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Abstract—Compared to battery-powered wireless nodes having4
a constant but limited power supply, wireless nodes having energy5
harvesting (EH) capability may greatly prolong the network’s6
sustainability. However, the energy usage policies (EUPs) have7
to be carefully designed according to the characteristics of the8
random power supply gleaned from the environment. In this9
paper, we carry out the outage analysis of a point-to-point (P2P)10
network relying on an EH transmitter, which has a finite energy11
buffer (EB) for transmission over a fading channel when having12
random energy arrival rates. A discrete Markov chain (DMC)13
model is proposed for characterizing the energy state of the EB,14
which is then used for quantifying the outage probability (OP)15
over the fading channels. Then, we propose both a novel 2-D and a16
low-complexity 1-D search algorithm for finding the specific EUPs,17
which are capable of minimizing the OP for the P2P network18
considered. It is shown that the EUP found by both algorithms19
outperforms the state-of-the-art EUPs disseminated in the open20
literature. Furthermore, we consider a multiple-access network21
having M EH-aided sources, where we propose a distributed22
EUP optimization (DEUPO) algorithm and then minimize the OP23
relying on the local optimization of each EH-aided source.24

Index Terms—Energy harvesting (EH), Markov chain, outage25
analysis, outage minimization.

26

I. INTRODUCTION27

28 IN practical scenarios such as wireless sensor networks29

(WSNs), it is challenging to replace the nodes; hence,30

the network’s operation is energy constrained, which is of-31

ten formulated as having a limited lifetime [1]. One way of32

circumventing this problem is allowing the nodes to harvest33

energy from the environment. If a harvested energy source is34

permanently available, the transceiver can be powered perpetu-35

ally, which fundamentally changes the wireless system design36

compared to the classic energy-constrained design relying on an37

energy source storing a limited amount of energy in batteries.38

Furthermore, based on the periodicity and magnitude of the39
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harvested energy, the transceiver may adjust its energy usage 40

policy (EUP) to improve certain network performance metrics, 41

such as the throughput or outage probability (OP). The EUP 42

may be defined as the “The policy determining the transmitting 43

power and the transmission rate, given the availability of the 44

knowledge on the amount of energy in the energy buffer, the 45

channel statistic information (CSI) as well as the noncausal 46

energy harvesting information (EHI) characterizing the energy 47

arrival rate at the transmitter.” 48

In this paper, we investigate both the effects of random 49

energy arrival and of the EUP design on the OP of wireless 50

energy harvesting (EH) networks. Recently, the EUP design of 51

EH networks has become a hot research area. Various schemes 52

have been proposed in the literature [2]–[9] to improve certain 53

performance metrics in a particular network topology, relying 54

on different assumptions of the energy arrival rates, as well 55

as on the knowledge available at the wireless transceivers for 56

optimization. 57

Under the idealized simplifying assumption of having both 58

noncausal channel-state information (CSI) about the CSI to be 59

encountered in the future and about the EH information (EHI) 60

characterizing the energy arrival rate at the transmitter, in [2] 61

and [3],1 the optimal offline EUPs were designed for point-to- 62

point (P2P) networks using either the throughput maximiza- 63

tion or the file-transfer completion-time minimization as the 64

optimization objective function (OF). Later on, the authors in 65

[10] proposed the recursive geometric waterfilling algorithm for 66

solving the same problem, where more efficient recursive com- 67

putations were used for finding the optimal solutions. In [4], the 68

authors modeled both the uncertainty of the energy arrival rate 69

and that of the data arrival rate, where the transmission rate to be 70

used was determined by minimizing the average data-buffering 71

delay as the OF. 72

When the instantaneous CSI is not available at the transmit- 73

ter, having an outage is unavoidable for fixed-rate applications, 74

and the resultant OP of a P2P-EH network was investigated in 75

[5]–[9]. The OP analysis and OP optimization techniques may 76

be categorized into two subclasses according to the knowledge 77

of both the energy arrival rates and the mathematical framework 78

that they adopt; specifically, the first category of contributions 79

recommends the employment of time-variant policies [5], [8], 80

[9]. These authors followed the mathematical framework in [2] 81

1In [2] and [3], the terminology of “transmission policy” was used to
represent the policy of using the harvested energy in the energy buffer (EB).
However, the transmission policy terminology may be interpreted more widely,
such as rate adaptation, multiple-access policy, etc. Therefore, to avoid ambi-
guity, we use the terminology of “EUP” throughout the paper.
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and [11], which adopted the directional waterfilling algorithms82

under EH-causality constraints2 for offline EUP design com-83

plemented by the stochastic dynamic programming in online84

EUP design. The time-variant policy implies the fact that the85

energy usage would be adapted by relying on the idealized86

simplifying assumptions of having the a priori knowledge of87

the instantaneous energy arrival rates. The second category of88

EUPs recommends time-invariant policies for the long trans-89

mission durations routinely encountered in WSNs, which ex-90

hibit low computational complexities [6], [7]. The terminology91

of a time-invariant policy reflects the fact that it does not rely92

on the idealized knowledge of the instantaneous energy arrival93

rate, regardless of whether the energy dispensation is designed94

according to the statistical information of the energy arrival [7]95

or not [6]. In this case, the EUP may be defined as the “The96

policy determining the transmitting power, given the amount97

of energy in the energy buffer and the statistical information98

of the channel model.” Against this backcloth, in this treatise,99

we aim for filling the gap between the high-complexity time-100

variant EUPs and the low-complexity state-of-the-art time-101

invariant policies, by considering scenarios having a practical102

finite EB. As we will show in this paper that the EUPs in the103

literature [6], [7] did not exploit the EB’s state and achieved104

a suboptimal OP performance. Hence, we propose a range105

of meritorious methods for improving the OP performance,106

which fall into the time-invariant category to impose a low107

computation complexity by relying merely on the knowledge108

of the average energy arrival rate.109

As an evolution of research in the subject area of P2P-110

EH networks, the recent contributions on EH strategy design111

also cover multiple-access EH networks [6], [12]–[15]. In [12],112

Yang and Ulukus investigated the optimal packet scheduling113

problem in the context of a two-user fading multiple-access114

channel. In [15], Wang et al. developed optimal energy schedul-115

ing algorithms for a generalized M -user fading multiple-access116

channel relying on EH, to maximize their OF constituted by117

the network’s sum rate, stipulating the idealized simplifying118

assumption that the side information of both channel states119

and EH states are known for a certain number of time slots120

(TSs), where both the battery capacity and the maximum energy121

consumption during each TS are finite. To the best of our122

knowledge, the OP minimization problem of a generalized123

M -user fading multiple-access channel is, however, an open124

problem. Against this background, the novel contributions of125

this paper are as follows.126

1) An analytical framework based on a discrete Markov chain127

(DMC) is proposed for modeling the EB status, for the128

sake of investigating the OP of a P2P-EH network, inAQ2 129

which an EH source node (EH-SN) equipped with a finite130

EB transmits to a destination node (DN). Given the EB’s131

2The EH-causality constraint refers to the fact that, at any time, the
transceivers can only utilize the energy that was harvested during the past and
the energy not harvested as yet is hence unavailable for usage. Taking into
account the causality constraints imposed on the energy usage, the energy can
only be saved and used in the future. Therefore, the waterfilling algorithm is
redesigned as a directional one, which allows the energy flow only to take place
from the past to the future.

size and assuming a certain probability distribution func- 132

tion (PDF) for the energy arrival rate, the OP is derived for 133

arbitrary EUPs. 134

2) We investigate the optimal EUP conceived for minimizing 135

the OP of a P2P-EH network. Based on our proposed ana- 136

lytical framework, we show that constructing an exhaus- 137

tive search for finding the optimal EUP for minimizing 138

the OP is impractical, owing to its excessive complexity, 139

because it scales with (Lmax)!, where Lmax is the number 140

of states in the DMC. Therefore, a heuristic 2-D search 141

(2D-search) algorithm is proposed for finding a meritori- 142

ous EUP; we demonstrate that the proposed algorithm is 143

potentially capable of finding the EUP at a manageable 144

complexity.3 145

3) Nonetheless, the 2D-search algorithm conceived still ex- 146

hibits a high complexity; hence, we also propose a low- 147

complexity 1-D search (1D-search) algorithm. We will 148

demonstrate that the OP of the 1D-search algorithm is 149

close to that of its 2D-search counterpart, which may be 150

attractive for applications relying on low-cost hardware, 151

such as mobile phones and wireless sensors. 152

4) We extend the proposed DMC framework to more general 153

nonorthogonal EH networks. In contrast to the P2P sce- 154

nario, the outage events of practical EH-SNs tend to be 155

correlated. As an attractive application scenario, we will 156

investigate the OP of maximum-likelihood (ML) detection 157

in the context of spatial-division multiple-access (SDMA) 158

networks, we will decompose the OP by approximat- 159

ing it as multiple independent outage probabilities, each 160

corresponding to a simple P2P-EH-network subproblem. 161

Finally, we will propose a distributed EUP optimization 162

(DEUPO) protocol, where each EH-SN is capable of 163

optimizing its own policy using both the local statistics 164

of the fading channel and the related energy arrival model. 165

The rest of this paper is organized as follows: In Section II, 166

we first discuss the EUPs found in the literature and then invoke 167

the DMC for modeling the EB’s state. Based on this model, 168

we consider the OP minimization problem and propose the 169

aforementioned 2D-search and 1D-search algorithms conceived 170

for finding the optimal EUPs. In Section III, we investigate 171

the EUP design of SDMA-EH networks, and we propose the 172

aforementioned distributed DEUPO protocol. Finally, our con- 173

clusions are presented in Section V. 174

II. PEER-TO-PEER–ENERGY HARVESTING NETWORK 175

DESIGN 176

177A. System Model and OP Formulation 178

We first consider a simple P2P network constituted by an 179

SN and a DN, which is shown in Fig. 1. As shown in Fig. 1, 180

3When the Markov chain model has Lmax ≤ 10 states and the number of OF
evaluations is lower than 10!, the exhaustive searching may be implemented and
therefore may serve as the benchmark for our proposed algorithm. However,
for Lmax > 10, the complexity becomes excessive, which prevents us from
verifying, whether the 2D-search algorithm is capable of matching the optimal
EUP. On the other hand, it is challenging to mathematically prove the optimality
of a search algorithm in the context of a nonconvex problem involving high-
dimensional matrices. Therefore, this open problem will be further detailed in
our discussions, and it will be investigated in our future work.
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Fig. 1. System model of the P2P-EH network.

a primary EB and a secondary EB is required in practice181

[1], [6]. In [1], the secondary storage is a backup storage182

invoked for situations, when the primary storage is exhausted.183

In [6], the authors assumed that the rechargeable energy storage184

devices cannot charge and discharge simultaneously; hence, the185

transmitter is powered by the primary EB for data transmission,186

while the secondary EB is connected to the harvesting system187

and charges up. At the end of the recharge cycle, the secondary188

EB would be charged by the secondary EB. We assume that189

the charging time of the primary EB is negligible4 and that the190

charging efficiency is assumed to be 100%.5 Therefore, both191

the primary and the secondary EBs may be represented by a192

single EB, which is represented by the dashed-line box shown193

in Fig. 1. This buffer is assumed to be capable of powering the194

transmitter, while simultaneously being charged by the harvest-195

ing system. We do not make any specific assumptions as to what196

harvesting system is adopted, which may be solar cells, a wind197

anemometer, etc., as discussed in [1]. We assume that the EB at198

the SN has a finite EB size, where the harvested energy is stored199

and used for transmission. We assume furthermore that the200

energy arrival rate Pin obeys a certain probability distribution201

with an expectation of P in, and it remains constant over a TS of202

duration TE , while changing independently over the subsequent203

TSs, where a time slot is a recharge cycle. We assume that204

the instantaneous energy arrival rate is unknown and cannot be205

used during the current TS of TE , because the secondary EB is206

not allowed to charge and discharge simultaneously, as shown207

in Fig. 1. In order to focus our attention on the EUP conceived208

for wireless transmission, we assume that the circuit power con-209

sumption at the SN is negligible and that the energy conversion210

efficiency between the EB and the transmit power is 100%.6211

Let us now consider the channel modeling of the wireless212

communication links. We consider a narrow-band block-fading213

channel model, where the fading coefficients remain constant214

for the duration of a transmission packet denoted by TC and215

then they are faded independently from one packet to another216

4In practice, this may be realized by a supercapacitor-based storage system,
such as, for example, the Everlast solar system introduced in [1].

5In practice, the charging efficiency of the secondary EB may not reach
100%; hence, it may be multiplied by an efficiency factor ηbuffer ∈ [0, 1],
which may be equivalently considered to be a reduced energy arrival rate, and
hence, it does not affect any of our analysis.

6In practice, the power consumption of the circuits may be nonnegligible. We
may assume that the harvesting system is capable of providing sufficient circuit
power, while additionally providing a nonnegative transmit power. When the
EH system is not capable of supplying sufficient circuit power, the transmitter
may be switched off. On the other hand, the energy conversion efficiency ηTX

from the EB to the transmitter cannot reach 100% in practice. Hence, we may
simply multiply the energy arrival rate at the transmitter with an efficiency
coefficient ηTX ∈ [0, 1], which does not affect any of our analysis.

over the time dimension. Note that we make no assumptions 217

concerning the specific channel model and the distribution of 218

the channel gain. We also assume that there are always data 219

packets buffered at the SN for transmission. The signal received 220

at the DN is represented by 221

y = h
√

PtGsdx+ n (1)

where h is the channel coefficient capturing the effects of fad- 222

ing, while Pt is the transmit power, x is the transmitted signal, 223

and n is the additive noise at the receiver, which is modeled by 224

independent standard circularly symmetric complex Gaussian 225

random variables having a zero mean and a variance of 1. In (1), 226

the average processing gain of Gsd = (N0 × dβsd)
−1

between 227

the SN and the DN captures the effect of both the pathloss 228

and the noise, where N0 is the noise power at the receiver, dsd is 229

the distance between the SN and the DN, while β is the pathloss 230

exponent. 231

An outage is defined as the event when the instantaneous 232

received signal-to-noise power ratio (SNR) γ at the receiver 233

is below a predefined threshold γth that has to be exceeded 234

for successful decoding. If idealized perfect capacity-achieving 235

coding is assumed, we have γth = 2R − 1, where R is the 236

data transmission rate [16]. Then, the OP of the single-hop EH 237

network may be expressed as follows: 238

Pout = Pr
{
Pt|h|2Gsd < γth

}
� Pr

{
Pt|h|2 < Pth

} (2)

where Pt is the transmit power, and h is the normalized channel 239

coefficient capturing the fading effects. In (2), we define Pth = 240

γth/Gsd, to focus our attention on the effects of both the 241

transmit power Pt and the channel’s fading coefficient h. 242

In the conventional transmission scheme relying on classic 243

constant power supply, the transmit power Pt is a constant, and 244

the corresponding OP of narrow-band block-fading channels 245

was quantified in [16]. However, in the EH networks, the instan- 246

taneous transmit power Pt is time variant, which is constrained 247

by the amount of the energy available in the EB, which in turn 248

is a random variable depending on the energy arrival rate. The 249

energy arrival rate is assumed to exhibit a blockwise fluctuating 250

nature, which remains constant over a TS of duration TE and 251

changes independently over the subsequent TSs. During a TS 252

with a duration of TE , the amount of energy harvested, i.e., 253

PinTE , is independent of both that harvested in the previous TS 254

and of the energy consumed, i.e., PtTE , during transmission, 255

which is determined by the EB state BT at the beginning of the 256

current TS. 257

We define the EB state as BT = BE/TE , where BE is the 258

amount of energy available in the EB, while TE is the duration 259

of the recharge cycle. The physical interpretation of BT is the 260

maximum average transmit power that may be supported by 261

the amount of energy stored in the buffer during the current 262

recharge cycle.7 The EH-causality constraint [2] is interpreted 263

7When the knowledge of the instantaneous CSI during a period is unavailable
at the transmitter, transmitting at a constant transmit power would achieve the
minimum OP [16]. Therefore, a constant transmit power is adopted during each
recharge cycle, and BT is the upper bound.
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Fig. 2. EUP illustrated as the function of Pt versus BT .

