


GALOIS STRUCTURE OF ZARISKI COHOMOLOGY FOR
WEAKLY RAMIFIED COVERS OF CURVES

By Bernhard Köck

Abstract. We compute equivariant Euler characteristics of locally free sheaves on curves, thereby
generalizing several results of Kani and Nakajima. For instance, we extend Kani’s computation of
the Galois module structure of the space of global meromorphic differentials which are logarithmic
along the ramification locus from the tamely ramified to the weakly ramified case.

Introduction. Let X be a smooth projective curve defined over an alge-
braically closed field k of characteristic p, and let G ⊆ Aut(X/k) be a finite
subgroup of automorphisms of X. The goal of this paper is to compute the Ga-
lois module structure of the Zariski cohomology groups of X with values in a
G-equivariant locally free sheaf E on X such as the ideal sheaf of a G-stable
finite subset of points on X or the sheaf of differentials on X.

Our first result, see Theorem 3.1, is an explicit formula for the equivariant
Euler characteristic

χ(G, X, E) := [H0(X, E)]− [H1(X, E)]

considered as an element of the Grothendieck group K0(G, k) of all finitely gen-
erated modules over the group ring k[G]. It describes χ(G, X, E) in terms of the
rank and degree of E , the genus gY of the quotient curve Y := X/G, the order of G
and of the higher ramification groups GP,s, P ∈ X, s ≥ 0, and the representations
of the decomposition group GP on the fibre E(P) and on the cotangent space
mP/m

2
P for P ∈ X.

In the case the cover π : X → Y is tamely ramified, this formula becomes
Theorem 1.1 in [Kö2], see Remark 3.2. In particular, if the order of G is not divis-
ible by p, it implies the main result of the paper [EL] by Ellingsrud and Lønsted,
which in turn generalizes the classical Chevalley-Weil formula, see [Kö2]. While
Theorem 3.1 of the present paper has the advantage of being available in general,
i.e. without any assumption on the ramification of π or on the group G, it has
the disadvantage of computing the equivariant Euler characteristic only in the
“weak” Grothendieck group K0(G, k), i.e. it yields only composition factors. In
particular, if p divides the order of G, we need further input to describe the actual
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k[G]-isomorphism class of the cohomology groups H0(X, E) and H1(X, E), even
if one of them vanishes.

Such an input is provided by Theorem 1.1, parts of which may already be
found in the literature, see Remark 1.2. It gives a criterion for any fractional ideal
in a local Galois extension to have a normal basis element. We now describe the
main application of this criterion in more detail in the geometric context consid-
ered so far. We say (as in Erez’ paper [Er1]) that the cover π is weakly ramified,
if all second ramification groups GP,2, P ∈ X, are trivial, i.e., if both tame and
the simplest kind of wild ramification are allowed. This condition is less special
than it appears; in fact it is generically satisfied because, for any ordinary (i.e.,
p-rank gX) curve X and any arbitrary finite subgroup G of Aut(X/k), the cover
π : X → X/G is weakly ramified by the Deuring-Shafarevic formula, see Theo-
rem 1.2 on p. 4 in [Pi]. The main application of the criterion mentioned above is
the following fact, see the proof of Theorem 2.1(a): Let π be weakly ramified and
let D =

∑
P∈X nP[P] be a G-equivariant divisor on X such that nP ≡ −1 mod ew

P
for all P ∈ X (where ew

P denotes the order of the (first) ramification group GP,1);
then the direct image π∗(OX(D)) of the associated G-equivariant invertible sheaf
OX(D) is a locally free OY [G]-module. Using a standard argument in geometric
Galois module theory (see Chinburg’s paper [Ch] for the version most suitable
for our purposes), we obtain from this fact that the equivariant Euler character-
istic χ(G, X,OX(D)) lies in the image of the (injective) Cartan homomorphism
K0(k[G]) → K0(G, k) and, moreover, that H0(X,OX(D)) and H1(X,OX(D)) are
projective k[G]-modules, if one of them vanishes, see Theorem 2.1(a).

Applying this observation to the divisor E :=
∑

P∈X (ew
P−1)[P] and the above-

mentioned “weak” formula for χ(G, X, E) to the invertible G-module E = OX(E)
we construct in Theorem 4.3 a certain canonical projective k[G]-module NG,X (de-
pending only on the action of G on X) which embodies a global relation between
the local data mP/m

2
P, P ∈ X; here, the cotangent space mP/m

2
P of X at P should

be considered as a one-dimensional representation of the decomposition group
GP. Moreover, using our “weak” formula again, we express χ(G, X,OX(D)) as an
integral linear combination of classes of explicit projective k[G]-modules, one of
which is NG,X , see Theorem 4.5. These theorems generalize results of Kani and
Nakajima from the tamely ramified to the weakly ramified case, see Remarks 4.4
and 4.6. Our approach to these theorems (described above) generalizes the one
used in [Kö2] (a special case of which may already be found in Borne’s thesis
[Bo1]), but it is quite different from the ones used by Kani and Nakajima.

Finally we give the following two applications of these theorems. First, we
compute the k[G]-module structure of the first cohomology group H1(X, I(S))
of X with values in the ideal sheaf I(S) of any G-stable finite subset S of X
which contains all wildly ramified points, see Corollary 4.7. We refer the reader
to Pink’s paper [Pi] for the significance of this ideal sheaf in his proof of a p-adic
Grothendieck-Ogg-Shafarevic formula. Secondly, if S contains not only all wildly
ramified but all ramified points, we prove that the direct sum of the k[G]-module
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NG,X with the space H0(X, ΩX(S)) of global meromorphic differentials, which
are logarithmic along S, is a free k[G]-module, see Corollary 4.8. This result
generalizes Theorem 2 in Kani’s paper [Ka] again from the tamely ramified to
the weakly ramified case. In the tamely ramified case, Kani furthermore deduces
the k[G]-isomorphism class of the space H0(X, ΩX) of all global holomorphic
differentials from this result, see Theorem 3 in [Ka]. It would be interesting to
know whether this can also be done in the weakly ramified case.

At this point we moreover mention that the conditions π is weakly ramified
and nP ≡ −1 mod ew

P for all P ∈ X are not only sufficient, but also necessary for
π∗(OX(D)) to be locally free over OY [G], see Theorem 1.1, and, if the degree
of D is sufficiently large, also for H0(X,OX(D)) to be a projective k[G]-module,
see Theorem 2.1(b). Without the assumption on the degree of D, it might be true
that these conditions are necessary for RΓ(X,OX(D)) to be quasi-isomorphic to a
perfect complex of k[G]-modules (see Question 2.2).

The reader may also wish to consult the paper [Vi] by Vinatier for the current
state of the art in the Galois module theory of weakly ramified extensions of
number fields.

Acknowledgments. I would like to thank Niels Borne, Boas Erez, Ian Leary,
Richard Pink and Vic Snaith for helpful discussions and for their encouraging
interest. In particular, Niels Borne has drawn my attention to Nakajima’s paper
[Na3] which is crucial for Theorem 2.1(b); Ian Leary has helped me with the
important Lemma 4.2; and Vic Snaith has provided a first approach to a central
part of Theorem 1.1. Finally, I would like to thank the referee for carefully reading
the paper and for giving many helpful comments improving its presentation.

