
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Emms, Martin and Arief, Budi and Freitas, Leo and Hannon, Joseph and van Moorsel, Aad (2014)
Harvesting High Value Foreign Currency Transactions from EMV Contactless Credit Cards Without
the PIN. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, 3-7 November 2014, Scottsdale, Arizona, USA.

DOI

http://doi.org/10.1145/2660267.2660312

Link to record in KAR

http://kar.kent.ac.uk/54148/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30712898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Harvesting High Value Foreign Currency Transactions
from EMV Contactless Credit Cards without the PIN

Martin Emms, Budi Arief, Leo Freitas, Joseph Hannon, Aad van Moorsel
School of Computing Science, Newcastle University
Newcastle upon Tyne NE1 7RU, United Kingdom

{martin.emms, budi.arief, leo.freitas, joseph.hannon, aad.vanmoorsel}@ncl.ac.uk

ABSTRACT
In this paper we present an attack, which allows fraudulent
transactions to be collected from EMV contactless credit and debit
cards without the knowledge of the cardholder. The attack
exploits a previously unreported vulnerability in EMV protocol,
which allows EMV contactless cards to approve unlimited value
transactions without the cardholder’s PIN when the transaction is
carried out in a foreign currency. For example, we have found that
Visa credit cards will approve foreign currency transactions for
any amount up to €999,999.99 without the cardholder’s PIN, this
side-steps the £20 contactless transaction limit in the UK. This
paper outlines our analysis methodology that identified the flaw in
the EMV protocol, and presents a scenario in which fraudulent
transaction details are transmitted over the Internet to a “rogue
merchant” who then uses the transaction data to take money from
the victim’s account. In reality, the criminals would choose a
value between €100 and €200, which is low enough to be within
the victim’s balance and not to raise suspicion, but high enough to
make each attack worthwhile. The attack is novel in that it could
be operated on a large scale with multiple attackers collecting
fraudulent transactions for a central rogue merchant which can be
located anywhere in the world where EMV payments are
accepted.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce –
Cybercash, digital cash, Payment Schemes, Security;
C.3 [Special-Purpose and Application-Based Systems]: –
Smartcards

General Terms
Security

Keywords
Contactless cards, EMV, fraudulent transaction, foreign currency
transaction limits, rogue merchant.

1. INTRODUCTION
Our research has identified a practical attack on EMV1 contactless
credit and debit cards, which allows large-scale “harvesting” of
fraudulent payments from unsuspecting cardholders. The attack
exploits six functional characteristics of EMV contactless credit
and debit cards:

1 EMV (Europay, MasterCard, and Visa) is a global standard to support

interoperable card payment system between Visa, MasterCard,
American Express and JCB.

 Many Visa2 credit cards will approve unlimited value
transactions in a foreign currency; this allows the attack to
maximise the money extracted from each credit / debit card.

 The contactless interface allows transactions to be extracted
whilst the card is still in the cardholder’s wallet.

 The cardholder’s PIN is not required for contactless
transactions; this allows the fraudulent transaction to be
extracted from the card without any further interaction from
the cardholder.

 Visa contactless cards will approve transactions in offline
mode; this allows the attack to be performed without
connecting to the card payment system, thereby avoiding any
additional security checks by the bank.

 The merchant details are not included in the data
cryptographically protected by the card; this allows the
merchant details to be added later, making the attack more
flexible and scalable.

 While the EMV protocol requires payment cards to
authenticate themselves to the Point of Sale (POS) terminals,
currently there is no requirement for POS terminals to
authenticate themselves.

The main contribution of this paper is the identification of a newly
discovered vulnerability of the EMV protocol centred on the
card’s handling of foreign currencies. This is made possible by a
combination of the six functional characteristics described above.
The introduction of EMV contactless cards has created a situation
comparable to that described by Reason in his “Swiss cheese”
model [10] where layers of protection can be compromised if
holes on each layer line up to create an exploitable attack. In this
case, the six characteristics line up in a way that defeats the
safeguards put in place by EMV. Through this paper we also
contribute two potential solutions which will block this
vulnerability.

The ability to capture fraudulent transactions and store them for
later transmission to a rogue merchant makes this attack different
from previously described relay attacks [3][6] on EMV
contactless cards. The relay attack depends upon very close
synchronisation between two attackers; the first attacker has to be
in contact with the victim’s card whilst the second attacker makes
a purchase at a POS terminal. This makes relay attacks difficult
to operate on a large scale.

2 The attack presented in this paper has only been observed on contactless

Visa cards. However our testing has showed that the underlying flaw
also exists in MasterCard, but additional security measures implemented
by MasterCard have prevented the manifestation of this attack.

2

Similar to the “Chip & PIN is broken” attack [9], our attack can
potentially be operated on a large scale. “Chip & PIN is broken”
allows attackers to buy goods from retailers, whereas the attack
described in this paper is different in that it targets the money in
the victim’s bank account.

The very recent “Chip and Skim” attack [1] is similar to our attack
in that it could be operated on a large scale and it extracts money
from the victim’s account. It would be interesting to explore the
possibility of using our mobile phone contactless-transaction-
collecting app as the “skimming” platform for the Chip and Skim
attack.

The rest of the paper is organised as follows. Section 2 presents
our methodology for finding the vulnerabilities, including the
outline of the process, and the resulting formal abstract model,
from which we derive our attack. Section 3 provides an overview
of the attack, which is composed of two stages: collection of
fraudulent transactions, and converting these transactions into
money. Section 4 outlines existing safeguard to protect EMV
transactions, while Section 5 looks into the EMV functionality
exploited by the attack. Section 6 outlines the experimental
software implementation to carry out the attack, including an
Android app and a rogue merchant server. Section 7 presents
some results from executing the attack, demonstrating the
feasibility of such attack. In Section 8 we offer potential methods
for preventing the attack and Section 9 concludes our paper.