as follows: the instantaneous transmit power Pt cannot exceed264

the maximum power BT that may be supported by the current265

EB state, i.e., we have Pt ≤ BT , explicitly indicating that the266

energy assigned for transmission must not exceed the amount267

of energy harvested. We may model the EUP by the transmit268

power as a function of the EB state, as follows:269

Pt(Bt), BT ∈ [0, Bmax] (3)

where the EB state BT is upper bound by Bmax defined as the270

EB capacity divided by the recharge cycle TE .271

In Fig. 2, the EH-causality constraint is shown in dashed272

lines as Pt(BT ) = BT , which models the best-effort policy273

proposed in [6], where all harvested energy in the buffer is274

used up for transmission. On the other hand, the asymptotic275

optimal policy proposed in [7] is illustrated by the solid line in276

Fig. 2, where the SN aims to transmit at a power of Pt = P in.277

In the asymptotic optimal policy, when the remaining energy in278

the EB is capable of supporting a higher transmit power than279

the average energy arrival rate P in, the transmitter conserves280

the energy for its future usage. If the remaining energy in the281

EB is insufficient for supporting Pt = P in, the SN switches to282

the best-effort policy. We may formulate the OP of the P2P-EH283

network as follows:284

Pout(Pt) =

Bmax∫
0

Pr
{
Pt(x)|h|2 < Pth

}
fBT

(x)dx

=

Bmax∫
0

+∞∫
0

Pr {Pt(x)y < Pth} f|h|2(y)fBT
(x)dx

(4)

where h is the channel coefficient capturing the effects of285

fading, which is a random variable, and its PDF f|h|2(y) relies286

on the statistical channel model. fBT
(x), x ∈ [0, Bmax] is the287

PDF of the EB state BT . Therefore, to derive the OP formulated288

in (4), the PDF of the EB state BT has to be modeled, bearing in289

mind the specific EUP adopted. Furthermore, because both Pt290

and BT are continuous variables, the number of feasible EUPs291

is infinite, and since different policies would result in different292

EB-state PDFs, finding the optimal policy for minimizing the293

OP in (4) may be quite challenging. Hence, we will investigate294

this problem in the next section.295

B. DMC Modeling of the EB State 296

As the energy arrival rate Pin is assumed to be constant over 297

a recharge cycle TE and then changes independently over the 298

subsequent recharge cycles, the EB state BT (k) at the end 299

of the kth (k ≥ 1) recharge cycle relies only on the state of 300

BT (k − 1), on the amount of energy consumed for transmis- 301

sion Pt[BT (k)], as well as on the current energy arrival rate Pin, 302

which obeys a certain PDF, but it is statistically independent 303

of its previous samples. Therefore, BT may be modeled by a 304

continuous Markov process. 305

However, the domain of BT ∈ [0, Bmax] is continuous; 306

hence, the set of the states is uncountable and challenging to 307

manage [17]. Therefore, given the EUP, deriving the PDF of BT 308

is quite challenging, except for certain special cases, such as the 309

best-effort policy combined with the condition, when the trans- 310

mit power is equal to the instantaneous arriving energy, which 311

may be modeled by the exponential distribution [6]. Even for 312

the asymptotic optimal policy [7], where Pt is a simple function 313

determined by a combination of the best-effort policy and of the 314

constant power supply, the PDF of BT cannot be readily derived 315

in closed form; hence, the asymptotic optimality relies on the 316

fact that the probability of Pr{BT < Pt = P in} → 0, when the 317

EB size obeys Bmax → ∞. In order to quantify and then to 318

minimize the OP in (4), we approximate the continuous-state 319

Markov process by a finite-state Markov chain [18], to model 320

the EB state BT , and to derive the PDF of BT . Specifically, the 321

EB size Bmax is discretized as Lmax = �Bmax/εP �, where εP 322

is the discrete step size of the power. Therefore, l = �BT /εP � 323

may take a value from l ∈ {0, 1, . . . , Lmax} and has a state- 324

space size of (Lmax + 1). The instantaneous EH rate Pin and 325

the decoding threshold Pth are also discretized with a step size 326

of εP as 327

Lin =

⌊
Pin

εP

⌋
Lth =

⌊
Pth

εP

⌋
.

(5)

Hence, Lth is a discrete constant when Pth is given, while l and 328

Lin are discrete random variables, and their probability mass 329

functions (PMFs) may be generated from the PDFs of BT and 330

Pin as follows: 331

Pr{l = x} =

(x+1)εP∫
xεP

fBT
(u)du

Pr{Lin = x} =

(x+1)εP∫
xεP

fPin
(u)du.

(6)

Although the variables BT , Pin, and Pt may assume any arbi- 332

trary continuous nonnegative value, the DMC may be capable 333

of sufficiently accurately capturing the buffer’s behavior, as 334

long as the discretization step size εP is small enough. Finally, 335

we may discretize the EUP formulated in (3) as 336

Pt(l) = Pt

(⌊
BT

εP

⌋)
, l ∈ {0, 1, . . . , Lmax} (7)
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where the discrete EUP is defined as337

Lt(l) =

⌊
Pt(l)

εP

⌋
. (8)

Then, we may construct the state transition matrix T of the EB338

states, where the specific element in the ith row and jth column339

is given by340

Ti,j = Pr {l(k + 1) = j | l(k) = i}

=

{
Pr {j = i+ Lin − Lt(i)} , 0 ≤ j < Lmax

Pr {j ≤ i+ Lin − Lt(i)} , j = Lmax.

(9)

We arrive at the steady-state probability vector π = [π0 π1 . . .341

πLmax
]T using the relationship of342

π = TTπ (10)

where the physical interpretation of (10) is that the state proba-343

bility vector π converges and remains constant. Then, we may344

formulate the OP as345

Pout (Lt(l)) =

Lmax∑
l=0

Pr
{
Lt(l)|h|2 < Lth

}
π(l)

�
Lmax∑
l=0

Pe(l)π(l)

(11)

which is the discrete version of (4). It should be noted that,346

in (11), the OP component of Pe(l) � Pr{Lt(l)|h|2 < Lth} is347

not determined unambiguously by the EUP defined by Lt(l),348

l ∈ [0, Lmax], because it also relies on the statistical channel349

model determining the distribution of |h|2. For example, if a350

narrow-band Rayleigh block-fading channel is assumed, then351

|h|2 follows the exponential distribution in conjunction with the352

parameter of 1. In this case, the OP component Pe(l) may be353

expressed as354

Pe(l) = Pr
{
Lt(l)|h|2 < Lth

}
= 1 − e

− Lth
Lt(l) . (12)

C. Two-Dimensional EUP-Search Algorithm355

Given a certain EUP represented by Lt(l), l ∈ [0, Lmax] and356

a specific statistical channel model, we are now capable of357

quantifying the OP of a certain EUP with the aid of (7)–(11).358

The optimal EUP Lt(l), l ∈ [0, Lmax] may be formulated by359

using the physically meaningful OF minimizing the OP as360

follows:361

min
Lt(l)

Pout [Lt(l)] . (13)

However, the inverse of the mapping in (11) from the OP362

Pout[Lt(l)] to the specific EUP Lt(l) cannot be readily evalu-363

ated. In other words, given a certain Pout[L(l)], it is not possible364

to derive the EUP Lt(l) adopted. Naturally, this hinders the365

related inverse mapping, and hence, the closed-form derivation 366

of the optimal EUP is not possible. Although the buffer-state 367

transition matrix T of (9) may be readily determined, given 368

the EUP Lt(l), according to (9), the resultant steady-state 369

probability vector π = [π0 π1 . . . πLmax
]T is a solution of 370

(10), which is a high-dimensional system of linear equations. 371

Furthermore, given a certain steady-state probability vector π, 372

it is not possible to derive the buffer-state transition matrix T , 373

and hence, we cannot uniquely and unambiguously determine 374

the discrete EUP Lt(l). 375

1) Design Motivations: When using a discrete Markov mod- 376

eling of the EB state, the EUP is represented by a vector of 377

Lt(l), l ∈ [0, Lmax], which has (Lmax + 1) legitimate elements 378

over the first dimension constituted by the EB state, where the 379

lth element in Lt(l) itself may be assigned any discrete value 380

spanning from 0 to l over the second dimension representing the 381

amount of energy assigned for transmissions. Hence, the EUP 382

search is over a 2-D space. The aforementioned fact motivates 383

us to design an EUP-search algorithm. The most conceptually 384

straightforward way of finding the optimal EUP Lt(l), l ∈ 385

[0, Lmax] is to invoke an exhaustive search, which evaluates 386

every feasible EUP and selects the one having the minimum 387

OP. As illustrated in Fig. 2, an EUP Lt(l) is physically feasible 388

as long as the instantaneous transmit power Pt is nonnegative 389

and does not exceed the maximum affordable power BT that 390

may be supported by the current EB state Pt ≤ BT , which is 391

equivalent to the following discrete form: 392

0 ≤ Lt(l) ≤ l, ∀l ∈ [0, Lmax]. (14)

This simple feasibility constraint results in a large num- 393

ber of feasible EUPs, where the complexity of searching for 394

the optimal policy that minimizes the OP may be excessive. 395

Quantitatively, there are Nf = (Lmax + 1)! number of feasible 396

functions of Lt(l), given the condition in (14). For example, if 397

we have Lmax > 11, the number of feasible functions becomes 398

Nf > 108. Therefore, the exhaustive search method of finding 399

the optimal policy is not practically feasible. Hence, we have 400

to design search algorithms having a practically tolerable com- 401

plexity, which are detailed in the following sections. 402

2) EUP-Search Algorithm Design: In the algorithms pro- 403

posed in this treatise, the design guidelines that we adopted for 404

controlling the complexity, which is quantified by the number 405

of OP evaluations, are summarized as follows. 406

• Guideline 1: The optimal EUP Lt(l), l ∈ [0, Lmax] is a 407

nondecreasing function of the EB state l, i.e., we have 408

∀k ∈ [0, Lmax − 1], Lt(k + 1)− Lt(k) ≥ 0. The physi- 409

cal interpretation of this guideline can be summarized as 410

follows. If the amount of energy available in the EB is 411

increased, the transmitter should not use a lower transmit 412

power. The reason behind this guideline is twofold: First, 413

the transmitter has no knowledge of the energy arrival rate 414

in the future; therefore; it cannot decide as to whether 415

conserving the harvested energy in the EB for future usage 416

is beneficial. Second, the transmitter has no knowledge of 417

the instantaneous channel gain; therefore, it cannot decide 418

how to control the transmit power. 419
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• Guideline 2: The increment of the optimal EUP Lt(l),420

l ∈ [0, Lmax] is no higher than one unit of energy421

with respect to the EB state l, i.e., we have ∀k ∈422

[0, Lmax − 1], Lt(k + 1)− Lt(k) ≤ 1. Let us assume423

that there are two feasible EUPs Lt and L̂t, which424

satisfy Lt(k + 1)− Lt(k) ≥ 2, L̂t(k + 1)− L̂t(k) ≤ 1,425

and L̂t(k + 1) + L̂t(k) = Lt(k + 1) + Lt(k). When the426

OP versus the transmit power is a convex function, the427

algorithm should choose L̂t, because according to (11),428

it would achieve a lower OP than Lt, provided that the429

steady-state probability vector π is assumed to be fixed.430

However, it was shown in [8] that the OP functions with431

respect to the transmit power are nonconvex in the low432

transmit power region, i.e., when Pout > 0.1. However,433

in most practical scenarios, a better OP is required, in434

which case the OP functions tend to be convex. In this435

scenario, evenly allocating the transmit power to state k436

and (k + 1) may achieve a lower OP than an unequal437

allocation of power, given a fixed total amount of transmit438

power. Therefore, we judiciously opt for EUPs satisfying439

Lt(k + 1)− Lt(k) ≤ 1.440

Although the aforementioned pair of design guidelines may441

be interpreted physically in a simple manner, it is challeng-442

ing to rigorously prove the optimality of Guideline 1, while443

Guideline 2 is applied in a relatively high transmit power444

scenario associated with a good channel quality, when the OP445

is a convex function of the transmit power [8]. When relying446

on the proposed pair of design guidelines, the number of OP447

evaluations is reduced from Nf = (Lmax)! to N2D = 2Nmax ,448

which may still be excessive. Quantitatively, when we have449

Nmax > 30, the number of OF evaluations obeys N2D > 109.450

Therefore, we conceive a third guideline for controlling the451

complexity, albeit this is achieved at the cost of potentially452

resulting in a locally optimal solution, which is detailed as453

follows.454

• Guideline 3: When the search does not find an EUP455

resulting in a reduced OP, it is terminated. This is a widely456

used early-stopping technique employed in heuristic op-457

timization algorithms [19]. Albeit its global optimality458

is not guaranteed without further information about the459

search space, it is capable of substantially reducing the460

complexity.461

Since Guideline 3 may result in locally optimal solutions,462

multiple initial solutions may be chosen for the search al-463

gorithm. However, through our extensive numerical evalua-464

tions conducted for Nmax < 12, when the exhaustive search465

algorithm is still feasible, our numerical results have shown466

that Algorithm 1 is capable of finding the globally optimal467

EUP. Algorithm 1 uses the best-effort policy as the initial468

solution, and then, the three aforementioned guidelines are469

followed throughout the rest of the design. Therefore, it may470

be concluded that, although the optimality may not be shown471

mathematically, the proposed heuristic 2D-search algorithms472

are effective in practical applications, while imposing a much473

lower complexity than the exhaustive search.474

Algorithm 1 2D-Search Algorithm

1: Lt(l) = l, l ∈ [0, Lmax];//Start as the best-effort policy 475

2: Pout,min ← 1; 476

3: NI ← 0; 477

4: IU ← 1; 478

5: while IU == 1 do 479

6: NI ← NI + 1; //record the number of searches 480

7: for l = Lmax to 0 do 481

8: L̃t ← Lt; //store the current policy 482

9: if Lt(l) > 0 then 483

10: Lt(l) ← Lt(l)− 1; //remove the top tile only 484

(guideline 2). 485

11: end if 486

12: for i = 0 to l do 487

13: Lt(i) ← min(Lt(i), Lt(l)); //ensure policy is non- 488

decreasing (guideline 1). 489

14: end for 490

15: Pout = Pout(Lt); 491

16: if Pout < Pout,min then 492

17: Pout,min ← Pout; 493

18: else 494

19: Lt ← L̃t; //recover the stored policy 495

20: end if 496

21: Lt[NI ] ← Lt; 497

22: if Lt[NI ] == Lt[NI − 1] then 498

23: IU ← 0; //terminate if the iteration (guideline 3). 499

24: end if 500

25: end for 501

26: end while 502

D. One-Dimensional EUP-Search Algorithm 503

In the previous section, the optimal EUP was investigated and 504

a 2D-search algorithm was proposed. However, the algorithm 505

relies on searching in a 2-D domain of the EB state and of the 506

energy assigned for transmission; hence, it is quite involved. 507

Here, motivated by the fact that the asymptotic optimal policy 508

is characterized by a constant desired transmit power [7], we 509

formulate a 1D-search-based EUP and aim for minimizing the 510

OP using a reduced-complexity 1-D search to exhibit a signifi- 511

cantly lower complexity than that of the 2D-search algorithm. 512

1) Design Motivations: Our proposed 1D-search policy is 513

motivated by the asymptotic optimal policy proposed in [7], 514

which is illustrated in Fig. 2. The suboptimal EUP considered 515

is based on a combination of the constant power policy and the 516

best-effort policy. Specifically, given a desired constant transmit 517

power Pd, when the energy remaining in the EB satisfies 518

Bt ≥ Pd, the transmitter opts for transmitting at a power of 519

Pt = Pd and conserves the rest of the energy for its future 520

usage. Otherwise, when Bt < Pd, the transmitter switches to 521

the best-effort policy and transmits at a power of Pt = BT . The 522

suboptimal policy is represented by a fixed Pt(BT ) of 523

Pt(BT ) =

{
BT , BT < Pd

Pd, BT ≥ Pd

(15)
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while its discrete version represented by Lt(l), l ∈ [0, Lmax] is524

