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Introduction

BackgroundRealling the redit risis as one of the events de�ning of the last deade, it is no wonderredit risk modeling has beome one of the entral researh areas in modern �nane.Leading up to and even more after the aforementioned redit risis, there has been muhdebate on the need for regulating redit derivatives, an asset lass by many viewed asimportant for understanding the bakground for the risis. A natural extension of thisdebate is that of the value of the models used for valuing an risk managing suh instru-ments, in partiular with respet to the quality of redit ratings. The same models havealso seen appliations in banking apital regulation, another area where previously heldbeliefs have been hallenged by these events.
OverviewThe fous of this thesis is the two main lasses of redit risk models that appear inthe aademi literature and are used by pratitioners in �nanial institutions and reditrating agenies. There is no "industry standard" priing model for redit derivatives orrisk management, in the manner of the Blak-Sholes Model for stok options. I willtherefore over qualitatively some of the variation in the �eld. Beause of the limitedsope of this thesis, the fous of this presentation is on the basi priniples and methods,whih are presented in a detailed and more formal way. I will also outline how the basimodels an be extended.The �rst two hapters provide an introdution to these two model frameworks, knownas redued form and strutural models, respetively. Strutural models build more or lessdiretly on option priing theory, and make spei� assumptions on the ausal relationshipbetween strutural variables suh as asset values, debt level, interest rate on the one handand redit events on the other, viewing a redit event mainly as an endogenous event - anevent that is explained inside the models by other variables. Redued form models, onthe other hand, see defaults as exogenous. No ausal relationships are assumed, we are9



LIST OF FIGURESonly trying to obtain a probabilisti model based on available market data and ertainassumptions about the data generating proesses. A brief disussion on some simpletehniques for model alibration is also inluded.Chapter 4 illustrates some of the theoretial onepts developed in the preedinghapters by appliations to derivatives priing. Finally, the appendies ontain a briefoverview over some onepts in valuation theory and stohasti modeling that are usedthroughout the thesis, as well as the simulation methods used in model implementation.
MethodsIn the �eld of redit risk researh, there are numerous artiles and books ontaining ana-lytial results for highly sophistiated models. While reognizing the pratial usefulnessof suh ontributions, I believe there are ertain important advantages to fousing on anumerial approah.The onstraints related to omputational osts that used to be the main problemwith numerial tehniques have beome less important due to the exponential growth inomputing power. Seondly, it an often be a simpler modelling task to implement a nu-merial approah than to searh for analytial solutions for many omplex problems, andit is often su�ient with a selet set of numerial methods for takling many problems.Analytial approahes on the other hand, often require onsiderable mathematial inge-nuity and sophistiation that may be beyond many pratitioners. Furthermore, a simplenumerial model an often easily be extend to more omplex ases without modifyingore parts of the program.
AcknowledgementsI wish to thank my advisor, professor Steinar Ekern, not only for his guidane andadvie that has been invaluable for my work with this thesis, but also for his teahing in�nanial theory and derivatives priing at NHH that stirred my interest in the �elds ofmathematial and theoretial �nane, hereunder the methods and problems I disuss inthis thesis.
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Chapter 1

Credit Risk - Empirical Data and Some Notes

on Modeling

"Credit default swaps (CDSs) haveproved to be one of the mostsuessful �nanial innovations of the1990s." Hull and White (2003)
1.1 BackgroundFinanial ativities reate wealth whenever they lead to a more produtive alloation ofapital and risk between the agents in the eonomy. For many agents, �nanial institu-tions in partiular, the handling of redit risk � i.e. the risk of a borrower being, totally orpartially, unable to repay a loan � is an issue of utmost importane. Until quite reently,managing redit risk has been di�ult due to the low liquidity of debt seurities, so thatagents have been unable to redue their exposure to suh risk, either by selling debtinstruments or taking o�setting positions in other instruments. While traditional debtinstruments, suh as orporate bonds, obviously are redit derivatives, they also have anembedded interest risk element, whih make them less ideal for trading and transferringredit risk.In the last two deades, the way �nanial institutions handle redit risk has beenaltered in a fundamental way by the introdution of modern redit derivatives, the mostimportant being the redit default swap or CDS. The CDS is a simple instrument thatfor a periodi payment guarantees protetion against the redit risk of a referene entity,usually in terms of some prede�ned ash settlement between the issuer and the buyer of11



1.2. DATA SOURCES AND SOME EMPIRICAL FACTS ABOUT CREDIT RISK

Figure 1.1: Historial default rates. Soure: Moody's (2000).redit protetion in event of default, wholly or partially overing the loss aused by theredit event. An institution having a large redit exposure to some partiular entity antherefore use a CDS to neutralize this position. Furthermore, it is of ourse unneessaryto atually hold the underlying bonds in order to obtain a ertain risk pro�le; trading inCDS's alone is su�ient, as these instruments an be issued independently of whether ornot the bonds are atually issued.
1.2 Data Sources and Some Empirical Facts About Credit RiskFrom Figure 1.1, where the historial over-all US orporate default rates are plotted asa time series together with the US Industrial Prodution Index (a measure of eonomigrowth), we get a few impressions of some properties of default rates. Though fairly weak(−.14), there is a orrelation between the IP index and default rates. Strong eonomigrowth tends to go hand in hand with low default rates, though there has been a variyingpattern with resepet to whether a weakening of the eonomy preeeds or follows aninrease in default rates.Another onept of key interest in redit risk modeling in addition to default rates isdefault severity, often referred to as loss given default, usually a perentage of outstandingprinipal. Moody's (2000) have ompiled similar data for this quantity, and it exhibitssimilar time series properties. On average, reovery rates are low near the bottom ofbusiness yle ontrations and high after periods of strong eonomi growth.The ylial nature of redit risk that is apparent from Figure 1.1 is also reminisentof the problem of default orrelation or lustering, the fat that one default tends tobe followed by others. We an explain suh ausality by onsidering the dependene12



1.2. DATA SOURCES AND SOME EMPIRICAL FACTS ABOUT CREDIT RISKbetween �rms in a supply hain; if a major buyer shuts down prodution, the suppliersare also more likely to default. We an also think of how similar �rms depend on the samemaroeonomi fators suh as fuel pries, and aggregate demand, et., and partiularrisk fators suh as trends or hypes.
1.2.1 Ratings Data and the Estimation of Default ProbabilitiesAs defaults are infrequent low-probability events, empirial data on default probabilitiesand interdependenes are hard to ompile. Of ourse, for a �rm that has not defaulted,we annot diretly observe its default probability as this is an event that only oursone. Hene, we need to ome up with some estimates of these probabilities based ondata available for similar �rms, or imply them from market pries using some priingmodel. AAA AA A BBB BB B CCC DefaultAAA 90.81 8.33 0.68 0.06 0.12 0 0 0AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79Default 0 0 0 0 0 0 0 100.00Figure 1.2: One year transition matrix of Standard and Poor's redit ratings for theperiod 1981-1996. Soure: CreditMetris.One ommon method for estimating suh probabilities is using data published byrating agenies suh as Standard & Poor. Consider Figure 1.2 where a one year transitionmatrix of redit ratings is given. Entry aij in the table gives the probability of a �rmgoing from rating i to rating j over the ourse of one year. There are several thingsto note about suh data. We see that the default state is absorbing; one a �rm hasdefaulted, it will never live again, and the probability of transition from default to anyother rating is onsequently zero. Furthermore, the transition probabilities are physialprobabilities. This should be quite obvious as they are estimated from atual historialdata. They will therefore generally di�er from the risk neutral default probabilities thatan be implied from market pries. This method is disussed in Setions 2.6.1 and 2.6.2.Appendix A explains the distintion between risk neutral and physial probabilities.Using this matrix it is simple to ompute the n-year probability matrix. If T1 denotesthe one year transition matrix, then the two year transition matrix is given by T2 =

T1 · T1. To see that this holds onsider the probability of starting in state AAA, and13



1.2. DATA SOURCES AND SOME EMPIRICAL FACTS ABOUT CREDIT RISKbeing in state AAA after two years. This is the probability of staying in AAA two yearsin a row plus the probability of going from AAA to AA the �rst year and bak to AAAthe seond, and so forth:
p2(AAA|AAA) = p2AAA,AAA + pAAA,AApAA,AAA + pAAA,ApA,AAA + ...+ pAAA,CCCpCCC,AAAIn the same manner, we an �nd the n-year transition probability matrix as Tn =

T
n
1 . Considering only the rightmost olumn of the matries {T1,T2, ...,Tn, } we haveestimates of the physial default probabilities for a �rm of a given rating, for any timehorizon. The umulative density funtion following from this method is plotted in Figure1.3.
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Figure 1.3: Physial umulative default probabilities for some ratings lasses from Figure1.2.
Problems with Ratings DataThere are several reasons why probabilities implied from market data using models ispreferable to ratings data for the priing appliations:14



1.3. MODELING CREDIT RISK
• Rating agenies reat slower than the market in antiipation of future redit quality.The most striking example is the reent redit risis where the sub-prime mortgagebaked seurities defaulted with a triple-A status.
• Firm spei� information ontained in market pries is ignored; the default proba-bilities inferred from ratings data are averages over a potentially very heterogeneousgroup of �rms that are likely exposed to very di�erent risk fators.
• The probabilities are physial, and an therefore not be used diretly as input tothe valuation models as they usually are stated.

1.2.2 Credit Derivatives MarketsAs we have seen, there are good arguments for that ratings data may not be the best datasoure for estimating default probabilities. Often, a better alternative is to use marketdata. There are three important markets from whih we an infer redit risk informationusing the modeling tools disussed later. These are the equity, bond and redit derivativesmarkets. This thesis explores some methods for implying redit risk information fromthe seurities traded in these markets.Obviously, the quality of suh information depends ruially on the liquidity and thetranspareny of the �nanial markets. If market partiipants are uninformed with respetto the assets that are traded, the market pries do not re�et atual values or probabilitiesand is therefore worthless. Likewise, if markets are illiquid, market pries may not re�etatual asset values. The latter is often a problem with using bond pries whih is whyredit derivative pries are often preferred in estimating default probabilities.Furthermore, redit default swap rates are usually quoted for a larger number ofmaturities than bonds whih means a �ner redit urve1. This approah is illustrated inChapter 2.
1.3 Modeling Credit RiskThe two lasses of models presented here an be seen as representing two di�erent "tradi-tions". Strutural models are straightforward extensions of lassial option priing theory,and was indeed one of the �rst appliations of this theory outside ontingent laims val-uation (see for instane Merton (1974) and Blak and Cox (1976)). They rely expliitlyon a theory on the ausal relationship between asset pries2 and bankrupty.1The redit urve is ommon term desribing the term struture of default probabilities.2Or, in more advaned ases suh as Goldstein et al. (2001), the relationship between ash �ows,interest rates et. and bankrupty. 15



1.3. MODELING CREDIT RISK
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Figure 1.4: Outstanding CDS notional. Soure: ISDA (http://www.isda.org/statistis/).From a theoretial point of view, strutural models are for many reasons the "pre-ferred" framework , as they not only provide a ausal relationship between the struturalvariables of the �rm and the default probabilities, but also a oherent framework for valu-ing any laim on the �rm's assets. Furthermore, they an be extended in many diretionsinorporating, among other things, endogenous apital struture hanges, so that thereis an interdependene between asset values and apital struture deisions. Suh models,whih in the literature is referred to as dynami apital struture models, do not appearoften pratie in redit derivatives valuation as they are harder to alibrate than the sim-pler stati apital struture models onsidered here. Therefore, it is assumed throughoutthe disussion on strutural models in this thesis that the apital struture irrelevaneassumption3 holds.As pointed out by Vasiek (1984), modern strutural redit risk models are purelyquantitative, and is therefore radially di�erent from "traditional" methods for assetpriing and redit valuation that relies on the analyst's knowledge of a �rm's operationsto projet future ash �ows under various senarios. However, the data used in the tra-ditional method, both about the �rm and the markets in whih it operates is presumablypubli information. Assuming a ertain degree of market e�ieny, this information willalready be re�eted in the pries of the �rm's assets as re�eted by debt and equity values.Redued form models represent an approah based on reliability theory that is similar3The asset value is independent of the �nanial struture of an entity.16



1.4. EVALUATING MODELSto modeling in insurane and operations management. They do not model ausal rela-tionships between strutural variables, rather use default probabilities as inferred frommarket pries. A default is onsidered "similar" to the ourrene of an event trigger-ing a payment from an insurane ompany, or in the operations management ase, thebreakdown of a partiular mahine that is part of a prodution proess. There may beseveral auses behind suh a breakdown; it may be due to human failing or have sometehnial ause. In the model however, these are seen as random events ourring a-ording to some proess. From a modeling perspetive, we are interested in determiningthis proess than the atual ausality.What separates the redit risk setting from the operations management setting is therole of interdependene. Default time interdependene is a major risk fator that mustbe aounted for in redit portfolio valuation and risk assessment. While in a produ-tion proess, simultaneous breakdowns may be preferable so that a total maintenanean be performed, a large number of defaults ourring over a short period of time islearly problemati for a �nanial institution with a limited ash �ow and apital reserve.Another important problem is that in many pratial problems the redit portfolio mayontain a large number of assets, so that in order to "sale down" the problem in suh away that we an make qualitative sense of the data, some redution of dimensionality isneessary. This topi is entral throughout this thesis and as we will see, many di�erentmethods are proposed in the literature. One standard method is to assume orrelationarises through the individual assets' dependene on a set of systemi risk fators.
1.4 Evaluating ModelsThis thesis presents the two fundamental lasses of redit risk models as well as some ofthe several extensions of these models that have been proposed. From a pratial point ofview, it is neessary to have some riteria by whih these models are evaluated dependingon their appliation.Based on the nature of defaults suggested by empirial studies suh as Moody's (2000),we an speify requirements a model should be able to reprodue with respet to keyquantities like default rate orrelations and default probabilities. As demonstrated inthe CDO example in 4.4, multi-name redit derivative values are extremely sensitive todefault orrelations4. Furthermore, the analyst implementing the model is faed withseveral important onstraints suh as:

• Sarity of data. Data on defaults is limited in many respets. One may not havesu�iently long time series available or there may be hanges in the data generating4As disussed in Hull (2007), this is quite lear from the ash �ow mehanis of these instruments.17



1.4. EVALUATING MODELSproesses5 so that older observations are no longer valid. Hene, a model with fewparameters to estimate is tratable due to the unertainty in the estimates.
• Time onstraints in implementing, testing and alibrating the models. A simplenumerial model is often simpler to verify against an analyti base ase.The last point shows that there is an important trade-o� between the rihness of themodel and the time spent on implementing and maintaining it. The fous here is thereforethe basi ases of the models that are treated thoroughly in a quantitative manner andimplemented numerially. Extending these is usually a quite straightforward issue ofadding more "bells and whistles" to the fundamentals.