1. The normal basis theorem for fractional ideals in local Galois
extensions. In this section we explicitly describe those fractional ideals in any
finite Galois extension of local fields for which the normal basis theorem holds,
i.e., which are free (of rank 1) over the corresponding group ring.

Let L/K be a finite Galois extension of local fields with Galois group G and
with residue fields of (positive) characteristic p. The corresponding extensions
of discrete valuation rings, of maximal ideals and of (perfect) residue fields are
denoted by OL/OK , mL/mK and λ/κ, respectively. For any integer s ≥ −1, let Gs

denote the sth ramification group of the extension L/K. We recall (see Chapitre
IV in [Se1]): The ramification groups form a chain

G = G−1 ⊇ G0 ⊇ G1 ⊇ G2 ⊇ · · ·

of normal subgroups of G; G0 = ker(G → Gal(λ/κ)) is the inertia subgroup;
G0/G1 is a cyclic group of order prime to p; Gs/Gs+1 is an abelian group of
exponent p for s ≥ 1; Gs is the trivial group for s sufficiently big. The extension
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L/K is called weakly ramified (tamely ramified, unramified), if Gs = 0 for s = 2
(s = 1, s = 0, respectively).

The case b = 0 of the following theorem is the well-known result of E. Noether
that L/K is tamely ramified if and only if OL is free (of rank 1) over the group
ring OK[G] (see [No]). When b = 1 the theorem implies that L/K is weakly ram-
ified if and only if mL is free over OK[G]. Furthermore it describes all fractional
ideals in L which are OK[G]-free. For example, if L/K is not weakly ramified,
then there does not exist any OK[G]-free fractional ideal in L at all.

THEOREM 1.1. Let b ∈ Z. Then the fractional ideal mb
L of L is free over OK[G]

if and only if L/K is weakly ramified and b ≡ 1 mod |G1|.

Remark 1.2. (a) The only-if-part of Theorem 1.1 follows from Theorem 3
and the corollary of Proposition 2 in Ullom’s paper [Ul3]. The tame case, i.e.,
|G1| = 1, and the case b = 1, G = G1 of the if-part of Theorem 1.1 are proved
in Theorem 1 and Theorem 2 in his paper. Unfortunately, he does not state the
general case of the if-part of Theorem 1.1 which is essential for this paper. Though
it certainly can be proved with the methods he has developed in his papers [Ul1],
[Ul2] and [Ul3], we here give a coherent and self-contained proof of Theorem 1.1
for the reader’s convenience.

(b) In the geometric case, Pink has given a “global proof” for the fact that
L/K is weakly ramified if and only if mL is OK[G]-free (see Corollary 3.6 in
[Pi]); to be precise, the if-direction is proved there only under the additional
assumption G = G1. Note that, in his terminology, weakly ramified means of
type 2.

(c) Let ord(G) be odd. Then Theorem 1.1 also implies Erez’ theorem that
L/K is weakly ramified if and only if the so-called square root of the inverse
different is OK[G]-free (see Theorem 1 in [Er1]).

We will use the following proposition and lemma in the proof of Theorem 1.1.
We recall that a Z[G]-module M is called cohomologically trivial, if the Tate
cohomology groups Ĥi(U, M), i ∈ Z, vanish for all subgroups U of G.

PROPOSITION 1.3. Let M be anyOK[G]-module. Then M is projective overOK[G]
if and only if M is projective over OK and cohomologically trivial.

Proof. If the ring of coefficients OK is replaced by Z, this is Théorème 7, §5,
Ch. IX on p. 151 in [Se1]. The same proof applies, if the ring of coefficients is
any Dedekind domain. See also Proposition 4.1(a) on p. 457 in [Ch].

As usual, we denote the multiplication with the norm element
∑
σ∈G [σ] ∈

Z[G] by TrL/K , the different of L/K by DL/K , and the ramification index of L/K
by e := eL/K . Furthermore, for any r ∈ R, the standard notation �r� means the
greatest integer less than or equal to r.
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LEMMA 1.4. Let b ∈ Z. Then we have:
(a) (mb

L)G = ma
K, where a = 1 + � b−1

e �.
(b) TrL/K(mb

L) = ma′
K , where a′ = � ord(DL/K )+b

e �.
In particular, the Tate cohomology group Ĥ0(G, mb

L) vanishes if and only if a = a′.

Proof. Let a ∈ Z and a′ ∈ Z be defined by (mb
L)G = ma

K and TrL/K(mb
L) = ma′

K ,
respectively. The obvious relation

m
ae
L = m

a
KOL ⊆ m

b
L � m

a−1
K OL = m

(a−1)e
L

implies a ≥ b
e > a−1, hence a = 1+� b−1

e �. This proves assertion (a). Furthermore
we have: D−1

L/K = {x ∈ L : TrL/K(x · OL) ⊆ OK}. Hence:

m
−ea′+b
L = m

−a′
K m

b
L ⊆ D−1

L/K � m
−(a′+1)
K m

b
L = m

−e(a′+1)+b
L .

Thus −ea′ + b ≥ −ord(DL/K) > −e(a′ + 1) + b, i.e., a′ = � ord(DL/K )+b
e �, as was to

be shown.

Proof of Theorem 1.1. We first proof the if-part. We want to show that the
fractional ideal I := mb

L is free over OK[G]. Since I⊗L ∼= L is free over K[G] by
the normal basis theorem, it suffices to show that I is projective over OK[G] by
a theorem of Swan (see Corollary 6.4 on p. 567 in [Sw]). By Proposition 1.3, it
then suffices to show that the Tate cohomology groups Ĥi(U, mb

L), i ∈ Z, vanish
for any subgroup U of G. Since the extension L/LU is again weakly ramified
and since the first ramification group U1 of the extension L/LU is contained in
G1 (see Prop. 2, §1, Ch. IV on p. 70 in [Se1]), it suffices to consider the case
U = G. The Hochschild-Serre spectral sequence for ordinary group (co)homology
(supplemented by an obvious argument for Tate’s 0th cohomology group Ĥ0)
yields the following fact for any normal subgroup N of G: If Ĥi(N, mb

L) = 0
and Ĥi(G/N, (mb

L)N) = 0 for all i ∈ Z, then also Ĥi(G, mb
L) = 0 for all i ∈ Z.

Applying this fact to the filtration G ⊇ G0 ⊇ G1 ⊇ {1} of G, we are reduced
to showing that Ĥi(G1, mb

L) = 0, that Ĥi(G0/G1, I) = 0 for any fractional ideal I
in LG1 and that Ĥi(G/G0, J) = 0 for any fractional ideal J in LG0 (for all i ∈ Z).
Applying this fact again to a filtration of the abelian group G1 (of exponent p)
whose successive quotients are cyclic groups of order p, we see that it finally
suffices to show that Ĥi(G, mb

L) = 0 for all i ∈ Z and b ∈ Z with b ≡ 1 mod |G1|
in the following three cases (note that, for any subgroup U of G1 of order p, we
have (mb

L)U = ma
LU with a ≡ 1 mod |G1/U| by Lemma 1.4(a)):

(i) G1 is cyclic of order p and G = G1, i.e., L/K is totally wildly ramified of
order p.