2. METHODOLOGY
Our work focuses on the analysis of the EMV payments protocol
and specifically the security impact of the introduction of
contactless and mobile payments functionality into the protocol.

Analysis of the protocol is non-trivial due to the complexity of the
EMV payment protocol specification. EMV is a global payment
system, the protocol therefore has to incorporate competing (and
sometimes conflicting) requirements from each of the credit card
issuers (MasterCard, Visa, Amex, JCB, Diners, Discover,
UnionPay) and from the financial regulators in each of the
countries in which EMV operates. In addition, the introduction of
contactless / mobile payments has significantly increased the
complexity of the EMV specifications. The EMV specification
for contact (Chip & PIN) credit / debit cards describes a single
unified payment protocol sequence (kernel) for all card types.
The specification for contactless / mobile payments contains
seven protocol sequences (kernels), one for each card issuer. The
complexity and page count has expanded, from four books
comprising 765 pages for contact transactions, to fourteen books
containing 2,392 pages for both contact and contactless.

To address this complexity, we have developed a systematic
approach which combines formal and informal techniques. At the
centre of our approach are UML sequence diagrams, an example
of which can be seen in Figure 6, which we use as the informal
but precise description of the protocol fragments. Each UML
diagram is accompanied by a table listing the references in the
EMV specification which were the diagram's information source.
Creating the UML diagrams takes input from three main sources:
(i) the EMV specification documents, (ii) feedback from insights
gained by the developers coding the emulator, and (iii) feedback
from insights gained by the designers constructing a formal
model. Essential to our process is the systematic line-by-line
documentation of the linkage between EMV specification, UML
diagram, abstract formal model, emulator code and test cases.

The formal aspects of our approach are inspired by the Praxis
methodology [2], tailored to our needs. It focuses on the
construction and proof of an abstract model using the Z notation
[13]. This abstract model is used to investigate the consistency of
the requirements, expose descriptive errors, and ultimately be
used to generate test cases for the emulator code. Ultimately, if
our abstract formal model correctly characterises the EMV
requirements, then our test cases will be both minimal and wide-
reaching, given they come from the mathematical characterisation
of the EMV requirements for NFC.

2.1 The Process
Figure 1 shows our analysis process. The rounded boxes are
activity nodes within the process e.g. [A1]. The square boxes are
object nodes e.g. [O1.0]: these are the data sources that drive the
activities. Connecting edges, represented as black solid-arrows,
indicate the default order in the flow of activities. The red
dashed-arrows are connecting edges, which indicate feedback,
creating an iterative process of refinement of the UML diagrams
[O1.1], the abstract model [O2.1] and the emulator code [O4.1].

EMV

Specifications

[O0.0]

Develop Transaction

Sequence Diagrams

[A1]

Develop Transaction

Emulation Code

[A4]

Develop Abstract

Model

[A2]

UML Transaction

Sequence Diagrams

with EMV References

[O1.1]

Abstract Model

[O2.1]

Develop Test Cases

[A3]

Test Cases

[O3.1]

Emulator Code

[O4.1]

Card Capabilities

[O5.0]

Run Test Cases

[A5]

Test Results /

Findings

[O5.1]

List of Anomalies

[O2.2]

Feedback

Feedback

Feedback

Feedback

Figure 1. Protocol analysis process

At the centre of our approach is the construction [A1] of UML
sequence diagrams [O1.1] with accompanying reference lists.
Much of the process is about constructing these sequence
diagrams as accurately as possible. To achieve this, we use a
detailed analysis of the EMV requirements and a detailed working
knowledge of the structure of the various specifications
contributing to a single transaction. Moreover, we use feedback
from the formal model construction [A2], the derivation of test
cases [A3] and the coding [A4].

The EMV specifications [O0.0] are the originating source of all of
the data in the process. Any data or assumption made in the

3

emulator code or in the abstract model should be traceable back to
its origin (i.e. the book/section/page within the EMV
specifications). The EMV specifications are structured so that the
complete description for a single transaction protocol sequence is
split across multiple sections and multiple books. The UML
sequence diagrams [O1.1] collate these multiple sources into a
single easy to follow description of the transaction sequence.
These transaction sequence diagrams are the initial stage of the
iterative process that we used to create the concrete software
implementation of the emulator [O4.1].

At each stage of the process, if additional information is found
about the working of EMV it is fed back into the UML transaction
sequence diagrams [O1.1]. The feedback is essential to refine our
understanding of the EMV specifications and document it. Each
time the diagrams are updated, this drives the improvement of the
emulator code [O4.1]. The completed emulator code is used in
practical experiments [A5], running full or partial transaction
protocol sequences against real bank cards.

2.2 UML Protocol Sequence Diagrams
The role of the UML protocol sequence diagrams is to collate
information from multiple sources in the EMV specification,
creating a single description of the payment protocol sequence
(kernel).

There are eight payment protocol sequences (kernels) in the EMV
specification, one for contact transactions and seven for
contactless transactions. There is a single UML diagram for each
of the eight kernels. Each diagram is accompanied by a table of
references detailing the EMV specification sections from which
the diagram was derived. Each reference details the EMV book,
section number, page number and a section of text describing the
functionality.

Table 1. Snippet of UML diagram references table

Descriptive Text References
7.1 Transaction Setup Data
including PDOL list

If the Visa application is
successfully selected the card will
return the data that the terminal
requires to set up the transaction
including the PDOL list. The
Processing Data Objects List
(PDOL) is a list of data fields the
card requires to complete the
transaction, the terminal returns the
populated PDOL data in the Get
Processing Options command.
Typically the data fields requested
by the card will include the
transaction amount, currency, date,
country and POS terminal
capabilities (TTQ).