5Suh shifts may be aused for instane be aused by regulatory hanges.18



Chapter 2

Reduced Form Credit Risk ModelsThis hapter provides an introdution to the theory behind one of the two standard lassesof redit risk models often referred to as redued form redit risk models. Aording toHull et al. (2006), this lass of models is largely the industry standard in redit derivativemodeling, primarily beause they are easy to �t to observed market pries.This hapter also pays some attention to di�erent methods for orrelation modelingthat are also used later on for strutural models. Partiular attention is paid to the so-alled opula approah that provides a tehnially e�ient method for implementing themultivariate distribution of a set of assets given the marginal distributions and estimatesof orrelations.
2.1 Single Credit FrameworkConsider a single defaultable seurity and let τ denote its survival time as measuredfrom t = 0. On the �ltered probability spae1 (P,F ,Ω). Here P denotes the risk neutralprobability measure. τ is a stopping time (a random variable) with respet to the �ltration
Ft that represents the aumulated market information available at time t.We are now interested in a framework in whih probabilisti statements about τ anbe made. Therefore let F (T ) = P(τ ≤ T ) be the umulative distribution funtion (df)of the default time, ie. the probability that the time of default ours before a partiulartime T . An equivalent statement is the survival funtion S(T ) = 1 − F (T ) whih isthe probability that a seurity does not default prior time T . Closely related to F (T ) isthe probability density funtion (pdf) f(t) = dF (t)

dt
that an be interpreted as the defaultprobability on an in�nitesimally small time interval around some point in time t.1See Appendix A for some bakground and referenes on this terminology.19



2.1. SINGLE CREDIT FRAMEWORK
2.1.1 A Binomial Model of Credit RiskAs an illustration, onsider a bond with fae value 100, and 6% annual oupon ratepaid annually until maturity in year 3. Let q = λ∆t = .08 be the onditional riskneutral default probability on an interval of length ∆t = 1, i.e. the probability of defaultourring during the interval, onditioned on survival up to the start of the interval.Further assume that if default ours, the value reovered is onstant R = 40 paid at theend of the year as illustrated in Figure 2.1.
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Figure 2.1: Binomial tree illustrating disrete time default proess.As disussed in Appendix A, we an value this risky bond by disounting the expetedash �ows by the risk free interest rate, here assumed to be 5% with disrete ompounding.The example is summarized in Figure 2.2. The probabilities in row 2 and 4 are theumulative survival and annual default probabilities, respetively. To arrive at the resultshere, the onditional probability of default in a partiular year is the probability ofsurviving up to that year times the probability of defaulting in that partiular year.Year 1 2 3Cash �ow, survival 6 6 106Cumulative Probability 0.9200 0.8464 0.7787Cash �ow, default 40 40 40Annual Probability 0.0800 0.0736 0.0677Expeted Cash Flow 8.7200 8.0224 85.2494Disounted Cash Flow 8.3048 7.2766 73.6416Expeted NPV 88.2230Figure 2.2: Priing in the binomial model.In omparison, the present value of a risk free bond with the same ash �ow struture20



2.1. SINGLE CREDIT FRAMEWORKis 6 · 1.05−1 + 6 · 1.05−2 + 106 · 1.05−3 = 102.7232, so the risk premium on the risky bondis 13.5003. It is assumed throughout this thesis that redit risk is the only risk fator.In reality, suh a prie di�erene is usually explained in terms of other, additional riskfators, liquidity risk being the most important.
Mixed Probability Binomial ModelsIn many valuation problems, the binomial model is an exellent tool; its primary ad-vantage being its tehnial simpliity and intuitive nature. It is the among the simplestderivative priing models to understand, explain and implement numerially, yet pow-erful enough to to repliate the results from simulation models in many ases given asu�iently small step size.The key problem with this model as it is formulated above is that it does not aountfor dependene between default times whih is, as mentioned in the introdution, oneof the most important risk fators that any redit risk model must handle well if it isto be applied to portfolio modeling. One ommon extension of the binomial model isto randomize the default probability q to mimi dependene between the binomial treesrepresenting the various �rms in the portfolio.While suh binomial models are used in pratie, the next setions, take a di�erentapproah to modeling orrelation that uses a ontinuous time framework.
2.1.2 The Hazard Rate FunctionA key quantity of interest2 is the instantaneous default probability onditional on survivalup to a ertain point in time t. This probability is often referred to as the hazard ratefuntion. It is de�ned as the limit of the probability of survival on an interval (t, t+∆t),given τ > t, as ∆t approahes zero:De�nition 2.1.1. Hazard Rate FuntionLet F (t) be the umulative distribution funtion of the default time t and f(t) itsderivative, then the hazard rate funtion λ(τ) is de�ned as:

λ(τ) = lim
∆t→0

P[t < τ < t+∆t|τ > t] =
f(τ)

1− F (τ)
=

f(τ)

S(τ)
(2.1.1)The last equality an be seen by writing out the probabilities as integrals and applyingthe fundamental theorem of alulus to the numerator and reognizing the denominatoras 1− F (t).2This is beause it spei�es the default generating proess in this model framework.21



2.1. SINGLE CREDIT FRAMEWORKNote that we are yet to speify the funtional form of F , f and λ as we have sofar only dealt with them abstratly. In the the example in Setion 2.1.1, λ is assumedonstant and F (t) is on the form:
F (n∆t) = λ∆t+ (1− λ∆t)λ∆t + (1− λ∆t)2λ∆t + ...+ (1− λ∆t)nλ∆tHere λ∆t is the probability of defaulting on an interval of length ∆t. In the nextsetion we onsider a model where λ ats as the parameter in a ontinuous default timedistribution.

2.1.3 The Poisson/Cox ProcessAs initially noted, we want to provide some model of defaults as the ourrene of adisrete and rare event without, as in the strutural models onsidering the underlyingeonomi proesses driving these events. A simple example of a proess satisfying theserequirements is the Poisson proess N(t) whih is a ontinuous time, disrete spaeounting proess. We want to de�ne the default of asset i as the �rst jump of the proess
Ni(t). The interdependene between the �rms in the portfolio is given by the orrelationstruture of a set of Poisson proesses.Walpole et al. (2007) de�nes the Poisson proess in terms of three key properties:De�nition 2.1.2. Poisson ProessLet I be the indiator funtion assoiated with the stopping time τ . The Poissonproess is a funtion F : Ω → N

+ mapping the sample spae to the set of positive integerssuh that:
N(t) =

n∑

i=1

Iτi≤t (2.1.2)satisfying the following properties:1. The Markov property or "memorylessness": the number of events ourring on atime interval [t0, t1] is independent of the number of events ourring on any otherdisjoint time interval [T1, T2].32. The probability of an event ourring on a partiular time interval is proportionalto the length of the interval.3. The probability of more than one event ourring an an in�nitesimal time intervalis negligible.3In partiular, any event ourring on a time interval starting at t is independent of Ft (here: the setof information revealed to the market (historial default data)).22



2.1. SINGLE CREDIT FRAMEWORK
Some Properties of the Poisson DistributionTwo important onsequenes of this de�nition are:

• The probability distribution of N(t) is the Poisson distribution, that is, the proba-bility of exatly k events ourring on a time interval of length τ is then given bythe probability mass funtion of the Poisson distribution:
F (T, k) = P[N(t + T )−N(t) = k] =

e−λT (λT )k

k!
(2.1.3)

• In partiular we see that the probability that no defaults our on a given timeinterval is given by:
F (T, 0) = P[N(t + T )−N(t) = 0] = e−λT (2.1.4)That is, the probability distribution of the waiting time until the �rst ourreneis an exponential distribution with parameter λ4.The last point above is important as we interpret the time τ1 of �rst jump as the timeof default. The time to default (or survival time) is therefore exponentially distributedwith a mean 1

λ
and variane 1

λ2 . Note that we ould also start with the assumption thattime to default is exponentially distributed, and then arrive at the above de�nition of thePoisson proess.We an show the latter by onsidering a disrete setting where λ(t)h denotes theprobability of surviving on an interval [t, t + h] onditional on no previous default. Theumulative probability of surviving up to time t is ps(t). It follows that:
ps(t + h)− ps(t) = −λ(t)ps(t)hTaking the limit as h → 0:

dV

dt
= −λ(t)ps(t)whih has the solution:

ps(t) = e−
∫ t

0
λ(s)dsWe say that N(t) is a ounting or "jump" proess. We interpret the time τ of theourrene of the �rst "jump" of the proess N(τ) as default.4For notational simpliity, λ is assumed onstant here.23



2.1. SINGLE CREDIT FRAMEWORKThe Poisson proess is entirely spei�ed by a single parameter λ, the hazard rate,often referred to as the proess' intensity, whih is as the name indiates, a measure ofthe frequeny of events ourring. The Poisson proess, or as it is sometimes alled, the(time) homogeneous Poisson proess is a partiular ase of the more general Cox proess,where λ(t) = λ is a onstant. Later on, λ(t) is de�ned in terms of a stohasti di�erentialequation so as to allow for random variations in default intensities.The default of a single redit is in this framework given as the �rst jump of the Poissonproess whih is the �rst passage time to N(t) = 1, τ de�ned similarly to a default in theBlak-Cox model:
τ = inf{t ∈ R

+|N(t) = 1} (2.1.5)
The Credit CurveThe notion of a term struture of default intensities or, more olloquially, redit urveis ourring frequently in the literature on redit risk. Similarly to the yield urve ininterest rate modeling, expressing the yield on a short interval [t, t+ dt], the redit urveis the instantaneous default probability or hazard rate on a short interval. The rediturve does of ourse ontain preisely the same information as the survival or defaulttime distributions.
The Cox ProcessThe above Poisson model an be generalized to allowing for a time varying and evenstohasti default intensity. This type of proess is referred to as a Cox proess or anon-homogeneous Poisson proess. For instane, we ould allow λ = λ(t) to be given bythe following stohasti di�erential equation (SDE):

dλ(t, λ(t)) = µ(t, λ(t))dt+ σ(t, λ(t))dW (t) (2.1.6)where W (t) is the standard univariate Wiener proess de�ned in Appendix A. We anthink of the proess driving this as the "state of the eonomy", where λ(t) will be inverselyrelated to state variables suh as GDP growth, redit spreads and so forth. One approahto mimi the yliality apparent in atual default data is to use a mean-reverting SDE,suh as the Ornstein-Uhlenbek proess de�ned in Appendix A.From the instantaneous default probability it is a simple matter to derive an expressionfor the probability of a seurity surviving on a time interval [t, T ] onditional on no priordefault as the "sum" of all the instantaneous default probabilities:24



2.1. SINGLE CREDIT FRAMEWORK
ps(t, T ) = P[τ > T |τ > t] = E

[
exp

(
−
∫ T

t

λ(s)ds

) ∣∣∣F(t)

] (2.1.7)The probability of default ourring on the same interval is denoted pd(t, T ):
pd(t, T ) = 1− ps(t, T ) (2.1.8)These integrals are not neessarily simple or even possible to evaluate analytially.This depends on the funtional form of λ. However, simple numerial methods often doa good job approximating them.In the homogeneous ase (onstant λ), the survival probability an be simpli�ed:
ps(t, T ) = e−λ(T−t) (2.1.9)and likewise the umulative default probability:

pd(t, T ) = 1− e−λ(T−t) (2.1.10)
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Figure 2.3: Hazard rate as Ornstein-Uhlenbek proess and orresponding default timedf.Figure 2.3 illustrates the relationship between hazard rates and the umulative de-fault probability. Here the hazard rate funtion is given by the stohasti di�erential25



2.2. PRICINGequation5 dλt = α(λ0 − λt)dt + σdWt. As before, the survival probability is ps(0, t) =

exp[−
∫ t

0
λ(s)ds]. Conversely, the umulative default probability pd(0, t) = 1− ps(0, t).The top �gure shows a partiular trajetory for the mean-reverting default intensityproess. To ompute the integral behind the seond �gure, the midpoint method fornumerial integration6 is used. Note how the df below is �at in the times where thedefault intensity is low and steep later on when λ is high. For a simulation model, it isneessary to simulate a large number of trajetories for λ.

SummaryTo onlude the disussion here, we restate some key points that are entral to the simu-lation algorithms later on. With a onstant hazard rate λ, time to default is haraterizedby an exponential distribution. The properties of this distribution is summarized below.
• Cumulative probability distribution of defaulting prior to t: F (t) = 1− e−λt.
• Corresponding probability density funtion f(t) = λe−λt.
• Mean survival time: 1/λ and variane: 1/λ2.

2.2 Cash Flow Pricing in a Reduced Form ModelFrom the above framework it is possible to work out formulas priing risky ash �owsusing its default probability and an interest rate model. Consider �rst the simple aseof �nding the time t value of a defaultable zero oupon bond G(t, T ) paying a unit ash�ow at time T ontingent on survival and nothing otherwise7.Letting P (t, T ) denote the risk-free disount funtion we have the following whih is adiret appliation of the risk neutral priing framework desribed earlier8 for a defaultablezero oupon bond:
G(t, T ) = E[P (t, T )|F(t)] = P (t, T )ps(t, T ) = e−

∫ T

t
(r(s)+λ(s))ds (2.2.1)When both the hazard and interest rates are stohasti proesses, there is a resem-blane between the above priing equation and the bond priing expressions found in5There is a very important problem to note about using this partiular proess as a model for defaultintensities; namely that it is not stritly non-negative, learly at odds with the de�nition of the hazardrate as a probability.6See Cheney and Kinaid (2007).7This assumption will be relaxed later on. In the most general ase the fration lost to bankruptyost α(t) is spei�ed as a stohasti proess.8Under the standard assumptions of arbitrage free markets, the same results hold for almost anyproess for asset values. 26



2.3. CORRELATION AND IMPLEMENTATIONmulti-fator interest rate models9. In the ase of onstant default intensity and interestrates we get a very simple priing equation:
G(t, T ) = e−(r+λ)(T−t)From these equations, it is reasonable to interpret λ as a risk premium. Using theseequations, any other defaultable seurity an be pried similarly to the above zero ouponbond.

2.2.1 Recovery RatesThe above example is learly stylized as it assumes that reovery rates are zero; eitherthere is a unit ash �ow at time T or there is no ash �ow. This is of ourse unrealisti, andas in the strutural models of Chapter 3, we an introdue a reovery value proportionateto the fae value of the bond.This approah is known as reovery of fae value (RFV), and is perhaps the simplestpossible approah, in partiular when the fration reovered is onstant. More advanedmodels may apply reovery of market value or model the fration reovered as a stohas-ti proess. Hull (2006) disusses a number of di�erent models of reovery rates withreferenes to the literature.Let α denote the fration reovered, τ the stopping time indiating default, the valueof a defaultable zero oupon bond with unit fae value is now given as:
G(t, T ) = E[P (t, T ) + αP (t, τ)|F(t)] (2.2.2)While a losed form expression an be derived for the above expetation, I will onlyonsider an intuitive numerial method of evaluating the integrals using a midpoint ap-proximation and ompute the expetations by Monte Carlo simulation.

2.3 Default Correlation and Model ImplementationNow that a redued model of default probability and single entity or asset priing hasbeen established, the key problem still remains, namely speifying dependene or asso-iation struture between default times. While the primary question of interest is theorrelations between default times, it is important to stress that it is not the only. Inmore advaned models we are also interested in the relationship between variables suh9Even though there is a well-established theory on multi-fator interest rate models, working out ananalyti expression in the most general ase with orrelated rates is non-trivial.27



2.3. CORRELATION AND IMPLEMENTATIONas default, reovery, interest rates, et. In this thesis, the main onern is default timedependene.Before we an start implementing a model, an appropriate measure of interdepen-dene must be hosen. Whereas this is a relatively simple matter in terms of struturalmodels, where it is one usually an settle with the orrelation < dA1, dA2 > between twoIt� proesses (see Shreve (2004) for rigorous de�nition), there are several approahes tomodeling asset prie interdependene in redued form models. As disussed in Li (2000)and Elizalde (2005a), one ould hoose the standard Pearson orrelation oe�ient given,in the bivariate ase, as:
ρXY =

cov[X, Y ]

σXσYTranslating this into our framework of defaultable seurities, we an let 1A(t) and
1B(t) denote two indiator random variables taking on the value one if entity A or B,respetively, have defaulted by time t. Letting pA(t) be the probability that A defaultsprior to time t:

var(1i) = pA(t)(1− pA(t))and:
cov[1i, 1j] = pij − pipjwe get the following:

ρXY =
pAB − pApB√

pApB(1− pA)(1− pB)
(2.3.1)For a partiular lass of multivariate distributions, known as elliptial distributions,whih inludes the important Gaussian distribution, the orrelation oe�ient (or moregenerally, the orrelation matrix) fully determines the dependene struture. However,it an be problemati due to its linearity whih means that we an have a fully deter-ministi relationship between two variables yet zero orrelation. A simple illustrationis if X ∼ Φ(0, 1) and Y is an even funtion of X , for instane, Y = X2. Obviously,this is problemati, as we want a zero orrelation oe�ient to signify that there is noassoiation between the variables. This is a key problem that is disussed later in thesetion on opulas. Su�e it to say for now that the Pearson orrelation measure remainsimportant in this analysis, in partiular as an input to the opula models.

