (p− s)DTie
µτΦ(−d1)

)
︸ ︷︷ ︸

maximum expected NPV of the profit when τ = T − Ti

= 0

(17)
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⇒

(
p− c̄

)
DTie

−(r−µ)τ = e−rτ

(
Q∗
(

(p− c)− (p− s)Φ(−d2)
)

+ (p− s)DTie
µτΦ(−d1)

)

⇒ c̄ = p−
Q∗
(

(p− c)− (p− s)Φ(−d2)
)

+ (p− s)DTie
µτΦ(−d1)

DTie
µτ

.

(18)

The cost curve is generated by performing the following steps:

Step 1:

The first step is to find the optimal order quantity, Q∗, for the current lead time.

Q∗ is determined by finding the maximum value of the second term in Equation

(17), by using binary search. The maximum value of this term corresponds to the

maximum expected NPV of the profit for the current lead time.

Step 2:

The second step is to calculate c̄, the cost for the case of zero lead time, by inserting

Q∗ from the first step into Equation (18). c̄ is kept constant in further calculations.

Step 3:

The third step is to determine the cost for each lead time scenario, cτ . cτ is deter-

mined by solving Equation (17), with Q∗ from the first step and c̄ from the second

step:

(p− c̄)e−rτDTie
µτ = e−rτ

(
Q∗
(

(p− cτ )− (p− s)Φ(−d2)
)

+ (p− s)DTie
µτΦ(−d1)

)

= e−rτ

(
Q∗
(
α− Φ(−d2)

)
+DTie

µτΦ(−d1)

)
(p− s)

= e−rτ

(
Q∗
(
F (Q∗)− Φ(−d2)

)
+DTie

µτΦ(−d1)

)
(p− s),

where α = p−cτ
p−s = F (Q∗), and F (Q∗) is lognormally distributed with mean

[
ln(DTi)+

(µ− σ2

2 )τ
]

and variance σ
√
τ .
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Step 4:

The last step is to derive the cost curve. Knowing cτ for all 0 < τ ≤ 1, the cost

curve can be derived as the absolute cost cτ , as a function of lead time τ .

Mean Reverting Process

Following the same argument as for the GBM-case, the mismatch cost function for

the MRP-case from Equation (11) is equal to

MCg(Q
∗) = (p− c̄)e−rτE[DT ]−

(
(p− s)(Λ− Θ̂)− (c− s)Q

)
e−rτ︸ ︷︷ ︸

VTi (DTi , τ, QTi )

= 0

⇒
(
p− c̄

)
E[DT ] =

(
(p− s)(Λ− Θ̂)− (c− s)Q

)
, (19)

where Θ̂ is given by Equation (13). The cost for the case of zero lead time, c̄, is

given by

c̄ = p−

(
(p− s)Λ− Θ̂)− (c− s)Q

)
E[DT ]

. (20)

The cost curve for a demand assumed to follow an MRP is constructed using the

same steps as for the GBM previously discussed.

4.2.3 Customization of the Model for the Case Study of Kongsberg

Automotive

In order to make the computer program match the characteristics of KA, as well as

improve the program’s generality, certain changes are incorporated. These changes

are presented in the following paragraphs.

Incorporating Lead Time Extensions

Literature that explicitly deals with lead time mainly considers lead time reduction

(e.g. De Treville et al. [2012] and Ben-Daya and Hariga [2003]). Therefore, the com-

puter program developed by Moltu et al. [2013] only evaluates lead time reductions.

However, during the collaboration with KA, the managers have explicitly requested

information about the costs of extending the lead time for their clutch servo. The

32



case study performed in this thesis thus investigates both potential lead time re-

ductions and extensions. An important modification to the computer program is

therefore the incorporation of lead time extension. This feature is implemented in a

dynamic manner, so that the cost curve is extended according to the lead time of the

supplier that is being investigated. The cost curve in Moltu et al. [2013] uses relative

lead time to present the results, where the current situation represents relative lead

time of 1. After consulting with the managers at KA, the use of absolute days for

the lead time in the cost curve is chosen for this thesis. The managers stated that

it is easier to relate to actual days, rather than a relative lead time.

Incorporating Supplier Specific Costs

The program developed in Moltu et al. [2013] assumed that all supplier specific costs

were fixed, regardless of lead time. Recall, from the literature review, that supplier

specific costs are costs that change with supplier selection, such as transportation

cost, capital cost and storage cost. Hence, the cost reported in the program only re-

ferred to the per unit procurement cost. This assumption made the program unable

to account for changes in supplier specific costs. However, supplier specific costs

are rarely fixed for different lead times. For example, as mentioned in the literature

review, Ouyang and Chang [2002] report the correlation between safety stock and

lead time. Thus, supplier selection has impact on storage costs. Further, chang-

ing a supplier often yield changes in transportation cost as distance and delivery

frequency may change.

When presented with the program of Moltu et al. [2013], the managers at KA and

other practitioners all agreed that the program would give more realistic results if

it was able to account for changes in supplier specific costs. As there are multiple

costs that can affect a sourcing decision, varying from case to case, this thesis has

tried to incorporate the most common ones. Based on feedback, transportation

cost, storage cost and capital cost have been chosen. In addition, a field for other

costs has been added. This enables users to include costs specific to their particular

case. Incorporating these supplier specific costs makes the program, in addition to

accounting for exposure to demand risk, able to assess changes in supplier specific
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costs.

To incorporate the supplier specific costs, the code had to be modified. Four input

fields were added as optional fields to the input panel. This is shown in Figure 6.

Since all the fields are optional, the user can still use the program to evaluate only

exposure to demand risk by setting the fields to zero. The same fields were also

added to the two sourcing scenario panels. To ensure that a user does not compare

a scenario that accounts for supplier specific costs to a scenario that does not, a

poka-yoke function was built in. The function prevents the user from comparing

two scenarios with a different number of inputs.

In the code, the supplier specific costs are incorporated by simply adding the sum of

the new variables to the cost of the component. This increases the cost of overpro-

duction, c-s, but decreases the cost of underproduction, p-c. However, for the case of

KA, it will only have an effect on the cost of underproduction, as KA’s salvage value

is proportional to the obtained procurement cost. Hence, c-s is constant, making

the cost of overproduction constant. See Section 6.2.3 for details regarding these

calculations.

Adding supplier specific costs has an affect on both the level and curvature of the

cost curve. This is shown in Figure 5. The increased level is a result of the cost being

higher after the additional costs are added. The difference in curvature is caused by

changes in the cost of not meeting demand. The left part of the figure shows the

effects when it is decreased. In this case underproduction is favored since the cost

of underproducing is lower than the cost of overproducing. As a result the program

will advise underproduction over overproduction. Since the cost of underproducing

decreases after supplier specific costs are added, the cost of not meeting demand

is therefore reduced. From this it follows that it will be relatively less valuable to

reduce lead time and the curve becomes less steep. While it may be hard to see

from the graph, the numbers show the difference clearly - NOK 4.79 at lead time

50 against NOK 4.31 at lead time 0. Thus the new graph is less steep than the

old. For the right case, overproduction is favored. In contrast to the left case this

graph experiences an increase in the cost of not meeting demand - the new cost of
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overproducing is higher than the old. Hence, it follows that it will be increasingly

valuable to reduce lead time and the graph becomes more steep - NOK 4.54 at lead

time 54 against NOK 4.64 at lead time 0. An important observation is that the

demand risk is equal in both graphs - it is only the cost associated with it that

changes.

However, this example simplifies how the cost curve is actually generated. In reality,

the program does not simply favor either over or underproduction, and use the

cost associated with this to generate the cost curve. Recall from Section 4.1.1 and

Section 4.2.2, that the cost curve is generated by optimizing the profit function

with respect to the critical fractile. Hence, if the cost of overproduction is higher

than underproduction, overproduction will be favored and the cost associated with

it more prominent. However, this does not mean that the cost of underproduction

disappears, it is just less likely to occur - hence, it has less impact on the curvature.
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Figure 5: The effects on the cost curve of including supplier specific costs. GBM is used

as the underlying process. The blue graphs are the cost curves when supplier specific costs

are added. The red graphs represent the old cost curves. The input parameters not shown

in the figure are: current lead time is 18 days, volatility is 10%, yearly risk-free rate is 3%

and drift rate is 0%

Commercializing the Computer Program

Though the computer program developed in Moltu et al. [2013] includes many of

the attributes desired for the final program, it has potential for improvement in

its intuition and ease of use. The initial program was developed as a part of an
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academic report, and its applications were mainly intended for the academic reader.

The program in this thesis, however, is customized for practitioners, represented by

the case of KA’s clutch servo. Discussions with the managers at KA have revealed

that some aspects of the program are not sufficiently intuitive. They have suggested

certain changes in order to generalize the program for applications beyond the extent

of this case study. Therefore, it is within the scope of this thesis to create a program

that is both useful and understandable to the managers at KA.

The managers at KA pointed out parts of the input panel in the program as a source

of confusion. Certain parameters are neither relevant, nor intuitive, for practitioners,

and are excluded from the input panel in the updated version. The number of steps

is removed from the panel. It is just an input that affects the smoothness of the

plots and does not affect the results of the case, hence it is unnecessary as an input

parameter. The number of steps is set to 1000. The long term equilibrium level and

initial demand are also removed as input. The reason is that changing a supplier

usually has long term effects on a firm. Therefore, it is fair to assume that the long

term equilibrium level is more important for the supplier selection than the current

demand level. Hence, initial demand is set equal to the long term equilibrium level

in the model, and both parameters are kept constant. Lastly, in order to make the

panel more intuitive, the updated version categorizes the input parameters. Figure

6 shows the input panels of both versions of the program.
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Variable Value Description
Current Lead Time 9 Days Current Lead Time 9 Days
Price 55 Unit Price Price 55,00 Unit Price
Salvage Value 19,81 Unit SV Salvage Value 19,81 Unit SV
Cost at Lead‐Time L 20 Unit Cost Cost 20,00 Unit Cost
Long term equilibrium level 1 Demand at t=9
Mean reversion rate 105,15 % For 9 Days Volatility 41,37 % For 7 Days
Volatility 41,37 % For 9 Days Yearly Risk‐Free Rate 5,00 % For 365 Days
Risk Free 0,82 % For 9 Days Mean Reversion Rate 105,15 % For 7 Days
Number of Steps 1000 LT Quantiles
Initial Demand 1 At time 0 Storage Cost 0,47 Per Unit

Capital Cost 0,06 Per Unit
Transportation Cost 1,20 Per Unit
Other Costs 0,00 Per Unit

INPUT
Product Parameters

Demand Process Parameters

Optional Parameters

Inputs

Figure 6: The input panels of the initial program to the left and the updated program to

the right. The long term equilibrium level, number of steps and initial demand are removed

in the new input panel. In addition, the updated version aggregates the risk-free rate on a

yearly basis and the mean reversion rate and volatility on a weekly basis, rather than on

the basis of the entire lead time period as done in the old program. The updated version

also includes four optional parameters - storage cost, capital cost, transportation cost and

other costs.

To further simplify the program, the updated version hides the underlying data for

the plots by default. The main results of the program are the indifference curves

of the cost curve and the cost differential frontier. The managers at KA liked the

simplicity obtained by hiding the data. However, the data can be displayed by

pushing the button ”show underlying data for plots”.

Further discussion with the managers revealed that the empirical input parameters,

i.e. the mean reversion rate and the volatility, could be difficult to extract from

empirical data. In general, the managers appreciated the output of the program,

but found the required input rather comprehensive and difficult to retrieve. Ideally,

the managers wanted a program where they could insert sales data and the current

sourcing situation for a product, and get the indifference curves plotted right away.

In other words, KA wanted the program to first do the empirical analysis of the

data set and then create the indifference curve plots. This is a feature that would

enhance the generality of the program. The implementation of this functionality

is not within the scope of this thesis, however it would definitely add value to the

program, and will be discussed in Section 8.1.
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5 Empirical Data and Analysis

In order to determine which stochastic process and the corresponding parameters

that may fit KA’s demand structure best, KA’s demand is assessed. This section will

start by describing the data set used for the analysis. Then, the underlying theory

for the analysis is briefly described and the analysis is performed. The results of

the empirical data assessment is presented and the most suitable stochastic process

is determined. In addition, a different approach of connecting the demand data to

the computer program is proposed. The two approaches, i.e. the use of a stochastic

process and the use of distribution forecasting of the ARMA model, are compared

through a simple example. Lastly, the validity of the analysis is checked by using

the available actual demand data.

5.1 Description of the Data Set

The data set used to assess the demand distribution for KA’s clutch servos is actual

sales data. The data is gathered from KA’s SAP system during the time period

from July 2009 until February 2014, resulting in 590 data points. Each data point

represents an order from Scania that is delivered at the specific date.

Accompanying the actual sales is the respective service level for each delivery. The

service level is calculated based on quantity and delivery date. To receive a service

level of 100%, both the quantity and the date must be correct. If only one of the

parameters is met, KA receives a service level of 50%. By not meeting any of the

delivery terms, a service level of 0% is obtained. The most common reason for not

receiving a 100% service level is by delivering less than the actual order quantity.

This results in a backlog for KA. KA seeks to fulfill the backlog on one of the next

deliveries, which automatically leads to an incorrect quantity for this delivery as well.

However, if Scania requires delivery as fast as possible, and KA is able to produce

the quantity before the next shipment, the order can be sent as an express delivery.

This would result in an incorrect date as well. Hence, KA could be penalized twice
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for not fulfilling the order according to the specifications on delivery quantity and

date.

KA also has access to real demand data. Scania places its orders for one year ahead

using an EDI-system (Electronic Data Interchange), where order quantity can be

updated by Scania daily up to the day of each delivery. KA thus has a good forecast

for the actual demand. However, KA has not stored this demand data until now.

Since this data is not stored automatically, it is impossible to retrieve historical data

on how the real demand changes up until delivery. After being presented with the

value this data can yield KA was advised to store the demand data every week.

If this demand data is stored, KA will have a unique system that enables them

to track actual demand changes directly from their customers. This will make the

assessment of risk much more accurate, since KA will have multiple time series with

the evolution of demand for the same product. Ultimately, KA will have a large

empirical foundation from which it can make even more justified assumptions about

its demand process. Few companies have access to such information. For this thesis,

however, the historical sales data will be the main data set for the analysis. The

real demand data will be considered as a supplement to this analysis, as it consists

of few data points.

5.2 Representation of KA’s Demand

Before starting the analysis of the sales data, the most suitable representation of

the data set must be determined. The goal is to find a way to represent the actual

demand data using the sales data provided by KA during the period from July 2009

to February 2014. The sales data is the quantity invoiced by KA to Scania for each

delivery. As each delivery is invoiced on the same day as it is delivered, each data

point in the sales data represents the actual quantity delivered on that day. The

number may therefore deviate from the actual order quantity from Scania, and thus

also from the actual demand. This is the case when KA is unable to fulfill an order,

or when KA needs to fulfill its backlog. The latter will have an impact either on
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one of the next orders, or adding another delivery between the originally scheduled

deliveries. Accompanying the sales data is the corresponding service level for each

order/sale, from which conclusions about which of the data points that represent

the actual demand can be drawn.

5.2.1 Daily Sales Data

The daily data is presented in Figure 7, and represents every sale to Scania during

the period. Thus, each day without a sale is removed. The daily data provides a

good insight to the variation in the orders from Scania.
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Delivery Date 

Sales Data per Order 

Figure 7: Every completed sale from KA to Scania in the period from 2009 to 2014. It is

a time series that contains the sales quantity for the given date. Dates without sales are

removed from the time series.