EMV v2.2 Book C-3
2.4.1 Initiate Application
Processing, page 12

EMV v4.3 Book 3
10.1 Initiate Application
Processing, page 91

EMV v2.2 Book B
3.5 Outcome Processing
(3.5.1.5 Other), page 33

EMV v4.3 Book 4
Annex A - Coding of
Terminal Data Elements,
page 115

Table 1 shows a snippet of the references table for Figure 6,
which provides the details of one of the 26 steps in the Visa fDDA
[5] protocol sequence (kernel 3).

It is these reference tables that provide the documented link
between the UML diagrams and the EMV specification
documents.

2.3 Protocol Emulator
The protocol emulator is a concrete software implementation of
the EMV payments protocol. It is both an end product of the
analysis process and the test-bed used to validate the findings of
our analysis process; for instance the protocol emulator was used
to confirm the existence of the foreign currency flaw in UK issued
credit / debit cards.

To maintain the linkage between the protocol emulator code and
the UML diagrams / EMV specification, we insert comments into
the Java code. These comments contain the same descriptive text
and references as per Table 1. In this way, each line of Java code
can be traced back to its origin in the EMV specification and can
also be understood as part of the overall protocol sequence thanks
to the references to the UML diagrams.

2.4 Formal Abstract Model
In this work, we studied the EMV requirements documents [4][5]
to produce a formal abstract model of its properties and
functionalities, specifically for the Visa fDDA contactless
transaction protocol (summarised in Figure 6). The motivation is
to capture these requirements mathematically, enabling checking
that the properties of interest hold (i.e. the requirements
documents are consistent), and to produce test cases for our EMV
emulator derived from formal proof of operational feasibility of
each protocol stage (i.e. by proving the stage is feasible, we
expose both abstract behaviours: normal and exceptional).

2.4.1 Implementation of the Abstract Model
Our abstract model uses the Z notation [13]. Proof obligations in
Z are usually of three kinds: well-formedness of models, where
partial functions are applied within their domains, and unique
existential quantifiers are sound; operational feasibility, where
specified operations have (implicitly defined) preconditions strong
enough to establish (explicitly defined) post-conditions; and data
reification via (usually forward) simulation, where the use of
(concrete) data structure representations in operations closer to an
implementation language are shown to respect the abstract
representation and operations.

Our models have 49 type definitions, 61 Z schemas representing
the NFC operations of the protocol, and 79 proofs in total, of
which 49 are theorems representing properties of interest for the
whole model [7]. Feasibility proofs are useful in deducing formal
model-based test cases, as they characterise the complete space of
behaviours for all operations of interest, including successful and
all possible error cases, both determined by mathematical
predicates representing disjoint behaviours of the protocol. That
is, feasibility proofs characterise a set of disjoint predicates with
(in EMV’s case) non-overlapping conditions that when
accumulated lead to true (e.g. pre-condition of an operation being
x < 0 or x > 0 or x = 0). Thus, each disjunct represents a unique
class of behaviours for the functionality being proved. Moreover,
we also prove that these disjunct predicates amount to true, hence
we guarantee all behaviours are accounted for.

The formal model follows the methodology advocated in [2],
which enumerates requirements realised by each piece for formal
specification. Thus, if all elements of the requirements are
accounted for within the abstract mathematical model in a way
that conveys the intended behaviour described in English, then
proofs about the abstract model (or rather, proof failure) will lead
(as our experiments show) into potential attacks and
vulnerabilities discovered through proof investigation. Once
validated by EMV experts, such formal model becomes a more

4

accurate representation of the EMV protocol than the EMV books
[4][5].

These efforts correspond to the POS terminal side of Figure 6.
The mechanisation of a formal concrete design, together with a
proof of refinement indicate that these designs faithfully satisfy
the abstract model linked to the requirements. Refinement proofs
are perhaps the most costly aspect of a proof exercise, as it needs
to establish that the implementation details do not breach any of
the contractual requirements established by the abstract model.
This concrete model can then serve to annotate the Java (or any
other implementation) with formal specification for code-level
functional correctness as done by tools such as VeriFast [11].

Furthermore, we derive a set of test cases from this abstract model
that is the smallest with highest coverage possible. We also
derive a systematic code-annotation technique, using the same
principle to enumerate what aspect of the requirements each piece
of code within the emulator is realised. These test cases represent
a test-oracle based on requirements testing, rather than testing for
any implementation issues. Together, the test cases and
systematic code annotation are useful for capturing potential
(major) errors. Errors from the concrete design are more likely to
expose problems with implementation choices, and it is our aim in
the future to annotate the emulator code with formal specification
amenable to static analysis of the properties corresponding to the
behaviour of the code.

2.4.2 Abstract Model for Foreign Currency
Transaction Limits
EMV specifies the transaction currency as one of the data fields
for mandatory inclusion in the Application Cryptogram (AC) [4].
This indicates the importance of the currency as it is one of the
fields which is cryptographically protected against alteration.
Nevertheless, the EMV books do not specify the process required
when the terminal and the card have different currencies. This
omission was discovered as part of the process to formulate the
pre-conditions for the abstract model that currency exchanges
were consistent. It was clear that the currency was one of the pre-
conditions that should be included in the model, but we could not
establish the correct process or outcome when the terminal
currency was different from the card’s currency.

The abstract model has identified the following pre-conditions
relating to currency: (i) the native currency of the card; (ii) the
native currency of the POS terminal; and (iii) the currency of the
current transaction. For instance, when assembling the fDDA
Processing Data Objects List (PDOL) for a Visa NFC transaction
we get the following Z schema (from [7]):

It creates the NFCVisaPDOL! with the adequate fields from both
the card’s and transaction’s data. The PDOL amount, however,
needs to be corrected for the card’s target/preferred currency. For
that we use a bijective function linking currencies and countries,
as well as the agreed transaction currency (returned as
tcurrency!), and the given cardCurrency? input for the
given amount. This PDOL is then used to produce the AC and the

Signed Dynamic Authentication Data (SDAD) for the validation
of the transaction, by the bank and the POS terminal respectively.