Lt(l) =

{
l, l < Ld

Ld, l ≥ Ld

(16)

where we define Ld = �Pd/εP �. Compared to the generalized525

representation of Lt(l), l ∈ [0, Lmax], which requires (Lmax +526

1) variables for fully characterizing the policy, the proposed527

EUP may be characterized by a single variable Ld. Therefore,528

Ld is also the only variable that may be optimized to minimize529

the OP. However, the 1D-search policy may be expected to530

result in a degraded OP.531

A special case of the proposed EUP is to set Pd = P in or532

equivalently Ld = Lin. The asymptotic optimal EUP proposed533

in [7] was shown to achieve the performance of its constant-534

power counterpart operating at Pt = P in, based on the assump-535

tion of an infinite EB size of Bmax → ∞ [7]. In this case,536

the probability of an EB overflow is 0, and the probability537

of Pr{BT < Pd} = Pr{l < Ld} → 0. It is plausible that the538

performance of the classic non-EH system constitutes the OP539

lower bound that may be achieved by any EH system relying540

on a random energy arrival rate. Naturally, achieving the per-541

formance of the asymptotic optimal EUP is desirable [7].542

However, when the EB size is finite, the asymptotic optimal543

policy would be suboptimal, because a finite EB may overflow544

with a nonnegligible probability, when the instantaneous energy545

arrival rate is high and cannot be stored for future usage.546

Meanwhile, the choice of Ld = Lin may not be optimal, since547

a choice of Ld �= Lin may reduce both the probability of EB548

overflow and the OP. However, the optimal choice8 of Pd is549

not obvious, because the relationship between the OP Pout and550

the energy usage function Lt is quantified by (9)–(11), which551

makes the direct derivation of the optimal Pd quite challenging.552

By comparison, as shown in (7)–(11), given a specific value553

of Pd, the numerical evaluation of Pout may be straightforward,554

according to the OP expression provided in (11). This motivates555

us to design a search algorithm, which searches for the optimal556

Pd based on the numerical evaluation of Pout, instead of using557

an analytical derivation to get the optimal Pd directly.558

In the next section, we will first derive the OP for the 1D-559

search-based EUP given a specific Ld and then propose our560

specific search algorithm for finding the optimal Ld to minimize561

the OP.562

2) One-Dimensional EUP-Search Algorithm Design: Upon563

invoking the 1D-search-based EUP represented in (16), we may564

simplify the OP expression of (11) specifically for the 1D-565

search policy as follows:566

Pout = Pr{l ≥ Ld}Pr
{
Ld|h|2 < Lth

}
+ Pr{l < Ld}Pr

{
l|h|2 < Lth|l < Ld

}
(17)

where the first line represents the OP, when the energy in the567

EB is capable of supporting transmitting at the desired level of568

Ld. The second line in (17) represents the OP, when the energy569

in the EB is insufficient for transmitting at the power level of570

8The optimal choice is in the context of selecting Pd for the 1D-search
algorithm, which may still result in inferior OP compared to the exhaustive
search and the 2D-search algorithms.

Lt = Ld, and the transmitter consumes all the energy in the 571

EB, while transmitting at a power level of Lt = l. Then, we 572

construct the state transition matrix T of the EB state according 573

to (9), and when the EB state is steady, the state probability 574

vector π may be formulated as follows: 575

π = TTπ

where π = [π0 π1 . . . πLmax
]T . Given the desired power level 576

represented by Ld and the OP expression in (17), we have 577

Pr{l ≥ Ld} =

Lmax∑
l=Ld

πl. (18)

If we assume furthermore that the channel obeys Rayleigh 578

fading, the other terms in (17) can be derived as follows: 579

Pr
{
Ld|h|2 < Lth

}
= 1 − exp

(
−Lth

Ld

)
(19)

Pr{l < Ld}Pr
{
l|h|2 < Lth|l < Ld

}
=

Ld−1∑
l=0

πl Pr
{
l|h|2 < Lth

}
=

Ld−1∑
l=0

πl

[
1 − exp

(
−Lth

l

)]
. (20)

By substituting the terms of (18)–(20) into (17), we may arrive 580

at the analytical OP for transmission over Rayleigh block- 581

fading channels in the P2P-EH network in Fig. 1. If a differ- AQ3582

ent statistical channel model is adopted, we may reformulate 583

(19) and (20), accordingly. Throughout this paper, we use the 584

Rayleigh block-fading channel as a case study, although our 585

proposed OP analysis and the search algorithms conceived for 586

OP minimization are sufficiently general for arbitrary channel 587

models. The effects of other wireless channel models will be 588

investigated in our future research. 589

Therefore, given a specific value of Ld, the numerical eval- 590

uation of Pout is straightforward, according to the OP expres- 591

sion provided in (17). Since it relies on the single parameter 592

Ld, a 1-D EUP-search algorithm may be designed for finding 593

the optimal Ld, instead of searching over a 2-D EUP space, 594

as in Section II-C. This 1D-search procedure is detailed in 595

Algorithm 2, which is much simpler than the 2D-search algo- 596

rithm in Section II-C. Specifically, in Algorithm 2, there are a 597

total of (Lmax + 1) candidate EUPs, since we have Ld ∈ {0, 1, 598

. . . , Lmax}. For each candidate EUP, the OP is evaluated using 599

(17), where the one achieving the minimum OP is selected. 600

Algorithm 2 1D-Search Algorithm

1: Ld,opt ← 0; 601

2: Pout,min ← 1; 602

3: for Ld = 0 to Lmax do 603

4: Pout = Pout(Ld); 604

5: if Pout < Pout,min then 605

6: Pout,min ← Pout; 606

7: Ld,opt ← Ld; 607

8: end if 608

9: end for 609
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Specifically, the 1-D EUP-search procedure of Algorithm 2610

requires (Lmax + 1) evaluations of the OP, which is signifi-611

cantly lower than that of the 2-D EUP-search of Algorithm 1612

or the exhaustive search methods. The low complexity of613

Algorithm 2 accrues from the fact that the EUP functions614

Lt(l) investigated may be characterized by a single scalar Ld,615

as shown in (16). Therefore, the OP may be expressed as a616

function of a scalar Ld, rather than as a vector
−→
Lt � {Lt(l)|l ∈617

[0, Lmax]}. In Section IV-A, we will compare the OP of the618

proposed 2D-search and 1D-search Algorithms 1 and 2 to a pair619

of state-of-the-art EUPs found in the literature, namely, to the620

best-effort policy [6] and to the asymptotic optimal policy [7].621

III. SPATIAL-DIVISION MULTIPLE-ACCESS–ENERGY622

HARVESTING NETWORK DESIGN623

In the previous section, the EUPs conceived for minimizing624

the OP of P2P networks were investigated. Here, we continue625

by investigating the EUP design of an SDMA prototype net-626

work. Compared to the P2P network, the outage events of627

different EH-SNs are correlated, but a centralized optimization628

would impose an excessive complexity. Even if a subopti-629

mal 1-D EUP search space is adopted for each EH-SN, an630

M -dimensional search space is required for an SDMA network631

of M EH-SNs, which is generally not practical. In addition, the632

global knowledge of the channel quality between each EH-SN633

and the DN, as well as the statistical distribution of the energy634

arrival rates, should be available at a central controller node,635

which also imposes a high side-information signaling overhead636

and complexity. Furthermore, for traditional non-EH SDMA637

networks, the closed-form OP expressions are not available in638

the open literature for generalized SDMA networks having M639

SNs, since the derivation of the closed-form OP expressions for640

SDMA-EH networks is quite challenging.641

Therefore, we embark on the OP analysis of an SDMA642

network relying on ML detection and use the minimum-SNR643

(min-SNR) approximations to arrive at the approximate OP644

of our SDMA networks, which has been documented in [20]645

and [21]. It will be shown that the min-SNR approximations646

are accurate in predicting the OP of the SDMA networks.647

Given an SDMA network comprised of M EH-SNs and a648

DN, we decompose the approximate joint OP of SDMA into649

a product of M mutually independent OP components, each of650

which corresponds to a P2P-EH-network counterpart. Then, we651

propose a DEUPO protocol, in which each EH-SN is capable of652

optimizing its own EUP based on the 2-D and 1-D EUP-search653

algorithms in Section II, using the statistics of its own uplink654

(UL) channel and its own energy arrival rates, indicating that655

only local knowledge is required.656

A. System Model and OP Formulation657

We consider a network of (M + 1) nodes, where M SNs658

{Sm, 1 ≤ m ≤ M} transmit their individual information to a659

common DN, and each SN is equipped with both a harvesting660

scheme and an EB, as shown in Fig. 1. Again, we assume661

a narrow-band Rayleigh block-fading channel model, where662

the fading coefficients remain constant for the duration of a663

Fig. 3. Accuracy of the OP (Pout) evaluation using the min-SNR approxima-
tions for M = 4, R = 0.5 b/s/Hz. The distance between the SNs and the DN
is dsd = 100 m and the pathloss exponent is β = 3.

packet and then are faded independently from one packet to 664

another in both time and space. The additive noise imposed by 665

the receivers is modeled by independent zero-mean circularly 666

symmetric complex Gaussian random variables with a variance 667

of unity. 668

The DN is assumed to have perfect channel knowledge and 669

adopts ML detection. All the SNs transmit their messages 670

concurrently at the rate of R. The SN Sm encodes a bit 671

sequence into a codeword and transmits it to the DN, where 672

the DN jointly decodes the codewords received from all the 673

SNs. Therefore, the SN-DN hop may be modeled by a multiple- 674

access channel (MAC), and the criterion used for successful 675

decoding is 676∑
m∈S

R ≤ log

(
1 +

∑
m∈S

γmd

)
∀S ⊆ {Sm, 1 ≤ m ≤ M}

(21)

where γmd represents the instantaneous received SNR of the 677

Sm-DN link. There are (M !− 1) inequalities in (21), and even 678

if a single one of the inequalities in (21) is not satisfied, the 679

transmission over the SN-DN hop becomes erroneous. Hence, 680

when the min-SNR of the M channels spanning from the 681

SNs to the reference node (RN), defined as γmin
sd = min

m∈S
γmd,

AQ4682

is lower than the threshold γsd
th = 2R − 1 to be exceeded for 683

successful decoding, an outage event occurs. Therefore, we 684

aim for modeling the OP of the M -user MAC on the SN-RN 685

hop with the aid of the specific SN-RN link having the min- 686

SNR γmin
sd . 687

Specifically, in Fig. 3, we compare the OP of the M -user 688

MAC channel using ML detection to that of a single link 689

having the min-SNR γmin
sd of the M -user system. As shown 690

in Fig. 3, the OP of the two systems obtained by simulation 691

perfectly matches for both the equal-SNR and the unequal-SNR 692

scenarios. Specifically, in the equal-SNR situation, the average 693

channel quality of the link spanning from each SN to the DN 694

is identical, while in the unequal-SNR scenario, the average 695

channel quality is different, where the SNRs of the M = 4 696

links are one, two, four, and eight times higher than that in the 697
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equal-SNR situation, respectively. It is shown in Fig. 3 that698

the exact OP of the M -user MAC channel and the predicted699

OP using the P2P channel associated with the min-SNR are700

identical for both scenarios. Hence, the OP using the min-SNR701

approximation may be expressed as follows:702

Pout,SD≈ Pr

{
min
m∈S

γmd < γsd
th

}
=1 − Pr

{
min
m∈S

γmd ≥ γsd
th

}
= 1 −

∏
m∈S

Pr
{
γmd < γsd

th

}
�1 −

∏
m∈S

(1 − Pout,md).

(22)

B. DEUPO Protocol703

Having confirmed the accuracy of the min-SNR approxima-704

tion, we are now in the position to formulate the OP minimiza-705

tion problem for the SDMA-EH network as follows:706

min
Lt,1(l),Lt,2(l),...,Lt,m(l)

Pout,SD (Lt,1(l), Lt,2(l), . . . , Lt,m(l))

(23)

where Lt,1(l), Lt,2(l), . . . , Lt,m(l) corresponds to the discrete707

EUPs at the SNs. Equivalently, the minimization problem de-708

fined in (23) may be expressed by709

max
Lt,1(l),Lt,2(l),...,Lt,m(l)

[1−Pout,SD(Lt,1(l), Lt,2(l),. . .,Lt,m(l))].

