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Abstract

This thesis concerns the structure of Foulkes modules for the symmetric group. We study

‘ordinary’ Foulkes modules H(mn), where m and n are natural numbers, which are per-

mutation modules arising from the action on cosets of Sm o Sn ≤ Smn. We also study a

generalisation of these modules H
(mn)
ν , labelled by a partition ν of n, which we call generalised

Foulkes modules.

Working over a field of characteristic zero, we investigate the module structure using

semistandard homomorphisms. We identify several new relationships between irreducible

constituents of H(mn) and H(mn+q), where q is a natural number, and also apply the theory

to twisted Foulkes modules, which are labelled by ν = (1n), obtaining analogous results.

We make extensive use of character-theoretic techniques to study ϕ
(mn)
ν , the ordinary

character afforded by the Foulkes moduleH
(mn)
ν , and we draw conclusions about near-minimal

constituents of ϕ
(mn)
(n) in the case where m is even. Further, we prove a recursive formula

for computing character multiplicities of any generalised Foulkes character ϕ
(mn)
ν , and we

decompose completely the character ϕ
(2n)
ν in the cases where ν has either two rows or two

columns, or is a hook partition.

Finally, we examine the structure of twisted Foulkes modules in the modular setting. In

particular, we answer questions about the structure ofH
(2n)
(1n) over fields of prime characteristic.
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Chapter 1

Introduction and Overview

The main object of study in this thesis is a permutation module H(mn) for the symmetric

group – called the Foulkes module – which arises from the action of Smn on the collection

of set partitions of a set of size mn into n sets, each of size m. Equivalently, H(mn) is the

kSmn-module obtained by inducing the trivial module for the imprimitive wreath product

Sm oSn. In this work, it will be convenient for us to exploit both of these descriptions of the

Foulkes module.

The results in this thesis all address the task of understanding the structure of Foulkes

modules, which remains an open problem in the representation theory of symmetric groups.

Principally, we will work over C – but this can be replaced by any field of characteristic

zero – since this is also the setting for Foulkes’ Conjecture, which provides us with some

additional motivation for determining the module decomposition. This conjecture, made by

H. O. Foulkes in [15], states that, for all m,n ∈ N with m < n, there exists an injective

CSmn-homomorphism H(nm) ↪→ H(mn).

By 1950, when Foulkes made his conjecture, Thrall had already successfully decomposed

H(2r) and H(r2) in his paper [43] – from which the proof of Foulkes’ Conjecture in the case

m = 2 follows – and, in [32], Littlewood had given explicit descriptions of H(3n) for n ≤ 6

and H(4n) for n ≤ 5. Thus, when Foulkes decomposed H(5n) and H(6n) for 2 ≤ n ≤ 4, and

noticed that the summands of H(54) all appeared in the decomposition of H(45), he made his

claim. Foulkes wrote:

“The theorem is that for integers m, n, where n > m, the product {m} ⊗ {n}
includes all terms of {n} ⊗ {m}.”

The product to which Foulkes refers is the plethysm of symmetric functions, a notion that

was introduced by Littlewood in the 1936 paper [31]. The aforementioned decompositions

due to Thrall, Littlewood and Foulkes were all in fact stated as decompositions of plethysms

{m} ⊗ {n} rather than decompositions of the corresponding Foulkes modules H(mn). Nev-
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Introduction and Overview

ertheless, they are entirely equivalent statements. We shall discuss symmetric functions and

plethysm multiplication, including the equivalence of the two versions of Foulkes’ Conjec-

ture, in more detail in Chapter 3. At the same time, we will also see that a statement of

Foulkes’ Conjecture can be given in terms of modules for the general linear group. Whilst

success has been had in studying Foulkes modules using these methods, we will not adopt

such approaches in this work.

Despite the fact that Foulkes’ Conjecture can be tackled from a range of perspectives,

it has only been proved to hold when m ≤ 4 (work by Thrall [43], Dent and Siemons [11],

and McKay [36]), m + n ≤ 19 (work by Müller and Neunhöffer [37], and Evseev, Paget

and Wildon [13]), and when n is comparatively larger than m (an asymptotic result due to

Brion [4]). Similarly, the structure of the Foulkes module is only fully understood for very

small m and n: in addition to the results which led to Foulkes’ Conjecture, the decomposition

of H(mn) into irreducible modules is only known when n = 3 and n = 4 (see [11, 43] and

[12, 22], respectively).