There are some issues related to using this data set directly. The first problem

encountered in this data set is the consistency in the series. There is a shift in the

average order delivery around March 2011. This shift in the time series is caused

by a new ordering sequence from Scania. Up until this point in time the ordering

occurred on Mondays, Tuesdays, Thursdays and Fridays. After this point the orders

came, with some exceptions, just two days per week, on Tuesdays and Fridays. This

had implications for the daily ordering quantity, thus causing a shift in the time
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series.

Further implications of choosing this data representation is that the demand does

not have evenly spaced time intervals between the orders. Since the goal is to

determine a stochastic process that fits well with the data, it is convenient to have

evenly spaced intervals.

Additionally, this data set does not consider the fact that some of these data points

have a non-perfect service level. The variations in the data set could therefore be

caused by KA not fulfilling an order, which, as explained above, inflicts two data

points; the actual order that KA fails to complete, and one of the later orders at

which the remaining backlog is added.

The first problem can be mitigated by dividing the time series into two different

sections, before and after the shift in number of deliveries per week. Then, both

demand time series can be analyzed, and the parameters can be calculated as a

weighted average of the two sections. A possible way of managing the problem of

non-even spacing is to assume that each order is evenly spaced, and use the average

time between deliveries as the interval length. Still, the problem with non-perfect

service level will be apparent. Therefore, the sales that do not have a 100% service

level is removed from the time series.

5.2.2 Daily Data Containing Only 100% Service Level Orders

As KA is able to report the service level for each sale, one can extract the deliveries

that were correct according to both date and quantity from the original data set.

This results in a data set containing only the sales that are completed with a 100%

service level. The remaining data points are shown in Figure 8 and represent the

actual demand KA experienced from Scania in the period from 2009-2014.

42



  0

  100

  200

  300

  400

  500

  600

  700

  800

  900

 1 000
16

.1
0.

09

16
.1

2.
09

16
.0

2.
10

16
.0

4.
10

16
.0

6.
10

16
.0

8.
10

16
.1

0.
10

16
.1

2.
10

16
.0

2.
11

16
.0

4.
11

16
.0

6.
11

16
.0

8.
11

16
.1

0.
11

16
.1

2.
11

16
.0

2.
12

16
.0

4.
12

16
.0

6.
12

16
.0

8.
12

16
.1

0.
12

16
.1

2.
12

16
.0

2.
13

16
.0

4.
13

16
.0

6.
13

16
.0

8.
13

16
.1

0.
13

16
.1

2.
13

Sa
le

s Q
ua

nt
ity

 

Delivery Date 

Sales Data per Order, 100% Service Level 

Figure 8: Sales data from 2009-2014, without sales that had less than a 100% service level.

This time series therefore represents the actual demand KA experienced for clutch servos

in the period.

Still, there are some problems within the data set that need mitigation. Firstly,

the shift in the ordering strategy from Scania around March 2011 is still apparent.

The data set also has the problem of not having evenly spaced time intervals. These

problems can be mitigated by applying the same actions as mentioned in the previous

section, i.e. generating two sections and assuming that the orders are evenly spaced

with the average time between deliveries as a proxy. A representation of the 100%

service level sales after the shift in March 2011 is shown in Figure 9.
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Delivery Date 

Sales Data per Order, 100% Service Level, 03.2011 - 02.2014 

Figure 9: Sales data from March 2011 to February 2014, without sales that had less than a

100% service level. This time series therefore represents the actual demand KA experienced

for clutch servos in this time period. Thus, this time series manages the problem of the

shift in ordering strategy from Scania.

The major problem with this data series is that many data points have been removed.

Thus, this data series lacks a lot of the information about the actual demand for

clutch servos. A method to handle this problem is to use the intervals that are

complete within the data set. This will, however, result in very small samples,

which will make the estimates less powerful.

5.2.3 Weekly Data

Another way of representing the data set is to aggregate the sales within one week,

as shown in Figure 10. The sales for a given week is summed up so that the time

series show the total weekly sales quantity for every week from 2011 to 2014.

The reason for using weekly data is to manage the problem of unevenly spaced

time intervals between daily orders, Scania’s change in ordering frequency, and to

represent the actual demand without removing too much information from the data

set. The first two problems are managed through the aggregation. For the demand

issue, weekly data does not account for the service level directly. However, as KA
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is fulfilling the actual order from Scania as quickly as possible, aggregating the

different orders within each week should capture the total orders during a week.

Thus, it provides a close estimation of the actual demand under the assumption

that the backlog is fulfilled within the same week of the actual order. Therefore,

using weekly data yields a complete weekly time series, which can be analyzed.

The problem with this time series is the “outliers” we see during vacations. These

interruptions may be difficult to model without including a Jump-process.
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Weeks after Week 27, 2009 

Weekly Sales Data 

Figure 10: The weekly sales data for the clutch servo. The deliveries within each week are

aggregated to give an estimate of the actual demand KA experienced in the period from

2011 to 2014.

To represent the data without the outliers, the vacation months are removed, as

seen in Figure 11. Vacation weeks are defined as week 29-32 (summer vacation),

week 52, 53 and 1 (Christmas) and Easter, which varies between week 14 and week

17 for different years. By removing these vacations, the time series represents how

the demand evolved during regular business periods. This should be a good proxy

for capturing the desired information in order to determine the stochastic process

for the demand time series. However, during the time period of the data set, minor

orders did occur during some vacations. This signals that some information may be

lost by this alteration of the data set.
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Weeks after Week 27, 2009 (without vacations) 

Weekly Sales Data without Vacation Weeks 

Figure 11: The weekly sales data for the clutch servo, adjusted by removing vacation weeks.

The deliveries within each week are aggregated to give an estimate of the actual demand

KA experienced.

5.2.4 Semi-weekly Data

To try to capture more of the order specific fluctuation, the data is altered to show

semi-weekly data, given in Figure 12. This data series consists of the sales on

weekdays Monday through Wednesday on one order, while Thursday and Friday are

added to the second order for each week. Thus, the time series captures the order

frequency KA experienced from Scania. However, this approach will not capture

the demand that is not met on one delivery but is fulfilled on the next scheduled

delivery. An example of this is if the demand for an order on Tuesday is not met, and

the demand is fulfilled on the next scheduled delivery (Thursday) the same week.

This time series will therefore experience problems with demand being added on the

wrong order.
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Half Weeks after Week 27, 2009 

Semi-Weekly Sales Data 

Figure 12: The semi-weekly sales quantity at different dates. The semi-weekly sales quantity

is calculated by summing up weekday orders Monday through Wednesday on one order, while

Thursday and Friday are aggregated for the second order. This is done to capture the order

specific fluctuation in the demand for clutch servos.

5.2.5 Choosing the Data Representation

After evaluating the different data representations, it is difficult to choose one solu-

tion that mitigates all the problems regarding the data. The most favorable solutions

to represent KA’s demand are the weekly sales data with or without vacations. These

representations are complete time series that aggregate the sales with evenly spaced

time intervals between the data points. The reason for the decision lies within the

enablement of a thorough time series analysis of the data, and the fact that these

data represent the actual demand in a good way, without removing too much of

the order fluctuation. Since the outliers originating from the vacations are recur-

ring events and will have significant impact on the analysis, the time series without

vacations is chosen as the most suitable data set for the model identification.
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5.3 Model Identification of the Chosen Representation

This section will focus on determining which model represents KA’s demand in the

best way. In order to determine this, the concept of time series analysis is utilized.

The calculations and statistical analysis are performed in R, and the code for the

calculations is given in Appendix B. The results will be used to determine which of

the stochastic processes mentioned in Section 4.1.3 may fit the time series best.

5.3.1 Overview of the Model Identification Process

The model fitting process used in this section is based on the process described in

Wei [2006] and consists of various statistical concepts that will be presented together

with the process. For a more thorough description of the time series analysis and

statistical concepts, see e.g. Wei [2006].

The first step in the procedure is to carefully examine the chosen time series plot

from Section 5.2.5 in order to look for indications of trends, seasonality, outliers,

non-constant variances, non-normality and non-stationarity. This examination may

indicate a need for transformations of the data, e.g. through differencing and/or

power-transforms.

The second step consists of examining the autocorrelations (ACF) plot and the

partial autocorrelations (PACF) plot to further investigate whether any differencing

and transformations are needed. In this step, unit root tests for stationarity, such

as Augmented Dickey-Fuller test and Phillips-Perron test, are performed as well.

Thereafter, the third step is to determine the orders of p and q in the ARMA(p,q)

model for the properly transformed time series. Here, p and q are the highest orders

of the autoregressive polynomial and the moving average polynomial, respectively.

ACF and PACF plots are used to define a tentative ARMA(p,q) model. Neighboring

models, i.e. different p and q values, are assessed to determine which of the models

that fits the data best. To determine the best fit, the Akaike information criterion

(AIC) is used as a proxy. Additionally, the assumption that the residuals are white
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noise is checked. The white noise assumption is checked by a Box-Ljung test, and

the distribution of the white noise is investigated.

5.3.2 Identifying the Model for KA’s Demand

Following the procedure above, the first action in the identification of the model for

KA’s demand is to examine the time series plot of the demand. Figure 13 shows the

weekly aggregated sales quantity from the summer of 2009 until February 2014. The

plot shows no consistent trend or seasonality, and seems to be stationary over time.

However, from summer 2009 to 2011 there was an increase in demand. According

to the managers at KA, this can be related to recovery from the Financial Crisis. In

Section 5.2, the time series was manipulated by removing vacations. Any outliers

seem to have been successfully removed by extracting the vacation weeks from the

time series. Additionally, the variance in the data set does not appear to change

with time or with regards to the current level of demand. Consequently, the plot

suggests that no transformation or differencing is needed.
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Weeks after Week 27, 2009 (without vacations) 

Weekly Sales Data without Vacation Weeks 

Figure 13: The weekly sales quantity without vacation data at different dates. There is no

consistent trend or seasonality in the time series other than the recovery from the Financial

Crisis, and it looks stationary over time.

To further check for stationarity and necessity of additional transformation of the
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data, the Augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test is

performed in R. The results of the tests are presented in Table 1. Additionally, the

ACF and PACF plots are examined.

Both ADF and PP are statistical hypothesis tests. PP tests the null hypothesis that

a time series is integrated of order 1. A time series must be integrated of order 0

to be stationary. The Augmented Dickey-Fuller test checks the null hypothesis of

a unit root in the time series. As the results show, the ADF test concludes that

rejection of the null hypothesis is not justified. However, the PP-test rejects the null

hypothesis at a 1% confidence level. Considering the plot in Figure 13, the further

analysis will assume that the time series is stationary, and therefore no differencing

and/or transformations are performed on the data series.

Lag order
p-value

Conclusion

-168,8288
4

< 0.01
Reject hypthesis of non-stationarity

Lag order
p-value

Conclusion

-2,365
5

0,4231
Cannot reject hypotesis of non-stationarity

Augmented Dickey-Fuller Test Phillips-Perron Test
Test statistics Test statistics (Dickey-Fuller Z)

Stationarity Tests

Table 1: The results of the stationarity tests, Augmented Dickey-Fuller test and Phillips-

Perron test, for the weekly sales data without vacations, from 2009 to 2014, for the clutch

servo. The Phillips-Perron test indicates stationarity in the data set, while the Augmented

Dickey-Fuller test does not indicate stationarity.

The ACF and PACF plots are shown in Figure 14. The ACF plot tails off with a

steady decay after lag 2. The PACF plot tails off after lag 2, with some irregularities

at lag 5 and 6. According to the rule of thumb suggested by Wei [2006], this does not

directly indicate a need for differencing the data set. Therefore, no transformation or

differencing is performed on the time series. This corresponds to the intuition about

the demand by the experts at KA. According to them, the demand is stable around

a given level, with some deviations. It is therefore fair to assume that the sales

data is stationary. To additionally check whether differencing would be appropriate,

differencing was performed and ACF and PACF were investigated. This led to both

the ACF and PACF becoming negative, which is a sign of over-differencing.

50



Figure 14: Left graph: ACF plot of the time series. It spikes at lag 2 and tails off with

steady decay. Right graph: PACF plot of the time series. It spikes at lag 2, and cuts off

quickly.

To determine the actual model specification, Wei [2006] suggests trial and error

within the general ARMA(p,q) models. The ARMA(p,q) models are fitted to the

data using R, and the respective Log-likelihood and AIC for each model is recorded

and the model coefficients are estimated. ARMA(2,2) is chosen as a tentative model

since both ACF and PACF spike at lag 2. Neighboring models, i.e. different values

surrounding p=2 and q=2, are tried, fitted and registered in R.

coef. (s.e.) coef. (s.e.) coef. (s.e.) coef. (s.e.) coef. (s.e.) coef. (s.e.) coef. (s.e.)

1 2 0,9687 0,0218 -0,8979 0,0688 0,1144 0,0598 728,91 79,988 32372 -1375,68 2761,36

1 3 0,9755 0,0189 -0,8709 0,0709 0,2676 0,0863 -0,2084 0,0834 722 86,831 31446 -1372,67 2757,35

2 1 0,7727 0,0966 0,1872 0,0842 -0,7292 0,079 730,39 78,302 32165 -1375,01 2760,03

2 2 0,3681 0,188 0,5817 0,1835 -0,3255 0,2047 -0,327 0,174 727,32 81,048 31758 -1373,71 2759,41

2 3 0,7392 0,2141 0,2298 0,2067 -0,658 0,2027 0,0896 0,2037 -0,1928 0,091 722,12 86,579 31255 -1372,06 2758,12

3 1 0,8768 0,0972 0,2627 0,09 -0,1646 0,0846 -0,814 0,0643 725,09 83,721 31577 -1373,1 2758,21

3 2 0,7358 0,2983 0,3795 0,2344 -0,1449 0,1004 -0,6695 0,2942 -0,1115 0,2171 725,75 83,62 31536 -1372,98 2759,95

3 3 0,7149 0,1656 -0,2511 0,238 0,4918 0,1847 -0,6121 0,1403 0,5538 0,1864 -0,5977 0,1304 723,99 85,654 30624 -1370,03 2756,05

AR1

Model coefficients, ARMA(p,q)

Log 
likelihood

AICSigma^2p q
InterceptMA3MA2MA1AR3AR2

Table 2: The coefficients, log-likelihood and AIC for different ARMA(p,q) models fitted to

the data set.

Table 2 shows the different ARMA(p,q) models and the corresponding model coef-

ficients. According to the AIC, either ARMA(1,3) or ARMA(3,3) provides the best
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model fit for the data set. Since a model with fewer variables will make compu-

tations of expected values and variance in forecasts easier, the ARMA(1,3) model

is chosen. For the ARIMA(1,3), all the coefficients are significantly different from

zero. This can be seen by looking at the standard error (s.e.) for the coefficients in

Table 2. In Table 3, a 95% confidence interval is shown for each coefficient. For the

ARMA(3,3), the AR(2) coefficient is not significantly different from zero. This is a

problem with over-parametrization.

Estimate s.e Significant

0,9755 0,0189 0,938456 1,012544 yes

-0,8709 0,0709 -1,009864 -0,731936 yes

0,2676 0,0863 0,098452 0,436748 yes

-0,2084 0,0834 -0,371864 -0,044936 yes

721,9974 86,8305 551,80962 892,18518 yes

Estimate s.e Significant

0,7149 0,1656 0,390324 1,039476 yes

-0,2511 0,238 -0,71758 0,21538 no

0,4918 0,1847 0,129788 0,853812 yes

-0,6121 0,1403 -0,887088 -0,337112 yes

0,5538 0,1864 0,188456 0,919144 yes

-0,5977 0,1304 -0,853284 -0,342116 yes

723,9921 85,654 556,11026 891,87394 yes

ARMA(3,3) 95% Confidence Interval

AR1

MA1

MA2

Intercept

AR1

AR2

AR3

MA1

MA2

MA3

MA3

Intercept

95% Confidence IntervalARMA(1,3)

Model comparison

Table 3: The coefficients for the two models, ARMA(1,3) and ARMA(3,3), with corre-

sponding confidence intervals and significance.