(24)

Let us now investigate the formulation of [1 −710

Pout,SD(Lt,1(l), Lt,2(l), . . . , Lt,m(l))] in detail. By using711

the min-SNR approximation of (22), we have712

[1 − Pout,SD (Lt,1(l), Lt,2(l), . . . , Lt,m(l))]

≈
∏
m∈S

[1 − Pout,md (Lt,m(l))] . (25)

In order to maximize the OF of (24), we may maximize each713

component of [1 − Pout,md(Lt,m(l))]. Since they are mutually714

independent or equivalently, we may minimize each compo-715

nent’s Pout,md(Lt,m(l)). This is beneficial, because the mth716

component Pout,md(Lt,m(l)) corresponds to the OP of a P2P-717

EH link spanning from the mth EH-SN to the DN, while it is718

independent of both the channel quality and the EUPs adopted719

by other EH-SNs.720

Therefore, we may design a DEUPO protocol, in which each721

EH-SN optimizes its own EUP relying on the proposed 1D-722

search and 2D-search algorithms proposed for a P2P link in723

Section II. Specifically, we design the protocol as follows.724

• Acquiring the Energy Arrival Rate and Channel725

Statistics: In practical applications, the system designer726

may choose appropriate EHI and CSI estimation algo-727

rithms, through which the system may detect the changes,728

generate a trigger, and decide when to activate its EUP729

optimization. This is a widely used event-triggered proto-730

col [22], [23]. A simpler solution is to periodically invoke731

the EUP optimization, according to the instantaneous732

estimated statistics of both the energy arrival rates and733

the channels. This is, however, beyond the scope of this734

paper. Instead, we focus our attention on the issue of 735

deciding the EUP, whenever the optimization is activated. 736

In our analysis, we assume that both the estimated en- 737

ergy arrival rate and the channel statistics are perfectly 738

estimated. Hence, each EH-SN has perfect knowledge of 739

the statistics of energy arrival rate, while the DN has the 740

knowledge of the statistics of the UL channels spanning 741

from each EH-SN. In practice, this knowledge is acquired 742

with the aid of pilot-based channel estimation mechanism 743

and/or prediction methods. 744

• Local EUP Optimization Phase: Each SN sends a 745

request-to-send (RTS) packet to the DN. The DN would 746

send M clear-to-send (CTS) packets to the M SNs, where 747

the channel statistics between the mth EH-SN and the DN 748

would be conveyed in each CTS packet, which is assumed 749

to be perfectly recovered at the EH-SNs. Then, each EH- 750

SN may adopt the 2D-search in Section II-C or the 1D- 751

search in Section II-D to find the approximate EUP for 752

our P2P-EH network. As discussed in the context of (25), 753

our design objective is to minimize the approximate OP 754

of the SDMA-EH network considered. 755

• Data Transmission Phase: Each EH-SN commences its 756

session, by transmitting to the DN, by relying on its 757

locally optimized EUP. 758

IV. NUMERICAL RESULTS 759

760A. P2P Networks 761

As detailed in Sections II-C and D, the OP relies on the 762

following system parameters: 763

• Statistics of the energy arrival rates: include the average 764

energy arrival rate P̄in and the recharge cycle TE . The 765

distribution of the fading energy arrival directly affects its 766

rate, which is assumed to be exponentially distributed, as 767

in [6] and [7], to facilitate our comparisons with the state- 768

of-the-art benchmarkers proposed in these references. 769

• Statistics of the wireless information-transfer chan- 770

nels: again, the wireless channel spanning from the SN 771

to the DN is assumed to obey Rayleigh block fading, 772

although our analysis technique can be applied to arbitrary 773

channel models. 774

• Parameters of the EH-SN: the EB size Bmax and the 775

data transmission rate R. 776

Here, the dependence of the OP on the aforementioned sys- 777

tem parameters will be investigated. In the context of the P2P- 778

EH networks, the distance between the SN and the DN is set 779

to dsd = 100 m and the pathloss exponent to β = 3, while the 780

noise power at the receiver is assumed to be N0 = −80 dBm. 781

The data transmission rate is set to R = 1 b/s/Hz. In the figures, 782

the analytical results are represented by the dashed curves, 783

while the simulation results are shown by the symbols. It should 784

be noted that the discrete step sizes εP used for quantifying the 785

OP and for searching for the feasible EUP sets are different. 786

For OP evaluations, εP is set for ensuring that we have Lmax = 787

6400 to guarantee a high accuracy of quantifying the OP, while 788

we have εP set to Lmax = 200, when searching for the EUP 789

using Algorithms 1 and 2 to control the search complexity. 790
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Fig. 4. Transmit power versus the EB state of different EUPs for the P2P
network. The average energy arrival rate is P̄in = 10 dBm, and the EB size is
Bmax = 16P̄in, while we have R = 1 b/s/Hz and TE = 8TC .

We will demonstrate that the analytical results represented by791

the dashed curves closely match the simulation results, which792

indicates that the DMC-based analytical framework is capable793

of accurately predicting the OP of the P2P-EH networks for all794

of the EUPs considered.795

The transmit power versus EB state of the different EUPs796

are characterized in Fig. 4. It is shown that the best-effort797

policy proposed in [6] exhibits a slope of 1, indicating that798

the currently harvested amount of energy in the EB will be799

immediately used up for transmission. The x-axis Bt represents800

the maximum power that may be supplied, given the amount of801

energy in the EB for a period of TE . The asymptotic optimal802

policy is based on a combination of two trends: when the803

amount of energy in the EB satisfies Bt < P̄in, the EH-SN804

transmits by employing the best-effort EUP; otherwise, its EH-805

SN opts for a constant power strategy by choosing a fixed806

transmit power of Pt = P̄in. When the EB size tends to infinity,807

the asymptotic optimal policy would approach the performance808

of the constant power policy, indicating that a large EB is809

capable of converting an EH system into an equivalent classic810

non-EH system having a constant transmit power of Pt = P̄in811

[7]. However, when the EB size is finite, the asymptotic optimal812

policy is no longer optimal in terms of minimizing the OP, as813

shown in Fig. 5.814

In Fig. 5, the performance of the EUPs found by the proposed815

2D-search and 1D-search Algorithms 1 and 2 are compared816

to that of the best-effort policy and the asymptotic optimal817

policy proposed in [6] and [7], respectively. It is shown that,818

for the given configurations, the OP achieved by the proposed819

algorithms tends to be better than those achieved by the bench-820

markers. Specifically, the 2D-search Algorithm 1 performs821

close to its classic non-EH counterpart, which serves as the822

lower bound of the OP for the EH systems [7]. At Pout = 0.01,823

the EUP found by the 2D-search Algorithm 1 achieves a 3-dB824

power gain over the asymptotic optimal policy and a 6-dB gain825

over the best-effort policy. Therefore, if an EH-SN adopts the826

asymptotic optimal policy, it requires twice the average energy827

arrival rate harvested from the environment, compared with an828

EH-SN equipped with the proposed 2D-search algorithm, while829

Fig. 5. OP versus average energy arrival rate P̄in using different EUPs for the
P2P network. The EB size is Bmax = 16P̄in, R = 1 b/s/Hz, and TE = 8TC .
The numerical OP results were evaluated from (11), given the searched EUP.

maintaining the same OP of Pout = 0.01. This ratio would, 830

in fact, be further increased to four, if the benchmark EH-SN 831

adopts the best-effort policy. 832

We may conclude that the 2D-search algorithm is capable 833

of most significantly improving the EH-SN’s capability to 834

exploit the harvested energy, or to substantially simplify the 835

hardware required for harvesting the energy from the envi- 836

ronment, which is important for applications such as WSNs 837

[1]. For example, the best-effort policy requires a four times 838

higher average energy arrival rate for maintaining an identical 839

outage performance as that using the 2D-search algorithm. 840

Equivalently, the amount of power harvested by the solar panel 841

increases linearly with the area of the solar panel [1], hence 842

requiring a four times larger solar panel. In other words, the 843

2D-search Algorithm 1 allows us to design a sensor node 844

having a solar panel of much smaller size, which has 25% of 845

the area necessitated by the best-effort policy. Furthermore, as 846

shown in Fig. 5, when the reliability requirements are more 847

stringent, the performance improvements of the proposed EUPs 848

would become more significant in terms of requiring a lower 849

energy arrival rate or a smaller solar panel. Finally, the 1D- 850

search Algorithm 2 is inferior to the 2D-search Algorithm 1, 851

since it exhibits a modest performance degradation of 0.9 dB 852

at Pout = 10−2. From an alternative perspective, an EH-SN 853

adopting the 1D-search Algorithm 2 may require 1.23 times 854

higher energy arrival rate, which is the price paid for reducing 855

the computational complexity. Therefore, in a WSN application 856

scenario having sensor nodes that have a low computational 857

capability, the 1D-search Algorithm 2 or the simple asymptotic 858

optimal policy may be preferred. 859

The fundamental reason for the OP improvements of the 860

proposed 2D-search and 1D-search Algorithms 1 and 2 may be 861

inferred from Fig. 6, which represents the PMF of the discrete 862

EB state l for different EUPs. It is observed that all EUPs 863

resulted in near-constant PMF values, apart from the peaks 864

at the states, when the EB was full at l = Lmax. Compared 865

with the PMF of the best effort and the asymptotic optimal 866

policy, the 2D-search and 1D-search Algorithms 1 and 2 may 867
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Fig. 6. PMF of the EB states for the P2P network. The average energy arrival
rate is P̄in = 10 dBm, while the EB size is Bmax = 16P̄in, R = 1 b/s/Hz, and
TE = 8TC . The results were evaluated via simulations.

Fig. 7. Computational complexity, in terms of the number of OP evaluations
versus the discrete EB size Lmax, for the 1D-search and the 2D-search
algorithms for the P2P network. The results were evaluated via simulations.

be capable of improving the PMF when the EB is small, which868

reduces the weights πl for the relatively large OP components869

of Pe(l) = Pr{Lt(l)|h|2 < Lth} in (11), when the discrete870

transmit power Lt is low. Therefore, reshaping the PMF by871

reducing the contribution of the high OP components and872

increasing the weights of the low OP components, the overall873

OP may be beneficially reduced, which is confirmed by the874

results in Fig. 5. It is also shown that the 1D-search Algorithm 2875

may be capable of finding an EUP, which performs close to the876

2D-search Algorithm 1, despite its lower complexity, as shown877

in Fig. 7.878

More explicitly, the relationship between the number of OP879

evaluations and the discrete EB size Lmax is illustrated in Fig. 7,880

for both the 2D-search Algorithm 1 and 1D-search Algorithm 2.881

Observe that the 1D-search Algorithm 2 drastically reduces the882

complexity of its 2D-search counterparts. Quantitatively, when883

the discrete EB size is Lmax = 400, the 1D-search Algorithm 2884

imposes as little as 0.46% of the computational complexity885

compared with that of its 2D-search-based counterpart, while886

imposing only a modest 0.9-dB loss at Pout = 10−2, as shown887

Fig. 8. OP versus the EB size Bmax using different energy policies for the
P2P network considered. The average energy arrival rate is P̄in = 10 dBm,
R = 1 b/s/Hz, and TE = 8TC . The numerical OP results were evaluated from
(11), given the searched EUP.

in Fig. 5. On the other hand, from an overall energy con- 888

sumption point of view, the computation of the EUP also 889

dissipates a nonnegligible portion of the energy, particularly 890

for users relying on low-end devices. Therefore, the 1D-search 891

Algorithm 2 may be deemed attractive for applications relying 892

on hardware having a low computational capability, such as 893

mobile phones and wireless sensors. 894

In Fig. 8, the impact of EB size Bmax is investigated. The 895

horizontal axis is Bmax/P̄in. It is shown in Fig. 8 that, when 896

the EB size increases, the OP of both the asymptotic optimal 897

policy proposed in [7] and the EUP relying on our 2D-search 898

Algorithm 1 improves, and they would converge to that of their 899

conventional non-EH counterparts. However, as the EB size 900

Bmax increases, the EUP found by the 2D-search Algorithm 1 901

may achieve a much better OP, when the EB size is small, 902

and it may converge to that of its classic non-EH counterpart. 903

This confirms the superiority of the proposed search algorithms 904

conceived for EH systems having a finite EB, particularly when 905

the available size of the EB is severely limited. 906

B. Multiple-Access Networks 907

In Fig. 9, the OP of our SDMA-EH network is investigated, 908

and the EUPs found by the proposed 2D-search and 1D-search 909

algorithms in Section II are compared with those of the best- 910

effort policy and asymptotic optimal policy. It is shown that, for 911

the given configurations, the OPs achieved by the proposed al- 912

gorithms are better than those of the benchmarks. Furthermore, 913

it is shown that the analytical results represented by dashed 914

curves closely match the simulation results, which indicates 915

that the proposed min-SNR approximation and the DMC-based 916

analytical framework are accurate. 917

Specifically, the 2D-search algorithm performs within 2 dB 918

from its classic non-EH counterpart at Pout = 10−2, which 919

serves as the lower bound of the OP for EH systems [7]. 920

At Pout = 10−2, the EUP found by the 2D-search algorithm 921

achieves a 4.6-dB power gain compared with the asymptotic 922

optimal policy and an 8-dB power gain compared with the 923
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Fig. 9. OP versus average energy arrival rate P̄in using different energy
policies for the SDMA network associated with M = 4 SNs. The EB size
Bmax = 16P̄in, R = 1 b/s/Hz, and TE = 8TC . The numerical OP results
were evaluated from (22), given the searched EUP.

best-effort policy. Therefore, if an EH-SN adopts the asymp-924

totic optimal EUP, it requires 104.6/10 ≈ 2.9 times higher av-925

erage energy arrival rates harvested from the environment, as926

compared to an EH-SN equipped with the proposed 2D-search927

algorithm at Pout = 10−2. This ratio would be further increased928

to a factor of 6.3, if the benchmark EH-SN adopts the best-929

effort policy. The 1D-search algorithm is suboptimal; hence, it930

exhibits a performance degradation of 1.4 dB compared to that931

of the 2D-search algorithm at Pout = 10−3. From a different932

perspective, an EH-SN adopting our 1D-search algorithm may933

require a 1.4 times higher energy arrival rate, which is the price934

paid for its reduced computational complexity. In our future935

work, we will jointly consider the optimization of the energy936

arrival rate and of the power savings of the reduced-complexity937

algorithms. This might, in fact, favor the 1-D algorithm over its938

2-D counterpart.939

Finally, we investigate the effects of the number of EH-SNs940

on the OP in SDMA-EH networks. It is shown in Fig. 10 that, as941

the number of SNs M increases, the OP of all EUPs is reduced.942

However, the EUPs found by the proposed 2D-search and943

1D-search algorithms always outperform both the asymptotic944

optimal policy and the best-effort policy. The results allow945

the SDMA-EH network to accommodate more users, while946

maintaining the same reliability. For example, if a maximum947

OP of Pout = 10−2 is tolerable in the SDMA-EH network,948

both the best-effort policy and the asymptotic policy may be949

capable of supporting K = 2 and 4 users, while the 1D-search950

and the 2D-search algorithms support more than K = 8 users951

simultaneously. To conclude, given the proposed 1D-search and952

2D-search algorithms, our receiver is capable of simultaneously953

offering reliable services for significantly more EH users.954

V. CONCLUSION955

In this paper, we have summarized the state-of-the-art EUP956

design aiming for minimizing the OP of P2P-EH networks957

reported in the literature, and then, we have proposed two958

novel algorithms, which are capable of exploiting the harvested959

Fig. 10. OP versus average energy arrival rate P̄in using different energy
policies for the SDMA network associated with different number of SNs
M = 1, 2, 4, 8. The average energy arrival rate is P̄in = 10 dBm, the EB size
is Bmax = 16P̄in, R = 1 b/s/Hz, and TE = 8TC . The numerical OP results
were evaluated from (22), given the searched EUP.

energy stored in a finite EB, where we showed that, using the 960

proposed algorithms, the achievable OP outperforms the state- 961

of-the-art benchmark systems found in the literature. Further- 962

more, upon invoking the proposed min-SNR approximation, the 963

algorithms advocated were invoked for SDMA-EH networks, 964

where we designed a DEUPO protocol. With the advent of the 965

DEUPO protocols proposed in this paper, our proposed 1D- and 966

2D-search algorithms require a significantly reduced energy 967

arrival rate at a given target OP. 968
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Outage Analysis and Optimization in Single- and
Multiuser Wireless Energy Harvesting Networks

1

2

Bo Zhang, Chen Dong, Mohammed El-Hajjar, and Lajos Hanzo3

Abstract—Compared to battery-powered wireless nodes having4
a constant but limited power supply, wireless nodes having energy5
harvesting (EH) capability may greatly prolong the network’s6
sustainability. However, the energy usage policies (EUPs) have7
to be carefully designed according to the characteristics of the8
random power supply gleaned from the environment. In this9
paper, we carry out the outage analysis of a point-to-point (P2P)10
network relying on an EH transmitter, which has a finite energy11
buffer (EB) for transmission over a fading channel when having12
random energy arrival rates. A discrete Markov chain (DMC)13
model is proposed for characterizing the energy state of the EB,14
which is then used for quantifying the outage probability (OP)15
over the fading channels. Then, we propose both a novel 2-D and a16
low-complexity 1-D search algorithm for finding the specific EUPs,17
which are capable of minimizing the OP for the P2P network18
considered. It is shown that the EUP found by both algorithms19
outperforms the state-of-the-art EUPs disseminated in the open20
literature. Furthermore, we consider a multiple-access network21
having M EH-aided sources, where we propose a distributed22
EUP optimization (DEUPO) algorithm and then minimize the OP23
relying on the local optimization of each EH-aided source.24

Index Terms—Energy harvesting (EH), Markov chain, outage25
analysis, outage minimization.