We now outline the structure of this thesis, alluding to the main results that will be

proved.

In Chapter 2, we introduce all of the background material that we will require. In partic-

ular, we discuss some general results from representation theory that will be in constant use,

before concentrating on the representation theory of the symmetric group. At this point, we

begin to see the combinatorial nature of the topic, which will also be a feature of many of

our results.

In Chapter 3, we define Foulkes modules and we aim to make transparent the relationships

between the representation theory of the symmetric group, the representation theory of the

general linear group and symmetric functions. We will also define generalised Foulkes modules

H
(mn)
ν , where ν is a partition of n, of which Foulkes modules H(mn) and twisted Foulkes

modules H
(mn)
(1n) are special cases. To complete the chapter, we highlight the progress that

has been made to date in understanding the structure of (generalised) Foulkes modules,

demonstrating the place of our results within the existing literature.

Chapters 4 and 5 feature semistandard homomorphisms as a tool for studying the struc-

ture of Foulkes modules. For both of these chapters, we are required to work over a field

of characteristic zero. In Chapter 4, we illustrate the technique for Foulkes modules and

show how the existing theory can be adapted to also study the structure of twisted Foulkes

modules. Subsequently, we extend some existing results to the ‘twisted setting’, including

Foulkes’ Second Conjecture, which also featured in [15]. In Chapter 5, we make progress

in understanding the composition factors of H(mn) in the case where m is even. We prove

two new relationships between irreducible constituents of H(mn) and H(mn+q), where q is a

2



Introduction and Overview

natural number. We indicate when these results have analogues for twisted Foulkes modules

and prove the (suitably adjusted) results.

We continue to focus on the case where m is even in Chapter 6, proving results about

near-minimal constituents of H(mn). The approach we take is to study the ordinary character

ϕ(mn) afforded by the Foulkes module – an entirely equivalent problem in the characteris-

tic zero setting – using character-theoretic techniques. Again, where appropriate, we prove

analogues of the results for twisted Foulkes characters. We subsequently continue our inves-

tigation of near-minimal constituents, proving additional results in the case where m = 4:

we give a complete description of all constituents of ϕ(4n) that are labelled by partitions

λ = (λ1, λ2, . . . , λ`) of 4n satisfying λ1 ≤ 7 and λ2 < 7. In the process, we identify the

lexicographically smallest constituent of ϕ(4n) that is labelled by a partition that has an odd

part.

A key result used in Chapter 6 is a recursive formula that makes it possible to compute the

multiplicity of any irreducible character in the Foulkes character ϕ(mn). This formula – proved

by Evseev, Paget and Wildon in [13] and used by the authors to verify Foulkes’ Conjecture

computationally for m+n ≤ 19 – is in fact a special case of a new, more general formula: we

prove the more general result, which enables us to calculate character multiplicities for any

of the generalised Foulkes characters ϕ
(mn)
ν .

In the latter part of this thesis, we study generalised Foulkes modules in more detail. In

Chapter 7, we obtain formulae that decompose completely the characters ϕ
(2n)
ν when ν is a

partition of n with two rows or two columns, or when ν is a hook partition. For any ν taking

one of these forms, it turns out that the multiplicities with which the irreducible characters

appear in ϕ
(mn)
ν are determined by Littlewood–Richardson coefficients. We subsequently

apply the formulae to obtain the explicit decomposition of ϕ
(2n)
ν in a few special cases, yielding

some quite elegant results. We note that the formulae that we obtain in this chapter are very

different from the recursive formula in Chapter 6, which would – if given a specific n and ν

– yield the same decomposition.

Finally, we turn our attention to Foulkes modules defined over a field of characteristic

p. We employ the computational algebra software MAGMA to determine the structure of

the twisted Foulkes module H
(2n)
(1n) explicitly when n = 2, n = 3 and n = 4. Subsequently,

we return to using algebraic methods from modular representation theory to investigate the

module structure and we concentrate on the structure of H
(2n)
(1n) when n is at most p.

3



Chapter 2

Preliminaries

In this opening chapter, we cover all of the preliminary material that will be used later.

