UNIVERSITY OF OSLO
Department of Informatics

CacheCast: a
system for
efficient single
source multiple
destination data
transfer

Ph.D. Thesis

Piotr Srebrny

June 2011

© Piotr Srebrny, 2011

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1111

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AIT Oslo AS.

Produced in co-operation with Unipub.

The thesis is produced by Unipub merely in connection with the

thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Acknowledgements

It is simply not possible for me to name every single person who contributed to this thesis, either by
offering direct advice on the merits of it, or by rendering personal support, both being immensely
important to me during my doctoral studies period. While attempting to name in particular those
to whom I owe the greatest debt, I beg your forgiveness if I have omitted including others.

First and foremost, I would like to thank Thomas Plagemann for this great opportunity to
embark on a doctorate under his supervision. Thomas is a wonderful teacher and mentor. He is
always willing to listen and to try to understand even the most unreasonable and unconventional
ideas! It was an excellent lesson for me to be able to witness just how he explains matters during his
lectures and various meetings. I found him to be much more than a supervisor. I would also like to
thank Vera Goebel who was always ready to lend a helping hand. I deeply appreciated her presence
and supervision, especially during the thesis writing challenge, during which I often tangled myself
in knots each long day. I am also thankful to Andreas Mauthe who helped me to clarify my ideas,
especially during my stay in Lancaster.

I am deeply indebted to my colleagues from the DMMS group who created a very positive
environment for research, including: Azadeh, Daniel, Ellen, Francisco, Hans, Katrine, Kennedy,
Kjell Age, Matti, Matija, Morten, Ovidiu, Piotr, Sebastian and Viet. I am especially thankful to
Karl-André who inspired me to challenge the problem presented in this thesis. I am grateful to
Jatle who was not only my office-mate, but who also guided me through Norwegian language and
culture studies during my early days in Norway. I am also indebted to Stein for the numerous
interesting and lengthy discussions that we have had.

I would like to thank all of my colleagues from the CONTENT project, with whom I had
the immensely pleasurable opportunity of exploring Europe; and also to my Polish friends from
Oslo who were excellent company during my period of ’emigratior’. I thank Colin Jeneson for his
wonderful company and considerable assistance; and my parents for their support from abroad.

Last but not least, I am also thankful to the Holy Spirit for all forms of inspiration, support,

and life experiences I received during this time.

ii

Abstract

The basic function of the Internet is to forward messages hop-by-hop towards their destination
hosts. A single message has only one destination and the network does not provide a mechanism
for delivering a message to multiple hosts. Therefore, in order to transmit the same message to mul-
tiple destinations, a host sends the message to each destination separately. This, however, leads to
inefficient use of the Internet resources because packets carrying the same message traverse multiple
times the same several first hops from the source. In this thesis we propose CacheCast - a system for
single source multiple destination data transfer. CacheCast does not change the host-to-host com-
munication model. It is based on a link layer caching technique that removes redundant transfers
of the same data. CacheCast consists of two elements: distributed architecture of link caches and
server support. The link caches are designed to work independently. A single link cache consists of
two elements that operate on the link end-points. The cache management unit located at the link
entry removes from packets data that is already present in the cache store unit located at the link
exit. The cache store unit reconstructs the packets from the local cache and passes them to a router
for further processing. The server support provides a mechanism for an application to transmit
the same data over multiple connections in the CacheCast manner. The resulting packets carrying
the data are annotated with information that simplifies redundancy detection and removal. This,
in turn, greatly reduces the storage and complexity requirements of link caches. The CacheCast
system is incrementally deployable. It preserves the end-to-end relationship between communicat-
ing hosts thus it can operate with firewalls or NATs. The CacheCast deployment requires minimal
changes in the network operation and the minimum amount of resources.

The thesis evaluates three aspects of the CacheCast system. Firstly, it assesses the efficiency in
terms of network bandwidth consumption during single source multiple destination transfer. It
shows through analysis and simulations that CacheCast achieves near perfect multicast efficiency.
Secondly, the thesis studies impact of the link caches on the network traffic. Simulations performed
in the 75-2 network simulator indicate that CacheCast does not violate current understanding of
“fairness” in the Internet. Thirdly, the thesis evaluates the computational complexity of the server
support and link cache elements. The server support is implemented as a system call in Linux.
The detailed measurements of the system call execution show that it outperforms the standard send
system call when transmitting data to multiple destinations. The link cache is evaluated in the
context of the Click router. Even though, the link cache elements consume the router processing
capacity, the CacheCast router can forward much larger traffic volumes than a standard router.
Finally, the thesis includes an example of a live streaming application that uses the CacheCast

system to transmit audio stream to thousands of clients.

iii

v

Contents

Introduction
1.1 Problem of single source multiple destination transfers
1.2 Thesis problem statement Lo L L L L
1.3 Thesisclaims
1.4 Thesiscontributions
1.5 Methodsandapproach L oo
1.6 Thesis StIUCTUIE . . . v v v v v v v e e e e e e e e e e e
Background
2.1 Single source multiple destination transfer
2.1.1 ExplicitMulticast L
2.1.2 IPMulticast
2.1.3 Application Layer Multicast
214 Summaryandinsights L L L L L
22 Caching
2.2.1 Cachefundamentals
2.2.2 Cacheapplications
223 SUMMALY e e e e e e e e e e
Design
3.1 Termsand considerations
3.1.1 Link . ..o e
3.1.2 Router. e e e e e e
3.2 Requirementso u vt e
3.3 Fundamentals
3.3.1 DPlacementof cacheelements
3.3.2 Cachingawaresource
34 Linkcache
3.4.1 CacheCastheader
3.4.2 Linkcache mechanism
3.4.3 Linkcachesize
3.44 Memory utilisation of alinkcache 0.
3.4.5 Configurationofalinkcache o 0.
3.4.6 Payload ID considerations
347 FErrorsonalink L

NN 0 W0 N e

NN N

10
10
11
12
12
14
17

5

3.5 Serversupport

3.5.1 Applicationrelated tasks Lo Lo oL
3.5.2 Operating system related tasks o000
3.5.3 Operating system support for CacheCast
3.6 Resilience and operational considerations L0 oL
3.6.1 Attack on the link cache consistency L L.
3.6.2 Attack on the link cache efficiency L 0o 0L
3.7 Summary ... e e
CacheCast efficiency
4.1 Efficiency metric
4.2 Header transmission costso
43 Finitecachesize L
4.3.1 Simulationsetup Lo
4.3.2 Impact of the finite cachesize
4.4 Incremental deployment Lo L L Lo
4.4.1 Efficiencygainsperhop L L L
4.4.2 Cacheable and non-cacheablelink
45 Summary ...
TCP friendliness
5.1 Requirement of TCP friendliness
5.2 ms-2implementation
5.2.1 ns-2CacheCastheader
522 ms2linkcache. Lo
5.2.3 M2 SEIVEr SUPPOIT . o v v v v v ot i e e e e e
5.3 Loosely synchronised streams Lo L oL
5.3.1 Effect of increasing the number of receivers
5.3.2 Effect of decreased caching efficiency L.
5.4 Tighty synchronised streams o Lo oL
5.5 Summaryo e e e e

Computational complexity - server support

6.1 Computational bottlenecks L. Lo oo L
6.2 CacheCast header in the Ethernet networks
6.3 ServersupportinLinux o oo
63.1 Design. e
6.3.2 Linux networking subsystem o 0oL
6.3.3 Implementation L
6.4 Microevaluation L
6.4.1 Evaluation methodology
6.4.2 Costs WIt. group size o oo
6.4.3 Costswrt. payloadsize
6.4.4 Per-byte and per-packet cost contribution to the total cost
6.4.5 Memoryspeedimpacto

vi

45
46
47
47
48
48
49
50
51
51

53
53
54
55
56
59
61
62
64
66
67

6.4.6 Costofuser-kernel modeswitch. 0.,
6.5 Testbed Evaluation L L
6.6 SUMmMAry
7 Computational complexity - link cache
7.1 RouterElements L e
71.1 CMUandCSUdesign
7.1.2 Click modular router software
7.1.3 CMU and CSU implementation in Click software
7.2 Evaluation
721 Routermodel L
722 Tracefiles L
7.2.3 Router parameters
7.24 CacheCast router performance
7.3 SUummary .o.o.o. ..o e
8 Related work
8.1 Network-wide redundancy elimination
8.1.1 Storagespace
8.1.2 Computational complexity
8.1.3 Otherconsiderations Lo
814 SmartRE
82 Otherrelatedwork L
8.2.1 Redundancy elimination in multi-hop wireless networks
8.2.2 Point-to-point redundancy removal Lo L L
8.2.3 Redundancy removal by compression L.
83 Summary
9 Conclusions
9.1 Summary of contributions oL L o
9.1.1 Principles
9.1.2 PFeasibilitystudyo oo o
9.1.3 Environmental impact. L L Lo
9.1.4 Othercontributions L Lo
9.2 Critical reviewof claims L Lo L o
93 Futurework
9.3.1 CacheCastelements
9.3.2 Futureresearch directions L.
Bibliography

vii

95
95
96
98
100
107
107
108
108
108
110

111
111
111
112
113
113
113
114
114
115
115

117
117
118
118
119
119
120
121
121
123

125

viii

List

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1

4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8

of Figures

Genericcachedesign L L L o

Packet caching on point-to-pointlinks L oo

Basic idea of the caching mechanism
Thelinkconcept L
Ethernet networksegment Lo L L L o
Conceptual view of arouter L L L L
Input packet processing perlink L oL Lo
The first generation of router architecture Lo
Extended directed link
Cachinglinksand routerso L L L Lo
IPv4 Packet with the CacheCast header
Relationship between the CMU tableand the CSU
The packet train duration time L L L oL
Network communicationinOS
An application on server S connected to hosts B and C using two sockets
Server S transmitting the same data to machines C, D,andE
An application on a host S communicating with processes on hosts: C, D, and E .
Attack scenario - networtk topology L oL oL

Transmission of the same data to three destinations: A, B, and C using (a) unicast
and (b) multicast
The efficiency of the link layer caching 0.
Incremental deploymento Lo Lo Lo

ms-2packet
ns-2link ...
ms-2cachinglink L L
MS-2 SEIVEr SUPPOIT . . . v v v v v v v e e e e e e e
Single bottleneck scenarioo Lo Lo Lo
Increasing the amount of TFRC flows on a bottleneck link, the Low RTT config-

UFALIOM + v v v v v e
Increasing the amount of TFRC flows on a bottleneck link, the High RTT config-

UFALIOM + v v v v v e
Increasing the amount of TFRC flows on a bottleneck link, the Different RTT

configuration e

ix

5.9
5.10
5.11

5.12

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

7.1
7.2
7.3
7.4
7.5
7.6

Increasing the caching efficiency on a bottleneck link, the Low RTT configuration 65
Increasing the caching efficiency on a bottleneck link, the High RTT configuration 65
Increasing the caching efficiency on a bottleneck link, the Different RTT configu-

TALOM . L .o o 65
Increasing streaming rate in the bottleneck link topology 67
Extended directed link Lo 70
Use of the packet type field in the CacheCastheader. 71
The msend system calldesign 73
Application data representation on different layers oL 75
Socket buffer - datalayout oL oo 78
The msend system call executionflow 81
The CacheCast kernel module and the neighbouring subsystem 84

Per packet send time as a function of the group size for four different payload sizes 87
Per packet send time as a function of the payload size for group size of 100 (the

Intel machine) 88
Real system performance testbed. Lo Lo Lo 91
CMUand CSU relation e 97
Handling the CacheCast header related information in the Click router 97
Push-pull example for a Click router configuration 99
Click CacheCast IP router v v it i e e e e e 101
Theroutermodel 107

Utilised output capacity of the Click router for three different packet train sizes and
three different payload sizes L L L oL 109

List of Tables

3.1
3.2
3.3

4.1

6.1
6.2
6.3

7.1

Number of headers in packet train transmitted within a given cache hold time . . 29
Comparison of transport protocols L L Lo 36
Number of CMU entries as a function of link capacity assuming 1500B slots . . . 42
The size of 10ms packet train and its efficiency as a function of the source uplink

speed . L oL 48
Per packet system call cost - the linear function fit results for the Intel machine . . 88
Per packet system call cost - the linear function fit results for the AMD machine . 89
Server S streaming 320Kbps audio in 25Mbps network. oL 92

The ratio of the effective throughputs of the CacheCast router and the original router110

xi

xii

Chapter 1

Introduction

The history of the Internet began in the late 60’s with a research project called ARPANET founded
by Advance Research Projects Agency (ARPA). The goal of the project was to create a network for
connecting hosts. At that time, the understanding of networking was mainly based on a telephone
network. Therefore, the common wisdom was that in order to enable communication, first an
end-to-end channel must be established. This requires allocation of resources along the end-to-
end path which are released after the communication is finished. This type of network is called
the circuit switched network and it suits very well the human communication pattern. Nonethe-
less, machines are unlike humans, they communicate using short messages or bursts of messages.
This communication pattern does not suit the circuit switched network. A transmission of a single
message between hosts would require a costly end-to-end channel setup. Additionally, the delay
incurred during the channel setup operation would represent a very slow host-to-host communi-
cation. An alternative type of network was necessary which would support the rapid exchange of
short messages.

ARPANET was based on the packet switching paradigm which was a new approach to com-
munication at that time. A packet switched network does not provide a fixed end-to-end path,
rather it forwards messages on a hop-by-hop basis. Network nodes cooperate to build a consistent
view of a network topology and maintain this knowledge locally. Thus, each node can evaluate
the destination address of a message and forward it to the next hop towards the final destination.
The packet switched network matches the requirements of the host communication. A host can
transmit a message immediately without any channel setup and resource allocation. This, however,
has consequences for the message delivery. Since there are no preallocated resources, there is no
guarantee that a message will be delivered.

The work on ARPANET resulted in the development of the Internet Protocol (IP) and the
Transmission Control Protocol (TCP) which together are considered the foundation of the Internet.
The Internet Protocol (IP) assumes that a network is unreliable, thus, a message can be corrupted,
lost, delivered out of order, or even duplicated. The protocol defines the structure of a message
together with the addressing scheme and defines mechanisms to detect the message corruption and
erroneous behaviour of the network. TCP provides the abstraction of an end-to-end connection
for processes and ensures reliable message transfer. The full transition to the new protocols was
conducted in 1983. The TCP/IP protocol suit was quickly adopted for other networks which were
gradually connected to ARPANET thus establishing the Internet.

Over the last forty years the Internet evolved from a small project to a world wide network

providing connectivity for all types of parties, ranging from individual users to large corporations,
governments, banks and institutions. The original concept permitted gradual atctachment of new
networks to the base inter-network infrastructure. With its growth the Internet provided increas-
ingly more content and services. However, the distributed character of these resources required new
approaches which gave birth to all types of overlay systems. At present, the Internet is a platform
that provides host-to-host datagram transmission, while the services and content are accessible by a
significant variety of distributed systems.

1.1 Problem of single source multiple destination transfers

The original design of the Internet architecture did not consider the single source multiple destina-
tion datagram transmission, namely multicast. However, already in the middle 80’s it was recognized
that this functionality is necessary [1, 2] for applications such as distributed databases, distributed
computation, or teleconferencing, which require efficient multiple destination data delivery. With
content delivery over the Internet being more prominent nowadays multicast is increasingly becom-
ing a necessary feature. Unfortunately, the Internet still lacks widely deployed multicast services.

The first proposal to introduce multicast in the Internet [1] assumed that a source knows all
destinations. Thus, whenever it sends a packet it lists all of the destinations in the packet header.
This, however, severely limits the number of receivers, since a packet is of fixed size and has only
limited header space. Initially this proposal was rejected by the community but it has recently been
revised [3] and has been found useful as a complement to IP Multicast for small groups.

The second proposal by Cheriton and Deering [2] is IP Multicast. It assumes that a source does
not know the receivers of a datagram, rather it sends a packet to a group of hosts identified by an IP
multicast address. Therefore, the network is responsible for the delivery of a datagram to all group
members; hence it is also responsible for group management. However, due to many technical and
commercial issues it was not widely deployed. According to AmericaFree. TV' from 2007 the IP
multicast penetration to the Internet was 2.2% measured as a ratio of the number of IP multicast
enabled systems to the total number of autonomous systems.

The aforementioned issues related to network layer multicast, and difficulties in the deploy-
ment of this class of services, led researchers to address the problem at the application layer. The
application layer multicast (ALM) quickly became very popular not only as a research topic but also
as a commercial product. But even though ALM can provide users with full multicast functionality
it “Introduces duplicate packets on physical links and incurs larger end-to-end delays than IP Multicast”
as Yang-Chu et al. [4] point out. ALM distributes the burden of data transmission across data re-
ceivers; however, it does not address the root cause of the problem which is the lack of the network
layer mechanism for single source multiple destination data transfers.

At present, the only way to transmit the same data to multiple destinations which are scattered
across many autonomous systems is to use multiple unicast connections. However, this results in
numerous packets carrying the same payload crossing the same path for many hops. This redundant
payload transmission wastes Internet resources and the waste is particularly severe near to sources
streaming popular content, like IPTV or IP radio servers.

'heep://www.multicasttech.com/status/

1.2 Thesis problem statement

The host-to-host communication paradigm, which the Internet is based on, is decreasing in impor-
tance and is gradually being replaced by the content centric paradigm, where content — instead of a
host — is in the centre [5,6]. In this model, the main transport mechanism is single source multiple
destination transfer, while point-to-point transfer appears as a special case where only a single user
expresses an interest in content.

At present, the Internet does not provide efficient mechanisms for single source multiple des-
tination transfer. The network layer multicast does not work on the large scale and is inherently
insecure. The overlay solutions do not address this problem at the root, but provide workaround
methods where transmission costs are distributed among participating parties. This leaves us with
unicast as the only method for data transfer; a consequence of which the amount of redundancy in
the Internet increases.

The goal of this work is to remove the Internet redundancy in a minimal invasive way, i.e.,
using the minimum amount of resources and with minimal changes in the network operation.

1.3 Thesis claims

This thesis explores the feasibility of suppression of the redundant payload transmissions by apply-
ing a new caching technique on the Internet links. The thesis studies are based on the CacheCast
system, our reference system for the link layer redundancy elimination. The claims of this thesis are

the following:

Claim 1: A system of link caches can achieve near multicast bandwidth savings for a superposition
of unicast connections. The main benefit of using IP Multicast for data delivery is efficient
utilisation of network bandwidth. However, this is achieved at the cost of a huge management
burden in the network. We claim that a system of link caches can achieve similar utilisation

of network bandwidth without the management burden in the network.

Claim 2: A system of link caches requires server support in order to be feasible. In the context of single
source multiple destination data transfers, a source has all information on the data that it
generates and it also controls the data transmission. Thus, the source can support link caches
by providing information on packet redundancy and by transmitting the same data within
the minimum amount of time. We claim that this support reduces link cache requirements

to the point where it is feasible to implement them on all Internet links.

Claim 3: A system of link caches is incrementally deployable. In a large scale system it is highly
recommended that new functionality is incrementally deployable. Functionality which is
not incrementally deployable will not yield benefits until fully deployed, e.g. IP Multicast.
In the case of the Internet, which is owned by multiple parties, common agreement between
parties must be achieved in order to enable this functionality and to obtain benefits. This
poses additional difficulties for attempts to achieve full deployment, since it greatly increases
costs of initial investment. In contrast, an incrementally deployable functionality provides
immediate benefits at deployment of the first element. We claim that a system of link caches
is incrementally deployable and yields benefits at the first link cache deployment.

Claim 4: A system of link caches maintains fairness with respect to bandwidth sharing on a bottleneck
link. The Internet traffic consists of flows which are controlled by protocols. A protocol
instance runs on the flow end points and adjusts the flow throughput to meet the network
capacity. If the network becomes congested the protocol instance reduces the flow through-
put to ensure equal bandwidth sharing, i.e. “fair sharing”, with other flows. The protocol
instance infers the network condition based on the behaviour of packets which compose the
flow. We claim that link caches do not disturb the operation of current protocols. The

protocols can ensure “fair sharing” of the network resources in the presence of link caches.

1.4 Thesis contributions

The main contributions of this thesis include:

Principles

The first key contribution consists of a set of principles for the design and implementation of
a link layer caching technique. The principles are established based on thorough analysis of (1)
network element capabilities and characteristics, (2) former and currently established systems for
single source multiple destination transfers, and (3) requirements for this type of system. We con-
clude that a caching technique which operates on network links must be supported by sources of
redundant data. A source transmitting the same data to multiple destinations should batch the
transmissions and annotate the data with information that simplifies redundancy elimination. In
this way, the link cache complexity is significantly reduced. Based on these principles we have de-
signed and implemented CacheCast - a system comprising unique architecture that consists of a
distributed system of link caches and server support.

Feasibility study

The second key contribution is a feasibility study of the proposed principles. The study is based on
the CacheCast system. In order to measure the system efficiency, we use a simple model capturing
only basic characteristics of the CacheCast system, such as finite cache size, or packet header trans-
mission. The measurement results obtained confirm the feasibility of this approach for suppressing
redundancy introduced by single source multiple destination transfers. We also evaluate the Cache-
Cast system with respect to computational complexity. The server support part is implemented in
a Linux operating system and the link cache element is implemented as part of a software router.
Finally, in order to prove the applicability of this approach we adapt an open source live streaming
application to the CacheCast system. We show that the modified live streaming software can serve
more clients than the original software, by a significant order of magnitude.

Environmental impact

The third key contribution is a study of the environmental impact of the CacheCast system. Inter-
net fairness is based on the assumption that different packet flows should obtain the same share of
a bottleneck link. However, when a link cache operates on a bottleneck link, packet flows carrying
redundant data obtain much less of the bottleneck link capacity. Using a network simulator, we
study this issue in a small network possessing a bottleneck link topology.

4

1.5 Methods and approach

The applicability of a caching technique for removing redundant payload transmission requires
thorough analysis. A broad range of aspects of the system design is reflected in a range of methods
which we use during the analysis. In the following points, we briefly discuss the problems addressed

and the methods which we use to approach them.

* First, we establish where the caching technique should be applied in order to achieve the goal
of the redundancy elimination. This involves studies of two basic elements of the Internet
infrastructure, namely a link and a router. The study covers both the functional side and the

implementation side of the elements and results in the design of a link cache.

* Given a link cache we perform the initial assessment of bandwidth savings that can be ob-
tained when deploying a system of link caches in the Internet. The system is compared with
a “perfect” multicast, i.e., a multicast which avoids any redundant transmission and does
not incur management overheads. We use graphical analyses to determine the differences in

bandwidth savings between the systems and to understand the impact of the cache size.

* It is not given how end-to-end protocols will react in the presence of link caches. Congestion
control mechanisms built in the protocols estimate the throughput of a flow based on factors
such as packet size, packet arrival frequency, or end-to-end delay. However, these factors may
be affected in the presence of link caches. In order to understand the protocol behaviour we
use the network simulator 7s-2 and perform simulations in a typical bottleneck link topology,

where the bottleneck link is a caching link.

* The efficiency of a link cache model depends solely on the cache size. However, when im-
plemented the link cache will not achieve the model efficiency. To understand how fast it
can operate, how much resources it consumes, and what are its bottlenecks we implement
the link cache in the Click modular router software and evaluate it in the context of network

operation.

A system of link caches requires support from a server. However, the additional load on a
server related to the link cache support may reduce the benefits of using link caches. Ad-
ditionally, it is unknown whether the support can be integrated into the server operating
system. We address these concerns by a clean design of the server support in the Linux

operating system and a thorough evaluation of the server support implementation.

1.6 Thesis structure

In this chapter we provide a brief history of the Internet and introduce the problem of single source
multiple destination transfers. Chapter 2 provides the background for this thesis which consists of
two parts. In the first part, we elaborate the issue of single source multiple destination transfers,
and in the second part, we describe different caching techniques. We focus especially on the point-
to-point redundancy suppression techniques which are closely related solutions to CacheCast.
Chapter 3 presents the design of the CacheCast system. Firstly, we introduce the CacheCast

idea. Then, we analyse requirements and discuss properties of basic network elements. Based on

these inputs, we give a rationale for our design decisions to distribute the caching burden between
a server and link caches. Next, we present the detailed design of the CacheCast elements, viz., link
cache and server support. Finally, we consider resilience and operational aspects of the system.

The next four chapters describe evaluation results of different aspects of the CacheCast system.
Chapter 4 presents the system efficiency with regard to the amount of removed redundancy from
network links during single source multiple destination data transfers. Additionally, it assesses the
benefits of incremental deployment. Chapter 5 presents the link cache impact on congestion control
mechanisms. The measurements are performed in the network simulator 7s-2. We also provide
a description of the 7s-2 CacheCast implementation. Chapters 6 and 7 assess the computational
complexity aspect of the CacheCast system. Chapter 6 presents the design of the server support and
discusses issues related to the server support implementation in the Linux operating system. The
implementation is thoroughly evaluated with regard to computational complexity. Additionally, the
chapter presents an example of CacheCast enabled audio streaming in a testbed network. Chapter
7 covers the design and evaluation of the link cache elements. The elements are implemented
using the Click modular router software and the evaluation is performed in the context of router
operation.

In Chapter 8 we compare the CacheCast system design with a closely related system for network-
wide redundancy elimination. We also present other related works to give a wider picture of redun-
dancy removal techniques. Finally, Chapter 9 presents the thesis summary. We evaluate the thesis
contributions, and claims, and also discuss future work, both short term and long term.

Chapter 2

Background

In the previous chapter we have introduced the problem of single source multiple destination trans-
fer in the Internet. Despite a considerable research effort to enable network layer multicast in the
Internet, at present the service is still not available for an average user due to numerous problems.
Thus, the only method to transmit the same data to multiple destinations is to use multiple unicast
connections. However, this approach creates an unnecessary redundancy in the network traffic.

This chapter provides the background knowledge necessary to understand the motivation for
the thesis and to position the proposed system among other related solutions. The chapter is di-
vided into two parts. In the first part we give a thorough description of the problem of single source
multiple destination transfer in the Internet and in the second part we describe caching techniques.
Single source multiple destination transfer can be realised at the network layer or at the application
layer. At the network layer, multicast is approached using two different techniques, viz., explicit
multicast and IP multicast; however, both techniques have not been successfully deployed in the
Internet. We describe these two techniques and discuss reasons for the failure in deployment. Ap-
plication layer multicast operates only on end systems therefore it does not require any changes in
the network infrastructure. This ease of deployment contributed to quick development of appli-
cation multicast solutions and resulted in a great number of systems. We describe principles of
application layer multicast and the basic designs. To conclude the first part of the background, we
compare the network layer and the application layer approaches to multicast and derive insights for
our system design.

This thesis presents a system of link caches and therefore, in the second part of the background,
we introduce the caching technology. The technology has a broad range of applications which we
illustrate with a few examples. Finally, caching has already been employed on network links in a
similar manner to that presented in this thesis. We describe these related works in brief and we
compare them in detail with our system towards the end of the thesis, since this requires a thorough

knowledge of our system.

2.1 Single source multiple destination transfer

Single source multiple destination transfer can be understood in different ways within the context
of data transmission in a network. In this thesis, we use this expression to refer to an act of syn-
chronous transmission of the same data to multiple receivers by means of an application. We do

not use the word synchronous in an absolute form but rather as an effort of an application to achieve

7

simultaneous transmission using available means. We use the expressions single source multiple desti-
nation transfer and multicast interchangeably except when referring to a specific technology like IP
Multicast, or Application Layer Multicast. To illustrate this definition, we give three examples. Let
us consider an IP network providing both unicast and IP multicast transport methods. The net-
work connects a server and a set of client machines. We regard the following scenarios as examples
of single source multiple destination transfers:

1. Several clients request the same content from the server. The server batches all requests and
transfers the content to the clients using multicast. If the requested content does not fit a
transfer unit, it is divided into chunks and the server transfers successively all chunks to the
clients.

2. Several clients request the same content from the server. The server batches all requests and
transfers the content successively to all clients using unicast. If the content does not fit a
transfer unit, it is divided into chunks and the server transfers the subsequent chunks to all

clients using unicast.

3. The server streams live content using unicast. The clients request the stream from the server
at different points in time. However, since the stream carries live content, data transfer is
synchronous, i.e, the clients receive the same data (e.g. a new audio sample in the case of live
audio streaming).

As can be derived from our three examples, in the centre of our definition is the synchronous
transmission. In the first two examples the clients initiate data transfer; thus, the server must
batch these requests in order to perform synchronous transfer. In the third example, the server
initiates transfer whenever it has a new sample for transmission; thus, the transfer to all clients
is synchronised per se. To give an example of what we do not regard as single source multiple
destination transfer, let us consider the following scenario. Clients request content from a server.
However, the server does not batch the requests but rather it starts to transfer the content at the
time a client requests it. In this example the server does not attempt to synchronise the transfers but
sends the content to each client individually; therefore, we say that the server delivers the content
using single source single destination transfers.

In order to transfer the same data to multiple destinations using multicast, a server must make
an effort to synchronise transmissions to individual destinations. This effort varies depending on
the transmitted data type. In this context we give two examples of data type: live-data and on-
demand-data. The live-data is valuable at the time when it is being created (e.g. a transmission of a
football match or a video conference) therefore it is immediately sent to clients who are interested in
it. This property makes live-data suitable for multicast transmission without additional processing,
the content is synchronised per se. In the case of on-demand-data, clients request it at different
points in time and download it at different speeds. Thus, in order to deliver on-demand-data using
multicast, a server must employ advanced techniques to synchronise transmissions to individual
clients. However, these can consume a considerable amount of the server CPU power.

Different data types require different adaptation techniques to make the data amenable for
multicast transmission. These techniques, in turn, consume additional CPU power of a server.
Therefore, the relevant question is: What is the benefit of using single source multiple destination

transfer when compared to multiple single source single destination transfers? According to our def-
inition multicast transfer is a synchronous transmission of the same data to multiple receivers by
an application. This synchronous transmission can be exploited by an operating system (OS) or
a network mechanism to handle efficiently the data transfer. At present, there is a broad range of
systems for efficient handling of multicast transfer. We focus our discussion on the following three
solutions:

1. Explicit Multicast
2. IP Multicast
3. Application Layer Multicast (ALM)

The list of systems for multicast transfer is not complete but it contains the key systems. We
do not include in the list a class of content distribution networks (CDNss), since these solutions
(when considering multicast transfers) are similar to ALM. The common idea is to distribute the
server load. For this purpose ALM utilises end-host resources and CDNis rely on a dedicated
infrastructure.

2.1.1 Explicit Multicast

The necessity to support single source multiple destination data transfers in the Internet was recog-
nised already in the middle 80’s and the problem was approached from two directions. The first
direction was set by Aguilar in [1]. He proposed modifying the structure of the IP header. The
standard IP header contains a pair of source-destination addresses which reflect the unicasr char-
acter of a packet. Aguilar suggested that a multicast packet should contain a list of destination
addresses instead of a single destination address. Thus, when a server transmits the same data to
multiple destinations, it lists all destination addresses in the packet header. This new IP packet is
processed on a router in the following way: first, a router evaluates all destination addresses from
the list and determines the next hops; second, it splits the destination list into sub-lists which con-
tain destinations reachable via the same hops; third, it creates new packets for each hop with the list
of destinations; and finally, the new packets are forwarded to the next hops. This process is per-
formed by each router on a packet route to destinations, until the resulting packets have only one
destination address when they become standard unicast packets. Please note that in this process a
router forwards packets according to the unicast routing table and there is no necessity for multicast
routing.

While Aguilar’s approach to multicast is very simple, it does not scale well with the growing
number of destinations. Considering the limited size of a packet, the more destinations are ad-
dressed the less space is left for data. Moreover, Explicit Multicast does not completely eliminate
redundancy from single source multiple destination data transfers. When a destination list does not
fit a single IP header, it must be split into sub-lists. Consequently, a new packet carrying the same
data is created for each sub-list. The approach was deemed to be unscalable by the networking
research community and it was dismissed soon after Aguilar proposed it. Nonetheless, a decade
later it was revisited in [7, 8] and it was found useful as a complement to IP multicast. At present, it
is known as Small Group Multicast (SGM) or XCast (eXplicit Multicast) and is standardized in [9];
however, since it is not deployed in the Internet, it still remains a research concept.

2.1.2 IP Multicast

The second approach to multicast was proposed by Cheriton and Deering in [2] and it is known as
IP Multicast. While Aguilar’s approach focused only on the multicast transfer mechanism, Cheriton
and Deering proposed a more comprehensive approach to the problem. IP Multicast is based on a
host group model where a set of hosts is identified with a single multicast IP address. The Internet
maintains the knowledge of the group members and actively constructs routes connecting them. If
a host wants to join or leave a group, it notifies a network using the Internet Group Management
Protocol (IGMP) [10]. Each membership change propagates through the network and the multicast
routes are updated. In order to transmit data to a group, a server using the group address sends the
data to the network. The data is forwarded and replicated along the multicast routes of that group.
The original IP Multicast model permits any source to transmit data to a group, even if a source is
not a member of the group; thus, it is called Any-Source-Multicast (ASM).

As Diot et al. point out in [11] the open multicast model is prone to malicious attacks, it
requires global address allocation, it does not provide any billing model, and it reveals serious
scalability issues due to group management in the network. To address some of these problems,
Holbrook and Cheriton proposed an extension to multicast called EXPRESS [12] — EXPlicitly
REquested Single-Source multicast. EXPRESS uses the semantics of a multicast channel, instead of
a multicast group. A multicast channel has only one source and is identified by a tuple (S,E) where
S is the source address and E is the channel number. This solves the problem of global address
allocation and the shortage of multicast groups. Moreover, since only a source S can transmit to
channels (S,*) no malicious source can pollute the channels. A source can secure a channel with
a key; thus, only hosts that present the key can join the channel. Considering the billing model
for multicast, EXPRESS provides a service for counting channel subscribers. Since a channel has
only one source in the EXPRESS model, it is easy to charge the source based on the number of
subscribers.

At present, IP Multicast still lacks vital services like reliable receiver authorization, authen-
tication, and also accounting (AAA) in order to be accepted by content providers and Internet
Service Providers (ISP). Moreover, IP multicast requires per group state on forwarding nodes which
poses heavy burden on backbone routers. Another issue is the difficulty to construct the multicast
congestion control [13]. The solutions for handling heterogeneous receivers are based on layered
transmission which in turn requires allocation of expensive multicast channels. Finally, IP Multicast
breaks the end-to-end relationship between communicating hosts, thus rendering communication
inherently insecure. Altogether, these issues account for the lack of IP multicast services in the
Internet.

2.1.3 Application Layer Multicast

The two aforementioned approaches to multicast address the problem at the network layer. Ex-
plicit Multicast proposes to extend the IP header with additional destination addresses. This new
IP header requires a different type of processing on the Internet routers. Similarly, IP Multicast re-
quires updating routers. Routers must run the distributed group management, co-operate to build
multicast routes between group members, and forward and replicate IP Multicast packets. The
requirement of router level deployment in the whole network greatly contributes to the failure of

these solutions. Routers are updated very rarely, typically when old routers are replaced by new

10

ones. This, in turn, raises an issue of interoperability and increases costs of initial investment.