26

I. INTRODUCTION27

28 IN practical scenarios such as wireless sensor networks29

(WSNs), it is challenging to replace the nodes; hence,30

the network’s operation is energy constrained, which is of-31

ten formulated as having a limited lifetime [1]. One way of32

circumventing this problem is allowing the nodes to harvest33

energy from the environment. If a harvested energy source is34

permanently available, the transceiver can be powered perpetu-35

ally, which fundamentally changes the wireless system design36

compared to the classic energy-constrained design relying on an37

energy source storing a limited amount of energy in batteries.38

Furthermore, based on the periodicity and magnitude of the39
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harvested energy, the transceiver may adjust its energy usage 40

policy (EUP) to improve certain network performance metrics, 41

such as the throughput or outage probability (OP). The EUP 42

may be defined as the “The policy determining the transmitting 43

power and the transmission rate, given the availability of the 44

knowledge on the amount of energy in the energy buffer, the 45

channel statistic information (CSI) as well as the noncausal 46

energy harvesting information (EHI) characterizing the energy 47

arrival rate at the transmitter.” 48

In this paper, we investigate both the effects of random 49

energy arrival and of the EUP design on the OP of wireless 50

energy harvesting (EH) networks. Recently, the EUP design of 51

EH networks has become a hot research area. Various schemes 52

have been proposed in the literature [2]–[9] to improve certain 53

performance metrics in a particular network topology, relying 54

on different assumptions of the energy arrival rates, as well 55

as on the knowledge available at the wireless transceivers for 56

optimization. 57

Under the idealized simplifying assumption of having both 58

noncausal channel-state information (CSI) about the CSI to be 59

encountered in the future and about the EH information (EHI) 60

characterizing the energy arrival rate at the transmitter, in [2] 61

and [3],1 the optimal offline EUPs were designed for point-to- 62

point (P2P) networks using either the throughput maximiza- 63

tion or the file-transfer completion-time minimization as the 64

optimization objective function (OF). Later on, the authors in 65

[10] proposed the recursive geometric waterfilling algorithm for 66

solving the same problem, where more efficient recursive com- 67

putations were used for finding the optimal solutions. In [4], the 68

authors modeled both the uncertainty of the energy arrival rate 69

and that of the data arrival rate, where the transmission rate to be 70

used was determined by minimizing the average data-buffering 71

delay as the OF. 72

When the instantaneous CSI is not available at the transmit- 73

ter, having an outage is unavoidable for fixed-rate applications, 74

and the resultant OP of a P2P-EH network was investigated in 75

[5]–[9]. The OP analysis and OP optimization techniques may 76

be categorized into two subclasses according to the knowledge 77

of both the energy arrival rates and the mathematical framework 78

that they adopt; specifically, the first category of contributions 79

recommends the employment of time-variant policies [5], [8], 80

[9]. These authors followed the mathematical framework in [2] 81

1In [2] and [3], the terminology of “transmission policy” was used to
represent the policy of using the harvested energy in the energy buffer (EB).
However, the transmission policy terminology may be interpreted more widely,
such as rate adaptation, multiple-access policy, etc. Therefore, to avoid ambi-
guity, we use the terminology of “EUP” throughout the paper.
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and [11], which adopted the directional waterfilling algorithms82

under EH-causality constraints2 for offline EUP design com-83

plemented by the stochastic dynamic programming in online84

EUP design. The time-variant policy implies the fact that the85

energy usage would be adapted by relying on the idealized86

simplifying assumptions of having the a priori knowledge of87

the instantaneous energy arrival rates. The second category of88

EUPs recommends time-invariant policies for the long trans-89

mission durations routinely encountered in WSNs, which ex-90

hibit low computational complexities [6], [7]. The terminology91

of a time-invariant policy reflects the fact that it does not rely92

on the idealized knowledge of the instantaneous energy arrival93

rate, regardless of whether the energy dispensation is designed94

according to the statistical information of the energy arrival [7]95

or not [6]. In this case, the EUP may be defined as the “The96

policy determining the transmitting power, given the amount97

of energy in the energy buffer and the statistical information98

of the channel model.” Against this backcloth, in this treatise,99

we aim for filling the gap between the high-complexity time-100

variant EUPs and the low-complexity state-of-the-art time-101

invariant policies, by considering scenarios having a practical102

finite EB. As we will show in this paper that the EUPs in the103

literature [6], [7] did not exploit the EB’s state and achieved104

a suboptimal OP performance. Hence, we propose a range105

of meritorious methods for improving the OP performance,106

which fall into the time-invariant category to impose a low107

computation complexity by relying merely on the knowledge108

of the average energy arrival rate.109

As an evolution of research in the subject area of P2P-110

EH networks, the recent contributions on EH strategy design111

also cover multiple-access EH networks [6], [12]–[15]. In [12],112

Yang and Ulukus investigated the optimal packet scheduling113

problem in the context of a two-user fading multiple-access114

channel. In [15], Wang et al. developed optimal energy schedul-115

ing algorithms for a generalized M -user fading multiple-access116

channel relying on EH, to maximize their OF constituted by117

the network’s sum rate, stipulating the idealized simplifying118

assumption that the side information of both channel states119

and EH states are known for a certain number of time slots120

(TSs), where both the battery capacity and the maximum energy121

consumption during each TS are finite. To the best of our122

knowledge, the OP minimization problem of a generalized123

M -user fading multiple-access channel is, however, an open124

problem. Against this background, the novel contributions of125

this paper are as follows.126

1) An analytical framework based on a discrete Markov chain127

(DMC) is proposed for modeling the EB status, for the128

sake of investigating the OP of a P2P-EH network, inAQ2 129

which an EH source node (EH-SN) equipped with a finite130

EB transmits to a destination node (DN). Given the EB’s131

2The EH-causality constraint refers to the fact that, at any time, the
transceivers can only utilize the energy that was harvested during the past and
the energy not harvested as yet is hence unavailable for usage. Taking into
account the causality constraints imposed on the energy usage, the energy can
only be saved and used in the future. Therefore, the waterfilling algorithm is
redesigned as a directional one, which allows the energy flow only to take place
from the past to the future.

size and assuming a certain probability distribution func- 132

tion (PDF) for the energy arrival rate, the OP is derived for 133

arbitrary EUPs. 134

2) We investigate the optimal EUP conceived for minimizing 135

the OP of a P2P-EH network. Based on our proposed ana- 136

lytical framework, we show that constructing an exhaus- 137

tive search for finding the optimal EUP for minimizing 138

the OP is impractical, owing to its excessive complexity, 139

because it scales with (Lmax)!, where Lmax is the number 140

of states in the DMC. Therefore, a heuristic 2-D search 141

(2D-search) algorithm is proposed for finding a meritori- 142

ous EUP; we demonstrate that the proposed algorithm is 143

potentially capable of finding the EUP at a manageable 144

complexity.3 145

3) Nonetheless, the 2D-search algorithm conceived still ex- 146

hibits a high complexity; hence, we also propose a low- 147

complexity 1-D search (1D-search) algorithm. We will 148

demonstrate that the OP of the 1D-search algorithm is 149

close to that of its 2D-search counterpart, which may be 150

attractive for applications relying on low-cost hardware, 151

such as mobile phones and wireless sensors. 152

4) We extend the proposed DMC framework to more general 153

nonorthogonal EH networks. In contrast to the P2P sce- 154

nario, the outage events of practical EH-SNs tend to be 155

correlated. As an attractive application scenario, we will 156

investigate the OP of maximum-likelihood (ML) detection 157

in the context of spatial-division multiple-access (SDMA) 158

networks, we will decompose the OP by approximat- 159

ing it as multiple independent outage probabilities, each 160

corresponding to a simple P2P-EH-network subproblem. 161

Finally, we will propose a distributed EUP optimization 162

(DEUPO) protocol, where each EH-SN is capable of 163

optimizing its own policy using both the local statistics 164

of the fading channel and the related energy arrival model. 165

The rest of this paper is organized as follows: In Section II, 166

we first discuss the EUPs found in the literature and then invoke 167

the DMC for modeling the EB’s state. Based on this model, 168

we consider the OP minimization problem and propose the 169

aforementioned 2D-search and 1D-search algorithms conceived 170

for finding the optimal EUPs. In Section III, we investigate 171

the EUP design of SDMA-EH networks, and we propose the 172

aforementioned distributed DEUPO protocol. Finally, our con- 173

clusions are presented in Section V. 174

II. PEER-TO-PEER–ENERGY HARVESTING NETWORK 175

DESIGN 176

177A. System Model and OP Formulation 178

We first consider a simple P2P network constituted by an 179

SN and a DN, which is shown in Fig. 1. As shown in Fig. 1, 180

3When the Markov chain model has Lmax ≤ 10 states and the number of OF
evaluations is lower than 10!, the exhaustive searching may be implemented and
therefore may serve as the benchmark for our proposed algorithm. However,
for Lmax > 10, the complexity becomes excessive, which prevents us from
verifying, whether the 2D-search algorithm is capable of matching the optimal
EUP. On the other hand, it is challenging to mathematically prove the optimality
of a search algorithm in the context of a nonconvex problem involving high-
dimensional matrices. Therefore, this open problem will be further detailed in
our discussions, and it will be investigated in our future work.
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Fig. 1. System model of the P2P-EH network.

a primary EB and a secondary EB is required in practice181

[1], [6]. In [1], the secondary storage is a backup storage182

invoked for situations, when the primary storage is exhausted.183

In [6], the authors assumed that the rechargeable energy storage184

devices cannot charge and discharge simultaneously; hence, the185

transmitter is powered by the primary EB for data transmission,186

while the secondary EB is connected to the harvesting system187

and charges up. At the end of the recharge cycle, the secondary188

EB would be charged by the secondary EB. We assume that189

the charging time of the primary EB is negligible4 and that the190

charging efficiency is assumed to be 100%.5 Therefore, both191

the primary and the secondary EBs may be represented by a192

single EB, which is represented by the dashed-line box shown193

in Fig. 1. This buffer is assumed to be capable of powering the194

transmitter, while simultaneously being charged by the harvest-195

ing system. We do not make any specific assumptions as to what196

harvesting system is adopted, which may be solar cells, a wind197

anemometer, etc., as discussed in [1]. We assume that the EB at198

the SN has a finite EB size, where the harvested energy is stored199

and used for transmission. We assume furthermore that the200

energy arrival rate Pin obeys a certain probability distribution201

with an expectation of P in, and it remains constant over a TS of202

duration TE , while changing independently over the subsequent203

TSs, where a time slot is a recharge cycle. We assume that204

the instantaneous energy arrival rate is unknown and cannot be205

used during the current TS of TE , because the secondary EB is206

not allowed to charge and discharge simultaneously, as shown207

in Fig. 1. In order to focus our attention on the EUP conceived208

for wireless transmission, we assume that the circuit power con-209

sumption at the SN is negligible and that the energy conversion210

efficiency between the EB and the transmit power is 100%.6211

Let us now consider the channel modeling of the wireless212

communication links. We consider a narrow-band block-fading213

channel model, where the fading coefficients remain constant214

for the duration of a transmission packet denoted by TC and215

then they are faded independently from one packet to another216

4In practice, this may be realized by a supercapacitor-based storage system,
such as, for example, the Everlast solar system introduced in [1].

5In practice, the charging efficiency of the secondary EB may not reach
100%; hence, it may be multiplied by an efficiency factor ηbuffer ∈ [0, 1],
which may be equivalently considered to be a reduced energy arrival rate, and
hence, it does not affect any of our analysis.

6In practice, the power consumption of the circuits may be nonnegligible. We
may assume that the harvesting system is capable of providing sufficient circuit
power, while additionally providing a nonnegative transmit power. When the
EH system is not capable of supplying sufficient circuit power, the transmitter
may be switched off. On the other hand, the energy conversion efficiency ηTX

from the EB to the transmitter cannot reach 100% in practice. Hence, we may
simply multiply the energy arrival rate at the transmitter with an efficiency
coefficient ηTX ∈ [0, 1], which does not affect any of our analysis.

over the time dimension. Note that we make no assumptions 217

concerning the specific channel model and the distribution of 218

the channel gain. We also assume that there are always data 219

packets buffered at the SN for transmission. The signal received 220

at the DN is represented by 221

y = h
√
PtGsdx+ n (1)

where h is the channel coefficient capturing the effects of fad- 222

ing, while Pt is the transmit power, x is the transmitted signal, 223

and n is the additive noise at the receiver, which is modeled by 224

independent standard circularly symmetric complex Gaussian 225

random variables having a zero mean and a variance of 1. In (1), 226

the average processing gain of Gsd = (N0 × dβsd)
−1

between 227

the SN and the DN captures the effect of both the pathloss 228

and the noise, where N0 is the noise power at the receiver, dsd is 229

the distance between the SN and the DN, while β is the pathloss 230

exponent. 231

An outage is defined as the event when the instantaneous 232

received signal-to-noise power ratio (SNR) γ at the receiver 233

is below a predefined threshold γth that has to be exceeded 234

for successful decoding. If idealized perfect capacity-achieving 235

coding is assumed, we have γth = 2R − 1, where R is the 236

data transmission rate [16]. Then, the OP of the single-hop EH 237

network may be expressed as follows: 238

Pout = Pr
{
Pt|h|2Gsd < γth

}
� Pr

{
Pt|h|2 < Pth

} (2)

where Pt is the transmit power, and h is the normalized channel 239

coefficient capturing the fading effects. In (2), we define Pth = 240

γth/Gsd, to focus our attention on the effects of both the 241

transmit power Pt and the channel’s fading coefficient h. 242

In the conventional transmission scheme relying on classic 243

constant power supply, the transmit power Pt is a constant, and 244

the corresponding OP of narrow-band block-fading channels 245

was quantified in [16]. However, in the EH networks, the instan- 246

taneous transmit power Pt is time variant, which is constrained 247

by the amount of the energy available in the EB, which in turn 248

is a random variable depending on the energy arrival rate. The 249

energy arrival rate is assumed to exhibit a blockwise fluctuating 250

nature, which remains constant over a TS of duration TE and 251

changes independently over the subsequent TSs. During a TS 252

with a duration of TE , the amount of energy harvested, i.e., 253

PinTE , is independent of both that harvested in the previous TS 254

and of the energy consumed, i.e., PtTE , during transmission, 255

which is determined by the EB state BT at the beginning of the 256

current TS. 257

We define the EB state as BT = BE/TE , where BE is the 258

amount of energy available in the EB, while TE is the duration 259

of the recharge cycle. The physical interpretation of BT is the 260

maximum average transmit power that may be supported by 261

the amount of energy stored in the buffer during the current 262

recharge cycle.7 The EH-causality constraint [2] is interpreted 263

7When the knowledge of the instantaneous CSI during a period is unavailable
at the transmitter, transmitting at a constant transmit power would achieve the
minimum OP [16]. Therefore, a constant transmit power is adopted during each
recharge cycle, and BT is the upper bound.
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Fig. 2. EUP illustrated as the function of Pt versus BT .