(ii) G1 = {1} and G = G0, i.e., L/K is totally tamely ramified.
(iii) G0 = 1, i.e., L/K is unramified.
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We first consider the case (i). Since G is cyclic, it suffices to show Ĥi(G, mb
L) =

0 for i = 0 and i = 1. Using Hilbert’s formula for the order of the different (see
Prop. 4, §1, Ch. IV on p. 72 in [Se1]) and the congruence b ≡ 1 mod p, we
obtain: ⌊ord(DL/K) + b

p

⌋
=
⌊

2(p− 1) + b
p

⌋
= 1 +

⌊
b− 1

p

⌋
.

Hence, by Lemma (1.4), we have Ĥ0(G, mb
L) = 0. To show Ĥ1(G, mb

L) = 0, it
suffices to show that the Herbrand difference

h(mb
L) := lengthOK

(Ĥ0(G, mb
L))− lengthOK

(Ĥ1(G, mb
L))

vanishes. Since mb
L⊗OK K ∼= L is K[G]-free of rank 1, we can find a free OK[G]-

submodule M of mb
L such that mb

L/M is of finite length. Now h(mb
L) = 0 follows

from the well-known (and easy) facts that the Herbrand difference vanishes for
any free OK[G]-module and for any OK[G]-module of finite length, and that the
Herbrand difference is additive on short exact sequences (see §7, Chapter IV of
Neukirch’s book [Ne] where the multiplicative version of the Herbrand difference,
the Herbrand quotient, is treated in detail).

In the cases (ii) and (iii), we have to show that Ĥi(G, I) = 0 (for all i ∈ Z)
for any arbitrary fractional ideal I of L. Let πK be a prime element in OK . Then
we have Ĥi(G, I/πKI) = 0 for all i. Indeed, in the case (ii) this is a consequence
of Corollaire 1, §2, Ch. VIII on p. 138 in [Se1], since I/πKI is annihilated by a
power of p and the order of G is prime to p; in the case (iii) it is a consequence
of the classical normal basis theorem and of Proposition (1.3), since I/πKI is
isomorphic to λ as a κ[G]-module. The long exact sequence associated with the
short exact sequence of G-modules

0→ I
πK→ I → I/πKI → 0

now shows that πKĤi(G, I) = Ĥi(G, I) for all i ∈ Z. Finally, Nakayama’s Lemma
implies that Ĥi(G, I) = 0 for all i ∈ Z. This completes the proof of the if-direction
in Theorem 1.1.

We now prove the only-if-direction. So, let b ∈ Z such that mb
L is OK[G]-free.

We first show that L/K is weakly ramified. Let s be the greatest integer such that
Gs �= {1}. We may assume that s ≥ 1. Then there is a cyclic subgroup U of Gs of
order p. By Proposition (1.3) we have Ĥ0(U, mb

L) = 0, i.e., TrL/LU (mb
L) = (mb

L)U .
Furthermore, we have ord(DL/LU ) = (s + 1)(p− 1) by Prop. 2 and Prop. 4 of §1,

Ch. IV in [Se1]. Now Lemma 1.4 applied to the extension L/LU implies that

s + 1 +
⌊

b− 1− s
p

⌋
=
⌊

(s + 1)(p− 1) + b
p

⌋
= 1 +

⌊
b− 1

p

⌋
.
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Hence s must be equal to 1, i.e., L/K is weakly ramified. It remains to
show that b ≡ 1 mod |G1|. By Proposition 1.3 we have Ĥ0(G1, mb

L) = 0, i.e.,
TrL/LG1 (mb

L) = (mb
L)G1 . Furthermore, we have ord(DL/LG1 ) = 2 · (|G1| − 1) by

Prop 4, §1, Ch. IV on p. 72 in [Se1]. Now, Lemma 1.4 applied to the extension
L/LG1 implies:

2 +
⌊

b− 2
|G1|

⌋
= 1 +

⌊
b− 1
|G1|

⌋
.

Hence b ≡ 1 mod |G1|, as desired. Thus, the proof of Theorem 1.1 is complete.

2. Projectivity of Zariski cohomology. Let k be an algebraically closed
field of characteristic p > 0, X a connected smooth projective curve over k and
G a finite subgroup of the automorphism group Aut(X/k) of order n.

In this section we give both sufficient and necessary conditions under which
the Zariski cohomology groups of X with values in a G-equivariant invertible
OX-module are projective over the group ring k[G].

Let π : X → Y := X/G denote the canonical projection, and let gX resp.
gY denote the genus of X resp. Y . Furthermore, for any P ∈ X, we denote the
decomposition group {σ ∈ G : σ(P) = P} by GP, the ramification index of π at
the place P by eP, the higher ramification groups (see Chapitre IV in [Se1]) by
GP,s, s ≥ 0, the wild part of the ramification index, i.e. |GP,1|, by ew

P and the
tame part of the ramification index, i.e. |GP/GP,1|, by et

P. We say that π is weakly
ramified, if GP,s is trivial for s ≥ 2 and all P ∈ X.

We denote the Grothendieck group of all finitely generated k[G]-modules
(resp., of all finitely generated projective k[G]-modules) by K0(G, k) (resp., by
K0(k[G])). We recall from classical representation theory that the set of isomor-
phism classes of irreducible k[G]-modules (resp., of indecomposable projective
k[G]-modules) forms a basis of K0(G, k) (resp., of K0(k[G])) and that the Cartan
homomorphism K0(k[G]) → K0(G, k) is injective (see Chapters 14 and 16 in
Serre’s book [Se2]).

We recall that a locally free G-module on X is a locally free OX-module
E together with OX-isomorphisms g∗(E) → E , g ∈ G, which satisfy the usual
composition rules. For instance, if D =

∑
P∈X nP[P] is a G-equivariant divisor on

X (i.e., nσ(P) = nP for all σ ∈ G and P ∈ X), then the OX-module OX(D) is a
locally free G-module on X of rank 1. The Zariski cohomology groups Hi(X, E),
i ≥ 0, are then k-representations of G in the obvious way. Let

χ(G, X, E) := [H0(X, E)]− [H1(X, E)] ∈ K0(G, k)

denote the equivariant Euler characteristic of X with values in E .
In Theorem 2 of [Na3], Nakajima proved that the cover π is tamely ramified if

and only if there exists a divisor D =
∑

P∈X nP[P] on X of the form D = π∗(E), E
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any divisor on Y , with deg (D) > 2gX−2 such that the k[G]-module H0(X,OX(D))
is projective. The following theorem generalizes this statement. (Note that for any
divisor D =

∑
P∈X nP[P] on X of the form D = π∗(E), we have nP ≡ 0 mod eP

for all P ∈ X.)