2.3.1 Simulating Defaults – The Inversion MethodWe have now overed su�ient detail to develop a simple simulation algorithm when weknow the funtional form and parameters of λ(t) as well as the orrelation matrix Σ.28



2.3. CORRELATION AND IMPLEMENTATIONLet X be a random variable and F be some assoiated umulative distribution funtionfuntion (df). Sine F is a non-dereasing funtion, it has an inverse F−1:
F−1(q) = inf{x : FX(x) ≥ q} (2.3.2)From the de�nition of the df and the properties of the uniform distribution, thefollowing important relationship that is entral to the simulation algorithms applied toredued form models follows. Let U be a uniform random variable on the interval [0, 1].Then we have the following relationship:

P[X ≤ x] = P[F−1(U) ≤ x] (2.3.3)
= P[F (F−1(U)) ≤ F (x)] (2.3.4)
= P[U ≤ F (x)] (2.3.5)
= F (x) (2.3.6)The �rst equality uses the fat that X = F−1(U). To see this, onsider the partiularase of default times. Now the domain of F is R+ and its range is [0, 1] (by the de�nitionof a probability). The inverse F−1, therefore, must transform elements in [0, 1] onto R

+aording to the df. The last equality above follows from the property of the uniformdistribution on [0, 1], that P (U < u) = u.So we have that X and F−1
X (U) have the same df. Thus random variables with anygiven df an be simulated by drawing uniform random variables and applying the inversedf. This algorithm is known as the inversion method10.For example: we an generate two orrelated uniform random vetors [U1,U2]. As-suming asset 1 has a t5 distributed returns while asset 2 is normally distributed, we set

X1 = t−1
5 (U1) and X2 = Φ−1(U1). Using this we let the above df F (t) = e−λt be thesurvival funtion, ie. probability of no default prior to time x. The inverse of this funtionis:

T = − ln(ps)

λSine ps is a probability we an generate default times by simulating a set of [0, 1]uniform random variates {u1, u2, ..., un} and transforming them by the formula: Ti =

− ln(ui)
λ

. This method is disussed further in Setion 4.1.10As an aside, the inversion method an be very useful when simulating a portfolio of assets wherethe individual assets have di�erent (marginal) probability distributions. For example, if we assume twoassets A and B have normally and t5 distributed returns, we an generate two uniform random vetors
{u1, u2} and let the return vetors be RA = Φ−1(u1) and RB = t−1

5
(u2).29



2.4. CONDITIONALLY INDEPENDENT DEFAULTS
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2.4 Conditionally Independent DefaultsWe now turn to the �rst tehnique for dealing with orrelation modeling. The ore ideabehind onditionally independent defaults - CID-models, is that defaults are independentonditioned on the realization of a set of systemi fators that determine the hazard rate.Suh fators may be GDP, the short interest rate11, redit spreads, et. To illustrate thetehnique we let λ(t) be a stohasti proess. Firm i is assumed to default at time τgiven by:

τ = inf

{
t :

∫ t

0

λ(t)dt ≥ Ei

} (2.4.1)Where Ei is an unitary exponentially distributed random variable (Ei ∼ eZ0,1), and
Ei and Ej are independent for i 6= j.
IllustrationMost authors, suh as Du�ee (1999) use rather ompliated models to determine λ relyingon multi-fator tehniques from term struture modeling. To illustrate, we onsider asimpli�ed model, where the hazard rate is a zero drift geometri Brownian motion withonstant volatility:

dλ(t, λ(t)) = λ(t)σdW (t)11Du�ee (1999) proposes a model on the form λi(t) = λ∗

i
(t) + αs1(t) + βs2(t) where the si are fatorsinferred from a two-fator model of the short rate.30



2.5. COPULA FUNCTIONS
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0 20 40 60 80 100(b) Default time simulation histograms.Figure 2.5: CID SimulationThe default riterion for �rm i is still as given in Equation 2.4.1. We then have that:
P[τi > t] = exp

(
−
∫ t

0

λ(t)dt

) (2.4.2)so that 1t>τi is a Cox, or doubly stohasti Poisson proess. The simulation algorithmis summarized below:1. Generate one path of λ and approximate the integral in Equation 2.4.1.2. Generate N exponential random variates and determine the time of default aord-ing to Equation 2.4.1.3. Repeat step 1 and 2 above.Two sample pats and default time histograms are plotted in Figure 2.5.
2.5 Copula Functions

2.5.1 Definition and Some Central PropertiesA popular method for orrelation modeling in the redued form framework is the opulamethod, a method that uses a transformation of a set of marginal distributions to reatea joint distribution. This setion will present the fundamentals of opula theory andsome partiular opula funtions illustrating the basi onept as well as the breadth ofmodels available. The next setion shows how it an be applied to priing problems usingsimulation in a redued form model. 31



2.5. COPULA FUNCTIONSSeveral good referenes on opula theory and its appliations in �nanial modelingare available, hereunder Nelsen (1999) and Li (2000). A omprehensive artile on themeasuring and modeling of orrelated risks is Wang (1998). Elizalde 2005a ontains aomprehensive list of referenes to further artiles on this �eld. Finally, many softwarepakages and �nanial algorithms libraries suh as MATLAB and QuantLib ontain rou-tines for opula models that are omprehensively doumented.We start by a de�nition:De�nition 2.5.1. CopulaA n-dimensional opula is de�ned as the joint umulative density funtion C : [0, 1]n →
[0, 1] of a uniformly distributed random vetor U ∈ R

n:
C(u1, u2, ..., un,Σ) = P{U1 ≤ u1, ...,UN ≤ un} (2.5.1)A opula is therefore a multivariate distribution funtion with uniformly distributedmarginals. An important result in the theory of opulas states that the marginal distri-butions and the dependene between the set of variables an be separated. Firstly, wean use opulas to link a set of marginal distributions to a joint distribution:

C(F1(x1), ..Fn(xn) = P[U1 ≤ F1(x1), ...,Un ≤ Fn(xn)] (2.5.2)
= P[F−1

1 (U1) ≤ x1, ..., F
−1
n (Un) ≤ xn] (2.5.3)

= P[X1 ≤ x1, ..., Xn ≤ xn] (2.5.4)
= F (x1, ..., xn,Σ) (2.5.5)For instane, in the bivariate ase with X and Y random variables with marginal dfs

FX and FY : C(x, 1) = P[U ≤ x,U ≤ 1] = x.The following theorem, �rst proven by Sklar, shows the the onverse also holds; anymultivariate distribution funtion an, under ertain tehnial assumptions be written asa opula.Theorem 2.5.2. (Sklar) Let G be an n-dimensional distribution funtion with ontin-uous marginals F1, ..., Fn. Then there exists an n-dimensional opula C suh that:
G(x1, ..., xn) = C(F1(x1), ..., Fn(xn)) (2.5.6)If we onsider two bivariate uniform random variables on [0, 1], X and Y , with theopula funtion C(x, y, ρ) = P(X < x, Y < y|ρ), we observe that:32



2.5. COPULA FUNCTIONS
• C(x, 1, ρ) = P(X < x, Y < 1|ρ) = P(X < x) = x, ie. we an obtain the of avariable X by evaluating the opula when all other parameters are 1.
• If X and Y are independent, then C(x, y, ρ) = P(X < x)P(Y < y) = xy.
• With perfet orrelation, C(x, y, ρ) = P(X < x)P(Y < y) = min(x, y)

Why Use Copula Models?While the theory of opulas may perhaps seem unneessarily omplex at �rst sight, thekey point to the above disussion about what a opula atually does, namely reating amultivariate joint distribution that is onsistent with the spei�ed marginal distributionsof the systemi and idiosynrati fators. While we have ertain "simple" multivariatedistributions that an be used to generate multivariate data suh as a default times of aportfolio, this set is limited. Furthermore, most simple methods impose restritions thatare important in pratie, the most important being that the marginals must have thesame univariate distribution. For example, the multivariate Gaussian distribution hasunivariate Gaussian marginals.For instane, onsider the orrelation struture that will be used muh later on in thedisussion on strutural models. Let Xi be the random variable that determines the timeof default for �rm i. It is a funtion of a systemi risk fator Y and an idiosynrati riskfator ǫi where Y and ǫi are independent:
Xi = ρiYi +

√
1− ρ2i ǫiNow, the hoie of marginal distribution for Y and ǫi will determine the opulauniquely. If for instane both Y and ǫi are standard normally distributed, a Gaussianopula will result. For any other hoie of distributions, a di�erent opula is the result.To summarize, what is tratable about the opula approah is that it provides simplemethod to speify a multivariate joint distribution for any set of marginal distributions.

2.5.2 Some Classes of Copula FunctionsFor the purpose of this thesis we onsider three opula funtions that appear frequentlyin the �nanial literature in general, and partiularly in that on redued form models -normal, t- and mixed normal opulas. These are under no irumstanes the only onesavailable, but they are omparatively simple to estimate and implement with standardsoftware. Furthermore, the basi properties of these distributions are well known fromfundamental probability theory. For further disussion on opula models see for instaneLi (2000) and Elizalde (2005a) and soures ited therein.33



2.5. COPULA FUNCTIONSDe�nition 2.5.3. Normal CopulaLet ΦN denote the N-dimensional normal umulative distribution funtion, the N-dimensional normal or Gaussian opula CN is given by:
CN(u1, u2, ..., uN) = ΦN (Φ−1(u1),Φ

−1(u2), ...,Φ
−1(uN),Σ) (2.5.7)As a partiular example we note the bivariate normal opula given by:

C2(u1, u2) = Φ2(Φ−1(u1),Φ
−1(u2), ρ)In a similar fashion to that above, we an de�ne the N dimensional Student t opula with

v degrees of freedom.De�nition 2.5.4. Student t CopulaLet tNv denote the student t umulative distribution funtion with v degrees of freedom.Then the N dimensional t-opula Ct is de�ned by:
Ct(u1, u2, ..., uN) = tNv (t

−1
v (u1), t

−1
v (u2), ..., t

−1
v (uN)) (2.5.8)Typially, for �nanial appliations, v is hosen to a low number suh as 5 or 3produing a fat tailed distribution (higher risk of extreme losses and gains). As thenumber of degrees of freedom gets very high, the distribution onverges to a normaldistribution.Finally, we onsider two opulas that are somewhat di�erent from the two previous.The �rst approah follows from the two last properties of opulas at the end of Setion2.5.1, that C(x, y, 1) = min(x, y) and C(x, y, 0) = xy. Consider next a weighted om-bination of these two funtions ρ be the weight assigned to the �rst. We onsider thebivariate normal ase:De�nition 2.5.5. Mixed Bivariate CopulaLet (x, y) be a set of random variables that are independent. A opula is then givenby C1 = xy. Let (v, w) be two perfetly orrelated random variables. Another opula isthen given by C2 = min(x, y). If 0 < ρ ≤ 1,

C(u, v) = (1− ρ)uv + ρmin(u, v) = (1− ρ)C1 + ρC2 (2.5.9)de�nes a mixed bivariate opula.Finally, as an illustration of the breadth of opula funtions available as alternativesto the more ommon normal and t-opulas, we onsider a type of opula that is notdetermined by the standard orrelation oe�ient.34



2.5. COPULA FUNCTIONSDe�nition 2.5.6. Clayton CopulaLet u and v be uniform random variables on [0, 1] and 0 < θ < ∞ be a onstant. Thefuntion C(u, v) de�nes a bivariate Clayton opula if:
C(u, v) = (u−θ + v−θ − 1)−

1

θ (2.5.10)The parameter θ is here a parameter determining the dependene between the twovariables, where θ = 0 means independent marginals. Contrary to the opulas above, theClayton opula does not allow for negative orrelation. However, as Trivedi and Zimmer(2005) states, it exhibits strong left tail dependene whih makes it an appropriate modelfor redit risk. This type of dependene is important in redit risk modeling; one one�rm defaults, it has onsequenes for other �rms it is doing business with.
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(b) t1-opula.Figure 2.6: Default times simulation with two di�erent opula funtions.Figure 2.6 illustrate default times generated using the inversion method from a bivari-ate normal opula versus default times from a t1-opula. It is apparent that the normalopula yield muh more sattered default times than the t-opula that exhibits more ofa default lustering.Figures 2.7-2.8 are plots of the random variates from bivariate opulas themselves.Notie the di�erene between the Gaussian and the t-opula; while the �rst tend tosatter the observations more, the t-opula gives a "learer" pattern. For a orrelationoe�ient of .8, the band formed in the t-opula example is muh slimmer than in theGaussian ase. 35



2.5. COPULA FUNCTIONS
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Figure 2.7: Bivariate normal opula simulation.
2.5.3 Relationship Between Input and Copula CorrelationsWhile the dependene between the random variates generated by the opula model isdetermined by the ρi,j that are inputs to the model, these ρi,j do not measure the or-relation between the variates generated by the opula. To see this, onsider a bivariateGaussian opula. One we have generated the two orrelated standard normal vetors Z1and Z2, the inverse standard normal df transforms these vetors to make them a opula
{U1, U2}.Now the linear orrelation ρ(Z1, Z2) between Z1 and Z2 is learly not the same as theorrelation between U1 and U2, as a non-linear transformation has been applied. In thegeneral ase, there is no simple relationship between the before and after orrelations.For this reason, rank orrelations12 suh as Spearman's ρ or Kendall's τ are often usedinstead as these are invariant under any monotoni transformation.The de�nitions of these rank orrelation oe�ients, are somewhat more tehnial12Informally stated, rank orrelations measure the degree to whih values of the same magnitude of aset of random variables are assoiated (our at the same time).36



2.5. COPULA FUNCTIONS
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Figure 2.8: Bivariate t-opula simulation with one degree of freedom.than the Pearson oe�ient, but they are already implemented in most software pakages.Like the Pearson orrelation oe�ient, ρ, these measures lie on the interval [−1, 1] withzero for independene and 1 or -1 for deterministially related data.In the Gaussian opula ase the relationship between τ and ρ is given as T = 2 arcsin(R)
πwhere T is the matrix of Kendall's τ and R the linear orrelation matrix13.Consider the default time simulation for two assets in Figure 2.6. The input orrelationmatrix (Pearson) and the orresponding T-matrix using the above formula are:

Rinput =

[
1 .8

.8 1

]
, Tinput =

[
1 .5903

.5903 1

]If we measure the opula orrelation:
RNC =

[
1 .7202

.7202 1

]
, TNC =

[
1 0.5913

0.5913 1.0000

]13Cf. Nelsen (1999) and Trivedi and Zimmer (2005) for this related formulas for other opulas andde�nitions of orrelation oe�ients. 37



2.5. COPULA FUNCTIONSFrom the above, we see that while the Pearson matrix hanges, the Kendall rankoe�ient from the simulation remains quite the same (only subjet to some minor per-turbations due to the fat that only 500 variates are simulated for eah vetor).
2.5.4 Simulation Algorithms for Copulas

Sampling from the Normal CopulaThe following proedure has been applied in the generation of random variables from theGaussian opula with orrelation matrix Σ:1. Find a deomposition matrix M so that Σ = MM ′.142. Draw an n-dimensional vetor v = [v1, ...., vn] of standard normal variates15.3. Let v∗ = vM . v∗ is now a vetor of orrelated standard normal variates.4. Transform v
∗ into a uniformly distributed random vetor by applying the standardnormal df: u = Φ(v∗).

Sampling from the Student t Copula with v Degrees of FreedomSimilar to the above, we state a simulation algorithm for the Student t opula:1. Find a deomposition matrix M of the orrelation matrix Σ so that Σ = MM ′.2. Generate an n-dimensional vetor v = [v1, ...., vn] of standard normal variates.3. Generate an independent χ2
v random variable s.4. Let v∗ = vM . v∗ is now a vetor of orrelated standard normal variates.5. Let x = v

∗
√

v/s .6. Transform v
∗ into a uniformly distributed random vetor by applying the t distri-bution df with v degrees of freedom: u = tv(v

∗).Now we have provided su�ient details on the theory behind the redued form modelsand the opula approah to implement a simple priing model from srath; later hap-ters will treat more seurity spei� issues as well as parameter estimation and modelalibration.14There are several algorithms for doing this; most linear algebra pakages have at least one implemen-tation. For symmetri positive de�nite matries suh as the orrelation matrix with positive entries, ane�ient method is the Cholesky deomposition. For details see for instane Cheney and Kiniad (2007).15Most software pakages and programming languages suh as Exel and MATLAB ontain methodsfor generating standard normal variates. If suh funtions are not available, a uniform variates {ui} anbe transformed to a distribution spei�ed by the df F (x) by xi = F−1(ui).38



2.6. ESTIMATING DEFAULT PROBABILITIES
2.6 Estimating Default Probabilities and Calibrating a Reduced Form

ModelThe disussion so far has foused on the theory behind redued form models and howthey an be implemented. To round up the disussion on these models, some notes onparameter estimation is inluded.
2.6.1 Using a Single Bond Price - Constant Default ProbabilityConsider �rst a simple example where the default probability is assumed onstant. Wenow onsider a single risky bond with maturity 3 years. The market yield to maturity is7.0% with oupon rate 6.0% paid semi-annually. With a fae value of 100, this orrespondsto semi-annual oupons of 3. The risk free rate is assumed to be 5%. The amountreovered given default is onstant equal to 40.The prie of the risky bond is then:

5∑

t=1

3e.07t/2 + 103e.07·3 = 97.01and the risk free bond prie is similarly:
5∑

t=1

3e.05t/2 + 103e.05·3 = 105.58If we assume that the default probability is onstant equal to Q over the horizon, weget the following:Time Cash �ow RF DF Risky DF Value RF Bond LGD PV exp. Loss0 3 1 1 105.580.5 3 0.98 0.97 105.17 65.17 63.57 Q1 3 0.95 0.93 104.76 64.76 61.60 Q1.5 3 0.93 0.9 104.34 64.34 59.69 Q2 3 0.9 0.87 103.90 63.90 57.82 Q2.5 3 0.88 0.84 103.46 63.46 56.00 Q3 103 0.86 0.81 103.00 63.00 54.22 QFigure 2.9: Estimating default probability from a single bond prie.Figure 2.10 illustrate the omputation of the risk neutral default probability Q.Columns 3 and 4 ontain the risk free and risky disount fators, respetively. Col-umn 5 is the value of the risk free bond at time t. Column 6 is the loss given default attime t given as the di�erene between the risk free bond value and the loss given default39



2.6. ESTIMATING DEFAULT PROBABILITIES(40). The �nal olumn gives the disounted loss given default times the risk neutraldefault probability.Summing the expeted loss from the last olumn above and equating it to the prie dif-ferene between the risky and risk free bond we get 352.9Q = 105.58−97.01 or Q = .0243assuming as before the risk premium is entirely onstituted by redit risk. Here Q repre-sents the probability of the bond issuer defaulting on any half year interval onditionedon previous survival.
2.6.2 Using a Set of Bond PricesA weakness of the above proedure is that it gives a �at term struture of redit risk(onstant default probability). However, if we have a set of bonds with di�erent maturitiesfor the same entity, we an use a bootstrap proedure to estimate default probabilities forshorter time intervals.From the previous setion we see that a bond with maturity in one year paying eitherthe full fae value of 100 at maturity or some reovery amount R, the prie di�erene d1between this risky bond (whose value is (100(1− q1)+Rq1)e

−r and a similar zero ouponbond (with value 100e−r) is given by:
d1 = (100− R)e−rq1where q1 denotes the default probability during the �rst year. We an now solve thisequation to obtain the one year default probability as before.Next onsider a bond with a oupon payment in one year from now and maturity intwo years. The prie di�erene between this and a two year zero oupon bond is:

d2 = (100− R)e−r·1q1 + (1−R)e−r·2q2 = d1 + (100−R)e−r·2q2And generally:
dn = d1 + d2 + ... + (100− R)e−r·nqnUsing this iterative proedure (that an of ourse be modi�ed to handle oupon bonds)oupled with the method from the preeding setion, the redit urve an be onstrutedfrom an arbitrarily large set of orporate bonds.