To investigate whether the model fit is reasonable, a simulation with the estimated

model coefficients is run i R. The simulation is done over 10000 weeks. The results of

the simulation are shown in Figure 15, with a simulated time series and correspond-

ing ACF and PACF. Both the simulated ACF and PACF have the same features as

the actual ACF and PACF, with the same decreasing trend for the ACF and cut off

after lag 2 for PACF. Additionally, the simulated PACF returns irregularities in lag

5 and 6, which was seen in the actual PACF, and both graphs spike at lag 2.
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Figure 15: The results of a simulation run in R, with the coefficients for the fitted

ARMA(1,3) model on the weekly sales data without vacations.

To validate the ARMA(1,3) model, the underlying assumption for the model must be

verified. Figure 16 shows the properties of the residuals. The underlying assumption

for the model is that the residuals are serially uncorrelated random variables with

zero mean and finite variance, i.e. independent and identically distributed. From

the plot in the top left figure, the residuals look random and uncorrelated. The

top right figure shows the histogram of the residuals. The histogram is unimodal,

has a bell shape and looks symmetric, which indicates a normal distribution. This

assumption is further checked by the QQ-plot. The linearity of the points and the

fact that the QQ-plot follows the QQ-line suggest a normal distribution. Lastly, in

the bottom right corner of Figure 16, the ACF for the residuals are shown. None

of the lags are significant. Therefore, the residuals appear to be white noise and

the model assumption is verified. This conclusion is further justified by running a

Box-Ljung test on the residuals in R. The test returns a X-squared = 0.188, and

p-value = 0.6646. Thus, the conclusion of the test is that the null hypothesis of the
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autocorrelations being zero cannot be rejected. This indicates that the residuals are

white noise.

Figure 16: Top left: Residuals plotted over time, resembling white noise. Top right: His-

togram of residuals. The histogram is unimodal, has a bell shape and seems to be symmetric.

Bottom left: Normal quantile-quantile plot. The QQ-plot follows the QQ-line in a tightly

manner. Bottom right: ACF of residuals. None of the autocorrelation lags are significant.

To sum up the model fitting procedure, the model chosen as the best fit for the data

is an ARMA(1,3), which is given by the following equation:

Dt+τ = µ+ φ(Dt+τ−1 − µ) + at+τ + θ1at+τ−1 + θ2at+τ−2 + θ3at+τ−3, (21)
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where Dt+τ is the demand at time t + τ , where τ is lead time. at+τ ∼ N(0, σ2) is

the Gaussian white noise.

The following coefficients are found through the model fitting process and are listed

in Table 3: µ is the intercept, φ is the AR1, θ1 is the MA1, θ2 is the MA2 and θ3 is

the MA3. The ARMA(1,3) model can be written as:

Dt+τ = 722 + 0.9755(Dt+τ−1 − 722) + at+τ +−0.8709at+τ−1 + 0.2676at+τ−2 +−0.2084at+τ−3.

(22)

5.4 Incorporating the Model into the Computer Program

In Section 4, the computer program for evaluating lead time decisions was described.

The goal of this section is to connect the demand data to the program in order to

generate the cost curve. The program was developed on the basis that a stochastic

process is assumed, and the demand specific program inputs are calibrated according

to the demand data. Thus, the most suitable stochastic process must be determined.

Additionally, another way to connect the demand and the cost curve is proposed

by utilizing forecasting techniques of the fitted model from Section 5.3.2. This new

way of incorporating the demand data into the program has been implemented in

the program, making it much more flexible to different demand structures.

5.4.1 Assuming a Stochastic Process

Recalling that the program has been developed for two different stochastic processes,

i.e. MRP and GBM, the results of the empirical data analysis must be compared

against these. The MRP is the continuous version of the discrete AR(1) process,

and is stationary. The GBM, on the other hand, is non-stationary. Assuming that

the data follows a GBM, the data would therefore require appropriate differencing

and transformation in order to be evaluated using the steps in Section 5.3.2. This is

done by taking the natural logarithm of the differenced data set. Such alterations

were not performed in Section 5.3.2 to find the best model fit. This suggests that

the mean reverting Ornstein Uhlenbeck process will be the better choice of the two.
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To see how well the AR(1) process fits the data, it is fitted in R. The resulting

coefficients and model fit are presented in Table 4. The AR1 coefficient and the

intercept are significantly different from zero for the fitted model. However, the

model does not perform as well as the ARMA(1,3) with regards to log likelihood

and AIC. This indicates that the AR(1) model is not the best way to describe the

data set.

Estimate s.e Significant

0,3518 0,0654 0,223616 0,479984 yes

767,871 22,0226 724,706704 811,035296 yes

Log likelihood

-1403,76 2813,52

AICSigma^2

42582

Intercept

Model Coefficients, AR(1)

Parameters

AR(1) 95% Confidence Interval

AR1

Table 4: The coefficients and parameters for the fitted AR(1) model with corresponding

confidence intervals and significance.

To further analyze the AR(1) model’s validity of the data, the residual diagnostics

are performed. The results of the analysis are shown in Figure 17. As the top left

graph shows, the residuals seem to contain certain patterns. This indicates that the

residuals are not uncorrelated. The histogram and QQ-plot show that normality is a

fair assumption for the distribution of the residuals. However, if the assumption that

the residuals are white noise is to be correct, the residuals have to be uncorrelated.

By looking at the ACF plot in the bottom right graph, it is clear that there are

significant correlations between different lags of the residuals, e.g. at lag 1, 2, 5 and

6. Hence, the assumption of white noise residuals is not justified.
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Figure 17: Top left: Residuals plotted over time. There seems to be some correlations

within the residuals. Top right: Histogram of residuals. The histogram is unimodal, has a

bell shape, but seems to experience some skewness and excess kurtosis. Bottom left: Normal

quantile-quantile plot. The QQ-plot follows the QQ-line in a tightly manner, with slightly

heavy tails, especially in the lowest quantiles. Bottom right: ACF of residuals. Multiple

lags have significant autocorrelation.

The conclusion is that the AR(1) model, representing the MRP, fits the data better

than the GBM, because of the stationarity of the time series and the lack of need

for transformation of the data. However, the AR(1) model is not the best model fit

for the data set.
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Calibrating the Model Parameters for the Computer Program

Assuming that the weekly sales time series can be modeled as a stationary AR(1)

process, the parameters of the process can be estimated using either an Ordinary

Least Square (OLS) method or a Maximum Likelihood method. OLS estimation

was performed on the weekly sales data without vacations in R. The parameters

are estimated and presented on a per week basis in Table 5, as the time series have

weekly increments.

Parameter Symbol Value

Mean reversion rate per week α 1,05

Long term equilibrium μ 771

Volatility per week σ 41,37 %

Mean Reverting Ornstein Uhlenbeck Process Parameters

Table 5: The results of the OLS calibration of the MRP parameters, based on the weekly

sales data without vacations from 2009 to 2014 for the clutch servo.

It is noticeable that the mean reversion rate, α, is above 1. This means that the

process reverts quickly towards the long term equilibrium, with a half life of 0.66

weeks. Additionally, the weekly volatility, σ, is relatively large, and represents 319

clutch servos per week. The implication of these findings will result in a quickly

reverting cost curve. The cost curve will most likely be relatively flat after the

first two weeks since the variance will stabilize at the equilibrium level at this point.

Hence, reducing lead time is only expected to be valuable within the first two weeks.

Consequently, the value of reducing lead time from long lead time to two weeks is

expected to be low.

5.4.2 Using the Fitted ARMA Model in the Computer Program

In this section, a direct link between the best model fit and the computer program

is proposed. Recall that the mismatch cost function from Section 4.1.3 is derived for

a demand variable that is assumed to follow an MRP, and has a normal probability

distribution. The derivation was performed on a general basis, enabling usage of
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any process or model that has a normal distribution. The next step is to determine

the probability distribution for different lead times.

After fitting the demand data to an ARMA(p,q) model, residual analysis and fore-

casting techniques from time series analysis can be utilized to predict the probability

distributions of the demand variable. The ARMA(1,3) model was found to be the

best fit for KA’s demand data. The model has normally distributed error terms, i.e.

residuals. Thus, the ARMA(1,3) has a demand variable that is normally distributed.

Further, the distribution for different lead times needs to be determined. This is

done by calculating the mean and variance for the forecast at different steps ahead.

The steps ahead will in this case represent different lead times.

The expected mean of the ARMA(1,3) model for 1, 2, 3, and τ steps ahead can be

written as:

E[Dt+1|Dt, Dt−1, ...] = µ+ φ(Dt − µ)− θ1at − θ2at−2 − θ1at−3,

E[Dt+2|Dt, Dt−1, ...] = µ+ φ(E[Dt+1]− µ)− θ2at − θ3at−2,

E[Dt+3|Dt, Dt−1, ...] = µ+ φ(E[Dt+2]− µ)− θ3at,

E[Dt+τ |Dt, Dt−1, ...] = µ+ φ(E[Dt+τ−1]− µ) ∀ τ ≥ 4.

The expected forecast error variance for the same model is given by:

V ar(Dτ ) = σ2
τ−1∑
i=0

ψ2
i ,

where

ψ0 = 1,

ψ1 = θ1 + φ,

ψ2 = θ2 + φψ1,

ψ3 = θ3 + φψ2,

ψj = φψj−1 ∀ j ≥ 4.

The coefficients, θ, µ, σ2 and φ, are the ARMA(1,3) model coefficients from Table

2.
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As a sourcing decision has great strategic impact and often has investment costs

related to the change between suppliers, it is crucial that the decision is valid over

a long time period. Since the ARMA(1,3), in this case, is stationary, the mean and

variance will revert to a long term level. Thus, the input demand for the calculation

of the expected mean demand is assumed to be the same as the long term mean

in the program. Hence, the cost curve will be mostly affected by the variance of

the forecast, which corresponds to the objective of the program - to estimate risk of

different lead times and value this risk.

Following the proposition of using forecast techniques as a tool to predict the prob-

ability distribution for the demand variable at different lead times, it is clear that

the computer program can be customized to a large variety of demand time series.

For the general expected mismatch cost function, assuming a normal distribution,

the corresponding expectation of mean and forecast error variance for different lead

times are needed to define the distribution and to build the cost curve. Further

additions, such as differencing, can be included. The general expected mismatch

cost function, assuming a log-normal distribution, can be utilized if the time series

needs logarithmic transformation.

5.4.3 Comparing the Approaches

To see the difference and similarities between the two approaches of connecting the

demand data to the computer program, both programs are run on a simple example

case. As both the MRP and the ARMA(1,3) are stationary, they should experience

a mean reverting behavior. Additionally, since the graphs have the same underlying

data set, the cost level should be relatively equal. The difference between the curves

is likely to origin from how fast the curve stabilizes. Figure 18 shows the two cost

curves generated by MRP in the left graph, and by use of ARMA(1,3) in the right

graph.
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Figure 18: The results of the the computer program run with the MRP stochastic process in

the top graph and the ARMA model in the bottom graph. The parameters for the MRP and

the coefficients for the ARMA model are determined from KA’s demand data. Program

input: Current lead time is 18 days, Price is NOK 100, Salvage Value is NOK 50 and Cost

is NOK 70.

As mentioned above, both curves experience mean reversion and a relatively equal

cost level. However, the MRP curve stabilizes more quickly than the ARMA(1,3)

curve. The cost curve of ARMA(1,3) actually continues to decrease at longer lead

times. This means that although the demand is stationary, the stable level is not
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reached within the first 7-8 weeks. Hence, the demand risk is greater at lead times

of e.g. 7 weeks compared to e.g. 2 weeks, and the cost at longer lead times should

account for the increase in risk.

It is also worth noticing that the cost curve generated by using the ARMA(1,3)

forecast is not smooth, unlike the MRP. The reason for the kinks in the cost curve

is that the forecasts of mean and variance are made on a weekly basis, and then

interpolated to generate the points between.

To sum up, the graphs produced by the different approaches are relatively equal, and

will not lead to significantly different conclusions when evaluating different sourcing

alternatives. For the following case study only the MRP graph will be shown.

5.5 Actual Demand Data

As mentioned in Section 5.1, KA has started gathering actual demand data for the

clutch servo. The data set contains actual demand forecasts for every delivery in

the coming year - provided by Scania. Due to the nature of the forecast series, the

first data point is actually the experienced demand for the time the forecast series

was extracted because it represents what Scania wanted at that particular time.

Hence, the first data point of all the forecast series extracted in the collection period

from November 2013 to February 2014 is the experienced demand at the time of

extraction. This corresponds to 12 weeks of actual demand data at delivery and

12 weeks associated forecasts for these actual demands. This is directly gathered

from the EDI-system. In the given period, Scania had an average order frequency

of three orders per week, yielding a total of 36 data points.

Since the data set only contains a limited number of data points, it cannot be used

by itself to generate a trustworthy representation of the actual development of KA’s

demand. However, it is fair to believe that the demand data can be used to check

whether the assumptions made for the weekly sales data analysis are reasonable.

This assessment is done in two ways. Firstly, the demand is assessed by investigating

how the demand changes from order to order, as a time series. Then, the evolution
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of each order’s forecast demand up until delivery is assessed.

In Figure 19, the actual demand time series for the clutch servo is shown. The left

graph is the actual demand per order, while the right graph shows weekly aggregated

orders. Although it is hard to conclude from such small samples, there seems to be no

consistent trend in the left graph. The two time series seem to be relatively volatile,

but while the left graph is stationary around the mean, the weekly aggregated data

seems to have a downward trend. However, it is worth noticing that the right graph

is based on only 12 data points. In addition, the variance does not seem to change

over this time period in the left graph. This corresponds to the findings in Section

5.3.2.

Figure 19: Actual demand for clutch servos. Left plot: The time series with all orders from

11.11.2013 to 14.02.2014, 36 data points. Right plot: The aggregated weekly demand for

the same period. The mean is shown as a straight line.

To assess how the demand for each specific order evolves through time, each order

and its demand forecast up until delivery is evaluated. Figure 20 shows the dis-

tribution of the forecasts at different weeks before delivery, and Figure 21 shows

how the mean and standard deviation of the forecast develops over the same time

period. Thus, it can be compared to the forecasting of the ARMA(1,3) model in

Section 5.4.2 and the calibration of the MRP, as these estimate how the parameters
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(mean and standard deviation) of the demand distribution evolve at different lead

times. Both processes assume a normal distribution, where the forecast of the mean

approaches an equilibrium level and the forecast of the standard deviation increases

initially, but stabilizes over time.

The histograms of the forecast demand with short time to delivery seem to be

more normal than those where time to delivery is long. Thus, assuming a normal

distribution is justified with few weeks to delivery and at delivery, but less justified

for a longer time horizon. As these histograms are produced with few data points,

they only provide an indication of the distribution. A large sample would yield a

more trustworthy assessment of the distributions for different forecasts. However,

the assumption of normality is overall fairly justified.

From Figure 21, the mean of the demand forecast is stable, but the forecasts are

consistently above the actual demand at delivery. The mean at each week before

delivery is always within one standard deviation from the actual demand at delivery.