The reluctance to deploy and enable network layer multicast, directed the research effort to
application layer solutions that require only unicast transfers. The complete functionality of Appli-
cation Layer Multicast is implemented at the hosts that are part of a multicast group. This accounts
for rapid development of this class of solutions, since prototypes can be tested immediately in the
real world scenarios. The earliest examples of ALM from the research community include systems
like: Narada [4], NICE [14], Overcast [15], or Splitstream [16]. It was quickly recognised that
ALM is capable of efficiently delivering data to a large number of clients and the ALM technology
was adopted for commercial purposes, primarily to stream television channels. At present, systems
like PPLive [17], PPStream [18], Sopcast [19], or QQLive [20] attract a vast number of listeners.
For instance, the largest ALM PPLive claims to have more than 100 million users'.

Although the different ALM systems vary in their architecture, they share the common idea of
distributing the server load during data transfer among clients. This is achieved by arranging clients
in a tree structure where a server is at the root of the tree and the clients form subsequent levels of the
tree. The clients are in the parent-child relation, where a parent transfers data to children and the
first parent is the server. A parent has a limited amount of children and this number is called degree.
The degree parameter controls the tree shape. If the degree is high, the tree is short and therefore
the latency between the server and last client is low; however, the client load is high. Reversely, if
the degree is low, the tree is long and therefore the transmission latency is high; however, the client
load is low. In practice, the distribution tree is unbalanced - a few powerful hosts serve many poorly
connected clients (a host with an asymmetric connection, like ADSL, often cannot serve even a
single child due to the low uplink bandwidth).

The main challenge in ALM is to optimise the delivery tree structure under continuous changes
in network conditions and churn of group members. The amount of redundancy generated by
an ALM solution is smaller than the amount generated by purely a server-client model. ALM
exploits clients locality to efficiently deliver data. It can cluster clients by network location, thus,
a server sends data to only one client from a cluster which then distributes it to its neighbours.
Nonetheless, an ALM client that actively participates in the distribution tree, transfers the same
data to its children using unicast, thereby creating redundancy at the network layer. Moreover, even
the optimal ALM solutions incur additional delays during data transfer.

2.1.4 Summary and insights

Explicit Multicast and IP Multicast provide the mechanism for single source multiple destination
transfer at the network layer. Explicit Multicast implements only the transfer mechanism and
a server is responsible for group management. Therefore, an Explicit Multicast packet carries a
list of group member addresses. To overcome this limitation, IP Multicast combines the transfer
mechanism together with a group management system. The destination of an IP Multicast packet is
a group of hosts identified with a single address. While IP Multicast is scalable regarding group size,
it does not scale well regarding group number. The cost of the group management in the network
is difficult to justify with the degree of efficiency obtainable. Furthermore, the host group model
breaks the end-to-end relationship between communicating parties, causing a number of security

issues.

heep://download.pptv.com/en/about.html

11

Even though the host group model provides a clean solution for the multicast problem, it does
not suit well the Internet architecture. The Internet design decisions follow primarily the end-to-
end arguments of Saltzer et al. [21]. Saltzer argues that the core network should provide only basic
functionality upon which higher layers can build diverse services and applications. Application layer
multicast indicates that group management can be successfully implemented at the higher layers;

however, it requires a network primitive to support single source multiple destination transfer.

2.2 Caching

Caching makes access to data faster by adding transparently a small secondary storage unit to the
system. The secondary unit is either faster, i.e., within a computer - cheap and slow storage units
are paired with faster and more expensive storage units to improve access time; or this secondary
storage unit is located closer to the process that requested the data. In this case redundant transfers
over networks are avoided.

Caching effectiveness follows from a phenomenon that most of process requests can be served
from a relatively small storage unit. This is because in most systems the request pattern exhibits
temporal and spatial locality of reference. The temporal locality of reference occurs when a process
requests the same data in short time periods. For instance, CPU often executes the same instructions
due to frequent loops in computer programs, or users often access the same favorite web-sites. The
spatial locality of reference occurs when a process within a short time period requests nearby data
elements. For instance, most CPU instructions are executed sequentially, or within data structures

related data elements are located nearby.

2.2.1 Cache fundamentals

A cache is a small storage unit that keeps a subset of data from the primary storage unit. As it is
depicted in Figure 2.1, a cache is organised as a pool of slots containing copies of data from the
primary storage unit. Each copy of data stored in a slot is identified with a tag. The same tag is used
to identify the original of this datum in the primary storage unit. In order to access an element in
either of the storage units, a system uses a tag to access the datum containing the element and an
offset to access the element in the datum. For instance, in a computer main memory an instruction
address determines both tag and offset of the instruction. With the increasing cache granularity,
more bits of the instruction address line are allocated for the tag part and less for the offset part.

line, block, page

tag | element slot

Figure 2.1: Generic cache design

The cache assisted read operation is performed in two steps. When a process requests an ele-

ment, first, the cache is queried using the element tag. If the tag is found in the cache, the associated

12

element is immediately served from the cache and we say that a cache hit occurred. If the tag is not
found in the cache, the element is served from the primary storage unit incurring high access la-
tency and long transfer time. In this case, we say that a cache miss occurred. In the second step
during cache miss a datum containing the requested element is inserted into the cache. Since the
cache space is limited, the new datum replaces the datum chosen from the cache according to the
replacement policy. The task of the cache replacement policy is to point to a datum that is most
unlikely to be referenced in the future, thereby maximising cache utilisation.

During the cache assisted write operation, a system does not write an element directly to the
primary storage unit, but transfers it to the cache. Then, the cache is responsible for writing the
modified datum to the primary unit to maintain coherency. In general, there are two policies to
handle the cache write operation: write-through and write-back. A cache with the write-through
policy immediately transfers a modified datum to the primary unit. A cache with the write-back
policy delays the transfer to the primary unit until the modified datum is not evicted from the
cache. This policy can yield better performance, since other elements in a single datum may be
accessed and modified by the system multiple times before the datum is evicted. However, the gain

in performance is achieved with temporal inconsistency.

Replacement policy

A good replacement policy should guarantee efficient use of the cache space. The cache efliciency is
usually measured by the cache hit ratio therefore the goal of the replacement algorithms is to max-
imise this parameter. Obviously, it is not possible to provide the optimal replacement algorithm,
since this requires knowledge of future access requests. Therefore, based on the previous request
pattern the replacement algorithm approximates the future behaviour.

One of the most popular cache replacement policies is the Least Recently Used (LRU) policy.
LRU evicts the least recently used element from the cache. Therefore, the elements that are accessed
frequently are unlikely to be evicted. The policy yields high hit ratio for most of the caching systems.
However, in order to achieve better cache performance, the replacement policy should match the
system request pattern. Thus, it must be designed to match the content characteristic and the
system behaviour. For example, in [22] Robinson and Devarakonda show that a frequency-based
replacement policy outperforms the LRU policy when managing caches used for disk blocks by a
file system, a database management system, or a disk control unit.

Optimisation of the cache replacement algorithm is not always beneficial. With the growing
complexity of the replacement algorithm the cache response time decreases. Complex algorithms
require more processing power and local storage space which are not always available. For example,
the CPU cache operates in a very constrained environment where the replacement algorithm is
implemented in hardware. Moreover, to decrease lookup time in the cache a single line can only be
mapped to a subset of possible cache slots. Therefore, this type of cache implements only a limited
version of the LRU policy. Virtual memory management systems also do not implement the basic
LRU policy for disk cache, but use the less complex clock replacement algorithm [23,24]. The

algorithm does not achieve the LRU efficiency, but provides faster response times.

13

Cache Coherence

A cache holds a subset of elements from a primary storage unit for fast access. These copies of
elements should reflect the original elements, and only then, can we say that the cache is coherent
with the primary unit. A cache may become incoherent in two situations: (1) a process modifies
elements in the cache, or (2) an external process modifies originals of the cached elements in the
primary storage unit. We have already discussed the first situation with the cache write policies.
To recap, the write-through policy provides strict coherence while the write-back policy permits
temporal incoherence for the sake of performance. The second situation, whereby an external
process modifies elements in the primary storage unit, occurs often in environments where multiple
systems access the same storage unit like a distributed file system, multi-core processors, or World
Wide Web (WWW) services.

The importance of cache coherence depends on the system characteristic and it is not always
crucial. Usually, systems that do not involve humans also do not tolerate inconsistencies. For exam-
ple, multi-core processors demand strict coherency between caches and a main memory. Deviations
from coherent state may cause system crash. Therefore, additional mechanisms are employed to
ensure the coherent state — both in hardware and software. Other considerations are required for
WWW proxy caches. Users accessing a web-page are often willing to get a stale web-page if they
do not have to wait a long time [25]. Hence, a proxy cache often serves stale web-pages as long as
their expiration time has not elapsed. Only then, will the proxy cache fetch the web-page from the

SErver.

2.2.2 Cache applications

Caches are ubiquitous in computer systems. We have already mentioned some of the cache appli-
cations, in order to support our description of the cache mechanism. In the following paragraphs
we extend these examples and discuss application specific cache design considerations. Finally, we
describe a cache for point-to-point data transfers in the Internet. This type of cache in many aspects
resembles our solution, however, here we describe only principles, providing a detailed comparison

with our system towards the end of the dissertation.

CPU caches

From the very beginning of computer systems, the instruction and data transfer from the main
memory to CPU posed a bottleneck for system performance. The CPU executes instructions an
order of magnitude faster than the speed instructions can be fetched from the main memory. To
bridge this gap, already in the early 80’s most large and moderate computer systems were equipped
with cache memories [26]. CPU cache has multiple design considerations, however, here we men-
tion only two: access time and hit ratio.

To provide the shortest access latency, modern CPU caches are integrated in the same circuit
as the processing unit. In addition to the cache placement, the cache lookup time constitutes a
considerable part of the access time. In order to minimise the lookup time a single memory line
can be placed only in a limited number of cache slots. Thus, based on the line tag the cache knows
immediately which set of slots to query. A directly mapped cache permits a single line to occupy

only one location in the cache. A less strict scheme - a set associative cache - permits a single line to

14

be stored in alternative locations. While the flexibility increases the cache hit ratio, it also extends
the lookup time.

The cache hit ratio is directly proportional to the cache size. The larger the cache, the higher the
hit ratio. However, increasing cache size also results in increased access latency, which is undesirable.
One solution to this problem is a multi-level cache hierarchy [27]. By providing a second level
cache, we can efficiently handle first level cache misses. Therefore, the second level cache allows

reduction in the size of the first level cache, thereby increasing its responsiveness.

Disk caches

In computer systems, disks provide an inexpensive storage space for large amounts of non-volatile
data. However, disks are mechanical devices and thus have a high access latency due to disk head
positioning. Moreover, advances in disk technology do not help to reduce the gap between the
disk access time and the CPU speed which is instead increasing. Therefore, processes performing
input/output (IO) operations are often blocked for a long period of time while waiting until the
requested data element is fetched to the main memory. To overcome the IO bottleneck limitation,
disk caches were proposed as a solution [28].

Disk caches use a part of the main memory to store frequently accessed blocks of data. This
improves the computer system performance in two ways. Firstly, the disk cache moves large blocks
of data, which is much more efficient than moving small data elements upon each 10 request.
Hence, when a process performs multiple short IO operations on a file, most of the operations
are transparently handled by the disk cache. Secondly, the disk cache eliminates many 10 write
operations, since data elements are only written to blocks in the main memory. The modified data
blocks are marked as dirty blocks and are written back to the disk either when evicted from the disk
cache or upon explicit system request (like the sync command in Unix systems).

In most operating systems, the disk cache functionality is implemented by the virtual memory
management system. When a file is open, it is mapped to a memory address space which is done
implicitly by a process loader, or explicitly with for example the mmap system command in Unix

operating systems.

WWW proxy caches

The first caches were primarily used to accelerate CPU access to main memory, and to improve 10
throughput when accessing disks. With the advent of the Internet, the caching technique was also
applied to web services. The idea of WWW proxy caches arose as an extension to proxy servers.
A proxy server originally provided access to web services for users located in a subnet protected
with a firewall. The proxy server was installed at the gateway and it forwarded all HTTP requests
generated by the subnet users to web servers. Since the subnet users often share common interest,
the proxy server was an excellent place to build a web-page cache [29].

A proxy cache reduces network traflic generated by users that are located in the same subnet,
since it eliminates redundant transfers of the same web-page from a remote web server to different
users. At the same time, the proxy cache cuts down the access latency to cached web-pages. How-
ever, due to performance issues, proxy caches do not maintain strict coherency between cached
documents and their primary copies on web servers. Cached documents have an assigned expira-

tion time which is usually a fixed time period for all documents. The proxy cache does not check the

15

validity of documents until the time expires. Therefore, proxy caches often serve stale documents.
While proxy caches remove a part of redundant transfers in web traffic, in practice, it appears
that it is only a small fraction. Users demanding fresh documents force caches to always fetch a web-
page from a server, regardless of the age of the document copy. Moreover, a proxy cache cannot
handle requests for content that: requires authorisation, is generated dynamically, or is personalised.

It also does not recognise the same content mirrored on a different server, since it caches content by

the URL address.

Point to point link caches

To overcome the shortcomings of a proxy cache Spring and Wetherall proposed in [30] a packet
level redundancy suppression. The technique is applied on a point-to-point bandwidth constraint
channel like for example: an access link, a wireless link, or a path between a server and a client.
The algorithm requires two caches that are located at the channel entry and at the channel exit (see
Figure 2.2). The packet transfer is handled in the following way. Before a packet enters the channel,
it is compared against the cache content and if any substring of the packet is found in the cache,
it is substituted with a tag. Thus, packets traversing the channel consist of unique byte strings
and short tags replacing redundant information. On the channel exit, the packet is reconstructed
from the cache by replacing the tags with data. To ensure the correct operation, the caches must be
consistent.

m @ 1o (I :

Q 1 I:IQ
bandwidth constraint
server cache channel cache %

O

clients

Figure 2.2: Packet caching on point-to-point links

The packet level redundancy suppression is protocol independent. Therefore, it can eliminate
redundancy regardless of the HTTP semantics. Since it operates at the level of byte strings, it
can detect redundancy in personalised or dynamically generated content. Furthermore, it does not
need to be updated to support new types of protocols or content. These distinct features led to
fast commercialisation and the technique became a fundamental part of WAN optimisers [31-34].
Recently, Aggarwal et al. [35] proposed to incorporate the end-to-end redundancy suppression
technique as a part of a network stack.

In [36], Anand et al. propose to deploy the redundancy suppression technique as a universal
primitive on all Internet links. The network-wide redundancy elimination would considerably
decrease load on links and make networks resilient to flash crowds. As the authors argue, even
greater improvements can be obtained by modifying forwarding routes to extend a common path of
packets carrying redundant content. The link layer redundancy elimination requires the installation
of a pair of caches between a router egress and a downstream router ingress ports for each router link.
Caches installed at router egress ports remove redundancy from outgoing packets and downstream
caches reconstruct the incoming packets.

16

As the authors point out in the followup [37] this naive approach does not take into considera-
tion the limited amount of memory available on routers and the memory throughput bounds that
renders the solution infeasible. The new design addresses these constraints with a distributed archi-
tecture. To reduce computational effort, packets are not cached on the hop-by-hop basis. Rather,
an encoded packet may be reconstructed by a cache located a few routers downstream. This greatly
increases complexity of the architecture, since it requires coordination between different link caches
which raises difficulty in inter-cache consistency.

2.2.3 Summary

Caching became a standard element in computer architectures that transparently accelerate system
operation. It is present on all levels of the computer system architecture. It cuts down access latency
and transfer time of small portions of data such as single instructions in the CPU to large transfers of
content from web-servers to clients. Caching also eliminates redundant transfers of the same data
over the same channel. In this context, it trades memory and computational power for channel

bandwidth.

17

18

Chapter 3
Design

In this chapter we present CacheCast - a link layer caching mechanism that removes redundancy
from single source multiple destination transfers. The basic idea of CacheCast is presented in Figure
3.1. To ilustrate the idea, we consider two consecutive packets that originate from the same source,
traverse a few hops over a common path and carry the same content but have different destinations.
The first packet traverses the path hop-by-hop. Each hop along the path caches the packet payload
and records the output link for the packet (steps (1) and (2)). When the second packet enters
the path, the first hop determines the output link for the packet (steps (3) and (4)). It recognizes
that it has sent the first packet over that output link with the same payload. Since the payload is
already in the next hop cache, it sends the packet header. The same occurs on each hop until the
last hop of the common path is reached. The last hop determining the output link for the second
packet recognizes that it will travel a different path than the first packet. Thus, the payload cannot
be present in the next hop cache. The last hop attaches the payload from its cache to the second
packet header, sends the entire packet and records the output link.

The CacheCast system operates on the link layer and its goal is to remove redundant payload
transmission from links. In order to find an instantiation of CacheCast for packet switch networks
such as the Internet, firstly, in Section 3.1 we provide basic terms and considerations for network
elements. Secondly, in Section 3.2 we present a list of requirements that CacheCast should satisfy.
Thirdly, in Section 3.3 we discuss two fundamental elements of the CacheCast system, i.e. link
cache and server support. The detailed designs of these elements are described in Section 3.4 and
Section 3.5. Finally, in Section 3.6 we consider resilience and operational issues related to the
CacheCast design and we conclude the chapter in Section 3.7.

3.1 Terms and considerations

Packet-switched networks such as the Internet consist of links and routers which provide end-
to-end packet delivery. In the following we use the Internet as an example to demonstrate how
CacheCast works. In the Internet links are communication channels that transport packets over a
distance, while routers connect multiple links and forward packets towards their destinations. Since
the meaning of the link and router terms is broad and depends on the context, in this section we
provide our terminology to avoid ambiguities. Furthermore, we discuss assumptions related to the

elements and analyse to which extent these assumptions hold.

19

Step

(1)
(2)
(3)
[@]
B
f1
(4) > >
- N - A
[P] [P] [P]

Figure 3.1: Basic idea of the caching mechanism

3.1.1 Link

A link is a point-to-point communication channel that transports packets over a distance. The link
abstraction can be applied in the context of both the end host communication and the single hop
communication. However, in this thesis we use it always in the context of the single hop com-
munication. A link should not be associated with the physical medium. It is rather implemented
on top of other networks (see Figure 3.2). At present, Internet links are mainly based on switched
networks such as switched Ethernet or ATM which are used to access end hosts, or dedicated lines
which constitute the Internet backbone. Despite the variety of link technologies, a link has three
general properties that are of key importance in the CacheCast design.

(1) Packet sequence: Even though this is not required, in most cases links preserve the order of
packets. This is due to the link technology. Backbone links are mainly created using dedi-
cated lines, or circuit switched networks, where packet reordering does not occur. In case of
access networks which are dominated by switched Ethernet, the order of packets is preserved

due to single path routing inside a network.

(2) Packet loss: Links are characterised by low packet loss probability. Considering wired tech-
nologies the reliability comes from well protected data paths, while in the case of wireless
transmissions reliability is increased by protocol mechanisms, e.g. re-transmissions. The
packet loss is minimised, since this increases the end-to-end transmission throughput and

link utilisation.

20

Point to point link View point

Logical

Physical

Switched
network

Fibre

O ¢

Figure 3.2: The link concept

(3) Link capacity: The link throughput is limited in bits per second. Thus, the shorter packets

are the more of them can be transported over a link within a given time unit.

The first two properties greatly simplify the design of a link cache, since it does not need to
employ mechanisms for packet recovery or for handling reordered packets. The third link property
ensures that payload caching is meaningful, since a link can transport many more short packets
than large packets within a time unit. If the link throughput was limited in packets per second, no
gain could be obtained by caching.

While it is simple to associate a link with a fibre connection, the correct identification of a link
in a broadcast medium may not be obvious. Figure 3.3 depicts three machines connected with
Ethernet coaxial cable which acts as a broadcast medium. In this scenario, we identify the three
following links: A-B, A-C, and B-C. Since the cable connects more than two machines, we use
machine Ethernet addresses to identify link ends. It should be noted that our link abstraction does
not capture broadcast transmission. It only supports the point-to-point communication. By this,

CacheCast adheres to the Internet architecture which operates only on point-to-point links'.

®

Figure 3.3: Ethernet network segment

"The broadcast communication in the Internet infrastructure is rarely available and only on the network edges. It
causes waste of bandwidth, since messages are often sent to hosts which are not interested in their content.

21

Control plane

Route
processing

Input T i Output

links links
—> —>
[] : : []
—> >
Data plane

Figure 3.4: Conceptual view of a router

3.1.2 Router

A router is a network node that connects at least two links and switches packets between them.
As depicted in Figure 3.4, a router has two processing planes: a control plane and a data plane.
The control plane is responsible for computation and maintenance of network routes as defined
by routing protocols like Open Shortest Path First (OSPF) or Border Gateway Protocol (BGP).
Since these tasks are not time-critical, they are performed by a standard CPU. The router data
plane is responsible for forwarding incoming packets based on their destination IP addresses and
the precomputed routes. Packet forwarding is the most time-critical operation in a router. In order
to match the arrival rate of packets from multiple links of high capacity, the forwarding operation
requires hardware support and often a special type of hardware architecture.

CacheCast operates on a per packet basis, hence it functionally belongs to the data plane. The
main task of the data plane is to forward packets and this is performed in the four stages (as depicted
in Figure 3.5): (1) upon arrival, a packet is verified and if it has errors, it is discarded, (2) based
on the packet destination IP address the output link is determined, next (3) the packet time-to-live
(TTL) and checksum fields are updated, and finally (4) the packet is switched to the output link.
Each output link has a queue that stores packets during bursty periods when packets from multiple

input links are switched at the same time to the same output link exceeding its capacity.

Input link .
Packet Destination IP TTL and checksum o
—> e > > Switching
verification address lookup update

Figure 3.5: Input packet processing per link

22

CPU Main memory

Network Network Network
interface interface interface

Figure 3.6: The first generation of router architecture

The first generation of routers perform all tasks of the data plane in a standard computer ar-
chitecture (Figure 3.6). A packet arriving at one of the network interfaces is transferred to the
main memory and then processed by the general purpose central processing unit (CPU). When the
output link is determined the packet is queued and later transferred to the network interface asso-
ciated with the output link. In this architecture the CPU performs all tasks related to the packet
forwarding and the main memory acts as the packet switch, thus, the router forwarding rate is
limited by per packet CPU processing and the memory bus speed. The second and third genera-
tion of routers are based on a distributed processing architecture. The data plane tasks related to
the packet processing are performed directly on network interfaces and the switching is done via
a shared memory, or a shared bus in routers of the second generation, and via a switch fabric in
routers of the third generation. While the first generation routers are sufficient for small to medium
size autonomous systems, the second and the third generation routers are necessary to handle traffic
on Internet backbone links.

The router throughput is characterised by the number of packets that a router can forward
within one second. Our fundamental assumption in this thesis is that throughput of a router
does not depend on the packet size. This assumption holds for the first generation of routers,
since the packet route evaluation and IP header update does not depend on packet size and the
packet switching is performed inside the router main memory. However, in the second and third
generations of routers this assumption may not hold. While these routers perform the same per
packet operations, the packet switching involves packet transmission over the internal bus or switch
fabric. Therefore, throughput of these routers depends on the packet size.

In this thesis we focus only on the first generation of routers that are used in the small to
medium size autonomous systems. The second and third generations of routers require additional
considerations which is a subject for future work. It is worth noting that for small to medium size
networks the link cost is mainly associated with a physical infrastructure of copper wires or fibres
and it greatly outweighs the cost of routers which are cost-efficient boxes. Therefore, the bandwidth
savings that can be gained by caching in this type of network are important.

3.2 Requirements

CacheCast requirements arise from three aspects: (1) CacheCast as an intermediate system that
supports single source multiple destinations transfer, must in principle preserve the end-to-end

23

relationship between communicating hosts. (2) CacheCast as a system performing per packet pro-
cessing must be reliable and fast. (3) CacheCast as a system for reducing transmission costs must

itself have minimum costs in terms of resource consumption and initial investment.

CacheCast as an intermediate system

The host communication in the Internet is based on the end-to-end principle, i.e. two hosts which
communicate have all information about the connection stored locally and no information is stored
in the network. Transport protocols like TCP or DCCP (which provide reliability or congestion
control) are based on this principle. Additionally, the end-to-end relationship between hosts sim-
plifies security control, since no third party is involved. Therefore, CacheCast as an intermediate
system must preserve the end-to-end relationship.

IP Multicast is an example of a system which breaks the end-to-end principle. It requires a
new set of protocols designed to work with an intermediate system. However, in this context it is
difficult to provide reliability, congestion control, and security control which is a subject of ongoing
research (cf. Section 2.1.2).

CacheCast as a packet processing system

CacheCast is a link layer system that performs per packet processing. Since the caching mechanism
operates on individual packets, a single cache must be fast enough to process all packets arriving at
the maximum speed. If this is not the case, the caching mechanism itself becomes a bottleneck.
CacheCast must be reliable. A single packet traversing a network hop-by-hop can be subjected
multiple times to the caching mechanism. Since the packet is successfully delivered only if all of the
caches on the packet path perform correctly, a single cache operation must be completely reliable.

A failure of a single cache will result in failure of end-to-end packet transmission.

CacheCast as a system for cost reduction

The CacheCast purpose is to reduce costs of single source multiple destination transfers measured
as bandwidth consumption. However, if CacheCast requires a considerable amount of resources to
be deployed and utilised then the purpose is lost. Therefore, both investment and operational costs
must be minimised.

In order to minimise costs of initial investments CacheCast must be incrementally deploy-
able. An incrementally deployable system yields benefits already with the deployment of the first
elements, thus creating a positive incentive for further investments. Systems requiring full deploy-
ment in order to work, create a high barrier of initial investment which may prove too difficult to
overcome.

The operational costs of caches depend mainly on the amount of cache storage space and com-
putational costs. Thus, in order to minimise the operational costs, CacheCast must use minimum

storage space on each hop and employ a simple caching algorithm.

24

3.3 Fundamentals

The core problem that we address in this thesis is the redundancy in single source multiple destina-
tion datagram delivery in the Internet. In the absence of widely deployed multicast solutions this
type of transmission is solved by a superposition of unicast transmissions. Obviously, this leads to
multiple transmissions of identical payload over the same link.

The overhead introduced by multiple transmissions of the same element over the same com-
munication channel is a well-known problem in computer systems and is addressed by caching.
For example, multiple transfers of the same data/instruction from main memory to CPU are sup-
pressed by multi-level CPU caches. Multiple transfers of the same pages from hard disk to main
memory are suppressed by page caches. Multiple transfers of the same elements from web pages to
the same client are suppressed by the client web browser caches. We argue that multiple transfers of
the same payload over the same link should be also suppressed by caching. The link layer caching
is transparent to packet transmission and therefore preserves the end-to-end relationship between
communicating hosts. Thus, CacheCast as a link layer caching technique intrinsically satisfies the
requirement imposed on intermediate systems as discussed in Section 3.2.

In the following subsections, we discuss two fundamental design issues for payload caching.
The first issue is where to place cache elements. The second issue is whether a source should be

aware or unaware of caching.

3.3.1 Placement of cache elements

According to the assumptions we have made, the link capacity is limited by the bit transmission
rate and the router forwarding rate does not depend on the packet size. Therefore, the caching
mechanism should be located on the edges of the link entity (see Figure 3.7). In this configuration,
the caching mechanism is divided into two parts. The cache management unit located at the
link entry removes redundant data from packets before they enter a link, thus increasing the link
throughput. The cache store unit located at the link exit reconstructs the packets before they enter
a router which does not impact router forwarding rate. Caches constructed on the link edge entity
are simple to implement, since packets behave in a deterministic way on a link. Additionally, the
caching mechanism is transparent to a router, since a router processes packets in a standard way
(Figure 3.8).

Cache Cache store
management unit
unit
CMU ’ CSuU

Figure 3.7: Extended directed link

A single link cache does not require any cooperation with other caches. It is a self-standing unit.
The only information the cache requires is carried by a cacheable packet. Link caches are transparent
to routers. As we have discussed in the previous section we focus on the first generation of routers.
All cacheable packets that were transmitted without payload over a link are reconstructed inside the

shared memory and then they are processed by a router. Before a cacheable packet is moved to the

25

Caching

Normal processing

Figure 3.8: Caching links and routers

output interface, it is again subjected to the caching mechanism and its size may be reduced (see
Figure 3.8). Since we move cached packets between network interfaces and shared memory and we
aim at a very simple caching mechanism, the CacheCast impact on a router’s switching capacity is

negligible.

3.3.2 Caching aware source

Our second design decision is that a source should be aware of caching. A caching aware source
cooperates with the network. It can ensure that the packets that carry the same payload are trans-
mitted within the minimum interval time. Additionally, it can provide three key information
elements to the network that simplifies caching. Firstly, it marks packets that carry the same pay-
load as cacheable packets. Packets which do not carry duplicate payloads are not marked and are
not considered for caching in the network. This in turn increases cache efficiency, since unique
payloads do not unnecessarily consume cache space. Secondly, the payload part of a packet is of
variable size. The source can easily provide information about the payload size. Thus, link caches
know immediately which part of a packet to cache. Thirdly, a source can create an identifier for
each payload, which combined with the source address, is unique in the Internet. Thus, caches
perform the matching based on payload IDs instead of a whole payload match. A caching aware
source can significantly relieve link caches both in terms of processing and memory requirements.
The simplified cache processing results in reliable and fast link caches. Therefore, a caching aware
source is the fundamental element of the CacheCast design by which we address the requirements
of the fast and reliable packet processing and minimum resource consumption described in Section
3.2.

A source unaware of caching does not support the network. Caching is done transparently to
the source and the link caches do not have the aforementioned advantages. These caches would
require larger storage space to achieve a comparable efficiency (due to the wasted storage room
for non-redundant payloads). They need to determine the payload part and need to compare the
whole payload at the instance a cache hit occurs. However, the main advantage of the transparent
caching is that it does not require any change at the source. Moreover, the transparent caching
does not match payloads according to the IDs created at the source, rather it compares whole
payloads. Thus, the same payloads that originate from different sources can be matched, which
may provide the ability to cache content from unrelated sources. Nevertheless, we are interested in

the single source multiple destination datagram delivery and inter-source matches are beyond the

26

scope of this work. Furthermore, our aim is to minimize the cache size which in turn minimizes the
probability for inter-source matches. The advantages of the transparency are achieved by employing
large caches and complex cache matching algorithms which will otherwise be too expensive for the

Internet in the near future.

3.4 Link cache

CacheCast has been developed on the basis of our fundamental design decisions. It consists of two
parts: a server support and a link cache. In this section we describe the functionality of the link
cache and discuss issues related to the size, configuration, resource utilisation, and reliability of a

link cache.

3.4.1 CacheCast header

The caching aware source (as we discussed in Section 3.3) marks packets as cacheable packets and
provides information on payload ID and payload size of the packet. However, the question is:
Where should this information be placed? We decided to create an extension header called the
CacheCast header. Each packet which carries a CacheCast header is a cacheable packet. CacheCast
works only on cacheable packets. Non-cacheable packets pass it untouched. The header is created
at the source and contains three fields: the cache index (INDEX), the payload ID (P_ID), and the
payload size (P_SIZE). The cache index is an administrative field for the caching mechanism and
it points to the location of the payload in the cache store unit. The two remaining fields are filled
by the source before packet transmission. The payload size describes the packet tail size which is
cacheable. We assume that payload is always at the tail of a packet. The payload ID identifies
packet payload uniquely at the source and when it is combined with the source address it identifies

a packet uniquely in the Internet.

Payload size

AN

Payload

size

L3 | Payload F‘ayilgad ‘lNDEX| L2 |

Figure 3.9: IPv4 Packet with the CacheCast header

Depending on the IP version available in a network, we consider two possible locations for
the CacheCast header. If CacheCast works in an IPv6 network we use the IPv6 extension header
to implement the CacheCast header. However, IPv6 is rarely deployed in the Internet at present
and it is more likely that the caching mechanism is employed in IPv4 based networks. Since the
IPv4 header does not provide any functionality enabling us to implement the CacheCast header,
we follow the approach of the MPLS protocol. We locate the CacheCast header between link
layer header (L2) and IP header (L3) (shown in Figure 3.9). We make the CSU unit responsible
for removing the CacheCast header when a cacheable packet enters a router and the CMU unit
responsible for inserting the CacheCast header before a packet re-enters a caching link. Since we
have to maintain the payload ID and the payload size information when a cacheable packet is
processed by a router, we move them to the packet meta-data describing the packet state on a
router. We follow this approach in our Click router implementation (cf. Chapter 7).

27

CMU Table Cache store

Index Payload id Index Payload
0 Pid4 0 Payload,
1 Pid, 1 Payload,

N-1 N-1 Payload,

Figure 3.10: Relationship between the CMU table and the CSU

3.4.2 Link cache mechanism

Caching is done per link and is separated into a management unit and a cache store unit. The cache
management unit (CMU) is placed on the link entry and the cache store unit (CSU) is placed on
the link exit (Figure 3.7). The CMU is in full control of the CSU. It has a table where it keeps
information on payloads stored in the CSU. The number of the CMU table entries is the same as
the number of the CSU slots (Figure 3.10). We define the link cache behaviour for cache hit and

cache miss in the following way:

Cache hit: If a payload identifier of a packet entering a link is found in the CMU table, we call it
cache hit. This means that the packet payload is in the cache store unit on the exit side of the
link and there is no need to transmit it again. Thus, CMU first puts the index of this payload
identifier into the INDEX field in the CacheCast header. Next, it removes the payload and
transmits only the header part of the packet. When the header arrives at the link exit the
payload with the INDEX in the cache store unit is attached to it. Then, the whole packet is

moved for further processing to the router.

Cache miss: If a payload identifier of a packet entering a link is not found in the CMU table, we
call it cache miss. This means that the packet payload is not present in the cache store unit
on the exit side. The CMU handles the cache miss in the following way. Firstly, it removes
one entry from the table according to the selected cache replacement policy, inserting instead
the payload identifier of the packet that caused the cache miss. Secondly, it inserts the index
where the payload identifier was inserted in the CMU table into the INDEX field of the
packet CacheCast header. Finally, the packet is transmitted over the link. Upon arrival at the
link exit the payload is stored at the location pointed to by the INDEX. The previously stored
payload can be safely overwritten since it has been evicted from the cache by the CMU. The
payload identifier in the table and the corresponding payload in the cache store unit have the

same indexes.