IllustrationConsider a set of risky and risk free bonds with maturities from one to �ve years, allwith oupon rates of 6,0% and 40 reovery value in the ase of default. Further assume40



2.6. ESTIMATING DEFAULT PROBABILITIESthat defaults an our only at oupon payment dates and that the yields for the riskyand risk free bonds are as given by olumns 2 and 3 below. The pries implied by theseyields follow from olumn 4 and 5 (these are omputed as the expeted value of futureash �ows disounted by the respetive yields). For eah prie, a table similar to that inFigure 2.10 needs to be ompiled.The annual default probabilities omputed by the above method follow in olumn 6.For instane, the probability of the �rm defaulting during year 3, onditioned on survivalup to the start of the year is .0342. The df following from the data in this example isplotted in Figure 2.11.Maturity Risky YTM RF YTM RF Prie Risky Prie Prie Di�erene Default prob1 3.75% 3.00% 102.87 102.10 0.77 0.01092 3.98% 3.25% 105.40 103.89 1.51 0.03543 4.15% 3.50% 107.61 105.46 2.15 0.03424 4.77% 4.00% 109.28 105.46 3.83 0.06515 5.14% 4.25% 110.67 106.99 3.68 0.0642Figure 2.10: Estimating default probability from a single bond prie.
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Figure 2.11: Cumulative probabilty funtion estimated using a set of bond pries.
2.6.3 Using CDS PricesThere are two important problems with the method previously suggested:

• It is relatively burdensome omputationally (large amounts of data must be om-piled and proessed). 41



2.6. ESTIMATING DEFAULT PROBABILITIES
• In many ases, there aren't su�iently many maturities available for orporatebonds.Therefore, is may often be more onvenient to estimate default probabilities from CDSspreads when these are available.Setion 4.2 disusses the CDS instrument in greater detail. Here we'll just state thepriing equation for a simple CDS struture that ignores premium arual:

N∑

i=1

δe−rti = E
[
L(τ)e−rτ

] (2.6.1)where δ is the �xed leg premium and L(τ) is the loss given default at time τ (assumedto be paid immediately upon default). Now we want to use the known CDS spreads16to ompute the default probabilities using the models developed so far. We onsider asimpli�ed example:
IllustrationConsider CDS on a bond with fae value 100 maturing in 2 years. Defaults an our attimes {0.5, 1.5}, and CDS premia δ are paid at the end of eah year. Assume the risk freeinterest rate is 3% and the annual default probability is onstant Q(t) = q for t ∈ {1, 2}.Amount reovered given default is onstant R(τ) = 60.t Default Prob. Risk Free DF Expeted payments Expeted NPV0.5 q 0.9851 40q 0.9851 · 40q1.5 (1− q)q 0.9560 40(1− q)q 0.9560 · 40(1− q)qFigure 2.12: Floating leg ash �ows.t Survival Prob. Risk Free DF Expeted payments Expeted NPV1 1− q 0.9704 δ(1− q) 0.9704δ(1− q)2 (1− q)2 0.9417 δ(1− q)2 0.9417δ(1− q)2Figure 2.13: Fixed Leg ash �ows.From the above table we see that we an reover the average annual risk neutraldefault probability q by equating the �oating and �xed leg ash �ows and �nding theroots of the seond degree polynomial (ie. �nding the break-even default probability):

0.9851 · 40q + 0.9560 · 40(1− q)q = 0.9704δ(1− q) + 0.9417δ(1− q)216In reality there is a bid-ask spread on CDS's. It is therefore ommon in pratie to use an arithmetiaverage of these, or mid-market CDS spread. 42



2.6. ESTIMATING DEFAULT PROBABILITIESThe left hand side are the �oating leg ash �ows from Figure 2.12, the right hand sidethe �xed ash �ows from Figure 2.13. For δ = 2, q = .0469.To estimate a more realisti term struture of default probabilities; multiple CDSspreads an be used similarly to the multiple bond pries example in Setion 2.6.2.
2.6.4 Physical or Risk Neutral Probabilities?So far we have exlusively dealt with risk neutral default probabilities. To see why thismust be so, onsider the examples in Setions 2.6.1 and 2.6.2. Here we use the risk freeinterest rate as a disount fator. This means that expeted losses must be omputed withrespet to an equivalent risk neutral probability measure, so the probabilities estimatedfrom the bond pries are the risk neutral default probabilities.From this disussion it is quite lear that the hazard rates (λ) are dependent on whihprobability measure is used, and are must be taken when swithing from a valuation toa risk management perspetive as a hange of measure means shifting the probabilitydistribution. Hull (2006) pp. 488-489 disusses some of the reasons for the di�erenebetween the risk neutral and physial default probabilities.
2.6.5 Calibrating Copula Models and the Relationship to Structural ModelsThe simplest way to estimate the orrelation parameters in a opula model is to useestimates of asset, or yet simpler, equity prie orrelations as a proxy. These an be om-puted readily from time series using built-in funtions in any standard software pakagesuh as Exel. As the ausal relationship between asset pries and default probabilitiesis somewhat weak, another and perhaps more suitable proxy is the orrelation betweenCDS spreads (see Setion 4.2 for disussion on CDS's) as the hanges in these spreadsan be interpreted as hanges in markets assessments on the likelihood of default. Theadvantage of the latter is that the orrelations are risk neutral.If the asset prie orrelation approah is taken, the normal opula approah an beshown to yield a orrelation struture equivalent to the Merton model disussed in thenext hapter if asset pries follow a geometri Brownian motion. If we let qA and qBdenote the risk neutral one-year default probabilities for assets A and B, we obtain zAand zB so that:

qA = Φ(zA) (2.6.2)
qB = Φ(zB)The joint probability of both these assets defaulting is given by:43



2.6. ESTIMATING DEFAULT PROBABILITIES
P(ZA < zA, ZB < zB) = Φ2(zA, zB, ρ)In the bivariate normal opula, the same probability looks like:

P(τA < 1, τB < 1) = C((FA(1)), (FB(1)), ρ) = Φ2(Φ−1(FA(1)),Φ
−1(FB(1)), ρ) (2.6.3)Noting that the probability of default during year one is:

qi = P(τi < 1) = Fi(1)So (2.6.3) is really:
Φ2(Φ−1(qA),Φ

−1(qB), ρ)But by (2.6.2), Φ−1(qi) = Zi whih ompletes the argument.
Using Rank CorrelationsIn Setion 2.5.3, we argued that ontrary to the Pearson orrelation oe�ient, rank or-relations are invariant under transformations suh as opula funtions, so rank orrelationmay be a more attrative measure. Hene, the rank orrelation produed by the opulamodel should be the same as for the data it is estimated from. In the Gaussian (and someother simple ases), we have simple formulas relating the two measures. If, for examplewe have measured the input data rank orrelation and want to use a Gaussian opula, wean use the relationship T = 2 arcsin(R)

π
to �nd the orrelation matrix R to use in the simu-lation algorithm. For a general opula where we don't have suh a relationship, it an beobtained numerially using simulation. This proedure gets somewhat more ompliatedif the individual orrelations are allowed to vary.

44



Chapter 3

Structural Credit Risk ModelsStrutural models are the seond of the two most widely used approahes to redit riskmodeling. The ore idea is the realization of the "option-like" feature of orporate (orsovereign) seurities due to limited liability. The appliation of option priing theory toproblems of apital struture and valuation of orporate seurity was stated by Merton(1974) in one of the earliest papers on the Blak-Sholes-Merton model.
3.1 The Merton ModelAs an illustration of the onept, we onsider �rst a simple example lose to Merton'smodel. Let A(t) denote the value of a �rm's assets at time t, and assume it follows thefollowing stohasti proess under the physial probability measure P:

dA(t)/A(t) = µdt+ σdW (t) (3.1.1)where µ and σ are onstants.Under the standard assumptions1 of arbitrage-free markets, we an restate the sameproess under the risk-neutral probability measure P̃:
dA(t)/A(t) = rdt+ σdW̃ (t) (3.1.2)We now want a preise mathematial formulation of the two laims on the total valueof this �rm, equity and debt. We will therefore make ertain simplifying assumptionsthat allow for a onvenient analytial treatment. First we de�ne the debt value at time

t, D(t, T ) as a ash �ow D at time T where D ≥ 0. Here D denotes the fae value of thedebt.1Hereunder that the �rm pays no dividend ash �ows. See for instane Goldstein et al. (2001) orDu�e (2001) for a disussion on these topis. 45



3.1. THE MERTON MODELEquity E(t, T ) is de�ned as the value of an option; the holder an hoose eitherto reeive residual E = A(T ) − D or zero at the maturity of the debt. If the equityholder hooses the zero ash �ow, debt holders reeive the entire �rm value A(T ). In thisinterpretation of the model, A(T ) < D orresponds to default. To summarize:
E(T ) =




0 if A(T ) < D

A(T )−D if A(T ) ≥ D
= max(A(T )−D, 0)

D(T ) =




A(T ) if A(T ) < D

D if A(T ) ≥ D
= min(A(T ), D) = A(T )−max(A(T )−D, 0)Under standard assumptions, equity is of ourse preisely equivalent to a Europeanall option and debt is a portfolio with a long position in the asset and a short all option.Therefore the laims an be valued by a straight-forward appliation of the Blak-Sholes-Merton formula2:

E(t) = AtΦ(d1)− e−r(T−t)DΦ(d2)] (3.1.3)with:
d1 =

ln(At

D
) + (r − σ2

2
)(T − t)

σ
√
T − t

(3.1.4)
d2 = d1 − σ

√
T − t (3.1.5)The debt value an then be found as the residual D(t) = A(t)−E(t)3.

Φ(−d2) in the above formula an be interpreted as the risk neutral probability ofdefault similar to the probability of a European all being out of the money at the timeof exerise, or AT < DT . We an show this using the properties of the Wiener proess,writing out the ondition for default using the losed form expression for the asset prieproess under P̃:
Ate

(r−σ2

2
)(T−t)+σ(W̃T −W̃t) = Ate

(r−σ2

2
)(T−t)+σ

√
T−t Z0,1 < D (3.1.6)as W̃T − W̃t ∼ Φ(0,

√
T − t ), whih an be rewritten in terms of a standard normalrandom variable Z0,1. Rearranging we get the default probability as a standard normal2Usually, the value of these laims are known as they are interpreted as the observable market priesof debt and equity. We an then use the model to imply the asset volatility σ as in Setion ??.3Throughout this thesis, we assume that apital struture does not a�et asset values. More advanedstrutural models (for instane Goldstein et al. (2001) relax this assumption. These models are lessommonly used in derivatives priing however. 46



3.2. EXTENDING THE MERTON MODELprobability:
P̃[AT ≤ D] = P̃[Z0,1 ≤ z0] = P̃

[
Z0,1 ≤

ln(At

D
) + (r − σ2

2
)(T − t)

σ
√
T − t

]
= Φ(−d2) (3.1.7)

3.2 Extending the Merton ModelThe above model is extremely simplisti with regard to the assumptions on apital stru-ture. Several ritiisms may arise:
• Defaults do not only our at maturity T.
• We need to allow for oupon payments.
• The proess A(t) is hard to estimate as it is not a traded asset.
• We may need to aount for portfolios of several assets Ai(t) that are orrelated.
• and so forth..To �x the �rst point above means onsidering equity as an Amerian derivative. Gen-erally, there are no losed form solutions to the problem of valuing �nite maturity Amer-ian derivatives, so either analyti approximations4 or numerial methods are required.The latter is disussed in Appendix B.If we are ontent with the assumption that defaults an only our at maturity, theMerton model an be extended in suh a way that we an study asset portfolios. Thisis done in the next setion. The so-alled Blak-Cox model, where defaults our oneasset values fall below a ertain threshold, is treated in the �nal setion of this hapter.

3.3 Correlations in the Merton ModelNext we onsider an approah to modeling asset portfolios in the Merton model that was�rst proposed by Vasiek (1987). Given a portfolio of assets indexed n = 1, . . . ., N , wedenote the probability of �rm i defaulting prior to the time T of its debt maturing, pd,i,whih as before is given by Φ(−d2,i). It is further assumed for simpliity that all �rms areequal, having idential apital strutures and following idential Wiener proesses underthe risk neutral measure P̃:4Suh as assuming in�nite maturity. 47



3.3. CORRELATIONS IN THE MERTON MODEL
dAi

t/A
i
t = rdt+ σdW̃ i

t (3.3.1)The approahes to modeling portfolios of orrelated assets are more or less straightforward extensions of either the single redit framework disussed so far or the Blak-Coxmodel in the next setion. Several methods for modeling the interdependenies betweenredit events are proposed:1. Diretly modeling orrelated proesses; ie. letting W̃ 1
t , .., W̃

N
t be a set of brownianmotions with dW̃ i

t dW̃
j
t = ρi,j.2. Fator models: Letting the Z i

t be the random variable (or state variable) determin-ing the time of default for asset i, Z i
t is now a funtion of a set of ommon fators

{X1, ..., Xn} a�eting, to a greater or lesser extent, all assets in the portfolio, inaddition to an idiosynrati risk fator. We an think of several maroeonomivariables that an be used as proxies in ommon fator models: interest rates, GDP(or proxies suh as stok indies), CDS spreads and so forth.3. Contagion models is another ommonly proposed method in the literature. Insteadof simply letting the asset values determine the timing of the default, we ould alsoimagine the default thresholds as orrelated random variables5.Tehnially, suh ontagion e�ets an be implemented using indiator variablesfor ertain events a�eting redit risk. Theoretially, several mehanisms an betriggered, for instane, a higher default threshold (that eventually returns to normalafter some time), inreased volatility, asset prie jumps and so forth.
3.3.1 Common Factor ModelsThe default probability of a single �rm i is given as a funtion of a standard normalvariable Xi. Therefore we an speify the orrelation struture between the �rms in theportfolio in terms of the Xi's. One approah is to use so-alled ommon fator modelswhere we introdue a set of fators Yj, j = 1, ..,M , and let Xi be a weighted sum of thesystemi risk fators Yi and a idiosynrati risk fator ǫi where Yj and ǫi are independent.For simpliity, we onsider only the single fator ase:

Xi =
√
ρi Y +

√
1− ρi ǫi (3.3.2)5For instane, the default threshold ould be inreased in a �nanial risis where short term �naningis hard to obtain, or if a major �rm in a supply hain defaults, the probability of default inreases for�rms further up the hain. 48



3.3. CORRELATIONS IN THE MERTON MODELHere Y is a global or ommon risk fator a�eting all �rms in the portfolio to variousdegrees measured by the orrelation oe�ient ρi that varies between the di�erent entitiesthus forming the struture of orrelations between �rms as the ǫi's are independent. Wean therefore think of the terms √ρi and √
1− ρi as �rm i's exposure to the systemiand idiosynrati risk fatorsWe now make two simplifying assumptions for the sake of easier notation:

• All �rms have the same orrelation ρ with the ommon fator.
• All �rms have the same default probability pd (this follows from equal dynamisand apital struture for all �rms).Consider now the onditional default probability:

pd,Y = P[Xi < x|Y ]

= P[
√
ρ Y +

√
1− ρi ǫi < x|Y ]

= P[
√

1− ρ ǫi < x−√
ρ Y |Y ]

= P

[
ǫi <

x−√
ρ Y√

1− ρ

∣∣∣Y
]

= Φ
[x−√

ρ Y√
1− ρ

]The last equality above follows from the independene between the systemi andidiosynrati risk fators. If we have some estimate of the default probability of eah �rm,that is, the individual default probabilities, pi = p, we an �nd the default thresholds
−d2 from equation 3.1.7; p = P[AT ≤ D] = Φ(−d2) whih gives d2 = Φ−1(p), so that:

pd,Y = Φ
[Φ−1(p)−√

ρ Y√
1− ρ

] (3.3.3)Equation 3.3.3 is an expression for the default probability of a �rm onditional onthe realization of the ommon fator Y expressed in terms of the ommon orrelationoe�ient between eah �rm and the systemi risk fator and the default probability ofthe �rm, both of whih are possible to estimate from market data.
3.3.2 Portfolio Loss RatesWe an now represent losses on a portfolio level by introduing a set of indiator vari-ables In, n = 1, ..., N for eah of the N �rms representing whether a �rm has defaulted.49



3.3. CORRELATIONS IN THE MERTON MODELA ounting variable S =
∑N

n=1 In denotes the number of �rms in the portfolio having de-faulted. The default rate an therefore be given as R = S/N . With the above framework,we are now interested in the distribution of R for instane given by its unonditional u-mulative distribution funtion F (r, p, ρ) = P[R ≤ r]. Several approahes are available,here divided in two. The LHP model (Vasiek (1987)) that makes a number of simpli-fying assumptions so that losed form valuation formulas are available for many of theinstruments onsidered and seondly, models with more realisti assumptions that oftenrequire numerial approahes:1. Large Homogeneous Portfolio Assume a large number of redits in the port-folio (N → ∞). R will now onverge to p (the individual, unonditional defaultprobabilities) as defaults are independent onditioned on the ommon fator, so
F = Φ(x).2. Finite or Heterogeneous Portfolios The most widely traded CDO instrumentstoday are CDO indies suh as the iTraxx and the CDS NA IG whih are singletranhe CDOs on an equally weighted portfolio of 125 referene entities. This isprobably a too small number of �rms for the law of large numbers to guaranteeaurate priing.In the ase of a heterogeneous portfolio, the referene entities have di�erent hara-teristis suh as default probabilities (above assumed to be equal), unequal weights in theportfolio, di�erent reovery rates and so forth. Under the �rst assumption it is possibleto derive analytial priing expressions involving binomial probabilities, whereas underthe seond this beomes muh more ompliated.