Thus, the assumption about a stable demand seems to be valid. The graph to the

right shows that the standard deviation of the demand is lowest at delivery and

is increasing for the first forecasting weeks. From week 3 to week 11 the standard

deviation has some variation, but the trend stabilizes. This is similar to how the

predicted standard deviation given by the ARMA(1,3) model and the Ornstein Uh-

lenbeck process develops. Consequently, this finding supports the chosen model of

KA’s demand.
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Delivery

Figure 20: Histograms of actual demand forecast from 11 weeks before delivery until actual

demand realized at delivery, 42 observations per histogram as there were 3 order per week

in the period. The vertical axis is the frequency of observations, and the horizontal axis

is how much the orders deviate from the mean, given in standard deviations. Thus, the

middle bar includes the observations that are within +/- 0.5 standard deviations from the

mean.
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Figure 21: Based on the histograms of Figure 20, these graphs show the development of

the mean and standard deviation for all orders as delivery approaches. For both graphs,

the horizontal axis presents weekly intervals - starting at the actual demand at delivery and

ending at the forecast demand 11 weeks before delivery. The graph to the left shows the

development of the demand forecast mean, while the graph to the right shows the standard

deviation of the forecast.

According to the findings by assessing the actual demand data, it seems as the

assumption of using a stationary mean reverting process, without differencing or

transforming the data set, is justified. Although this assessment was performed

using a small data sample, the results point in the same direction as the findings

in Section 5.3.2. In addition, the results are in accordance with the intuition of the

managers at KA about how the demand develops.
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6 Case Study and Analysis

As earlier mentioned, this case study will focus on sourcing decisions associated with

three of the input components for KA’s clutch servo. The motivation behind the

selection of components will be discussed first, before the program input parameters

is explained and derived. Thereafter, considerations specific for the case are iden-

tified and discussed. Then, three sourcing cases, one for each component, will be

evaluated using the computer program. Lastly, a sensitivity analysis on the sourcing

cases is performed. For each case, all the input parameters needed to replicate the

results are reported in Appendix A.

6.1 Motivation

The automotive industry is a very competitive industry, where the pressure for

continuous improvements is high. For KA, this means that they are constantly

challenged by their customers to find quicker, cheaper and better solutions in order to

remain competitive. Consequently, KA is constantly revising their current sourcing

partners with hope of finding better ones. This is a time consuming activity and KA

therefore needs to prioritize the components that are believed to have the highest

possible gain.

Of all the 46 components that make up the clutch servo, the piston, piston rod and

aluminum casting account for 50% of the total procurement cost. These components

are also of high strategic importance for KA as they are crucial for the reliability

and performance of the servo. As a result, the quality requirements are extra high

for these components. In addition, as for all other components, the piston, piston

rod and casting all need to comply with the industry ISO standards. This shows

that choosing the right supplier for these components is not only important, it can

also be hard as strict requirements limit the number of potential suppliers.

Further, these components are specialized for the 125mm clutch servo. This high

degree of customization makes the components, and some of the production gear,
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worthless for the supplier if they are to lose the contract with KA. Suppliers therefore

tend to require longer contracts to cope with this risk. As a result, it is important

for KA to choose the correct supplier for these components the first time. The

reason is that they can not simply change the supplier without incurring additional

investment costs and penalties for not fulfilling the contract, if the agreement turns

out to be non-optimal. The customization also makes the process of choosing a

supplier more complex as KA will need to educate the supplier in how to manufacture

these components.

As the nature of these three components shows, choosing the correct supplier can

save KA both money and time. In addition, the high strategic importance of the

components makes KA always seek to have a high service level to limit the risk of

a stock out. This is because KA cannot simply buy them elsewhere if the supplier

is to run out. Finding an optimal mix of quality, service level and price is therefore

key when assessing different suppliers. As the piston, piston rod and casting all have

strict requirements to quality and service level and represent a high possible cost

reduction - the managers at KA have chosen them as the components of interest for

this case study.

6.2 Input Parameters

This section will explain the reasoning for each of the parameters that are plugged

into the program. The generic parameters, which are similar for all components, will

be discussed first. Then, an assessment of the parameters unique to each component

follows. Figure 22 shows the computer program’s input panel. The mean reversion

rate and volatility refer to the mean reversion rate per week and volatility per week,

reported in Table 5 of Section 5.4.1. As Figure 22 shows, the risk free-rate is, in

contrast to the volatility and mean reversion rate, defined yearly.
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Current Lead Time 0 Days
Price 0,00 Unit Price
Salvage Value 0,00 Unit SV
Cost 0,00 Unit Cost

Volatility 41,37 % For 7 Days
Yearly Risk‐Free Rate 5,00 % For 365 Days
Mean Reversion Rate 105,15 % For 7 Days

Storage Cost 0,00 Per Unit
Capital Cost 0,00 Per Unit
Transportation Cost 0,00 Per Unit
Other Costs 0,00 Per Unit

INPUT
Product Parameters

Demand Process Parameters

Optional Parameters

Figure 22: The computer program’s input panel.

6.2.1 Cost

In this case study, the cost in the program refers to the per unit procurement cost

for each component. As mentioned in the product description, the figures reported

in this case study are approximations of the real costs. These approximations were

carried out by the managers at KA due to confidentiality concerns. The total pro-

curement cost of the clutch servo is set to NOK 200. The aluminum casting is the

most expensive component - with the cost of NOK 70 per unit. The piston rod has

a cost of NOK 20 and the piston costs NOK 10. Together, these three components

account for 50% of the total procurement cost. The costs are stated in Figure 23.

6.2.2 Sales Price

This case study considers components that go into the clutch servo, meaning that the

they are not sold separately. Hence, the sales price for each component is not known.

In cooperation with the managers at KA, this thesis estimates the sales prices. The

estimates are based on the assumption that each component accounts for the same

fraction of the clutch servo’s sales price as it does for the total procurement cost.
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For the aluminum casting, this means that the sales price is calculated as follows:

the total procurement cost for the clutch servo is NOK 200 and the procurement

cost for the casting is NOK 70. Hence, the component constitutes 35% of the total

procurement cost. The sales price of the clutch servo is estimated to be NOK 550.

Thus the sales price of the aluminum casting is therefore estimated to be NOK

192,50, i.e. 35% of NOK 550. Included in the sales price is a value add of NOK 30

and the obtained margin of 48,05%. The calculations for the remaining components

are carried out using the same procedure and are shown in Figure 23.

Component Standard�Cost Value�Added Total�Cost Margin Sales�Price
Casting 70,00kr������������� 30,00kr������������ 100,00kr���������� 48,05�% 192,50kr�����������
Piston�Rod 20,00kr������������� 5,00kr�������������� 25,00kr������������ 54,55�% 55,00kr�������������
Piston� 10,00kr������������� 5,00kr�������������� 15,00kr������������ 45,45�% 27,50kr�������������
Other�Components 100,00kr����������� 60,00kr������������ 160,00kr���������� 41,82�% 275,00kr�����������
Sum 200,00kr����������� 100,00kr���������� 300,00kr���������� 45,45�% 550,00kr�����������

Cost�and�sales�price�breakdown�for�the�components

Figure 23: Cost and sales price breakdown for the components.

6.2.3 Salvage Value

The salvage value is defined as salvage revenue less the unit salvage cost required

to dispose the unsold product [Hill, 2011]. In other words, it is the estimated value

an asset will realize upon its sale when production exceeds demand. At first, the

whole concept of salvage value seemed not applicable to KA. The reason is that

if KA overproduces, it is not forced to sell its products at a lower price. KA will

instead put the excess products in storage and use them in its next delivery. This

way of handling overproduction is possible because the demand for clutch servos is

rather stable. However, setting the salvage value equal to the sales price poses an

incorrect scenario. KA will then be encouraged to produce at maximum capacity

all the time, because the profit will then depend on the production quantity and

not on the actual demand. Further assessment of the problem revealed a different

scenario for the treatment of salvage value. When asked why they did not produce

at maximum capacity all the time, the KA managers pointed out that this would
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yield high storage costs and tie up unnecessary working capital in finished goods.

In cooperation with the managers, the salvage value in the case study is therefore

defined as the initial procurement cost minus both the incurred storage cost per

unit and the capital cost of holding the component. The managers at KA’s reported

internal rate of return of 12% is used to calculate the capital cost. In other words,

this means that KA sells its excess production in future deliveries, and therefore has

to store the products meanwhile. This results in storage costs and unnecessary use

of capital. Thus, the salvage value is reduced to less than the procurement cost.

As the procurement cost for each component is known, an estimate of the annual

storage cost per clutch servo is needed to calculate the salvage value. These calcu-

lations were carried out in cooperation with the managers at KA and are done in

four steps. The results are shown in Figure 24.

Step 1: Estimating the Total Annual Storage Cost of the Factory

As KA does not explicitly report their total storage cost, this needed to be estimated.

This is done by adding together all costs associated with the operation of the storage

facility. This gives the total storage cost for the whole factory.

Step 2: Extracting the Annual Storage Cost of Finished Goods

To obtain the storage cost for finished clutch servos, the storage cost for all finished

goods first needs to be defined. By dividing the total capital tied up in finished

goods by the total capital tied up in storage, a proxy for the percentage share of

total storage cost associated with finished goods is obtained. This number is then

multiplied with the total storage cost for the factory, obtained in step one, to get

the annual storage cost for finished goods.

Step 3: Extracting the Annual Storage Cost for the Clutch Servos

With the annual storage cost for finished goods known, one now needs to isolate

the costs associated with the clutch servo. Then dividing the total revenue for the

clutch servo by the total revenue of the plant, a proxy for the clutch servos’ share

of the finished goods is obtained. This number is then multiplied with the annual

storage cost for finished goods, calculated in step two, to obtain the annual storage
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cost for the clutch servos.

Step 4: Estimating the Per Unit Storage Cost for Scania Clutch Servos

The last step estimates the total number of clutch servos that are in storage in a

year and uses this to obtain the per unit storage cost. The assumption that only

products that are in storage should have a storage cost is used. The total number

of clutch servos in storage per year is found by multiplying the average clutch servo

stock size with 52 weeks. Confirmed by the KA managers, the average clutch servo

storage is 281. Further, the managers at KA assume that a clutch servo is never in

storage for more than one week. As most of the servos in storage are used in the

upcoming delivery, instead of new products, this is thought to be a good assumption.

Dividing the yearly clutch servo storage cost by the total number of clutch servos

in storage then gives the per unit storage cost.

Truck�drivers 3�528�000,00kr������� Total�capital�tied�up�in�storage 19�000�000,00kr�����
Maintenance�of�the�storage�facility 250�000,00kr���������� Capital�tied�up�in�finished�goods 3�500�000,00kr�������
Trucks�and�fork�lifts 288�000,00kr���������� Percentage�finished�goods�of�total 18,4�%
Total�annual�storage�cost�of�factory 4�066�000,00kr������� Annual�storage�cost�of�finished�goods 749�000,00kr����������

Total�revenue 260�000�000,00kr��� Clutch�servos�in�storage�per�week 281
Revenue�Scania�clutch�servo 18�000�000,00kr����� Total�clutch�servos�in�storage�per�year 14612
Percentage�clutch�servo�revenue�of�total 6,9�% Annual�storage�cost�for�Scania�clutch�servos 51�853,85kr�������������
Annual�storage�cost�for�Scania�clutch�servos 51�853,85kr������������� Per�unit�storage�cost�for�Scania�clutch�servos 3,55kr����������������������

Extracting�the�annual�storage�cost�for�Scania�clutch�servos Estimating�the�per�unit�storage�cost�for�Scania�clutch�servos
Step�3 Step�4

Step�1 Step�2
Estimating�the�total�annual�storage�cost�of�the�factory Extracting�the�annual�storage�cost�of�finished�goods

Figure 24: Calculation of per unit storage cost for the clutch servo.

The calculation of each component’s salvage value is given by the equations below

and the results are shown in Figure 25. The salvage value (SV) is found by taking

each component’s procurement cost (PC) and subtracting its storage cost (SC) and

capital cost (CC):

SVcomponent = PCcomponent − (SCcomponent + CCcomponent).

To find the component’s storage cost, the precentage procurement cost is used as a

proxy:

SCcomponent = SCunit
PCcomponent
PCunit

.
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The monetary cost of capital per component is derived using the seven day average

storage time assumption, along with KA’s annual cost of capital of 12%:

CCcomponent = PCcomponent(e
ln(1,12) 7

365 − 1)e−ln(1,12) 7
365 .

This leads to the salvage values reported in Figure 25.

Variable Piston-Rod Piston Casting Comments
Procurement-cost 20,00kr---------- 10,00kr---------- 70,00kr---------- Each%component's%procurement%cost,%reported%by%KA

Percentage-of-total-procurement-cost 10-% 5-% 35-% Procurement%cost%/%total%procurement%cost%(NOK%200).%Used%as%a%proxy%
for%calculating%storage%costs

Storage-cost-per-unit 0,35kr------------ 0,18kr------------ 1,24kr------------ Storage%cost%per%unit%*%Percentage%cost%of%total%procurement%cost

Cost-of-capital-(7-days-in-storage)- 0,04kr------------ 0,02kr------------ 0,15kr------------ Based%on%the%procurement%cost%and%7%days%with%12%%cost%of%capital

Salvage-Value 19,60kr---------- 9,80kr------------ 68,61kr---------- Per%unit%salvage%value

Calculation-of-each-component's-salvage-value

Figure 25: Calculation of each component’s salvage value.

However, recall from Section 4.2.3 that adding supplier specific costs to the program

yields higher procurement costs. Since the reasoning behind the calculation of KA’s

salvage value bases its intuition on KA selling its excess production back to itself,

they will also have to pay the supplier specific costs for these products. Hence, these

costs should be added to the salvage values reported in Figure 25 to yield the correct

salvage value. However, since the calculation of supplier specific costs are subject to

assumptions and therefore can vary, this theses has concluded to report the salvage

values without including them. The supplier specific costs are simply added to the

calculated salvage values, of Figure 25, in the program.

6.2.4 Estimation of Supplier Specific Costs

Storage cost, capital cost and transportation cost are all costs that highly depend

on the nature of a sourcing scenario. Since this case study features several different

sourcing scenarios, general models for estimating these costs have been developed.

The derivation of the models, along with the underlying theory, is presented in this

section. As there are no other costs reported for the case of KA, the variable ”other

costs” is set to zero throughout the case study.
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Estimating the Per Component Storage Cost for Different Sourcing Sce-

narios

To find out how storage costs for different components vary with different sourcing

scenarios, this thesis uses changes in stock level. KA operates with two different

stock levels for their raw materials - safety stock and cycle inventory. The cycle

inventory is the inventory held between two shipments from a supplier to satisfy

demand. If one assumes a constant demand within this period, i.e. the inventory is

decreasing at a steady rate, the average cycle inventory (ACI) can be defined as:

ACI =
CImax − CImin

2
,

where CImax is the maximum level of cycle inventory and CImin is the minimum

level of cycle inventory. If one then assumes that KA sells all its cycle inventory

between two shipments, CImin = 0 and CImax becomes the ordering quantity (Q).

Q is then defined as the expected demand between two shipments [Chopra, 2013]:

Q = µF,

where µ is the average demand per week, as reported in Section 5.4.1, and F is the

number of weeks between deliveries. The average cycle inventory then becomes:

ACI =
µF

2
. (23)

Since µ is constant for different suppliers, the ACI only depends on the order fre-

quency, F, which may vary for different suppliers. The safety stock (SS) is defined

as the level of extra stock that KA maintains to mitigate the risk of stockouts due

to uncertainty in demand [Chopra, 2013]. According to Chopra et al. [2004], SS is

defined as follows:

SS = F−1(CSL)

√
σ2
D,LT +

��
��
�* 0

(µ
L

7
)2s2

L , (24)

where F−1(·) is the normal inverse function, CSL is the customer service level, σD,LT

is the standard deviation of demand for the given lead time, µL7 is average demand

per week scaled according to lead time, and sL is the standard deviation of lead time.