3.4.3 Link cache size

It is difficult to provide an approximate number of cache sizes in the Internet. In general, larger
caches are more efficient, but they also require more processing capacity and more storage space.
We decided to scale all caches according to the associated link capacity C. The scaling factor T is

28

Table 3.1: Number of headers in packet train transmitted within a given cache hold time

Source uplink Cache hold time
speed 2ms 10ms 50ms

512K bps 2 8 40
1Mbps 4 16 79
10Mbps 32 157 781

100Mbps 313 1561 7802

N packets

Train time

Figure 3.11: The packet train duration time

defined as the cache hold time and it is the minimum time a cache should be able to hold random
payload. Therefore, the cache size S is given by S = C'T.

We use the following observation to estimate the scaling factor 1" of the desired cache size. Let
us consider a source that sends the same data chunk to multiple destinations in the CacheCast
enabled network. Before packets carrying the data chunk enter the first hop link they are subjected
to the CMU. Thus, only the first packet carries payload over the link while the remaining packets
are without payload. We call the resulting packet chain — a packet train. An example of a packet
train is shown in Figure 3.11.

Considering the packet train structure, we notice that it is sufficient to create caches that could
hold a payload carried in the first packet until the last header of a packet train arrives. Therefore,
the desired cache hold time depends on the packet train duration time. This, in turn, depends on
the source uplink speed and the number of destinations.

We have calculated the example sizes of packet trains that can be inserted into a network within
a given time window. Table 3.1 presents the calculation results performed for four different source
uplink speeds and for three different time windows. The numbers in the table represent the amount
of packet headers that can be transmitted by a given source within a given time window. Thus, the
numbers correspond to the packet train size. The packet header size on a link varies depending on
the link technology. In our calculations we assume the minimum Ethernet framing for a packet
header which is 84 bytes including inter-frame gap for all uplink speeds.

In the calculations, we measure the packet train duration time as the difference between the
time when the first packet and the last packet were transmitted by the source. Since only the head
of a packet train carries the payload, the duration time of the packet train is equal to (N — 1)t
where N is the number of receivers and ¢, is the time to serialize one packet header.

Considering the numbers given in Table 3.1, i.e. the number of packet headers that can be
inserted into a network for the different uplink speeds, we argue that the cache hold time 7" of

10ms is satisfactory. We support this claim with the following four key observations:

1. Clearly, the faster the uplink speed is the more packets a source can insert into a network

29

within a given time. We expect that sources with slow uplink speed send data to a few

destinations while sources with fast uplink speed send data to many destinations.

2. Sources with a slow uplink speed often employ header compression techniques to shrink the
header size to only a few bytes. Thus, slow sources may insert many more packet headers

into a network within a given time.

3. The numbers provided in Table 3.1 do not determine the maximum number of receivers. For
example, a source with 1M/ bps uplink speed can still send data to more than 16 receivers, but
in such a case the packet train duration time is larger than 10ms. Therefore, it may cause

additional payload transmissions decreasing the overall efficiency (cf. Chapter 4).

4. Sources with a fast uplink speed generate much more cacheable traffic in a network than
sources with a slow uplink speed. Therefore, the major part of bandwidth savings is due to
caching of traffic originating from the fast sources. The decrease in efficiency due to the slow

sources that send to many destinations is low.

The small cache size is important both for the CSU and the CMU. The 10ms storage space
required for the CSU is modest when compared to the storage space of a link queue. A link
queue is designed to accommodate approximately 250ms of the total traffic flowing through an
associated link [38] and, similar to a link cache, it requires fast access to memory. However, the link
queue memory is large and cannot be implemented using a fast static memory. Therefore, hybrid
approaches combining static and dynamic memory are investigated [39]. Nevertheless, this is not a
case of a link cache storage which can be implemented using a static memory, since it is small.

The CMU has the table containing identifiers of payloads located in the cache store unit. It
performs payload identifier lookup for each cacheable packet. Thus, when the table is large the
lookup operation may become the bottleneck of the caching mechanism. Since it is sufficient to
keep cacheable packets only for several milliseconds in a cache, it results in a small size of the CMU
table. Let us consider a 1Gbps link as an example. If we assume that the average payload size is 1KB,
and we cache link traffic for 10ms, we get the total amount of 1310 CMU entries. Additionally, if
we take into account that only a part of the total link traffic is the cacheable traffic we can further
reduce the number of entries. This size of a lookup table can be efliciently built based on hashing
techniques [40].

3.4.4 Memory utilisation of a link cache

According to the description given in the link cache mechanism, the CSU memory is divided into
slots and the size of each slot corresponds to the size of the link MTU. However, packets carry
payloads of different sizes, therefore, the CSU slots are not fully utilised.

In order to increase the utilisation of the CSU memory the slot size should be smaller than the
maximum payload size and payload should be stored in a variable number of slots. However, we do
not consider this issue as a design specific issue, but rather as an implementation specific issue. We

address the memory fragmentation in Chapter 7.

30

3.4.5 Configuration of a link cache

Before a link cache starts to operate, the CMU and the CSU must agree on the number of payload
slots and the maximum slot size. This can be solved either by manual or by automatic configuration.
While manual configuration of a link cache is straightforward, it creates a new source of possible
errors and it must be avoided.

Automatic configuration based on exchange of messages between the CMU and the CSU dur-
ing link cache initialisation cannot be realised, since some links are unidirectional (e.g. satellite
links) and cannot support bi-directional communication. Therefore, either the CMU must config-
ure the CSU or both elements are configured according to certain external parameters. We decided
to configure the link cache elements according to the associated link capacity. The total cache store
space is equivalent to the product of the link capacity and the time interval of 10ms. The cache
store space is divided into slots of the same size in order to determine the number of slots and the
CMU and the CSU are configured with this value.

3.4.6 Payload ID considerations

A source creates a payload identifier for each CacheCast packet it transmits. The payload ID
combined with the source IP address uniquely identify this payload in the Internet. While in
theory each payload can be annotated with a different payload ID, in practice a source can use only
a limited amount of payload IDs. The maximum number of payload IDs is related to the size of the
payload ID field in the CacheCast header. Therefore, when a source has used all unique payload
IDs, it has to re-use them in order to identify new payloads. This creates a problem, since the
same payload ID identifies two different payloads; thus, the question is: When can a source re-use
a payload ID?

To better understand this question, let us consider the following scenario. A server S transmits
data to a number of clients. The server annotates a data chunk A with the /D4 and transmits
it. The data chunk traversing a network is stored in all link caches along the paths to the clients.
Thus, the I D4 cannot be re-used, until it is not evicted from all CMUs which are related to these
link caches. As we have established in Section 3.4.3, link caches should be able to hold payloads,
thus also payload IDs, for at least 10ms. However, this does not imply that a payload ID is evicted
after this time. In fact, it is rarely the case. Considering a random link cache which holds the data
chunk A, the data chunk remains in this link cache until it is replaced by other data. Hence, this
time period depends on the volume of the CacheCast traffic flowing through that link cache. If it
is small, the data chunk A may remain in the cache for a few seconds or even minutes and the /D4
can not be re-used during this time.

In general, it cannot be guaranteed that when a source re-uses a payload ID, this ID is al-
ready evicted from all link caches. To solve this issue, we define a time period when a payload ID
can remain in a CMU. When this time period expires the payload ID is evicted from the CMU.
However, how long should the time period be? If the time to evict a payload ID from a CMU
is long, a source cannot re-use the same payload ID for a long time and the amount of available
IDs decreases. However, a source can use the same payload ID during packet re-transmission and
benefit from CacheCast. On the other hand, if the time to evict a payload ID from the CMU is
short, a source can re-use the same payload ID very fast and the amount of available IDs increases.

However, link caches evict payloads very fast before packet re-transmission occurs.

31

The time period to evict payload ID can vary according to conditional parameters. However, we
decided to set the time to evict a payload ID from a CMU to one second based on three arguments:
(1) A longer time period would burden a source. (2) There is no reason to keep a payload ID longer
than one second, since most re-transmissions occur within this time. (3) Assuming only 1% of the
CacheCast traffic flowing though a link cache, a payload ID is evicted from this link cache after
one second. Hence, we expect that most payload IDs will be evicted before the time period of one

second expires.

3.4.7 Errors on a link

So far we have assumed that there is no loss and no packet re-ordering on a link. However, even
though these events occur very rarely on current links (discussed in Section 3.1.1) the caching
mechanism requires additional protection against them.

It should be noted that the link cache is built at the edge of the link entity. Thus, packet loss
or packet re-ordering in a router does not affect the link caching. The only packet loss and packet
re-ordering that is of concern to us is packet loss and packet re-ordering on that particular single

link.

Packet loss

Packet loss on a link may affect the caching mechanism and cause cache inconsistencies, but only
when the lost packet carried a payload. The following example illustrates this case. A cacheable
packet with a new payload enters a link and is processed by the CMU. The packet causes a cache
miss. The CMU inserts the packet payload ID into the table and puts the payload ID index into
the packet header. Next, the packet is sent on the link but is lost. Thus, it does not reach the cache
store unit and the payload is not stored on the link exit. Now, the payload ID in the CMU table
does not reflect the correct payload in the cache store unit. Hence, the link cache is inconsistent.
Each packet that enters the link and has the same payload ID as the lost packet causes a cache hit.
Its payload is removed and only the header part is sent over the link. When the header arrives at
the link exit a wrong payload is attached to it and the wrong payload is delivered to the packet
destination.

To protect against errors caused by cache inconsistency we store the payload ID together with
the payload in the cache store unit on the exit side of the link. Since the packet header always carries
its payload ID, it can be compared with the payload ID in the cache store unit before the payload is
attached. If the payload ID carried by the header does not match the payload ID in the cache store
unit, the packet must be dropped. We do not consider any re-transmission schema of lost packets
on a per link basis to keep the caching mechanism simple and fast. Therefore, the loss on a link of
a cacheable packet with payload causes the dropping of the whole packet train. However, the loss
of a packet without payload does not affect any subsequent packets.

Packet re-ordering

Packets that exit a link out of order may cause a temporal cache inconsistency. A simple illustration
of this problem is the following. Let us consider two packets. The first packet entering the link
causes a cache hit. Thus, its payload is removed and the CMU puts the corresponding index value

32

into the packet header. The second packet entering the link causes a cache miss and the CMU
chooses an index according to a replacement policy, which appears to be the same as the index
carried by the first packet. If the two packets are re-ordered on the link, the payload of the second
packet will overwrite the payload being referred to by the first packet. Thus, the first packet receives
a wrong payload, which is a severe error.

The solution that protects against errors due to packet loss also protects against errors caused
by packet re-ordering. Applying it to the above example would cause the drop of the first packet
(which arrives second at the link exit). Depending on the probability of the packet re-ordering on
a link more sophisticated solutions may be applied to that link. However, in our basic design the

packet dropping policy is considered sufficient.

3.5 Server support

According to our fundamental decisions described in Section 3.3.2, CacheCast requires server sup-
port. The support consists of two elements: (1) a server batches requests for the same data to
transmit it within the minimum interval time, and (2) the creation of the CacheCast header for
each cacheable packet. The first task of the server support is performed both by an application
which transmits data to multiple destinations, since it must schedule transfer of the same data at
the same time, and by an operating system (OS), since it must handle these transmission requests
properly. The second task of the server support is related to low level packet modification and is
fully performed by an OS. To better understand requirements for the OS support, we first describe

steps that an application takes to transmit the same data to multiple destinations.

3.5.1 Application related tasks

In order to benefit from CacheCast, an application that transmits data to multiple destinations
must batch requests for the same data. For example, a simple application could delay early requests
to match the late coming requests and then send the data to all destinations. However, more
advanced schemes like carousel content or fountain codes [41] can be used to synchronise in time
transmissions to all destinations. These approaches are useful for static content. The live streaming
type of content, served for example by IP TV or IP radio services, does not require this type of
support, since the transmission is synchronised in time per se. In Chapter 6, we demonstrate live
audio streaming in a CacheCast enabled network and we evaluate the benefits of this approach.
When a data chunk is scheduled for transfer, an application uses a system call to send the data
chunk to a destination. The application that transmits the same data to multiple destinations must
invoke the system call multiple times to send the data chunk to each destination. This, however,
may result in loosely synchronised packet series at the network level. Moreover, the packets may be
interleaved by other packets unrelated to the application data, since other applications can transmit
at the same time. Therefore, the application requires proper support from an operating system in

the form of a more suitable system call.

33

HOST HOST

Application Application

Sockets || Sockets
Transport Transport

os Protocol
Network Network stack
Link Link
NC Driver NC Driver
N J

Figure 3.12: Network communication in OS

3.5.2 Operating system related tasks

While the application task is to schedule data transmission to all destinations at the same time,
the OS tasks are to handle this transmission request propetly and to create the CacheCast header
for each packet. Before we describe in detail the OS support for CacheCast, we first give a brief
overview of OS support for network communication in general. Within this framework we place
later elements of the CacheCast support.

The central part of OS support for network communication is a protocol stack. It enables an
application to communicate with remote processes in the Internet. As depicted in Figure 3.12 the
protocol stack consists of three layers of protocols: transport protocols (e.g. TCE UDP), network
protocols (IP for the Internet), and link protocols (e.g. Ethernet for local area networks, Point-
to-Point Protocol (PPP) for dial-up connections). An application accesses the protocol stack via
sockets. In order to transmit data to a remote process an application sends the data to a socket,
which passes it to the protocol stack. The resulting packet, which carries the application data, is
transfered to a network card with the help of a network card driver (NC driver).

In the following paragraphs, we cover in detail the three elements of the OS support for network

communication.

Socket

A socket is a standard way that most of operating systems use to handle an end-to-end connec-
tion. It is a communication end-point operated by the OS. An application accesses a socket by a
socket interface which enables it to choose a communication protocol to establish and tear down a
connection, and also to send and receive messages.

A socket is controlled by a set of dedicated system calls. In order to establish communication
with a remote process, an application must first allocate a socket which is performed by the socket()
system call. In return, the application receives a handler to a socket object which is used for subse-
quent system calls. The system call has three parameters that specify connection domain, type, and
protocol. In the Internet domain the socket type specifies the service level provided by a socket,
like e.g.: reliable stream oriented socket, unreliable datagram socket, raw socket, etc. The service is
realised by a protocol. In most cases a socket of a given type is supported only by a single protocol.
For example, unreliable datagram socket is only provided by UDP.

34

Application

Socket S-B Socket S-C

Transport Transport
I \ L
" s - o .
‘ Hnes ‘ | Link S-C
\

S —— e

~

s

Figure 3.13: An application on server S connected to hosts B and C using two sockets

A socket abstracts communication details, such as network type, protocol type, protocol mech-
anism, or encapsulation process from an application. Thus, an application can use simple send()
and receive() system calls to communicate with a remote process. Once an application sends a data
chunk to a socket it is passed to a protocol stack for further processing.

Protocol stack

An operating system has a protocol suite which contains protocols of three different layers: trans-
port, network, and link. The protocols in each layer have well defined interfaces which facilitate
the composition of a protocol stack in a flexible way. The protocol stack consists of three protocols
from transport, network, and link layer, which are stacked together in the listed order. Data sent
by an application is successively processed by each protocol from the protocol stack and a packet
is created. Each protocol adds its control information in front of the application data in a process
called encapsulation. The resulting packet is handed to a device driver for transmission.

The composition of protocols in the working protocol stack is uniquely defined by a socket. The
transport and network protocols are defined when an application allocates a socket. The domain
parameter defines the network protocol whilst the type and protocol parameters define the transport
protocol. The link protocol is defined when an application tells the OS to connect a socket to a
remote socket. In the process of finding a route to the destination the first hop is determined and
the protocol associated with the link to the first hop is set in the protocol stack.

The protocol stack can be seen as a composition of protocols, as we have described and as it is
depicted in Figure 3.12. However, from an OS point-of-view each protocol requires an instantiation
which holds the state of the protocol. Thus, the link protocol requires an instantiation for each link
connected to a host. The network protocol requires an instantiation per network node running on

a host. However, since a host usually appears in the Internet as a single node, there is only a single

35

Table 3.2: Comparison of transport protocols

Protocol Data handling Congestion control ~Reliable

TCP Byte stream Yes Yes
UDP Message No No
SCTP Message stream Yes Yes
DCCP Message Yes No

instantiation in the OS. The transport protocols require an instantiation for each connection. We
illustrate this idea in Figure 3.13. It depicts a server running an application which uses two sockets
connected to hosts B and C. Each socket during allocation creates its own instance of a transport
protocol. The existing network and link protocol instances are linked into the protocol stack of
a socket. Therefore, when the application sends data to a socket, it is consecutively processed by
protocol instances in the order defined by the socket. As a last step the packet is transmitted to a
network card.

Data transmission

An application can send data only when a socket is in a connected state which implies that all pro-
tocols in the protocol stack associated with this socket are defined and linked. Depending on the
transmission protocol, the send() system call may result in packet transmission or the data trans-
mission may be delayed according to the protocol mechanism. Thus, even though an application
sends the same data to multiple destinations at the same time, transmission of the resulting packets
may be spread in time.

In considering transmission protocols that work in the Internet, there are only two possible
sources of the delayed transmission: either a connection is congested and a protocol prohibits
data transmission, or a protocol assembles small data chunks to send them in a large packet. The
first behaviour is related to a congestion control mechanism often built into transport protocols
which prevents congestion collapse in a network. The congestion control mechanism estimates
how much data can be sent within a given time window and if this limit is reached it prohibits
further transmission. In Table 3.2 we provide information on the presence of the congestion control
mechanism in the Internet transport protocols.

The second source of the delayed transmission is related to the small-packet problem described
in [42]. If each application send request resulted in a packet, then applications like telnet would
incur high overhead in terms of network traffic, since each character created by a key stroke would
be carried by a single packet. In order to save bandwidth, the transmission protocol should assem-
ble these small data chunks into larger chunks. An example of this type of algorithm is Nagle’s
algorithm which is part of TCP. Other transport protocols listed in Table 3.2 do not assemble small
data chunks, since they regard each data chunk provided with the send() system call as a single
message to be sent rather than a byte stream.

A packet produced by a network stack contains application data encapsulated by three protocols
from the protocol stack and it is ready for transmission. However, before the transmission occurs,

the packet is subjected to a traffic control. Modern OSs provide a mechanism for packet classifi-

36

cation and queueing that enables the OS to control traffic when accessing congested medium.? As
a result of the traffic control subsystem the order of packets created by the network stack may be

disturbed.

3.5.3 Operating system support for CacheCast

According to our design an application should batch requests for the same data and send it at the
same time. Since each end-to-end connection is handled by a different socket, the send procedure
requires a sequence of the send() system calls to transmit the data to all clients. However, as we have
discussed this does not result in a tight packet train on the network level. The sequence of system
calls may be interrupted by other applications transmitting at the same time; packet transmission to
some destinations may be delayed; or packet sequence may be unordered. To prevent this undesired
behaviour, the OS must control the send procedure starting from the application send requests to
the packet transmission to a network card.

System call

We decided to design a new system call that executes multiple send requests from an application in
a controlled manner. The system call is a single entry point to the OS kernel. It takes as arguments
a pointer to a data chunk to be sent and a set of socket handlers. When an application invokes the
system call the control is passed to the OS which can supervise the process of data transmission.

The system call tasks are:
1. It sends the application data to each socket from the set of sockets provided by an application.

2. It captures packets created by the protocol stack, appends the CacheCast header to each

packet, and queues the packets for later transmission.

3. If a socket prohibits data transmission due to congestion control or data assembling process,

the system call undoes the send request for this socket.

4. When the application data has been sent to all sockets, the system call sends previously
queued packets to a device driver. However, only the first packet per link carries the applica-

tion data. The remaining packets are truncated.

As a result of the system call, a tight packet train per link is created as it is depicted in Figure
3.14. The system call performs the CMU related tasks for the server and it is the only support a
server requires to benefit from CacheCast.

The system call returns a status of the send requests. If some sockets from the set provided
by an application could not be written successfully, the application is notified. Therefore, the
application can decide itself how to handle these cases. For example, in Chapter 6 we present a
modified paraslash server that streams an audio file to multiple clients in the CacheCast manner.
The server counts how many times it could not write an audio sample to a given socket and if the
failure number exceeds a certain threshold a connection related to the socket is regarded as a slow

connection and is torn down.

%In Linux this mechanism is implemented using gdisc (an abbreviation of a queueing discipline).

37

Figure 3.14: Server S transmitting the same data to machines C, D, and E

In the following paragraphs we discuss the exact place in the encapsulation process where a
packet should be captured and queued, how to create a per link packet train, and how to build the
CacheCast header. In Chapter 6 we present the msend system call — an instantiation of the system
call for the Linux operating system. The msend system call currently supports only two transport
protocols: UDP and DCCP.

Packet capturing and queuing

The second task of the system call is to capture packets created by the protocol stack, append the
CacheCast header and queue them for later transmission. We decided to create a module which
performs these tasks. The module is inserted in the protocol stack and is controlled by the system
call. The following example explains how and where exactly the module operates.

Figure 3.15 depicts an application running on a server S which communicates with processes
on hosts C, D, and E. Each connection is handled by a socket object. Since a path to the host D
and a path to the host E share the same first hop link, the sockets handling connections to these
hosts share the same link protocol instance. Thus, when the application sends the same data to all
sockets, packets created by the sockets S-D and S-E are processed by the S-B link protocol instance.

In order to capture, process, and queue packets on per link basis, the CacheCast module must
be installed either at the entry to a link protocol instance or at the exit. We decided to install
the module at the entry as it is depicted in Figure 3.15. At this stage packets have transport and
network headers, thus, they can be easily extended with the CacheCast header which should be
stored between network and link headers in IPv4 networks. If the CacheCast module is installed at
the exit of a link protocol instance, captured packets would be encapsulated in the link layer header
which would require shift of the header in order to insert the CacheCast header.

Per link packet train

During the system call send operation the CacheCast modules capture all resulting packets on a per
link basis and append the CacheCast headers. After the system call has sent application data to all
sockets, it triggers transmission of the previously queued packets sequentially from all CacheCast

38

Application

SocketS-D | [SocketS-E | [SocketS-C
Transport Transport Transport

CacheCast CacheCast)
First hop
Link S-B Link S-C

NC Drive

Figure 3.15: An application on a host S communicating with processes on hosts: C, D, and E

modules®. The trigger procedure is protected with a global lock which prohibits other applications
from releasing previously queued packets at the same time. Thus, packet trains created by different
applications are serialised on a link.

A single CacheCast module transmits only one packet with application data. The remaining
packets which are queued in this module are truncated, thus, a single CacheCast module creates
a tight packet train. Since packet transmission from the CacheCast modules is sequential, the
resulting packet trains are sent to a device driver sequentially which ensures use of the minimum
packet train time.

CacheCast header

The CacheCast header, as described in Section 3.4.1, carries vital information for simplifying packet
processing on link caches. The information consists of the three key elements: payload size, payload
ID, and index to payload in the CSU. We decided that a source is responsible for creating the
CacheCast header for each cacheable packet.

3The number of CacheCast modules corresponds to the number of the first hop links.

39

The CacheCast header is created by the CacheCast module associated with the first hop link of
a packet. Since the CacheCast module serialises all packet trains on a link, it is sufficient that the
CSU located on the link exit has only one slot for one payload. This, in turn, implies that the index
value stored in the CacheCast header can be set to zero for all packets pointing to that single slot.
The payload size field is set to the size of application data carried by the packet.

The payload ID must be chosen cautiously, based on due regard to special considerations.
Firstly, it must be set to the same value for all packets which carry the same application data.
Secondly, the payload ID value cannot be generated sequentially. It should be obtained from a
source specific random generator in view of security reasons which are discussed broader in Section
3.6. Thirdly, the payload ID value cannot be re-used until payload, which was previously identified
by this ID, is evicted from all link caches. As we discussed in Section 3.4.6, the time period for
which payload remains in a link cache depends only on the volume of the CacheCast traflic flowing
through this link cache. To resolve this issue, we limit the time period a payload ID can remain in
a CMU to one second. After this time period the payload ID is evicted. Therefore, a source can

re-use a payload ID after one second.

3.6 Resilience and operational considerations

In principle, a new system running in the Internet should not create new security threads for
the existing infrastructure and should itself be secure. CacheCast consists of two parts: a server
support and a link cache, thus, it requires consideration of both host security and network security.
The host security depends only on the implementation of the system call in the OS. Therefore,
special care must be taken during the implementation process to check thoroughly the system call
arguments and to prevent any type of memory leaks related to the CacheCast module operation.
When implemented with precautions, the system call should not pose any new security threats.

The CacheCast security and the CacheCast impact on the network security are primarily related
to the distributed architecture of the system. Operation of a single link cache does not depend on
the operation of other link caches. A link cache is a self-standing unit which removes redundancy
from packets and the only information it requires to process a packet is contained in the CacheCast
header. Therefore, a failure of one link cache does not result is consecutive failures of other link
caches and it is impossible to comprise the overall caching infrastructure. The only type of attack on
the link cache infrastructure can be performed by injecting packets with forged CacheCast headers.
Considering this type of thread, we have identified the following two scenarios:

* An attacker injects forged packets into a network to disturb link cache consistency.
* An attacker injects forged packets into a network to reduce link cache efficiency.
While discussing these scenarios we describe a possible behaviour of an attacker and the extent to

which these actions impact the network. We also provide counter-measures.

3.6.1 Attack on the link cache consistency

Let us consider the following scenario. In the topology depicted in Figure 3.16 the server and the
attacker access the Internet via the same link. The shared link is the second link on the path. All

40

links in the network have link caches. The server streams live media to many destinations located

in the Internet; thus, it continuously transmits a new packet train carrying a new media chunk to

all receivers. The attacker attempts to corrupt the media transmission by malicious use of the link
cache mechanism.
VaRaas

Attacker (A) [ff MY \

Internet

Server (S) N~ fj

bkm*\ff

Figure 3.16: Attack scenario - network topology

In order to perform the attack, it is sufficient that the attacker manipulates the CMU located at
the entry to the R1-R2 link. Let us assume that the attacker knows the ID of the payload carried in
the next packet to be sent by the server. The attacker forges a CacheCast packet with the following
properties: the payload ID field in the CacheCast header is set to the next payload ID which will be
generated by the source (we call it ID 4), the source IP address is set to the server IP address, and the
payload contains garbage. The attacker sends this packet to the network. As a result the CMU (link
R1-R2) creates a mapping between the IDp and the garbage. Therefore, when the server sends the
next packet train carrying a media chunk identified by the ID4, the CMU falsely recognises that
this chunk is already on the next hop and truncates all packets in the packet train. Next, the CSU
(link R1-R2) attaches the payload containing garbage to all packets. In consequence all live media
receivers receive garbage.

To perform this type of attack, an attacker must know the payload ID which a victim uses to
identify payload in the next CacheCast packet. A source can reduce the attackers’ chances of finding
this ID by generating payload IDs in a non-trivial way. In principle, a source must avoid assigning
new IDs as subsequent numbers. The most efficient way to generate a new ID for payload is to
use a payload checksum combined with a timestamp. The payload checksum is computed by most
protocols; hence, a source can re-use it to build the ID. In the cases where an attacker is able to
infer the checksum?, the timestamp part of the ID will inhibit the attack.

3.6.2 Attack on the link cache efficiency

In this type of attack an attacker attempts to decrease link cache efficiency to the point where the
cache mechanism is practically ineffective. We discuss this attack in the same context as the attack
on the link cache consistency and based on the same topology as depicted in Figure 3.16. The
server transmits many live streams to multiple destinations located in the Internet. The link caches
located at the links S-R1 and R1-R2 remove redundant payload transmissions; thus, the server

4An attacker, who has access to the content streamed by a source, can compute the next chunk checksum and find
the checksum ID.

41

Table 3.3: Number of CMU entries as a function of link capacity assuming 15008 slots

Link capacity Number of CMU entries

1Mbps 1
10Mbps 8
100M bps 85

1Gbps 873

can handle many more clients than without caching. In order to affect the server operation, the
attacker attempts to make the link cache R1-R2 ineffective. When the link cache does not remove
redundancy, the R1-R2 link becomes a bottleneck and the server must reduce the number of clients.
The attacker injects forged packets into the network to force the CMU located at the entry to the
link R1-R2 to evict the server content constantly. The question is whether the attacker can affect
the link cache mechanism to the point where the server will not benefit from the link cache.

To evaluate this attack, we make the observation that it is sufficient to consider only a single
packet train transmitted by the server. We do not have to consider multiple packet trains composing
different live streams, since all packet trains generated by the source are serialised. Therefore, when
a packet train has passed a link cache its payload can be evicted at no consequences to link cache
efficiency. To perform a successful attack, the attacker must constantly evict the server’s content
from the R1-R2 link cache while the packet train passes through this link. This requires the attacker
to fill all the CMU table entries before the second packet from the packet train arrives. In Table 3.3
we provide the number of CMU entries for different link capacities assuming 1500B slots in the
associated CSU. Let us consider a case where the attacker and the server have the same uplink speed.
Furthermore, the link R1-R2 has 1Mbps capacity; thus, there is only one entry in the CMU. In
this case the attacker can make the link cache completely inefficient for the server. For each packet
from a packet train transmitted by the server, the attacker forges a minimum size CacheCast packet
that evicts the packet train payload from the link cache and forces payload re-transmission. When
considering larger link capacities the attack is less effective. For example, considering 10Mbps link
re-transmission occurs only every eighth packet from a packet train. The server and the attacker
transmit packets at the same pace, since both are of the minimum size. Thus, the server content is
evicted after the attacker transmitted the eighth packet.

In general, this attack is based on inefficient use of a link cache. The attacker forges CacheCast
packets which do not contain payload or the payload is very small. In consequence, storage space
in the CSU is wasted. To reduce the impact of this type of attack, CSU slots should be smaller
(payloads larger than one slot are stored in contiguous slots). This increases storage space utilisation
during attack. We follow this solution in the implementation part (see Chapter 7). Additionally,
the link caches can be protected against this attack by ignoring CacheCast packets with sizes below
a certain threshold.

3.7 Summary

In this chapter we have presented the idea and design of the CacheCast system that removes re-

dundancy from single source multiple destination transfers. The CacheCast idea is based on a

42

caching technique applied on a per link basis. The design builds on precise analysis of network
elements and requirements for this type of systems. The analysis of network elements indicates
that a cache should operate on edges of a link entity and remove redundant payload transfers from
the link, thereby increasing the link utilisation. Redundant payloads are restored when a packet
enters a router. This, however, does not impact router performance, since the router throughput is
independent of the packet size.

The requirements analysis provided in Section 3.2 guided further specification of the design.
We recall them briefly here and compare how the final design addresses each of the listed require-
ments. Our main requirement is that CacheCast must preserve the end-to-end relationship between
communicating end-points. This is fulfilled intrinsically, since CacheCast is a caching technique
which acts on the packet level. It does not change the end-to-end semantics of the Internet commu-
nication. The second requirement refers to reliability of the caching infrastructure and speed of per
packet processing. The reliability is achieved by the architecture of the CacheCast system which is
based on infrastructure of independent link caches. Since link caches act independently, erroneous
behaviour of one link cache does not impact other link caches. Avoiding dependencies between
link caches simplifies the system and accounts for reliability. The speed of per packet processing is
increased by the CacheCast header which carries a unique payload ID and information about the
payload size. Thus, a link cache can immediately compare payloads based on payload IDs instead
of payload content, and also knows which part of a packet is redundant. The third requirement is
related to economy: CacheCast must have minimum cost of resource consumption and initial in-
vestment. We reduce the resource requirements in two ways. Firstly, CacheCast uses server support
to transmit the same data within a short period of time; thus, the required cache storage space is
reduced. Secondly, packets that carry redundant data are marked with the CacheCast header; thus,
other packets do not consume storage space unnecessarily. Finally, since CacheCast is incrementally
deployable, the costs of initial investment are significantly reduced.

CacheCast consists of two parts: distributed link cache infrastructure and server support. In the
following chapters we evaluate them both. Firstly, we perform analytical evaluation of the link cache
infrastructure. We compare CacheCast and multicast bandwidth savings; and we analyse link cache
impact on end-to-end congestion control mechanisms. Secondly, we implement both elements and
we perform micro-analysis of the implementation. Finally, we present a simple real world setup

where we send an audio stream to a number of receivers in a CacheCast enabled network.

43

44

Chapter 4

CacheCast efhiciency

This chapter is the first of four chapters in which we evaluate different aspects of the CacheCast
system. In this chapter we assess the fundamental functionality of link caches, i.e. redundancy
removal; and we estimate the total reduction in network traffic generated by single source multiple
destination transfers. Following this, the next chapter evaluates fairness between the CacheCast
traffic and the normal traffic. In the third and fourth chapter, we assess the computational com-
plexity of the CacheCast elements. The evaluation of each aspect of CacheCast requires a different
approach and a different method. To estimate the amount of removed redundancy and the total
reduction in network traffic, we perform analytical analysis and simulations. We focus our analysis
on four factors which impact the efficiency of the CacheCast system:

(1) Header size to payload size ratio: Only redundant transfers of the payload part of a packet
are suppressed. Therefore, in order to use link caches optimally, a source should pack the
maximum amount of data in each transmitted packet. The ratio of packet header size and

payload size determines the maximum reduction in network traffic obtainable by link caches.

(2) Number of receivers: Similar to multicast, CacheCast efficiency depends on the number of
receivers. The more destinations a source transmits to, the more redundancy in a network,

and therefore the greater gains from link caches.

(3) Link cache hold time: Link caches store payload data for a very short period of time. When
a source with the slow uplink speed transmits a packet train, this time period may be insuf-
ficient to remove all redundant payload transfers from links; which in turn reduces the link

cache efficiency.

(4) Deployment range: The CacheCast system is incrementally deployable. Hence, a source can
benefit from CacheCast from the deployment of the first link caches in a network. Nonethe-
less, the efficiency of the partially deployed CacheCast system is only a fraction of the maxi-

mum efficiency.

In the following sections we study in turn the outlined factors, but first we describe a metric
which we use to assess the efficiency. While analysing a single factor we avoid influence of the

remaining factors.

45

B

A O

I

O

I

O

S

(a) Unicast transmission, L, = 9 (b) Multicast transmission, L,,, = 5

O

Figure 4.1: Transmission of the same data to three destinations: A, B, and C using (a) unicast and
(b) multicast

4.1 Efficiency metric

To give an insight into the efficiency of the proposed link layer caching, we compare it with a
“perfect” multicast scheme. The perfect multicast slightly differs from the IP Multicast. It does not
require any additional signalling to establish a multicast tree and to deliver a datagram to receivers.
Thus, it is strictly theoretical, but yet it gives us a good reference point.

In order to compare the efficiencies, we use the metric proposed by Chalmers and Almeroth
[43]. It is expressed by the ratio of the total number of multicast links over the total number of
unicast links that are traversed by datagrams during the delivery of the same data to all receivers in
a group.

0=1- Lm (4.1)
Lu

When the number of multicast links is similar to the number of unicast links, the efficiency §
is approximately zero, which means that there is no benefit from using multicast. On the contrary,
as the efficiency ¢ approaches one the greater benefits are obtained from multicast. The metric
expresses the reduction in the total traffic when using multicast instead of unicast.