3.3.3 Default Rates in a PortfolioEquation 3.3.3 gives the default probability ontingent on the realization of the ommonfator Y as:
pd,Y = Φ

[Φ−1(p)−√
ρ Y√

1− ρ

]Next, we are interested in the probability distribution of defaults in a portfolio on-tingent on Y . This depends only on the idiosynrati risk fators that are independent.So if X is a random variable denoting the number of defaults in a portfolio of N assets,this random variable would have a binomial distribution haraterized by the individ-ual default probabilities pd,Y . The probability of exatly x ≤ N defaults ourring istherefore: 50



3.3. CORRELATIONS IN THE MERTON MODEL
P(X = x|Y = y) =

(
N

x

)
(pd,Y )

x(1− pd,Y )
N−x (3.3.4)The unonditional probability of exatly x defaults is therefore a probability weighted"sum" over all the possible realizations of Y .

P(X = x) =

∫

y∈ω

(
N

x

)
(pd,Y )

x(1− pd,Y )
N−xf(y)dy (3.3.5)If the systemi fator is normally distributed, then f(y) = φ(y) = d

dy
Φ(y), so we getthe umulative distribution funtion F (m) = P(X ≤ m) as:

F (x) = P(X ≤ m) =
m∑

x=0

(
N

x

)∫ ∞

y=−∞
(pd,Y )

x(1− pd,Y )
N−xφ(y)dy (3.3.6)

IllustrationThe expression 3.3.6 an be evaluated numerially using standard software pakages.Appendix C ontains a sript implementing it using a simple numerial integration shemein MATLAB.
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Figure 3.1: The density funtion for the number of asset defaults.51



3.4. THE BLACK-COX MODELAs an illustration we let p = .1 be the one year individual default probabilities thatis equal over the portfolio of N = 50 assets. Figure 3.1 shows the density funtion forthe number of defaults in this portfolio given various levels of the orrelation oe�ient
ρ. We notie that for a large ρ the right tail of the distribution is fatter, muh as onewould expet.Using this model, for instane as implemented in Appendix C, it is simple to valueredit derivatives written on a portfolio of redit derivatives. It is also appliable foromputing risk measures suh as value at risk for the underlying loan portfolio.There is one omputational issue with this model however, namely that it uses a "di-ret" method for omputing the binomial oe�ients. This may beome omputationallyburdensome and even impreise under some implementations for large portfolios. Hulland White (2004) disusses some alternative methods for evaluating suh probabilities.
3.4 The Black-Cox ModelA more "advaned" strutural model was introdued by Blak and Cox (1976) that allowsfor defaults prior to maturity. My presentation, largely based on Hull, Predesu andWhite (2006) is somewhat trunated and informal as the mathematis of this model isquite advaned and beyond the sope of this thesis. Rather, I will attempt to give aintuitive presentation aimed at a simulation-based implementation.Next we onsider the ase where defaults an our at any time t ≤ T prior tomaturity. As before, the dynamis of the asset pries are given by Equation 3.1.2, ie. ageometri Brownian motion with onstant drift r and volatility σ under the risk neutralmeasure. Time of default is now de�ned as the �rst time τ the asset value At passesbelow some threshold K, often referred to as the �rst passage time to K:

τ = inf{τ : t0 ≤ τ ≤ T |Aτ < K} (3.4.1)As in the Merton model, we want to express the default threshold at any point intime t in terms of a standard normally distributed random variable X(t) rather than thelog-normal asset prie. This involves expressing the above inequality in terms of X(t) bytaking the logarithms as shown previously. This gives the threshold for X(t):
K∗(t) =

lnK − lnA0 − (r − σ2/2)t

σwhere K is a �rm spei� onstant determining the probability of default. Letting
β =

lnK − lnA0

σ52



3.4. THE BLACK-COX MODELand
γ = −r − σ2/2

σwe obtain the default threshold as a linear equation in time: K∗(t) = β+γt. Assuminga non-stohasti default threshold K(t), the that the probability of default on a timeinterval [t, T ] is given as6:
P[t ≤ τ ≤ T ] = Φ (d1) + e2(X(t)−β−γt)γΦ (d2) (3.4.2)with

d1 =
β + γ · (T − t)−X(t)√

( T − t)

d2 =
β + γ · (2t− T )−X(t)√

( T − t)Among the main drawbaks of �rst passage models is the analytial omplexity. Thederivation of the above formula is tehnial and lengthy and therefore omitted here.Though omplex, there are several onditions under whih it is possible to derive losedform expressions for the values of orporate seurities.Among the simplest of these is debt is rolled over in�nitely. Here, orporate seuri-ties are equivalent to perpetual Amerian options. In this ase, the partial di�erentialequation desribing the option prie redues to a seond degree di�erential equation inone variable whih gives a simple algebrai solution. For an example of suh analysis, seeLeland (1994), and Goldstein et al. (2001), and referenes ited therein.
3.4.1 Specification and Solution MethodAs mentioned, a numerial approah is often neessary for �rst passage models. Thismethod takes a simple approah by drawing a set of standard normal variates [Xt1 , Xt2 , ..., Xtn]that are ompared to the default threshold K∗(t) = β + γt. For orrelation modeling, wehave the usual options suh as opulas, ommon fators and so on. Finally, it is worth-while to note that there are numerial methods by whih the model parameters an bedetermined so as to math the default probabilities on an interval [tk, tk+1] in this disreteapproximation to Equation 3.4.27.Another approah to the Amerian option valuation problem developed by Longsta�and Shwartz (2001), the least squares Monte Carlo method (LSMC), is explained inthe appendix. This method takes uses a dynami programming tehnique involving the6A similar derivation, in the ontext of Amerian option valuation is found in Shreve (2004) hapter9. 7Cf. Hull (2001). 53



3.4. THE BLACK-COX MODELmethod of least squares to determine the optimal exerise time for eah simulated priepath. Note that the optimality riterion implies a model di�erent from the above modelwith a time dependent threshold that is suboptimal. Optimal exerise by equity holdersimplies di�erent pries for orporate seurities as disussed in Leland (1994).This method is simple to implement and has many advantages when it omes tomulti-fator models. The disadvantage of this method is that to determine the optimalexerise prie for eah path requires a large number of funtion evaluations, so that preiseomputation is very time onsuming when there are many fators.
IllustrationLet us onsider a simple example to see how the Blak-Cox model an be implemented invaluing a multi-name redit derivative problem. We let t = [.25, .50, .75] be the possibledefault times. To value a redit derivative, we need to simulate redit events for aportfolio of orrelated assets at three di�erent points in time. Asset i defaults at time .25if Xi(.25) < K∗(.25). We onsider a simple model where the dynamis of the asset prieis dXi(t) = ρdY (t) +

√
1− ρ2 dǫi(t).So we are onsidering a single-fator model. As we have seen, the default thresholddetermines the individual default probabilities. The proedure is therefore similar to theMerton model, only it is repeated for the three time-steps; for eah realization of Y (t)generate ǫ1(t), ..., ǫN(t) for the N assets in the portfolio. Y (t) will now represent thesystemi, or market risk fator and ǫi(t) the idiosynrati fators for eah �rm.Next, ompute and ompare the Xi(t) to K(t), and determine the time of default asthe in�mum over t of the set Xi(t) < K(t) as de�ned in Equation 3.4.1.The default threshold is on the form K∗(t) = β + γt. We now obtain the disretizedasset prie proess as:
Xi(t) = Xi(t− 1) + ρY (t) +

√
1− ρ2 ǫi(t)

ǫi(t) = ǫi(t− 1) +
√
∆t Z0,1

Y (t) = Y (t− 1) +
√
∆t Z0,1Figure 3.2 illustrates ten orrelated paths from this simulation sheme. We an thinkof this as one realization of a portfolio of 10 assets. Eah simulation of the ten assetsrequire one simulation of the systemi fator. To value the portfolio, we learly needto repeat this proess a large number of times. The thin blue line marks the defaultthreshold. The time of default for an asset is the earliest time its path passes below thethreshold line marked by irles. 54



3.5. ALTERNATIVE STRUCTURAL MODELS
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Figure 3.2: Sample paths from Blak-Cox simulation.
3.5 Alternative Structural ModelsIn this setion we have onsidered some lassial examples of strutural models wherethe primitive state variable is the asset prie whih follows a geometri Brownian motionproess, time of liquidation equals the time of default and interest and reovery rates areonstant. Many extensions have been proposed:

• EBIT models: rather than using the asset prie as the primitive variable, someauthors suh as Goldstein et al. (2001) have proposed to let earnings before interestand taxes be a stohasti proess in turn determining, equity, debt and asset pries.Now the urrent asset prie endogenously given as the disounted expeted value offuture EBIT �ows, whih among other things allow for a more omplex relationshipbetween interest rates and asset pries.
• Stohasti interest rates. Means a more realisti term struture (disount funtion)8thus better �tting of the models to atual data. Longsta� and Shwartz (1995)develops this type of model using the Vasiek term struture model for interest raterisk where the �rm value and the interest rate follow orrelated Brownian motions.8In the examples onsidered here, the disount funtion is on the form B(t) = e−rt where r is aonstant. It is well known that this is not a realisti term struture.55



3.6. CALIBRATING STRUCTURAL MODELS
• Stohasti reovery rates. These are likely orrelated between assets; in reessionswhen the number of defaults are up, reovery rates an also be expeted to be lower.
• Liquidation proess models: Finally, rather than assuming that liquidation takesplae at the same time τ that asset values hit the lower threshold, this triggers anegotiation proess (dependent on the future asset prie path) that an either endin the �rm being liquidated or it an ontinue its operations. This is similar to debtnegotiation under Chapter 11 under the US bankrupty ode. An example of thistype of model with dynami apital struture is in Goldstein et al. (2001).Finally, it is worthwhile to expliitly some of the limitations behind the models aspresented in hapters 2 and 3. The fous of my presentation is on redit risk modeling.Issues of taxation, liquidity (market) risk, ounter-party risk and so forth are thereforeignored. Ignoring liquidity risk for bonds may be problemati in estimating default prob-abilities if the prie di�erene between risk free and risky bonds are assumed to be purelya redit risk premium.

3.6 Calibrating Structural ModelsThe strutural models introdued so far use �rm values as the primitive state variables.As this is not diretly a traded asset, we need a method for estimating the parameters ofthe equation dAt/At = µdt + σdWt. The simplest approah when equity Et is a tradedasset is to assume it is a funtion of the asset value: Et = f(t, At) with dynamis givenby the PDE:
dEt/Et = rdt+ σdWt (3.6.1)We an then apply Ito's formula:

dEt =

(
∂f

∂t
+ rAt

∂f

∂At
+

1

2

∂2f

∂t2
Atσ

2

)
dt+

∂f

∂At
AtσdWt (3.6.2)Equating the Brownian motion terms from the two preeding equations we obtain:

σEEt =
∂f

∂At

AtσA = Φ(d1)AtσA (3.6.3)Mathing the observed Êt with the theoretial equity values f(At, t), a system of twoequations in At and σA is obtained.An even simpler approah to this problem is to ompile times series data on tradedequity and debt values as well as estimates of non-traded seurities suh as bank loans.56



3.6. CALIBRATING STRUCTURAL MODELSNow the problem an be solved using standard time series tehniques suh as the GARCHmodel.
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3.6. CALIBRATING STRUCTURAL MODELS
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Chapter 4

Applications and Examples

The two lasses of models developed so far have a wide array of appliations in �nane.Here I will onentrate on two of them, valuation of redit derivatives and risk man-agement. This setion explains the valuation of three very ommon redit derivativeproduts and provides expliit mathematial formulas that an be used in valuing thesealong with the numerial models explained earlier.As my primary approah is numerial, many valuation expressions are given in termsof expeted values of stopping times or their assoiated indiator variables. These ex-pressions onvenient when translating the methods to some programming language forimplementation using Monte Carlo methods. Under some assumptions these values anbe stated analytially by evaluating the proper integrals, but that is beyond the sope ofthis thesis.This hapter is primarily intended to demonstrate how the models presented in thehapters 2 and 3 oupled with the numerial methods disussed in Appendix B an beapplied to valuing some "vanilla" redit derivatives. The valuation formulas are simpli�edversions of similar formulas found for example in Hull (2006), Hull and White (2005),O'Kane and Turnbull (2003), Elizalde (2005). The formulas used in this thesis ignoreertain issues related to day ounting, arued premia and so forth. These assumptionsare not on�it with the priing theory; it is the ash �ow struture of the instrumentsin the examples that are simpli�ed.All expetations and probabilities in this hapter are with respet to the risk neutralmeasure. To provide a transparent introdution to these instruments, we �rst onsiderthree instruments with a very simple ash �ow struture, paying a unit ash �ow atdefault, thus abstrating from issues suh as reovery rates, oupon payments, et. Aswe will see later on, the onlusions drawn in the instruments also hold up when weintrodue a slightly more advaned ash �ow struture.59



4.1. BINARY CREDIT DERIVATIVES
4.1 Binary Credit DerivativesA binary redit default swap (CDS) is a relatively simple instrument to value as thepayo� is not a variable amount, but a onstant ash �ow that is paid if the underlyingasset (alled the referene entity) defaults. This means that we only need to worry aboutissues of probability, and the ash �ow given default an without loss of generality beset to 1. We onsider two variations on this instrument; �rst a binary CDS written on asingle redit and seondly a basket binary CDS.
4.1.1 Single Credit Binary CDSA single redit binary CDS with maturity T is an instrument paying 1 · e−rτ if time ofdefault τ < T . We are therefore interested in the time to default distribution for thereferene entity. In a redued form model, this is exponentially distributed with hazardrate λ(t) and pdf f(t) = λ(t)e−λ(t), so we an state the CDS value as:

VCDS =

∫ T

0

e−rtf(t)dt

=

∫ T

0

λ(t)e−(r+λ(t))tdtIn the ase of onstant λ we get the simpler expression:
VCDS =

∫ T

0

λe−(r+λ)tdt

=
−λ

r + λ

[
e−(r+λ)t

]T
0

=
λ

r + λ

(
1− e−(r+λ)T

)If we onsider a one year ontrat with risk free rate r = .05 and λ = .10, theprie VCDS = 0.0928613. This an provide a benhmark for the simulation program inAppendix C.2. With 50,000 simulations using this program, we get VCDS = 0.09276 witha standard error 1.27e − 04, whih seems reasonable; the answer is right to the fourthdigit when rounded o�. Figure 4.1 shows a sample path of onvergene for this problemfor the number of simulations varying from 1,000 to 200,000 with the absolute priingerror1 along the ordinate axis.1Analytial prie minus simulated prie. 60



4.1. BINARY CREDIT DERIVATIVES

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−6

−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−3

Number of simulations

A
bs

ol
ut

e 
P

ric
in

g 
E

rr
or

Figure 4.1: The onvergene of the redued form simulation model for a simple singleasset priing problem.
4.1.2 Counterparty RiskConsider the same CDS, now relaxing the assumption that the issuing entity is risk free.We now wish to aount for this ounter party risk. There are three possible outomesof the transation:

• Neither entities default - zero ash �ow from the CDS.
• The referene entity defaults - unit ash �ow from the CDS.
• The issuing entity defaults prior to the referene entity - zero ash �ow from theCDS.Figure 4.2 illustrates the relationship between the one year CDS prie and the ounter-party hazard rate and the orrelation between the ounter-party and the buyer of theprotetion ontrat. As we would expet, with zero orrelation and ounter-party hazardrate, the CDS prie equals the prie from the last example. Furthermore, as the orrela-tion inreases, the impat of the hazard rate on the ontrat value inreases too. All ofthese results seem quite intuitive. 61