THEOREM 2.1. Let D =
∑

P∈X nP[P] be a G-equivariant divisor on X.
(a) If π is weakly ramified and nP ≡ −1 mod ew

P for all P ∈ X, then the
equivariant Euler characteristic χ(G, X,OX(D)) ∈ K0(G, k) lies in the image of
the Cartan homomorphism K0(k[G])→ K0(G, k). If moreover one of the two coho-
mology groups Hi(X,OX(D)), i = 0, 1, vanishes, then the other one is a projective
k[G]-module.

(b) Let deg (D) > 2gX−2. If the k[G]-module H0(X,OX(D)) is projective, then
π is weakly ramified and nP ≡ −1 mod ew

P for all P ∈ X.

Proof. (a) Theorem 1.1 implies that, for any P ∈ X, the OY ,π(P)[GP]-module
OX(D)P = m

−nP
P is free after completion. From Corollary (76.9) on p. 533

in [CR1] we obtain that this is even true without completion. Hence the di-
rect image π∗(OX(D)) is a locally free OY [G]-module. Furthermore we have
Hi(X,OX(D)) = Hi(Y ,π∗(OX(D))) for all i ∈ Z. Now Theorem 1.1 on p. 447 and
Proposition 4.1(a) on p. 457 in Chinburg’s paper [Ch] imply that there exists a
bounded complex L∗ of finitely generated projective k[G]-modules such that the
k[G]-module Hi(X,OX(D)) is isomorphic to the ith cohomology module Hi(L∗)
for all i ∈ Z. This fact immediately implies the first assertion of Theorem 2.1(a).
The second assertion can be derived from this fact as in the proof of Theorem 2
in Nakajima’s paper [Na1].

(b) We first prove this in the case that G is cyclic of order p. We fix a point
P ∈ X. Let M denote the greatest integer such that GP,M is not trivial. We may
assume that M ≥ 1. By definition of the higher ramification groups we have
M + 1 = ordP(σ(x)− x) where σ ∈ G\{1} and x is any prime element of the local
ring OX,P. Since the k[G]-module H0(X,OX(D)) is projective, the multiplicities
of the non-projective indecomposable k[G]-modules in H0(X,OX(D)) are zero.
By Theorem 1 on p. 86 in [Na3], these multiplicities are given by

mj :=
M
p

+
〈

nP − jM
p

〉
−
〈

nP − ( j− 1)M
p

〉
, j = 1, . . . , p− 1;

here, for a rational number a, 〈a〉 denotes the fractional part of a, i.e., 0 ≤ 〈a〉 < 1
and a−〈a〉 is an integer. Since M is not divisible by p (see Lemma 1 on p. 87 in
[Na3]), there is a solution j0 ∈ {0, . . . , p− 1} of the congruence nP ≡ ( j0− 1)M
mod p. If j0 �= 0, then one of the integers mj, j = 1, . . . , p− 1, would be positive,
namely mj0 = M

p + 〈nP−j0M
p 〉. Hence j0 = 0, i.e., M ≡ −nP mod p; therefore

mj =
M
p

+
〈−jM

p
− M

p

〉
−
〈−jM

p

〉
for all j = 1, . . . , p− 1.



GALOIS STRUCTURE OF ZARISKI COHOMOLOGY 1093

Let now j1 ∈ {1, . . . , p − 1} be a solution of the congruence −j1M ≡ 1 mod p.
If M �≡ 1 mod p, then

mj1 =
M
p

+
〈

1
p
− M

p

〉
− 1

p
=

M
p

+ 1−
〈

M
p

〉

would be positive. Hence M ≡ 1 mod p; therefore

mj =
M
p

+
〈−j− 1

p

〉
−
〈−j

p

〉
=

M
p

+
p− j− 1

p
− p− j

p
=

M − 1
p

for all j = 1, . . . , p− 1. Hence we have M = 1 and nP ≡ −1 mod p, as was to be
shown.

We now consider the general case. We fix a point P ∈ X with ew
P �= 1. (If

such a point does not exist, we are done.) Let M denote the greatest integer such
that GP,M is not trivial. We choose a cyclic subgroup H of GP,M of order p.
Let η : X → Z := X/H denote the corresponding cover. Since H0(X,OX(D))
is also projective as a k[H]-module and since, for any s ≥ 0, the intersection
GP,s ∩ H is the sth ramification group of the cover η at P (see Prop. 2, §1,
Ch. IV on p. 70 in [Se1]), we obtain from the case considered above that M = 1
and that nP′ ≡ −1 mod fP′ for all P′ ∈ X (where fP′ denotes the ramification
index of η at P′). It remains to show that nP ≡ −1 mod ew

P . We prove this by
induction on n := ord(G). The case n = 1 is trivial. Let gZ denote the genus of
Z, and let the divisor E on Z be defined by the equality OZ(E) = ηH

∗ (OX(D)) of
subsheaves of the constant sheaf K(Z), the function field of Z; here, ηH

∗ (OX(D))
denotes the subsheaf of the direct image η∗(OX(D)) fixed by the obvious action
of H. Then by Lemma 1.4(a), the multiplicity of E at any point Q ∈ Z is
−
(

1 +
⌊−nQ−1

fQ

⌋)
= −1 +

nQ+1
fQ

where nQ := nQ̃ and fQ := fQ̃ for any point Q̃ ∈ X

in the fibre η−1(Q). Thus we have:

p · deg (E) = p ·
∑
Q∈Z

(
−1 +

nQ + 1
fQ

)

=
∑

P′∈X

(− fP′ + nP′ + 1)

= deg (D)−
∑

P′∈X

( fP′ − 1)

≥ 2(gX − 1)−
∑

P′∈X

2( fP′ − 1)

≥ p · (2gZ − 2)

by Hurwitz’ formula (see Corollary 2 on p. 301 in [Ha]) and Hilbert’s for-
mula (see Prop. 4, §1, Ch. IV on p. 72 in [Se1]). Furthermore H0(Z,OZ(E)) =
H0(X,OX(D))H is projective as a k[GP,1/H]-module. Now the induction hypoth-
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esis applied to the Galois cover Z → X/GP,1 (with Galois group GP,1/H) and
to the divisor E on Z implies that the multiplicity −1 + nP+1

p of E at η(P) is

congruent to −1 modulo
ew

P
p , hence nP ≡ −1 mod ew

P , as was to be shown. This
completes the proof of Theorem 2.1.

Question 2.2. Recall that a bounded complex of finitely generated projective
k[G]-modules is called a perfect complex. The proof of Theorem 2.1(a) in fact
yields the following stronger result: If π is weakly ramified and nP ≡ −1 mod ew

P
for all P ∈ X, then RΓ(X,OX(D)) is quasi-isomorphic to a perfect complex. If
deg (D) > 2gX − 2, then Theorem 2.1(b) shows that also the converse statement
is true. Is the converse statement true in general?

COROLLARY 2.3. Let S be any non-empty G-stable set of closed points on X
containing all ramified points, and let ΩX(S) := ΩX ⊗ OX(

∑
P∈S [P]) denote the

sheaf of meromorphic differentials on X which are logarithmic along S. Then, π is
weakly ramified if and only if the k[G]-module H0(X, ΩX(S)) is projective.