We could satisfy all requirements when cardCurrency? is
equal to tCurrency!; however we could not do the same when
they are not equal. This prompted us to run foreign currency
transaction experiments on real credit cards using the emulator,
revealing the vulnerabilities leading to the attack.

3. OVERVIEW OF THE ATTACK
Figure 2 shows the key elements of the attack and how they
interact with the EMV payment system.

Figure 2. Transaction harvesting attack

The attack consists of two stages:

 Attackers (collection of fraudulent transactions): attackers
using Near Field Communication (NFC) enabled Android
mobile phones can collect fraudulent transactions from
unsuspecting cardholders. This can be done whilst the
contactless card is still in the cardholder’s pocket (see steps 1
to 3 of Figure 2).

 Rogue merchant (converting transactions into money): a
rogue merchant converts the collected transactions into
money in their bank account by sending the transaction data
to a bank (steps 4 to 5 of Figure 2).

Finally the transaction request enters the Card payment clearing
system where the rogue merchant’s bank acts innocently to
transfer the transactions into the card payment system, which
transfers the money from the victim’s bank account into the rogue
merchant’s bank account (see steps 6 to 10 of Figure 2).

3.1 Collecting fraudulent transactions
Transactions are collected using a malicious app written for NFC-
enabled Android mobile phones. The app automatically initiates
and collects a transaction immediately upon detection of a
contactless credit / debit card in the phone’s NFC field. This
process takes less than 500 milliseconds from card detection to
transaction completion.

It is imagined that attackers will operate in a similar way to
pickpockets, hiding their activity in crowded situations such as on
public transport or in the crowd at an event. When a credit / debit
card is detected, the app gives the attacker an audible signal
through their headphones; a second audible signal is given when
the transaction collection is complete. This will allow the attacker
to operate without attracting too much attention.

5

3.1.1 Hardware
An Android mobile phone is chosen as the attack platform for the
following reasons:

 Android mobile phones have a built-in NFC reader.

 An Android phone is an innocuous item for the attacker to
carry in a crowded place; for example, it will not raise
attention if the attacker is stopped by the police, since
everyone carries mobile phones these days.

 The mobile phone platform provides portability, Internet
connectivity and good battery life, making it a very capable
attack platform.

3.1.2 The transaction collecting app
The attack starts when the NFC-enabled Android phone identifies
a contactless credit / debit card which is vulnerable to this attack
in the victim’s wallet. The app sends a transaction request to the
vulnerable card.

The app plays an audible alert to the attacker to signal that a
vulnerable card has been found.

When the victim’s card receives the transaction request message,
it can approve or decline the transaction. If the card approves the
transaction it generates the AC and the SDAD, this proves to the
bank and POS terminal respectively that the card that approved
the transaction was genuine (see Section 4.3 for more detail).

The cryptographic algorithms used to generate the AC and SDAD
also ensure that the transaction details cannot be changed
subsequent to the card authorising the transaction.

When the attack is complete the app plays a second audible alert.

3.1.3 Storage of approved transactions
The app was designed to operate in locations where an Internet
connection is not always available, for example on underground
public transport. Therefore the app will initially just store the
transaction authorisation data returned by the victim’s card.
When a reliable Internet connection is available, the app will send
the stored transaction data to the rogue merchant who will convert
the transaction data into money.

The ability to capture fraudulent transactions offline and store
them for later transmission is one of the novel features of this
attack. This allows the attack to be operated on a large scale
without the need for synchronisation.

Furthermore, storing the transactions minimises the time required
to collect fraudulent transactions as the app does not have to wait
for a connection. It also allows the attackers to operate in victim-
rich crowded places that are normally without an Internet
connection such as on subway trains, on buses and at large events.

3.2 Converting transaction data into money
The criminals would set up a rogue merchant account with an
acquirer bank in one of the 76 countries that accept EMV
payments. This rogue merchant will receive the fraudulent
transactions collected by the attackers and convert them into
money by sending the transaction data to the bank.

The rogue merchant consists of three elements:

 An Internet-based listening service, which will receive
collected transaction data from attackers.

 A data format conversion process, which converts the
fraudulent transactions collected by the attackers into the
format required by the bank.

 A rogue Point of Sale (POS) terminal, which must imitate the
actions of a legitimate POS terminal so that it does not raise
the bank’s suspicion. To achieve this, the rogue POS takes
the previously converted data, adds the merchant data and
sends that data to the bank using an Internet Protocol (IP)
connection.

3.2.1 Internet-based listening service
The rogue merchant provides an Internet-based listening service
on a pre-arranged IP address and port number, to receive the
fraudulent transactions from the attackers. The transactions are
initially stored to be processed later, once the merchant details
have been added to the transaction and the connection to the
acquirer bank is available.

3.2.2 Data format conversion process
Financial presentment request messages are used to transmit EMV
credit / debit card transactions between the merchant (who
captured the transaction) and the acquirer bank (who will process
the transaction).

Merchant-related data such as merchant ID, terminal ID and the
merchant’s bank account details are added to the transaction to
complete the data required by the EMV card clearing system. The
fraudulent transaction is now ready for transmission to the
acquirer bank.

The exact format of the message will differ slightly between
different acquirer banks. However, there are a number of
mandatory fields that are the same for every acquirer bank.
Standard 70 [12] in the UK and ISO 8583 [8] in other EMV
countries define the mandatory data fields which must appear in
the financial presentment request message and the optional fields
which may differ between the acquirer banks.