For a simple example of the metric usage, let us consider a tree topology as shown in Figure 4.1.
When the server S sends the same data to the hosts A, B, and C using unicast it must transmit three
datagrams each traversing three links; thus, in total there are nine transmissions in the network
and L, = 9. When the server S uses multicast to send the same data to all hosts, only one
datagram traverses the first two hops and is replicated at the branching point; thus, there are only
five transmissions in the network and L,,, = 5. The resulting efficiency is d = 1 — g ~ 0.44 which
means that multicast reduces the total network traffic by 44%.

46

4.2 Header transmission costs

The first reduction in the efficiency of CacheCast, when compared to the perfect multicast, lies in
the fact that it does not have a common header for all the destinations. Thus, the header part of a
packet sj, needs to be unicast while the payload part s, is multicast. This is reflected in a modified
formula (4.1) for CacheCast efficiency as shown in 4.2:

Ssply, + Sme

6.=1
(sh + SP)LU

4.2)

If we denote the ratio of the header size to the payload size by r (r = 22), we can express the
reduced efficiency using the perfect multicast efficiency (4.1) and the ratio in the following way:

(4.3)

The factor 1]? in Equation (4.3) limits the maximum efficiency obtainable by CacheCast.
When the header to payload ratio r decreases, the efliciency of the link layer caching approaches
the perfect multicast efficiency. However, when the ratio r increases, the efficiency degrades.

The CacheCast efficiency . depends on packets composing cacheable traffic. The maximum
efficiency is obtained when the packets are of the maximum size while the header part of the pack-
ets is of the minimum size. In the Internet the maximum packet size is limited by the standard
maximum transfer unit (MTU) which is, at time of writing, 1500B. The minimum header consists
of the link layer header, the CacheCast header, the IP header, and the transport header which is
approximately the same size as the minimum packet size in the Ethernet network, i.e. 64B. There-
fore, the CacheCast efficiency .. can achieve a maximum of approximately 96% of the multicast

efficiency 9 in the present Internet.

4.3 Finite cache size

The second reduction of the efficiency is related to the finite cache size resulting in additional
transmissions of the same payload over the same link. To illustrate this, let us consider a packet
train traversing a link. In the perfect case, only the first packet from the packet train carries the
payload over the link and the trailing packets are truncated to the header part. However, in the
presence of other CacheCast traffic on this link the payload may be evicted from the link cache
before the whole packet train has passed the link. This results in additional transmission of the
payload reducing the total efficiency.

In [44], it is shown that the efficiency of multicast increases with the growing number of re-
ceivers. However, the more receivers the longer is the packet train, and longer packet trains require
larger caches, which contradicts our principle of keeping caches small. In order to get an insight
into the relationship between the caching efficiency and the number of receivers, we conducted a
series of simulations. The simulations are based on a scenario where a source transmits the same
data to multiple destinations located in many autonomous systems. All links in the network have
caches that are scaled according to the 10ms rule. We assume that payload is removed from a link
cache after the 10ms time period. This implies that capacity of all links in the network is completely

47

Table 4.1: The size of 10ms packet train and its efficiency as a function of the source uplink speed

Source uplink 10ms packet Efficiency

speed train size 0
512Kbps 8 0.2325 £ 0.0495

1Mbps 16 0.3336 £ 0.0478
10Mbps 157 0.7275 £ 0.0070
100Mbps 1561 0.8873 £ 0.0006

utilised and the background traflic traversing through these links consists only of CacheCast pack-
ets with unique payloads. While this is the worst case scenario and it may not occur, it provides the
bottom line for the CacheCast performance. In practice, the capacity of links is rarely fully utilised.
Moreover, we expect that the CacheCast traffic will only be a fraction of the total traffic on a link.

4.3.1 Simulation setup

The network topology used in the simulations is based on the multicast tree topology collected in
the muwalk project'. It was created using the mwalk tool by traversing paths from a source to a
randomly chosen set of receivers. The tree topology has 1950 leaves and is claimed to retain the
general characteristics of inter-domain multicast trees. We assume that the multicast spanning tree
is to a great extent similar to the tree created by a superposition of unicast routes. The assumption
is based on the similarity in the average path length and the underlying network infrastructure
strongly constraining the shape of a tree [45].

The simulation is conducted in rounds. During each round a single source inserts only one
packet to the tree which corresponds to a time t; of serializing data on the source output interface.
All link caches are using the FIFO replacement policy and have enough room to hold payload for
10ms; after that time the payload is considered to be evicted. We measure the caching efliciency
using (4.1) for the receiver group size varying from 2 to 1000, by choosing 10 times a random
set of receivers from the 1950 leaves and then taking the arithmetic mean. The reduction in the
efficiency related to header cost transmission, which we discussed in the previous section is not
taken into account in the following results.

4.3.2 Impact of the finite cache size

The results of the simulation are presented in Figure 4.2. The y-axis denotes the CacheCast ef-
ficiency 9, i.e. the reduction in the total network traffic when compared to unicast. The results
confirm that the CacheCast efficiency increases with the growing number of receivers. Further-
more, sources with high uplink speed achieve higher efficiencies when transmitting data to the
large number of destinations. Sources with low uplink speed cannot transmit all packets within
the cache hold time of 10ms; in consequence, additional payload transmissions decrease the to-
tal efficiency. The number of packet headers a source can send within the 10ms time period was
previously given in Table 3.1. For ease of reference, we provide this relationship in Table 4.1 and

additionally we complement it with the CacheCast efficiency ¢ corresponding to the given packet

Yhtep://imj.ucsb.edu/mwalk/

48

Dg e el -

0.8 | P‘F"h*._."_;;,‘;,;;.;.;.;;-:—\-'-"”“"""“ """""""""""""" -

07 o -

. 'gﬂ:lr"‘tv““f"""'“""‘"“"”. "

a, 0.6 - ""'""""""';'i"'lr;"""r;'“'"i;;:,'_;;—.‘.}'-i-ﬁr"ﬂ‘ """"""""""""""" -

§ 0.5 e ST
= . g

L 04 BEd 4

0.3 H ___ .

D2 P 1 OOMbps —

10Mbps -------
D1 b 1Mbps -------- .
0 1 1]
0 200 400 600 800 1000

Number of receivers

Figure 4.2: The efficiency of the link layer caching

train sizes.

According to Table 4.1, the 100Mbps source can transmit to 1561 destinations within the
cache hold time. Therefore, for the group size below 1000 its efficiency is equal to the perfect
multicast efficiency. Considering the sources with the lower uplink speed, we see that the growth of
efficiency with the group size breaks at the point where the packet train time is equal to the cache
hold time. At this point caches start to drop the oldest copies of payload. The exact efficiency at
this point for all sources is given in Table 4.1. However, even though slow sources transmit only
a few packet headers within the cache hold time, they can achieve relatively high efficiency when
transmitting to a large group of receivers. The 10ms time period to evict payload from a link cache

does not limit the growth in the efficiency with the group size, though it does slow it down.

4.4 Incremental deployment

CacheCast is incrementally deployable, it helps to save bandwidth in a network from the very
beginning of deployment. This property is ensured by the link cache architecture. A cacheable
packet that exits a link is fully reconstructed. The packet payload is attached to the packet header
and the whole packet is further processed in a standard way at a router. If the next link on the
packet path does not support caching the cacheable packet passes it unmodified (similar to a regular
packet). Thus, it is not necessary to change all links in the Internet to start to gain from CacheCast.
Installing a cache on the first hop link from a media server already yields benefits.

The maximum bandwidth savings are obtained with an Internet wide cache deployment. How-

ever, considering incremental deployment the question is: What percentage of these savings is

49

100 % 10 o -
90 % |- 1000 mm— -
80 U b
70 % |-
B0 % [

50 % [

Percentage of the efficiency

30 % oo --

20% I ‘ :

40 % [e Al --

10% F i I ‘ . -
123 456 7 8 910111213 14151617 18 19
Number of hops covered by caches

Figure 4.3: Incremental deployment

obtained with gradual cache deployment? We study this question in the simulation where we use
the multicast tree topology from the mwalk project (cf. Section 4.3.1). In this experiment we as-
sume that link caches are sufficiently large as to remove all redundant payload transmissions and the
reduction in the CacheCast efficiency described in the previous section does not occur. We conduct
the simulations for three different group sizes consisting of 10, 100, and 1000 receivers. For each
group size we gradually deploy caches in the tree starting from the root and finishing at the leaves.
In the first simulation only the first hop link from the source caches payloads, while remaining
links do not. In the second simulation the first two hop links from the source cache payloads. We
repeat the simulation until we cover the whole tree with caches. For each deployment range, we
perform 10 measurements of the CacheCast efficiency and we compute the arithmetic mean. In
each measurement, a single source transmits the same data to a set of receivers chosen randomly
from among the 1950 leaves. We use the efficiency metric § introduced in Section 4.1 (Equation

(4.1)) to assess the amount of removed redundancy.

4.4.1 Efficiency gains per hop

Figure 4.3 shows the percentage of the maximum efficiency (the universal cache deployment) that
can be achieved when deploying the link caches over a certain number of hops. The percentage
varies depending on the receiver group size. Considering the small group sizes (represented by 10
receivers) the cache deployment over the first six hops yields already approximately 70% of what
can be achieved. However, in order to achieve this percentage of the maximum efficiency for large
group sizes (100 and 1000 receivers) it is necessary to deploy the link caches over the first nine hops.

The results presented depict the efficiency as a fraction of the maximum efliciency, i.e. the

50

efficiency that is obtained with Internet wide cache deployment. Additionally, only inter-domain
multicast trees are taken into account. However, Internet service providers are mainly interested in
their own gains. Thus, the relevant question is: What are the direct benefits of deploying caches

inside a single ISP? These can be summarized in the following points:
* The traffic that is confined to a single ISP will achieve near multicast bandwidth utilization.

* The traflic that originates from the ISP and traverses other ISPs will be cached on the way
between a streaming source and a gateway inside this ISP. Thus, there will be increased spare

bandwidth on the ISP’s links.

4.4.2 Cacheable and non-cacheable link

One of the core issues of the incremental deployment is the behaviour of the cacheable traffic on a
boundary between a network with the link layer caching and a network without it. Let us consider
a packet train with ten packets that originates from the network with link layer caching and which
has destinations in another network without link layer caching. In the origin network its size on
a link is the size of one payload and ten headers. However, in the destination network (which is
without caching) its size on a link is the size of ten payloads and ten headers. Thus, it requires
much more link capacity in the second network. Therefore, congestion may occur on the gateway
between the networks.

We find this problem orthogonal to the link layer caching. The link layer caching increases
link capacity. Thus, the problem resembles a situation where a high capacity link is connected
with a low capacity link, or where the sum of input link capacities exceeds the capacity of the
output link. This problem is addressed by congestion control algorithms, which are usually part of
transport protocols. Similarly, the congestion control is responsible for handling the congestion on
the boundary between a network with the link layer caching and a network without it. We show in
Chapter 5 how the congestion control ensures “fair” capacity sharing in the presence of CacheCast
and how it reduces the packet rate when caching efficiency decreases.

4.5 Summary

In this chapter we have analysed the efficiency of the CacheCast system. The metric, which we use
to assess the efficiency, is the measure of the total redundancy removed from single source multiple
destination transfers. To find the difference between the maximum efficiency and the CacheCast
efficiency, we compare CacheCast with the perfect multicast - a conceptual transport mechanism
that removes all redundancy and does not require any signalling.

The reduction in the efficiency of the CacheCast system when compared to the perfect multicast
is related to the transmission of unique packet headers to all destinations, finite link cache size, and
partial deployment. Considering these factors, we found the following: Firstly, in the present
Internet, CacheCast can reach at maximum 96% of the perfect multicast efficiency. It is obtained
when a source uses MTU size packets with a standard set of headers. Secondly, the 10ms link cache
size is sufficient to achieve the maximum efficiency for sources with the 100/ bps uplink speed.
Considering sources with slow uplink, even though they can transmit only a few packets within

the 10ms time period, they can still achieve relatively high efficiency when transmitting to a large

51

group of receivers. Thirdly, deploying link caches over the first four hops removes already 30-50%
of the total redundancy. Further deployment of link caches yields an additional 6-9% redundancy
elimination per hop. The total efficiency reduction is a product of the reductions related to the three

factors, i.e.: transmission of unique packet headers, finite link cache size, and partial deployment.

52

Chapter 5

TCP friendliness

In the previous chapter we have assessed the efficiency of the CacheCast system with respect to
the amount of redundancy removed from network links. We found that CacheCast can achieve
near perfect multicast efficiency. However, this is achieved on condition that we use large payloads
for data transfers, and also on condition that all packets carrying the same content are transmitted
within a short period of time of each other.

In this chapter, we investigate the CacheCast impact on fairness in the Internet. Internet fair-
ness is based on the concept of equal resource utilisation of a bottleneck link by different packet
flows. It is achieved by the Internet transport protocols that control the packet transmission rates of
individual packet flows. However, the CacheCast mechanism modifies packet sizes on links, which
may disturb operation of the protocols. This, in turn, will cause “unfair” resource utilisation. Fur-
thermore, CacheCast requires synchronised packet transmission to all data receivers. However, it is
not known exactly how this requirement impacts the data transmission rate to individual receivers.
We evaluate these issues using the network simulator 7s-2.

The rest of this chapter is organised in the following manner. In Section 5.1 we elaborate the
problem of TCP friendliness in the context of CacheCast operation. Section 5.2 describes the
implementation of the CacheCast elements in the network simulator 7s-2. In Section 5.3, using
the network simulator 75-2 we measure the link cache impact on TCP friendliness in a bottleneck
link topology. Subsequently, in Section 5.4, we evaluate the impact of synchronised transmission.
Finally, we summarise this chapter in Section 5.5.

5.1 Requirement of TCP friendliness

The Internet traffic consists of individual flows that carry data between hosts. At present, the
dominant part of the flows is controlled by the Transmission Control Protocol (TCP). One of the
main tasks of the protocol is to ensure fair utilisation of network resources. TCP fairness is based
on the idea that two flows which compete for the capacity of the same link should achieve the
same share. This understanding of fairness can be extended to a number of flows which share a
bottleneck link. In this case, each flow should obtain the same share. Since the dominant part of
the Internet traffic is carried by TCP, other transport protocols must be designed to achieve fairness
on the TCP basis, i.e. they must be TCP friendly. Furthermore, any new mechanism operating in
the Internet should not disturb TCP fairness.

Unlike IP Multicast, CacheCast is independent of the transport protocol. It does not require a

53

common header to all destinations but only a common payload. Hence, a source can use existing
protocols on top of the CacheCast mechanism, although this does require additional considera-
tions. The protocols estimate the packet flow throughput based on factors such as packet size,
packet arrival rate, and end-to-end delay. However, these factors are affected in the presence of link
cache. Consequently, the protocols operating on top of the CacheCast mechanism may not be TCP
friendly.

In order to understand the protocol behaviour in the presence of a link cache we perform
simulations in a typical bottleneck link topology, where the bottleneck link is a caching link. We
anticipate that the most promising application for the CacheCast system is multiple destination
live streaming in the Internet. Therefore, for our simulation scenario, we have chosen the case
of a single media server streaming to multiple receivers. We evaluate the CacheCast impact on
the media server traffic in the network simulator 7s-2. We implement CacheCast in 7s-2 for the

evaluation, since 75-2 does not support the CacheCast mechanisms.

5.2 ns-2 implementation

The network simulator 75-2 is widely used in networking research for protocol prototyping and
evaluation. It provides a library of elements which can be roughly divided into four groups: ap-
plications, agents, nodes, and links. The applications and agents are used to create traffic inside a
simulated network. The nodes and links form the network topology. A user defines a scenario for
the 75-2 simulation in the form of a script. While the elements are implemented using C++, the
script is described with OTcl - an object oriented scripting language; thus 7s-2 combines perfor-
mance and flexibility.

The ns-2 CacheCast implementation consists of two parts: link cache and server support. Since
the 75-2 link does not correspond to our concept of a link defined in Section 3.1.1, we integrate
the CMU and CSU components directly with the 7s-2 link. We distinguish between these two link
models. The 7s-2 link cache implementation is explained in the next section. The server support
is implemented as a new component operating on a network node. As a background for the 7s-2
CacheCast implementation we provide information on the 7s-2 packet structure and how an 7s-2

packet is processed by elements.

ns-2 packet structure

An ns-2 packet is represented by an object depicted in Figure 5.2. It does not belong to any specific
network layer and it does not carry any data. Instead, it is a generic object that can represent
any type of a packet. The object has two basic pointers: pointer to a block of packet headers
(bits_) and pointer to packet data (data_). The block of packet headers contains information
related to different protocols and methods. However, these headers are unrelated to standard packet
headers. The block contains at least a common header which describes the fundamental properties
of a packet, such as packet type (ptype_) and packet size (size_) as indicated in Figure 5.2. The
packet data pointer points to an object containing the real payload of this packet. However, in our
simulation, packets do not have real payloads and the pointer is cleared.

The 75-2 packet size in a simulated network is not related to the size of a packet object. It is

simulated using the size_ parameter stored in the common header. For example, a delay component

54

packet headers

int size_;

Common header
ptype_t ptype_;
ns-2 packet IP header :

unsigned char *bits_; TCP header
AppData *data_;

int hdr_len UDP header
int ref_count_; TFRC header

CC header

Figure 5.1: ns5-2 packet

of a link element uses this parameter to find the time to serialise a packet. Since the packet object
size is not related to the simulated packet size, the packet header block contains all packet headers
defined in 7s-2 by default. If memory utilisation during a simulation is an issue, a user can specify
exactly which headers should be removed from the packet header block to reduce the memory

footprint. However, we did not encounter this problem in our simulations.

Connectors and classifiers

Packet processing components are derived from two classes: connector class and classifier class. The
connector class is used to implement components that process a packet in a pipeline such as agents
or link components. The classifier class is used to implement components demultiplexing packets
according to a predefined classification.

The CMU, CSU, and server support components are implemented using the connector class.
This class defines an object with pointers to two downstream objects. The first pointer points to
the next object in a processing pipeline and is called target_. The second pointer called drop_
points to an object discarding packet (primarily used by a queue component). In order to pass
a packet to a downstream object, a component invokes a standard receive function of the next
object (target_->recv(Packet *p, Handler *h)). The 7s-2 objects are unidirectional and have no
upstream connections. For instance, to model a bidirectional link, #s-2 combines two simple links
that transfer packets in the opposite directions.

The components form basic elements used in the simulation. For example, a link element
consists of three components: queue, delay, and a component decreasing time-to-live. An element is
defined in the form of an OTcl script which specifies connections between the element components.
Before a simulation starts, 7s-2 binds together components using the target_ and drop_ pointers

according to a simulation script.

5.2.1 ns-2 CacheCast header

We define the 7s-2 CacheCast header as described in Listing 5.1. The header carries information on
the payload ID (payload_id_), the size of a cacheable part (cacheable_part_), and the original size
of a packet (real_size_), i.e. the packet size before CacheCast encapsulation. These information
elements are set by our #s-2 server support before a packet is sent to a link element. The (offset_)

variable is a standard variable in any packet header and it provides information on the offset of this

55

header in the packet header block.

Listing 5.1: ns-2 CacheCast header

struct hdr_cc {

int payload_id_; /!l the unique id for this address
int cacheable_part_; /! the size of the cacheable part
int real_size_; !/ the original size of a packer
int& payload_id () { return payload_id_; }

int& cacheable_part() { return cacheable_part_; }

int& real_size () { return real_size_; }

static int offset_;

inline static int& offset () { return offset_; }

inline static hdr_ccx access(Packetx p) {
return (hdr_cc*) p—>access(offset_); }

}s

We modify the 7s5-2 files to attach the CacheCast header to the packet header block for all
packets by default. Please note, that this does not change the size of any packet, since the packet
header block size is not related to the size of an ns-2 packet. The simulated CacheCast header is
12B which corresponds to the CacheCast header size in our Click implementation. The CMU
component extends the simulated packet size by 12B before transmission on a link and the CSU
component restores the original packet size. In order to distinguish between CacheCast packets and
standard packets we use the field cacheable_part which is set to zero for all standard packets.

5.2.2 ns-2 link cache
Design

The #s5-2 link is modelled by three chained components: queue, delay, and a component decreasing
packet time-to-live (TTL) (see Figure 5.2). In order to find transmission delay of a packet on a
link, the simulator uses the packet size parameter stored in the common header of the packet. The
delay component calculates the time to serialise the packet on a link according to the packet size
and the link capacity. This time is also used to schedule transmission of the next packet, because
only when the current packet has been already serialised the next packet can be transmitted. Thus,
the modification of the packet size variable (size_) is sufficient to simulate the payload removal and
restore process.

— Queue » Delay TTL —»

\ 4

Figure 5.2: ns-2 link

We have implemented CMU as a table where we store the payload IDs of the CacheCast pack-
ets. When a packet is received by the CMU, its payload ID is compared against those stored in the
table, and if a cache hit occurs the packet size is decreased by the payload size. If the payload ID is
not found in the table, then the ID is inserted into the table according to the replacement policy.
We place the CMU component after the queue, since the queue is conceptually a part of a router;
and before the delay component. Therefore, the time to serialise the CacheCast packet and the

56

time to serve the next packet are computed according to the reduced packet size while the queue
component evaluates packet drop based on the original packet size.

Since the payload is not removed from a packet, but only the size of the packet is changed,
the implementation of the CSU component is straightforward. It simply restores the packet size to
its original size. It should be noted that 7s-2 does not model any computational complexity and
costs of copy operations within a node. The CSU component is placed between the delay and TTL
components. Therefore, the caching link element consists of the following five components which

are chained together: queue, CMU, delay, CSU, and TTL (depicted in Figure 5.3).

—» Queue TTL —»

A

A

CMU » Delay » CSU

Figure 5.3: n5-2 caching link

Implementation

The CMU and CSU components are derived from the connector class. We implement the com-
ponents functionality in the receive function (recv(Packet *p, Handler *h)) which is called upon
packet arrival. When a packet is processed we invoke the receive function of a downstream object
pointed to by the variable target_. The core of the CMU implementation is presented in Listing
5.2. The core of the CSU implementation is presented in Listing 5.4.

The CMU component is integrated with the 75-2 link element therefore all 7s-2 links cache
packets by default. In order to simulate standard links we have to disable the CMU functionality.
This is controlled by the enable_ variable. If the variable is cleared, packets are immediately sent to
a downstream object. To distinguish CacheCast and standard packets we check whether a packet
has a cacheable part. If the cacheable_part variable is set to zero we pass this packet immediately
further downstream. Otherwise, we compute a payload ID based on the packet payload ID and the
packet source address.

In our simulations we measure impact of the link cache efficiency on the CacheCast traffic.
The efficiency is controlled using the max_eff_ variable. It determines a fraction of redundant data
which is removed by the link cache. When the max_eff_ variable value is 1.0 or higher, all packets
that have payload in the link cache are truncated to the header size. If the variable value is below
1.0, only the fraction of packets that have payload in the link cache is truncated. In the last step
the packet size is increased by the CacheCast header size, simulating CacheCast encapsulation and

the packet is passed to a downstream component.

Listing 5.2: Cache management unit

void CacheManagementUnit:: recv(Packet *p, Handler xh)

{
struct hdr_cmn xcmn_h = HDRCMN(p); // pointer to the common header
struct hdr_ip *xip_h = HDR_IP(p); /! pointer to the IP header
struct hdr_cc xcc_h = HDR.CC(p); /! pointer to the CacheCast header
int payload_id;

if ((lenable_) || (cc_h—>cacheable_part() == 0)) {

/% Caching on the link is disabled or the packer does not carry
* a cacheable content. We send the packet to the next component. */

57

recv —>target_(p, h);
return;

}

payload_id = (cc_h—>payload_id () & 0x0000FFFF) |
(ip_h—>src (). addr_ << 16);

if (cache_—>update(payload_id))
cacheHit_ ++;

else
cacheMiss_ ++;

/% Simulate reduced efficiency */
if ((cacheHit_ % 100) < (max_eff_ = 100))
cmn_h—>size () = cc_h—>real_size () — cc_h—>cacheable_part();

cmn_h—>size () += CC_HDR_LEN;

target_ —>recv (p, h);

To describe the cache replacement policy we define a class named Policies and derive from it
three subclasses for FIFO, Clock, and LRU replacement policies. The CMU is configured to cache
packets according to one of these policies and it holds a pointer to the policy object in the cache_
variable. To update the CMU cache the cache_->update(payload_id) function is invoked. If the
payload ID is already in the cache the function returns the true value and the false value otherwise.
We show the code of the FIFO replacement policy in Listing 5.3 as an example for the update()
function. The replacement policy is implemented using a circular buffer. Since we simulate only

small link caches, linear lookup for a payload ID in a cache is sufficient.

Listing 5.3: FIFO replacement policy
bool PolicyFIFO :: update(int payload_id)
{

int i;

/v We perform linear lookup in the cache to find the payload ID. x/
for(i = 0; i < size; i++)
if (cache[i] == payload_id)

return true;

/% The payload ID is not in the cache. We insert it at the current
* beginning of the circular cache.

*

/

cache[cachePtr] = payload_id;
cachePtr = (cachePtr + 1) % size;

return false;

The only task of the CSU component is to restore the original size of the CacheCast packets.
The CSU component does not implement a payload store, since packets do not carry content and

58

it does not implement error detection, since the simulated links do not drop and do not reorder

packets.

Listing 5.4: Cache store unit

void CacheStoreUnit:: recv (Packet *p, Handler xh)

{
struct hdr_cmn *cmn_h = HDRCMN(p); /! pointer to the common header

struct hdr_cc xcc_h = HDR.CC(p); /! pointer to the CacheCast header

if (cc_h—>cacheable_part() > 0) {

cmn_h—>size () = cc_h—>real_size ();

target_ —>recv(p, h);

5.2.3 mns-2 server support
Design

Network traffic in #s-2 is generated by agents acting as communication end-points. An agent
implements a transport protocol. It is attached to a network node and it has a counterpart — a
sink-agent — attached to another node. Thus, this source sink agent pair defines a single packet
flow in a simulated network. A source agent is often controlled by an application, which can, for
example, be the file transport protocol (FTP), telnet, or a traflic generator such as constant bit rate
(CBR) generator. For instance, in our simulation we generate a data stream between two nodes
in a simulated network using a CBR generator on top of a TFRC agent attached to a source node
and its counterpart TFRC-sink agent attached to a sink node. Nonetheless, not all agents require
an application to trigger packet transmission. The aforementioned TFRC agent generates packets
at the maximum rate permitted by the TFRC congestion control when there is no application to
control its sending rate.

The ns-2 server support is a single element operating at a network node. It processes all packets
created by agents which are attached to this node as depicted in Figure 5.4. The ns-2 server support
is not functionally equal to the server support described in the design. It only creates the CacheCast
header for each transmitted packet but it does not enforce the tight packet train structure. Since
packets which are created by the agents do not carry data, the task of the ns-2 server support is
to determine which packets generated by different agents have the same payload. This is achieved
using an epoch concept. All packets created by the agents within one epoch are considered to have
the same payload and the payload ID of these packets is equal to the epoch number. A new epoch
starts, when one of the agents creates the second packet within the same epoch. Thus, the epochs
are generated based on the rate of the fastest flow from among all flows created by the node agents.
We describe the implementation of this mechanism in the following paragraph.

In order to simulate the server support as it is designed, we use the CBR generators on top of
the transport protocols. Since a single application can only drive a single agent, we install the CBR
generator for each transport protocol instance. The generators are synchronised in time and send

the same size packets at the same rate. If a congestion control mechanism of a transport protocol

59

applications

agents

ns-2 server support

Node

Figure 5.4: ns-2 server support

prohibits packet transmission, the CBR send request is discarded. Thus, the 7s-2 server support
generates a sequence of tightly packed packets. However, before we evaluate the CacheCast system
as a union of the link caches and the server support mechanisms, we examine the impact of the link

caches on the network traffic consisting of loosely synchronised data streams.

Implementation

The 75-2 server support has two tasks: to find the cacheable part of a packet and to assign a payload
ID. Unlike a network packet, an 75-2 packet is not a result of the encapsulation process, where
different protocol layers are clearly defined and application data is always at the tail. An 75-2 packet
is created by an agent which annotates it with a type. The type can be defined either by an agent or
by an application and there is no rule for it. For example, the CBR application driving the UDP
agent produces packets of the CBR type; however, the CBR application driving the TFRC agent
produces packets of the TFRC type. Furthermore, some packet types provide the application data
size while other types do not provide it. This difficulty is reflected in our implementation shown in
Listing 5.5. Our implementation finds the payload size only for three different packet types. While
the TFRC packet provides the payload size in its header, the TCP and CBR packets do not have
this element of information and we have to compute it based on the standard header lengths.

The payload ID gets the value of the current epoch ID which is a natural number. We gen-
erate epoch IDs in the following way. For each attached agent we hold the information about
the epoch ID at the point this agent transmitted the last packet. This information is stored in the
agent_epoch_ table, and agents are distinguished by their port number (src().port_). A new epoch
begins when a certain agent transmits the second packet in the same epoch. In this case we increase
the epoch ID by one. As a result new epochs are generated at the pace of the packet transmission
rate of the fastest agent.

Listing 5.5: Server support

void ServerSupport::recv(Packet xp, Handler xh)
{

struct hdr_cmn *cmn_h = HDRCMN(p); /! pointer to the common header
struct hdr_cc *cc_h = HDR.CC(p); !/ pointer to the CacheCast header
struct hdr_tfrc *xtfrc_h = HDR TFRC(p); /! pointer to the TFRC header
struct hdr_ip *ip_h = HDRIP(p); !/ pointer ro the IP header

int cacheable_part = 0; !/ size of the cacheable part of a packet

60

if (cmn_h—>ptype() == PT_TFRC)

cacheable_part = tfrc_h —>psize;
else if (cmn_h—>ptype() == PT_TCP)

cacheable_part = ecmn_h—>size () — IP_HDR_LEN — TCP_HDR_LEN;
else if (cmn_h—>ptype () == PT_CBR)

cacheable_part = cmn_h—>size () — IP_HDR_LEN — UDP_HDR_LEN;

if (cacheable_part > 0) {
/% If any of the agents have sent already in this epoch advance the epoch
if (agent_epoch_[ip_h—>src (). port_] == current_epoch_)
current_epoch_ ++;

cc_h—>real_size () = cmn_h—>size ();
cc_h—>payload_id () = current_epoch_;

cc_h—>cacheable_part () = cacheable_part;

agent_epoch_[ip_h—>src (). port_] = current_epoch_;

}

recv —>target_(p, h);

5.3 Loosely synchronised streams

We study the link cache impact on congestion controlled transport protocols in the single bottle-
neck link topology as depicted in Figure 5.5. All links in the topology are the caching links as
described in Section 5.2.2. We install the 7s5-2 server support at the streaming source. The bottle-
neck link queue is managed by the random early detection RED queuing discipline [46] in byte
mode. We let 7s-2 automatically configure the queue parameters. Two types of traffic compete for
the bottleneck link capacity.

1. Cacheable traffic: It is generated by the streaming source and consists of a number of
streams. Fach stream has a different receiver located behind the bottleneck link. We use
TFRC [47] to perform congestion control over a single stream. Our decision is based on the
fact that TFRC is designed for streaming media, it is well accepted in the research commu-
nity, and it does not produce bursts of packets like TCP does. The round trip time (RTT)
between the source and each receiver is the same, therefore the streaming rate of the individ-
ual flows is similar. The streams are not driven with the same rate by the source, rather we
let each stream compete for the bottleneck link capacity individually. Thus, a single TFRC
sender transmits a packet as soon as the congestion control algorithm permits it. We simulate
a single TFRC stream using a stand-alone TFRC agent connected to the source node and a
TFRC-sink agent connected to one of the TFRC sink nodes. The 7s-2 server support marks
payloads with the same ID within one epoch which is determined by the rate of the fastest
stream of all streams. The payload size is 1000B.

2. Non-cacheable traffic: It is represented by 100 TCP flows each originating from a distinct
source and with a destination located behind the bottleneck link. The TCP flows are gen-

61

*/

TCP TCP
sources sinks

n—-TCP
streaming source W
(TFRC)
O N 100Mbps

n-TFRC
flows

TFRC
sinks

Figure 5.5: Single bottleneck scenario

erated by FTP applications which transfer unlimited amounts of data in 1000B payloads.
We simulate a single TCP flow with an FTP application attached to a TCP agent. The
TCP agent is connected to one of the TCP source nodes and transfers data to its counterpart
TCP-sink agent connected to one of the TCP sink nodes. All TCP connections have the
same RTT and their throughput is limited only by the bottleneck link capacity.

We perform two experiments in the aforementioned simulation setup. In both experiments we
measure the share of the bottleneck link bandwidth that is consumed by TCP and TFRC flows. We
also measure the average receiver throughput to gain the end host perspective. The throughput is
measured on the network layer. To factor out the influence of the RT'T on the behaviour of TFRC
and TCP flows, the experiments are performed in three different RT'T configurations:

1. Low RTT The TFRC and TCP flows have the same RTT of 40ms.
2. High RTT The TFRC and TCP flows have the same RT'T of 100ms.
3. Different RTT The TFRC flows have 40ms RTT while the TCP flows have 100ms RTT.

The results are obtained in simulations which are run for 180 seconds. We remove the first 60

seconds from the measurements to avoid any influence of the transient behaviour of TCP and

TFRC.

5.3.1 Effect of increasing the number of receivers

In the first experiment, we exponentially increase the number of receivers in the streaming session.
The number of TCP flows is fixed to 100. We expect the TFRC flows to obtain incrementally more
of the bottleneck link bandwidth share with the increasing number of flows; however, this is not
the case.

Figures 5.6, 5.7, and 5.8 present the TFRC and TCP shares of the bottleneck link capacity
as a fraction of the total capacity and the average TFRC receiver throughput. The results show a
surprising behaviour of TFRC. The increase in the number of TFRC streams has very little impact
on the TFRC shares. In the Low RTT and High RTT configurations 100 TFRC flows obtain only
5% and the Different RTT obtains 15% of the bottleneck link capacity while we would expect

62

"TCP "Average throughput per node s

TFRC 11

09
08
07
06
05
04
03

Bottleneck bandwidth sharings [%]
@
3
T
Average throughput [Mbps]

- 02
. 01 F

1 2 5 10 20 50 100 1 2 5 10 20 50 100
Number of TFRC flows Number of TFRC flows

(a) Bottleneck capacity shares (b) Average TFRC receiver throughput

Figure 5.6: Increasing the amount of TFRC flows on a bottleneck link, the Low RTT configuration

"TCP

IAveragle thruugi‘nput ;:-erI node mm—
TFRC 11

0.9 [
08 -
07
06
05
04

Average throughput [Mbps]

03

Bottleneck bandwidth sharings [%)]
D
i=3
T

- 02
- 0.1

1 2 5 10 20 50 100 1 2 5 10 20 50 100
Number of TFRC flows Number of TFRC flows

(a) Bottleneck capacity shares (b) Average TFRC receiver throughput

Figure 5.7: Increasing the amount of TFRC flows on a bottleneck link, the High RTT configura-
tion

it to take 50%. However, when analysing the average receiver throughput, we notice that it is
approximately constant regardless of the number of receivers.