Recall that demand is modeled as a mean reverting Ornstein Uhlenbeck process.
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Thus, σD,LT is given by the variance formula in Section 4.1.3, and the demand

is normally distributed. In compliance with the managers at KA, the standard

deviation of lead time is assumed to be zero. This assumption cancels the last term

of Equation (24). Since desired service level and standard deviation of demand are

not dependent on supplier selection, the safety stock for different scenarios only

depends on lead time. This is also in accordance with the findings of Ouyang and

Chang [2002] from the literature review.

With the level of both inventories known, the cost associated with each of them is

found as follows:

SScost = TSCrm
PCcomponent

C

SS

SS +ACI

and

ACIcost = TSCrm
PCcomponent

C

ACI

SS +ACI
, (25)

where SScost is the cost of the safety stock, ACIcost is the average cost of the cycle

inventory, TSCrm is the annual raw material storage cost for the clutch servo and

PCcomponent
C is the component’s share of the total procurement cost. This fraction is

used to scale the TSCrm to only capture the cost associated with that component.

The TSCrm is found using the same approach as in Section 6.2.3. Figure 26 shows

the results.

Total�capital�tied�up�in�storage 19�000�000,00kr������ Total�revenue 260�000�000,00kr����
Capital�tied�up�in�raw�materials 11�500�000,00kr������ Revenue�Scania�clutch�servo 18�000�000,00kr������
Percentage�raw�material�of�total 60,5�% Percentage�clutch�servo�revenue�of�total 6,9�%
Total�annual�storage�cost�of�factory 4�066�000,00kr�������� Annual�storage�cost�of�raw�materials 2�461�000,00kr��������
Annual�storage�cost�of�raw�materials 2�461�000,00kr�������� Scania�clutch�servo�raw�materials�storage�cost� 170�376,92kr�����������

Step�2
Extracting�the�annual�storage�cost�of�raw�materials

Step�3
Extracting�annual�storage�cost�for�Scania�clutch�servo�raw�materials

Figure 26: Calculation of annual raw material storage cost for the clutch servo. The

calculations are the same as step two and three in Figure 24.

As the TSCrm is the current cost, this approach can only be used to find the SScost

and ACIcost for the current sourcing scenario. If KA decides to choose a different

supplier, the TSCrm might change, yielding a different SScost and ACIcost. To find

the costs for a potential sourcing scenario, this thesis uses the relative increase in
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SS and ACI to scale SScost and ACIcost accordingly. This method is shown in the

following equation:

SScostnew = SScostold
SSnew
SSold

and ACIcostnew = ACIcostold
ACInew
ACIold

. (26)

These costs are, however, only the cost of operating the storage facility for different

inventory levels, broken down on different components. To obtain the complete

storage cost for each component (SCcomponent), one needs to add the capital cost of

holding the inventory. This method is shown in the following equation:

SCcomponent = (SScost +ACIcost)︸ ︷︷ ︸
operating cost

+ (SS +ACI)(eln(1,12) − 1)e−ln(1,12)︸ ︷︷ ︸
capital cost

, (27)

where (SS + ACI) is the inventory level, calculated in equation (24) and (23).

Finally, to obtain the per component storage cost (SCper component), the SCcomponent

is divided by 52µ, which is the annual number of components bought:

SCper component =
SCcomponent

52µ
.

Important to note is that this storage cost is not the same as the storage cost used

to calculate salvage value - that was the storage cost of finished goods.

Estimating the Per Component Capital Cost for Different Sourcing Sce-

narios

KA experiences a lag between the date the payment of procured goods is due, and

the date they receive the payment from Scania for the sold goods. It is this lag that

causes a capital cost. KA is obligated to pay its suppliers 90 days after the procured

goods are delivered. In legal terms, the goods are delivered when they leave the

supplier’s factory. At the other end of the transaction, Scania’s net payment is due

within 90 days after delivery, with the same delivery terms as KA has with its sup-

pliers. Thus, KA’s lag between payment of procured goods and receiving payment

from Scania depends on the lead time of the supplier and KA’s production time.

For the purpose of this thesis, the managers at KA wanted the plant at Hvittingfoss

to be treated as a black box with a production time of 7 days. The capital cost for

the component (CCcomponent) is calculated from the component’s procurement cost
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(PCcomponent) in the following equation:

CCcomponent = PCcomponent(e
ln(1,12) x

365 − 1)e−ln(1,12) x
365 ,

where x is the sum of the supplier’s lead time and KA’s production time. For in-

stance, when sourcing from a supplier with a lead time of 40 days and a procurement

cost of NOK 50, KA’s capital cost is:

CCcomponent = NOK 50(eln(1,12) 47
365 − 1)e−ln(1,12) 47

365 = NOK 0.72,

where x = (40 + 7) days = 47 days. If KA, for example, is able to reduce this

lead time to 20 days, the capital cost will decrease by 42% to NOK 0.42. Figure

27 illustrates how the lag between KA’s and Scania’s payment date causes a capital

cost for KA.

Net: 90 days

LT: 20 days PT: 7 days

LT: 40 days PT: 7 days Net: 90 days

Net: 90 days

Payment

Income 
LT: 40 days

Income 
LT: 20 days

Capital Cost 47 days

Capital Cost 27 days

-$

+$

+$

Production  
Initiated at Supplier

LT: Lead Time  Net: Payment Period  PT: Production Time  trek: Capital Cost Period

Figure 27: Illustration of the lag between the date the payment of procured goods is due,

and the date KA receives the payment from Scania for its sold goods. It is this lag that

causes a capital cost for KA. The upper line represents KA’s payment to the supplier, while

the middle line presents KA’s income with a lead time of 40 days and the lower line shows

the income when the lead time is 20 days.

Estimating the Per Component Transportation Cost for Different Sourc-

ing Scenarios

Transportation cost highly depends on the distance between KA’s factory and the

location of the supplier. The managers at KA have provided estimates of the trans-

portation cost for the locations evaluated in the case study, and the relative differ-

ences between the different locations are presented in Figure 28.
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From�Asia�to�Europe Ͳ25�%
From�Europe�to�Norway Ͳ33�%

From�Norway�to�Europe 33�%
From�Europe�to�Asia 50�%

Reducing�Distance�to�Supplier

Increasing�Distance�to�Supplier

Transportation�Costs

Figure 28: The relative differences in transportation cost for the locations evaluated in the

case study.

6.3 Case Specific Considerations and Assumptions

If the case study in this thesis is to give realistic results, the computer program

has to be able to capture the dynamics of KA’s operations. For certain parts of

the analysis, the underlying theory and mathematics can represent KA’s reality in

a good way. However, some aspects are impossible to implement directly without

weakening the validity of the program. Therefore, some assumptions and case spe-

cific considerations are made in the program. These aspects are presented in this

section.

6.3.1 The Use of Service Level

As discussed in Section 3.1, the service level is highly important for the competi-

tiveness of suppliers in all tiers of the automotive industry. However, in this thesis,

the term service level has two different definitions. The definitions are not based on

the same derivations, hence they are not comparable in any way. The first definition

of the term is KA’s minimum required delivery precision to Scania, which is 96%.

This service level is described in detail in Section 5.1. The second definition of the

term refers to the service level from the Newsvendor model. This service level is

obtained from the critical fractile in Equation (4), and depends on the price, cost

and salvage value of a product in the following ratio: p−c
p−s . The Newsvendor model

finds the production quantity that optimizes the expected profit, hence the service

level from the model is optimal with respect to profit maximization.
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The computer program used in this thesis is based on the principles of the Newsven-

dor model, hence the obtained service level in the program has nothing to do with

KA’s suggested delivery precision.

6.3.2 Treatment of Underproduction

The model presented in Moltu et al. [2013] uses the assumption that if you produce

less than demand, you will lose sales. This, however, is not the case for KA. If KA

underproduces on one delivery, and consequently is unable to meet Scania’s demand,

it is simply forced to deliver the backlog on the next delivery. If KA underproduces

over a longer period of time, it is forced to create a recovery plan to deal with the

backlog. As this reveals, KA does not actually face lost sales. Instead, they are

simply forced to cover up for any underproduction on future deliveries. This makes

the assumption of underproduction incorrect and consequently the program less

applicable. If incomplete KA-deliveries result in production stops at its customers,

KA must pay major fines to compensate for the losses. If such an event should

happen, KA is most likely not considered for future business. This aspect makes

KA more drawn towards producing too much, rather than risking backlog.

The nature of KA’s agreement with Scania forces them to always strive to produce on

demand as underproduction has dramatic effects on the relationship. Consequently,

the program will have to relate some cost to not meeting demand to prevent the

program from systematically advising underproduction. The reason is that if there

is no cost associated with underproduction, but there is a cost of overproduction, the

program will favor underproduction. This obviously yields the wrong result. Taking

this into account, one can look at the assumption of lost sales as a way of modeling

this problem. Hence, the program assigns the cost of lost profit, p− c, to every lost

sale. For the purpose of this case study, this assumption is therefore thought to be

a valid replication of the actual case. Incorporation of underproduction will simply

prevent the program from favoring underproduction by default. When presented

with this assumption, the managers at KA agreed that this was a good way to

replicate their situation.
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KA is currently the only supplier of the clutch servo for Scania. However, this

situation might change, as Scania has implied that dual sourcing might be taken

into use in the near future. If dual sourcing is introduced by Scania, KA will

actually face the risk of losing sales. This will therefore increase their demand

uncertainty, because Scania can choose which supplier to use for every order. The

current contract with Scania does not define a minimum order quantity. In addition,

Scania’s demand for clutch servos will not change if dual sourcing is implemented,

thus KA’s maximum possible demand is unchanged. In other words, KA risks a drop

in demand if dual sourcing is implemented and lost sales may occur. Consequently,

KA’s delivery precision will be more important than before, and it can distinguish

them from the competitors - for better or for worse. The computer program already

assumes that lost sales occur when demand exceeds the produced quantity, hence

the program is directly applicable if dual sourcing becomes a reality.

6.4 Piston

6.4.1 Product Specifics

The piston is the component within the clutch servo cylinder that compresses air

by reducing the cylinder’s volume. This creates pressure, which is then used to

release the clutch. In its simplest form, it is basically an aluminum disc. The piston

is a customized component made solely for the 125mm Scania clutch servo. It is

ready for assembly upon arrival at plant Hvittingfoss, and is simply stored until it

is mounted onto a clutch servo. There are two pistons per clutch servo, one small

and one large. The component of interest here is the larger one.

6.4.2 Case Specifics

The piston is currently sourced from South Korea with a lead time of 47 days. As

this lead time is relatively long, KA is not looking to extend this further. This is

based on the fact that they believe the piston is currently sourced from the cheap-
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est alternative, relative to lead time. Extending the lead time further will give

increased storage cost and capital cost and may lower the service level, without any

procurement cost reduction.

Internally, KA has a policy of sourcing expensive products from nearby suppliers to

reduce storage cost, capital cost and improve the service level. Based on this, KA

wants to look at the alternative of sourcing the piston from a supplier with a shorter

lead time. Of the potential suppliers, a producer in France has been proposed as a

suitable alternative. The supplier offers a procurement cost of NOK 13, representing

a 30% increase from South Korea. However, they can offer a lead time of only 7

days, 40 days shorter than South Korea. In addition, as shown in Figure 28, the

transportation cost of the French supplier entails a 25% reduction from the South

Korean level. The storage cost and cost of capital are reduced as well when choosing

the French producer. KA is currently evaluating this alternative, but keeps finding

the increase in procurement cost too high to justify the lead time reduction. They

are therefore wondering if the outcome would change if they also take exposure to

demand risk into account. The question is therefore whether the increased costs

associated with sourcing from France will justify the decrease in demand risk.

6.4.3 Results

Figure 29 shows the result obtained from the computer program. As the figure

shows, the producer in France has a cost that is way above the indifference curve.

Recall from Section 4.2 that the indifference curve shows the cost at which you

are indifferent between different lead times. Hence, sourcing from France is not

favorable. The indifference cost for a seven day lead time is only marginally higher

than the cost in South Korea. To be favorable, the producer in France will therefore

need to drastically decrease its procurement cost, supplier specific costs or further

reduce its lead time. However, there are other factors associated with reducing the

lead time by 40 days that will affect the sourcing decision. Aspects such as service

level, communication issues, currency risk and quality are not accounted for here

and may very well influence the result. However, these factors are not believed to
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be sufficient enough to alter the conclusion. A more thorough assessment of such

additional costs and risks is presented in Section 7.

While it may be hard to see from the graph, due to scaling purposes, the cost

curve has a relatively steep curvature when the lead time approaches zero. This

basically means that KA only obtains value if they manage to reduce their lead

time drastically and close to zero. This is equivalent to saying that the demand risk

increases quickly short term, but stabilizes at the long term level within one to two

weeks. The question for KA is therefore not whether they should have a moderate

lead time or a long lead time. The question is whether they should have a really

short lead time, eliminating most risk, or a long lead time - incorporating almost all

the demand risk. Further assessment of the cost curve will be given in Section 7.
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Figure 29: Cost curve for the piston. Input parameters are: Price is NOK 27.50, cost is

NOK 10, salvage value is NOK 9.80 and the current lead time is 47 days. Storage cost is

NOK 0.28, capital cost is NOK 0.14 and transportation cost is NOK 0.80, quoted per unit.

The reduction scenario lead time is 7 days and the cost is NOK 13. The per unit cost of

storage, capital and transportation is NOK 0.08, NOK 0.02 and NOK 0.60, respectively,

for the reduction scenario.
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6.5 Aluminum Casting

6.5.1 Product Specifics

The aluminum casting is the actual body of the clutch servo, which all the other

components are mounted onto. In its simplest form, the casting is a solid piece of

aluminum that has been processed into the desired shape. It is one of the most cru-

cial components of the clutch servo in terms of quality and availability. Availability

is especially important as the casting is the only component in the clutch servo that

needs to be further processed at Hvittingfoss before it can go into production. This

means that if there is a stock out, KA will first have to process the incoming castings

before the rest of the production can start. This can potentially cause a longer down

period in the clutch servo production. There is only one casting per servo.

6.5.2 Case Specifics

Because of its high strategic value, the sourcing of the casting is constantly revised.

It is currently sourced from Serbia with a lead time of 18 days. The procurement

cost is NOK 70. KA is very comfortable with the current situation, but lately an

alternative in South Korea has emerged. The alternative features a 150% increase

in lead time and a 5% decrease in procurement cost. Since there are few potential

suppliers of the casting, due to its high degree of customization, KA would like to

evaluate the alternative. As mentioned before, KA has an internal policy of sourcing

expensive products from nearby locations to reduce capital cost and storage cost, as

well as to improve the service level. Increasing the lead time for the casting would

directly contradict this policy. However, the cost decrease can have a large impact

on KA’s profits. Regardless of their internal policy, the managers at KA want to

evaluate if the small decrease in cost can justify the high increase in lead time, and

thus potentially an increase in exposure to demand risk.
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6.5.3 Results

Figure 30 shows the result obtained from the computer program. As for the piston

case, the cost curve for the casting is very steep as lead time approaches zero. The

reason is that these components have the same demand structure, because they

both go into the same product. The small differences in the observed shapes are

only a result of different scaling of the graph. However, in contrast to the piston,

this case shows that KA should choose to source differently. As the graph shows,

South Korea’s cost is lower than the accepted cost at the given lead time. This

further strengthens the argument that KA should not consider whether to have

a moderate lead time or a long lead time. Rather, the consideration should be

whether they should have a really short lead time or a long lead time. If a really

short lead time is impossible to obtain at a fair price, KA might as well source from

a supplier with a long lead time. The reason is, as for the piston case, that decrease

in demand risk only occurs within the last weeks prior to delivery, while the long

term demand risk is stable. Hence, if the lead time exceeds one week, KA is already

exposed to all the risk in the demand structure. However, sourcing from South

Korea will most likely increase KA’s exposure to factors such as cultural differences,

political instability and nature disasters. These aspects arise on the supply side of

KA’s operations, and are not accounted for in this analysis. Hence, South Korea

might become less favorable, even unfavorable, when these aspects are considered.