In particular, we give an introduction to the representation theory of the symmetric group,

presenting the basic definitions and results upon which we will rely heavily. We do not intend

to give a comprehensive exposition and so, where appropriate, we will recommend references

that provide proofs and a more thorough discussion of the topic.

We will assume that the reader has a good knowledge of the following topics:

- the group algebra (of a finite group);

- indecomposable and irreducible modules;

- semisimple modules;

- homomorphisms between modules;

- direct sums;

- direct and semidirect products;

- inner and outer tensor products;

- composition factors;

- radicals and socles;

- ordinary characters.

Throughout this thesis, k denotes an algebraically closed field and Sn denotes the sym-

metric group on a set of n symbols. Additionally, we write kSn for the group algebra of

the symmetric group. We will only be dealing with right modules; with this as a standing

assumption we will, from now on, simply refer to modules. Similarly, compositions of maps

and products of permutations should be read from left to right.

4



§2.1. Definitions and general representation theory

2.1 Definitions and general representation theory

2.1.1 Induction and restriction

Let G be a finite group and let H be a subgroup of G. Given a kG-module M , we can very

naturally obtain a kH-module M ↓H by considering only the action of kH on M . We call

the resulting module the restriction of M to H. We can also construct a kG-module from a

given kH-module, N . In particular, we define the induced module to be the vector space

N ↑G= N ⊗kH kG,

with action arising by linearly extending (n ⊗ a)g = n ⊗ ag for n ∈ N , a ∈ kG, g ∈ G.

We will also use the notation ↑ and ↓ when denoting the characters afforded by induced and

restricted modules.

In [2, §8], Alperin collects together many useful facts about induction and restriction of

modules, some of which we now state.

Lemma 2.1.1

Let M,M1,M2 be kG-modules and let N,N1, N2 be kH-modules.

1. (M1 ⊕M2) ↓H∼= M1 ↓H ⊕M2 ↓H and (N1 ⊕N2) ↑G∼= N1 ↑G ⊕N2 ↑G;

2. If L is a subgroup of H and X is a kL-module, then
(
X ↑H

)xG ∼= X ↑G;

3. M ⊗
(
N ↑G

) ∼= (M ↓H ⊗N) ↑G;

4. (N ↑G)∗ ∼= (N∗) ↑G.

Proof. See Lemma 8.5 in [2]. �

We now state a particularly important relationship between induced and restricted mod-

ules, which we shall often need to exploit.

Theorem 2.1.2 (Frobenius Reciprocity)

If M is a kG-module and N is a kH-module, then

1. HomkG

(
N ↑G,M

) ∼= HomkH (N,M ↓H) ;

2. HomkG

(
M,N ↑G

) ∼= HomkH (M ↓H , N) .

Proof. See Lemma 8.6 in [2]. �

Only part 1 of Theorem 2.1.2 is generally applicable to modules over a finite dimensional

algebra. However, since the group algebra is a symmetric algebra, we know that it is self-dual

5



§2.1.2. Permutation modules

as a module over itself. Exploiting this duality and using part 1 leads to a proof of part 2 of

the theorem.

We conclude this section with a brief discussion of double cosets, so that we may state

Mackey’s Theorem, a result which describes the restriction of an induced module.

Let H and L be subgroups of G. Given x ∈ G, the subset HxL := {hx` | h ∈ H, ` ∈ L}
is a double coset of H and L in G. The set of all double cosets is denoted by H\G/L. If

S ⊆ G is a set of representatives of double cosets of H and L in G, then G can be written as

the disjoint union

G =
⋃
s∈S

HsL.

Theorem 2.1.3 (Mackey’s Theorem)

Let H and L be subgroups of G, and let S be a set of representatives of double cosets of

H and L in G. Further, let N be a kH-module. Given s ∈ S, define a k(s−1Hs)-module

N s :=
{
s−1ns

∣∣ n ∈ N}, with action defined by (s−1ns)(s−1hs) = s−1(nh)s for n ∈ N and

h ∈ H, which corresponds to N in the obvious way. With this notation,(
N ↑G

)y
L
∼=
⊕
s∈S

(
N s ↓s−1Hs∩L

)xL.
Proof. See Lemma 8.7 in [2]. �

2.1.2 Permutation modules

In this section, we introduce a special type of kG-module. A kG-module is a permutation

module if it has a basis on which G acts as a permutation group. Given a G-set Ω, by which

we mean a set with a (right) action of G, we can construct a permutation module

MΩ :=

{∑
ω∈Ω

cωω

∣∣∣∣∣ cω ∈ k
}

with action defined by linearly extending the action of G on Ω. In §2.2, we will discuss in

some detail a particular example of such a module, called the Young permutation module. Of

course, for us, the most important example of a permutation module is the Foulkes module,

which we will introduce in Chapter 3. For now, we collect together some results concerning

permutation modules, as Feit does in [14, Chapter IX: §3].