The software for our attack prototype implements a Standard 70
message format, complete with all of the mandatory fields and a
number of optional fields (see Section 6).

3.2.3 Rogue POS terminal process
Once correctly formatted, the financial presentment request
message is sent to the bank. The acquirer bank returns a financial
presentment response message, to which the merchant responds
with a financial presentment confirmation message that
acknowledges receipt of the acquirer’s response message.

The supported communication options for this message exchange
are PSTN, X25 over ISDN, IP over ISDN, and IP over public
networks (i.e. the Internet) for transmission of messages between
the merchant and the acquirer bank. The software implementation
presented in this paper uses IP over the Internet.

Our software implements data format conversion (Section 3.2.2)
and implements the sending of the financial presentment request
message over an IP connection protected by SSL/TLS encryption.

For obvious reasons we were not willing or able to check against a
real bank. Of course, one approach to defeating the attack is to try
to detect rogue POS behaviour at the bank, but it is not clear how
well this can be done. A simple solution would be to have the
payment card reject any contactless foreign currency transaction
immediately, but is just not practical. As we will argue in Section
8, a more effective solution can be implemented by either forcing

6

foreign currency contactless transactions to be carried out in
online mode only, or where that is not possible, to switch the
transaction to "Chip & PIN".

4. EMV TRANSACTION SAFEGUARDS
In the UK, EMV credit / debit cards can perform two different
transaction types: contactless “tap and go” transactions, and
contact “Chip & PIN” transactions.

4.1 Contactless “tap and go” transactions
Contactless transactions are intended to be a quick and convenient
replacement for small cash purchases. In a contactless payment,
the credit / debit card is placed on the POS terminal’s contactless
reader for less than 1 second and the payment is approved.

There are two significant differences between a contactless
transaction and a contact “Chip & PIN” transaction. First, the
contact transaction requires the cardholder to enter their PIN,
whereas the PIN is not required for contactless transactions.
Second, contact transactions require the card to be removed from
the wallet and inserted into the POS terminal, whilst contactless
transactions is completed wirelessly by placing the card on the
POS terminal, this can be done whilst the card is still in the wallet.

PIN entry provides one of the key safeguards in “Chip & PIN”
transactions. The PIN ensures that only the cardholder, who
knows the PIN, can use the card. Contactless transactions are not
protected by PIN entry. EMV have therefore implemented the
following safeguards to limit the potential loss from lost or stolen
contactless cards:

 In the UK, each contactless transaction is limited to £20; any
transaction above this value will require a Chip & PIN
transaction.

 EMV cards are limited to five consecutive contactless
transactions, after which the PIN must be entered in a “Chip
& PIN” transaction.

These safeguards ensure that the maximum loss due to a lost or
stolen contactless card is £100.

4.2 Contact “Chip & PIN” transactions
The majority of EMV card transactions are “Chip & PIN”
transactions. “Chip & PIN” transactions allow purchases up to
the balance of a debit card or the credit limit of a credit card.

“Chip & PIN” transactions are protected by the following
safeguards. First, the cardholder must enter their PIN to authorise
the transaction. This is used to ensure that the person making the
payment is the authorised cardholder.

Second, if the value of the transaction is greater than the card’s
offline transaction limit, the card will request that the POS
terminal makes an online connection to the bank to perform
additional authorisation checks. The POS terminal must connect
to the bank to provide the card with the online authorisation code
(Authorisation Response Cryptogram (ARPC)). The bank will
respond with the authorisation code only if the card has not been
reported lost or stolen, and the account has sufficient funds to pay
for the transaction. The card will only authorise the transaction if
it receives a valid online authorisation code from the POS
terminal.

4.3 Cryptographic protection of transactions
The EMV payment system utilises cryptography to ensure that (i)
only genuine EMV credit / debit cards can authorise transactions
(ii) the transaction details approved by the card cannot be altered.

4.3.1 Application Cryptogram (AC)
The AC contains a Message Authentication Code (MAC). The
MAC utilises a symmetric algorithm, either Triple DES or AES,
to encipher the transaction data fields detailed below:

 amount authorised (value of the purchase)

 amount other (cashback amount if required)

 terminal country code (UK - 0826, USA - 0840 etc.)

 terminal verification results (POS status code)

 transaction currency code (UK£ - 0826, US$ - 0840 etc.)

 transaction date

 transaction type (purchase - 00, cash - 01, refund - 20)

 POS terminal unpredictable number (prevents cloned cards)

 application interchange profile (card’s security capabilities)

 application transaction counter (card’s transaction counter)

The AC is sent to the bank as part of the Financial Presentment
message (see Table 2). This allows the bank to verify that the
transaction details supplied by the merchant are the same as the
transaction approved by the EMV card.

4.3.2 Signed Dynamic Authentication Data (SDAD)
The SDAD is a RSA digital signature on a SHA1 hash of the
transaction data. In the Visa fDDA protocol the transaction data
included in the SDAD are:

 POS terminal unpredictable number

 amount authorised

 transaction currency code

 card unpredictable number

 card transaction qualifiers

The SDAD is used by the POS terminal to verify that the card is
genuine in an offline transaction.

5. EMV FUNCTIONALITY EXPLOITED
BY THE ATTACK
The attack circumvents the safeguards built into EMV credit /
debit cards by exploiting some EMV functionality that has been
made vulnerable due to the introduction of contactless payment
interface. In particular, there are three features that are exploited
in our attack scenario:

 Contactless foreign currency transactions. As described in
Section 4.1, the safeguards built into EMV will limit the
maximum value allowed for each contactless transaction to
£20. Any amount over £20 will require the cardholder to
enter their PIN, and any amount above the offline transaction
limit (e.g. £100) will require the POS terminal to connect to
the bank to perform additional checks before the transaction
is approved. Our research has found that EMV credit and
debit cards can be tricked into approving contactless

7

transactions of much higher value than £20, simply by
requesting the transaction in a foreign currency. In our
experiments, EMV cards have been found to approve
contactless transactions up to €999,999.99 without requesting
the PIN, and without requesting that the POS terminal goes
online to perform additional checks. This sidesteps the usual
safeguards employed by EMV payments system.