In addition, the increased lead time can potentially reduce KA’s service level. It is

therefore important for KA to evaluate these aspects before deciding to source from

South Korea. A more extensive discussion on such risks is featured in Section 7.

Lastly, the storage cost for the two alternatives are exactly the same in the program.

The average cycle inventory, ACI, is the same because both suppliers offer delivery

once a week (the ACI only depends on the order frequency, F, as shown in Equation

(23)). The safety stock is equal for both alternatives, because the lead time of South

Korea roughly presents the same demand risk as the case of Serbia, as discussed in

the previous paragraph. Recall from Equation (24) that safety stock depends on the

demand uncertainty. Low storage cost is usually expected when choosing a supplier
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that is geographically close, thus the obtained storage cost in this supplier selection

is surprising. KA should therefore evaluate these costs in more detail before making

a final decision. In fact, only changing the ordering frequency from once a week to

once every two weeks is just enough to raise South Korea over the indifference curve.

However, changing the ordering frequency will most likely reduce the transportation

cost. Therefore, finding the optimal combination of ordering frequency, storage level

and transportation cost is important for KA when making the sourcing decision.
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Figure 30: Cost curve for the aluminum casting. Input parameters are: Price is NOK

192.50, cost is NOK 70, salvage value is NOK 68.61 and current lead time is 18 days.

Storage cost is NOK 1.63, capital cost is NOK 0.39 and transportation cost is NOK 4.20,

quoted per unit. The extension scenario lead time is 45 days and the cost is NOK 66,50.

The per component cost of storage, capital and transportation is NOK 1.63, NOK 0.97 and

NOK 6.30, respectively, for the extension scenario.
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6.6 Piston Rod

6.6.1 Product Specifics

The piston rod is the component within the clutch servo that connects the larger

air chamber to the smaller hydraulic chamber. The piston rod transfers power from

the hydraulics to the air cylinder, which again presses on the piston. In its simplest

form, the piston rod is basically an aluminum shaft. There are two piston rods in a

clutch servo, one small for the hydraulic chamber and one larger for the connection

between the two chambers. The piston rod of interest here is the larger one. There

is no need for further processing of the piston rod upon arrival at plant Hvittingfoss.

6.6.2 Case Specifics

The piston rod is currently sourced from France with a lead time of 9 days. This is a

relatively short lead time compared to the other components that go into the clutch

servo, and could therefore be beneficial to extend. However, KA has not been able

to find any potential suppliers in low cost countries. The suppliers they have found

all entail a reduction in lead time and an increase in cost. In light of KA’s internal

policy of sourcing expensive products nearby, these alternatives should however be

evaluated. The problem for KA today is that the increase in procurement cost is

significant for these small reductions in lead time, while the effects on storage cost,

transportation cost and capital cost are marginal in monetary terms. However, the

relative impact is greater - sourcing from Norway entails a 33% reduction in each

of these costs. As a result, most alternatives with a minimal lead time reduction

are today discarded. KA is therefore eager to find other ways of assessing such

alternatives, as they believe that it may be beneficial to further reduce the lead time

in many cases. Currently, they are evaluating a specific alternative in Norway, with

a lead time of 6 days and a cost of NOK 24. The question is whether the increase

in cost Norway poses will justify the small decrease in lead time.
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6.6.3 Results

Figure 31 shows the result obtained from the computer program. As one can see

from the figure, the cost at which KA will be indifferent for a lead time of 6 days is

just above NOK 21.50. The cost of sourcing from the Norwegian supplier, however,

is above NOK 25. Hence, sourcing from Norway is not favorable. Based on the

results, it is clear that for a shorter lead time to be favorable, the supplier can only

have a marginal cost increase. A fair assumption is that the supplier’s distance from

the factory is closely correlated to the supplier’s lead time. As KA’s plant is situated

in a high cost country, and as most countries within a close proximity also present

a fairly high cost level, it is found unlikely that KA will obtain a nearby supplier

that will be favorable. Therefore, it may be beneficial for them to look for a supplier

with a longer lead time, instead of one with a shorter lead time.

However, choosing to source from a domestic supplier may bring major benefits to

KA that could justify the cost increase. When a company chooses an international

supplier, it automatically exposes itself to various types of risk. Min [1994] states

that choosing the correct international supplier is a complicated process, due to fac-

tors such as currency exchange rates, cultural differences, ethical standards, political

situations, communication barriers and quality standards. When choosing to supply

domestically, KA will mitigate these risks, which obviously has a value. This value

is not accounted for in the result of the previous paragraph and may very well tilt

the result in the opposite direction. Further, as mentioned in Section 6.1, the piston

rod is custom-made for KA. This means that KA will need to educate the supplier

in how to produce the component, yielding a more complex communication than

for a standardized product. When choosing an international supplier, this increased

need for communication may represent additional risk. Hence, the value of sourcing

domestically may be greater for the piston rod than for a standardized product.
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Figure 31: Cost curve for the piston rod. Input parameters are: Price is NOK 55, cost is

NOK 20, salvage value is NOK 19.60 and current lead time is 9 days. Storage cost is NOK

0.47, capital cost is NOK 0.06 and transportation cost is NOK 1.20, quoted per component.

The reduction scenario lead time is 6 days and the cost is NOK 24. The per unit cost of

storage, capital and transportation is NOK 0.33, NOK 0.04 and NOK 0.80, respectively,

for the reduction scenario.

6.7 Sensitivity Analysis

The results obtained in the case study are based on parameters extracted from

sales data for the last five years and from analyses of KA’s operations. Thus, the

results assess the sourcing decisions of the case study assuming that KA’s future will

resemble its past. Due to KA’s stable demand in the data set, and the fact that the

automotive industry is well established, this appears to be a plausible assumption.

However, the features of the industry might change, consequently affecting the input

parameters used in the case study. Therefore, a sensitivity analysis is performed in

this section, investigating how a change in certain input parameters will influence

the results of the case study. Three parameters are considered to be interesting for

the sensitivity analysis: salvage value (SV), volatility (Vol) and mean reversion rate

(MRR).
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6.7.1 Sensitivity to Salvage Value

As mentioned in Section 6.2.3, the salvage value of the clutch servo is difficult to

estimate. The calculation is based on various assumptions, thus the obtained value

used for the different components in this case study includes uncertainty. However,

all the assumptions have been verified by the managers at KA. For instance, an

assumption is that clutch servos never become obsolete in storage. This might

be incorrect if the storage time increases drastically, if demand suddenly drops or if

rapid technological advances change the demanded features of the product. Another

assumption is that KA does not face the risk of losing contracts, and thereby being

stuck with useless clutch servos in storage. Both these risks are assumed to be

absent. If either of the assumptions turn out to be incorrect the salvage value

should be reduced. Therefore, the sensitivity analysis investigates the case of a 10%

reduction in the salvage value. Lastly, the sensitivity analysis also evaluates the

effect of the salvage value being zero, which is the case when the excess products

for a delivery are considered to be worthless. Though this penalizes overproduction

very hard, the assumption highlights the fact that the clutch servo is customized for

Scania and is useless to other OEMs. Figure 32 shows the cost curves for different

salvage values for the three components.

89



Current Lead Time 47 days Current Lead Time 18 days Current Lead Time 9 days

Price 27,50kr        Price 192,50kr       Price 55,00kr       

Procurement Cost 10,00kr        Procurement Cost 70,00kr         Procurement Cost 20,00kr       

Volatility 41,37 % Volatility 41,37 % Volatility 41,37 %

MRR 105,00 % MRR 105,00 % MRR 105,00 %

Storage Cost 0,28kr           Storage Cost 1,63kr            Storage Cost 0,47kr          

Capital Cost 0,14kr           Capital Cost 0,39kr            Capital Cost 0,06kr          

Transportation Cost 0,80kr           Transportation Cost 4,20kr            Transportation Cost 1,20kr          

Lead Time 7 days Lead Time 45 days Lead Time 6 days

Procurement Cost 13,00kr        Procurement Cost 66,50kr         Procurement Cost 24,00kr       

Storage Cost 0,08kr           Storage Cost 1,63kr            Storage Cost 0,33kr          

Capital Cost 0,02kr           Capital Cost 0,97kr            Capital Cost 0,04kr          

Transportation Cost 0,60kr           Transportation Cost 6,30kr            Transportation Cost 0,80kr          
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Figure 32: The cost curves for the three components are plotted for varying salvage value.

The salvage value is different for each component (without supplier specific costs): the

piston’s SV is NOK 9.80, the aluminum casting’s SV is NOK 68.61 and the piston rod’s

SV is NOK 19.60. Recall from Section 6.2.3 that to obtain the salvage value used in the

program the supplier specific need to be added. The relative salvage value used in each of

the plots is the current salvage value, a 10% decrease in salvage value and a salvage value

of zero. The upper left graph shows the results for the piston, the upper right graph the

aluminum casting and the lower left graph the piston rod. The panel in the lower right

corner shows the input parameters for all three graphs.

Figure 32 shows that the results of the case study are valid for all the salvage values

tested in the sensitivity analysis. Even a salvage value of zero yields the same

sourcing decision - hence, the results are robust in terms of salvage value. When

salvage value is reduced, the cost of overproduction increases, thus the mismatch

cost increases. The mismatch cost can be reduced by better meeting the demand,

which can be achieved by reducing the lead time. Consequently, it can be seen

in Figure 32 that shorter lead times become more favorable as the salvage value

decreases. From the piston rod graph it can also be seen that longer lead times

become less favorable when the salvage value is reduced - explicitly seen by the
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green graph. This is actually the same for all components, but can only be seen

in the piston rod example due to different scaling of the other graphs. This result

originates from the same argument as above. When the salvage value is decreased

the mismatch cost increases. Since a longer lead time incorporate more risk, which

yields a higher mismatch cost, these lead times become less favorable - making the

graph decline further. The same risk is also present when the salvage value is high,

but since the cost of not meeting demand is marginal, due to low overage cost, it

does not have a significant effect on the cost curve. Recall from the literature review

that De Treville et al. [2013b] found the marginal cost of time to increase as salvage

value decreases for constant volatility demand structures. This finding coincide with

their results.

6.7.2 Sensitivity to Volatility

The demand for clutch servos has proved to be rather stationary, with large fluc-

tuations around the mean level. If the current conditions continue, the demand

uncertainty will most likely remain close to its present level. However, as men-

tioned in Section 6.3.2, Scania might introduce dual sourcing which will increase

KA’s demand uncertainty. In addition, the demand for car parts is correlated to

macro trends in the general automotive industry. Thus, the clutch servo may expe-

rience more uncertainty when the market in general is more volatile. In addition,

the production of heavy trucks has declined over the last two years [International

Organization of Motor Vehicle Manufacturers]. If this development continues, KA

might experience reduced demand but may also encounter higher volatility due to

increased competition. Aspects such as dual sourcing and production decline make

it interesting to analyze the effects of increasing volatility on the case study. On the

other hand, KA’s contracts with Scania define a maximum order size, but they do

not specify a minimum quantity. If the contracts were to include a minimum order

quantity, KA’s demand uncertainty would decrease. Hence, the sensitivity analysis

investigates the effect of reduced volatility as well. Figure 33 shows the cost curves

for different volatility for the three components.
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Current Lead Time 47 days Current Lead Time 18 days Current Lead Time 9 days
Price 27,50kr        Price 192,50kr      Price 55,00kr       
Salvage Value 9,80kr          Salvage Value 68,61kr        Salvage Value 19,60kr       
Procurement Cost 10,00kr        Procurement Cost 70,00kr        Procurement Cost 20,00kr       
MRR 105,00 % MRR 105,00 % MRR 105,00 %
Storage Cost 0,28kr          Storage Cost 1,63kr          Storage Cost 0,47kr         
Capital Cost 0,14kr          Capital Cost 0,39kr          Capital Cost 0,06kr         
Transportation Cost 0,80kr          Transportation Cost 4,20kr          Transportation Cost 1,20kr         

Lead Time 7 days Lead Time 45 days Lead Time 6 days
Procurement Cost 13,00kr        Procurement Cost 66,50kr        Procurement Cost 24,00kr       
Storage Cost 0,08kr          Storage Cost 1,63kr          Storage Cost 0,33kr         
Capital Cost 0,02kr          Capital Cost 0,97kr          Capital Cost 0,04kr         
Transportation Cost 0,60kr          Transportation Cost 6,30kr          Transportation Cost 0,80kr         
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Figure 33: The cost curves for the three components are plotted for varying volatility. The

volatility used in the plots are 20%, 41,37% (the current volatility) and 90%. The upper left

graph is for the piston, the upper right graph is for the aluminum casting and the lower left

graph is for the piston rod. The panel in the lower right corner shows the input parameters

for all three graphs.

Figure 33 shows that the cost curves of the case study are not strongly affected by a

change in volatility. Even more than a doubling of the volatility from the case study

yields the same results with regards to sourcing decisions. Hence, the results are

robust in terms of volatility. As seen in the different plots of Figure 33, volatility

may only affect the sourcing decision when a really short lead time is evaluated.

This is true because KA’s demand is quite stable, and it reverts quickly back to

the mean when demand spikes occur. Hence, the additional risk of longer lead time

decreases as the lead time increases. However, the major contributor to the small

effects is the high salvage value. Even though a higher volatility obviously yields a

higher risk, this risk has little value since the cost of overage is so low. Hence, if the

salvage value is to be decreased along with the MRR, an increase in volatility will

have substantially larger effect. For instance - if the salvage value is decreased by

10% and the MRR to 30%, a volatility of 90% will make South Korea unfavorable
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for the aluminum casting.

Figure 33 also show that the curvature of the different cost curves, to some extent,

differ from component to component. While some of this can be explained by

various scaling of the graphs, the differences in overage and underage cost are also

large contributors. These differences yield different values of risk which further make

the curvature of the graphs deviate from each other.

6.7.3 Sensitivity to Mean Reversion Rate

The analysis of KA’s sales data revealed that the demand for clutch servos has a very

high MRR. This implies that when an order deviates from the mean, the demand

reverts quickly back to the equilibrium level in the subsequent orders. Since KA’s

MRR is already high, it seems most unlikely that it will become any higher. This

is because an even higher MRR would imply that the demand is almost constant

- eliminating most of the demand risk. It is therefore assumed to be more likely

that the MRR would decrease. A potential reason for a decrease in MRR could

be seasonality. For the current demand structure, seasonality is low. However, it

might increase if KA, for instance, initiates a cooperation with a tractor producer,

as the demand for tractors depends on a season’s crop. Increased seasonality and

uncertainty within the seasons lead to a reduced MRR as the demand will first

revert back to its mean when the season is over. The MRR can further be reduced

if dual sourcing becomes a reality. Thus, the demand may not be as stable as for

the current situation. Therefore, only the effect of reducing the MRR is analyzed in

the sensitivity analysis. Figure 34 show the results for all three components.
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Current Lead Time 47 days Current Lead Time 18 days Current Lead Time 9 days
Price 27,50kr        Price 192,50kr      Price 55,00kr       
Salvage Value 9,80kr          Salvage Value 68,61kr        Salvage Value 19,60kr       
Procurement Cost 10,00kr        Procurement Cost 70,00kr        Procurement Cost 20,00kr       
Volatility 41,37 % Volatility 41,37 % Volatility 41,37 %
Storage Cost 0,28kr          Storage Cost 1,63kr          Storage Cost 0,47kr         
Capital Cost 0,14kr          Capital Cost 0,39kr          Capital Cost 0,06kr         
Transportation Cost 0,80kr          Transportation Cost 4,20kr          Transportation Cost 1,20kr         

Lead Time 7 days Lead Time 45 days Lead Time 6 days
Procurement Cost 13,00kr        Procurement Cost 66,50kr        Procurement Cost 24,00kr       
Storage Cost 0,08kr          Storage Cost 1,63kr          Storage Cost 0,33kr         
Capital Cost 0,02kr          Capital Cost 0,97kr          Capital Cost 0,04kr         
Transportation Cost 0,60kr          Transportation Cost 6,30kr          Transportation Cost 0,80kr         
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Figure 34: The cost curves for the three components are plotted for varying MRR. The

MRR used in the plots are 105% (the current MRR), 50% and 10%. The upper left graph

is for the piston, the upper right graph is for the aluminum casting and the lower left graph

is for the piston rod. The panel in the lower right corner shows the input parameters for

all three graphs.