Lemma 2.1.4

Let G be a finite group and H ≤ G. Let M be a kG-module and let N be a kH-module.

1. If M is a permutation module, then M ↓H is also a permutation module.

2. If N is a permutation module, then N ↑G is a permutation module.

6



§2.1.3. Vertices and sources

3. The direct sum of two permutation modules is a permutation module.

4. The tensor product of two permutation modules is a permutation module.

If G acts transitively on Ω, then the resulting permutation module is a transitive per-

mutation module. In this case, the action of G on Ω is equivalent to the action of G on

cosets of the stabiliser Gω = {g ∈ G | ωg = ω} in G, for any ω ∈ Ω. Conversely, given

H ≤ G, it is possible to construct a transitive permutation module MC(G,H) from the G-set

C(G,H), where C(G,H) is the set of cosets of H in G, and G acts transitively on C(G,H),

in the manner described above. Thus, a transitive permutation module can be viewed as an

induced module kH ↑G, where kH is the trivial module for H = Gω ≤ G.

We will frequently need to define homomorphisms from a transitive permutation module,

say kGω ↑G, to another kG-module, M . To do so is strightforward: we define the homomor-

phism on a generator, ensuring that the image of the generator is preserved by its stabiliser

in G. Indeed, it follows directly from part 1 of Theorem 2.1.2 that

HomkG

(
kGω ↑G,M

) ∼= Homk(Gω) (kGω ,M ↓Gω)

and since Gω acts trivially on kGω , f ∈ Homk(Gω) (kGω ,M ↓Gω) must satisfy

f(x) · g = f(xg) = f(x)

for x ∈ kGω and g ∈ Gω. The resulting homomorphism from kGω ↑G to M will be well defined

and any such homomorphism can be described in this way.

2.1.3 Vertices and sources

In this section, we present some background material on vertices and sources, so that we may

state the Brauer correspondence. Throughout this section, we continue to let G be a finite

group. We will mostly follow Alperin’s exposition in [2, §9], although Benson’s book [3] also

gives a concise treatment of the theory.

Crucial for the definition of a vertex is the concept of a relatively projective module.

Definition 2.1.5

Let H ≤ G. We define a kG-module X to be relatively H-projective if, whenever U, V are

kG-modules, α : X → U is a kG-module homomorphism and β : V → U is a surjective

kG-module homomorphism, then there exists a kG-module homomorphism γ : X → V with

α = γ ◦β, provided that there exists a kH-module homomorphism γ̂ : X ↓H→ V ↓H such that

α = γ̂ ◦ β.

Relatively projective modules are characterised in a number of ways. In particular, Hig-

man (see, for example, [3, Proposition 3.6.4]) establishes an important relationship between

relatively projective modules and the relative trace map, which we now define.

7



§2.1.3. Vertices and sources

Definition 2.1.6

Suppose that X is a kG-module. For a subgroup L ≤ G, let the set of fixed points of X under

L be denoted by XL := {x ∈ X | x` = x ∀ ` ∈ L}. If H ≤ L ≤ G, the relative trace map

trLH : XH → XL is defined by

trLH(x) =
∑
`∈L/H

x`,

where L/H is a set of coset representatives for H in L.

If X is a kG-module, then Endk(X) is also a kG-module with the conjugation action

φg = g−1φg for φ ∈ Endk(X) and g ∈ G. Thus, noting that EndkH(X) = (Endk(X))H , where

H ≤ G, it makes sense to define the relative trace map on a kH-module endomorphism. For

φ ∈ EndkH(X),

trGH(φ) =
∑

g∈G/H

g−1φg ∈ EndkG(X).