 Wireless interaction with card. This attack exploits the
wireless interface on contactless cards to collect transaction
authorisations whilst the card remains in cardholder’s wallet.
This means the cardholder remains unaware that they have
been exploited until their card statement arrives, thereby
allowing the attack to operate for longer and be more
lucrative to the attackers.

 The merchant ID and terminal ID can be added later by the
rogue merchant, as these data are not included in the AC
generated by the card. The AC cryptographically ensures that
the transaction data approved by the card is the same as that
received by the issuing bank (see Section 4.3).

6. IMPLEMENTATION
To validate our research, we have implemented a number of
software elements which demonstrate the viability and practicality
of the attack. The software consists of three separate applications:

 An Android mobile phone app which captures transactions
from the cards. Transactions are stored on the Android
phone to be transmitted to the rogue merchant later.

 A rogue merchant Internet listening service which waits to
receive the captured transactions from attackers using the
Android mobile phone app.

 A rogue merchant bank communications module which
packages the transactions into financial presentment request
messages for transmission to the bank. This module handles
all of the communication with the bank, which involves
sending the financial presentment request messages and
receiving acknowledgement messages.

6.1 Android transaction capture app
We have implemented the attack platform on an NFC enabled
Android mobile phone as this would be an innocuous device for
an attacker to carry around in a crowd.

6.1.1 Attack platform
For implementation and testing, we selected the Google Nexus 5
mobile phone. Implementing on a mobile phone platform limits
the effective range to approximately 1 cm. However in testing the
Nexus 5 was capable of extracting transactions from an EMV
contactless card which was located in a leather wallet in the
pocket of a pair of jeans worn by our “unsuspecting” test victim.

6.1.2 Android app operation
The attacker starts by pre-setting the amount and currency for all
the transactions which will be captured from the victims cards.
Figure 3 shows the attacker setting the amount to 999,999.00 and
setting the currency to 0978 which is the code for Euros. In
testing we have also obtained transaction approvals in US Dollars
for $999,999.99 (currency code 0840).

The app is now ready and will automatically collect a transaction
from every EMV contactless card that it detects, without any
further interaction from the attacker. This will minimise the

chance of the attacker being detected, as they are not constantly
interacting with their phone.

Figure 3. Capture transaction settings

Figure 4. Capturing the transaction

In Figure 4 the screen on the left shows the app waiting to detect
an EMV contactless card. The screen on the right shows the
€999,999.99 transaction being captured from the card.

When the app detects an EMV contactless card, it sounds an
audible alert in the attacker’s headphones; a second alert is given
once the transaction has been successfully collected. This takes
less than 500 milliseconds. Once the transaction has been
captured the app stores the transaction data for transmission to the
rogue merchant later. As soon as the app has collected a
transaction, it automatically returns to waiting to detect another
EMV card; it is now ready to collect the next transaction.

Figure 5 shows the data fields as captured by the app, this
includes all of the data and cryptographic authorisation codes
required by the bank to accept the transaction as genuine.

8

The mobile app stores transaction data until it has an Internet
connection, at which point the app transmits the data to the rogue
merchant.

Figure 5. Captured transaction data

6.1.3 Transaction protocol
The code implements the Visa fDDA [5] contactless transaction
protocol sequence (depicted as Figure 6) as this is an offline only
contactless protocol. This allows the attack to be performed in
less than 500 milliseconds and avoids additional validation by the
bank.

Payment CardPOS Terminal

1.0 InitiateTransaction()

3.0 PresentCardToTerminal()

4.0 ListAvailableNFCApplications()

4.1 List of available applications

7.0 SelectApplication(AID)

7.1 Transaction setup data inc. PDOL list

4.2 Command Error

7.2 Command Error

9.0 GetProcessingOptions(PDOL data)

9.7 Transaction Approved - TC + SDAD +

Application Cryptogram (AC) + AFL

9.8 Transaction Must Go Online -ARQC

9.10 Command Error

9.9 Transaction Declined - AAC

10.0 ReadAFLRecord(SFI, Record)

10.1 AFL record

[for each AFL SFI / record]

12.0 RemoveCard()

Loop

9.1 GenerateUPN()

9.2 GenerateSDAD()

9.3 GenerateAC()

9.4 UpdateTransactionCount()

9.5 DecrementNFCCount()

9.6 UpdateAvailableOffline()

11.0 ValidateTransaction()

8.0 PopulatePDOL()

2.0 WaitForCard()

5.0 ChooseAID()

6.0 SelectTheKernel(AID)

Figure 6. Visa fDDA transaction protocol sequence

6.1.4 Storing the transaction data
The transaction data is sent by the card in TAG / Length / Value
(TLV) format. The Android application stores all of the data fields
returned by the card for later transmission to the rogue merchant.

6.1.5 Transmission to the rogue merchant
Our software can collect and store multiple offline transactions,
without a connection to the Internet. The stored transactions can
then be transmitted once a suitable connection is available. The
transaction details will include all of the data fields required by
the bank. The Application Cryptogram (AC) and the clear text
equivalent fields listed in Section 4.3 are arguably the most
important, as together they are used by the bank to verify and
thereby approve the transaction.