Proof. By Théorème 2.34 on p. 44 in [Bo1], there is a G-equivariant divisor
KX =

∑
P∈X n′P[P] on X such that OX(KX) ∼= ΩX . Then the divisor D = KX +∑

P∈S [P] satisfies deg (D) > 2gX − 2 (by Example 1.3.3 on p. 296 in [Ha]).
Hence, Theorem 2.1(b) implies the if-part of Corollary 2.3. We now prove the
only-if-part. We have a natural short exact sequence

0→ π∗(ΩY )→ ΩX → ΩX/Y → 0

of coherent G-modules on X. Let the divisor KY =
∑

Q∈Y rQ[Q] on Y be defined
by the equality π∗(ΩY ) = OX(π∗(KY )) of subsheaves of OX(KX). If π is weakly
ramified, Hilbert’s formula (see Prop. 4, §1, Ch. IV on p. 72 in [Se1]) then implies
that n′P − ePrπ(P) = (eP − 1) + (ew

P − 1) for all P ∈ X. In particular, the divisor D
satisfies the condition of Theorem 2.1(a), and Theorem 2.1(a) finally implies the
only-if-part of Corollary 2.3.

Remark 2.4. Let S and ΩX(S) be as in Corollary 2.3. Kani states in The-
orem 1 of [Ka] that H0(X, ΩX(S)) is a projective k[G]-module if and only if
π is tamely ramified. Since there exist weakly ramified covers which are not
tamely ramified (see the case r = 1 in Example 2.5 below), the only-if-direction
of Corollary 2.3 contradicts the only-if-direction of Kani’s result which seems
to be wrong. (More precisely, the final displayed equation and the computation
of my for y ∈ Yram in the proof of the only-if-part of that theorem seem to be
wrong.)

The following example (taken from Hasse’s paper [Has]) shows that every
theoretically possible “type” of ramification for Galois covers of smooth projec-
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tive curves can occur. In this example, the base curve is the projective line, the
Galois group is cyclic of order p, and only one point is ramified.

Example 2.5. Let r ∈ N such that p does not divide r. Let k(x, y) be the
cyclic field extension of the rational function field k(x) of degree p given by the
Artin-Schreier equation yp − y = xr. Let π : C → P1

k denote the corresponding
cover of nonsingular curves. Then π is unramified precisely over A1

k ⊂ P1
k , and,

at the unique point P ∈ C lying over ∞ ∈ P1
k , the greatest integer M such that

GP,M is not trivial is equal to r. Furthermore, the genus of C is equal to (r−1)(p−1)
2 .

Proof. The first assertion is proved in [Has]. The genus gC of C is determined
by the formula 2(gC − 1) = −2p + (M + 1)(p − 1) which is a consequence of
Hurwitz’ formula (see Corollary 2.4 on p. 301 in [Ha]) and Hilbert’s formula (see
Prop. 4, §1, Ch. IV on p. 72 in [Se1]). Hence gC = (r−1)(p−1)

2 , as was to be shown.

3. Computing equivariant Euler characteristics. We keep the assump-
tions and notations introduced in Section 2.

In [EL], Ellingsrud and Lønsted have proved a formula for the equivariant
Euler characteristic χ(G, X, E) ∈ K0(G, k) of X with values in any locally free
G-module E on X, if (char(k), n) = 1. In [Kö2], using a different approach, we
have given a simplified version of their formula which holds also in the tamely
ramified case. In this section we generalize that formula to the case of an arbitrary
cover π.

In particular, we do not assume any condition on the ramification of the cover
π in this section. As just explained, the main focus in this paper is on the case
p = char(k) > 0, but everything in this and the following section is true and
interesting (though classical) also in the case p = 0 (if the condition prime to p is
regarded as the empty condition and the term p-group means trivial group).

Let E be a locally free G-module on X of rank r. For any P ∈ X, we view
the fibre E(P) := EP/mPEP as a k-representation of the decomposition group GP.
Furthermore, the obvious representation of GP on the cotangent space mP/m

2
P

(or the corresponding character GP → k×) is denoted by χP.
The following theorem computes the equivariant Euler characteristic χ(G, X,

E) ∈ K0(G, k) in terms of the rank and degree of E , the genus gY of Y := X/G,
the order n of G, the orders of the higher ramification groups of π, and the
representations of decomposition groups on the fibres of E and on the cotangent
spaces.

THEOREM 3.1. We have

χ(G, X, E) = c · [k[G]]− 1
n

∑
P∈X

ew
P

et
P−1∑
d=1

d ·
[
IndG

GP

(
E(P)⊗ χd

P

)]
in K0(G, k)Q(1)
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where

c = (1− gY )r +
1
n

deg (E)− r
2n

∑
P∈X


(ew

P − 1)(et
P + 1) +

∑
s≥2

(|GP,s| − 1)


 .

Remark 3.2. (a) If π is tamely ramified, then the sum over P ∈ X in the
definition of the multiplicity c obviously vanishes. In particular, Theorem 3.1
generalizes Theorem 1.1 in [Kö2]. In the next section, we will apply Theorem 3.1
in the weakly ramified case, i.e., when the sum

∑
s≥2 (|GP,s| − 1) vanishes for all

P ∈ X.
(b) Using the Hurwitz formula, see Corollary 2.4 on p. 301 in [Ha], one can

easily simplify the expression for the multiplicity c as follows:

c =
1
n

(
(1− gX)r + deg (E)− r

2

∑
P∈X

(et
P − 1)

)

(see also the proof of Theorem 3.1 below). However the applications of the
formula (1) rely on the more complicated form as stated in Theorem 3.1.

(c) The reader may wish to compare Theorem 3.1 with Théorème 3.18 in
Borne’s paper [Bo2] which gives an alternative expression for χ(G, X, E).

Proof of Theorem 3.1. By classical representation theory (see Corollary 17.10
on p. 424 in [CR2]) it suffices to show that the Brauer characters of both sides
of formula (1) coincide. For any k-representation V of G and for any σ ∈ G of
order prime to p we write Trace(σ|V) for the value of the Brauer character of V
at σ. Recall that

Trace(σ|V) =
dim (V)∑

i=1

ϕ(αi),

where αi, i = 1, . . . , dim (V), are the eigenvalues of the k-linear map σ on V and
ϕ : k× → K× is the Teichmüller character from the group of invertible elements
in k to the group of invertible elements in the quotient field K := Q(W(k)) of the
Witt ring W(k) of k. (We set K := k and ϕ := id, if p = 0.)

We first show that the character values at σ = 1, i.e., the k-dimensions,
coincide. The k-dimension of the right-hand of (1) side is

n(1− gY )r + deg (E)− r
2

∑
P∈X


(ew

P − 1)(et
P + 1) +

∑
s≥2

(|GP,s| − 1)




− 1
n

∑
P∈X

ew
P

et
P−1∑
d=1

d · r · n
eP

.
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By Hurwitz’ formula (see Corollary 2.4 on p. 301 in [Ha]) and Hilbert’s formula
for the order of the different (see Prop. 4, §1, Ch. IV on p. 72 in [Se1]), this is
equal to

(1− gX)r +
r
2

∑
P∈X

∑
s≥0

(|GP,s| − 1) + deg (E)

− r
2

∑
P∈X


(ew

P et
P − et

P + ew
P − 1) +

∑
s≥2

(|GP,s| − 1)




−
∑
P∈X

r
et

P
· et

P(et
P − 1)
2

= (1− gX)r + deg (E) +
r
2

∑
P∈X

(et
P − 1)

− r
2

∑
P∈X

(et
P − 1)

= (1− gX)r + deg (E).