When analysing the average receiver throughput, we find that in the High RTT and Low
RTT configurations TFRC and TCP flows achieve similar end-to-end throughput. In the High
RTT configuration these throughputs are almost equal. The average TFRC achieves approximately
0.95Mbps and the same throughput achieves the average TCP flow'. In the Low RTT configura-
tion TFRC achieves approximately 0.8Mbps while TCP achieves 0.95Mbps which is still relatively
similar. Considering the Different RTT configuration, the average TFRC receiver throughput
achieves twice more than the average TCP receiver throughput. However, this difference is related
to unfair competition of the TFRC flows with the TCP flows which have much larger RTTs. The
next experiment confirms this issue.

We speculate that this behaviour originates from the TFRC congestion control, which competes
with TCP on a rate basis. TFRC adjusts its sending rate to be “fair” with the TCP sending rate.

"The average TCP throughput is ¢, = 100M bps * 95% * 11W = 0.95Mbps.

63

2.6 T T

"TCP

IAveraagle thruugi’uput ;:-erI node mm—
TFRC 24

T 100 22 1
g or 1 F 0]
s 80| . s '8 b
@ 5 16| -
£ 0 i £ 14
35 4 - —
S 60 N)
bl 8 12t -
a 50 4 £
> s 1r i
8 40 7 g o8t 4
g 0F § Z osf .
o
o 20 1 04 | s

10 - - 02 [4

0 0

1 2 5 10 20 50 100 1 2 5 10 20 50 100
Number of TFRC flows Number of TFRC flows
(a) Bottleneck capacity shares (b) Average TFRC receiver throughput

Figure 5.8: Increasing the amount of TFRC flows on a bottleneck link, the Different RTT config-
uration

However, when caching is enabled TFRC packets carry only the header part of a packet thus they
consume much less of the bottleneck link capacity which in turn can be utilised by TCP. In all
figures, together with the average receiver throughput we also mark the standard deviation from the
average. The low variation among receivers confirms our assumption on the cacheable traffic, i.e.
that all TFRC streams achieve a similar rate.

5.3.2 Effect of decreased caching efficiency

In the second experiment we analyse the impact of the caching efficiency on the bottleneck link.
The caching efliciency metric denotes the ratio of the number of packets without payload to the
total number of packets in a packet train. The first packet in a packet train always carries a payload;
thus we do not count it. We fix the number of receivers to 100 and gradually increase the caching
efficiency. We start with no caching, where all packets carry a payload, and finish with a perfect
caching where only one payload is transmitted per packet train.

The results of the simulations for the three configurations are presented in Figures 5.9, 5.10,
and 5.11. When there is no caching the TFRC and TCP flows obtain “fair” shares of the bottleneck
link capacity in the current understanding. We find that these shares are only equal in the High
RTT configuration. In the remaining two configurations either TCP or TFRC obtains more of the
bottleneck link capacity.

With the increasing caching efficiency the TFRC share of the bottleneck link capacity decreases
and the TCP share increases respectively. However, when comparing these two types of traffic based
on the end-to-end throughput, we observe a similar increase in the average receiver throughput in
the presence of caching for both the TCP flows and TFRC flows. Specifically, in the configurations
Low RTT and High RTT the average TFRC receiver throughput doubles, and the average TCP
flow throughput increases by 50% in the Low RTT configuration and doubles in the High RTT
configuration respectively. Similar, in the Different RTT configuration the TFRC throughput
triples and the TCP throughput increases by 150%.

The link caches do not disrupt the current network understanding of fairness. Both TCP and
TFRC take advantage of it. In the presence of caching, TFRC flows make space for TCP flows on

64

Bottleneck bandwidth sharings [%]

100

Figure

Bottleneck bandwidth sharings [%]

100

"TCP
TFRC

0

10 20 30 40 50 60 70 80 90
Cache efficiency [%]

100

(a) Bottleneck capacity shares

Average throughput [Mbps]

0.9
08
07
06
05
04
03
02
0.1

A\Iferagle thrulughplln ;:-erI [T ——

0O 10 20 30 40 50
Cache efficiency [%]

60 70 80 90

(b) Average TFRC receiver throughput

5.9: Increasing the caching efficiency on a bottleneck link, the Low RTT configuration

"TCP
TFRC

0

10 20 30 40 50 60 70 80 90
Cache efficiency [%]

100

(a) Bottleneck capacity shares

Average throughput [Mbps]

09
08
07
0.6
05
04
03
02
0.1

A\Iferagle thrulughpin ;:-erI [T —

0O 10 20 30 40 50
Cache efficiency [%]

60 70 80 90 100

(b) Average TFRC receiver throughput

Figure 5.10: Increasing the caching efficiency on a bottleneck link, the High RTT configuration

Bottleneck bandwidth sharings [%]

100

"TCP
TFRGC

0

10 20 30 40 50 60 70 80 90
Cache efficiency [%]

100

(a) Bottleneck capacity shares

Average throughput [Mbps]

2.6
24
22

1.8
16
14
12

0.8
06
04
02

A\Lerag'e thru‘ughpht per‘ [T e——

0O 10 20 30 40 50
Cache efficiency [%]

60 70 80 90

(b) Average TFRC receiver throughput

Figure 5.11: Increasing the caching efficiency on a bottleneck link, the Different RTT configura-

tion

65

the bottleneck link. While not all the space is utilised by TCP, TFRC still benefits from it. In all

configurations the average receiver throughput at least doubles in the presence of CacheCast.

5.4 Tightly synchronised streams

In the previous experiments we evaluated the link cache impact on the loosely synchronised TFRC
streams. In this setting, a single TFRC stream controls its rate individually to achieve the maxi-
mum throughput. This, however, does not completely comply to the CacheCast design, where a
source must transmit the same data chunk in the short time interval to all destinations. Thus, a
single TFRC sender cannot transmit a packet immediately when the congestion control algorithm
permits, but it must wait for an external source to trigger the transmission. To illustrate this prob-
lem, let us consider a simple scenario of an IP TV server streaming a single channel to a number
of destinations using TFRC. The server creates media chunks according to the media stream bit
rate and sends them to all TFRC senders at the same time. In this scenario, the task of the TFRC
senders is not to achieve the maximum bit rate, but rather to follow the media stream rate and in
the case of congestion to reduce transmission rate.

To evaluate the impact of the stream synchronisation, we use the same topology as described in
Section 5.3 with the bottleneck link capacity of 100Mbps. We generate 100 TCP streams on the
bottleneck link. The streaming source has 100 receivers located behind the bottleneck link. The
source uses TFRC to control the streaming rate to each receiver. Both TCP and TFRC flows have
RTT of 100ms which corresponds to the High RTT configuration from the previous experiment.

In this experiment all TFRC senders are driven by the CBR traffic generators which trigger
packet transmission at the same time and according to the predefined rate. If the TFRC sender
prohibits the packet transmission due to congestion, the transmission request issued by the CBR
generator is ignored, which means the packet is dropped. The TFRC senders do not queue packets.
As a result, the streaming source produces a tightly synchronised packet train. We conduct a series
of simulations where the streaming source transmits data with increasingly higher rates. We probe
the streaming rate in the range of 50Kbps to 1.5Mbps with the interval of 50Kbps. Please note that
since a TFRC sender does not have an input queue, the TFRC stream will not achieve its maximum
throughput on the bottleneck link when competing with other flows.

Figure 5.12 shows the average receiver throughput as a function of the source streaming rate
along with the standard deviation. Considering the source streaming rate in the range of 50Kbps to
600Kbps we see that all receivers get the full stream. However, increasing the streaming rate further
does not yield similar increases in the throughput on the receiver side. The TCP flows competing
with the TFRC streams prohibit further consumption of the bottleneck link capacity. A part of the
stream is dropped either at the streaming source or in the network at the bottleneck link queue.
We have preformed measurements of the packet drop at the bottleneck link queue and we found
that it is in the range of 1.5-1.8% regardless of the source streaming rate. Hence, the packet drop
is caused by the TFRC sender which prohibits the CBR generator to send data.

We observe that the maximum average receiver throughput is 0.83Mbps when the source
streams at the rate of 1.15Mbps. This is approximately 10% less than the loosely synchronised
streams achieved when competing for the bottleneck link capacity in the previous experiment (see
Figure 5.7). This confirms our hypothesis that the synchronised TFRC senders will not achieve the

same throughput as the loosely synchronised streams. A simple solution for this problem would be

66

Average receiver throughput [Mbps]

f(x)=x

g ﬁ] ﬁ ﬁ Throughput
DD : 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Source streaming rate [Mbps]

Figure 5.12: Increasing streaming rate in the bottleneck link topology

to take this difference into account in the TFRC formula. However, this requires further analysis
outside the scope of this thesis.

5.5 Summary

In this chapter we have investigated the CacheCast impact on TCP friendly rate control. We have
analysed the impact of the link cache and the server support separately. In our simulations we
used TCP to transport non-cacheable data and UDP with TFRC to transport cacheable data. The
simulations indicate that when caching is enabled in a network, TCP flows obtain much more
of the bottleneck link capacity when competing with TFRC flows. This could suggest that link
caches disturb fairness in the network. However, we argue that the opposite is true. Measuring
the receiver throughput we find that even though TCP obtains more network resources it delivers
approximately the same amount of data to a single receiver as TRFC does within the same time
unit. Thus, from the end-to-end point of view CacheCast achieves fairness.

The server support synchronises data transmission over multiple connections. It sends a data
chunk to all connections at the same time. Individual connections do not queue the data chunk
when the congestion control algorithm prohibits sending it, but instead drop the data chunk.
Queuing would lead to unsynchronised transmission. Since connections do not have input queues,
they are not able to achieve the fair share of resources when competing with the standard flows.
We have found that the synchronisation mechanism built in the server support reduces the average
TFRC throughput by approximately 10%. Since the TFRC rate estimation is based on a formula,

it could be modified to compensate for the error. However, this is an issue for future work.

67

68

Chapter 6

Computational complexity - server support

This is the third chapter of the evaluation part. In the first chapter we have performed analyses
and simulations to estimate the amount of removed redundancy from the Internet links when
using CacheCast. We have used the perfect multicast efficiency as the reference efficiency for the
CacheCast system and evaluated how the CacheCast architecture limits this efficiency. We have
studied the impact of the following three architecture elements: distinct packet headers, finite
cache size, and limited deployment. In this and the following chapter, we discuss the last element
which can reduce CacheCast efficiency when operating in the Internet, namely the computational
complexity of the system. If the server support or the link cache elements require a considerable
amount of computation to operate, it will render the system inefficient. In order to answer this
question, we design and implement these two components of the CacheCast system, and then
we perform a detailed analysis. This chapter covers the server support part of the system and the
following chapter describes the link cache part.

The server side implementation consists of two elements: a system call and a kernel module.
The system call provides the means to transmit the same data to a group of hosts, which is very
similar to work done in [48] and [49]. However, unlike these related works, the CacheCast server
support additionally eliminates redundant payload transmission. The kernel module provides an
interface to control the CacheCast server support and provides a set of auxiliary functions for the
system call. Just how the server support implementation works is demonstrated in a small testbed.
The testbed consists of a server streaming an audio file, the CacheCast router, and two machines
hosting clients. The results show that, for example, over a 25 Mbps link CacheCast can — compared
to a traditional unicast solution — scale up the number of served clients by a factor of 10 and more.

The rest of this chapter is organised as follows: In Section 6.1 we briefly describe the CacheCast
system elements and identify potential computational bottlenecks. Before we discuss in depth the
server support implementation, in Section 6.2 we introduce a common structure of the CacheCast
header for the server support and the link cache elements. In Section 6.3 we describe the Linux
implementation of the server support. The evaluation of this element is given in Sections 6.4 and

6.5. Finally, we draw conclusions in Section 6.6.

6.1 Computational bottlenecks

CacheCast is a link layer caching technique that operates on point-to-point links. As it is depicted
in Figure 6.1, we install the cache management unit (CMU) on the link entry and the cache store

69

unit (CSU) on the link exit. The CMU controls the CSU and it knows exactly which payloads
are in the CSU. Whenever the CMU recognises that payload of the currently transmitted packet
is in the CSU on the link exit, it replaces the payload with an index to the payload in the CSU
and transmits it. Thus, when considering a seties of packets that share the same payload, only the
distinct packet headers and one copy of payload traverses a link. We refer to this structure as a
packet train. On the link exit the payload index is used to find a relevant payload in the CSU. Next,
the payload is attached back to the packet header and the packet is processed in a normal way on a
router.

CEC__» T4

CcMu > csu

Al

Figure 6.1: Extended directed link

Our core design assertion is that servers support CacheCast. For each packet to be subjected to
CacheCast a server must first create the CacheCast header. Packets without the CacheCast header
are ignored and not cached. The CacheCast header is placed between the link layer header and
the IP header. A server stores the information on redundant payload size and payload ID in the
CacheCast header which, combined with the server IP address, uniquely identifies the payload in
the Internet. These two elements of information greatly simplify the caching process since the
CMU does not need to perform any sophisticated redundancy detection on an incoming packet,
but simply compares the payload ID with the IDs of the payloads that are in the CSU. The INDEX
field is an administrative field used to pass an index value between the CMU and the CSU in the
described manner.

Besides the cache processing complexity the CacheCast costs are also related to the size of the
CSU. Therefore, a server aware of caching is responsible for batch requests for the same data and
transmitting it within the minimum amount of time. Thus, the required CSU size is minimised.
In Chapter 3, we estimated the required size based on different packet train lengths and different
source uplink speeds. We found that the CSU size corresponding to 10ms of data traffic flowing
through the associated link is sufficient.

Considering the CacheCast architecture, we find that the computational complexity is mainly
related to the CMU element which must perform payload ID lookup and modify a packet imme-
diately before link transmission. Additionally, the CSU element may become a bottleneck when
storing or restoring large packet payloads. Avoiding the payload copy operation with, for example,
a virtualisation mechanism could reduce this burden. Considering the server support, we do not
find potential computational bottlenecks. Nonetheless, other types of problems may arise due to
the specific characteristic of the CacheCast traffic.

6.2 CacheCast header in the Ethernet networks

The previous evaluations did not require specification of the CacheCast header structure and per
field byte distribution in the header. In this chapter and the following chapter we describe the

70

CacheCast implementation which initally requires the introduction of a common format for the
CacheCast header. Please notice that it is sufficient that only the CMU and CSU elements com-
posing a single link cache (and respectively the server support and the first hop CSU element) must
use the same structure for the CacheCast header. Hence, the CacheCast header structure can vary
between link caches. Nonetheless, it is far more convenient to use a standard header across the same
type of link technology.

Our CacheCast implementation operates only in the Ethernet networks; therefore, the Cache-
Cast header is designed only for this type of networks. In Listing 6.1 we show the CacheCast header
structure in the C language format. The header contains three information elements (INDEX, pay-
load ID, and payload size) that are related to CacheCast and are broadly discussed in Section 3.4.1.
Additionally, the CacheCast header contains the packet_type field. This field has the same seman-
tics as the type field of the Ethernet header and it is used to store temporarily the Ethernet type
of the encapsulated packet during transmission between the CMU and CSU elements (see Figure
6.2). The type field of the Ethernet header is used to indicate that the packet is a CacheCast packet.
We use the Ethernet type of 0XCACA to identify CacheCast packets. When CSU receives a packet
with this Ethernet type, it assumes that it is a CacheCast packet and the original Ethernet type of
the encapsulated packet is stored in the packet_type field. The CacheCast Ethernet type is not a
standard type and it is chosen from among unallocated Ethernet types to resemble the CacheCast

name.

Listing 6.1: CacheCast header for the server support and link cache implementation

struct cachecast_header {
uint32_t INDEX;
uint32_t payload_id;
uintl6_t payload_size;
uintl6_t packet_type;

Ethernet type of the

CacheCast Ethernet type encapsulated packet
—— Payload | Packet
Destination Address Source Address OxCACA INDEX Payload ID Si
ize Type
Y Y
Ethernet header CacheCast header

Figure 6.2: Use of the packet type field in the CacheCast header

The CacheCast header is twelve bytes long with the following byte distribution per field: four
bytes for the INDEX value, four bytes for the payload ID value, two bytes for the payload size value,
and two bytes for the packet type value. While the four-byte INDEX can address a huge table, in
our prototype implementation we decided to allocate more bytes than necessary. To illustrate a
number of unique IDs that can be encoded on the four-byte payload_ID field, we use an example
of a source with 1Gbps uplink speed. Assuming that this source transmits only the minimum size
Ethernet packets with unique payload IDs, the source uses all possible IDs after almost an hour.
Since link caches discard payload IDs after one second (cf. Section 3.4.6), the four-byte field for the

71

payload ID value is sufficient. The packet payload cannot be larger than the size of an IP packet.
Since the IP packet size is stored in a two-byte field in the IP header, the two-byte payload_size
field is sufficient. The size of the packet_type field follows from the Ethernet specification. This
structure of the CacheCast header is used in both the server support implementation described in

this chapter and in the link cache elements implementation described in the following chapter.

6.3 Server support in Linux

6.3.1 Design

CacheCast imposes on the source the following three tasks: (1) identify and annotate packets that
carry the same payloads with a unique ID and the payload size, (2) create the CacheCast header, and
(3) minimise the transmission time of packets that carry the same payload. Our initial investigation
shows that these tasks cannot be accomplished by current OS. Thus, we have designed an extension
to the Linux OS that fulfils them. We chose the Linux OS due to its open architecture and its
wide use as a server platform. The Linux extension consists of two elements: a system call and a
shell command. The new system call, which we have named msend (the abbreviation of “multiple
send”), allows an application to send the same data to many destinations. The reason to substitute
multiple send system calls with one msend call is to provide a single entry point to a kernel for
the application. Therefore, all send requests are batched in time and the kernel can handle them
efficiently.

The design of the msend system call can be best understood by analysing the graph depicted
in Figure 6.3. Similar to the normal send system call, msend operates only on connected sockets,
thus, an application must first establish connections (1). To transmit data via a set of sockets, an
application uses msend providing this set and the data as the arguments (2). Then, the kernel sends
the data to the sockets using the normal kernel send call (3). However, the resulting packets are
intercepted before link transmission, the CacheCast headers are created, and the packets are queued
on a per-neighbour basis. When the data is sent to all sockets, the queued packets are released one
by one, but only the first packet destined to a given neighbour carries the payload. The remaining
packets are truncated and only packet headers are sent (4). As a result a tight packet train per
neighbour is created. We use a lock to serialise the packet train transmissions. Thus, it is enough
for the neighbour CSU to be able to hold only one payload.

At present, the system design does not include a mechanism for auto-discovery of CacheCast
capable neighbours. Therefore, an administrator must enter this information manually. This is
achieved using a shell command tool named cachecast which provides an interface to the caching
mechanisms. The administrator can install the CMU on any link which is connected to the host

machine. The caching link is identified by a host device name and a neighbour IP address.

6.3.2 Linux networking subsystem

We have implemented the server support for CacheCast in Linux OS based on kernel 2.6.24.7.
It is implemented as a system call and a kernel module responsible for per neighbour CacheCast
support. The implementation uses many kernel structures and is integrated into the networking

subsystem in many places; therefore, before we describe the server support implementation, in the

72

(1) 2)
connect() msend()

User yy -y

System
call

time

Network
Kernel stack

IR A A £ v _.
Network i*
driver -y >

Hardware

Figure 6.3: The msend system call design

following paragraphs we give a brief overview of the operation of the Linux networking subsystem

and the fundamental data structures which are relevant for our implementation.

Sockets

A socket represents a communication end-point operated by the OS. It is used for interprocess
communication, mainly for processes located on different machines in a network. Similar to Unix,
Linux applies the file abstraction to all devices and system resources; and hence also to sockets.
Thus, a socket is identified by a file descriptor, and a process can use the standard read and write
file operations in order to receive and send data across a network. Nonetheless, the file abstraction
is not completely realised for sockets. The main part of the socket functionality is provided with
the Berkeley sockets application programming interface (API). The API defines a set of operations
on sockets which enable an application to create a socket, to manage a socket connection, and to
transfer data over a socket. We limit the socket description to the elements which are related to the
transmission path.

The sockets constitute a very thin layer in the Linux networking subsystem. The main tasks
of the socket layer are: (1) to perform a security check, (2) to provide an interface to the protocol
specific functions, and (3) to translate application data to the common message format. A socket is
created using the socket(int domain, int type, int protocol) system call which allocates a socket
object in the Linux kernel and returns a file descriptor associated with this socket. The socket
object is described with a generic socket structure shown in Listing 6.2. It is primarily used to store
general information about the socket (like the socket state, or type) and to enable file operations
on a socket. The key entries in this structure are: a pointer to the sock structure which contains
the network layer representation of a socket and a pointer to the protocol specific set of socket
operations stored in the proto_ops structure.

Listing 6.2: Socket structure

struct socket {
socket_state state ;

unsigned long flags;

73

const struct proto_ops *ops;

struct fasync_struct *fasync_list;
struct file xfile ;

struct sock xsk;
wait_queue_head_t wait ;

short type;

While the socket structure is brief and contains only generic information relevant to all socket
types, the sock structure contains a large number of elements which in part are relevant to all sockets
and in part are relevant only to a TCP socket due to legacy issues. Since the sock structure is large

we show in Listing 6.3 only two elements which are related to our server support implementation.

Listing 6.3: Sock structure

struct sock {
volatile unsigned char sk_state;

struct sk_buff_head sk_write_queue;

}s

The sk_state describes a protocol level socket state which is complementary to the state de-
scribed in the socket structure. For example, a DCCP socket in a connected state is described with
sock->state=SS_CONNECTED and sock->sk->sk_state=DCCP_OPEN'. Since the msend system call
operates only on connected sockets we inspect this variable to determine the socket state.

The next element sk_write_queue is a queue head where socket buffers are stored temporar-
ily. The queue is mainly used in two cases: to assemble large packets from small data chunks
stored in multiple subsequent socket buffers, and to delay the transmission time (e.g. when a con-
gestion control mechanism prohibits the transmission). The msend system call investigates the
sk_write_queue after transmitting a packet. If the socket buffer containing the packet is on the
queue, this means that the transmission is delayed due to congestion in a network. Since the server
support requirement is to transmit the tight packet train, the socket buffer must be removed from

the queue in this case.

Send system calls

When a socket is created, an application receives a file descriptor which identifies this socket. The
file descriptor is used in the subsequent communication with the socket to send and receive data via
the socket, and to control the connection state. In order to transmit data via the socket, the appli-
cation can use one of the four standard system calls depicted in Figure 6.4 (the text in parenthesis
describes the data type which the system call handles). The send, sendto, and write system calls
handle a byte string transmission; and the sendmsg system call handles a message transmission.
Regardless of the system call, the socket layer translates the application data to a message format
and invokes sock_sendmsg function. This function, in turn, invokes the protocol specific sendmsg
function like tcp_sendmsg(), udp_sendmsg(), or dccp_sendmsg(); by this passing the message to
the transport layer. At the transport layer the application data is moved from the message to a socket
buffer for packet assembly. We describe these two formats in the next paragraph.

"The Linux convention is to refer to the socket structure using the sock variable.

74

send(bytes)

sendto(bytes) sendmsg(message) sendfile(fd) Application layer
write(bytes)
v v
byte string # message ‘ file descriptor » pages
Socket layer
N v
sock_sendmsg(message) sock_sendpage(page)
\ v
| message » socket buffer| | page » socket buffer| Network layer

Figure 6.4: Application data representation on different layers

Additional to the aforementioned standard system calls, Linux provides the sendfile() system
call for efficient transmission of files (see Figure 6.4). The system call uses a memory page interface
to pass data from a file to a socket without expensive copy operations. The file and the socket are
provided in the form of file descriptors; the first file descriptor points to a socket in write mode and
the second file descriptor points to a memory mapped file in read mode. The memory mapped
file is a file which completely resides in the OS virtual memory in structures called pages. The
data transfer between the file and the socket is achieved by passing a pointer to a memory page,
where the data is stored. At the socket layer, the page transfer is handled by the sock_sendpage
function. This function, in turn, invokes a protocol specific sendpage function at the transport
layer, like udp_sendpage or tcp_sendpage. Finally, a protocol specific sendpage function creates
a socket buffer structure for packet assembly and stores the page pointer in it. During protocol
encapsulation, the protocol headers are stored in a buffer which is always attached in front of the
data stored in the memory pages.

The msend system call uses both sendmsg and sendpage functions to create a CacheCast
packet. The message interface is used to create an empty socket buffer and to pass CacheCast
relevant information to the transport layer (specifically a synchronisation queue number described
in Section 6.3.3). The memory page interface is used to pass application data, which is copied from

user space to preallocated memory pages.

Message structure

The socket layer uses a message as a standard format to pass application data to the transport
layer. A message format enables the socket layer to pass the application data along with control
information. In Listing 6.4, we provide the message structure as it is described in the Linux kernel.
The application data is pointed to by a vector (msg_iov) which describes fragments of data scattered
in the memory. If data occupies a continuous block of memory the vector contains only a single
pointer to the data and the data length. The control information is attached to a message using the
msg_control pointer. It is described by an additional structure cmsghdr which specifies a protocol
that created this control message, the type of the control message, and the content. In our server
support implementation we use the control message to pass CacheCast specific information to the
transport protocol layer.

Additional to the control message option, the message handling can be controlled with the

75

msg_flags variable. It enables an application to transmit, for example, a non-blocking message
(MSG_DONTWAIT), or to order a socket to wait for more messages before transmission (MSG_WAIT).

We use these two options to assemble a CacheCast packet in the transport layer.

Listing 6.4: Message structure

struct msghdr {

void *msg_name ; // Socket name
int msg_namelen; // Length of name
struct iovec *msg_iov; // Data blocks

__kernel_size_t msg_iovlen; // Number of blocks
void *msg_control;

/! Per protocol magic (e.g. BSD file descriptor passing)
__kernel_size_t msg_controllen; // Length of control message list
unsigned msg_flags;

b

struct cmsghdr {

__kernel_size_t cmsg_len; /* data byte count, including hdr x/
int cmsg_level; /x originaring protocol +/
int cmsg_type; /* protocol—specific type +/

b

Socket buffers

The sk_buff structure is a basic structure for packet assembly in the Linux networking subsystem.
It provides a buffer for packet data and auxiliary information necessary for packet processing. In
Listing 6.5 we highlight the most important information elements of the sk_buff structure. The
first two pointers in the socket buffer structure enable networking modules to queue the socket
buffer on different queues in the system (e.g. socket buffers are queued on the aforementioned
sk_write_queue when a congestion control mechanism prohibits transmission). All socket buffers
which are created by one of the send system calls belong to a socket connection which is referenced
by the sk pointer.

Listing 6.5: Socket buffer structure

struct sk_buff {

struct sk_buff xnext ;
struct sk_buff xprev;
struct sock xsk;

struct dst_entry xdst;

unsigned int len;
unsigned int data_len;
__belo6 protocol;
unsigned char *head:
unsigned char xdata;
unsigned char xtail ;
unsigned char xend ;

76

unsigned int cc_queue;

}s

When the first hop of a packet carried in a socket buffer is determined, the dst_entry structure
describing this first hop is referenced by the dst pointer. The dst_entry structure has a pointer to
the neighbour structure which handles link layer encapsulation and provides a method for link layer
packet transmission. We provide more details about the neighbour structure in the next paragraph.
Considering the IP stack, the dst entry in the sk_buff scructure is set by the IP routing subsystem
before the IP encapsulation. In the last step of the IP layer processing, the neighbour specific
transmission function is invoked (pointed to by the dst->neighbour->output function pointer)
and the socket buffer is passed to the link layer. The server support modifies this execution order.
Before the neighbour specific transmission function is invoked, we check whether the neighbour
is a CacheCast capable neighbour and a socket buffer carries a CacheCast packet. If these two
conditions are met, we invoke the cc_queue_skb() function of the server support which enqueues
this socket buffer.

The protocol variable stored in the sk_buff structure describes the packet type carried in the
socket buffer. It is primarily used in the Ethernet encapsulation process. For example, before the
IP layer passes a socket buffer to the link layer, it sets the protocol value to the IP Ethernet type
0x0800. The server support modifies the protocol variable for all CacheCast packets to hold the
value of the CacheCast Ethernet type which is 0xCACA.

The socket buffer provides two types of storage space for a packet: a linear buffer and an array
of pointers to memory pages. The total size of a packet stored in these two types of storage space is
given in the len variable. The size of data stored only in the memory pages is given in the data_len
variable. Since the msend system call uses the memory page interface (i.e. the sendpage() function)
to pass application data to the transport layer, the data_len variable gives the application data size.
Protocol headers created in the encapsulation process are stored in a linear buffer part. We use the
data_len variable to compute the payload size value stored in the CacheCast header.

Figure 6.5 depicts data layout in a socket buffer. The sk_buff structure describes the linear
buffer with four pointers: the head pointer points to the beginning of the buffer, the data pointer
points to the beginning of valid data in the buffer, the tail pointer points to the end of the valid data
in the buffer, and the end pointer points to the end of buffer space. The space between addresses
pointed to by the head and data pointers is called headroom and is reserved for headers which are
added in the process of encapsulation. Since application data in CacheCast packets is provided with
pointers to memory pages, the linear buffer carries only protocol headers. At the end of the linear
buffer the skb_shared_info structure is located. It contains an array of pointers to memory pages
along with offsets and sizes of data stored in the pages.

When the execution thread of the socket send operation reaches the network layer, application
data is moved to a socket buffer. As it is depicted in Figure 6.4, if the application data is carried
in a message, the message data is copied to the linear buffer and if the application data is provided
with a pointer to a memory page, the pointer is stored in the skb_shared_info structure. The final
packet is the sum of the data stored in the buffer space and in the memory pages.

In order to identify a socket buffer which carries a CacheCast packet, we have added the
cc_queue element in the sk_buff structure. The cc_queue value has a double meaning. The

77

struct sk_buff

headroom

unsigned int len;
unsigned int data_len;

unsigned char *head;
unsigned char *data;
unsigned char *tail; —]
unsigned char *end; — tailroom

struct page

unsigned short nr_frags;

st;uct page *page; L ///// 2

. __u32 page_offset;
struct skb_shared_info < u32 size:

struct page *page;
__u32 page_offset;
__u32size;

Figure 6.5: Socket buffer - data layout

value set to zero implies that the socket buffer carries a standard packet. However, a value greater
than zero implies that the socket buffer carries a CacheCast packet and the cc_queue value is inter-
preted as a synchronisation queue number (which we describe in the next section). When a socket
buffer is allocated the sk_buff structure is cleared including the cc_queue element. Thus, all socket
buffers carry by default standard packets.

Neighbouring subsystem

Neighbours of a host are network nodes which are within one hop range from the host (measuring
the hop count on the network layer). The neighbouring nodes are direct recipients of packets
created by a host, and thus are essential for communication. If a host does not have any neighbours
it is considered to be disconnected.

Linux neighbour management is performed by the neighbouring subsystem which has two
tasks: neighbour discovery and the network layer to link layer address translation for neighbouring
nodes. The neighbour discovery is performed by one of the discovery protocols (such as Address
Resolution Protocol (ARP) [50] in IPv4 networks or Neighbour Discovery Protocol (NDP) [51] in
IPv6 networks) which operate within the neighbouring subsystem framework. A key structure in
the neighbouring subsystem is the neighbour structure which provides information about a state of
a neighbour, network and link layer addresses of the neighbour, a method to transmit a packet to
the neighbour, and more. In Listing 6.6, we show only the key elements of the structure which are
relevant for the server support implementation.

78

Listing 6.6: Neighbour structure

struct neighbour {
struct net_device xdev;
/! Pointer to a network device through which the neighbour is reachable

__u8 nud_state;

// state of the NUD state machine

unsigned char ha [ALIGN (MAX_ADDR_1EN, sizeof (unsigned long))];
/! Hardware address of the neighbour

int (voutput)(struct sk_buff xskb);

/! Transmit method to the neighbour

struct sk_buff_head arp_queue;

/! Queue to store temporarily socket buffer during solicitation request
struct cc_neigh_info xcachecast_ptr;

/! Pointer ro CacheCast specific neighbour information

A neighbour is always associated with a single network device through which it is reachable. If
a neighbour is reachable via multiple devices which are present at a host, each device - neighbour
pair is described with a distinct neighbour structure. A pointer to the network device is stored in
the dev pointer.

Linux implements a neighbour unreachability detection (NUD) state machine which keeps
neighbour information up to date. The NUD state machine determines when a neighbour is con-
sidered to be connected, when to send solicit requests to a neighbour, or when a neighbour is con-
sidered to be unreachable. The machine state is stored in the nud_state variable in the neighbour
structure. The server support queries the NUD state using an auxiliary function neigh_is_valid to
find whether the network to link layer address mapping is valid for the neighbour. If the mapping
is invalid during packet transmission, a socket buffer carrying the packet is put on the arp_queue
queue and a solicit request (e.g. ARP who-is packet) is sent to obtain the correct address mapping
for this neighbour. CacheCast packets cannot be stored temporarily, while waiting for the solicit
response, since this would disturb CacheCast packet transmission. Therefore, if the network to
link layer address mapping is invalid for a neighbour, socket buffers carrying CacheCast packets
towards this neighbour are sent in a standard way, i.e. the packets are not CacheCast encapsulated
and do not form a packet train. Please notice, that the network to link layer address mapping for
a neighbour is only invalidated after a considerable time period when there is no communication
with the neighbour. Thus, when a host transmits a media stream this mapping is valid.

We install in the neighbour structure a pointer to the CacheCast neighbour specific structure
(the cachecast_ptr pointer). If the pointer is set, the neighbour associated with this neighbour
structure is regarded as capable of receiving CacheCast packets. If the pointer is cleared, the neigh-
bour does not recognise CacheCast packets and the server support will send standard packets to
this neighbour. We describe the function of the cc_neigh_info structure in the following section.

6.3.3 Implementation

The Linux server support implementation fully complies with the design introduced in Section
6.3.1. It is capable of creating a per-neighbour packet train. Packet trains are serialized on a per-

neighbour basis. For each packet in a packet train we create the CacheCast header with the same

79

payload size and the same ID. The payload size corresponds to the data size provided by the ap-
plication. Since we serialise packet trains on a per-neighbour basis, it is only required that the
neighbouring CSU is able to hold one payload. Thus, we set the INDEX field to zero for all pack-
ets. The ID is a subsequent number of a packet train transmitted by this host. The sequential
payload ID makes the server content vulnerable to malicious attacks; however, the server support is
a prototype implementation for evaluation purposes and does not incorporate all security counter-
measures, which are discussed later in Chapter 3.