6.2 The rogue merchant application
The rogue merchant application consists of three processes:

 an Internet listening service to receive the transactions from
the Android transaction capture app

 a data conversion module which converts the EMV data in
TLV format into the ISO 8583 / Standard 70 format required
by the bank

 a POS terminal emulation which sends the formatted data to
the bank to collect the money from the fraudulent
transactions

6.2.1 Internet based listening service
This is a simple Internet based service which listens to a pre-
agreed IP address and port number. The Android transaction
capture app (Section 6.1) connects to the pre-arranged IP address
and port number to send all of the collected transactions to the
rogue merchant. The listening service stores the transactions for
later processing.

6.2.2 Data conversion process
The data conversion process accepts TLV data as captured from
the EMV credit / debit card and converts it into ISO8583 /
Standard 70 format required by the bank.

To request the money from the victim’s account, the rogue
merchant must send a financial presentment message (in ISO8583
or Standard 70 format) to the acquirer bank that holds their
merchant account.

Table 2 shows the data fields required by the ISO 8583 financial
presentment message and shows how the rogue merchant will
complete the data fields from the data generated by the EMV card
during transaction approval.

6.2.3 POS terminal emulation
Once the financial presentment request message has been
generated, it is sent to the acquirer bank to complete the
transaction and transfer the money from the victim’s bank account
into the rogue merchant’s account.

In the UK, communications with the acquirer bank over a public
IP network must be protected using Secure Sockets
Layer/Transport Layer Security (SSL/TLS) or IPSec [12].

The use of standard encryption such as SSL/TLS and/or IPSec
allows the rogue terminal to be implemented in Java on a PC
platform; no specialist hardware is required.

9

Table 2. Financial presentment message data requirements

Item Name Description and mapping to EMV card data

1 bit map extended List of fields included in the message

2 primary account number 0x5A – 16-digit card account number

3 processing code Constant 00 for goods and purchases

4 amount, transaction 0x9F02 – the transaction amount

5 amount, reconciliation Transaction amount 0x9F02 converted into the currency to be applied to the
victim’s card, this value is calculated by the rogue POS terminal

7 date and time, transmission Date and time the rogue POS transmits the transaction to the bank

9 conversion rate, reconciliation Conversion rate for the reconciliation amount, calculated by the rogue POS
terminal

10 conversion rate, cardholder billing As above; this value is calculated by the rogue POS terminal

11 systems trace audit number Transaction sequence number generated by the rogue POS terminal

14 date, expiration 0x5F24 – Expiry date of the card (YYMM)

16 date, conversion Date / time of the currency conversion (same as 7)

19 country code, acquiring institution Country code of the rogue POS terminal (e.g. 0826 for UK, 0840 for USA, 0036
for Australia)

20 country code, primary account number 0x5F28 – Country code for the card i.e. 0826 – UK

21 country code, forwarding institution 0x5F28 – Country code for the bank that issued the card i.e. 0826 – UK

22 point of service entry mode Type of POS terminal, constant value “051” for Chip & PIN / EMV contactless
terminals

23 card sequence number 0x5F34 – Identifies subsidiary EMV cards issued on the same 16-digit account
number

25 point of service condition code Constant “00” normal card presentment

26 point of service PIN capture code Constant “x8xx” indicates a POS terminal that accepts up to 8 digits

27 approval code length Constant set by acquirer bank

32 acquiring institution identification code Constant set by acquirer bank

33 forwarding institution identification code Constant set by acquirer bank, indicates the institution that will provide the card
payment clearing (steps 6 to 9 in Figure 2)

34 primary account number, extended Not applicable to Visa – used only when the primary account number begins
with “59”

39 action code (was response code) Constant “0xx” for financial transaction request messages

43 card acceptor name/location Constant string name and location of the merchant

49 currency code, transaction 0x5F2A – Transaction currency code

50 currency code, reconciliation Currency code for reconciliation, see item 5

51 currency code, cardholder billing 0x9F42 – Currency Code from the card.

66 country code, receiving institution 0x5F28 – Country code for the bank that issued the card i.e. 0826 – UK

100 receiving institution identification code Code that identifies victim’s bank – ISO 7812

102 account identification 1 Information contained in 16-digit card account number 0x5A

103 account identification 2 Information contained in 16-digit card account number 0x5A

In the above table, data fields from the EMV card data are denoted by their EMV reference number e.g. 0x5A.

10

Table 3 shows the communication sequence required for the POS
emulation to transmit a transaction to the acquirer bank.

Table 3. POS / acquirer communication sequence

Message From ĺ
To Purpose

financial presentment
request message

POS ĺ
Acquirer

Requests approval and
money transfer by the
acquirer

financial presentment
response

Acquirer
ĺ POS

Contains the answer to the
request

financial presentment
confirmation

POS ĺ
Acquirer

Confirms that the
response was received

7. TEST RESULTS
The attack software has been tested against various UK-issued
credit / debit cards. Table 4 shows the vulnerability of several
different card types.

Table 4. Vulnerability of UK-issued contactless card types

Card Type Max Value Comment

Visa credit cards
(UK currency)

£85.00

Visa credit cards will
approve multiple
transactions until offline
limit reached

Visa credit cards
(foreign currency)

€999,999.99
$999,999.99

Visa credit cards will
approve foreign currency
transactions up to the
maximum value possible
in EMV

Visa debit cards
(UK currency)

£45.00

Visa debit cards will
approve multiple
transactions until offline
limit reached

Visa debit cards
(foreign currency)

€0.00
$0.00

Visa debit cards decline
foreign currency
contactless transactions

MasterCard N/A

MasterCard is not
affected by this attack as
the cards request online
completion of transactions
in local currency and
foreign currencies

7.1 Transaction capture timings
The Android transaction capture app is designed to operate as
quickly as possible, thereby reducing the risk of detection for the
attacker. The software automatically collects the fraudulent
transaction as soon as it detects a Visa contactless credit or debit
card. Table 5 shows analysis of protocol timings from 20 captured
fraudulent transactions.