This is equal to the k-dimension of the left-hand side of (1) by the theorem
of Riemann-Roch (see §1 in Chapter IV of [Ha] and Exercise 6.11 on p. 149
in [Ha]).

We now fix an element σ ∈ G\{1} whose order is prime to p and show that
the character values of both sides of (1) coincide at σ. Using Trace(σ|k[G]) =
0 and, more generally, the well-known formula for an induced character (see
Lemma 21.28 on p. 509 in [CR2]), we obtain for the character value of the right
hand side of (1) at σ:

−1
n

∑
P∈X

ew
P

et
P−1∑
d=1

d · Trace
(
σ|IndG

GP

(
E(P)⊗ χd

P

))

= −1
n

∑
P∈X

et
P−1∑
d=1

ew
P · d
eP

∑
τ∈G, τ−1στ∈GP

Trace
(
τ−1στ |E(P)

)
· Trace

(
τ−1στ |χd

P

)

= −1
n

∑
P∈X

et
P−1∑
d=1

d
et

P

∑
τ∈G, σ∈Gτ (P)

Trace
(
σ|E(τ (P))

)
· Trace(σ|χd

τ (P))

= −
∑

P∈Xσ
Trace

(
σ|E(P)

)
· 1

et
P

et
P−1∑
d=1

d · Trace(σ|χd
P),

where Xσ := {P ∈ X : σ(P) = P}. Since GP,1 is a p-group (see Corollaire 3, §2,
Ch. IV on p. 75 in [Se1]), the character χP : GP → k× factors modulo GP,1, and
the induced character χ̄P : GP/GP,1 → k× is injective by Corollaire 1, §2, Ch. IV
on p. 75 in [Se1] (for all P ∈ X). Hence χP(σ) ∈ k is a nontrivial et

Pth root of
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unity and we obtain

− 1
et

P

et
P−1∑
d=1

d · Trace(σ|χd
P) =

(
1− Trace(σ|χP)

)−1

by Lemma 3.3 below. Thus the character value of the right-hand side of (1) at σ
is equal to

∑
P∈Xσ

Trace(σ|E(P))
1− Trace(σ|χP)

,

which in turn is equal to the character value of the left-hand side of (1) at σ by
the Lefschetz fixed point formula (see Chapter VI, §9 in [FL] or Example 3 in
[Kö1]). This completes the proof of Theorem 3.1.

The following easy lemma also is a crucial step in an alternative approach
to Theorem 5.2 of [Ch], see section 2a of [Er2].

LEMMA 3.3. Let m ∈ N and ζ �= 1 an mth root of unity in any field. Then we
have:

m(ζ − 1)−1 =
m−1∑
d=1

dζd.

Proof. (
∑m−1

d=1 dζd)(ζ−1) =
∑m−1

d=1 dζd+1−∑m−1
d=1 dζd = (m−1)ζm−∑m−1

d=1 ζd =
m.

The following lemma will be used in the proof of Lemma 3.5, a fact we will
frequently use.

LEMMA 3.4. Let H be the semi-direct product of a finite p-group P and an
(arbitrary) group C which acts on P. Then we have in K0(H, k):

[k[H]] = |P| · [k[C]].

Proof. Let I denote the augmentation ideal of the group ring k[P]. The group
C acts on k[P] in the obvious way, and the ideals Ir, r ≥ 0, of k[P] are clearly
C-stable. Since ([σ] − [1])|P| = [σ|P|] − [1] = 0 for all σ ∈ P, we have IM = 0
for M sufficiently big. Furthermore, the group P acts trivially on the successive
quotients Ir/Ir+1, r ≥ 0. Thus we have a finite filtration

k[H] = k[P] ∗ C = I0 ∗ C ⊇ I1 ∗ C ⊇ I2 ∗ C ⊇ · · · ⊇ IM ∗ C = 0
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of the regular representation k[H] by k[H]-submodules such that the successive
quotients split into a direct sum of k[H]-modules of the form k[C] = k[H/P].
(Here, Ir∗C denotes the ideal ⊕σ∈CIr[σ] in the twisted group ring ⊕σ∈Ck[P][σ] =
k[P] ∗ C = k[H].) Thus the class [k[H]] is a sum of copies of the class [k[C]],
and Lemma 3.4 follows by a dimension count.

LEMMA 3.5. Let P ∈ X. Then we have:

[k[GP]] = ew
P · [k[GP/GP,1]] = ew

P ·
et

P−1∑
d=0

[χd
P] in K0(GP, k).

Proof. We have seen in the proof of Theorem 3.1 that the character χP :
GP → k× induces a primitive character of the cyclic group GP/GP,1 of order et

P.
Hence, Lemma 3.5 follows from Lemma 3.4.

Theorem 3.1 implies the following global relation in K0(G, k) between the
representations IndG

GP
(χd

P), P ∈ X, d = 0, . . . , et
P − 1.

COROLLARY 3.6. For P ∈ X and d ∈ {0, . . . , et
P − 1} we put

nP,d := ew
P

(
d +

(ew
P − 1)(et

P + 1) +
∑

s≥2 (|GP,s| − 1)

2

)
∈ N.

Then the element

∑
P∈X

et
P−1∑
d=0

nP,d · [IndG
GP

(χd
P)] ∈ K0(G, k)

is divisible by n = |G| in K0(G, k).

Proof. Applying Theorem 3.1 to E = OX we obtain

χ(G, X,OX)

=


(1− gY )− 1

2n

∑
P∈X


(ew

P − 1)(et
P + 1) +

∑
s≥2

(|GP,s| − 1)




 · [k[G]]

− 1
n

∑
P∈X

et
P−1∑
d=1

ew
P d
[
IndG

GP
(χd

P)
]

in K0(G, k)Q. Now using Lemma 3.5 we obtain Corollary 3.6.



1100 BERNHARD KÖCK

4. Galois structure in the weakly ramified case. In this section we will
generalize several results of Kani and Nakajima on the Galois module structure
of Zariski cohomology groups of curves from the tamely ramified to the weakly
ramified case.

We keep the assumptions and notations introduced in §2 and §3. In addition
we assume in this section that the cover π : X → Y is weakly ramified.

We begin with recalling the following crucial properties of weakly ramified
covers.

LEMMA 4.1. For any P ∈ X, the first ramification group GP,1 is an abelian
group of exponent p, the factor group GP/GP,1 is cyclic of order prime to p and the
natural action of GP/GP,1 on GP,1\{1} is free. In particular, GP is the semidirect
product of GP,1 and GP/GP,1 and we have: ew

P ≡ 1 mod et
P.

Proof. This follows from the pages 74–77 in §2, Ch. IV of Serre’s book [Se1],
see in particular Proposition 9 and the corollaries of Proposition 7.