Proposition 2.1.7 (Higman’s Criteria)

Let X be a kG-module. If H ≤ G, then the following are equivalent:

(i) X is relatively H-projective;

(ii) the identity map 1X = trGH(φ) for some φ ∈ EndkH(X);

(iii) X is a direct summand of X ↓H↑G;

(iv) if V is a kG-module and ψ : V → X is split as a surjective kH-module homomorphism,

then ψ is split as a kG-module homomorphism.

Proof. See Proposition 3.6.4 in [3]. �

Of particular interest is the smallest subgroup of G for which a kG-module X is relatively

projective. The next definition, which was introduced by Green in his 1958 paper [21], gives

a name to such a subgroup.

Definition 2.1.8

We say that Q ≤ G is a vertex of the indecomposable kG-module X if X is relatively

Q-projective, but not relatively R-projective for any proper subgroup R ≤ Q.

If X has vertex Q, then a source of X is an indecomposable kQ-module W such that X

is a direct summand of W ↑G.

In [21], Green also details several key properties of vertices, a couple of which we now

record.

Proposition 2.1.9

Let X be an indecomposable kG-module.
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1. Any two vertices of X are conjugate in G.

2. If k is a field of characteristic p, then a vertex of X is always a p-subgroup of G.

2.1.4 Blocks

It will be very helpful for us to be able to decompose an algebra, so that we may study

modules ‘lying in’ particular subalgebras of the algebra, called blocks. This idea will be

made precise shortly. We will see that an arbitrary module does not necessarily lie in a

block, but indecomposable modules do.

Theorem 2.1.10

A finite dimensional algebra A has a unique decomposition

A = A1 ⊕ · · · ⊕Ar

into a direct sum of subalgebras, each of which is indecomposable as an algebra. The subal-

gebras in the decomposition are called the blocks of A.

Proof. See Theorem 13.1 in [2]. �

Definition 2.1.11

If M is an A-module such that MAi = M and MAj = 0 for all j 6= i, then we say that M

lies in the block Ai.

Remark. Submodules, quotient modules and direct sums of modules lying in a block Ai also

lie in Ai. Moreover, if Mi and Mj lie in the blocks Ai and Aj , respectively, and i 6= j, then

HomA(Mi,Mj) = 0.

The notion of lying in a block is significant. The following proposition allows us to

conclude that any indecomposable module lies in a block. As a consequence, we are able to

study modules for the blocks of the algebra A rather than A-modules, which is often much

more tractable.

Proposition 2.1.12

If M is an A-module, then M has a unique direct sum decomposition

M = M1 ⊕ · · · ⊕Mr,

where Mi lies in the block Ai.

Proof. See Proposition 13.2 in [2]. �
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§2.1.4. Blocks

When A is a group algebra – as in our situation – it is helpful to view kG as a mod-

ule for the group algebra k(G × G), with action given by a(g1, g2) = g−1
1 ag2 for a ∈ kG

and g1, g2 ∈ G. The group algebra kG decomposes as a direct sum of indecomposable

k(G × G)-modules and the summands in the decomposition are the blocks of kG. We now

highlight a particularly significant block of kG (see [3, p.203]).

Definition 2.1.13

The block of kG which contains the trivial kG-module kG is called the principal block and is

denoted by B0 = B0(G).

The form of the vertices of blocks of kG is known. For the remainder of §2.1, we let p

denote the characteristic of the field k.

Theorem 2.1.14

If B is a block of kG, then B has a vertex, as a k(G×G)-module, of the form δD, where D

is a p-subgroup of G and δ : G→ G×G is defined by δ : g 7→ (g, g).

Proof. See Theorem 13.4 in [2]. �

Definition 2.1.15

Let B be a block of kG. The subgroups D ≤ G, such that δD is a vertex of B, are a conjugacy

class of p-subgroups of G, called the defect groups of B. If |D| = pd, then B is said to be of

defect d.

The following theorem shows that the defect group of a block of G is closely related to

the indecomposable modules lying in the block.

Theorem 2.1.16

If B is a block of G, then any indecomposable kG-module lying in B has a vertex contained

in D, the defect group of B.