as follows: the instantaneous transmit power Pt cannot exceed264

the maximum power BT that may be supported by the current265

EB state, i.e., we have Pt ≤ BT , explicitly indicating that the266

energy assigned for transmission must not exceed the amount267

of energy harvested. We may model the EUP by the transmit268

power as a function of the EB state, as follows:269

Pt(Bt), BT ∈ [0, Bmax] (3)

where the EB state BT is upper bound by Bmax defined as the270

EB capacity divided by the recharge cycle TE .271

In Fig. 2, the EH-causality constraint is shown in dashed272

lines as Pt(BT ) = BT , which models the best-effort policy273

proposed in [6], where all harvested energy in the buffer is274

used up for transmission. On the other hand, the asymptotic275

optimal policy proposed in [7] is illustrated by the solid line in276

Fig. 2, where the SN aims to transmit at a power of Pt = P in.277

In the asymptotic optimal policy, when the remaining energy in278

the EB is capable of supporting a higher transmit power than279

the average energy arrival rate P in, the transmitter conserves280

the energy for its future usage. If the remaining energy in the281

EB is insufficient for supporting Pt = P in, the SN switches to282

the best-effort policy. We may formulate the OP of the P2P-EH283

network as follows:284

Pout(Pt) =

Bmax∫
0

Pr
{
Pt(x)|h|2 < Pth

}
fBT

(x)dx

=

Bmax∫
0

+∞∫
0

Pr {Pt(x)y < Pth} f|h|2(y)fBT
(x)dx

(4)

where h is the channel coefficient capturing the effects of285

fading, which is a random variable, and its PDF f|h|2(y) relies286

on the statistical channel model. fBT
(x), x ∈ [0, Bmax] is the287

PDF of the EB state BT . Therefore, to derive the OP formulated288

in (4), the PDF of the EB state BT has to be modeled, bearing in289

mind the specific EUP adopted. Furthermore, because both Pt290

and BT are continuous variables, the number of feasible EUPs291

is infinite, and since different policies would result in different292

EB-state PDFs, finding the optimal policy for minimizing the293

OP in (4) may be quite challenging. Hence, we will investigate294

this problem in the next section.295

B. DMC Modeling of the EB State 296

As the energy arrival rate Pin is assumed to be constant over 297

a recharge cycle TE and then changes independently over the 298

subsequent recharge cycles, the EB state BT (k) at the end 299

of the kth (k ≥ 1) recharge cycle relies only on the state of 300

BT (k − 1), on the amount of energy consumed for transmis- 301

sion Pt[BT (k)], as well as on the current energy arrival rate Pin, 302

which obeys a certain PDF, but it is statistically independent 303

of its previous samples. Therefore, BT may be modeled by a 304

continuous Markov process. 305

However, the domain of BT ∈ [0, Bmax] is continuous; 306

hence, the set of the states is uncountable and challenging to 307

manage [17]. Therefore, given the EUP, deriving the PDF of BT 308

is quite challenging, except for certain special cases, such as the 309

best-effort policy combined with the condition, when the trans- 310

mit power is equal to the instantaneous arriving energy, which 311

may be modeled by the exponential distribution [6]. Even for 312

the asymptotic optimal policy [7], where Pt is a simple function 313

determined by a combination of the best-effort policy and of the 314

constant power supply, the PDF of BT cannot be readily derived 315

in closed form; hence, the asymptotic optimality relies on the 316

fact that the probability of Pr{BT < Pt = P in} → 0, when the 317

EB size obeys Bmax → ∞. In order to quantify and then to 318

minimize the OP in (4), we approximate the continuous-state 319

Markov process by a finite-state Markov chain [18], to model 320

the EB state BT , and to derive the PDF of BT . Specifically, the 321

EB size Bmax is discretized as Lmax = �Bmax/εP �, where εP 322

is the discrete step size of the power. Therefore, l = �BT /εP � 323

may take a value from l ∈ {0, 1, . . . , Lmax} and has a state- 324

space size of (Lmax + 1). The instantaneous EH rate Pin and 325

the decoding threshold Pth are also discretized with a step size 326

of εP as 327

Lin =

⌊
Pin

εP

⌋
Lth =

⌊
Pth

εP

⌋
.

(5)

Hence, Lth is a discrete constant when Pth is given, while l and 328

Lin are discrete random variables, and their probability mass 329

functions (PMFs) may be generated from the PDFs of BT and 330

Pin as follows: 331

Pr{l = x} =

(x+1)εP∫
xεP

fBT
(u)du

Pr{Lin = x} =

(x+1)εP∫
xεP

fPin
(u)du.

(6)

Although the variables BT , Pin, and Pt may assume any arbi- 332

trary continuous nonnegative value, the DMC may be capable 333

of sufficiently accurately capturing the buffer’s behavior, as 334

long as the discretization step size εP is small enough. Finally, 335

we may discretize the EUP formulated in (3) as 336

Pt(l) = Pt

(⌊
BT

εP

⌋)
, l ∈ {0, 1, . . . , Lmax} (7)
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where the discrete EUP is defined as337

Lt(l) =

⌊
Pt(l)

εP

⌋
. (8)

Then, we may construct the state transition matrix T of the EB338

states, where the specific element in the ith row and jth column339

is given by340

Ti,j = Pr {l(k + 1) = j | l(k) = i}

=

{
Pr {j = i+ Lin − Lt(i)} , 0 ≤ j < Lmax

Pr {j ≤ i+ Lin − Lt(i)} , j = Lmax.

(9)

We arrive at the steady-state probability vector π = [π0 π1 . . .341

πLmax
]T using the relationship of342

π = TTπ (10)

where the physical interpretation of (10) is that the state proba-343

bility vector π converges and remains constant. Then, we may344

formulate the OP as345

Pout (Lt(l)) =

Lmax∑
l=0

Pr
{
Lt(l)|h|2 < Lth

}
π(l)

�
Lmax∑
l=0

Pe(l)π(l)

(11)

which is the discrete version of (4). It should be noted that,346

in (11), the OP component of Pe(l) � Pr{Lt(l)|h|2 < Lth} is347

not determined unambiguously by the EUP defined by Lt(l),348

l ∈ [0, Lmax], because it also relies on the statistical channel349

model determining the distribution of |h|2. For example, if a350

narrow-band Rayleigh block-fading channel is assumed, then351

|h|2 follows the exponential distribution in conjunction with the352

parameter of 1. In this case, the OP component Pe(l) may be353

expressed as354

Pe(l) = Pr
{
Lt(l)|h|2 < Lth

}
= 1 − e

− Lth
Lt(l) . (12)

C. Two-Dimensional EUP-Search Algorithm355

Given a certain EUP represented by Lt(l), l ∈ [0, Lmax] and356

a specific statistical channel model, we are now capable of357

quantifying the OP of a certain EUP with the aid of (7)–(11).358

The optimal EUP Lt(l), l ∈ [0, Lmax] may be formulated by359

using the physically meaningful OF minimizing the OP as360

follows:361

min
Lt(l)

Pout [Lt(l)] . (13)

However, the inverse of the mapping in (11) from the OP362

Pout[Lt(l)] to the specific EUP Lt(l) cannot be readily evalu-363

ated. In other words, given a certain Pout[L(l)], it is not possible364

to derive the EUP Lt(l) adopted. Naturally, this hinders the365

related inverse mapping, and hence, the closed-form derivation 366

of the optimal EUP is not possible. Although the buffer-state 367

transition matrix T of (9) may be readily determined, given 368

the EUP Lt(l), according to (9), the resultant steady-state 369

probability vector π = [π0 π1 . . . πLmax
]T is a solution of 370

(10), which is a high-dimensional system of linear equations. 371

Furthermore, given a certain steady-state probability vector π, 372

it is not possible to derive the buffer-state transition matrix T , 373

and hence, we cannot uniquely and unambiguously determine 374

the discrete EUP Lt(l). 375

1) Design Motivations: When using a discrete Markov mod- 376

eling of the EB state, the EUP is represented by a vector of 377

Lt(l), l ∈ [0, Lmax], which has (Lmax + 1) legitimate elements 378

over the first dimension constituted by the EB state, where the 379

lth element in Lt(l) itself may be assigned any discrete value 380

spanning from 0 to l over the second dimension representing the 381

amount of energy assigned for transmissions. Hence, the EUP 382

search is over a 2-D space. The aforementioned fact motivates 383

us to design an EUP-search algorithm. The most conceptually 384

straightforward way of finding the optimal EUP Lt(l), l ∈ 385

[0, Lmax] is to invoke an exhaustive search, which evaluates 386

every feasible EUP and selects the one having the minimum 387

OP. As illustrated in Fig. 2, an EUP Lt(l) is physically feasible 388

as long as the instantaneous transmit power Pt is nonnegative 389

and does not exceed the maximum affordable power BT that 390

may be supported by the current EB state Pt ≤ BT , which is 391

equivalent to the following discrete form: 392

0 ≤ Lt(l) ≤ l, ∀l ∈ [0, Lmax]. (14)

This simple feasibility constraint results in a large num- 393

ber of feasible EUPs, where the complexity of searching for 394

the optimal policy that minimizes the OP may be excessive. 395

Quantitatively, there are Nf = (Lmax + 1)! number of feasible 396

functions of Lt(l), given the condition in (14). For example, if 397

we have Lmax > 11, the number of feasible functions becomes 398

Nf > 108. Therefore, the exhaustive search method of finding 399

the optimal policy is not practically feasible. Hence, we have 400

to design search algorithms having a practically tolerable com- 401

plexity, which are detailed in the following sections. 402

2) EUP-Search Algorithm Design: In the algorithms pro- 403

posed in this treatise, the design guidelines that we adopted for 404

controlling the complexity, which is quantified by the number 405

of OP evaluations, are summarized as follows. 406

• Guideline 1: The optimal EUP Lt(l), l ∈ [0, Lmax] is a 407

nondecreasing function of the EB state l, i.e., we have 408

∀k ∈ [0, Lmax − 1], Lt(k + 1)− Lt(k) ≥ 0. The physi- 409

cal interpretation of this guideline can be summarized as 410

follows. If the amount of energy available in the EB is 411

increased, the transmitter should not use a lower transmit 412

power. The reason behind this guideline is twofold: First, 413

the transmitter has no knowledge of the energy arrival rate 414

in the future; therefore; it cannot decide as to whether 415

conserving the harvested energy in the EB for future usage 416

is beneficial. Second, the transmitter has no knowledge of 417

the instantaneous channel gain; therefore, it cannot decide 418

how to control the transmit power. 419
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• Guideline 2: The increment of the optimal EUP Lt(l),420

l ∈ [0, Lmax] is no higher than one unit of energy421

with respect to the EB state l, i.e., we have ∀k ∈422

[0, Lmax − 1], Lt(k + 1)− Lt(k) ≤ 1. Let us assume423

that there are two feasible EUPs Lt and L̂t, which424

satisfy Lt(k + 1)− Lt(k) ≥ 2, L̂t(k + 1)− L̂t(k) ≤ 1,425

and L̂t(k + 1) + L̂t(k) = Lt(k + 1) + Lt(k). When the426

OP versus the transmit power is a convex function, the427

algorithm should choose L̂t, because according to (11),428

it would achieve a lower OP than Lt, provided that the429

steady-state probability vector π is assumed to be fixed.430

However, it was shown in [8] that the OP functions with431

respect to the transmit power are nonconvex in the low432

transmit power region, i.e., when Pout > 0.1. However,433

in most practical scenarios, a better OP is required, in434

which case the OP functions tend to be convex. In this435

scenario, evenly allocating the transmit power to state k436

and (k + 1) may achieve a lower OP than an unequal437

allocation of power, given a fixed total amount of transmit438

power. Therefore, we judiciously opt for EUPs satisfying439

Lt(k + 1)− Lt(k) ≤ 1.440

Although the aforementioned pair of design guidelines may441

be interpreted physically in a simple manner, it is challeng-442

ing to rigorously prove the optimality of Guideline 1, while443

Guideline 2 is applied in a relatively high transmit power444

scenario associated with a good channel quality, when the OP445

is a convex function of the transmit power [8]. When relying446

on the proposed pair of design guidelines, the number of OP447

evaluations is reduced from Nf = (Lmax)! to N2D = 2Nmax ,448

which may still be excessive. Quantitatively, when we have449

Nmax > 30, the number of OF evaluations obeys N2D > 109.450

Therefore, we conceive a third guideline for controlling the451

complexity, albeit this is achieved at the cost of potentially452

resulting in a locally optimal solution, which is detailed as453

follows.454

• Guideline 3: When the search does not find an EUP455

resulting in a reduced OP, it is terminated. This is a widely456

used early-stopping technique employed in heuristic op-457

timization algorithms [19]. Albeit its global optimality458

is not guaranteed without further information about the459

search space, it is capable of substantially reducing the460

complexity.461

Since Guideline 3 may result in locally optimal solutions,462

multiple initial solutions may be chosen for the search al-463

gorithm. However, through our extensive numerical evalua-464

tions conducted for Nmax < 12, when the exhaustive search465

algorithm is still feasible, our numerical results have shown466

that Algorithm 1 is capable of finding the globally optimal467

EUP. Algorithm 1 uses the best-effort policy as the initial468

solution, and then, the three aforementioned guidelines are469

followed throughout the rest of the design. Therefore, it may470

be concluded that, although the optimality may not be shown471

mathematically, the proposed heuristic 2D-search algorithms472

are effective in practical applications, while imposing a much473

lower complexity than the exhaustive search.474

Algorithm 1 2D-Search Algorithm

1: Lt(l) = l, l ∈ [0, Lmax];//Start as the best-effort policy 475

2: Pout,min ← 1; 476

3: NI ← 0; 477

4: IU ← 1; 478

5: while IU == 1 do 479

6: NI ← NI + 1; //record the number of searches 480

7: for l = Lmax to 0 do 481

8: L̃t ← Lt; //store the current policy 482

9: if Lt(l) > 0 then 483

10: Lt(l) ← Lt(l)− 1; //remove the top tile only 484

(guideline 2). 485

11: end if 486

12: for i = 0 to l do 487

13: Lt(i) ← min(Lt(i), Lt(l)); //ensure policy is non- 488

decreasing (guideline 1). 489

14: end for 490

15: Pout = Pout(Lt); 491

16: if Pout < Pout,min then 492

17: Pout,min ← Pout; 493

18: else 494

19: Lt ← L̃t; //recover the stored policy 495

20: end if 496

21: Lt[NI ] ← Lt; 497

22: if Lt[NI ] == Lt[NI − 1] then 498

23: IU ← 0; //terminate if the iteration (guideline 3). 499

24: end if 500

25: end for 501

26: end while 502

D. One-Dimensional EUP-Search Algorithm 503

In the previous section, the optimal EUP was investigated and 504

a 2D-search algorithm was proposed. However, the algorithm 505

relies on searching in a 2-D domain of the EB state and of the 506

energy assigned for transmission; hence, it is quite involved. 507

Here, motivated by the fact that the asymptotic optimal policy 508

is characterized by a constant desired transmit power [7], we 509

formulate a 1D-search-based EUP and aim for minimizing the 510

OP using a reduced-complexity 1-D search to exhibit a signifi- 511

cantly lower complexity than that of the 2D-search algorithm. 512

1) Design Motivations: Our proposed 1D-search policy is 513

motivated by the asymptotic optimal policy proposed in [7], 514

which is illustrated in Fig. 2. The suboptimal EUP considered 515

is based on a combination of the constant power policy and the 516

best-effort policy. Specifically, given a desired constant transmit 517

power Pd, when the energy remaining in the EB satisfies 518

Bt ≥ Pd, the transmitter opts for transmitting at a power of 519

Pt = Pd and conserves the rest of the energy for its future 520

usage. Otherwise, when Bt < Pd, the transmitter switches to 521

the best-effort policy and transmits at a power of Pt = BT . The 522

suboptimal policy is represented by a fixed Pt(BT ) of 523

Pt(BT ) =

{
BT , BT < Pd

Pd, BT ≥ Pd

(15)
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while its discrete version represented by Lt(l), l ∈ [0, Lmax] is524