LEMMA 4.2. Let H be the semi-direct product of a finite p-group P with a finite
group C which acts on P. We assume that the action of C on P\{1} is free, and
we put a := (|P| − 1)/|C| ∈ N. Furthermore let V be a k-representation of C (of
finite dimension) which we also view as a k-representation of H via the canonical
projection H → C. Let Cov(V) denote the k[H]-projective cover of V. Then we
have:

[Cov(V)] = [V] + a · dimk (V) · [k[C]] in K0(H, k).

Proof. The order of C is prime to p by assumption. Hence every k[C]-module,
in particular the k[C]-module V , is projective. Thus the induced representation
IndH

C (V) is a projective k[H]-module. Furthermore we have an obvious k[H]-
epimorphism IndH

C (V) → V . Since V ∼= IndH
C (V)/rad(k[H])IndH

C (V), the k[H]-
module IndH

C (V) is minimal with these properties, i.e., Cov(V) ∼= IndH
C (V). Fur-

thermore, for all x ∈ P and ξ, η ∈ C we obviously have:

(x, ξ) · (1, η) · (x, ξ)−1 = (x · (ξηξ−1)(x−1), ξηξ−1) in P� C = H.

Hence, by assumption on the action of C on P, the intersection C ∩ σCσ−1 is
trivial for all σ ∈ H\C. Using Mackey’s double coset theorem (see Theorem 44.2
on p. 324 in [CR1]), we thus obtain:

ResH
C

(
IndH

C (V)
)
∼=

⊕
σ∈C\G/C

IndC
C∩σCσ−1

(
ResC

C∩σCσ−1

(
(σ−1)∗(V)

))

= V ⊕


a·dimk (V)⊕

k[C]


 .
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Finally, the restriction homomorphism ResH
C : K0(H, k) → K0(C, k) is bijective

since the irreducible k-representations of C considered as k-representations of H
are the only irreducible k-representations of H (because k[H]/rad(k[H]) ∼= k[C]).
This proves Lemma 4.2.

In the sequel, the k[GP]-projective cover of the k[GP]-module χd
P is denoted

by Cov(χd
P) (for all P ∈ X and d ∈ Z). By Lemma 4.2, we have [Cov(χd

P)] =

[χd
P]+

ew
P−1
et

P
[k[GP/GP,1]] in K0(GP, k). The following theorem gives a global rela-

tion between the projective k[G]-modules IndG
GP

(Cov(χd
P)), P ∈ X, d =

1, . . . , et
P − 1. On the one hand, this relation should be considered as a nec-

essary condition for an arbitrary family of characters ρP : GP → k×, P ∈ X, to
arise as the family of characters χP, P ∈ X, associated with a weakly ramified
G-cover π. On the other hand, it defines the important ramification module NG,X

(used in the next theorem) depending only on the action of G on X. Note that
NG,X is determined by purely local data, but needs a global divisibility argument
for its definition. In particular, the divisibility argument does not hold fibre by
fibre in general; in other words, Theorem 4.3 would not be true, if we would
omit the direct sum over P ∈ X on the right-hand side.

THEOREM 4.3. There is a (unique) projective k[G]-module NG,X such that

n⊕
NG,X

∼=
⊕
P∈X

et
P−1⊕
d=1

ew
P·d⊕

IndG
GP

(
Cov(χd

P)
)

.

The class of NG,X in K0(k[G]) is given by

[NG,X] = (1− gY ) · [k[G]]− χ(G, X,OX(E))

where E denotes the G-equivariant divisor E :=
∑

P∈X (ew
P − 1)[P].

Remark 4.4. If π is assumed to be not only weakly but tamely ramified, then
the projective k[G]-module on the right-hand side has the following somewhat
simpler shape:

⊕
P∈X

eP−1⊕
d=1

d⊕
IndG

GP
(χd

P).

In particular, Theorem 4.3 generalizes the first part of Theorem 2 in Kani’s
paper [Ka] and Theorem 2(i) in Nakajima’s paper [Na2].
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Proof of Theorem 4.3. We have in K0(G, k)Q:

χ(G, X,OX(E))

= (1− gY )[k[G]]

+
1
n

∑
P∈X

(
(ew

P − 1)− (ew
P − 1)(et

P + 1)
2

)
[k[G]]

− 1
n

∑
P∈X

ew
P

et
P−1∑
d=1

d ·
[
IndG

GP

(
χ

d+1−ew
P

P

)]
(by Theorem 3.1)

= (1− gY )[k[G]]

− 1
n

∑
P∈X

(et
P − 1)(ew

P − 1)
2

[k[G]]

− 1
n

∑
P∈X

ew
P

et
P−1∑
d=0

d ·
[
IndG

GP
(χd

P)
]

(since ew
P ≡ 1 mod et

P by Lemma 4.1)

= (1− gY )[k[G]]

− 1
n

∑
P∈X

(et
P − 1)et

P

2
· ew

P − 1
et

P
[k[G]]

− 1
n

∑
P∈X

ew
P

et
P−1∑
d=0

d ·
([

IndG
GP

(
Cov(χd

P)
)]
− ew

P − 1
et

P

[
IndG

GP

(
k[GP/GP,1]

)])

(by Lemma 4.1 and Lemma 4.2)

= (1− gY )[k[G]]

− 1
n

∑
P∈X

ew
P

et
P−1∑
d=0

d ·
[
IndG

GP

(
Cov(χd

P)
)]

(by Lemma 3.5).

Hence, by Theorem 2.1(a), the class of the projective k[G]-module

⊕
P∈X

et
P−1⊕
d=1

d·ew
P⊕

IndG
GP

(
Cov(χd

P)
)

in K0(k[G]) is divisible by n in K0(k[G]). Writing the elements of K0(k[G]) as
integral linear combinations of a basis of K0(k[G]) consisting of indecomposable
projective k[G]-modules, we see that the quotient is again the class of a projec-
tive k[G]-module, say NG,X . Since two projective k[G]-modules whose classes in
K0(k[G]) are equal are already isomorphic, Theorem 4.3 is now proved.

The following theorem expresses the equivariant Euler characteristic χ(G, X,
OX(D)) as an integral linear combination of classes of explicit projective k[G]-
modules (for any G-equivariant divisor D as in Theorem 2.1(a)).
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THEOREM 4.5. Let D =
∑

P∈X nP[P] be a G-equivariant divisor on X with
nP ≡ −1 mod ew

P for all P ∈ X. For any P ∈ X, we write

nP = (ew
P − 1) + (lP + mPet

P)ew
P

with lP ∈ {0, . . . , et
P − 1} and mP ∈ Z. Furthermore, for any Q ∈ Y, we choose a

preimage Q̃ ∈ X of Q under π. Then we have in K0(k[G]):

χ(G, X,OX(D))

= −[NG,X] +
∑
Q∈Y

lQ̃∑
d=1

[
IndG

GQ̃

(
Cov(χ−d

Q̃
)
)]

+


1− gY +

∑
Q∈Y

mQ̃


 [k[G]].