4.1. BINARY CREDIT DERIVATIVES
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Figure 4.2: Value of a one year CDS with ounterparty risk.
4.1.3 Binary Basket CDSIn the previous setion, we demonstrated a simulation based redued form model anddid an informal omparison with the analyti result for a very simple priing problem.Next we onsider a more omplex problem with a binary basket2 CDS that pays a unitash �ow at the time of default for the �rst �ve entities in a portfolio of 100 assets.Figure 4.3 ontains the opula simulation setion of the MATLAB implementation ofthis model from Appendix C. It will provide an illustration of a simulation algorithmusing a Gaussian opula.1 vMat=randn( noAssets , noSims ) ;vMat=Rho∗hol (Rho) ' ;3 uMat=normdf (vMat) ;defTimes=−log (uMat) /lambda ;Figure 4.3: Code from Copula Example.The �rst line generates a matrix vMat of independent Φ(0, 1) random variates whosedimensions are the number of assets in the portfolios times the number of simulations2This is similar to the �rst n of N to default seurities onsidered later on in this hapter.62



4.1. BINARY CREDIT DERIVATIVESof eah portfolio. Then the matrix is multiplied by the lower Cholesky matrix (seeAppendix B) of the orrelation matrix Rho to reate a orrelated set of random Φ(0, 1)matrix. The last two lines apply the normal df to generate the opula uMat before theinverse exponential df is applied to generate the times to default defTimes that are nowexponentially distributed aording to the orrelation matrix Rho. This is the entralpart of the simulation algorithm for the Gaussian opula model whih is the same forvaluing any instrument in a Gaussian opula redued form model. The only parts of theprogram that need to be modi�ed to value di�erent instruments are more of an ash �ow"aounting" nature.
Illustration I - Gaussian CopulaTo illustrate the tehnique, we onsider two binary basket CDS's on a portfolio of 100assets; one that pays a unit ash �ow for eah of �rst �ve referene entities to default ifthis ours prior to maturity in one year and one that provides redit protetion for the�rst 20 assets. As before, λ = .10 and the risk free rate r = .05.Figure 4.4 illustrates the relationship between prie asset orrelation. Note that prieshere are quoted in absolute values; ie. with zero orrelation, the prie of the �rst �vebasket is about 4.8804. This refers to the expeted NPV of ash �ow to the buyer ofprotetion is 4.8804.The results are as expeted; the higher the orrelation, the lower the value of thebasket. If defaults are ompletely independent, we would expet 10 defaults on theaverage over the ourse of one year with λ = .10 and portfolio size 100. If orrelationinrease, we expet to see defaults that are less sattered, and more lustering will our.In the extreme ase, if assets are perfetly orrelated, we will on average see all assetsdefault during the �rst year in 1 out of 10 simulations.
Illustration II - Comparing Copula ModelsTo see the e�et of the hoie of opula model, we an ompare the Gaussian to the t-opula for various degrees of freedom holding the other parameters of the model onstant.Figure 4.5 shows the omputed basket values for 20,000 simulations in the t-opulamodel for varying number of degrees of freedom. In omparison, the normal opulagives the value 4.3740 for the same basket. While the numbers are somewhat impreisedue to the low number of simulations (the standard error is around .010), the generalpiture is lear. A model with a low number of degrees of freedom gives a higher ostof protetion (ontrat value) for an otherwise similar portfolio. When the number ofdegrees of freedom goes to in�nity the t-distribution, as is well known from mathematial63



4.1. BINARY CREDIT DERIVATIVES
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Figure 4.4: Pries of a �rst of 5 and �rst of 20 to default binary basket CDS as a funtionof asset orrelation.Degrees of Freedom 1 2 3 4 5 6 7 8 9Basket Value 2.11 2.87 3.27 3.51 3.67 3.78 3.85 3.92 3.96Figure 4.5: Basket values for di�erent degrees of freedom in a opula model.statistis, onverges to the standard normal distribution.Now, how are we to interpret these results? In fat they are quite similar to theanalysis of the impat orrelation in the previous example. In this appliation we anview the number of degrees of freedom as a measure of how "sattered" the data is. Ahigh number of degrees of freedom means the data is more onentrated around the meansuh as is the ase for the normal distribution. For a low df. number, the tails of thedistribution are fatter, and we see more lustering.The value of a small basket, whih is similar to an CDO equity tranhe (f. Se-tion 4.4), is positively related to the default orrelation of the underlying assets. Morelustering (higher orrelations) inreases the probability of no defaults as well. In the aseof independene, the average long-run portfolio default rate is the aumulated hazardrate on the time interval onsidered.
4.1.4 Binary Collateralized Debt ObligationThe onept of a CDO is presented in some detail in Setion 4.4. Here we de�ne a binaryCDO tranhe on a portfolio of 100 referene entities as a seurity that pays 1 unit ash64



4.1. BINARY CREDIT DERIVATIVES�ow for eah default ourring from the n'th asset to default to the N'th asset to default.We use the senior tranhe as an illustration. This tranhe pays a unit ash �ow for eahdefault from the 30th asset to the last asset to default. We use preisely the same sriptas before and analyze the impats of asset orrelation and hazard rate on the prie of aone year ontrat.
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Figure 4.6: Senior CDO tranhe values agains ρ and λ.Figure 4.6 and the orresponding table in Figure 4.7 shows how the senior CDOtranhe value varies with the orrelation oe�ient ρ and the hazard rate λ. By the termtranhe value, I mean the ost of protetion for the partiular tranhe. A higher tranhevalue would therefore mean a lower value of the underlying assets, as these would bemore exposed to loss. This is a somewhat unonventional prie quotation; the standardbeing in basis points per quarter. The advantage of this quotation is that the number isan estimate of the expeted loss in a partiular tranhe whih an be used diretly forinstane in risk management and is simpler to verify.As we would expet, a higher default probability inreases the ost of the ontrat thusinreasing the value of the protetion ontrat. We also see that the ost of protetion fora senior tranhe inreases when asset orrelation in the referene portfolio is very high asthis inreases the probability of large default lusters where the default rate is su�ientlyhigh to a�et the senior tranhe. 65



4.2. CREDIT DEFAULT SWAPSAn important point here is how the sensitivity to asset orrelation varies with thehazard rate. The ost of protetion as a funtion of orrelation inreases at a steeperrate when the hazard rate is high ompared to when it is low. This seems intuitivelyreasonable; for a portfolio of high redit quality assets, a default luster ours veryrarely, even with high orrelations. For a portfolio of junk bonds, on the other hand, alarge default luster is very likely to our when orrelations are high.
λ,ρ 0 .1 .2 .3 .4 .5 .6 .7 .8 .9.05 0 0.000 0.033 0.152 0.266 0.561 0.776 1.253 1.710 2.123.10 0 0.043 0.261 0.662 1.204 1.677 2.230 2.928 3.714 4.599.15 0 0.230 0.943 1.565 2.361 3.279 4.091 4.985 5.822 6.858.20 0.0052 0.809 1.862 2.902 3.897 5.004 5.919 7.160 7.850 9.261.25 0.0897 1.793 3.162 4.389 5.473 6.684 7.951 8.921 10.497 12.038.30 0.6172 3.145 4.870 6.267 7.609 8.941 10.151 11.416 12.721 14.296Figure 4.7: Binary CDO pries for various hazard rates and orrelation oe�ients.In the setions to ome we will expand upon these examples by introduing slightlymore realisti assumptions on ash �ow strutures and reovery values. We will see,however, that many of the onlusions drawn in the simpler examples we have seen sofar still hold.
4.2 Credit Default SwapsA redit default swap is a ontrat between two parties, where where one party pays a�xed leg in return for redit protetion (also known as a �oating leg) against the default(or more generally, the ourrene of redits events) of a third party referene entity,orporate or sovereign.The �xed leg is usually paid until the ourrene of a redit event or the end of theCDS's life. For the CDS to break even, the expeted NPV of the two ash �ows mustequate. ProtetionBuyer ProtetionSellerFixed premium δ

L(τ) if τ < TFigure 4.8: Cash �ow struture of a CDS.Let L(τ) denote the amount lost given default at time τ , ps(ti) the risk neutral prob-ability of no default ourring up to time ti, r the assumed onstant interest rate, δ the�xed leg payments and [t0, t1, ...tN ] the premium payment dates, the break-even equationtakes the following form: 66



4.3. BASKET CREDIT DEFAULT SWAPS
N∑

i=1

δps(ti)e
−rti = E

[
L(τ)e−rτ

] (4.2.1)De�ning Pfloating as the value of the protetion payments (the right hand side of theabove equation), the �xed leg premium is given by:
δ =

Pfloating∑N
i=1 ps(ti)e

−rti
(4.2.2)The proedure for valuation is therefore to generate N independent default timesaording to the model of hoie (either redued or strutural) and approximate theexpeted time to default and expeted �oating payment by the averages.For single CDS instruments the whole onept of orrelation is irrelevant whih greatlysimpli�es the valuation algorithm3.

4.2.1 Numerical Example - Valuing a CDS Using a Reduced Form ModelConsider a CDS on a bond with a 6% oupon rate paid semi-annually, fae value 100 andmaturity 3 years. Let the risk free rate r = .05 and λ = .10. The loss given default isassumed to be onstant equal to 40.Assuming that �xed leg premia are paid semi-annually, this valuation model gives aprotetion leg value of approximately 10.35 and a ds spread of 0.0445. A MATLABsript implementing this example is inluded in Appendix C.
4.3 Basket Credit Default SwapsNext onsider a ontrat where an agent holds a portfolio of K assets wishes to buy apartial protetion against redit risk, that is the �rst κ < K assets to default4.By onsidering two extreme ases of asset interdependene, we an note some prop-erties about the priing of these assets. First, if assets are perfetly orrelated, eitherall or no assets default, with probabilities equal to the individual default and survivalprobability, respetively. This means that the insurane would be the same for eah �rm,ie. the ontrat prie a linear funtion of the number n of �rms proteted. With perfetindependene between defaults, insurane against the �rst default will be more expensivethan the seond and so forth, as the probability of m defaults is smaller than that of3This is atually not quite the ase. This example ignores the problem of ounter-party risk, ie. therisk of the protetion seller defaulting. To properly aount for this, we need to know the orrelationbetween the referene entity and the ounter-party4This is also sometimes referred to as an "�rst n of N to default CDS".67



4.4. COLLATERALIZED DEBT OBLIGATIONS
m+ 1 defaults.Assume that the loss given default L(τ) is equal aross �rms, ps(ti) the umulativesurvival probability up to date ti and [t0, t1, ..., tN ] are the premium payment dates asbefore. The priing equation by equating the expeted value of the �xed leg (representingthe fair value of the protetion ontrat) and the �oating leg (under the risk neutralmeasure):

N∑

i=1

δe−rtips(ti) =

K∑

k=1

E
[
L(τk)e

−rτk
] (4.3.1)Denote the right hand side of the previous equation as Pfloating, the basket premium

δ is:
δ =

Pfloating∑N
i=1 e

−rtips(ti)
(4.3.2)As we are now interested in redit events a�eting a set of assets, we need to aountfor default orrelation as well. As we shall see in the next setion, this type of ontratis atually similar to a CDO equity tranhe.

4.4 Collateralized Debt ObligationsCollateralized debt obligations funtion in a manner similar to that of the basket instru-ments disussed above. The holder of a portfolio seeks to buy protetion against lossesdue to default. But rather than buying protetion for the �rst n assets, protetion is nowbought for all assets in the portfolio. However, for several reasons5, the portfolio is soldin di�erent tranhes or slies, rather than as a whole. The buyer of a tranhe ats as aseller of protetion, and reeives a �xed ash �ow for protetion against losses within apartiular perentage range of the portfolio fae value.Tranhe Lower Bound Upper BoundSenior .15 1.0Mezzanine 2 .12 .15Mezzanine 1 .08 .12Junior .03 .08Equity 0 .03Figure 4.9: A simple CDO struture.As an illustration, onsider the equity tranhe from the CDO in Figure 4.9 that5A disussion on the rationale for tranhing is found in Du�e (2007).68



4.4. COLLATERALIZED DEBT OBLIGATIONSprovides protetion against the �rst 3% of losses in the portfolio. If the total portfolioloss is 1.5%, this amounts to a loss of 50% in the equity tranhe, while the more seniortranhes su�er no loss.The loss in eah tranhe i, Li(t), ie. the �oating leg ash �ow from the holder of thattranhe is a funtion of the upper and lower detahment points of the tranhe, denoted
Ki

L and Ki
U respetively, and the total losses on the portfolio, L(t), all measured asperentages of total initial value, P .

Li(t) =






0 if L(t) < Ki
L

(L(t)−Ki
L)P if Ki

L ≤ L(t) ≤ Ki
U

(Ki
U −Ki

L)P if L(t) > Ki
U

(4.4.1)Let δi(tj) be the �xed leg premium for tranhe i. These are usually paid on a disreteset of dates tj for j ∈ {1, 2, ..., T}. The �xed leg payments for tranhe i an then beexpressed as:
T∑

j=1

e−rtjδi(tj)The premium δi for the i'th tranhe is hosen so that �xed leg payments equal theexpeted loss.
4.4.1 Numerical Example - Merton ModelTo illustrate onsider a simple example. A CDO is written on a portfolio of 100 riskyzero-oupon bonds with a one year horizon. The risk free interest rate is assumed to beonstant (r = .03). Eah asset has a fae value 100, and the reovery rate for eah assetis onstant 40% of fae value. Eah asset has a default probability of .07, and the assetprie volatility, σ is 20%.Appendix C ontains a MATLAB sript implementing this example.Figure 4.9 on page 72 illustrates the expeted values of the di�erent tranhes for var-ious values of the orrelation oe�ient under the Merton model with 20,000 simulationsas tabulated in Figure 4.10.It is quite lear that for the given set of parameters (individual default probabilityof .07 and .20 annual volatility) that the equity tranhe bene�ts from inreased defaultorrelation in terms of a dereasing expeted loss rate. For the more senior tranhes, thee�et is opposite and more pronouned for the most senior tranhe where expeted lossrate is learly a onvex funtion of ρ. These results are very muh as expeted and arequite in line with what we see in the simpler binary CDO example. A low orrelationmeans that the loss rate will be lose to the individual default probability, so that the69



4.4. COLLATERALIZED DEBT OBLIGATIONS
ρ Tranhe 1 Tranhe 2 Tranhe 3 Tranhe 4 Tranhe 50 94.714 16.407 0.971 0.000 0.000.1 39.152 3.003 1.525 0.145 0.00360.2 23.169 3.084 2.930 0.795 0.0420.3 16.573 3.690 3.960 1.860 0.184.4 13.189 4.358 4.480 2.665 0.377.5 11.041 5.143 5.380 3.730 0.709.6 9.616 5.571 5.715 4.650 1.110.7 8.769 6.028 6.235 5.345 1.629Figure 4.10: Expeted losses in CDO tranhes under various asset orrelations. N=20,000simulations.equity tranhe will likely su�er some losses. If assets are perfetly orrelated, it is an "allor nothing" senario, whih means that in some ases all assets will default thus makingthe more senior tranhes equally exposed.