We assume that not all neighbours in a network are CacheCast capable. Therefore, a user must
define the neighbours that support CacheCast. This knowledge is maintained internally by the OS,
and packet trains are created only to those neighbours that support CacheCast. Those neighbours
that do not support CacheCast receive regular packets. Until the first neighbour is defined, the
msend system call will only send normal packets. This is very similar to the functionality of the
system calls provided in [48,49].

The server support is implemented as a system call and a Linux module which supports the
system call. Additionally, we make small changes in the Linux networking subsystem to link it
with the server support. In the following paragraphs, we describe the complete server support
implementation beginning with a description of the msend system call which gives an overview of
the implementation.

msend system call

We separate the CacheCast concerns from applications with the msend system call which transmits
the same data chunk. The system call API is based on the select system call API and is as follows:

int msend(fd_set *xfds_write ,
fd_set *fds_written ,
char xbuf, int len)

The sockets are provided in the form of file descriptors and we use the standard fd_set structure to
pass a set of file descriptors between the user space and the kernel space.

With the fds_write variable an application provides a set of sockets to be written. Currently the
implementation can handle connections based on the UDP and DCCP protocols. The sockets that
were successfully written can be found by inspecting the fds_written variable. If a socket provided
in the fds_write set was written to, a bit corresponding to the file descriptor of this socket is set in
the fds_written set. Otherwise the bit is cleared. The buf and len variables describe the data chunk
to be sent. The system call returns the total number of successfully written connections.

Figure 6.6 depicts the execution flow of the msend system call. The underlined functions
cc_alloc_queues(), cc_release_queues(), and cc_queue_skb() are part of the server support and
are described in detail in the following paragraphs. In the first step, the system call allocates memory
pages for application data and copies the data into the allocated pages. Considering a standard
Linux configuration for a desktop machine, a single page has 4KB which is enough to accommodate
a packet of a standard MTU size (1.5KB). The system call does not fragment data larger than the
MTU size. Moreover, we disable the IP fragmentation for CacheCast packets, since this would
disturb the packet train structure. Therefore, an application is responsible for fragmenting data
into chunks which fit in the network MTU together with the transport, network, and CacheCast
headers.

80

msend(set of file descriptors, data)

p
allocate(pages)
pages < data

synchronisation queue < cc_allocate_queues()

message -« synchronisation queue | MSG_MORE

for each file descriptor from set of file descriptors:

-
socket < sockfd_lookup(file descriptor)

if (socket is UDP or DCCP) and
(socket is connected)

e .
kernel_sendmsg(socket, message) Protocol specific
\ functions
jmm e m
oo 0 |
) MSG_MORE \T sendmsg() |
< I !
for each page from pages: | i
< kernel_sendpage(socket, page, M :
MSG_MORE) —», ., Sendpage() |
_| ! |
|
kernel_sendpage(socket, last page, | !
MSG_DONTWAIT) ... sendpage() |
_ ! !
__________ |
set of written file descriptorsefile descriptor # MSG_DONTWAIT
L .
cc_release_queues(synchronisation queue) v

release(pages) ip_finish_output2(skb)

return set of written file descriptors CacheCast Non CacheCast
~ neighbour neighbour

cc_queue_skb(skb) neighbour->output(skb)

Figure 6.6: The msend system call execution flow

In the second step, the system call using the cc_alloc_queues() function allocates synchroni-
sation queues for CacheCast capable neighbours. Each CacheCast capable neighbour has its own
synchronisation queue which is used to enqueue socket buffers carrying CacheCast packets before
the link layer encapsulation. This is performed in the ip_finish_output2() function with the call
to the cc_queue_skb() function. The synchronisation queue has a double purpose. Firstly, socket
buffers queued on a synchronisation queue form a packet train. Thus, when the system call has sent
application data to all sockets, the synchronisation queue contains all socket buffers destined to a
given neighbour. The socket buffers are de-queued using the cc_release_queues() function which
builds packet trains. Secondly, a synchronisation queue synchronises packet transmission before the
link layer. At this point in the network stack, socket buffers carry almost complete packets. Thus,
when the socket buffers are de-queued, packets are only Ethernet encapsulated and transmitted.
This low processing overhead between consecutive transmissions of packets from a packet train

reduces transmission time of the complete packet train.

81

The msend system call can be executed by multiple processes at the same time. This requires
a distinct synchronisation queue for each process per CacheCast capable neighbour. We solve
the issue by preallocating a set of synchronisation queues per neighbour. The msend system call
allocates a single synchronisation queue per neighbour from the set using the cc_alloc_queues()
function which returns the queue number. In order to enqueue a socket buffer created by this msend
system call on the allocated queue, the socket buffer must be annotated with the synchronisation
queue number. The information is stored in the cc_queue entry in the sk_buff structure (see Listing
6.5). Please note that the msend system call operates at the socket layer and has no access to the
socket buffer structure (cf. Figure 6.4); therefore, to set the cc_queue value in the sk_buff structure
we use a message interface. The system call creates an empty message with control information
carrying the synchronisation queue number.

In the third step, the system call prepares all packets which are waiting in the allocated synchro-
nisation queues for transmission. For each file descriptor provided by the application, the system
call translates it into the corresponding socket using the sockfd_lookup() function. If this isa UDP
socket or a DCCP socket and it is in a connected state, the system call sends the control message
to build an empty socket buffer annotated with the synchronisation queue number?. Next, it sends
application data stored in the pages using the sendpage() interface. Since the DCCP implementa-
tion in the Linux kernel 2.6.24.7 does not support the sendpage() interface, we have implemented
it with the minimum functionality necessary to support the msend system call. The sendmsg() and
sendpage() functions build a socket buffer which has a small linear buffer space for packet headers
and a set of pointers to memory pages where the application data is stored. The last memory page
is sent with the MSG_DONTWAIT flag set which triggers the send operation. The socket buffer is in-
tercepted at the output of the network layer. If the destination neighbour is CacheCast capable and
its hardware address is valid (cf. discussion in the neighbouring subsystem paragraph), the socket
buffer is enqueued with the cc_queue_skb() function on the synchronisation queue identified with
the synchronisation queue number.

In the last step, the system call transmits all packets enqueued on the synchronisation queues in
the form of a packet train. This is achieved with an auxiliary function cc_release_queues() which
takes as an argument the synchronisation queue number. Additionally, the function de-allocates

the synchronisation queues.

Kernel module

The CacheCast kernel module is responsible for handling the state related to operation of the
server support. Specifically, the module maintains the knowledge of CacheCast capable neigh-
bours and manages synchronisation queues. The key information elements are stored in the cache-
cast_module and cc_neigh_info structures described in Listing 6.7. The cachecast_module struc-
ture is allocated and initialised during module initialisation stage. We describe this structure in the

context of functionalities provided by the module.

Listing 6.7: CacheCast kernel module structures

/! structure describing CacheCast module state
struct cachecast_module {

2We have modified the UDP and DCCP implementation of the sendmsg() function to initialise the cc_queue
element in the sk_buff structure according to the CacheCast control message.

82

struct list_head cc_neigh_list;
/! List head of CacheCast capable neighbours

uint32_t queue_map [SYNCH_QUEUE_MAP_SIZE | ;
spinlock_t queue_map_lock;

!/ Allocation map of synchronisarion queues
uint32_t queue_payload_id [SYNCH_QUEUE_MAX] ;
atomic_t cur_payload_id;

/! Per synchronisation queue payload ID
struct mutex queue_xmit_mutex;
/! Global lock for packet train transmission

}s

/! Neighbour specific information
struct cc_neigh_info {
struct list_head cc_neigh_list;
/! Linked list hook
struct sk_buff_head queue_skb_head [SYNCH_QUEUE_MAX];
/! A set of synchronisation queues

unsigned int tx_cc_packets;

unsigned int tx_cc_trains;
/!l Statistics

struct neighbour *neighbour;

/! Back reference to the neighbour owning this element

}s

The first element in the structure is a list head of CacheCast capable neighbours. As we have
described in the neighbouring subsystem paragraph, a neighbour is regarded as capable of receiv-
ing CacheCast packets, if the cc_neigh_info pointer in the neighbour structure is set, i.e., it
points to the cc_neigh_info element. The list of CacheCast capable neighbours consists of the
cc_neigh_info elements which reference back the neighbours; this is depicted in Figure 6.7. When
a user defines a neighbour as capable of receiving CacheCast packets the module allocates a new
cc_neigh_info element, sets the cc_neigh_info pointer in the neighbour structure to the new el-
ement, and adds the element to the list. A reverse operation is performed when a user defines a
neighbour as incapable of receiving CacheCast packets. This functionality is presented to a user
with the following system command:

cachecast [add|rm] dev_name neigh_ip_addr

The keywords “add” and “rm” indicate whether the cc_neigh_info structure should be installed or
removed from the neighbour structure. The network device name and the neighbour IP address
uniquely identify a single neighbour in the Linux neighbouring subsystem.

The cc_neigh_info element is not only used to mark CacheCast capable neighbours but also to
provide a set of synchronisation queues (the queue_skb_head array) where socket buffers are stored
temporarily during the msend system call invocation. The queue_map element in the cache-
cast_module structure keeps information about allocation of these synchronisation queues. The
msend system call allocates a single synchronisation queue per neighbour using the cc_alloc_queues()
function. The function performs a lookup for the first clear bit in the map, indicating an unallo-
cated queue, and sets the bit. The bit position corresponds to the synchronisation queue number.
The function also creates a payload ID for all packets stored in the allocated queues. The payload

83

neighbour neighbour

struct cc_neigh_info struct cc_neigh_info
cachecast_ptr; cachecast_ptr;
cachecast_module cc_neigh_info cc_neigh_info
— | struct list_head »| struct list_head »| struct list_head 4 5
«— cC_neigh_list; - cc_neigh_list; . cc_neigh_list;
° struct neighbour struct neighbour
: neighbour; neighbour;

Figure 6.7: The CacheCast kernel module and the neighbouring subsystem

ID is generated using the cur_payload_id counter and is stored in the queue_payload_id array at
the synchronisation queue number position. Since the system call operates in the multi-thread en-
vironment, the allocation process must be protected with the queue_map_Llock lock. The payload
ID counter is of the atomic type and is incremented using atomic operations.

Additional to the cc_alloc_queues() function, the kernel module exports the cc_queue_skb()
and cc_release_queues() functions which were already mentioned in the context of msend system
call. The cc_queue_skb() function is called by the ip_finish_output2() function to store a socket
buffer on a synchronisation queue. However, before the socket buffer is enqueued, the function
builds the CacheCast header. At this point, the socket buffer carries the IP encapsulated packet;
thus, the CacheCast header is simply appended in front of the IP header. The CacheCast header
fields are filled in the following way: The INDEX value in the CacheCast header is set to zero,
and the payload ID value is set to the value found in the queue_payload_id array at the syn-
chronisation queue number position. The payload size value requires special consideration. If the
header size is at least of the minimum packet size, the payload size is set to the application data
size. However, if the header size is less than the minimum packet size, the payload size must be
reduced to ensure the minimum packet size for packets without payload. Otherwise, the network
driver extends the truncated packets to the minimum packet size with random data which will
cause corruption of CacheCast packets during payload restore at the CSU. After the CacheCast
encapsulation, the socket buffer is enqueued on a synchronisation queue in the queue_skb_head
array in the cc_neigh_info element. The queue number and the neighbour are provided in the
socket buffer structure.

The cc_release_queues() creates a packet train per neighbour from the socket buffer previ-
ously enqueued in the synchronisation queues. The function takes as an argument the synchroni-
sation queue number and for each cc_neigh_info element from the CacheCast capable neighbour
list (cc_neigh_List) performs the following actions. It de-queues the first socket buffer enqueued
in the queue_skb_head array at the synchronisation queue number and transmits it using the
neighbour->output() function. For the remaining socket buffers, the function first de-queues the

84

socket buffer, next truncates it according to the payload size, clears the payload size field in the
CacheCast header, and finally transmits it. The complete operation of the packet train trans-
missions is protected with the queue_xmit_mutex lock. Therefore, concurrent processes will not
disturb packet train structure during transmission. When all socket buffers have been sent to the
link layer, the cc_release_queues() function clears a bit in the queue_map allocation map at the

synchronisation queue number position to indicate that the queues are free.

6.4 Micro evaluation

In this section we evaluate the described msend system call implementation. We assess the per-
formance of the system call execution for a wide range of input parameters and relate it to the
standard send system call. We also establish bottlenecks of packet transmission operation. The
measurements are conducted on a 2.4GHz Intel machine with 512MB 266MHz SDRAM and a
2.5GHz AMD Athlon 64bit duo-core machine with 2GB 667MHz SDRAM. On both machines
we run the Ubuntu Server 9.04 with our modified Linux kernel 2.6.24.7. The machines have an
Intel 82541P1 Gigabit Ethernet network card which is capable of transmitting Jumbo frames of up
to 16110B.

The server support for CacheCast consists of two elements: the msend system call and a process
that creates the packet trains. Since packet trains are formed only for those destinations that are
defined with the cachecast shell command, it is possible to measure the performance of the raw
system call and also the burden incurred due to packet train creation. To understand the results
of the measurements we compare them with the performance of the send system call under the

equivalent workload. Thus, we perform measurements in the following three configurations:
send_loop: Using the send system call in a loop we transmit the data block to a group of hosts.

msend_no_CMU: Using the msend system call we transmit the data block to a group of hosts that
do not support CacheCast.

msend_CMU: Using the msend system call we transmit the data block to a CacheCast enabled
group of hosts located behind a caching link.

6.4.1 Evaluation methodology

The msend system call performance depends on the destination group size and the data block
size. Thus, we perform a number of experiments varying these two factors. The costs of a system
call are expressed as the per-packet processing time, i.e. the time to build and transmit a single
packet to a single destination. To obtain this time we measure the time of the msend system call
invocation or, in the case of send_loop configuration, the execution time of the system call loop.
If the destination group size is low, we invoke the system call/execute the loop multiple times, so
that the total amount of transmitted packets is at least 100 and we measure the total time. This
is due to two reasons: (1) the measurement precision is insufficient to capture the accurate value
of a single system call invocation; (2) the processor cache affects the measurement results severely
when invoking a system call only once for a small group of destinations. To obtain the per-packet

processing cost the measured time is divided by the total number of transmitted packets. We ensure

85

that the system call results in packet transmission to a given number of destinations by monitoring
the resulting network traflic. For each of the three configurations we perform the measurements

ten times and we report the average value.

6.4.2 Costs wrt. group size

The first experiment is performed only on the Intel machine and its purpose is to give a general
idea of the transmission costs wrt. the group size. We transmit a data block to a growing number of
destinations (1-1000) using UDP. We use data blocks of four different sizes: 500B, 15008, 9000B,
and 16000B. The smaller two block sizes correspond to the packet sizes that are currently used
in the Internet to transport data. The resulting UDP packet for data block size of 1500B can be
greater than the standard Ethernet MTU size; however, no fragmentation occurs since our network
card MTU is set to 16110B. The larger two data blocks result in Ethernet Jumbo frames. These are
used to show potential benefits of the system call in networks with large MTUs.

The experiment results depicted in Figure 6.8 show the time required to transmit a single packet.
In the case of the send_loop configuration (Figure 6.8a), the per-packet cost does not change
significantly with the group size which is obvious since we invoke the send system call to transmit
each packet. Surprisingly, in the case of the msend_no_CMU configuration (Figure 6.8b) the per-
packet cost decreases very quickly for all payload sizes with increases in group size and already with
the destination group size at above 50 it does not depend on the payload size. The per-packet cost is
almost inversely proportional to the group size, however, it does not decrease below 5us. It appears
that the msend system call costs related to the page allocation and data copying from user space to
kernel space are quickly amortised with the growing destination group size.

To find the cost of the CMU operation we compute the difference between the measurements
obtained in the msend_CMU and msend_no_CMU configurations. Regardless of the packet
size for all group sizes the difference stays approximately in the range of —1us to 1ps with the
confidence interval of 2ps. It appears that the CMU operation has insignificant impact on the
msend system call performance. Thus, even though we have conducted further experiments with
the msend_CMU configuration we do not present them in the analysis, since these are very similar
to the msend_no_CMU configuration.

6.4.3 Costs wrt. payload size

In the second experiment, we focus on the relationship between the payload size and the per-packet
transmission time. We perform a similar experiment to the first one, however we increase the data
block size from 100B up to 16000B (with a step of 2000B) and transmit it to a group of destinations
in the following four sizes: 1, 10, 100, and 1000. To obtain sufficient confidence in the results and
in order to investigate the impact of the memory speed, we perform the experiment on both our
Intel and the AMD machines.

In Figure 6.9 we show a sample graph representing the relationship of the system call cost and
the payload size for the group size of 100, as measured on the Intel machine. In studying the
send system call, we observe a distinct linear increase in the per-packet transmission time with the
increase in packet size. However, in the case of the msend system call the per-packet transmission
time is constant in the range of the probed packet sizes. We can send much more data when using

86

Per packet transmission time [us]

1 10 100 1000
Group size

(a) The send_loop results

50 — ——— —————
16000 —+—
9000 +--x--+
1500 +--%---

A0 500 B

Per packet transmission time [us]

0 1 1

1 10 100 1000
Group size
(b) The msend_no_CMU results

Figure 6.8: Per packet send time as a function of the group size for four different payload sizes

87

35 T T T

send_loop ——+—
msend CMU =~
30 Hnsend _no CMU :--3--- .

Per packet transmission time [us]

0 2000 4000 6000 8000 10000 12000 14000 16000
Payload size [B]

Figure 6.9: Per packet send time as a function of the payload size for group size of 100 (the Intel
machine)

Table 6.1: Per packet system call cost - the linear function fit results for the Intel machine

Group size send_loop msend_no_CMU
| a=168-3+1.9% a=174e-3+£2.7%
b=384+7.0% b=6.80£5.7%
10 a=167e-3+1.9% a=12le—4+15.3%
b=4.02+65% b=4.95+3.0%
100 a=178-3+14% a=137e~5=+120.5%
b=4.76+4.4% b=5.22+26%
1000 a=193¢-3+15% a=—-2.22¢—5+99.3%
b=5.33+4.6% b="5.79+31%

larger packet sizes at the same transmission cost. This prompts a question: what is the cost of sending
a single byte wrt. the transmitted packet size and the group size. The cost can be split into two parts:

(a) Per-byte cost - this cost is related to copying data from user space to kernel space, payload
checksum calculation, etc.

(b) Per-packet cost - this cost is related to user-kernel mode switch, message preparation, header

building, socket state update, in kernel packet route evaluation, etc.

To obtain these values we fit a linear function to the data set of the second experiment. The factors
a and b of the linear function f(z) = ax + b represent respectively per-byte cost (a) and per-packet
cost (b).

The results of the linear function fit for the Intel machine are shown in Table 6.1 and for the
AMD machine in Table 6.2. The a and b factors are given together with the accuracy of the fit

88

Table 6.2: Per packet system call cost - the linear function fit results for the AMD machine

Group size send_loop msend_no_CMU
1 a=613e—4+21% a=06.24e—4+4.0%
b=3.78+28% b=5.85+3.6%
10 a=644e—4+28% a=6.42e—5 + 28.5%
b=3.70+£4.0% b=4.36+34%
100 a=6.80e—4+1.0% a=1.98¢—5+065.3%
b=392+15% b=4.27+25%
1000 a=6.46e—4+1.6% a=—-1.15e—5=+117%
b=4.47+£1.9% b=4.75£2.3%

operation. The accuracy of the a factor is especially low in the msend_no_CMU configuration
for large groups. This is due to high sensitivity of the a factor when fitting to near constant linear
function.

Considering transmission to one destination, the per-byte cost (a) of the msend system call and
the send system call are similar on both the Intel and AMD machines. However, with the increase
in group size the per-byte cost of the msend system call decreases very quickly, as we reported in
the previous experiment. For the group size of 10 destinations, the cost is 14 times smaller on the
Intel machine and 10 times smaller on the AMD machine. We even obtain negative values for the
per-byte cost when the group size is 1000 which is an artifact of the fit operation. This indicates
that the per-byte cost of the msend system call is negligible when the group size is large. It implies
that when a server streams data to a large number of destinations using the msend system call its
load is inversely proportional to the size of packets that compose the stream. For example, a radio
server which serves hundreds of clients transmitting an audio block in a single packet could halve its
load by transmitting two audio blocks per packet. We demonstrate this later in Section 6.5 where
we show how a live streaming server can handle almost eight times more receivers when using eight
times larger packets.

The per-packet cost (b) of the msend system call is higher than the regular send system call
especially when sending only to one destination. It is 1.77 and 1.54 times higher on the Intel and
AMD machines respectively. However, this cost ratio decreases with the growing destination group
size and for the group size of 1000 it is insignificant (i.e. 1.08 on the Intel machine and 1.06 on the
AMD machine). The reduction of the per-packet cost is due to the fact that the msend system call
performs only one user-kernel mode switch and prepares a message only once for an arbitrary large

group of destinations, while the send system call performs these tasks for each transmitted packet.

6.4.4 Per-byte and per-packet cost contribution to the total cost

Depending on the payload size the total packet transmission cost is dominated either by the per-
byte cost (a) or by the per-packet cost (b). We compute the payload size s, for which these costs
are in equilibrium. If the payload size is smaller, than the s, size then the total cost is dominated by
the per-packet cost. If the payload size is greater than the s, size, then the total cost is dominated
by the per-byte cost.

Considering the send system call, regardless of the group size, the costs equilibrium is achieved

89

with the payload size s., of approximately 2300B for the Intel machine, and 6100B for the AMD
machine when using UDP. We expect that for more advanced protocols than UDP (like DCCP)
the per-packet cost increases and, thus the costs equilibrium is achieved with the larger payload size
Seq- The msend system call for a single destination achieves the costs equilibrium with the payload
size 5. which is larger than in the case of the send system call, i.e. approximately 3900B for the
Intel machine, and 9300B for the AMD machine. This is mainly due to higher per-packet cost.
However, considering larger group sizes, where the per-packet costs decrease, the payload size s,
increases further. For example with the group size of 10, the costs equilibrium is achieved with the
payload size s, of approximately 41kB for the Intel machine and 68kB for the AMD machine.
Obviously, the size s, is an approximation based on the assumption that the linear dependency
between the packet size and the transmission cost holds above the measured payload sizes, however,
it gives a good indication of how dominant the per-packet cost is.

In all cases, the payload size s, (where the costs are in equilibrium) is always greater than
the standard 1500B MTU size in the Internet. Thus, the per-packet cost is the dominant cost of
packet transmission in the Internet and the load on a modern server related to packet transmission
is mainly dependent on the number of transmitted packets rather than the amount of transmitted
data. This means that a substantial amount of server CPU cycles can be saved by using larger

packets.

6.4.5 Memory speed impact

The per-byte cost (a) measured on the AMD machine is approximately 2.7 times smaller than on
the Intel machine for the send system call and for the msend system call when sending to few
destinations. This cost reduction can be directly related to the difference in the memory speed
between the AMD and Intel machines, since the AMD machine memory bus runs at 2.5 times
higher frequency.

The per-packet costs (b) are not reduced significantly by the increase in the memory speed. We
observe that the cost decreases only by 1 to 18% on the AMD machine when compared to the Intel
machine. Since the per-packet cost dominates the total cost of packet transmission in the Internet,
increasing the memory speed by a given factor will not yield reductions in the packet transmission

costs of the same order.

6.4.6 Cost of user-kernel mode switch

Similar to the msend system call, the sendgroup system call [49] performs only one user-kernel
mode switch to transmit data to a group of destinations while the equivalent loop of the send system
call requires per destination one mode switch. In [49] the authors recognise that this reduction in
the number of user-kernel mode switches is “a good strategy for improving performance”.
Considering the msend system call we also observe the performance improvement. The per-
packet cost (b), which captures the cost of a user-kernel mode switch, decreases by 14 to 27%
when transmitting to more than one destination. For instance, in the case of the Intel machine
the cost is initially 6.80us and falls to 4.954s with a group size of ten destinations. For larger
destination group sizes it increases slightly. Interestingly, when compared to the per-packet cost of
the send system call the cost of msend is greater even with a group size of 1000 destinations. The

main advantage of using the msend system call comes from the reduction in the per-byte costs (see

90

Figure 6.10: Real system performance testbed.

Figure 6.9) but not from a reduction in the number of user-kernel mode switches. This insight is
different from results gained in [49].

6.5 Testbed Evaluation

To show the benefits a real application can obtain when using CacheCast we built a testbed. This
is depicted in Figure 6.10. It consists of four machines: two Intel 2.4GHz and two AMD duo-core
2.5GHz. We use the Intel machines for the server (S) and the router (R). The AMD machines
(A, B) host the clients. We install caches on links S-R, R-A, and R-B and we limit the S-R link
capacity to 25Mbps. The capacity is reduced in order to obtain comparable results. Initially, we
performed the same experiments using 1Gbps links. However, with CacheCast the bottleneck is the
server CPU power while without CacheCast the bottleneck is the S-R link capacity which makes
the experiments incomparable.

The server S uses the paraslash? software to stream an audio file. Our decision is based on the
fact that the software implements streaming using the DCCP protocol [52]. The DCCP protocol
controls congestion in the network, thus, we do not risk the server being overloaded or the network
being congested. We have modified the paraslash software so that it uses the msend system call to
stream the audio file. To obtain maximum cache efficiency, we demand all the client streams to be
synchronised in time. We do not queue a sample that is not sent to a client (e.g. due to congestion)
instead it is dropped. If a client exceeds a threshold of 10% of dropped samples in a certain time
window, we interpret it as a slow connection and the client is disconnected.

The router (R) is based on the Click Modular Router software which we describe in the follow-
ing chapter. On each input and output connection we install the CSU and the CMU elements.
The router was configured as it is depicted in Figure 6.10 and acts as an IP router connecting
three different sub-networks. The client machines (A and B) use the paraslash receiver software to
request an audio stream from the server S. We install the Click CSU element on each machine.

We perform the following experiment: The server S streams an mp3 file at a rate of 320Kbps
using 1024B data chunks. We gradually increase the amount of clients requesting the content
equally from the machines A and B until we fill the bottleneck link. Then, we query the server S
for the number of actually connected clients. We measure the server CPU utilisation for one minute

3http://paraslash.systemlinux.org/

91

Table 6.3: Server S streaming 320Kbps audio in 25Mbps network.
Server type Chunksize Users CPU

Original 1024 74 2.71+1.1
CacheCast 1024 1020 4421 +1.6
CacheCast 2066 2066 59.63 +1.7
CacheCast 4184 4097 58.30+ 1.0
CacheCast 8364 8001 87.17+1.8
CacheCast 15674 12454 91.35 + 3.0497

“Limited by clients resources at approx. 80% utilisation of the network capacity

and record the average value together with the standard deviation. The measurements are taken in
two configurations: (1) using the original paraslash software, and (2) the modified CacheCast
implementation of the software. In order to evaluate the impact of the packet size that is used to
carry the audio stream on the CacheCast implementation, we also vary the data chunk size carried
by packets.

Table 6.3 shows the number of users connected to the server and the server CPU load for
different data chunk sizes. The original server implementation can only handle 74 clients due to
the bandwidth limitation. Using the same data chunk size the CacheCast server can handle more
clients, since the transmission of the redundant payloads does not consume scarce link capacity.
This can be further improved by using larger chunks. The reason is that with the growing data
chunk size a single client consumes less bandwidth. With larger chunks the amount of packets per
unit time in the network decreases. Since almost all packets are truncated by CacheCast to the
minimum size, the utilised bandwidth is proportional to the amount of packets transmitted per
time unit.

The analysis of the msend system call described in Section 6.4 indicates that its performance
does not depend on the transmitted data size when the destination group size is large. The testbed
results confirm this general trend. Increasing the chunk size eight times we could handle eight
times more clients, while the server load increased only twice. One could expect no increase in the
CPU load; however, the server performance does not solely depend on the msend system call but
also on other client related tasks. The testbed experiment shows the importance of the system call

performance and how larger data chunks can reduce the server load substantially.

6.6 Summary

In this chapter we have conducted an initial evaluation of the computational complexity of the
server support. The server support is integrated with the Linux OS and an application can access
it with the msend system call. The evaluation indicates that the msend system call achieves similar
performance to the standard send system call when transmitting to a single destination. However,
when transmitting to a large group of hosts, the server support does not only remove the redun-
dancy from transmitted packets, but also reduces the server load. We support this claim with an
experiment in a small testbed.

The testbed evaluation shows that the CacheCast system can be introduced into the existing

92

network, bringing near multicast performance while still maintaining the end-to-end relationship
between a client and a server. We experience no difficulties while modifying the paraslash server to
use the msend system call in the DCCP mode. The modified server could perform suitable AAA
services with the DCCP protocol controlling individual connections to each client. In the next

chapter we evaluate the computational complexity of a link cache.

93

94

Chapter 7

Computational complexity - link cache

This is the second chapter in which we analyse the computational complexity of the CacheCast
system. In the previous chapter we evaluated the server support part of the system. The results
indicate that the server support does not create additional burden on a server, rather, it can improve
the server performance. In this chapter we evaluate the second part of the system, i.e. a link cache.
A link cache consists of two elements located at the edges of a link. The first element CMU is
located at the link entry and removes payloads that are already present in a cache on the link exit.
The second element CSU is located at the link exit and restores from a local cache the payloads
that were removed by the CMU element. While the link cache algorithm is simple, it is not given
how fast it can operate, how much resources it requires, and what are its bottlenecks. To study
these issues, we implement the link cache elements in the Click modular router software [53] and
evaluate them in the context of router operation.

Since the link cache elements performance is highly dependent on the host hardware architec-
ture which varies greatly among routers, we chose not to assess the performance of the elements as
stand-alone units. Instead, we decided to evaluate the elements in the context of complete router
operations and to measure how the elements impact router performance. Using the Click modular
router software we build an IP router on a standard desktop machine. To understand the impact
of the link cache elements on the router performance, we measure the router performance before
installing the CacheCast elements and after. The results indicate that it is always beneficial to install
CacheCast elements even if they consume additional CPU cycles.

The rest of this chapter is organised as follows: In Section 7.1 we describe the link cache design
and its implementation in Click modular router software. We also provide a brief overview of the
Click software components. Section 7.2 presents the evaluation of the link cache elements in the
context of router operations. We show how the performance of a standard router changes when

installing the CacheCast elements. Finally, we conclude this chapter in Section 7.3.

7.1 Router Elements

Since off-the-shelf routers are not programmable, we decided to build a CacheCast capable router
using a desktop machine and the Click modular router software [53]. Click provides elements for
packet processing and a flexible framework for composing them. The composition of elements is
called a configuration. A part of the Click software is a standard IP router compliant configuration

consisting of sixteen elements. In order to run a CacheCast capable router, we also need to imple-

95

ment and insert the CSU and CMU elements as the first and last elements in the packet processing
path.

The CacheCast elements are implemented according to the functional description presented
in Section 3.4 with modification in the CMU table and CSU memory slot design. The slot size
of the maximum payload size causes severely reduced utilization of the CSU memory, since even
small payloads occupy the whole slot. To mitigate this problem, we use slots which are smaller
than the maximum payload size and store large payloads in multiple contiguous slots. Decreasing
the slot size increases utilisation of the CSU memory. However, it also increases the number of
slots and, thus, the management burden on the CMU side. We have chosen the default slot size
of 512B, which we consider to be a good trade-off between the CSU memory fragmentation and
the CMU management burden. Nonetheless, our Click implementation can operate also with
other slot sizes. In the following sections we describe the differences between the original design
presented in Section 3.4 and the modifications. Next, we provide a brief overview of Click software

architecture and finally we describe the link cache implementation in Click software.

7.1.1 CMU and CSU design

As in the original design, the CMU table contains the same amount of entries as the corresponding
CSU slots (cf. Figure 7.1). An entry located under a given index in the CMU table describes the
content of a memory slot located under the same index in the CSU. Since a packet payload can be
stored in multiple contiguous slots, the CMU entries no longer describe whole payloads but rather
payload chunks. We decided that only the CMU entry which refers to the first chunk of a payload
should contain a payload ID. The CMU entries referring to the remaining chunks of the payload
are set to zero. Therefore, the payload ID lookup operation always returns an index to the first
chunk of a payload, if there is a match.

The linear payload ID lookup in the CMU table is unacceptable due to incurred delays; there-
fore we facilitate the lookup operation with a hash table. We use the payload ID as the key for
the hashing function and we store the index of the payload ID in the resulting entry of the hash
table. The hash table is consistent with the CMU table. If we overwrite a payload ID in the CMU
table, we also remove the corresponding payload ID key from the hash table. Similarly, if we insert
a payload ID into the CMU table, we also update the hash table.

The cache has the round robin replacement policy that is implemented with the current index
pointer on the CMU side. The pointer refers to the next entry in the CMU table to be replaced. If
a payload ID of a CacheCast packet is not found in the CMU table, it is inserted in the table under
the current index. If the payload is stored in multiple CSU slots, the consecutive table entries are
set to zero. The hash table is updated and the current index advances over the modified entries.

When traversing a link, a CacheCast packet carries the CacheCast related information in the
CacheCast header (see Figure 7.2). However, when the packet enters the router, the CSU removes
the CacheCast header and stores the payload ID and the payload size in the packet annotations.
Thus, the IP router processes the packet in the standard way. The payload size is always set to
the valid value in the annotations. The index is not relevant in the router context and is dropped.
The CMU identifies the CacheCast packet by present CacheCast annotations and constructs the
CacheCast header before the link transmission. The link cache elements use the same CacheCast

header structure as the server support described in Chapter 6.

96

The CMU element The CSU element

Remaining

Payload Payload Payload Memory
ID ID size slots
IDO IDO 400
ID1 ID1 1045
(%] ID1 533
(0] ID1 21
ID2 ID2 1400
L] L]
L] L)
Current . .
index
— IDn IDn 1000
(0] IDn 488

Figure 7.1: CMU and CSU relation

CSsuU Click router CMU

CacheCast _// CacheCast

header Annotations header

Figure 7.2: Handling the CacheCast header related information in the Click router

To indicate that a CacheCast packet is truncated, the CMU sets the payload size field in the
CacheCast header to zero. However, since the packet payload may be stored in multiple slots in the
CSU, the information on the total payload size is necessary to restore the payload. We decided to
store the information in the meta-data of the first payload chunk. The meta-data of the subsequent
payload contains the remaining payload size (see Figure 7.1). Thus, when the CSU receives a
truncated packet it knows immediately its payload size.

Handling errors on a link

The CMU controls where packet payloads are stored in the CSU using the INDEX field in the
CacheCast header. However, the CMU table and the CSU slots may become inconsistent due
to packet drop. If a packet with payload is dropped on a link, the CMU table entry containing
this packet payload ID is inconsistent with the CSU slot which contains old payload. Subsequent
packets with the same payload are truncated on the link entry and carry the index of the old payload
which is then attached to them on the link exit. To avoid this packet corruption, the CSU stores
payloads along with their IDs. Thus, before the CSU restores payload, it compares the ID from the
packet CacheCast header with the ID of the payload pointed to by the index. If these two match,
the payload is restored, otherwise the packet is dropped. This mechanism protects against packet

97

corruption caused by packet drop and packet reordering on a link.