Lt(l) =

{
l, l < Ld

Ld, l ≥ Ld

(16)

where we define Ld = �Pd/εP �. Compared to the generalized525

representation of Lt(l), l ∈ [0, Lmax], which requires (Lmax +526

1) variables for fully characterizing the policy, the proposed527

EUP may be characterized by a single variable Ld. Therefore,528

Ld is also the only variable that may be optimized to minimize529

the OP. However, the 1D-search policy may be expected to530

result in a degraded OP.531

A special case of the proposed EUP is to set Pd = P in or532

equivalently Ld = Lin. The asymptotic optimal EUP proposed533

in [7] was shown to achieve the performance of its constant-534

power counterpart operating at Pt = P in, based on the assump-535

tion of an infinite EB size of Bmax → ∞ [7]. In this case,536

the probability of an EB overflow is 0, and the probability537

of Pr{BT < Pd} = Pr{l < Ld} → 0. It is plausible that the538

performance of the classic non-EH system constitutes the OP539

lower bound that may be achieved by any EH system relying540

on a random energy arrival rate. Naturally, achieving the per-541

formance of the asymptotic optimal EUP is desirable [7].542

However, when the EB size is finite, the asymptotic optimal543

policy would be suboptimal, because a finite EB may overflow544

with a nonnegligible probability, when the instantaneous energy545

arrival rate is high and cannot be stored for future usage.546

Meanwhile, the choice of Ld = Lin may not be optimal, since547

a choice of Ld �= Lin may reduce both the probability of EB548

overflow and the OP. However, the optimal choice8 of Pd is549

not obvious, because the relationship between the OP Pout and550

the energy usage function Lt is quantified by (9)–(11), which551

makes the direct derivation of the optimal Pd quite challenging.552

By comparison, as shown in (7)–(11), given a specific value553

of Pd, the numerical evaluation of Pout may be straightforward,554

according to the OP expression provided in (11). This motivates555

us to design a search algorithm, which searches for the optimal556

Pd based on the numerical evaluation of Pout, instead of using557

an analytical derivation to get the optimal Pd directly.558

In the next section, we will first derive the OP for the 1D-559

search-based EUP given a specific Ld and then propose our560

specific search algorithm for finding the optimal Ld to minimize561

the OP.562

2) One-Dimensional EUP-Search Algorithm Design: Upon563

invoking the 1D-search-based EUP represented in (16), we may564

simplify the OP expression of (11) specifically for the 1D-565

search policy as follows:566

Pout = Pr{l ≥ Ld}Pr
{
Ld|h|2 < Lth

}
+ Pr{l < Ld}Pr

{
l|h|2 < Lth|l < Ld

}
(17)

where the first line represents the OP, when the energy in the567

EB is capable of supporting transmitting at the desired level of568

Ld. The second line in (17) represents the OP, when the energy569

in the EB is insufficient for transmitting at the power level of570

8The optimal choice is in the context of selecting Pd for the 1D-search
algorithm, which may still result in inferior OP compared to the exhaustive
search and the 2D-search algorithms.

Lt = Ld, and the transmitter consumes all the energy in the 571

EB, while transmitting at a power level of Lt = l. Then, we 572

construct the state transition matrix T of the EB state according 573

to (9), and when the EB state is steady, the state probability 574

vector π may be formulated as follows: 575

π = TTπ

where π = [π0 π1 . . . πLmax
]T . Given the desired power level 576

represented by Ld and the OP expression in (17), we have 577

Pr{l ≥ Ld} =

Lmax∑
l=Ld

πl. (18)

If we assume furthermore that the channel obeys Rayleigh 578

fading, the other terms in (17) can be derived as follows: 579

Pr
{
Ld|h|2 < Lth

}
= 1 − exp

(
−Lth

Ld

)
(19)

Pr{l < Ld}Pr
{
l|h|2 < Lth|l < Ld

}
=

Ld−1∑
l=0

πl Pr
{
l|h|2 < Lth

}
=

Ld−1∑
l=0

πl

[
1 − exp

(
−Lth

l

)]
. (20)

By substituting the terms of (18)–(20) into (17), we may arrive 580

at the analytical OP for transmission over Rayleigh block- 581

fading channels in the P2P-EH network in Fig. 1. If a differ- AQ3582

ent statistical channel model is adopted, we may reformulate 583

(19) and (20), accordingly. Throughout this paper, we use the 584

Rayleigh block-fading channel as a case study, although our 585

proposed OP analysis and the search algorithms conceived for 586

OP minimization are sufficiently general for arbitrary channel 587

models. The effects of other wireless channel models will be 588

investigated in our future research. 589

Therefore, given a specific value of Ld, the numerical eval- 590

uation of Pout is straightforward, according to the OP expres- 591

sion provided in (17). Since it relies on the single parameter 592

Ld, a 1-D EUP-search algorithm may be designed for finding 593

the optimal Ld, instead of searching over a 2-D EUP space, 594

as in Section II-C. This 1D-search procedure is detailed in 595

Algorithm 2, which is much simpler than the 2D-search algo- 596

rithm in Section II-C. Specifically, in Algorithm 2, there are a 597

total of (Lmax + 1) candidate EUPs, since we have Ld ∈ {0, 1, 598

. . . , Lmax}. For each candidate EUP, the OP is evaluated using 599

(17), where the one achieving the minimum OP is selected. 600

Algorithm 2 1D-Search Algorithm

1: Ld,opt ← 0; 601

2: Pout,min ← 1; 602

3: for Ld = 0 to Lmax do 603

4: Pout = Pout(Ld); 604

5: if Pout < Pout,min then 605

6: Pout,min ← Pout; 606

7: Ld,opt ← Ld; 607

8: end if 608

9: end for 609
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Specifically, the 1-D EUP-search procedure of Algorithm 2610

requires (Lmax + 1) evaluations of the OP, which is signifi-611

cantly lower than that of the 2-D EUP-search of Algorithm 1612

or the exhaustive search methods. The low complexity of613

Algorithm 2 accrues from the fact that the EUP functions614

Lt(l) investigated may be characterized by a single scalar Ld,615

as shown in (16). Therefore, the OP may be expressed as a616

function of a scalar Ld, rather than as a vector
−→
Lt � {Lt(l)|l ∈617

[0, Lmax]}. In Section IV-A, we will compare the OP of the618

proposed 2D-search and 1D-search Algorithms 1 and 2 to a pair619

of state-of-the-art EUPs found in the literature, namely, to the620

best-effort policy [6] and to the asymptotic optimal policy [7].621

III. SPATIAL-DIVISION MULTIPLE-ACCESS–ENERGY622

HARVESTING NETWORK DESIGN623

In the previous section, the EUPs conceived for minimizing624

the OP of P2P networks were investigated. Here, we continue625

by investigating the EUP design of an SDMA prototype net-626

work. Compared to the P2P network, the outage events of627

different EH-SNs are correlated, but a centralized optimization628

would impose an excessive complexity. Even if a subopti-629

mal 1-D EUP search space is adopted for each EH-SN, an630

M -dimensional search space is required for an SDMA network631

of M EH-SNs, which is generally not practical. In addition, the632

global knowledge of the channel quality between each EH-SN633

and the DN, as well as the statistical distribution of the energy634

arrival rates, should be available at a central controller node,635

which also imposes a high side-information signaling overhead636

and complexity. Furthermore, for traditional non-EH SDMA637

networks, the closed-form OP expressions are not available in638

the open literature for generalized SDMA networks having M639

SNs, since the derivation of the closed-form OP expressions for640

SDMA-EH networks is quite challenging.641

Therefore, we embark on the OP analysis of an SDMA642

network relying on ML detection and use the minimum-SNR643

(min-SNR) approximations to arrive at the approximate OP644

of our SDMA networks, which has been documented in [20]645

and [21]. It will be shown that the min-SNR approximations646

are accurate in predicting the OP of the SDMA networks.647

Given an SDMA network comprised of M EH-SNs and a648

DN, we decompose the approximate joint OP of SDMA into649

a product of M mutually independent OP components, each of650

which corresponds to a P2P-EH-network counterpart. Then, we651

propose a DEUPO protocol, in which each EH-SN is capable of652

optimizing its own EUP based on the 2-D and 1-D EUP-search653

algorithms in Section II, using the statistics of its own uplink654

(UL) channel and its own energy arrival rates, indicating that655

only local knowledge is required.656

A. System Model and OP Formulation657

We consider a network of (M + 1) nodes, where M SNs658

{Sm, 1 ≤ m ≤ M} transmit their individual information to a659

common DN, and each SN is equipped with both a harvesting660

scheme and an EB, as shown in Fig. 1. Again, we assume661

a narrow-band Rayleigh block-fading channel model, where662

the fading coefficients remain constant for the duration of a663

Fig. 3. Accuracy of the OP (Pout) evaluation using the min-SNR approxima-
tions for M = 4, R = 0.5 b/s/Hz. The distance between the SNs and the DN
is dsd = 100 m and the pathloss exponent is β = 3.

packet and then are faded independently from one packet to 664

another in both time and space. The additive noise imposed by 665

the receivers is modeled by independent zero-mean circularly 666

symmetric complex Gaussian random variables with a variance 667

of unity. 668

The DN is assumed to have perfect channel knowledge and 669

adopts ML detection. All the SNs transmit their messages 670

concurrently at the rate of R. The SN Sm encodes a bit 671

sequence into a codeword and transmits it to the DN, where 672

the DN jointly decodes the codewords received from all the 673

SNs. Therefore, the SN-DN hop may be modeled by a multiple- 674

access channel (MAC), and the criterion used for successful 675

decoding is 676∑
m∈S

R ≤ log

(
1 +

∑
m∈S

γmd

)
∀S ⊆ {Sm, 1 ≤ m ≤ M}

(21)

where γmd represents the instantaneous received SNR of the 677

Sm-DN link. There are (M !− 1) inequalities in (21), and even 678

if a single one of the inequalities in (21) is not satisfied, the 679

transmission over the SN-DN hop becomes erroneous. Hence, 680

when the min-SNR of the M channels spanning from the 681

SNs to the reference node (RN), defined as γmin
sd = min

m∈S
γmd,

AQ4682

is lower than the threshold γsd
th = 2R − 1 to be exceeded for 683

successful decoding, an outage event occurs. Therefore, we 684

aim for modeling the OP of the M -user MAC on the SN-RN 685

hop with the aid of the specific SN-RN link having the min- 686

SNR γmin
sd . 687

Specifically, in Fig. 3, we compare the OP of the M -user 688

MAC channel using ML detection to that of a single link 689

having the min-SNR γmin
sd of the M -user system. As shown 690

in Fig. 3, the OP of the two systems obtained by simulation 691

perfectly matches for both the equal-SNR and the unequal-SNR 692

scenarios. Specifically, in the equal-SNR situation, the average 693

channel quality of the link spanning from each SN to the DN 694

is identical, while in the unequal-SNR scenario, the average 695

channel quality is different, where the SNRs of the M = 4 696

links are one, two, four, and eight times higher than that in the 697
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equal-SNR situation, respectively. It is shown in Fig. 3 that698

the exact OP of the M -user MAC channel and the predicted699

OP using the P2P channel associated with the min-SNR are700

identical for both scenarios. Hence, the OP using the min-SNR701

approximation may be expressed as follows:702

Pout,SD≈ Pr

{
min
m∈S

γmd < γsd
th

}
=1 − Pr

{
min
m∈S

γmd ≥ γsd
th

}
= 1 −

∏
m∈S

Pr
{
γmd < γsd

th

}
�1 −

∏
m∈S

(1 − Pout,md).

(22)

B. DEUPO Protocol703

Having confirmed the accuracy of the min-SNR approxima-704

tion, we are now in the position to formulate the OP minimiza-705

tion problem for the SDMA-EH network as follows:706

min
Lt,1(l),Lt,2(l),...,Lt,m(l)

Pout,SD (Lt,1(l), Lt,2(l), . . . , Lt,m(l))

(23)

where Lt,1(l), Lt,2(l), . . . , Lt,m(l) corresponds to the discrete707

EUPs at the SNs. Equivalently, the minimization problem de-708

fined in (23) may be expressed by709

max
Lt,1(l),Lt,2(l),...,Lt,m(l)

[1−Pout,SD(Lt,1(l), Lt,2(l),. . .,Lt,m(l))].