Table 5. Fraudulent transaction capture timings

Statistics Time (in milliseconds)
Average transaction duration (card
discovery to transaction approval)

478ms

Standard deviation 36ms

Fastest transaction 452ms

Slowest transaction 527ms

8. POTENTIAL SOLUTIONS
The key weakness exploited in this paper is that Visa credit cards
will authorise unlimited value transactions in a foreign currency.
This makes the attack described in this paper both scalable and
very lucrative.

The solution is relatively simple. This can be done by changing
future Visa credit cards to implement one or both of the
following:

 the cards will request online completion of contactless
foreign currency transactions; making the transaction subject
to the additional online verification steps.

 the cards will force “Chip & PIN” completion of all foreign
currency transactions; this will eliminate the possibility of
high value transactions without the added security of
cardholder’s PIN.

9. CONCLUSION
In this paper we have demonstrated that it is possible to collect
high value transactions from contactless Visa credit cards whilst
the card is still in the victim’s pocket. The attack exploits a
previously undocumented flaw in the cards, in which the cards
will approve transactions of unlimited value in a foreign currency.
Combined with the lack of POS terminal authentication and the
threat of contactless payment card skimming, this vulnerability
poses a real risk that allows high value fraudulent transaction to
be harvested and converted into money.

Our experimental results show that the attack could be
implemented in the “real world” because:

 it takes less than 500milliseconds to collect a transaction

 NFC enabled Android phones are cheap and readily available

 the phone looks innocent if the attacker is challenged by the
police or a member of the public

We have also outlined a scenario by which the captured fraudulent
transactions could be exploited by a rogue merchant to access the
money in the victim’s bank account. The rogue merchant receives
the transactions and passes them off as genuine transactions to
their bank. It should be noted that although we have implemented
the rogue POS terminal software, we have not tested it against a
live acquirer transaction clearing system.

From this we can conclude that this attack represents a plausible
threat to contactless Visa credit cards. We can also see that it can
be easily remedied.

We have proposed two simple changes in the operation of Visa
credit cards that would eliminate the risk posed by this attack.
Both of which use the existing functionality of the cards and
would therefore be relatively inexpensive to implement.

10. ACKNOWLEDGMENTS
Our thanks to Feng Hao and Dylan Clarke for proof reading some
sections of this paper. The work presented here is partly
supported by the UK RCUK Social Inclusion through the Digital
Economy (SiDE) EP/G066019/1 project and the UK EPSRC
Cybercrime Network EP/K003410/1.

11

11. REFERENCES
[1] Bond, M., Choudary, O., Murdoch, S.J., Skorobogatov, S.,

Anderson, R. 2014. Chip and Skim: cloning EMV cards with
the pre-play attack. 35th IEEE Symposium on Security and
Privacy. http://arxiv.org/pdf/1209.2531.pdf

[2] Cooper, D. and Barner, J. 2008. Tokeneer ID station EAL5
demonstrator. Technical Report S.P1229.81.1, Altran Praxis.

[3] Drimer, S. and Murdoch, S.J. 2007. Keep Your Enemies
Close: Distance Bounding Against Smartcard Relay Attacks.
16th USENIX Security Symposium, Boston, MA, USA.
http://www.cl.cam.ac.uk/~sjm217/papers/usenix07bounding.
pdf

[4] EMVCo. 2011. EMV Integrated Circuit Card Specifications
for Payment Systems – Version 4.3.
http://www.emvco.com/specifications.aspx?id=223
[Accessed: 22 August 2014]

[5] EMVCo. 2014. EMV Contactless Specifications for Payment
Systems – Version 2.4.
http://www.emvco.com/specifications.aspx?id=21
[Accessed: 22 August 2014]

[6] Francis, L., Hancke, G., Mayes, K., Markantonakis, K. 2012.
Practical Relay Attack on Contactless Transactions by Using
NFC Mobile Phones. The 2012 Workshop on RFID and IoT
Security (RFIDsec 2012 Asia), Nai-Wei, L., Yingjiu, L.

(editors). Vol. 8, IOS Press (Cryptology and Information
Security Series), pp. 21-32.
http://eprint.iacr.org/2011/618.pdf

[7] Freitas, L. and Emms, M. 2014. Formal specification of
EMV protocol. School of Computing Science Technical
Report Series 1429, Newcastle University.

[8] International Organization for Standardization. 1995. ISO
8583:1995 – Financial transaction card originated messages
– Interchange message specifications.

[9] Murdoch, S.J., Drimer, S., Anderson, R., Bond, M. 2010.
Chip and PIN is Broken. IEEE Symposium on Security and
Privacy, pp. 433-446.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5
504801&isnumber=5504699

[10] Reason, J. 1990. Human Error. Cambridge University Press.

[11] Smans, J., Jacobs, B., and Piessens, F. 2013. VeriFast for
Java: A Tutorial. In: Clarke, D., Noble, J., Wrigstad, T. (eds.)
Aliasing in Object-Oriented Programming. LNCS, vol. 7850,
pp. 407– 442. Springer, Heidelberg.

[12] The UK Cards Association Limited. 2013. Standard 70 –
Card Acceptor to Acquirer Interface Standards.

[13] Woodcock, J. and Davies, J. 1998. Using Z. Prentice Hall.

http://arxiv.org/pdf/1209.2531.pdf
http://www.cl.cam.ac.uk/~sjm217/papers/usenix07bounding.pdf
http://www.cl.cam.ac.uk/~sjm217/papers/usenix07bounding.pdf
http://www.emvco.com/specifications.aspx?id=223
http://www.emvco.com/specifications.aspx?id=21
http://eprint.iacr.org/2011/618.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5504801&isnumber=5504699
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5504801&isnumber=5504699