Remark 4.6. Note that lP = 0 = mP for all but finitely many P ∈ X. If π
is tamely ramified at P, then lP is obviously the unique number in {0, . . . , et

P −
1} such that OX(D)(P) ∼= χ

−lP
P (as k[GP]-modules). If π is tamely ramified

everywhere, then Theorem 4.5 implies the congruence

χ(G, X,OX(D)) ≡ −[NG,X] +
∑
Q∈Y

lQ̃∑
d=1

[
IndG

GQ̃
(χ−d

Q̃
)
]

mod Z[k[G]]

for an arbitrary G-equivariant divisor D on X. This congruence is a reformulation
of Theorem 2(ii) in [Na2] applied to E := OX(D).

Proof of Theorem 4.5. Let E denote the divisor
∑

P∈X (ew
P − 1)[P] as in The-

orem 4.3. We first compute the difference χ(G, X,OX(D)) − χ(G, X,OX(E)) in
K0(G, k)Q:

χ (G, X,OX(D))− χ (G, X,OX(E))

=
1
n

∑
P∈X

nP[k[G]]− 1
n

∑
P∈X

(ew
P − 1)[k[G]]

− 1
n

∑
P∈X

ew
P

et
P−1∑
d=1

d
[
IndG

GP

(
χ

d−nP
P

)]
+

1
n

∑
P∈X

ew
P

et
P−1∑
d=1

d
[
IndG

GP

(
χ

d+1−ew
P

P

)]
(by Theorem 3.1)

=
1
n

∑
P∈X

(lP + mPet
P)ew

P [k[G]]

− 1
n

∑
P∈X

ew
P


et

P−1∑
d=0

d
[
IndG

GP

(
χ

d−lP
P

)]
−

et
P−1∑
d=0

d
[
IndG

GP

(
χd

P

)]
(since ew

P ≡ 1 mod et
P by Lemma 4.1)
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=
1
n

∑
P∈X

mPeP[k[G]] +
1
n

∑
P∈X

lP(ew
P − 1)[k[G]] +

1
n

∑
P∈X

lP[k[G]]

− 1
n

∑
P∈X

ew
P




et
P−1∑
d=0

lP
[
IndG

GP
(χd

P)
]
−

et
P−1∑

d=et
P−lP

et
P

[
IndG

GP
(χd

P)
]

=
1
n

∑
P∈X

mPeP[k[G]] +
1
n

∑
P∈X

lP(ew
P − 1)ew

P

[
IndG

GP
(k[GP/GP,1])

]

+
1
n

∑
P∈X

ew
P et

P

et
P−1∑

d=et
P−lP

[
IndG

GP
(χd

P)
]

(by Lemma 3.5)

=
∑
P∈X

eP

n
mP[k[G]]

+
∑
P∈X

eP

n

et
P−1∑

d=et
P−lP

(
ew

P − 1
et

P

[
IndG

GP
(k[GP/GP,1])

]
+
[
IndG

GP
(χd

P)
])

(since eP = ew
P et

P)

=
∑
Q∈Y

mQ̃[k[G]] +
∑
Q∈Y

lQ̃∑
d=1

[
IndG

GQ̃

(
Cov(χ−d

Q̃
)
)]
(by Lemma 4.1 and Lemma 4.2).

This result for the difference χ(G, X,OX(D)) − χ(G, X,O(E)) together with the
formula

χ(G, X,OX(E)) = (1− gY )[k[G]]− [NG,X]

(see Theorem 4.3) now obviously implies the desired formula in Theorem 4.5.

The ideal sheaf of the reduced effective divisor on X consisting of all (wildly)
ramified points plays a central role in Pink’s paper [Pi]. The following corollary
computes the Galois module structure of its first cohomology group.

COROLLARY 4.7. Let S be a G-stable non-empty finite set of closed points on X
which contains all wildly ramified points, i.e. all points P ∈ X with ew

P �= 1. Let I(S)
denote the ideal sheaf of S. Then the k[G]-module H1(X, I(S)) is stably isomorphic
to NG,X ⊕ (⊕Q∈π(S) IndG

GQ̃
(Cov(χ0

Q̃))). More precisely we have:

H1(X, I(S))⊕ k[G] ∼= NG,X ⊕


 ⊕

Q∈π(S)

IndG
GQ̃

(
Cov(χ0

Q̃)
)⊕

( gY⊕
k[G]

)
.
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Proof. Since S �= ∅, we have H0(X, I(S)) = 0. Hence we obtain the following
equality in K0(G, k):

[
H1(X, I(S))

]
= −χ

(
G, X,OX

(∑
P∈S

−[P]

))

= [NG,X]−
∑

Q∈π(S)

et
Q̃
−1∑

d=1

[
IndG

GQ̃

(
Cov(χ−d

Q̃
)
)]

+
∑

Q∈π(S)

[k[G]] + (gY − 1)[k[G]]

(by Theorem 4.5)

= [NG,X] +
∑

Q∈π(S)

[
IndG

GQ̃

(
Cov(χ0

Q̃)
)]

+ (gY − 1)[k[G]]

(by Lemma 4.1 and Lemma 4.2).

Furthermore, H1(X, I(S)) is a projective k[G]-module by Theorem 2.1(a). Since
two projective k[G]-modules whose classes are equal in K0(G, k) are already
isomorphic, Corollary 4.7 is now proved.

The following corollary computes the Galois module structure of the space of
global meromorphic differentials on X which are logarithmic along all ramified
points. It generalizes the second part of Theorem 2 in Kani’s paper [Ka] from
the tamely ramified to the weakly ramified case.

COROLLARY 4.8. Let S be a G-stable non-empty finite set of closed points
on X which contains all ramified points. Let ΩX(S) denote the sheaf of mero-
morphic differentials on X which are logarithmic along S. Then the k[G]-module
H0(X, ΩX(S))⊕ NG,X is free of rank |S/G| + gY − 1.

Proof. We use the notations introduced in the proof of Corollary 2.3. Then
the divisor D = KX +

∑
P∈S [P] satisfies the condition of Theorem 4.5 and the

corresponding integers lP, mP, P ∈ X, are given as follows: lP = 0 for all P ∈ X,
mP = rπ(P) + 1 for P ∈ S and mP = rπ(P) for P ∈ X\S. Thus we obtain:

[H0(X, ΩX(S))⊕ NG,X] = [H0(X,OX(D))] + [NG,X]

= (1− gY +
∑
Q∈Y

rQ + |S/G|)[k[G]] (by Theorem 4.5)

= (gY − 1 + |S/G|)[k[G]] in K0(k[G]) (since deg (ΩY ) = 2gY − 2).

As in Corollary 4.7, this implies Corollary 4.8.

Remark 4.9. Alternatively, Corollary 4.8 can be derived from Corollary 4.7
using the Serre duality isomorphism H0(X, ΩX(S)) ∼= H1(X, I(S))∗ and the iso-
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morphism

N∗G,X ⊕


 ⊕

Q∈π(S)

IndG
GQ̃

(
Cov(χ0

Q̃)
)∗⊕ NG,X

∼=
|S/G|⊕

k[G]

which may easily be checked.
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