Cache consistency

To keep a cache consistent it is necessary that the CMU and the associated CSU have the same
amount of table entries/slots and use the same slot size. This is achieved during the configuration
of elements. The slot size has the default value of 512B, and the total amount of CSU memory is
scaled with the associated link capacity. By default it is equivalent to the maximum amount of data

that traverses the link within a 10ms time period.

7.1.2 Click modular router software

The Click modular router software provides a quick and easy way to build a router using a standard
desktop machine running Linux or FreeBSD operating system. The key components of the Click
architecture are: a library of packet processing elements, a router configuration, and a router driver.
In order to start a router, a router driver is loaded with a configuration which defines connections
between packet processing elements. The router driver parses the configuration, connects and
initialises the elements, and starts up the router. In the following paragraphs we briefly describe the

elements and configuration part of the Click architecture.

Click elements

A Click element is the smallest processing unit of a Click router which provides a simple function-
ality such as a packet queue, a packet scheduler, a packet classifier, or a network driver interface.
Complex functions are composed of simple elements connected together. For example, to build a
queue with the random early detection (RED) policy, we connect together the RED element imple-
menting the RED policy and the Quene element implementing a packet storage. A Click element

is characterised by four general properties:

1. Element class: Each element operating in a router belongs to a class that specifies a code to
be executed when an element processes a packet. The class of an element is identified by the

class name such as, for example, the previously mentioned RED or Queue classes.

2. Ports: An element has a number of input and output ports that can operate in one of two
different modes: pull and push. If element operation does not constrain the type of ports,
the ports can be defined as agnostic, i.e., they can act both as either pull or push ports.

3. Configuration string: To pass configuration arguments to an element, a user can use a

configuration string which is parsed by an element during the router initialisation phase.

4. Method interface: Elements can communicate using method interfaces. An element can ex-
port one (or more) interface that provides data or methods. For instance, the Quene element

exports an interface to query the queue length.

Click elements are implemented in C++ as objects which are derived from the Element class.
The class is the base class for all Click elements and it provides a skeleton implementation of an
element. In order to create a new element, it is necessary to complete the skeleton implementation

with just a few declarations. As an example of element implementation, in Listing 7.1 we show

98

a null element implementation provided in the Click software documentation. The element does
not perform any action, does not accept any configuration strings, and does not export any method
interface. The element only forwards packets from its input port to its output port. The key
declarations in the MyNullElement element implementation are the class_name(), port_count(),
and processing() functions which describe element. The element operation is defined in the push()
function which forwards packets to the first output port.

Listing 7.1: Null element

class MyNullElement : public Element { public:
MyNullElement () { }
~MyNullElement () { }
const char xclass_name () const { return "MyNullElement"; }
const char *port_count() const { return PORTS_1_1; }
const char xprocessing () const { return PUSH; }
void push(int port, Packet xp) {

output (0). push(p);

}

}s

A part of Click elements acts as a simple packet filter with only a single input and a single
output port. These elements can operate both in push and pull mode and are therefore defined
as agnostic in terms of processing. To facilitate their implementation, the Element class provides a
simple_action() function that, by default, is called both by the push() and pull() functions. Thus,
regardless of the processing type of the element, the simple_action() function is invoked to process
a packet. We use this skeleton function to implement the link cache elements.

Packet processing

Packet processing in a router can be initialised either by a source element creating packets or by a
sink element consuming packets. When a source element creates a packet, it pushes the packet to
its downstream elements in a series of push() function calls until the packet is consumed (e.g. it is
stored on a queue). When a sink element is ready to consume a packet, it pulls the packet from its
upstream elements in a series of pull() function calls.

The complete operation of the push and pull packet processing can be best illustrated in the
simple configuration depicted in Figure 7.3. The FromDevice and ToDevice elements implement
network driver interface receiving and transmitting parts respectively. When the FromDevice el-
ement receives a packet from the ethO device, it pushes the packet to the Quene element which
stores the packet temporarily. When the ZoDevice receives a signal that the eth1 device is ready to
transmit it pulls the Quene element, which either returns a previously enqueued packet or a null
object if the queue is empty.

FromDevice(eth0) #—»} [

Figure 7.3: Push-pull example for a Click router configuration

A/

ToDevice(eth1)

99

Configuration

The Click configuration describes packet flows between router elements. It is a directed graph
where elements are vertices and edges denote possible packet paths between the elements. Correct
configuration requires that only elements with a compatible port type are connected. If an element
has agnostic ports, the type of ports is resolved to either pull or push type based on adjacent ele-
ments. Additionally, input and output ports of an agnostic element must be of the same type. The
port constraints are propagated until all port types are resolved. In the event that not all constraints
can be successfully resolved, a router driver returns an error message pointing to the problem.
Click configurations are described with a simple language that enables a user to declare ele-
ments and then to specify connections between them. In Listing 7.2 we provide two alternative
descriptions of the configuration presented in Figure 7.3. Firstly, in three declarations we create the
FromDevice, ToDevice and Queue elements. The FromDevice and ToDevice elements require a net-
work device name to read and write to. This information element is provided with a configuration
string in parenthesis. Secondly, the declared elements are connected together using an arrow syntax.
Alternatively, the complete configuration can be written as a continuous chain of elements without

preceding declarations.

Listing 7.2: Push-pull example configuration

// Declarations:

src :: FromDevice(eth0);
dst :: ToDevice(ethl);

q ;1 Queue;

// Connections :

src —> q;

q —> dst;

/! Declaration are not required, thus alternatively:
FromDevice (eth0) —> Queue —> ToDevice(ethl);

7.1.3 CMU and CSU implementation in Click software

The CMU and CSU functionalities are implemented as two distinct Click elements with class name
CacheManagementUnit and CacheStoreUnit respectively. The elements perform a simple processing
which can be executed both in push and pull mode. Figure 7.4 shows how these elements should
be installed in a simple IP router. The IP router internals are replaced with a cloud, since these
are irrelevant for the CacheCast operation'. The router switches packets between two links con-
nected with the eth0 and eth1 interfaces. We use the FromDevice and ToDevice elements to read
and write packets to these interfaces. The CacheStoreUnit elements are installed immediately after
the FromDevice elements to restore packet payloads and remove the CacheCast header before the
IP router processing. The elements operate in push mode, which is enforced by the FromDevice
elements. The CacheManagemntUnit elements are inserted between the transmission queue and
the ZoDevice elements. Therefore, packet drop in the transmission queue does not affect link cache
consistency. The elements remove redundant payloads and create the CacheCast header before link

"For the complete IP router configuration please refer to [53].

100

transmission. In this configuration, the operation of the CMU element is crucial, since it intro-
duces delays in packet transmission. The following explains it: When the 7oDevice element is ready
for transmission it pulls a packet from the transmission queue. If there is a packet in the queue,
it is first processed by the CMU and then it is forwarded to the 7oDevice element for transmis-
sion. Therefore, the delay introduced by the CMU increases the idle time of the link transmission

channel.

FromDevice(eth0) FromDevice(eth1)

v v
‘ CacheStoreUnit(1Gbps) ‘ ‘ CacheStoreUnit(1Gbps) ‘

e i T
—~ - v N

be IP router internals

’ CacheManagementUnit(1Gbps)
(-

‘ CacheManagementUnit(1Gbps)
[

V
ToDevice(eth0)

V
ToDevice(eth1)

Figure 7.4: Click CacheCast IP router

The CacheManagementUnit and CacheStoreUnit elements accept only two configuration pa-
rameters: RATE defining the associated link rate and CHUNK_SIZE specifying the memory slot size.
If the CHUNK_SIZE parameter is not given the elements are configured with the default value of
512B. Based on these two parameters and the assumption that CSU should accommodate 10ms
of traffic flowing through it, the elements calculate the number of memory slots in CSU. On the
CMU side this number describes the size of a table where payload IDs are stored and on the CSU
side this number describes the number of memory slots. A pair of CMU and CSU elements that
compose a single link cache must have the same configuration parameters in order to ensure correct
operation of the link cache. In Listing 7.3 we show example declarations of the CacheCast elements
in the Click configuration language.

Listing 7.3: Example declarations of CacheCast elements

cmu :: CacheManagementUnit(1Gbps);

/! Declares the CMU element connected to 1Gbps link
/1 with the default slot size of 512B

/! The RATE parameter is read implicitly

csu :: CacheStoreUnit (RATE 100Mbps, CHUNK_SIZE 256B);

101

/! Declares the CSU element connected to 100Mbps link
/! with a non—standard slot size of 256B

In the following paragraphs we discuss specifics of the link cache elements” implementation as

well as assumptions made.

CacheManagmentUnit element

CacheManagementUnit acts as a simple processing element that receives a packet on its input port,
processes the packet, and forwards it further to its output port. All packets with cleared CacheCast
annotations are immediately forwarded without any processing. If the element receives a packet
with the CacheCast annotations set, it processes the packet under the assumptions that the packet
is Ethernet encapsulated and without the CacheCast header. Packets processed by the element have
the CacheCast header inserted between the Ethernet header and the IP header. This is with the
exception of packets that do not carry CacheCast annotations and packets with payloads larger
than the CSU storage space.

The CacheManagmentUnit functionality is completely implemented in the simple_action()
function shown in Listing 7.4. The function uses three classes from the Click software that require
a brief explanation. A Click packet is represented with the Packet class. The class defines two
buffers: a buffer for packet data and a buffer for annotations. The packet data is stored in the
former buffer and its boundaries are determined with the data and end_data pointers. To allocate
additional space at the head or at the tail of the packet data, we use push() and put() functions; to
truncate the head or the tail of the packet data, we use pull() and take() functions. The buffer for
packet annotations is a fixed block of memory without structure. To store data in the annotation
buffer, we call set_anno_u*(offset, value) function providing the offset in the memory block and
the value to be stored as arguments. For example, to store a payload ID in the annotations we
call set_anno_u32(CACHECAST_PAYLOAD_ID, payload_id). A similar function anno_u*(offset)
is used to read annotations. Click does not provide any allocation mechanism for the annotation
buffer therefore care must be taken when chosing the offset values. We define two offsets in the
annotation buffer to store the payload ID and the payload size. In order to create or to destroy a
packet, we call make() and kill() functions.

The Packet class implements only immutable packets. This constraint enables efficient packet
duplication, since a copy of a packet can share a data buffer with an original packet. Nonetheless,
the link cache elements modify packet data and, thus, require mutable packets. The mutable
packets are implemented with the WritablePacket class. To make a packet mutable, we use a
uniqueify() function provided in the Packet class which returns a packet with a private buffer.
Additionally, the aforementioned functions that change the boundaries of the packet data in the
packet buffer return mutable packets.

The Click software provides the HashTable class template for efficient implementation of hash
tables or hash sets. The implementation is based on a chained hash table, where elements with
the same hash value are put on a linked list. The class template has a set of functions for lookup,
insert, delete, and other types of operation on a hash table. However, we use only three of them
in our implementation: find_prefer(), find_insert(), and erase(). The find_prefer(key) function
returns an iterator for an element with key key. If the key is not in the table, the function returns

an iterator of the end of the table. If the key is in the table, an element associated with this key is

102

moved to the front of the linked list. This speeds up the lookup operation for the same element
if there are more elements with the same hash value. We use this function, since we anticipate
frequent lookups for the same payload ID within a short period of time, which are related to the
packet train structure. The find_insert(key) function inserts an element with key key to a hash
table and returns an iterator for the element. If an element associated with the key is already in
the table, the function returns an iterator for this element. The erase(key) function removes an
element associated with key key.

We use the HashTable class to implement an associative array (the payload_IdToIndex table)
mapping payload IDs to INDEX values. The lookup with key ID in the table returns an iterator
for the element containing the INDEX value in case of a cache hit, or an iterator for the end of the
table in case of a cache miss. Initially, along with the INDEX value, a table element contained also
a timestamp describing a point in time when this element was created. We have used the timestamp
to invalidate entries that are older than one second, as discussed in Section 3.4.6. However, a call to
read the current system time consumed much more CPU cycles than the whole element processing.
Consequently, we have removed this functionality, since we focus our measurements on the CMU

performance.

Listing 7.4: Source code of the simple_action function for the CacheManagementUnir element

Packet *CacheManagementUnit:: simple_action (Packet *p_in)
{
uint32_t _chunks_count; // number of chunks required to store payload
uint32_t _payload_id;
uint32_t _packet_ipv4_addr;
uintl6_t _payload_size;

struct cachecast_header xcc_h; // pointer to the CacheCast header
struct click_ether xether_h; /! pointer to the Ethernet header
struct click_ip *ip_h; /!l pointer to the IP header

WritablePacket *p;

/% CacheCast packets are marked with the CacheCast annotations +/
if (! p_in—>anno_u32 (CACHECAST_PAYLOAD_ID))

return p_in;

/% Copy the packet annotations to the local variables +/
_payload_id = p_in—>anno_u32 (CACHECAST_PAYLOAD_ID);
_payload_size = p_in—>anno_ul6 (CACHECAST_PAYLOAD_SIZE);

/% Does the packet fit the associated CSU on the remote end? +/
_chunks_count = _payload_size / _chunk_size + 1;
if (_chunks_count > _table_size)

return p_in;

/% Extend the packet head by the size of the CacheCast header +/
p = p_in—>push(sizeof(struct cachecast_hecader));
if (1p)

return NULL;

cc_h = (struct cachecast_header *)(p—>data() + ETH_LEN);
ether_h = (struct click_ether *)p—>data ();

103

/% Move the Ethernet header to the head of the packer buffer x/
memmove (p—>data (), p—>data () + CH_LEN, ETH_ALEN x 2);

/% Set the CacheCast Ethernet type x/

ether_h —>ether_type = htons (ETHERTYPE_CACHECAST);

/% get packer IP address +/
ip_h = (struct click_ip *)(p_in—>data() + ETH_LEN + CH_LEN);
memcpy(& _packet_ipv4_addr, &ip_h—>ip_src, sizeof(_packet_ipv4_addr));

Table::iterator _iter;
uint32_t _INDEX;
uint64_t _id;

uint64_t _evict_id;

/% The unique payload ID is a combination of the packet IP address
* and the payload ID +/

_id = ((uint64_t) _packet_ipv4_addr << 32) | _payload_id;

/% Lookup the ID in the ID to index hash table x/

_iter = _table_IdTolndex —>find_prefer (_id);

/x Cache Hit */

if (_iter != _table_IdTolndex —>end()) {
p—>take (_payload_size); /! remove the packer payload
_payload_size = 0; /! clear payload size
_INDEX = _iter —>_INDEX; !/ copy the index wvalue for this ID
} else {
/x Cache Miss x/
_INDEX = _cur_INDEX; /!l the index value is the current index

/% Allocate sufficient amount of chunks to store payload by
x removing IDs referring to payloads which are invalid after

x packet transmission */

for(int i = 0; i < _chunks_count; i++) {
_evict_id = _table_IndexTold[_cur_INDEX];
if (_evict_id != INVALID_ID) {

_table_IndexTold [_cur_INDEX] = INVALID_ID;
_table_IdTolndex —>erase (_evict_id); // synchronises the hash rable

}
_cur_INDEX = (_cur_INDEX + 1) % _table_size;

_iter = _table_IdToIndex —>find_insert(_id);
_iter —>_INDEX = _INDEX;
_table_IndexTolId [_INDEX] = _id;

/* Build the CacheCast header x/

cc_h—>payload_id = htonl(_payload_id);

cc_h—>payload_size = htons(_payload_size);

cc_h —>INDEX = htonl (_LINDEX);

/! packer type is ser, since ch_h—>packet_type == (old) ether_h—>type

return p;

104

CacheStoreUnit element

Similar to CacheManagementUnit, CacheStoreUnit acts as a simple processing element with only
a single input port and a single output port. The complete functionality of the CacheStoreUnit
element is implemented in the simple_action() function shown in Listing 7.5. The element oper-
ates under the assumption that it receives Ethernet encapsulated packets. If the Ethernet type of a
packet is different from the CacheCast Ethernet type, the packet is immediately forwarded further
downstream. Based on the payload_size field in the CacheCast header, the element determines
whether it is only a header part of a packet or a complete packet. If a header part of a packet arrives,
the element copies payload chunks from the cache store slots to the packet buffer. If a complete
packet arrives, the reverse operation is performed. To secure a packet against possible corruption,
as discussed in Section 7.1.1, we store the unique payload ID together with the payload chunks. As
the last step in packet processing, we copy CacheCast related information to the packet annotations
and remove the CacheCast header.

The implementation of the CacheCast elements is not optimised. While the CSU element
copies payloads to each compressed CacheCast packet that arrives, this could be avoided. If a
router could store a packet in multiple buffers (like the mbuf structure in the BSD OS) the CSU
element would simply link payload to a packet header. However, the Click router does not support
this kind of structure and we are forced to use the copy operation.

Listing 7.5: Source code of the simple_action function for the CacheStoreUnit element

Packet *CacheStore::simple_action (Packet *p_in)

{

uint32_t _chunks_count;

uint32_t _rem_chunks_size; /] size of the remaining chunks
struct cachecast_header xcc_h; // pointer to the CacheCast header
struct click_ether xether_h; /! pointer to the Ethernet header
struct click_ip xip_h; /! pointer to the IP header

WritablePacket #*p;

/% Forward non—CacheCast packets immediately x/
ether_h = (struct click_ether x)p_in—>data();
if (ntohs (ether_h —>ether_type) != ETHERTYPE_CACHECAST)

return p_in;

/% Received packet is a CacheCast packer */
cc_h = (struct cachecast_header x)(p_in—>data() + ETH_LEN);

uint32_t _INDEX = ntohl (cc_h—>INDEX);
uint32_t _payload_id = ntohl(cc_h—>payload_id);
uintl6_t _payload_size = ntohs(cc_h—>payload_size);

/% Does payload fit the cache store? x/
_chunks_count = (_payload_size — 1) / _chunk_size + 1;
if (_chunks_count > _store_size) {

p_in—>kill ()3

return NULL;

105

/% Verify the INDEX value x/
if (_LINDEX > _store_size)

return p_in;
/* Unique id is a sum of a payload ID and a source IP address =/
uint32_t _packet_ipv4_addr;

uint64_t _id;

ip_h = (struct click_ip *)(p_in—>data() + ETH_LEN + CH_LEN);
memcpy(& _packet_ipv4_addr, &ip_h—>ip_src, sizeof(_packet_ipv4_addr));

_id = ((uint64_t) _packet_ipv4_addr << 32) | _payload_id;

/% Is it a complete packet or just a header? +/

if (_payload_size == 0) {
/* Header arrived ~x/
_payload_size = _chunk_store [_INDEX]. chunk_size;

/% Extend packet buffer by the payload size +/
p = p_in—>put(_payload_size);

if (1p)
return NULL;
for (int i = 0; i < _chunks_count; i++) {
/* Does the payload id and the chunk id march? ~/
if (_chunk_store[_INDEX].id !'= _id) {
p—>kill ()3
return NULL;
}
/*x Copy payload from the slots to the packet buffer +/
memcpy ((p—>end_data() — _payload_size) + _chunk_size * i, // to
_chunk_store [_INDEX]. chunk, /! from
_chunk_store [_INDEX]. chunk_size > _chunk_size ?

_chunk_size : _chunk_store[_INDEX]. chunk_size); // size

_INDEX = (_INDEX + 1) % _store_size;

}
} else {
/% Complete packet arrived +/
_rem_chunks_size = _payload_size;
for(int i = 0; i < _chunks_count; i++) {
_chunk_store [_INDEX].id = _id;
_chunk_store [_INDEX]. chunk_size = _rem_chunks_size;

/* Copy the packet payload ro the slots */

memecpy (_chunk_store [_INDEX]. chunk, /] to
(p_in—>end_data() — _payload_size) + i * _chunk_size, // from
_rem_chunks_size > _chunk_size ? _chunk_size : _rem_chunks_size);

_INDEX = (_INDEX + 1) % _store_size;

106

C,, [bps] C .[bps]
—— Router -

g
Flpps]

Figure 7.5: The router model

_rem_chunks_size —= _chunk_size;

}

/% Make a mutable packer */
p = p_in—>uniqueify ();
if (1p)
return NULL;
}

/% set packet annotations */
p—>set_anno_u32 (CACHECAST_PAYLOAD_ID, _payload_id);
p—>set_anno_ul6 (CACHECAST_PAYLOAD_SIZE, _payload_size);

/x remove the CacheCast header +*/
memmove (p—>data () + CH_LEN, p—>data (), ETH_ALEN x 2);
p—>pull (CH_LEN);

return p;

7.2 Evaluation

7.2.1 Router model

Since the CSU and CMU elements operate in a router, we run performance analysis in the context
of router operations. We use the following router model (see Figure 7.5). A router is a store and
forward network node which performs the IP router related tasks as defined in [54]. It has a shared
memory architecture and its input and output capacity is limited in terms of bits per second. We
assume that input capacity Cj, is equal to output capacity Cyyt. The forwarding rate of a router F'
is limited by its processing capabilities and is expressed in packets per second. A router can forward
packets of minimum size at line rate. This implies that the forwarding rate F' is at least Cj;, / Sinin
packets per seconds, where S,,;,, denotes the minimum packet size in a network.

The router is built based on a 2.4GHz Intel machine using the standard-compliant Click router
software [53]. To simplify measurements and interpretation of results, we read packets from a
memory mapped trace file and send them directly to the Click router software. The packets are
discarded after being processed by the router.

107

7.2.2 Trace files

The trace files we use in the following experiments are prepared using two machines. The first ma-
chine generates packets while the second machine records the resulting network traffic to trace files.
Each trace file contains approximately 100MB of packets. The first trace file has non-CacheCast
minimum size IP packets, which we use to establish the router F, C;;, and C,,; parameters. The
remaining trace files contain CacheCast packets of the packer train structure, which we generate
using the msend system call. Since the index value in the CacheCast header is set to zero for all
generated packets, we send them additionally through a cascade of the CSU and CMU elements.
This is create indexes in the CacheCast header of the packets. The traces are generated for three
group sizes: 10, 100, and 1000, and with four different payload sizes: 500B, 1500B, 9000B, and
16000B. We use them to evaluate the CacheCast router performance.

7.2.3 Router parameters

In order to obtain the forwarding rate F' and the maximum input/output capacity C;;,/Cyys of the
Click router, we use the first trace file containing minimum size IP packets. We load packets from
the trace file directly to the IP router software and measure the average time to process a single
packet. Based on the average packet processing time we calculated that the router forwarding rate is
763 £ 2.7%K pps and the corresponding maximum input/output capacity is 366.2 + 2.7%Mbps.
We assume that the minimum packet size S, is 60B.

7.2.4 CacheCast router performance

We install the CSU as the first element and the CMU as the last element on the Click router
forwarding path as described in Section 7.1.3. The elements are configured with the following
parameters: RATE 366.2M bps and CHUNK_SIZE 512B. This results in the CSU of 468KB storage
space divided into 937 slots and the equivalent number of table entries in the CMU. Since Cache-
Cast elements impose an additional burden on the router CPU, this decreases the forwarding rate
of the router F. Based on the packet train structure, the average packet size is 5 = s,/n + sp,
where s, s5,, and n denote payload size, header size, and destination group size respectively. Thus,
the CacheCast average packet size is low or even has minimum size when the destination group is
large. We expect that with decreased forwarding rate F” the router is not able to fully utilise the
output capacity Cyyt and the router efficiency is affected. Without CacheCast this does not occur.
However, the same packets carry payloads and thus fill the input capacity C;,, much faster than
CacheCast packets. Now, the bottleneck is the input capacity C;,,. Therefore, the question is: Is
it beneficial to install the CSU and CMU elements in a router? We demonstrate that, even with our
simple CSU and CMU implementation, CacheCast yields substantial benefits.

Similar to the minimum packet size measurements, we load packets from the trace files con-
taining CacheCast packets directly to the router software and measure the average time to process
a single packet. Based on the measurements we calculate the CacheCast router forwarding rate I’
and the corresponding output capacity utilisation.

The results depicted in Figure 7.6 show the utilisation of the output capacity of the router. Even
though the router forwarding rate F' is reduced, it can still utilise 100% of the output capacity when
forwarding short packet trains. However, when the packet train size increases to 100 packets and

108

100

10 —
100 EXZX=A
1000 ===
so V- - b]
)
Ll
>
=
Q
@
o 60 |- .
8
3
5 g
a P
=]
[
8 40 |- b |
iy
]
N
._'_=
3
- 3 b
20 + % B o - -
e] b
o b k]
1% <4 £
o i K g

9000 16000
Payload size [B]

Figure 7.6: Utilised output capacity of the Click router for three different packet train sizes and
three different payload sizes

above, the router becomes the bottleneck and the output capacity utilisation decreases. The reason
for this is that the average packet size 5 in the large packet train decreases to the minimum size
while the router is not able to forward the minimum size packets due to CacheCast operations.
The utilisation is especially low when forwarding packet trains with large payloads, since the CSU,
which mainly performs payload store and restore operations, consumes more router CPU cycles.

The original router forwards traffic with redundant payloads while the CacheCast router avoids
the redundant payload transmission. To understand the benefits of the CacheCast router we com-
pare the volume of traffic forwarded by both routers within a given time unit. However, we count
the CacheCast traffic volume as if it carried the redundant payloads. We refer to it as the effective
throughput. In Table 7.1 we show the ratio of the effective throughputs of the CacheCast router
and the original router. Obviously, the effective throughput of the CacheCast router is higher
than the original router when forwarding short packer trains, since it avoids redundant payload
transmissions while still achieving 100% utilisation of the output capacity. Moreover, the effective
throughput ratio is substantially higher for large packet trains, even though the output capacity is
not fully utilised. For example, even with the 57% utilisation of the output capacity the Cache-
Cast router can effectively forward 13 times more data of the following packet train structure: 1000
packets with the payload size of 1500B.

109

Table 7.1: The ratio of the effective throughputs of the CacheCast router and the original router

Group Payload size
size 500B 1500B 9000B 16000B

10 449 7.35 9.42 9.67
100 5.82 13.36 34.37 40.11
1000 5.80 13.52 35.38 40.10

7.3 Summary

While the server support can be implemented and evaluated according to conditions which are close
to the real world, the link cache elements could not be implemented in a standard router. Instead,
we have used the Click modular router software to implement the link cache elements and we have
evaluated them on a single CPU machine. The evaluation was designed to give us insight that could
be extended over the first generation routers. We considered a router with the fixed computational
capacity designed to forward the minimum size packets with the line rate. Since operation of the
link cache elements consumes a fraction of the router computational capacity, the router may not
be able to utilise 100% of the output link capacity. However, the evaluation shows that installing
the CacheCast functionality in the router is always beneficial. If the CacheCast traffic consists of
short packet trains, the router is still able to fully utilise the output link capacity. The utilisation
decreases only when the CacheCast traffic consists of long packet trains. It is most likely that this

will only occur at the network routers close to servers.

110

Chapter 8

Related work

This chapter presents the related work for CacheCast. While we have already described closely
related systems in Chapter 2, this chapter covers a broader range of packet caching systems. Fur-
thermore, it provides a detailed comparison between CacheCast and the system of Anand et al.
presented in [36]. We describe how the decision to split caching burden between a server and link
caches simplifies the link cache implementation when compared to the system of Anand et al.

8.1 Network-wide redundancy elimination

Link layer caching has been recently studied in the context of network-wide redundancy suppression
by Anand et al. in [36]. The authors envisage that all future routers will have the ability to
remove redundant content from packets on the fly. Thus, the proposed system is more general than
CacheCast, since CacheCast aims to remove only a specific type of redundancy.

While [36] briefly covers link layer caching and focuses mainly on the “redundancy-aware”
routing protocol, CacheCast concentrates on the design of a link cache and its feasibility. CacheCast
design decisions follow from the principle that both link caches and a server should make contribute
removing redundancy from single source multiple destination transfer. A server is responsible for
batch requests for the same data and for transmitting packets carrying the same data chunks within
a minimum time window. We show how the server support greatly simplifies implementation of
link caches by comparing it with the approach of Anand et al. [36]. Based on this comparison, we
later explain differences with other related systems.

Both CacheCast and the system of Anand et al. are designed to operate in the wired Internet.
This imposes very strong constraints on the cache storage space and on computational complexity
of the caching algorithms. A large storage space improves redundancy detection in the link traffic.
However, it also costs more, both in economical and computational terms. The computational
complexity of the cache algorithm must be minimised to decrease per packet processing time. Ide-
ally, the amount of packets per second processed by a cache should match link throughput. This,
however, is difficult to achieve when considering modern fibre links transmitting up to 40Gbps.

8.1.1 Storage space

The approach from Anand et al. requires two types of storage space on both link ends, i.e., a packet

store and a fingerprint store. The packet store contains packets that were recently transmitted over

111

a link and the fingerprint store contains fingerprints of packet chunks. Each fingerprint identifies
a 64B chunk of a packet from the packet store. In a default configuration, a single packet in the
packet store is represented by 32 fingerprints in the fingerprint store. To find redundancy in an
incoming packet, a set of fingerprints is generated and then compared with those stored in the
fingerprint store. If a match is found, it means that most probably the packet carries redundant
content. To verify this' and to find the length of the matching string, the matching packet is fetched
from the packet store and compared byte-by-byte with the incoming packet. Next, the matching
string is replaced by a description carrying the information necessary to decode the string at the
link egress. Therefore, to reconstruct the packet, the fingerprint store and the packet store must be
coherent with those on the link entry.

Since the approach of Anand et al. is agnostic to network traffic, in order to achieve a meaning-
ful reduction in a network footprint it requires to cache approximately 10 seconds of the associated
link traffic?. Additionally, the necessary storage space for the cache must be increased by the fin-
gerprint store size which is approximately half of the packet store size. This requires a considerable
amount of memory on the ingress and egress side of a link. For example, to build a link cache on
a 1Gbps link we need approximately 2GB of memory on each side of a link. Another downside of
the large cache is the necessity to use cheaper DRAMs which do not provide necessary access speed
to cache packets at high line rates. For example, in April 2011 the cost of one MB of DRAMs
memory with 50ns access latency was approx. $0.01, while the cost of one MB of SRAM memory
with 6ns access latency was approx. $15.

Conversely, CacheCast is based on the assumption that a source is aware of caching (as dis-
cussed in Section 3.3.2) and it makes an effort to transmit packets with the same payload within
a minimum time interval. In our work, we estimate that 10ms caches are sufficient for this type
of traffic, which is three orders of magnitude less than in the work of Anand et al. Additionally,
CacheCast does not require storing packet payloads on the ingress side of a link. Unique payload
IDs guarantee that the same payload IDs refer to the same content. Since CacheCast stores packet
payloads in large slots, the resulting size of the CMU table is much smaller than the fingerprint
store. Considering the three orders of magnitude smaller cache and the slot size of 512B, we obtain
a four orders of magnitude smaller CMU table. Thus, to build a link cache on a 1Gbps link based
on CacheCast design we need to allocate approximately 1.3MB for payload store on the egress side
of a link and 30KB for the CMU table on the ingress side. Caches of this size can be efficiently
implemented in SRAM memory that provide low access latency.

8.1.2 Computational complexity

The main bottleneck during packet encoding at the ingress side of a link cache is access latency to
a storage space. Anand’s algorithm requires 32 lookups in the fingerprint store, to find redundant
chunks. Then, the matching packets are fetched from the packet store and compared byte-by-byte
with the source packet. Finally, redundant strings are replaced with descriptions. While some of the
operations can be executed in a pipeline, it requires dedicated hardware architecture. Furthermore,
the sequence of 32 lookups in the fingerprint store poses a severe barrier to processing speed, since

The fingerprint match does not guarantee that the 64B chunks are the same, since different 64B chunks might
have the same fingerprints.

>Though, the cache size is not explicitly discussed in paper from Anand et al., the value of 10 seconds for the cache
size is consistently used in the evaluation in [36,37].

112

the fingerprint store is implemented with DRAMs. To address some of the limitations, Anand et
al. propose reducing the number of lookups in the fingerprint store in favour of processing speed;
however, consequently less redundancy is removed.

The CacheCast objective is to remove redundancy with the minimum amount of effort. A
part of redundancy detection is already performed at the source and the information necessary to
identify the redundant part of a packet is stored in the packet header. Therefore, the CMU element
performs only one lookup to determine whether or not a packet carries redundant information.
Furthermore, it is simple to remove and restore the redundant part of a packet, because it is always
at the packet tail. These simple operations can be executed very efficiently and swiftly, because
the storage needs for CMU and CSU are very small and faster SRAM storage is affordable for

implementing these units.

8.1.3 Other considerations

Compared to the approach of Anand et al., CacheCast does not remove the redundancy originating
from different sources sending the same data. However, it must be noted that the shorter the
caching time is on a link the less is the likelihood to find this type of redundancy. Within a
10ms time window it is very unlikely to find redundancy other than the one which originates from
the single source sending data to multiple destinations. Although, CacheCast poses an additional
burden on the server side we show in Section 6.4 that it is negligible.

8.1.4 SmartRE

Based on the experience with the redundancy suppression system described in [36], Anand et al.
proposed SmartRE [37] a new architecture of coordinated link caches. The authors acknowledge
that with the naive approach presented in [36] the line rate encoding is not possible for high speed
fibre links. To solve this problem, the packet encoding and decoding operations are distributed.
Encoded packets are not decoded immediately at the downstream router, but can traverse a few
hops before decoding. This reduces the number of operations per link cache. However, it also
requires intelligent assignment of encoding and decoding operations between link caches.

While SmartRE reduces the encoding burden per link cache, it requires a distributed algorithm
for coordination of encoding and decoding operations. This, in turn, reduces the reliability of the
system. Moreover, SmartRE requires coherency between caches located within a distance of a few
hops. However, this is difficult to achieve during congestion in a network, because under heavy
load router queues drop packets causing inconsistency in distributed caches. It should be noticed
that redundancy suppression is mainly useful in congested or near-congested networks. In the over-
provisioned network there is no utility for redundancy suppression. Finally, the authors do not
address the need for large storage space for packet and fingerprint storage.

8.2 Other related work

Packet level caching has been studied in the context of wired and wireless networks, slow access
links, and point-to-point network paths. The system of Anand et al. is designed to operate in the

113

context of wired networks, thus, it is the closest related work to CacheCast. This section covers

briefly other related systems that operate in the remaining contexts.

8.2.1 Redundancy elimination in multi-hop wireless networks

Wireless networks are characterised by low throughput and high packet loss which is mainly a
result of interference between communicating stations. Therefore, hop-by-hop caching systems for
wireless network operate under different constraints than systems for wired networks. Firstly, since
the wireless networks have lower throughput, the time to process a packet is longer; thus, more
complex algorithms can be employed. Secondly, under high packet loss, it is difficult to keep cache
coherency between communicating hosts. Thirdly, the broadcast nature of the wireless medium
opens new design opportunities for exploiting this property.