(24)

Let us now investigate the formulation of [1 −710

Pout,SD(Lt,1(l), Lt,2(l), . . . , Lt,m(l))] in detail. By using711

the min-SNR approximation of (22), we have712

[1 − Pout,SD (Lt,1(l), Lt,2(l), . . . , Lt,m(l))]

≈
∏
m∈S

[1 − Pout,md (Lt,m(l))] . (25)

In order to maximize the OF of (24), we may maximize each713

component of [1 − Pout,md(Lt,m(l))]. Since they are mutually714

independent or equivalently, we may minimize each compo-715

nent’s Pout,md(Lt,m(l)). This is beneficial, because the mth716

component Pout,md(Lt,m(l)) corresponds to the OP of a P2P-717

EH link spanning from the mth EH-SN to the DN, while it is718

independent of both the channel quality and the EUPs adopted719

by other EH-SNs.720

Therefore, we may design a DEUPO protocol, in which each721

EH-SN optimizes its own EUP relying on the proposed 1D-722

search and 2D-search algorithms proposed for a P2P link in723

Section II. Specifically, we design the protocol as follows.724

• Acquiring the Energy Arrival Rate and Channel725

Statistics: In practical applications, the system designer726

may choose appropriate EHI and CSI estimation algo-727

rithms, through which the system may detect the changes,728

generate a trigger, and decide when to activate its EUP729

optimization. This is a widely used event-triggered proto-730

col [22], [23]. A simpler solution is to periodically invoke731

the EUP optimization, according to the instantaneous732

estimated statistics of both the energy arrival rates and733

the channels. This is, however, beyond the scope of this734

paper. Instead, we focus our attention on the issue of 735

deciding the EUP, whenever the optimization is activated. 736

In our analysis, we assume that both the estimated en- 737

ergy arrival rate and the channel statistics are perfectly 738

estimated. Hence, each EH-SN has perfect knowledge of 739

the statistics of energy arrival rate, while the DN has the 740

knowledge of the statistics of the UL channels spanning 741

from each EH-SN. In practice, this knowledge is acquired 742

with the aid of pilot-based channel estimation mechanism 743

and/or prediction methods. 744

• Local EUP Optimization Phase: Each SN sends a 745

request-to-send (RTS) packet to the DN. The DN would 746

send M clear-to-send (CTS) packets to the M SNs, where 747

the channel statistics between the mth EH-SN and the DN 748

would be conveyed in each CTS packet, which is assumed 749

to be perfectly recovered at the EH-SNs. Then, each EH- 750

SN may adopt the 2D-search in Section II-C or the 1D- 751

search in Section II-D to find the approximate EUP for 752

our P2P-EH network. As discussed in the context of (25), 753

our design objective is to minimize the approximate OP 754

of the SDMA-EH network considered. 755

• Data Transmission Phase: Each EH-SN commences its 756

session, by transmitting to the DN, by relying on its 757

locally optimized EUP. 758

IV. NUMERICAL RESULTS 759

760A. P2P Networks 761

As detailed in Sections II-C and D, the OP relies on the 762

following system parameters: 763

• Statistics of the energy arrival rates: include the average 764

energy arrival rate P̄in and the recharge cycle TE . The 765

distribution of the fading energy arrival directly affects its 766

rate, which is assumed to be exponentially distributed, as 767

in [6] and [7], to facilitate our comparisons with the state- 768

of-the-art benchmarkers proposed in these references. 769

• Statistics of the wireless information-transfer chan- 770

nels: again, the wireless channel spanning from the SN 771

to the DN is assumed to obey Rayleigh block fading, 772

although our analysis technique can be applied to arbitrary 773

channel models. 774

• Parameters of the EH-SN: the EB size Bmax and the 775

data transmission rate R. 776

Here, the dependence of the OP on the aforementioned sys- 777

tem parameters will be investigated. In the context of the P2P- 778

EH networks, the distance between the SN and the DN is set 779

to dsd = 100 m and the pathloss exponent to β = 3, while the 780

noise power at the receiver is assumed to be N0 = −80 dBm. 781

The data transmission rate is set to R = 1 b/s/Hz. In the figures, 782

the analytical results are represented by the dashed curves, 783

while the simulation results are shown by the symbols. It should 784

be noted that the discrete step sizes εP used for quantifying the 785

OP and for searching for the feasible EUP sets are different. 786

For OP evaluations, εP is set for ensuring that we have Lmax = 787

6400 to guarantee a high accuracy of quantifying the OP, while 788

we have εP set to Lmax = 200, when searching for the EUP 789

using Algorithms 1 and 2 to control the search complexity. 790
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Fig. 4. Transmit power versus the EB state of different EUPs for the P2P
network. The average energy arrival rate is P̄in = 10 dBm, and the EB size is
Bmax = 16P̄in, while we have R = 1 b/s/Hz and TE = 8TC .

We will demonstrate that the analytical results represented by791

the dashed curves closely match the simulation results, which792

indicates that the DMC-based analytical framework is capable793

of accurately predicting the OP of the P2P-EH networks for all794

of the EUPs considered.795

The transmit power versus EB state of the different EUPs796

are characterized in Fig. 4. It is shown that the best-effort797

policy proposed in [6] exhibits a slope of 1, indicating that798

the currently harvested amount of energy in the EB will be799

immediately used up for transmission. The x-axis Bt represents800

the maximum power that may be supplied, given the amount of801

energy in the EB for a period of TE . The asymptotic optimal802

policy is based on a combination of two trends: when the803

amount of energy in the EB satisfies Bt < P̄in, the EH-SN804

transmits by employing the best-effort EUP; otherwise, its EH-805

SN opts for a constant power strategy by choosing a fixed806

transmit power of Pt = P̄in. When the EB size tends to infinity,807

the asymptotic optimal policy would approach the performance808

of the constant power policy, indicating that a large EB is809

capable of converting an EH system into an equivalent classic810

non-EH system having a constant transmit power of Pt = P̄in811

[7]. However, when the EB size is finite, the asymptotic optimal812

policy is no longer optimal in terms of minimizing the OP, as813

shown in Fig. 5.814

In Fig. 5, the performance of the EUPs found by the proposed815

2D-search and 1D-search Algorithms 1 and 2 are compared816

to that of the best-effort policy and the asymptotic optimal817

policy proposed in [6] and [7], respectively. It is shown that,818

for the given configurations, the OP achieved by the proposed819

algorithms tends to be better than those achieved by the bench-820

markers. Specifically, the 2D-search Algorithm 1 performs821

close to its classic non-EH counterpart, which serves as the822

lower bound of the OP for the EH systems [7]. At Pout = 0.01,823

the EUP found by the 2D-search Algorithm 1 achieves a 3-dB824

power gain over the asymptotic optimal policy and a 6-dB gain825

over the best-effort policy. Therefore, if an EH-SN adopts the826

asymptotic optimal policy, it requires twice the average energy827

arrival rate harvested from the environment, compared with an828

EH-SN equipped with the proposed 2D-search algorithm, while829

Fig. 5. OP versus average energy arrival rate P̄in using different EUPs for the
P2P network. The EB size is Bmax = 16P̄in, R = 1 b/s/Hz, and TE = 8TC .
The numerical OP results were evaluated from (11), given the searched EUP.

maintaining the same OP of Pout = 0.01. This ratio would, 830

in fact, be further increased to four, if the benchmark EH-SN 831

adopts the best-effort policy. 832

We may conclude that the 2D-search algorithm is capable 833

of most significantly improving the EH-SN’s capability to 834

exploit the harvested energy, or to substantially simplify the 835

hardware required for harvesting the energy from the envi- 836

ronment, which is important for applications such as WSNs 837

[1]. For example, the best-effort policy requires a four times 838

higher average energy arrival rate for maintaining an identical 839

outage performance as that using the 2D-search algorithm. 840

Equivalently, the amount of power harvested by the solar panel 841

increases linearly with the area of the solar panel [1], hence 842

requiring a four times larger solar panel. In other words, the 843

2D-search Algorithm 1 allows us to design a sensor node 844

having a solar panel of much smaller size, which has 25% of 845

the area necessitated by the best-effort policy. Furthermore, as 846

shown in Fig. 5, when the reliability requirements are more 847

stringent, the performance improvements of the proposed EUPs 848

would become more significant in terms of requiring a lower 849

energy arrival rate or a smaller solar panel. Finally, the 1D- 850

search Algorithm 2 is inferior to the 2D-search Algorithm 1, 851

since it exhibits a modest performance degradation of 0.9 dB 852

at Pout = 10−2. From an alternative perspective, an EH-SN 853

adopting the 1D-search Algorithm 2 may require 1.23 times 854

higher energy arrival rate, which is the price paid for reducing 855

the computational complexity. Therefore, in a WSN application 856

scenario having sensor nodes that have a low computational 857

capability, the 1D-search Algorithm 2 or the simple asymptotic 858

optimal policy may be preferred. 859

The fundamental reason for the OP improvements of the 860

proposed 2D-search and 1D-search Algorithms 1 and 2 may be 861

inferred from Fig. 6, which represents the PMF of the discrete 862

EB state l for different EUPs. It is observed that all EUPs 863

resulted in near-constant PMF values, apart from the peaks 864

at the states, when the EB was full at l = Lmax. Compared 865

with the PMF of the best effort and the asymptotic optimal 866

policy, the 2D-search and 1D-search Algorithms 1 and 2 may 867
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Fig. 6. PMF of the EB states for the P2P network. The average energy arrival
rate is P̄in = 10 dBm, while the EB size is Bmax = 16P̄in, R = 1 b/s/Hz, and
TE = 8TC . The results were evaluated via simulations.

Fig. 7. Computational complexity, in terms of the number of OP evaluations
versus the discrete EB size Lmax, for the 1D-search and the 2D-search
algorithms for the P2P network. The results were evaluated via simulations.

be capable of improving the PMF when the EB is small, which868

reduces the weights πl for the relatively large OP components869

of Pe(l) = Pr{Lt(l)|h|2 < Lth} in (11), when the discrete870

transmit power Lt is low. Therefore, reshaping the PMF by871

reducing the contribution of the high OP components and872

increasing the weights of the low OP components, the overall873

OP may be beneficially reduced, which is confirmed by the874

results in Fig. 5. It is also shown that the 1D-search Algorithm 2875

may be capable of finding an EUP, which performs close to the876

2D-search Algorithm 1, despite its lower complexity, as shown877

in Fig. 7.878

More explicitly, the relationship between the number of OP879

evaluations and the discrete EB size Lmax is illustrated in Fig. 7,880

for both the 2D-search Algorithm 1 and 1D-search Algorithm 2.881

Observe that the 1D-search Algorithm 2 drastically reduces the882

complexity of its 2D-search counterparts. Quantitatively, when883

the discrete EB size is Lmax = 400, the 1D-search Algorithm 2884

imposes as little as 0.46% of the computational complexity885

compared with that of its 2D-search-based counterpart, while886

imposing only a modest 0.9-dB loss at Pout = 10−2, as shown887

Fig. 8. OP versus the EB size Bmax using different energy policies for the
P2P network considered. The average energy arrival rate is P̄in = 10 dBm,
R = 1 b/s/Hz, and TE = 8TC . The numerical OP results were evaluated from
(11), given the searched EUP.

in Fig. 5. On the other hand, from an overall energy con- 888

sumption point of view, the computation of the EUP also 889

dissipates a nonnegligible portion of the energy, particularly 890

for users relying on low-end devices. Therefore, the 1D-search 891

Algorithm 2 may be deemed attractive for applications relying 892

on hardware having a low computational capability, such as 893

mobile phones and wireless sensors. 894

In Fig. 8, the impact of EB size Bmax is investigated. The 895

horizontal axis is Bmax/P̄in. It is shown in Fig. 8 that, when 896

the EB size increases, the OP of both the asymptotic optimal 897

policy proposed in [7] and the EUP relying on our 2D-search 898

Algorithm 1 improves, and they would converge to that of their 899

conventional non-EH counterparts. However, as the EB size 900

Bmax increases, the EUP found by the 2D-search Algorithm 1 901

may achieve a much better OP, when the EB size is small, 902

and it may converge to that of its classic non-EH counterpart. 903

This confirms the superiority of the proposed search algorithms 904

conceived for EH systems having a finite EB, particularly when 905

the available size of the EB is severely limited. 906

B. Multiple-Access Networks 907

In Fig. 9, the OP of our SDMA-EH network is investigated, 908

and the EUPs found by the proposed 2D-search and 1D-search 909

algorithms in Section II are compared with those of the best- 910

effort policy and asymptotic optimal policy. It is shown that, for 911

the given configurations, the OPs achieved by the proposed al- 912

gorithms are better than those of the benchmarks. Furthermore, 913

it is shown that the analytical results represented by dashed 914

curves closely match the simulation results, which indicates 915

that the proposed min-SNR approximation and the DMC-based 916

analytical framework are accurate. 917

Specifically, the 2D-search algorithm performs within 2 dB 918

from its classic non-EH counterpart at Pout = 10−2, which 919

serves as the lower bound of the OP for EH systems [7]. 920

At Pout = 10−2, the EUP found by the 2D-search algorithm 921

achieves a 4.6-dB power gain compared with the asymptotic 922

optimal policy and an 8-dB power gain compared with the 923
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Fig. 9. OP versus average energy arrival rate P̄in using different energy
policies for the SDMA network associated with M = 4 SNs. The EB size
Bmax = 16P̄in, R = 1 b/s/Hz, and TE = 8TC . The numerical OP results
were evaluated from (22), given the searched EUP.

best-effort policy. Therefore, if an EH-SN adopts the asymp-924

totic optimal EUP, it requires 104.6/10 ≈ 2.9 times higher av-925

erage energy arrival rates harvested from the environment, as926

compared to an EH-SN equipped with the proposed 2D-search927

algorithm at Pout = 10−2. This ratio would be further increased928

to a factor of 6.3, if the benchmark EH-SN adopts the best-929

effort policy. The 1D-search algorithm is suboptimal; hence, it930

exhibits a performance degradation of 1.4 dB compared to that931

of the 2D-search algorithm at Pout = 10−3. From a different932

perspective, an EH-SN adopting our 1D-search algorithm may933

require a 1.4 times higher energy arrival rate, which is the price934

paid for its reduced computational complexity. In our future935

work, we will jointly consider the optimization of the energy936

arrival rate and of the power savings of the reduced-complexity937

algorithms. This might, in fact, favor the 1-D algorithm over its938

2-D counterpart.939

Finally, we investigate the effects of the number of EH-SNs940

on the OP in SDMA-EH networks. It is shown in Fig. 10 that, as941

the number of SNs M increases, the OP of all EUPs is reduced.942

However, the EUPs found by the proposed 2D-search and943

1D-search algorithms always outperform both the asymptotic944

optimal policy and the best-effort policy. The results allow945

the SDMA-EH network to accommodate more users, while946

maintaining the same reliability. For example, if a maximum947

OP of Pout = 10−2 is tolerable in the SDMA-EH network,948

both the best-effort policy and the asymptotic policy may be949

capable of supporting K = 2 and 4 users, while the 1D-search950

and the 2D-search algorithms support more than K = 8 users951

simultaneously. To conclude, given the proposed 1D-search and952

2D-search algorithms, our receiver is capable of simultaneously953

offering reliable services for significantly more EH users.954

V. CONCLUSION955

In this paper, we have summarized the state-of-the-art EUP956

design aiming for minimizing the OP of P2P-EH networks957

reported in the literature, and then, we have proposed two958

novel algorithms, which are capable of exploiting the harvested959

Fig. 10. OP versus average energy arrival rate P̄in using different energy
policies for the SDMA network associated with different number of SNs
M = 1, 2, 4, 8. The average energy arrival rate is P̄in = 10 dBm, the EB size
is Bmax = 16P̄in, R = 1 b/s/Hz, and TE = 8TC . The numerical OP results
were evaluated from (22), given the searched EUP.

energy stored in a finite EB, where we showed that, using the 960

proposed algorithms, the achievable OP outperforms the state- 961

of-the-art benchmark systems found in the literature. Further- 962

more, upon invoking the proposed min-SNR approximation, the 963

algorithms advocated were invoked for SDMA-EH networks, 964

where we designed a DEUPO protocol. With the advent of the 965

DEUPO protocols proposed in this paper, our proposed 1D- and 966

2D-search algorithms require a significantly reduced energy 967

arrival rate at a given target OP. 968
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