In line with the results of the two previously discussed input parameters, Figure 34

shows that varying the MRR does not change the outcome of the different sourcing

decisions. In other words, the results are robust in terms of MRR. However, the plots

show that varying the MRR yields noticeable changes to the cost curve. Regardless

of component, the plots show that lead time reduction becomes more favorable

when the MRR decreases. When the MRR is low the demand becomes less stable,

yielding a higher risk. This higher risk has a value, which makes it worth eliminating

- hence, reducing lead time becomes more favorable. On the other hand, a high MRR

indicates a stable demand - hence reducing lead time becomes less favorable. Figure

34 also show that varying MRR has, to some extent, different effect on the different

components. For example, the graph for the piston rod looks to be much steeper than

for the other components. Once again, some of these differences can be explained

by different scaling of the graphs. However, another reason is, as for the volatility,
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that the different components have different costs of overage and underage.

6.7.4 Changing Multiple Parameters

As discussed above, the cost curves for the different components are robust in terms

of changes in single parameters. However, the discussion shows that the results

are highly dependent on how the different variables interact. Hence, changing only

one parameter at a time only leads to minor changes in the cost curve. Therefore,

the results when more than one parameter is altered should be investigated. For

instance, if both the risk of the demand and the cost of overproducing increase,

the cost curve would experience large shifts. Thus, the resulting cost curves are

dependent on the link between the parameters.

To show how the links between the parameters affect the cost curve, the most

extreme cases from the previous sensitivity analysis are combined to generate a

sample space. This is the space between the blue and the green graphs in Figure 35.

The blue graph corresponds to the most stable demand and lowest cost of overage,

while the green graph represents the opposite case of high volatility, low MRR and

no salvage value. KA is not believed to encounter more extreme cases than shown

in the graphs. Clearly, these graphs show that changes to multiple parameters have

large impacts on the cost curve and the associated sourcing decisions. Both France

and South Korea are located between the two extreme borders. This makes it

likely that if changes to KA’s demand structure and cost of overproduction become

a reality, France might become favorable, while South Korea does not. Norway,

however, is just outside this region. Hence, it is very unlikely that Norway would

become favorable.
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Current Lead Time 47 days Current Lead Time 18 days Current Lead Time 9 days

Price 27,50kr        Price 192,50kr       Price 55,00kr       

Procurement Cost 10,00kr        Procurement Cost 70,00kr         Procurement Cost 20,00kr       

Volatility 20‐90% Volatility 20‐90% Volatility 20‐90%

MRR 10‐105% MRR 10‐105% MRR 10‐105%

Salvage Value kr    0‐9,80 Salvage Value kr  0‐68,61 Salvage Value kr  0‐19,60

Storage Cost 0,28kr           Storage Cost 1,63kr            Storage Cost 0,47kr          

Capital Cost 0,14kr           Capital Cost 0,39kr            Capital Cost 0,06kr          

Transportation Cost 0,80kr           Transportation Cost 4,20kr            Transportation Cost 1,20kr          

Lead Time 7 days Lead Time 45 days Lead Time 6 days

Procurement Cost 13,00kr        Procurement Cost 66,50kr         Procurement Cost 24,00kr       

Storage Cost 0,08kr           Storage Cost 1,63kr            Storage Cost 0,33kr          

Capital Cost 0,02kr           Capital Cost 0,97kr            Capital Cost 0,04kr          
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Figure 35: The cost curves for the three components are plotted for the extreme values

of Salvage Value (Calculated - 0), Volatility (20% - 90%) and MRR (105% - 10%). The

upper left graph is for the piston, the upper right graph is for the aluminum casting and the

lower left graph is for the piston rod. The panel in the lower right corner shows the input

parameters for all graphs.

It is worth noticing that for the piston, the blue graph cuts of at a 8 day lead time.

This happens because the cost equals the price at this point, and KA would not

in any case be willing to pay more than the sales price for the piston. Hence, for

this extreme case of demand risk, KA will be indifferent between not earning any

profit at a lead time of 8 days and the current situation. Consequently, the current

situation does not appear to be favorable either - given the demand structure and

related costs of over- and underproduction. This gives rise to a whole new conclusion

for the supplier selection of the piston. In addition to not sourcing the component

from France, KA should actually reevaluate their current supplier. For instance, the

results from this case can be used to negotiate a lower price for the current supplier.
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7 Discussion

In this section, a discussion of the main challenges in the thesis will be presented.

Firstly, considerations of the empirical study and the computer program are dis-

cussed. Then, an assessment of the case study follows, focusing on the applications

of the results and the implications of the assumptions in the model.

7.1 Empirical Analysis and Program Considerations

With the presented framework, determining the best model fit for the demand data

is a crucial aspect of evaluating lead time. As shown in previous case studies by

De Treville et al. [2013a], different demand evolution yields large variations in the

level and curvature of the CD Frontier, and thus also the cost curve. Considerations

about demand’s stationarity vs. non-stationarity and the distribution determina-

tions, e.g. normality, log-normality, heavy tails and jumps, will have large effects on

the indifference costs at different lead times. Hence, the empirical data analysis and

the choice of stochastic process construct an important foundation for further lead

time analysis. Three main issues have been at the core of the empirical data analysis

in this thesis; finding a representation of the actual demand data, determining the

best model fit, and incorporating the findings about the demand structure into the

program.

Most companies do not have access to actual demand data and must represent their

demand through historical sales data. This may cause misinterpretation, as these

data points do not necessarily represent what the customer actually ordered. This

is especially apparent within businesses that do not operate with backlog and thus

experience lost sales. In cases where lost sales are not reported and orders exceed

the on-hand stock, the sales data is merely a representation of the on-hand stock at

the time of delivery. Thus, order data should be kept to build knowledge about the

demand evolution, as this may prove beneficial for either stock control, forecasting

of production, or for sourcing and lead time decisions. For businesses that are al-

97



lowed to deliver backlog, data can be aggregated to identify the demand, under the

assumption that the backlog is delivered within the period of aggregation. A poten-

tial problem is the loss of order specific fluctuation. Additionally, if the assumption

of delivering backlog within the aggregation period does not hold, the data set can

experience false spikes and drops, which will adversely affect the analysis. Hence,

if the company has access to real demand data, or records ordering data, the data

analysis would represent the demand in a better way and the results would become

more trustworthy.

How one decides to represent the demand for a product will greatly affect the pro-

gram’s determination of the magnitude and evolution of demand risk at different

lead times. For instance, if demand is assumed to be stationary with a normal

demand distribution, a mean reverting Ornstein-Uhlenbeck process can be used to

represent the demand. However, if the demand is believed to be non-stationary

with a log normal demand distribution, the GBM process will be appropriate. The

cost curve of the two processes can be highly different, depending on the MRR in

the MRP and volatility, where the indifference curve for the GBM-case will yield

a higher increase in demand risk for longer lead times. Consequently, choosing the

best process for demand is crucial for the results. Therefore, time series analy-

sis should be performed in order to find the best model fit and stochastic process.

However, the use of time series analysis and ARMA model fitting require some back-

ground knowledge. For practitioners, much information can be drawn from visually

investigating the time series of demand. By using intuition about stationarity and

whether the distribution of demand is skewed in any way, they can help decide on a

certain process for demand. The results and assumptions of the data analysis should

always be validated by industry experts to bridge the quantitative analysis to the

real world, as assumptions made along the way may interrupt the final result.

This thesis has proposed and implemented an additional way of connecting the

demand data to the computer program. The original approach assumes a stochastic

process and then calibrates the parameters according to the data. This has been

developed for a GBM and an MRP in the program. The new approach finds the best
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discrete ARMA model fit for the data and uses forecasting techniques directly in

the program. Thus, the program is now able to capture a larger variety of demand

structures, and not only those that fall into either the MRP or the GBM category.

The program has been fitted with the possibility to use all ARMA(p,q) models,

where p = (0,1) and q = (0,1,2,3). However, additional models can be easily be

added to the framework. A drawback with the new approach is the smoothness of

the curve. As the ARMA(p,q) model is discrete, the smoothness of the curve is

directly related to the frequency of the demand data. If the demand is reported

in weeks, the ARMA(p,q) will have weekly increments. Consequently, the program

will produce weekly predictions of the demand risk evolution and the curve will

experience weekly kinks. This is not the case for the stochastic process approach,

as this will produce continuous predictions of the demand risk and a smooth cost

curve. The stochastic process approach will provide a more accurate result when

the demand is recorded infrequently, e.g. when sales data has to be aggregated on

a weekly or a monthly basis. In situations where the curves yield only marginally

differences with regards to demand evolution, the continuous versions are preferred.

7.2 Applications and Interpretation of the Case Study Re-

sults

The results of the case study are obtained from the accompanying computer pro-

gram and seek to advise KA in three different sourcing decisions. A lot of aspects

become evident when a firm is to decide between different suppliers, and this thesis

accounts for the demand uncertainty and supplier specific costs in such a decision.

Consequently, the results in the case study are not meant to solely guide KA in

a sourcing decision. In this subsection, the applications and interpretation of the

results of the case study are presented.
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7.2.1 The Threat of Dual Sourcing

As mentioned in Section 6.3.2, KA might lose its exclusivity of the clutch servo,

as Scania has implied that dual sourcing might be implemented. If dual sourcing

is introduced, the risk of lost sales will occur and the demand uncertainty will

increase due to Scania’s ability to choose the supplier for every delivery. Thus,

a different stochastic process representation of the demand may be appropriate.

Consequently, dual sourcing will intensify the competition and the service level will

be an important source of competitive advantage. Ouyang and Chang [2002] claim

that the service level can be increased by reducing the lead time. In addition, Ben-

Daya and Hariga [2003] present lead time reduction as an effective tool to cope with

demand fluctuations. Thus, if dual sourcing is to be realized, lead time reduction

might become more favorable for KA than it currently is.

As discussed in the results for each component in the case study, the majority of

demand risk occurs the last week prior to delivery, and little risk is added at longer

lead time. However, the introduction of dual sourcing might alter the preferred

lead time, and ultimately affect the choice of supplier. Though the product and

supplier specific input parameters will not change, the demand specific parameters

may change, consequently changing the cost curve. Additionally, the importance

of delivery precision will increase. Hence, lead time reduction might become more

favorable in order to secure a high service level and mitigate the alteration in the

demand uncertainty. For instance, in the case of dual sourcing, the favorable supplier

of the piston in Section 6.4 might change. In line with the arguments of the previous

paragraph, it is fair to assume that sourcing from the French supplier will reduce

KA’s risk of lost sales and ensure a high delivery precision. Therefore, KA might

be willing to bear a higher cost than suggested by the cost curve in Figure 29.

Consequently, the introduction of dual sourcing can make the cases of lead time

reductions more interesting.
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7.2.2 Other Sources of Risk

The cost curve in this thesis considers exposure to demand risk, as well as supplier

specific costs. However, KA is also exposed to risk that originates from the supply

side of its operations. First of all, KA is exposed to a lot of risk in the process of

changing a supplier. In the early stage of a cooperation, uncertainty arises from

the specific terms of the agreement - for instance, a functional relationship must be

established, product specifications must be decided, delivery terms must be agreed

upon and the duration of the cooperation must be clarified. KA must evaluate the

potential suppliers based on all these risk aspects. However, the reliability of a

supplier is difficult to fully fathom, hence a supplier selection will always entail risk

exposure. The cost curves of Section 6, however, do not account for the risk that

arises from the process of changing a supplier, hence they do not give a complete

overview of the sourcing decision.

Supply risk is often correlated with lead time - if KA decides to source components

from suppliers located in distant countries, it is more exposed to supply risk. The

increase in supply risk mainly comes from a longer period of risk exposure. According

to Zsidisin [2003], supply risk generally arises from individual supplier failures. In

his case study, the majority of the investigated firms list delivery, quality, price and

relationships as issues originated from individual supplier failures. For the piston

from Section 6.4, the following assessment can be made on the potential elements

of supply risk.

Firstly, transportation of components from South Korea is subject to more risk

than the corresponding transportation from France - the shipment is more likely

to experience delays due to poor weather and equipment malfunctions on its long

way from South Korea. A lot of these risks can be mitigated, for instance, by using

quality shipments rather than low cost offers. However, some risks are more or less

unavoidable - such as earthquakes and terrorist attacks. Secondly, the incentive for

choosing South Korea is mainly low cost, however low cost can be related to low

quality. KA faces the risk of procuring components that do not fulfill the internal
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quality requirements at Hvittingfoss when choosing a supplier based solely on cost.

Lastly, Hofstede [1983] presents a framework for identifying differences in people’s

work-related values among multiple countries. One of the dimensions in his model

is power distance. South Korea has a large power distance, meaning that employees

are reluctant to speak their mind to coworkers higher up in the firm. For KA,

large power distance at the potential supplier can result in improper products due

to poor communication at the supplier. A way of mitigating such risk can be to

source from, for instance, Norway. Norway has a rather small power distance, and

employees are generally given responsibility and the ability to make own decisions

[Hofstede, 1983]. Consequently, employees get a feeling of mastery that enhances

the wish to do a good job, which ultimately will improve the quality of the products.

The generated cost curve might incorrectly favor suppliers with long lead time,

because the computer program does not account for supply risk. If supply risk were

to be included in the analysis, the choice of supplier of the piston in Figure 29 might

not be as obvious as it now seems - the South Korean supplier might be related

to more supply risk than the French alternative, consequently making the French

supplier a more attractive supplier than currently shown in the figure.

7.2.3 Applications of the Program and the Results

In this section, the effect of implementing supplier specific costs in the program is

discussed. Supplier specific costs refer to storage cost, capital cost and transporta-

tion cost. Thereafter, an assessment of the applications of the program follows,

where the influence of circumstantial conditions is considered.

As mentioned in Section 4.2.2, the computer program developed in Moltu et al.

[2013] is based on the work of De Treville et al. [2013a]. The program is further

developed in this thesis, and the implemented changes are addressed in Section

4.2.3. An important addition to the program is the incorporation of storage cost,

capital cost, transportation cost and other variable costs. These supplier specific

costs have been added at the request from KA. The consequences of the addition
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can be twofold: On one hand, the addition makes the program more qualified to

make a sourcing decision, as it presents a more holistic assessment of the situation.

Hence, the incorporation of the supplier specific costs increases the application area

of the program, by allowing it to better capture the dynamics of a sourcing decision.

On the other hand, the program is already based on assumptions and simplifications

of the real world. By including more variables in the program, the uncertainty of

the results might increase. Thus, the supplier specific costs might dilute the results

of the program. The supplier specific costs’ effect on the results of the program is

difficult to evaluate, as it depends on the specific situation. However, the addition

is completely optional and the user can choose to insert zeros for all the supplier

specific costs, and still run the program. Therefore, the addition is believed to be

a positive contribution to the computer program. Also, it is worth mentioning that

if a component has variable costs, these have to be implemented in the Newsvendor

model to yield a correct result. Failing to do so will make the costs of under and

overproduction wrong - giving a non-optimal critical fractile. Since the Newsvendor

model and its critical fractile is so crucial for the calculation of the mismatch cost

function it is believed to be better to include the costs than omit them. Therefore,

this thesis advises to always include supplier specific costs when possible.