Proof. See Theorem 14.5 in [2]. �

Moreover, the defect (group) of a block is, in some sense, indicative of the complexity

of the modules which lie in the block. For example, if the defect group is trivial – so that

the defect of the block B is zero – then Theorem 2.1.16 tells us that the vertices of the

indecomposable modules lying in the block must also be trivial. Hence, in this case, every

B-module is projective. If a block has cyclic defect group, then its structure can be described

by an associated Brauer tree. For more information about Brauer trees, we refer the reader

to Alperin [2, §17].
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2.1.5 The Brauer correspondence

The Brauer correspondence is a fundamental tool, which we will exploit later in this work

to determine the vertices of summands of certain twisted Foulkes modules. The reader may

wish to refer ahead to §3.3 for the definition of twisted Foulkes modules. For this section, we

predominantly refer to Broué’s paper [5].

Definition 2.1.17

For L ≤ G and a kG-module X, define

XL
<L :=

∑
H<L

trLH(XH).

The Brauer correspondent of X with respect to L (or the Brauer quotient of XL) is the

kNG(L)-module

X(L) := XL/XL
<L

and the Brauer map with respect to L is the natural surjection BrL : XL → X(L).

As we shall see shortly, the Brauer map is particularly helpful for studying p-permutation

modules, which are defined as follows.

Definition 2.1.18

A kG-module M is said to be a p-permutation module if, whenever P is a p-subgroup of G,

there exists a basis for M that is invariant under the action of P .

The following two theorems from Broué’s paper [5] give important properties of the Brauer

map, when applied to p-permutation modules.

Theorem 2.1.19

Let M be an indecomposable p-permutation kG-module. The vertices of M are the maximal

p-subgroups P ≤ G such that M(P ) 6= 0.

Theorem 2.1.20

The Brauer correspondence M →M(P ) induces a bijection between the isomorphism classes

of indecomposable p-permutation kG-modules with vertex P and the isomorphism classes of

indecomposable projective k(NG(P )/P )-modules.

In [20, Corollary 2.3], the authors explain that Theorem 2.1.19 has the following important

corollary.

Corollary 2.1.21

Let M be a p-permutation kG-module with p-permutation basis B with respect to a Sylow

p-subgroup P of G. Let R ≤ P and define BR := {b ∈ B | br = r ∀ r ∈ R}. The

kNG(R)-module M(R) is equal to
〈
BR
〉
, and M has an indecomposable summand with a

vertex containing R if and only if BR 6= ∅.
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2.2 Representation theory of symmetric groups

The material that we will present in this section will be based predominantly on chapters

from [25] and so we will endeavour to be consistent with James’ notation. An alternative

reference for §2.2.2 is [26, Chapter 7].

2.2.1 Partitions and Young tableaux

Fundamental to the representation theory of the symmetric group is the notion of a partition

of n ∈ N, which is a sequence λ = (λ1, λ2, . . . , λ`) of non-negative integers such that λi ≥ λi+1

for all 1 ≤ i ≤ ` − 1 and
∑`

i=1 λi = n. We note that we identify two partitions that are

equal up to parts of size zero. Following standard notation, we write λ ` n to indicate that

λ is a partition of n and we use superscripts to denote multiple parts of the same size. For

example, we may write
(
3, 2, 12

)
instead of (3, 2, 1, 1). If we do not require the parts λi of λ

to be non-increasing, then the result is a composition of n, denoted by λ � n.

The natural lexicographic order < on the set of partitions is a total order. If λ and µ are

partitions of n, then λ > µ if for some j we have λj > µj and λi = µi for all i < j. The

lexicographic order will be particularly useful for us in Chapter 6. However, it is not the

only order: the dominance order is a partial order, which is often preferred. We say that λ

dominates µ and write λD µ if

j∑
i=1

λi ≥
j∑
i=1

µi for all j. (2.1)

If the partitions λ and µ have a different number of parts, we can still make sense of the

definition of the dominance order: we add parts of size zero to the partition with fewer parts,

until both partitions have the same number of parts, and then check the definition as above.

Note that if λ dominates µ, then λ ≥ µ in the lexicographic order.

Example 2.2.1

If λ = (4, 2, 1) and µ =
(
3, 14

)
, then we add two parts of size zero to λ so that both partitions

have the same number of parts. Condition (2.1) holds, since

4 > 3, 6 > 4, 7 > 5, 7 > 6, 7 = 7

and thus, in the dominance order, (4, 2, 1)D
(
3, 14

)
.