4.4.2 Correlation TradingBeause of the sensitivity of the CDO tranhes to the underlying asset orrelations, CDOtranhes have been used for hedging and betting against orrelations. To see how this isdone, onsider a trader who believes that the orrelations implied by the market prie ofa partiular CDO is too low. That would mean that the equity tranhe is under-pried(as expeted losses in this tranhe are overestimated). Similarly, the market prie of amore senior tranhe is too high (as the prie of these tranhes depend negatively on assetorrelations). An appropriate trading strategy in this situation would then be to take ashort position in the senior tranhe and a long in the equity tranhe.
4.4.3 Implications for Risk ManagementClearly, another important aspet of the orrelation issue pertains to risk management.As disussed previously, defaults our in lusters; in terms of the models here, thismeans a time varying default orrelation. If defaults under normal irumstanes arelargely unorrelated but orrelations inrease during eonomi downturns, rises, and soforth, it an be argued that using average orrelations for risk management purposes, atleast in a onstant orrelation model, is negligent of an important risk fator. Intuitively,there is reason to believe that orrelations and hazard rates are orrelated. Figure 4.6illustrates the impat of this on a senior CDO tranhe; when both orrelations and hazardrates inrease, the value of a senior tranhe plummets.The parallels to the reent eonomi risis is not hard to draw; suh e�ets should be70



4.4. COLLATERALIZED DEBT OBLIGATIONSmore pronouned for low quality redits, suh as sub-prime mortgage loans. These areborrowers with low redit quality, with high leverage, low wages and highly exposed tounemployment in the ase of a reession. In addition, when mortgages are issued withinitial "teaser rates" that are subsequently inreased, we an also expet a deterministi,time-dependent inrease in hazard rates.
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4.4. COLLATERALIZED DEBT OBLIGATIONS
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(e) Senior TranheFigure 4.9: Expeted losses in a CDO as a funtion of asset orrelation.
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Chapter 5

Summary and ConclusionEvents in the �nanial world the last few years have made the importane of reditrisk modeling and researh abundantly lear. These models are ritial to the valuationproess for redit derivatives, an asset lass that has seen an explosive growth in thepast two deades, and are an intriate part of risk management systems for �nanialinstitutions.This thesis has studied the two key lasses of redit risk models that appear in theaademi literature and in pratie. Emphasis has been put on various methods of mod-eling orrelation, issues of model implementation as well as estimation. Problems relatedto the spei�ation and measurement of orrelation in the various models have also beendisussed. It has been argued that default probabilities vary over time, whih in a re-dued form mode framework orresponds a non-onstant term struture of hazard rates.Three standard methods of estimating these term strutures have been onsidered; asimple option theoretial approah using It�'s lemma, using historial data from ratingagenies and implying the probabilities from the pries of risky assets (here bonds andredit swaps).Chapter 4 has explored the properties of many of the models presented in Chapters2 and 3 by examples of redit derivative valuation. The examples learly illustrate theimportane of hazard rates and orrelation for asset values. A key issue in most anytype of risk measurement and management is interdependene. In the ontext of reditrisk, this means default lustering or default time orrelation. It is important for valuingmulti-name redit derivatives suh as basket redit default swaps and CDOs, whih are, asshown in several of the examples in this thesis, suh as the CDO illustration in Setion 4.4.Correlation an also be important when aounting for ounter-party risk as illustratedin Setion 4.1.Finally, this thesis has also disussed the many possible extensions of the basi modelsthat have been the fous of this presentation. As of now, while there are no industry73



standard redit risk models, some theoretially very impressive models have been pro-posed that inorporate a high level of detail, in partiular within the strutural lass.Still, there will always be a ertain trade-o� between the simpliity, with respet to bothimplementation and estimation, and the degree of detail to be inluded. In onlusion,redit risk modeling is likely to remain an important �eld of researh in the years to ome,in aademia and �nanial institutions alike, as there are still problems to be solved, boththeoretially and empirially.
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Appendix A

The Black-Scholes-Merton Framework

A.1 A Model of UncertaintyThis appendix is a brief overview over some of the mathematial assumptions and resultsfundamental to the models above. It is largely based on Harrison and Pliska (1980), Hull(2006), Shreve (2004) where the topis are treated more thoroughly.To model the unertainty faed by eonomi agents about the future state of quantitiesof interest suh as asset pries or interest rate, we onsider a probability spae denoted
(P,Ft,Ω) where Ft is a �ltration on the sample spae Ω. In this thesis, Ω is assumed tobe a non-ountable or ontinuous set.The �ltration F(t) ≡ Ft is the model of the set of information about the marketvariables that is available to eonomi agents at time t. An important property to noteis that Ft ⊆ FT ⇐⇒ t ≤ T , that is that all previously revealed information is available;as we will see later on, the primary importane of this (in the models onsidered here) isfor the statistial purpose of parameter estimation.To illustrate this somewhat abstrat onept, onsider the binomial redit risk modelof Setion 2.1.1. Let's say we do not know the outome ω in the �nal period (T = 3).Without any information, we know still know that ω 6= ∅ and ω ∈ Ω. We denote this by
F0 = {∅,Ω}. After the �rst period, we know whether or not the �rm has defaulted by T =

1, so we add an additional piee of information, ω(1), to the �ltration, F1 = {∅,Ω , ω(1)}.The proess an be ontinued up to the �nal period preserving the relationship F0 ⊂ F1 ⊂
F2 ⊂ F3. This onept an be generalized to ontinuous probability spaes as in Shreve(2004) and Øksendal (2002).We de�ne asset or seurity pries Ai(t) as funtions of future unertain ash �ows;thus random variables measurable with respet to F(t). In a strutural model, equityand debt are onsidered ontingent laims on asset pries, that is, the value of the laimsare funtions of the Ai's. 75



A.2. THE WIENER PROCESS
A.2 The Wiener ProcessSo far, the disussion has entered on abstrat notions of unertainty and information,hene the next objetive is to suggest a onrete model of the how unertainty a�etsasset pries, so we introdue the notion of a stohasti proess, ie. a olletion of randomvariablesX1, X2, ..., XT , subsripts denoting the time dimension. A ommon lassi�ationof stohasti proesses is between disrete and ontinuous time proesses. A ontinuousproess is de�ned at any point in time on an interval, whereas a disrete proess is de�nedonly for a partiular set of times. Similarly, a distintion is made between ontinuousand disrete range proesses, referring to the set possible values the proess an attain.A standard one-dimensional Wiener proess denoted W (t) ≡ Wt, often referred to asa Brownian motion, is a partiular stohasti proess satisfying:

• W (0) = 0.
• Wt is almost surely ontinuous.
• Inrements WT −Wt ∼ Φ(0, T−t) for t < T are normally distributed, aumulatingone unit of variane per time unit.
• Over non-overlapping intervals [t0, t1] and [t2, t3], inrements W (t1) − W (t0) and
W (t3)−W (t2) are independent.
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A.2. THE WIENER PROCESSFrom the latter it is lear that the Wiener proess is stationary. It an be shown thata symmetri random walk1 proess will have the Wiener proess as its saling limit; thatis the random walk onverges to the Wiener proess as the time step beomes arbitrarilysmall.
A.2.1 Asset Price DynamicsThe Wiener proess W (t) does not satisfy our requirements for a model of asset priedynamis. Firstly, it an be negative with a stritly positive probability and seondly, weneed a riher model of the drift and volatility of pries. The solution is to use a so-alledIt� proess, X(t) desribed by the following stohasti di�erential equation:

dX(t) = σ(t, X(t))dW (t) + µ(t, X(t))dt (A.2.1)The above equation states that the hange in the quantity X is the sum of a deter-ministi part µ and a stohasti part ontaining a di�erential of the Wiener proess. It isimportant to note that while the notation here is quite similar to that of lassial alu-lus, the mathematial onepts di�er as W (t) is nowhere di�erentiable with respet to t.This also mean that the integral with respet to W (t) is not a Riemann integral and thatseveral standard tehniques annot be applied here. However, using a hange-of-variableformula known as It�'s lemma (f. setion A.3.1), we an arrive at most of the resultsthat required for the purposes here.An important speial ases of A.2.1 is the geometri Brownian motion (GBM) proesswith time onstant oe�ients given by:
dX(t)

X(t)
= σdW (t) + µdt (A.2.2)Now X has a onstant drift and volatility as illustrated in �gure ?? for oe�ientsfor µ = .05 and σ ∈ {.20, .25, .30, .35, .4}. Another important partiular ase is the meanreverting Ornstein-Uhlenbek proess (sometimes referred to as the Vasiek proess in�nanial appliations due to its appearane in the term struture model of the samename):

dX(t) = σdW (t) + α(β −X(t))dt (A.2.3)This proess is mean reverting towards the level β where α is a fator measuring thespeed of reversion.1A symmetri random walk proess is a disrete time, disrete range stohasti proess that an eitherinrement or derement by 1 for eah time step. Suh proesses an be used in simulation models, butusually generating ontinuous random variables are more e�ient.77



A.2. THE WIENER PROCESS
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Figure A.2: Geometri Brownian Motion PathsBefore going into some of the standard results that we will need later, I will summarizesome of the properties of the proess given by equation A.2.1 that are important for itsappliation to problems in �nane.
• On a partition P = {0 ≤ t0 < t1 < ... < tn}, the inrements (X0, Xt1−Xt0 , ..., Xtn+1−
Xtn) are simultaneously independent. This means that asset returns are indepen-dent of past returns and the urrent asset prie.

• X(t) is ontinuous for all t ≥ 0 and stritly positive for allt ≥ 0 if x0 > 0.
• When σ(t) = σ and µ(t) = µ, that is, the parameters are onstant over time,
X(t) = x0e

µ−1/2σ2+σW (t), and sine W (t) ∼ φ(0, t), X(t) is log-normally distributed;this is a simple exerise to show using It�'s lemma.
• Taking the expeted value of this we �nd that E[X(t)|F(0)] = x0e

µ−1/2σ2 .
• Asset pries have the Markov property; whih loosely means that the expetationwhen onditioning on the entire past history of pries equals the expetation when78



A.3. SOME KEY RESULTS AND ASSUMPTIONSonditioning on the urrent prie (ie. all relevant information is re�eted in theurrent asset prie).2The above properties are not in on�it with �nanial theory and the e�ient mar-ket hypothesis, and is therefore a oherent framework preluding arbitrage. There isa orrespondene between the onept of markets that are e�ient with respet to theinformation available at any point in time, and the randomness in the model. When allavailable information about ausal fators relevant to the priing of the assets in ques-tion, only future events an a�et pries - and these of ourse, will appear random unlessagents have some kind of foresight.This is not to say that it repliates the observed (dynami) behavior of asset pries.For instane, the assumption of normally distributed returns has long been ritiized,as atual asset returns, in partiular for longer time series, exhibit both exess kurtosisand skewness signi�antly di�erent from that of the normal distribution. In "normal"irumstanes, however, the normality assumption seems quite appropriate. By introdu-ing "jumps", stohasti volatility and so forth, it is a simple matter to irumvent theseproblems3.
A.3 Some Key Results and Assumptions

A.3.1 Itô’s LemmaIt�'s Lemma is, a fundamental tool for studying funtions of Wiener proesses whih ishow derivatives are modeled in this framework.Lemma A.3.1. (It�) Let X(t) denote a It� proess, and f(X(t), t) be a C2 funtion4 of
X and C1 of time t, then (letting subsripts denote partial derivatives) we have:

df = ftdt+ fXdX + 1/2fXXσ
2dt

=
(
ft + µfX + σ2

2
fXX

)
dt+ fXσdW

(A.3.1)As simple illustrations of the above equation we an show that returns are normallydistributed when pries follow a GBM. Letting dSt = µStdt+σStdWt be the equation forthe asset prie proess, and f(S) = ln(S) so that fX = 1/X and fXX = −1/X2, the byIt�'s lemma: df = (µ− 1/2σ2)dt+ σ2dWt. f(S) is here the instanvtaneous rate of returnproess on an in�nitesimal time interval.2In the notation established earlier: E[X(t)|F(0)] = E[X(t)|x0].3This applies in partiular to simulation based models, where suh modi�ations are muh simplerthan analytial models.4A funtion is Ci if it has ontinuous i'th derivatives.79



A.3. SOME KEY RESULTS AND ASSUMPTIONS
A.3.2 Arbitrage Free PricingThe �nal onept explored in this hapter is the onept of arbitrage. We begin by thede�nition of a self-�naning trading strategy:De�nition A.3.2. Self-�naning strategyLet θ be (the ash �ow from) a trading strategy, ie. some ombination of seurities:

θ(t) = ω1(t)A1(t) + ω2(t)A2(t) + ...+ ωn(t)An(t)where ωi denotes the number or portfolio weight of asset i. A trading strategy ω issaid to be self-�naning if
dθ(t) = ω1(t)dA1(t) + ω2(t)dA2(t) + ...+ ωn(t)dAn(t)Basially, this means that the only thing that an hange over time is the values Aiof the assets and the alloation of wealth ωi between assets. No ash is added to theportfolio or taken out from it.De�nition A.3.3. ArbitrageLet θ be a self �naning trading strategy. θ is said to be an arbitrage if θ(0) = 0 and

P(NPV (θ(T )) > 0) = 1 for t ≥ 0.The above de�nition of an arbitrage is a trading strategy that has zero ost initiallyand is set up so that it yields a risk free, positive ash �ow at some future time.Under the assumption that agents an take any position in the set of traded assets, amodel would be ontradition if it would allow for an arbitrage; if suh a trading strategywould exist, it would be possible to take a position so as to obtain an in�nite ash �ow.This would learly lead to a inoherent priing framework. Therefore we wish to speify amarket model that preludes arbitrage. To summarize, we have the following assumptionsthat underly the Blak-Sholes-Merton model:
• Existene of a risk free asset.
• Trading, both of the underlying asset and the risk free, takes plae in ontinuoustime, ie. the asset prie A(t) an at any time be exhange for the same amount ofmoney.
• Investors an take any position in any traded asset.
• Assets are perfetly divisible.
• Absene of arbitrage. 80



A.3. SOME KEY RESULTS AND ASSUMPTIONSAn impliation of the above assumptions is that any derivative instrument on anytraded asset an be hedged by onstruting a portfolio of the primitive assets, whoseprie must equal the prie of the derivative. A market in whih any future ash �ow anthusly be hedged is termed a omplete market. Under all but ertain tehnial onditions,this an be shown to be equivalent to the existene of a unique risk neutral probabilitymeasure.Under this probability measure, expeted ash �ows are be valued by disounting atthe risk free rate (rather than at a risk-adjusted rate). This key result is known as thefundamental theorem of arbitrage-free priing. It follows from it that there exists a stateprie or a single prie for an Arrow-Debreu laim5 that an be used for disounting ash�ows for any possible event or state future of the world. This notion plays a key rolein redued form redit risk models used in orporate �nane (see for instane Leland(1994)).The equivalent risk neutral measure P̃ is haraterized by the following properties:
• Letting P denote the atual or physial probability measure, P̃(ω) = 0 ↔ P(ω) = 0.This is the equivalene part; the two measures agree on whih events have zeroprobability.
• The present value g(t) of a laim to ash �ow g(T ) at a future date T is given bythe produt of the risk free disount fator (or zero oupon bond prie), P (t, T )and the expeted ash �ow under P̃:

g(t) = P (t, T )Ẽ(g(T )) (A.3.2)This key onept is also used extensively in the redued form models developedlater on as it does not require any partiular assumptions on asset dynamis; it willalso hold for lattie (bi- and multinomial) disrete time models as well.
• The above an also be stated in terms of the priing kernel of the eonomy orstohasti disount fator whih is tehnially the Radon-Nikodym derivative of P̃with respet to P:For a omplete disussion of the topis of this appendix, the reader is referred to thelassi artile on the subjet by Harrison and Pliska (1981) or textbooks by Du�e (2001),Shreve (2004) or Hull(2006).5An Arrow-Debreu state ontingent laim is a �nanial instrument that pays a unit ash �ow giventhe realization of a partiular future state of the world. This is a theoretial onept that is omparable,but not equivalent to a digit option. 81
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Appendix B

Monte Carlo SimulationThis setion will brie�y desribe the numerial methods that are used to implement anextended version of the strutural model developed earlier to allow features suh as for�nite maturity debt, more sophistiated strutures of orrelation and interest rate risk.A entral result in stohasti alulus, Girsanov's theorem, states that a stohastidi�erential equation have an equivalent representation as a partial di�erential equation(PDE). This is an important tehnique in �nanial theory; it is for instane the tehniqueused by Blak and Sholes to derive their option priing formula. Furthermore it is oftenused for losed form solutions to strutural models.There are however ertain problems with this approah. Both deriving and solvingthese equations is quite demanding. With respet to the solutions part, there are ahandful of numerial methods available, but these are often di�ult to implement, inpartiular when dealing with problems of higher dimensionality suh as when dealingwith multi-name redit derivatives. A muh simpler and more intuitive approah forsuh problems is to use Monte Carlo simulation.
B.1 The Basic ConceptMonte Carlo simulation is a tehnique for approximating the solution y to a problem thatan be stated on the form y = E[X ] where X is some random quantity whih means thatthe solution an be reahed using arti�ial sampling experiments.So while a stok option an (usually) be pried faster by solving the BSM PDE withthe appropriate boundary onditions, this method provides little information about thedistribution of returns whih is of key interest in portfolio and risk management problems.To illustrate the onept, onsider a European all option C(St, t, K) = max(St−K, 0)on a geometri Brownian motion St = S0 exp[(µ − 1/2σ2)t + σWt] with Wt =

√
t Z0,1.The approah is then to simulate a vetor of standard normal variates, ompute the prie83



B.1. THE BASIC CONCEPT
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Figure B.1: Priing error (relative to Blak Sholes prie) in a naive Monte Carlo method.
Si
t for eah realization i aording to the above formula, then the option pries C i foreah realization. The estimate of the option prie V (C) is then given as the arithmetiaverage over the set of option pries:

V (C) =
1

n

n∑

i=1

Ci ≃ E[C] (B.1.1)
B.1.1 Error Bounds and Rate of Convergence for Monte Carlo AlgorithmsMonte Carlo algorithms di�er in an important way from other simulation algoritms. AsMonte Carlo methods rely on random sampling, it is not possible to give preise the errorbounds as a funtion of the number of operations performed. Instead we have to relyon probabilisti statements about the error bounds based on what we know about thesampling distribution. Alternatively, if we are onsidering a partiular implementation,it is of ourse possible to store the mean value (whih is what we are usually interestedin) and the deviations from the mean in eah simulation for an error estimate.Using the entral limit theorem from probability theory, it is not hard to see that thestandard Monte Carlo method has square root onvergene, in the sense that in order to84



B.1. THE BASIC CONCEPTredue the standard deviation of the solution, a quadrupling of the number of simulationsis neessary. Square root onvergene is onsidered slow, so usually variane redutiontehniques suh as sampling antitheti paths or low-disrepany sequenes are employed.For a disussion of suh methods, see Brandimarte (2006).
B.1.2 Correlation in Monte Carlo SimulationOne of the attrative features of the Monte Carlo method is that it allows for a largenumber of ways, ranging from the simple and intuitive to the highly sophistiated, totreat the of ovariation between the proesses of interest.The perhaps most obvious way of simulating orrelated stohasti proesses is tospeify the variane-ovariane matrix Σ of the assets in the portfolio whose entries σijis the ovariane between assets i and j, and σii is the volatility from the SDE governingthe dynamis of asset i. We note that Σ is positive de�nite, symmetri and diagonallydominant. This is important for an algorithm used later on.
Factor ModelsClearly, any given struture of interdependene between the assets of a portfolio anthusly be spei�ed by a listing of all the σij 's, but this is often inonvenient, and onewould instead be inlined to explain orrelation through a set of systemi fators. Thereare at least two good reasons for this; �rstly, the assets may be of suh a nature thatit is hard to obtain a good estimate of the σij , suh as may be the ase if the portfolioonsists of non-traded assets. Seondly, the systemi fators often lend themselves to ameaningful eonomi interpretation as they an often be identi�ed as interest rates, GDP,and so forth. Of ourse, this will also mean that the number of parameter estimates anbe redued.In a general fator model, with Yi denoting the realizations of the systemi fators,
ρi, j a onstant that gives the exposure of asset j to fator i, and ǫj an idiosynratifator, the realization of a random variable Xj is on the form:

Xj = ρ1Y1 + ρ2Y2 + ... + ρnYn + ǫj (B.1.2)The next setion onsiders some methods for determining the weights aording tothe orrelations of an asset j to the set of fators {Yi}.85



B.2. THE LSMC ALGORITHM
Generating Correlated PathsCorrelated random variates annot be generated diretly from the variane-ovarianematrix using most standard random number generators. We therefore develop a simplealgorithm for solving this.Let Σ = [ρi,j] be the N×N orrelation matrix. For simpliity we assume that ρi,j = ρif i 6= j and 1 otherwise. The Cholesky deomposition1 of Σ is given by:

Σ = U ′UHere U is an upper triangular matrix and U ′ denotes its transpose whih is of ourselower triangular. Consider a standard normal random vetor Z ∈ R
N . We an transformthis to a Φ(µ,Σ) random vetor X∗ where µ denotes the mean vetor, by the followingproedure

X∗ = µ+ U ′
Z (B.1.3)

B.2 Longstaff and Schwartz’s Algorithm for American OptionsThe Longsta� and Shwartz method, sometimes referred to as least-squares Monte Carlosimulation (LSMC), an be thought of as a partiular dynami programming approahthat simpli�es priing of Amerian derivatives. The problem of valuing Amerian deriva-tives is reurring in many appliations of mathematial �nane outside of stok optionpriing hereunder strutural redit risk models under some assumptions on the defaultthreshold and real options valuation.Dynami programming involves the breaking up of a large problem into smaller sub-problems for whih we have simple solution methods. The key problem in Amerianoptions valuation is determining the optimal exerise boundary. In the LSMC method,we determine the optimal ourse of ation (exerise vs. ontinue) bakwards (in time)along the set of prie paths to determine the option value. In this respet the LSMCapproah is similar to the the other numerial methods suh as �nite di�erenes, andbinomial and multinomial (lattie) methods.What separates the LSMC method is the omputation of the ontinuation value;whereas this is a trivial issue in the binomial model, a ontinuous time setting requiresa more sophistiated approah. This is of ourse where the least squares part of the1When a matrix A is symmetri positive de�nite, it an be shown that there is a unique matrix
U satisfying A = U ′U . There are other general deomposition algorithms that hold for matries thatare not positive de�nite. See Cheney and Kinaid (2007) for a bakground on the Cholesky and otherdeomposition methods. 86



B.2. THE LSMC ALGORITHMalgorithm omes in. When the prie paths are simulated under the risk neutral measure
P̃, we estimate the ontinuation value at eah point in time t as a funtion of the set ofstate variables at time t− 1 using the least squares method.
IllustrationTo illustrate the above, onsider an option on a single asset S and let

St−1 = [S1(t− 1), ..., Sn(t− 1)]be the vetor of pries generated for the time t−1. Similarly, we denote the option valuesat time t
Xt = [X1(t), X2(t), ...,n (t)]that may ome either from the boundary onditions or the preeding step of this algo-rithm. Assume f is the vetor valued funtion desribing the relationship between optionpries and the preeding pries of the underlying asset: X(t) = f(S(t − 1)). For sim-pliity, assume is on the form f(S) = 1 + S + S2 + ... + Sm. The following expressionresults:
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(B.2.1)Or in shorthand vetor notation: Xt = St−1A where A is the unknown vetor ofoe�ients for the polynomial funtion f . If m > n the above system is overdetermined.Due to perturbations in the data, the system is likely to be inonsistent. Hene, insteadof trying to the system as stated above, we instead solve the orresponding system ofnormal equations for the least squares problem whih always has a unique solution:
S
T
SA = S

T
XThere are routines for this in most software pakages. The result is a vetor ofoe�ients A = [a1, ..., am] that are the oe�ients in the funtion f(St) that is thepreditor funtion for the ontinuation value. So for eah simulated prie Si(t), theontinuation value is omputed as f(Si(t)) = a0 + a1Si(t) + ...+ an(Si(t))

m.
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Appendix C

MATLAB Code from ExamplesThis appendix inludes MATLAB sripts implementing some of the models used in theexamples. They are inluded to provide a di�erent statement of the models presentedhere and are thus prototype models not illustrations of how these models would be im-plemented in pratie. For some bakground on the implementation of priing models,see Joshi (2008). Some of the sripts must be split into two separate m-�les in the samefolder for them to run.
C.1 Defaults Distribution%% s t a r t defProb .m2 funtion probs = defProb (N, p , rho )% omputes the p r o b a b i l i t i e s o f x d e f a u l t s4 % where x runs from 0 to N in a p o r t f o l i o o f N a s s e t sprobs=zeros (N, 1 ) ;6 yva l s =−100: .01:100;ondProbs=normdf ( ( norminv (p)−sqrt ( rho ) ∗ yva l s ) /sqrt(1− rho ) ) ;8 for x=1:Nbin=nhoosek (N, x ) ;10 i n t e g r a l=bin∗trapz ( yvals , ( ondProbs .^x ) .∗((1− ondProbs ) .^ (N−x ) ) .∗normpdf ( yva l s ) ) ;probs ( x )=i n t e g r a l ;12 endend14 %% end defProb .m%% s t a r t por t fRa te s .m2 % g i v e s a few p l o t s from the prev ious fun t i on defProb89



C.2. BINARY CDS EXAMPLE% with var i ous rho ' s4 lear a l l ; lose a l l ;6 format longhold on ;8 grid on ;p=.10;10 N=50;12 rho=0;14 plot ( defProb (N, p , rho ) , ' LineWidth ' , 2 ) ;rho =.2;16 plot ( defProb (N, p , rho ) , '−rx ' , ' LineWidth ' , 2 ) ;rho =.5;18 plot ( defProb (N, p , rho ) , '−go ' , ' LineWidth ' , 2 ) ;rho =.7;20 plot ( defProb (N, p , rho ) , '−kv ' , ' LineWidth ' , 2 ) ;22 legend ( ' \ rho=0 ' , ' \ rho=.20 ' , ' \ rho=.50 ' , ' \ rho=.70 ' ) ;xlabel ( 'Number o f De fau l t s ' )24 ylabel ( ' P r obab i l i t y ' )26 %% end por t fRa te s .m
C.2 Binary CDS Example1 %baske t ds s  r i p tfuntion p r i  e=basketCDS( rho )3 %randn ( ' seed ' , 0 )format long ;5 lambda=.1;T=1;7 s t eps =1000;r =.05;9 noAssets =100;noSims=1;11 basketLimit=20;13 tVe=linspae (0 ,T, s t eps ) ;d i sount=exp(−r∗ tVe ) ;15 Rho = repmat ( rho , noAssets , noAssets ) ;90



C.3. CDS EXAMPLE17 for i =1: noAssetsRho( i , i ) = 1 ;19 endRho = hol (Rho) ' ;21 vMat=randn( noAssets , noSims ) ;23 vMat=Rho∗vMat ;uMat=normdf (vMat) ;25 defTimes=−log (uMat) /lambda ; f s =0;27 for i =1:noSimsth i sPath=defTimes ( : , i ) ;29 th i sPath=sort ( ( th i sPath ( thisPath<T) ) ) ;th i sPath=thi sPath ( 1 :min( length ( th i sPath ) , basketL imit ) ) ;31 thisCF=sum(exp(− r∗ th i sPath ) ) ; f s= f s+thisCF ;33 endp r i  e= f s /noSims35 end
C.3 CDS Example% ds p r i  i n g s  r i p t2 T=3; % matur i ty4 timeSteps =1000; % po s s i b l e d e f a u l t da t e sdt=T/ timeSteps ;6 tVet=dt : dt :T;r =.05; % r i s k f r e e ra t e8 ouponTimes= [ . 5 , 1 , 1 . 5 , 2 , 2 . 5 , 3 ℄ ; % premium payments da t e slambda=.10; % hazard ra t e10 f a  e =100;lgd =40; % l o s s g iven d e f a u l t12 N=500000; % number o f s imu la t i onsdefT=ones (N, 1 ) ∗T; % time o f d e f a u l t in eah s imu la t i on14 % ( se t to matur i ty i f no d e f a u l t ours )16 pd=1−exp(−lambda∗ tVet ) ;18 x=rand (N, 1 ) ; 91



C.4. DEFAULT BASKET20 % ompute d e f a u l t p r o b a b i l i t i e s and p r i  e p r o t e  t i on l e gprotet ionCF=zeros (N, 1 ) ;22 for i =1:Ni f x( i )<pd (end)24 t=find ( x ( i )<ps , 1 ) ;defT ( i )=t ∗dt ;26 protet ionCF ( i )=lgd ∗exp(−r∗ t ∗dt ) ;end28 end30 p ro t e  t i on=mean( protet ionCF )ps=exp(−lambda∗ouponTimes) ;32 d i sount=exp(− r∗ouponTimes) ;34 % pr i  e f i x e d l e g and ge t ds spreadf i x ed=pro t e  t i on /(sum( d i sount .∗ ps ) ) ;36 dsSpread=2∗ f i x ed / f a  e
C.4 Default Basket1 % Simple CDO tranhe /N−th to d e f a u l t CDS Gaussian opu la p r i  i n g s  r i p t .% Returns f l o a t i n g l e g ash f l ow f o r the tranhe s t a r t i n g at ' a t tah ' andending3 % at ' detah ' .5 randn( ' seed ' , 0 ) % re s e t random va r i a b l e generator7  =.05; % oupon ra t er =.05; % r i s k f r e e ra t e9 rho =.9; % as s e t  o r r e l a t i o nN=5; % Number o f f i rms11 NoSims=10000; % Number o f s imula ted pathslambda=.1; % de f a u l t i n t e n s i t y13 attah =.0; % attahmentdetah =.03; % detahment15 T= 5 ; % Time to matur i tydt =.5; % Coupon da te s17 n=100; % Not iona l p r i n  i p a lRe=60; % Reovery19 lgd=n−Re ; % Loss g iven d e f a u l t21 tVe=0:dt :T; % ve tor o f oupon da t e s92



C.4. DEFAULT BASKETdisount=exp(− r∗ tVe ( 2 :end) ) ; % r i s k neu t r a l d i s oun t ve to r23 allCTs=repmat ( tVe ,N, 1 ) ; % matrix o f oupon da t e s25 %o r r e l a t i o n matrix ,  h o l e s k y deomposi t ionrhoMat=rho∗ones (N,N)+diag ((1− rho∗ones (N, 1 ) ) ) ;27 rhoChol=hol ( rhoMat ) ' ;29 % i n i t i a l i z e v a r i a b l e s to ho ld ' aumulated ' l o s s f o r eah s imu la t i onto tF loa t =0;31 % simu la t e  o r r e l a t e d d e f a u l t t imes33 nCorr=normdf ( rhoChol∗randn(N, NoSims ) ) ; % use d f to  rea t e opu latDef=−log(1−nCorr ) /lambda ; % use in v e r s e exp . d i s t d f to ge t d e f a u l t t imes3537 for i =1:NoSims39 th i sPath=tDef ( : , i ) ; % get r e s u l t s from s imu la t i on i from tDefthisMod=repmat ( thisPath ,1 , 2∗T+1) ; % matrix to ompare41 % de f a u l t t imes to oupon da t e slossMat=thisMod<allCTs ; % binary matrix o f d e f a u l t i n d i  a t o r s43 % at eah oupon date ( v e  t o r s ) : %perentage l o s t45 % the perentage o f l o s s e s taken by eah tranhe% ab so l u t e l o s s e s , and remaining tranhe no t i ona l :47 ptLoss=sum( lgd∗ lossMat ) /(n∗N) ;tranheLossPt=max( ptLoss−attah , 0 )−max( ptLoss−detah , 0 ) ;49 tranheLossAbs=tranheLossPt ∗n∗N;no t i ona lL e f t=n∗N∗( detah−attah−tranheLossPt ) ;51 % temporary  a l  u l a t i o n s53 tempPtloss =tranheLossPt ( 2 :end)−tranheLossPt ( 1 :end−1) ;temp =n∗N ∗ tempPtloss ;55 % add va lue f o r t h i s s imu la t i on to t o t a l57 to tF loa t = totF loa t + sum( d i sount .∗ temp) ;end59 % ompute average61 f l o a t i n g=totF loa t /NoSims
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C.5. CDO EXAMPLE
C.5 CDO Example%% s t a r t runTest .m2 S0=100; pd=.07; mu=.05; sigma=.2; r =.05; T=1; N=100; rho =.7; reovery =.4;4 noSims=20000;t ranheLoss0=t e s t ( S0 , pd ,mu, sigma , r ,T,N, 0 , noSims , reovery ) ;6 tranheLoss1=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 1 , noSims , reovery ) ;t ranheLoss2=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 2 , noSims , reovery ) ;8 tranheLoss3=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 3 , noSims , reovery ) ;t ranheLoss4=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 4 , noSims , reovery ) ;10 tranheLoss5=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 5 , noSims , reovery ) ;t ranheLoss6=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 6 , noSims , reovery ) ;12 tranheLoss7=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 7 , noSims , reovery ) ;14 t l s =[ tranheLoss0 ; t ranheLoss1 ; t ranheLoss2 ; t ranheLoss3 ; t ranheLoss4 ;t ranheLoss5 ; t ranheLoss6 ; t ranheLoss7 ℄16 for i =1:5figure ( i ) ; grid on ;18 plot ( [ 0 , . 1 , . 2 , . 3 , . 4 , . 5 , . 6 , . 7 ℄ , t l s ( : , i ) , '−x ' , ' l i n ew id th ' , 2 ) ;xlabel ( ' Cor r e l a t i on Co e f f i  i e n t \ rho ' ) ;20 ylabel ( ' Expeted Loss ( perent ) ' ) ;end22 %% end runTest .m%% s t a r t t e s t .m2 funtion t ranheLoss=t e s t ( S0 , pd ,mu, sigma , r ,T,N, rho , noSims , reovery ) ;4 % reovery= presen t va lue o f reovered fae va lue6 detahments=[ .03 , . 0 8 , . 1 2 , . 1 5 , 1 ℄∗100 ; % detahment po in t s ( upper )8 k=norminv (pd ) ;Y=randn( noSims , 1 ) ;10 tranhes =[3∗ones ( noSims , 1 ) 8∗ones ( noSims , 1 ) 12∗ones ( noSims , 1 ) 15∗ones (noSims , 1 ) 100∗ones ( noSims , 1 ) ℄ ;12 for i =1:noSimsep s i l on=randn(N, 1 ) ;14 noDefau l t s=0;for j =1:N16 x=sqrt ( rho ) ∗Y( i )+(1−sqrt ( rho ) ) ∗ ep s i l on ( j ) ;94



C.5. CDO EXAMPLEi f x<k18 noDefau l t s=noDefau l t s +1;end20 end % a l  u l a t e d e f a u l t s22 %% tranhes :24 i f noDefau l t s∗(1− reovery ) < detahments (1 )t ranhes ( i , 1 )=tranhes ( i , 1 )−noDefau l t s∗(1− reovery ) ;26 e l s e i f noDefau l t s∗(1− reovery ) < detahments (2 )28 tranhes ( i , 2 )=tranhes ( i , 2 )−noDefau l t s∗(1− reovery )+detahments (1 ) ;t ranhes ( i , 1 ) =0;30 e l s e i f noDefau l t s∗(1− reovery )<detahments (3 )32 tranhes ( i , 3 )=tranhes ( i , 3 )−noDefau l t s∗(1− reovery )+detahments (2 ) ;t ranhes ( i , 1 ) =0;34 tranhes ( i , 3 ) =0;36 e l s e i f noDefau l t s∗(1− reovery )<detahments (4 )t ranhes ( i , 3 )=tranhes ( i , 3 )−noDefau l t s∗(1− reovery )+detahments (3 ) ;38 tranhes ( i , 1 ) =0;t ranhes ( i , 2 ) =0;40 tranhes ( i , 3 ) =0;42 e l s e i f noDefau l t s∗(1− reovery )<detahments (5 )t ranhes ( i , 5 )=tranhes ( i , 5 )−noDefau l t s∗(1− reovery )+detahments (4 ) ;44 tranhes ( i , 1 ) =0;t ranhes ( i , 2 ) =0;46 tranhes ( i , 3 ) =0;t ranhes ( i , 4 ) =0;48 end50 end %fo r52 tranheLoss=(1−mean( t ranhes ) . / detahments ) ∗100 ;% re turns l o s s e s in pt o f i n i t i a l va lue s54 end56 %%end t e s t .m
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