Afanasyev et al. [55] propose to cache recently overheard packets in order to eliminate redun-
dancy in unicast transfers over a multi-hop path. Packets are annotated with IDs; therefore, before
a station sends a packet, it transmits an RTS-id (request to send) message containing an ID of the
packet. If the destination has overheard this packet, it replies with a CTS-ACK (clear to send)
message acknowledging that the packet has been already received and the stations behave as if the
transmission has already occurred. The technique removes redundant transmissions when a packet
traverses a multi-hop path where hops are in close proximity. It also eliminates redundancy in the
infrastructure based wireless networks where stations communicate via access-point. However, since
IDs are generated based on the IP packet content, it does not remove redundancy from transfers
of the same data to different destinations. This technique could be complemented with Cache-
Cast. Information carried in the CacheCast header can be used to identify redundancy in packet
payloads.

To enable application independent caching, Ditto [56] uses the data oriented transfer (DOT)
technique introduced in [57]. DOT objects consist of small chunks identified with unique IDs. To
download an object, a client first queries a server for a set of chunk IDs. Then, the client fetches the
object chunks by IDs using DOT transport service. During data transfer, chunks are cached at on-
path nodes and opportunistically (based on overhearing) on nearby nodes. Thus, if subsequently
another client in the same wireless subnet requests the same chunks, it is served from the proxy
nodes. While the system removes redundancy from single source multiple destination transfers, it
requires large caches. Based on aggregated statistics from a real deployment of a Meraki wireless
mesh network?, the authors estimated that 3GB caches should suffice.

8.2.2 Point-to-point redundancy removal

The first systems for redundancy suppression were designed to improve web-caching (cf. Section
2.2.2). They consist of two coherent caches installed on both sides of the point-to-point path be-
tween a subnet gateway and a web-server where the ingress cache removes redundancy and encodes
packets; and the egress cache decodes packets, thereby inserting back redundant information. These
types of systems are usually deployed on slow access links or point-to-point network paths. There-
fore, the systems can use large storage space and complex algorithms for redundancy detection.

3hrep://meraki.com/

114

Santos and Wetherall [58] describe the first system of this type. The redundancy detection
is based on comparison of whole packet payloads. Therefore, any misalignments caused by TCP
mechanisms, or different HT'TP headers in packets, result in redundant transfers. CacheCast also
detects redundancy by comparing whole packet payload. However, the server support part forces
redundant data to be packet aligned. In the follow-up work, Wetherall et al. [30] propose detecting
redundancy by comparing packet chunks. For this purpose they use a technique developed by
Manber for finding similar files in a large file system [59]. While the technique can detect and
eliminate redundancy in any part of a packet regardless of data misalignments, it requires more
computational effort. Later the technique was applied to hop-by-hop redundancy elimination by
Anand et al. [36].

8.2.3 Redundancy removal by compression

Removing redundancy from link layer data transfers is also addressed by different compression
techniques of a packet header on a link (for example: RFC1144 [60], RFC2507 [61], RFC2508
[62], or RFC3095 [63]). These techniques are mainly deployed on dial-up and wireless links, where
link capacities are low, and they are orthogonal to CacheCast. Thus, they can be used in parallel to
provide even greater benefits.

8.3 Summary

The link layer packet caching system presented by Anand et al. in [36] is the closest related work
to CacheCast. Therefore, in this chapter we have explained the key differences in the approaches of
both systems and discussed implications of the design decisions. While the CacheCast approach is
minimalistic in terms of necessary computational and storage resources, the approach of Anand et
al. in contrast employs complex redundancy detection algorithms and requires substantial storage
space, both of which are difficult to justify based on the gains envisioned.

To give a complete picture of the redundancy suppression in network transfers we have also
briefly touched on other related systems operating within the context of wireless networks, access

links, and point-to-point network paths (e.g. like paths between gateways and web-servers).

115

116

Chapter 9

Conclusions

This chapter provides thesis conclusions. In Chapter 1 we introduced the problem of single source
multiple destination transfers in the Internet. We also gave a brief overview of the thesis. In Chapter
2 we analysed former solutions to the problem and drew general guidelines for the CacheCast
system design. Chapter 3 provided fundamental information on the basic network elements that
CacheCast builds on, i.e. link and router. Based on this information and the guidelines discussed
in the previous chapter, we described the CacheCast design and presnented our rationale for the
design decisions. The first insights into the system performance are presented in Chapter 4. We
estimated the amount of redundancy that can be eliminated from single source multiple destination
transfers when using CacheCast. We also discussed the case of incremental deployment and assessed
the related bandwidth savings. Chapter 5 investigated the link cache impact on congestion control
mechanisms built into transport protocols. We verified that CacheCast preserves the TCP fairness.
In Chapters 6 and 7 we described the implementation of the server support and the link cache. The
elements were evaluated with regard to the computational complexity, and the evaluation results
confirmed the feasibility of the CacheCast approach. To show benefits of the CacheCast system in
a real setup, in Chapter 6 we demonstrated how the paraslash media streaming software can serve
up to thousands of clients in a small testbed network.

In this chapter, we provide a summary of the thesis contributions. We also revisit the initial
claims posed in Chapter 1 and offer a critical discussion. While some of the claims have been
confirmed throughout the thesis, others appeared to be conditional or applicable only to a limited
extent. Finally, we discuss system elements that require further work and new research directions
that this thesis opens for.

9.1 Summary of contributions

The contributions of this thesis include the following elements: a set of principles for design and
implementation of a link layer caching system, a feasibility study of the proposed principles based
on the CacheCast system, analysis of the environmental impact of the proposed architecture, and

other related studies.

117

9.1.1 Principles

The fundamental contribution of this thesis is a set of principles for design and implementation of a
link layer caching system. Based on these principles we have design the CacheCast system described
in Chapter 3 CacheCast is the first system that addresses the problem of multicast transmission in
the Internet using packet caches on links. Bearing in mind the difficulties of the previous multicast
technologies, CacheCast is designed to use a minimum amount of resources and requires minimum
changes to the network operation. CacheCast does not break the end-to-end relationship between
a server and clients. This enables the server to perform authorisation, authentication, accounting,
and also congestion control on a per-client basis which is necessary for content delivery and which
the IP Multicast model does not provide. Furthermore, the server can communicate with clients
located behind firewalls or NATs [64] because CacheCast preserves the end-to-end relationship
between a server and clients.

CacheCast is a link layer caching technique that removes redundancy from packets using small
caches on links. Unlike related systems, CacheCast distributes the caching burden between the
source of data and the infrastructure of link caches. The source of redundant data must batch
transmissions of the same data and annotate the data with information that simplifies redundancy
elimination. This helps to considerably reduce both the storage space and the computational re-
quirements of link caches. Thus, link caches can be implemented with small and fast SRAM

memories which in turn allows to operate at line speed.

9.1.2 Feasibility study
Server support

The next key contribution of this thesis is the design of the server support described in Chapter 3.
The server support provides a mechanism for an application to transmit the same data to multiple
destinations using unicast connections. The individual send operations are batched in time and the
server transmits a burst of packets, where only the first packet carries the data while the remaining
packets are truncated to the header size. Packets created by the server support carry the CacheCast
header that identifies redundant data. This greatly simplifies redundancy suppression on links.

We have implemented the server support as a system call named msend and an auxiliary tool
that manages CacheCast connections. As input arguments, the msend system call takes a set of
descriptors of open connections and a pointer to data. On invocation, the system call sends the
data over the connections. However, packets created by the network stack are intercepted before
transmission, batched, and transmitted in the form of a packet train. If a connection does not
permit immediate packet transmission (e.g. due to congestion in a network), it is regarded as an
error. The system call treats this and other errors as a failure in transmission and it returns to the
calling application a list of connection descriptors that transmitted data successfully. The msend
system call is implemented in Linux. Our evaluation presented in Chapter 6 indicates that it does
not create additional burden on a server when compared to the standard send system call. On the
contrary, when transmitting large blocks of data to multiple destinations, the msend system call
outperforms the standard send system call. For example, when transmitting data using the Internet
maximum transfer units, the msend system call can reduce the CPU load by 10-30%.

In order to benefit from CacheCast, existing applications must use the msend system call instead

118

of the send system call for data transmission. However, the required changes in the streaming server
are often minimal. For example in Chapter 6 we show the paraslash media streaming application
that transmits data using the msend system call. We made only minor changes in the paraslash
software to enable CacheCast transmission.

Link cache

The next significant contribution is the link cache element presented in Chapter 3. The link cache
is designed based on the principle that all complexity should be moved from the link cache to the
source of redundant data. This results in a simple link cache architecture where the ingtess side of
a link has only a very small table of payload IDs and the egress side of the link keeps the related
payloads in a small storage unit. The ingtess side removes payloads based on payload ID matches
and the egress side restores the payloads.

The storage and computational requirements of the link cache are minimal. Since link cache
storage units are small, they can be implemented with fast but expensive SRAM memory that
guarantees necessary access speed for packet processing on fast links. Moreover, the link cache
remove and restore functions require only a few computations. Therefore, the link cache operation
does not create a bottleneck in packet processing on a router (see Chapter 8).

We built a prototype implementation of the link cache elements in the Click modular router
software which is described in Chapter 7. Even though this is a naive implementation, it indicates
that link caches can greatly increase network throughput for single source multiple destination data
transfers. In our testbed, this is further confirmed by a real application that can stream media up to

thousands of clients (cf. Chapter 6).

9.1.3 Environmental impact

The next contribution of this thesis is the study of the link cache impact on fairness in the Inter-
net. Link caches remove redundancy from single source multiple destination transfers and thereby
provide more bandwidth for other data transfers. Congestion control algorithms that limit the
transmission rate of a data flow estimate the flow throughput based on factors such as packet arrival
time, packet size, loss ratio, or end-to-end delay. These parameters, however, are disturbed by the
link cache operation. This, in turn, alters the operation of congestion control algorithms.

In Chapter 5 we performed a case study where we investigate the link cache impact on com-
petition between TCP and TFRC flows for the bandwidth of a bottleneck link. The TCP flows
carried non-redundant traffic and the TFRC flows carried redundant traffic originating from a sin-
gle source. The simulations reveal that when a link cache removes redundancy from the TFRC
flows, the TCP flows obtain much more of the bottleneck link capacity. However, when comparing
the flows from the end-to-end perspective, we found that both TCP and TFRC increase propot-
tionally their throughputs when link cache is operating. This indicates that the TCP fairness is
preserved.

9.1.4 Other contributions

In the thesis we have also investigated the problem of synchronised transmission over multiple

connections. When transmitting data, the server support requires that the data chunk is either

119

transmitted immediately or dropped by a connection. It cannot be queued when a congestion
control algorithm temporally prohibits the transmission. Since the connection does not queue
packets, it cannot transmit data immediately when congestion control algorithms permit it, but the
connection remains idle waiting for a new data chunk to be sent by an application. Therefore, the
connections controlled by the server support do not achieve the maximum throughput. We have
investigated this problem in Chapter 5. We found that the throughput of connections controlled
by the server support is reduced by approximately 10% when compared to standard connections.
Finally, the thesis presents the first live streaming application that uses the CacheCast system to
deliver an audio stream to thousands of clients in a small network (described in Chapter 6). We have
modified the paraslash audio streaming server to transmit audio files using the CacheCast server

support. We experienced no difficulties when adapting the software to the CacheCast approach.

9.2 Critical review of claims

This section revisits the thesis claims introduced in Chapter 1. Based on the studies of the Cache-
Cast system described throughout the thesis, we assess critically the claims and define the claims

scope.

Claim 1: A system of link caches can achieve near multicast bandwidth savings for a superposition
of unicast connections. We evaluated this claim in Chapter 4. CacheCast was compared
to a “perfect” multicast which does not require any signalling to deliver data to receivers.
Considering fully deployed CacheCast, the reduction in bandwidth saving when compared to
the perfect multicast originates from (1) transmission of unique packet headers and (2) finite
cache size. Depending on the payload to header ratio, the impact of unique packet headers
varies from negligible to considerable. In order to reduce the negative impact of unique
packet headers, transfered data should be encapsulated in the maximum transfer units. With
this configuration, CacheCast bandwidth savings reach approximately 96% of the perfect
multicast savings. Considering the impact of the finite cache size, it is especially severe for
slow sources sending to the large number of destinations. However, it is a rare case. Usually,
slow sources transmit to a few destinations, while well connected sources transmit to multiple

destinations. For this configuration, the finite cache size does not reduce bandwidth savings.

A system of link caches can achieve near multicast bandwidth savings but under condition
that data is transfered using the maximum transfer units. With the decreasing size of a

transfer unit, the bandwidth savings diminish.

Claim 2: A system of link caches requires server support in order to be feasible. This claim follows
from our initial investigation into the CacheCast system requirements presented in Chapter
3 and is supported throughout the thesis. The CacheCast system is designed to meet very
strict constraints for packet processing elements in wired networks. To process packets at
line rate, a link cache should employ simple algorithms and use fast memories. This further
implies that the cache storage space should be minimised in order to be implemented with
fast but expensive SRAM memory. The server support greatly reduces the required resources
necessary to build a link cache. Therefore, it makes the system economically viable and
technically doable. These arguments are broadly discussed in Chapter 8 and complemented

120

with a detailed comparison between the CacheCast system and the related system proposed
by Anand et al. which do not employ any server support. In Chapter 6 we verified that the
support can be implemented in OS and that it does not burden the server. Finally, the testbed
evaluation indicates that the server support can be easily integrated into existing streaming
applications, thus immediately reducing the amount of application traffic.

Claim 3: A system of link caches is incrementally deployable. Link caches that remove redundancy
from packets on the link entry and reconstruct the packets on the link exit are transparent
to network operation and thereby also incrementally deployable. However, the CacheCast
design presented in Chapter 3 imposes an additional constraint on the link cache deploy-
ment. The server support element of the system annotates packets with information that
simplify redundancy removal. In order to propagate this information in a network, Cache-
Cast requires all routers on a packet path to be able to pass on this information. Therefore,
link caches are incrementally deployable but only when deploying them hop-by-hop from
sources towards receivers. In Chapter 4 we analysed the benefits of incremental deployment.
We found that when deploying link caches a few hops from a source, we can remove a signif-
icant portion of redundancy. For example, when considering data transfer to a small number
of destinations, link caches deployed over the first six hops can already remove 70% of what
could be removed with the network wide cache deployment.

Claim 4: A system of link caches maintains fairness with respect to bandwidth sharing on a bottleneck
link. Fairness in the Internet is based on the assumption that data flows traversing a bot-
tleneck link should obtain equal shares of the bottleneck link capacity. This is achieved by
congestion control algorithms that limit flow throughput and that are an integral part of
many transport protocols. Based on the end-to-end delays and the packet loss rate, a trans-
mission protocol adjusts the data transmission rate to the conditions on a bottleneck link.
Introducing link caches into a network may disturb the protocol operation and thereby also
fairness in the network. We evaluated the link cache impact in Chapter 5. The evaluation
was performed in a bottleneck link topology where a number of TCP flows competed for
the bottleneck link capacity with a number of TFRC flows. The TCP flows carried non-
redundant traffic, while the TFRC flows carried CacheCast annotated redundant traffic. The
results show that from the end-to-end perspective link cache does not disturb fairness in a
network.

9.3 Future work

This thesis has explored the core issues related to the design and implementation of a caching
system for single source multiple destinations transfer in the Internet. However, our reference
system - CacheCast - requires further development. Furthermore, introducing CacheCast into the

Internet opens new research challenges.

9.3.1 CacheCast elements

The CacheCast system presented in this thesis implements only the fundamental functionalities

necessary for system operation. However, in order to be more than a research tool, CacheCast

121

requires further development of the server support and link cache elements.

Server support

The msend system call API provides very limited return information about the data transmission.
After the system call execution, an application receives a bitmap that informs which connections
were written successfully and which connections refused to transmit data. However, the applica-
tion does not receive error codes related to the transmission failures. Therefore, the system call
APT should be modified to return all necessary information to identify the source of erroneous
transmission.

The server support guarantees that the transmission of packet trains created by different pro-
cesses is serialised on a link. We achieved this with a global lock in the Linux network device
subsystem. When a single process holds the lock, the remaining processes cannot interrupt trans-
mission of a packet train. However, this approach does not guarantee the serialised transmission
of packet trains when the Linux traffic control (TC) subsystem is enabled. The TC subsystem
processes packets after the network device subsystem. Therefore, it can re-order packets in packet
trains and cause errors in transmission. This requires further work to ensure correct operation of
the server support in any circumstances.

The msend system call supports two types of connection: DCCP and UDP. This list should be
extended to embrace other transport protocols including, for example, the SCTP media streaming
protocol. Furthermore, it is not given whether protocols like TCP can be supported by the system
call. This requires further research.

Link cache

The configurable parameters of a link cache are the cache slot size and the cache capacity computed
based on the associated link throughput. We have chosen the default values for these parameters;
thus, the CMU and CSU elements that operate on the same link have consistent configurations. In
order to build caches of different capacity, both cache elements must be configured manually. This
is cumbersome and may cause inconsistencies when reconfiguring a large number of link caches.
Therefore, a configuration protocol is required that can negotiate the link cache size and the slot
size between the CMU and CSU elements automatically. The same protocol should also notify the
server support about the presence of the CacheCast links. Thus, no additional tool for managing
CacheCast connections would be required on a server.

The main bottleneck in the CSU operation is the copy operation from a payload store to packet
payload. When a truncated packet arrives at the egress side of a link, the CSU element restores the
packet payload from a local memory. CSU allocates necessary room for payload at the packet tail
and it copies byte-by-byte the payload data from the local memory to the allocated space. However,
the copy operation is slow and creates a bottleneck in packet processing on a router. To mitigate
the problem, payloads should be attached to packet headers virtually. For example, in FreeBSD
OS' a packet is constructed from a list of small buffers called mbuf. The mbuf packet structure can
be used to attach payload to the packet header simply by linking together buffers that contain the
packet header and the payload data.

heep:/ fwww.freebsd.org/

122

9.3.2 Future research directions

In the thesis, we have shown a simple usage scenario for CacheCast where a server streamed live
content to multiple clients. The stream rate was constant and when a client could not receive the
stream due to insufficient downlink speed it was disconnected. It would be more interesting to
build a mechanism for handling heterogeneous clients. For example, a server could stream the same
content in various qualities using different bit rates. Thus, clients with poor downlink speed would
be switched to lower quality streams. A server could also adopt the streaming rate to an average
client. These and many more policies can be explored in this context.

At present, CacheCast supports only UDP and DCCP transport protocols, which are unreli-
able. Therefore, in order to transfer data to multiple destinations using CacheCast, it is necessary to
build a reliable transport mechanism on top of these protocols. This type of transport mechanism
should either re-transmit lost data chunks or use erasure codes to enable a receiver to reconstruct
original information. Furthermore, it should batch requests for the same data to benefit from
CacheCast. In the past, researchers have proposed many schemes for reliable data transfer using
IP Multicast. These could be adopted taking into account differences between CacheCast and IP
Multicast.

CacheCast operates on point-to-point logical links. For example, three hosts A, B, and C
connected by a broadcast medium (such as a coaxial cable) from the CacheCast perspective are
connected with separate links A-B, A-C, and B-C. Therefore, when host A transmits the same data
to hosts B and C, CacheCast does not suppress the second transfer even though host C has already
received the data. Similarly, CacheCast does not suppress redundant transfers in link layer switched
networks (such as switched Ethernet), since from the CacheCast perspective all network hosts are
connected with separate links. Considering the growth of local area networks, it would be valuable
to extend the CacheCast approach to remove redundancy from link layer transfers.

In the first generation of routers, packets are switched between input and output interfaces
using shared memory. The router CPU reads a packet from an input interface directly to the shared
memory where the CacheCast CSU element restores the redundant data that has been previously
removed. When the packet output port is determined, the CacheCast CMU element removes from
the packet the data that is present in the next hop cache and the packet is transfered to the output
interface. Therefore, packets carrying redundant data are not transfered between the main memory
and I/O interfaces. However, in the second and third generation of routes, packets are switched
using a shared bus or a switch fabric. When a packet arrives at an input interface, the CSU element
reconstructs the packet. Then the output port is determined and the packet carrying redundant
data is transfered over a switch fabric to the output interface where the CMU element removes the
data that is present in the next hop cache. Since, in the second and third generation of routers,
packets carrying redundant data are transfered over a switch fabric, it may create congestion on the

switch fabric. Therefore, these routers require additional mechanisms to mitigate this effect.

123

124

Bibliography

(1]

(2]

L. Aguilar, “Datagram routing for internet multicasting,” ACM SIGCOMM Computer Com-
munication Review, vol. 14, no. 2, pp. 58-63, 1984.

D. Cheriton and S. Deering, “Host groups: A multicast extension for datagram internet-
works,” in Proceedings of the ninth symposium on Data communications. ACM New York, NY,
USA, 1985, pp. 172-179.

R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, and O. Paridaens, “Explicit multicast
(xcast) basic specification,” IETF Internet draft, October 2000, rFC 5058.

Y.-h. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast (keynote address),”
in SIGMETRICS "00: Proceedings of the 2000 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems. New York, NY, USA: ACM, 2000, pp. 1-12.

T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and
I. Stoica, “A data-oriented (and beyond) network architecture,” in Proceedings of the 2007
conference on Applications, technologies, architectures, and protocols for computer communications,
ser. SIGCOMM ’07. New York, NY, USA: ACM, 2007, pp. 181-192. [Online]. Available:
http://doi.acm.org/10.1145/1282380.1282402

V. Jacobson, D. K. Smetters, J. D. Thornton, M. E Plass, N. H. Briggs, and R. L. Braynard,
“Networking named content,” in Proceedings of the 5th international conference on Emerging
networking experiments and technologies, ser. CONEXT ’09. New York, NY, USA: ACM,
2009, pp. 1-12. [Online]. Available: http://doi.acm.org/10.1145/1658939.1658941

D. Ooms, W. Livens, and O. Paridaens, “Connectionless multicast,” IETF Draft, drafi-ooms-
cl-multicast-00. txt, work in progress, 1999.

R. Boivie, N. Feldman, and C. Metz, “Small group multicast: A new solution for multicasting
on the internet,” IEEE Internet Computing, vol. 4, no. 3, pp. 7579, 2000.

R. Boivie, N. Feldman, Y. Imai, W. Livens, and D. Ooms, “Explicit Multicast (Xcast)
Concepts and Options,” RFC 5058 (Experimental), Internet Engineering Task Force, Nov.
2007. [Online]. Available: htep://www.ietf.org/rfc/rfc5058.txt

B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan, “Internet
Group Management Protocol, Version 3,” RFC 3376 (Proposed Standard), Internet
Engineering Task Force, Oct. 2002, updated by RFC 4604. [Online]. Available:
hetp://www.ietf.org/rfc/rfc3376.txt

125

(11]

(12]

(13]

(14]

(15

[}

(16]

C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment issues for the ip
multicast service and architecture,” Network, IEEE, vol. 14, no. 1, pp. 78-88, Jan/Feb 2000.

H. W. Holbrook and D. R. Cheriton, “Ip multicast channels: Express support for large-scale
single-source applications,” SIGCOMM Comput. Commun. Rev., vol. 29, pp. 65-78, August
1999. [Online]. Available: http://doi.acm.org/10.1145/316194.316207

Y. Yang and S. Lam, “Internet multicast congestion control: A survey,” in Proc. of ICT, Aca-
pulco, Mexico, 2000.

S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer multicast,” in
SIGCOMM 02: Proceedings of the 2002 conference on Applications, technologies, architectures,
and protocols for computer communications. New York, NY, USA: ACM, 2002, pp. 205-217.

J. Jannotti, D. K. Gifford, K. L. Johnson, M. E Kaashoek, and J. W. O’Toole, Jr., “Overcast:
reliable multicasting with on ovetlay network,” in OSDI'00: Proceedings of the 4th conference
on Symposium on Operating System Design & Implementation. Berkeley, CA, USA: USENIX
Association, 2000, pp. 14-14.

M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Splitstream:
high-bandwidth multicast in cooperative environments,” in SOSP ‘03: Proceedings of the nine-
teenth ACM symposium on Operating systems principles. New York, NY, USA: ACM, 2003,
pp- 298-313.

“Pplive.” [Online]. Available: http://www.pptv.com/
“Ppstream.” [Online]. Available: http://www.ppstream.com/
“Sopcast.” [Online]. Available: http://www.sopcast.com/
“Qqlive.” [Online]. Available: http://www.live.qq.com/

J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system design,”
ACM Trans. Comput. Syst., vol. 2, pp. 277-288, November 1984. [Online]. Available:
http://doi.acm.org/10.1145/357401.357402

J. T. Robinson and M. V. Devarakonda, “Data cache management using frequency-based
replacement,” SIGMETRICS Perform. Eval. Rev., vol. 18, pp. 134—142, April 1990. [Online].
Available: http://doi.acm.org/10.1145/98460.98523

A. S. Tanenbaum and A. S. Woodhull, Operating Systems Design and Implementation (3rd
Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2005.

S. Jiang, E Chen, and X. Zhang, “Clock-pro: an effective improvement of the clock
replacement,” in Proceedings of the annual conference on USENIX Annual Technical Conference,
ser. ATEC ’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 35-35. [Online].
Available: http://portal.acm.org/citation.cfm?id=1247360.1247395

A. Dingle and T. Pdrtl, “Web cache coherence,” Comput. Netw. ISDN Syst., vol. 28, pp. 907—
920, May 1996. [Online]. Available: http://dx.doi.org/10.1016/0169-7552(96)00020-7

126

(26]

(27]

A.]. Smith, “Cache memories,” ACM Comput. Surv., vol. 14, pp. 473-530, September
1982. [Online]. Available: http://doi.acm.org/10.1145/356887.356892

S. Przybylski, M. Horowitz, and J. Hennessy, “Characteristics of performance-optimal
multi-level cache hierarchies,” SIGARCH Comput. Archit. News, vol. 17, pp. 114-121, April
1989. [Online]. Available: http://doi.acm.org/10.1145/74926.74939

A.]. Smith, “Disk cache—miss ratio analysis and design considerations,” ACM
Trans. Comput. Syst., vol. 3, pp. 161-203, August 1985. [Online]. Available:
http://doi.acm.org/10.1145/3959.3961

A. Luotonen and K. Altis, “World-wide web proxies,” Comput. Netw.
ISDN Syst., vol. 27, pp. 147-154, November 1994. [Online]. Available:
http://portal.acm.org/citation.cfm?id=195676.195678

N. T. Spring and D. Wetherall, “A protocol-independent technique for eliminating redundant
network traffic,” in SIGCOMM "00: Proceedings of the conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication. New York, NY, USA: ACM, 2000,
pp. 87-95.

“Riverbed.” [Online]. Available: http://www.riverbed.com/
“Cisco.” [Online]. Available: http://www.cisco.com/
“Juniper.” [Online]. Available: http://www.juniper.net/
“Bluecoat.” [Online]. Available: http://www.bluecoat.com/

B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C. Muthukrishnan,
R. Ramjee, and G. Varghese, “Endre: an end-system redundancy elimination service
for enterprises,” in Proceedings of the 7th USENIX conference on Networked systems design and
implementation, ser. NSDI'10. Berkeley, CA, USA: USENIX Association, 2010, pp. 28-28.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1855711.1855739

A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet caches on routers: the
implications of universal redundant traffic elimination,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 219-230, 2008.

A. Anand, V. Sekar, and A. Akella, “Smartre: an architecture for coordinated network-wide
redundancy elimination,” SIGCOMM Compuz. Commun. Rev., vol. 39, pp. 87-98, August
2009. [Online]. Available: http://doi.acm.org/10.1145/1594977.1592580

D. Wischik and N. McKeown, “Part i: buffer sizes for core routers,” SIGCOMM Comput.
Commun. Rev., vol. 35, no. 3, pp. 75-78, 2005.

S. Iyer, R. R. Kompella, and N. McKeown, “Designing packet buffers for router linecards,”
IEEEJACM Trans. Netw., vol. 16, no. 3, pp. 705-717, 2008.

127

(40]

(41]

(42]

(43]

(44]

(45]

(46]

(471

(48]

A. Kirsch and M. Mitzenmacher, “The power of one move: Hashing schemes for hardware,”
in IEEE INFOCOM 2008. The 27th Conference on Computer Communications, 2008, pp.
106-110.

J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain approach to reliable
distribution of bulk data,” in Proceedings of the ACM SIGCOMM 98 conference on Applications,
technologies, architectures, and protocols for computer communication. ACM, 1998, pp. 56-67.

J. Nagle, “Congestion Control in IP/TCP Internetworks,” RFC 896, Internet Engineering
Task Force, Jan. 1984. [Online]. Available: http://www.ietf.org/rfc/rfc896.txt

R. Chalmers and K. Almeroth, “Developing a multicast metric,” in Global Telecommunications
Conference, 2000. GLOBECOM "00. IEEE, 2000, pp. 382—-386.

J. C. i. Chuang and M. A. Sirbu, “Pricing multicast communications: A cost-based approach,”
in Télecommunication Systems, 1998, pp. 281-297.

R. C. Chalmers and K. C. Almeroth, “On the topology of multicast trees,” IEEE/ACM Trans.
Netw., vol. 11, no. 1, pp. 153-165, 2003.

S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” Net-
working, IEEEJACM Transactions on, vol. 1, no. 4, pp. 397 —413, Aug. 1993.

M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP Friendly Rate Control (TFRC):
Protocol Specification,” RFC 3448 (Proposed Standard), Internet Engineering Task Force,
Jan. 2003, obsoleted by RFC 5348. [Online]. Available: hetp://www.ietf.org/rfc/rfc3448.txt

M. Karsten, J. Song, M. Kwok, and T. Brecht, “Efficient operating system support for group
unicast,” in NOSSDAV 05: Proceedings of the international workshop on Network and operating
systems support for digital audio and video. New York, NY, USA: ACM, 2005, pp. 153-158.

E. Lahav, M. Karsten, T. Brecht, W. Wang, and T. Zhao, “Group unicast for the real world,”
in NOSSDAV '08: Proceedings of the 18th International Workshop on Network and Operating
Systems Support for Digital Audio and Video. New York, NY, USA: ACM, 2008, pp. 27-32.

D. Plummer, “Ethernet Address Resolution Protocol: Or Converting Network Protocol
Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware,” RFC 826
(Standard), Internet Engineering Task Force, Nov. 1982, updated by RFCs 5227, 5494.
[Online]. Available: http://www.ietf.org/rfc/rfc826.txt

T. Narten, E. Nordmark, and W. Simpson, “Neighbor Discovery for IP Version 6 (IPv6),”
RFC 2461 (Draft Standard), Internet Engineering Task Force, Dec. 1998, obsoleted by RFC
4861, updated by RFC 4311. [Online]. Available: http://www.ietf.org/rfc/rfc2461.xt

E. Kohler, M. Handley, S. Floyd, and J. Padhye, “Datagram congestion control protocol
(DCCP),” Work in progress, 2003.

R. Morris, E. Kohler, J. Jannotti, and M. Kaashoek, “The Click modular router,” in Proceed-
ings of the seventeenth ACM symposium on Operating systems principles. ACM New York, USA,
1999, pp. 217-231.

128

(54]

E Baker, “Requirements for IP Version 4 Routers,” RFC 1812 (Proposed Standard),
Internet Engineering Task Force, Jun. 1995, updated by RFC 2644. [Online]. Available:
heep://www.ietf.org/rfc/rfc1812.txt

M. Afanasyev, D. G. Andersen, and A. C. Snoeren, “Efficiency through eavesdropping:
link-layer packet caching,” in Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, ser. NSDI'08. Berkeley, CA, USA: USENIX Association, 2008,
pp- 105-118. [Online]. Available: http://portal.acm.org/citation.cfm?id=1387589.1387597

E R. Dogar, A. Phanishayee, H. Pucha, O. Ruwase, and D. G. Andersen,
“Ditto: a system for opportunistic caching in muld-hop wireless networks,” in
Proceedings of the 14th ACM international conference on Mobile computing and networking, ser.
MobiCom ’08. New York, NY, USA: ACM, 2008, pp. 279-290. [Online]. Available:
http://doi.acm.org/10.1145/1409944.1409977

N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil, “An architecture for internet data
transfer,” in Proceedings of the 3rd conference on Networked Systems Design & Implementation
- Volume 3, ser. NSDI'06. Berkeley, CA, USA: USENIX Association, 2006, pp. 19-19.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1267680.1267699

J. Santos and D. Wetherall, “Increasing effective link bandwidth by suppressing replicated
data,” in Proceedings of the annual conference on USENIX Annual Technical Conference, ser.
ATEC 98. Betkeley, CA, USA: USENIX Association, 1998, pp. 18-18. [Online].
Available: http://portal.acm.org/citation.cfm?id=1268256.1268274

U. Manber, “Finding similar files in a large file system,” in Proceedings of the
USENIX Winter 1994 Iechnical Conference on USENIX Winter 1994 Technical Conference.
Berkeley, CA, USA: USENIX Association, 1994, pp. 2-2. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1267074.1267076

V. Jacobson, “Compressing TCP/IP Headers for Low-Speed Serial Links,” RFC 1144
(Proposed Standard), Internet Engineering Task Force, Feb. 1990. [Online]. Available:
heep:/fwww.ietf.org/rfc/rfc] 144. txt

M. Degermark, B. Nordgren, and S. Pink, “IP Header Compression,” RFC 2507
(Proposed Standard), Internet Engineering Task Force, Feb. 1999. [Online]. Available:
heep:/ fwww.ietf.org/rfc/tfc2507 . txt

S. Casner and V. Jacobson, “Compressing IP/UDP/RTP Headers for Low-Speed Serial
Links,” RFC 2508 (Proposed Standard), Internet Engineering Task Force, Feb. 1999.
[Online]. Available: http://www.ietf.org/rfc/rfc2508.txt

C. Bormann, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu, L.-E. Jonsson,
R. Hakenberg, T. Koren, K. Le, Z. Liu, A. Martensson, A. Miyazaki, K. Svanbro, T. Wiebke,
T. Yoshimura, and H. Zheng, “RObust Header Compression (ROHC): Framework and four
profiles: RTP, UDPE ESP and uncompressed,” RFC 3095 (Proposed Standard), Internet
Engineering Task Force, Jul. 2001, updated by RFCs 3759, 4815. [Online]. Available:
hetp://www.ietf.org/rfc/rfc3095.txt

129

[64] K. Egevang and P Francis, “The IP Network Address Translator (NAT),” RFC 1631
(Informational), Internet Engineering Task Force, May 1994, obsoleted by RFC 3022.
[Online]. Available: hetp://www.ietf.org/rfc/rfc1631.txt

130

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press Quality_ikke fargekonvertering'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [481.890 680.315]
>> setpagedevice