The computer program seeks to be as general as possible, but some aspects are

rather dependent on the specific situation. Firstly, the program requires a salvage

value as input. Encounters with practitioners have revealed that this term is hard

to grasp, and that the salvage value depends on the specifics of the product and

the sales situation. For the case of KA, the salvage value was estimated by making

various assumptions, hence the obtained value is uncertain (see Section 6.2.3 for the

calculations). The salvage value highly affects the results of the program, where a

reduction in salvage value causes a higher cost of overproduction. The less applica-

ble the concept of salvage value is, the less accurate the results will be. Secondly, if

the user decides to insert the supplier specific costs in the program, the effect highly

depends on the accuracy of the parameters. For instance, KA’s per component

storage cost for the different sourcing alternatives were hard to retrieve, and simpli-
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fications were made (see calculations in Section 6.2.4). As for the salvage value, if

these estimates are questionable, the results obtained from the program will be less

applicable. In general, the program will yield reasonable results when the required

input parameters are simple to obtain, however its applicability is reduced when the

input parameters are adjusted beyond recognition in order to fit the program.

The program evaluates each component separately. Consequently, the result from

the program presents an isolated solution for the investigated component, and does

not take the specifications of other components and factors into account. For in-

stance, if KA were to source 45 of the 46 components of the clutch servo from

Norway, sourcing the aluminum casting from South Korea to obtain a low cost

might be sub-optimal, even if the program suggests it. All the components depend

on the aluminum casting (see Section 6.5.1), and by choosing a long lead time the

clutch servo will be exposed to a lot of demand risk even though 98% (45/46) of the

components are sourced domestically. Thus, the sourcing decision for a component

should be treated in context with other factors that might affect KA’s ability to

finalize the clutch servo, and potential synergy effects and pitfalls should be iden-

tified in advance. In addition to lead time considerations, KA’s profit and delivery

performance of the clutch servo also depend on the balance between transportation

cost and order frequency for each component, and the interaction between every

component that go into the final clutch servo. Consequently, the program guides

KA in autonomous sourcing decisions, but KA’s overall performance relies on the

combination of the features of each component.
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8 Conclusion

The purpose of the performed case study was to evaluate the sourcing decisions as-

sociated with three of the components in KA’s clutch servo. The computer program

developed in the thesis uses the cost curve of Section 4.2 to present the results. The

cost curve is based on the expected demand-supply mismatch cost function derived

from the the Newsvendor model of Section 4. The cost curve represents an indiffer-

ence curve, made up by the accepted procurement cost for each lead time scenario.

In contrast to earlier research, the program presented in this thesis also incorporates

the ability of increasing lead time.

Sales data for the last 5 years have been analyzed in order to choose the best model

for KA’s demand. The analysis revealed that their demand is rather stationary, with

large short term fluctuations between orders. The best model fit was concluded to

be the discrete ARMA(1,3) model due to its low AIC compared to other mod-

els and absence of over-parameterization. However, when implementing the model

to the computer program a drawback with the approach was revealed. Since the

ARMA(p,q) model is discrete, the smoothness of the curve is directly correlated to

the frequency of the demand data. As KA’s demand data is best reported weekly,

the ARMA(1,3) model consequently yielded weekly increments giving a piecewise

linear curve. Due to the similarities between the ARMA(1,3) model and the mean

reverting Ornstein Uhlenbeck process, the latter was therefore chosen because of its

continuous nature. The process’s mean reversion rate was found to be high along

with a relatively high demand volatility. Thus, KA’s demand risk increases with

high pace short term and stabilizes long term.

As a result of the demand data analysis, one of the main findings from the case study

was that KA should either strive to have a really short lead time or a long lead time

for the clutch servo. The conclusion arises from the fact that the majority of KA’s

demand risk develops close to delivery, while it stabilizes for long time horizons -

yielding that little risk is added for longer lead times. Therefore, KA should either

acquire a short lead time to mitigate the uncertainty, or choose a long lead time to
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benefit from the low obtained procurement cost. This can, for instance, be shown in

the aluminum casting case where South Korea turned out favorable even though it

represented a 150% increase in lead time. The results of the case study coincide with

the characteristics of the commercial automotive industry, where intense competition

make suppliers in all tiers tend to choose either low cost or high responsiveness, i.e.

long lead time or short lead time. In addition, the obtained results are in line with

the intuition of the managers at KA. This further strengthens the validity of the

performed case study.

While the relatively small values of changing lead time was an interesting finding

itself, the reasoning behind the results is important to note. Assessing the different

input variables of the program revealed that the shape of the cost curve is highly

dependent on the interaction between the mean reversion rate, salvage value and

volatility. First of all, the high salvage value obtained yields that little cost is

assigned to overproduction. This entails that the mismatch cost is reduced and less

value is obtained when reducing risk. This explains the relatively small increase

in the curve obtained when lead time approaches zero. Secondly, the high mean

reversion rate makes the risk stabilize as lead time increases. This yields that less

risk is added for longer lead times and the cost curve consequently flattens out for

longer lead times. This does however not mean that there is no risk associated

with a longer lead time, but since the added risk is so small, the low mismatch

cost makes the effects marginal. Lastly, the relatively high volatility was believed

to yield larger values of reducing risk. However, since the MRR is so high, the

risk quickly reverts and stabilizes yielding only short term effects. As this shows,

the relatively small values of changing lead time is a product of several factors. To

investigate this further, a sensitivity analysis with respect to these variables was

performed in Section 6.7. The analysis showed that even though the cost curves

are highly dependent these parameters, the conclusions are still robust. Hence, KA

is advised to source the piston and aluminum casting from South Korea, and the

piston rod from France. However, as discussed in Section 7, there are aspects and

risks that might affect the situation, such as dual sourcing and supply risk, that are
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not considered in the case study. The inclusion of these may ultimately alter the

outcome of the sourcing decision.

Further, this thesis proposes an addition to the literature by adding more focus

to supplier specific costs - transportation cost, capital cost, storage cost and other

variable costs. By adding such costs, the level of the cost curve is increased and

the curvature of the graph is shifted according to the way the cost of over- and

underproduction is affected. It is therefore highly advised to account for these costs

when performing a sourcing decision as they provide a more holistic description of

the situation. Following the first finding, it is also interesting to note that if KA

is to evaluate two sourcing alternatives with long lead times, the procurement cost

and supplier specific costs is most likely the only variables that will influence the

decision. This is because the cost curve flattens out for long lead times. Hence,

failing to add supplier specific costs may result in the wrong conclusion.

Lastly, the program and the underlying concepts have been presented to practition-

ers within other businesses than the automotive industry. The responses have been

entirely positive, and both PwC and Jernia has expressed interest in testing the

program for a retail case.

8.1 Further Research

As mentioned in the commercialization paragraph of Section 4.2.3, the managers at

KA really appreciate the output of the program developed in this thesis. However,

they find some of the required input parameters difficult to retrieve, and they worry

that the program might be tedious to use. Encounters with practitioners within

retail revealed similar concerns. In general, the empirical analysis needed to run the

program has been pointed out as the biggest obstacle for the program to become

applicable for practitioners. Therefore, the KA managers suggested that the em-

pirical analysis should be integrated in the program. The user would then simply

be asked to paste sales/demand data into a predefined template, then enter the

product parameters, and optional parameters if desired, from Figure 22 and finally
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hit the ”Run Program”-button. The implementation of this functionality would ob-

viously improve the convenience of the program, and highly increase its generality.

However, the analysis required to decide the appropriate stochastic process for the

demand is comprehensive. Due to constrained time, this is not within the scope of

this thesis. However, including this functionality would add a lot of value to the

program, ultimately making it a complete tool for the assessment of demand risk

uncertainty in sourcing decisions.

The program has been fitted with the possibility to use all ARMA(p,q) models,

where p = (0,1) and q = (0,1,2,3). Further improvements of the program can be

made by including additional models. These models can be connected directly to

the empirical analysis, so that the program automatically chooses a model based on

the demand data, and runs the program accordingly.
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A The Parameters Used in the Case Study

Figure A.1 presents all the parameters that are used in the case study.

Parameters Description Piston Aluminum�Casting Piston�Rod
Generic�Product�Parameters
Price Per�unit�sales�price 27,50kr��������������������� 192,50kr�������������������� 55,00kr���������������������
Salvage�Value Per�unit�salvage�value 9,80kr����������������������� 68,61kr���������������������� 19,60kr���������������������
Demand�Process�Parameters
Volatility For�7�days 41,37�% 41,37�% 41,37�%
MRR For�7�days 105,00�% 105,00�% 105,00�%
Yearly�RiskͲfree�Rate For�365�days 5,00�% 5,00�% 5,00�%
Current�Sourcing�Location
Location Country South�Korea Serbia France
Current�Lead�Time Days 47�days 18�days 9�days
Procurement�Cost Per�unit 10,00kr��������������������� 70,00kr���������������������� 20,00kr���������������������
Storage�Cost Per�unit 0,28kr����������������������� 1,63kr������������������������ 0,47kr�����������������������
Capital�Cost Per�unit 0,14kr����������������������� 0,39kr������������������������ 0,06kr�����������������������
Transportation�Cost Per�unit 0,80kr����������������������� 4,20kr������������������������ 1,20kr�����������������������
Other�Costs Per�unit Ͳkr������������������������� Ͳkr�������������������������� Ͳkr�������������������������
Order�Frequency Weeks�between�deliveries 6 1 1
Potential�Sourcing�Location
Location Country France South�Korea Norway
Current�Lead�Time Days 7�days 45�days 6�days
Procurement�Cost Per�unit 13,00kr��������������������� 66,50kr���������������������� 24,00kr���������������������
Storage�Cost Per�unit 0,08kr����������������������� 1,63kr������������������������ 0,33kr�����������������������
Capital�Cost Per�unit 0,02kr����������������������� 0,97kr������������������������ 0,04kr�����������������������
Transportation�Cost Per�unit 0,60kr����������������������� 6,30kr������������������������ 0,80kr�����������������������
Other�Costs Per�unit Ͳkr������������������������� Ͳkr�������������������������� Ͳkr�������������������������
Order�Frequency Weeks�between�deliveries 1 1 0,5

Figure A.1: The parameters used in the case study.
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B R-Code for Empirical Analysis

-- ## Loading the packages: fBasics , tseries , VarianceGamma ,

stats4 , MASS , SMFI5 , stats , nortest , forecast , TSA ## -

library(fBasics );

library(tseries );

library(VarianceGamma );

library(stats4 );

library(MASS);

library(SMFI5 );

library(stats );

library(nortest );

library(forecast );

library(TSA);

-- ## Model Identification Based on the Chosen Data Representation ## --

## Plotting the time series of the data ##

ts.plot(data , main = "Weekly Sales Data Without Vacations Time Series",

xlab = "Weeks from Summer 2009" , ylab = "Sales Quantity ")

## Checking for stationarity using ADF and PP tests ##

# Augmented Dickey -Fuller Test #

adf.test(data)

# Phillips -Perron Unit Root Test #

pp.test(data)

## Checking the auto correlations and partial auto correlations in

the time series ##
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acf(data , main = "Autocorrelations of Weekly Sales Data without Vacations ")

pacf(data , main = "Partial Autocorrelations of Weekly Sales Data

without Vacations ")

## Fitting different ARMA(p,q) models to the data set ##

fit10 = arima(data , c(1,0,0))

fit01 = arima(data , c(0,0,1))

fit11 = arima(data , c(1,0,1))

fit21 = arima(data , c(2,0,1))

fit31 = arima(data , c(3,0,1))

fit12 = arima(data , c(1,0,2))

fit22 = arima(data , c(2,0,2))

fit32 = arima(data , c(3,0,2))

fit13 = arima(data , c(1,0,3))

fit23 = arima(data , c(2,0,3))

fit33 = arima(data , c(3,0,3))

## Simulating a process based on the fitted parameters for a ARMA (1,3)

model and checking the model specifications (ACF , PACF) ##

interc = 721.9974

stddev = sqrt (31446)

arma.sim = interc + arima.sim(model = list(ar = c(0.9755) ,

ma = c( -0.8709 ,0.2676 , -0.2084)) , n = 10000)* stddev

ts.plot(arma.sim , main = "Simulation of ARMA (1,3) model",

ylab = "Simulated Weekly Sales Quantity", xlab = "Weeks", ylim = c(0 ,1500))

111



acf(arma.sim , main = "ACF of Simulated Weekly Sales Qunatity ")

pacf(arma.sim , main = "PACF of Simulated Weekly Sales Qunatity ")

## Checking the assumptions of no correlation and normality in the

residuals for ARMA (1,3) ##

res13 = resid(fit13)

# Finding the moments for the residuals #

mean(res13)

sd(res13)

skewness(res13)

kurtosis(res13)

# Plotting residuals diagonstics #

plot(res13 , main = "Residuals over Time", ylab = "Residuals ")

hist(res13 , main = "Histogram of Residuals for ARMA(1,3)", xlab = "Residuals ")

qqnorm(res13 , main = "QQ-Plot of Residuals for ARMA (1 ,3)")

qqline(res13)

acf(res13 , main = "Autocorrelation of Residuals for ARMA (1 ,3)")

# White noise test for Residuals ARMA (1,3) #

Box.test(res13 , type = "Ljung")

-- ## Connecting the Model and the Computer Program ## --

## Checking the white noise assumption of the fitted AR(1) model

and residual diagnostics ##

res10 = resid(fit10)
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plot(res10 , main = "Residuals over Time", ylab = "Residuals ")

hist(res10 , main = "Histogram of Residuals for AR(1)", xlab = "Residuals ")

qqnorm(res10 , main = "QQ-Plot of Residuals for AR(1)")

qqline(res10)

acf(res , main = "Autocorrelation of Residuals for AR(1)")

# White noise test for Residuals AR(1) #

Box.test(res , type = "Ljung ")

## Estimating MRP (Ornstein Uhlenbeck) parameters ##

# MLE #

N = length(data);

x = as.matrix(cbind(int=1, as.vector(data [1:N -1])));

y = as.vector(data [2:N]);

xy = t(x)%*%y;

xxi = solve(t(x)%*%x);

ols = xxi%*%xy;

resid = y-x%*% ols;

c = ols [1];

b = ols [2];

delta = sd(resid);

dt = 1

alpha = -log(b)/dt;

theta = c/(1-b);

sigma = delta/sqrt((b^2-1)*dt/(2* log(b)));
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halflife = log (2)/ alpha

# Least Squares #

S = data;

end = length(S)-1;

delta = 1

Sx = sum( S[1:end -1] );

Sy = sum( S[2:end] );

Sxx = sum( S[1:end -1]^2 );

Sxy = sum( S[1:end -1]*S[2:end] );

Syy = sum( S[2:end ]^2 );

a = ( n*Sxy - Sx*Sy ) / ( n*Sxx -Sx^2 );

b = ( Sy - a*Sx ) / n;

sd = sqrt( (n*Syy - Sy^2 - a*(n*Sxy - Sx*Sy) )/n/(n-2) );

lambda = -log(a)/ delta;

mu = b/(1-a);

sigma = sd * sqrt( -2*log(a)/ delta/(1-a^2) );

## Prediction of ARMA (1,3) mean and standard deviation ##

pred13 = predict(fit13 , n.ahead = 100)

ts.plot(pred13$pred)

ts.plot(pred13$se)
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