If instead we had chosen λ = (3, 3) and µ = (4, 1, 1), then we would have found that they

are incomparable in the dominance order. Indeed, λ1 < µ1, but λ1 + λ2 > µ1 + µ2. However,

in the lexicographic order, clearly (4, 1, 1) > (3, 3).

Partitions are often represented graphically, as Young diagrams. The Young diagram [λ]

corresponding to λ ` n consists of n boxes arranged in rows, which are left aligned. The ith
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§2.2.1. Partitions and Young tableaux

row of [λ] corresponds to the ith part of λ and contains precisely λi boxes. Note that if we

have a partition λ = (λ1, λ2, . . . , λ`), we drop the round brackets when we want to denote

the Young diagram, so that [λ] = [λ1, λ2, . . . , λ`].

Example 2.2.2

The Young diagram of
(
3, 2, 12

)
is

[
3, 2, 12

]
= .

The conjugate partition of λ ` n, denoted by λ′, is the partition of n whose Young diagram

[λ′] is obtained from [λ] by interchanging rows and columns. For example,
(
3, 2, 12

)′
= (4, 2, 1).

A λ-tableau is an assignment of the numbers 1 to n to the boxes of the Young diagram

[λ], using each number exactly once. If the numbers increase along the rows and down the

columns of the λ-tableau t, then we describe t as standard. The symmetric group acts on the

set of λ-tableaux in the natural way, permuting the numbers 1 to n within a tableau.

For a fixed λ-tableau t, there are two very important subgroups of Sn, which we shall

now define. The column stabiliser Ct is the subgroup of Sn consisting of all permutations

which fix the columns of t set-wise; that is,

Ct := {π ∈ Sn | for each 1 ≤ i ≤ n : i and (i)π are in the same column of t} .

The row stabiliser Rt is similarly defined:

Rt := {π ∈ Sn | for each 1 ≤ i ≤ n : i and (i)π are in the same row of t} .

Given a λ-tableau, disregarding the order of the numbers within each row results in a

λ-tabloid. Formally, we define an equivalence relation on the set of λ-tableaux, with t1 ∼ t2

if t2 = t1π for some π ∈ Rt1 . A λ-tabloid {t} is the equivalence class of a λ-tableau t under

this relation. Tabloids are visually different from tableaux as we only draw lines between the

rows.

Example 2.2.3

If λ = (3, 1) then, up to equivalence, there are four λ-tabloids:

2 3 4
1 ,

1 3 4
2 ,

1 2 4
3 and

1 2 3
4 .

There is a well-defined action of Sn on the set of λ-tabloids, defined by

{t}π = {tπ}.

Extending this transitive action linearly makes the k-vector space spanned by λ-tabloids into

a kSn-module, called a Young permutation module, which we denote by Mλ. This Young
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§2.2.2. Specht modules

permutation module is generated by any one of the λ-tabloids. Since the stabiliser of a given

λ-tabloid is the Young subgroup

Sλ = S{1,2,...,λ1} ×S{λ1+1,...,λ1+λ2} × · · · ×S{n−λ`+1,...,n} ∼= Sλ1 ×Sλ2 × · · · ×Sλ` ,

we may think about Mλ as the permutation module of Sn on the cosets of Sλ. Equivalently,

Mλ ∼= kSλ
xSn ,

where kSλ is the trivial module for Sλ.

2.2.2 Specht modules

We will see shortly that, for a given partition λ of n, the Specht module Sλ is a submodule

of the corresponding Young permutation module Mλ. Before we can define it properly, we

need the notion of a polytabloid.

Given a λ-tableau t, we define the signed column sum to be the following element of kSn:

κt :=
∑
π∈Ct

sgn(π)π .

The polytabloid arising from t is defined to be

et := {t}κt ,

which is an element of Mλ. It follows from κtπ = πκtπ (for π ∈ Sn) and the definition of et

that

etπ = etπ. (2.2)

Thus, the subspace spanned by all λ-polytabloids is a submodule of Mλ, which we call the

Specht module Sλ corresponding to the partition λ. In [25, §8], James proves that a basis for

Sλ is given by the set {et | t is a standard λ-tableau}. Furthermore, (2.2) tells us that Sλ is

a cyclic kSn-module, generated by any one of the λ-polytabloids.

The Specht modules are particularly important, as the following theorem indicates.

Theorem 2.2.4

The set
{
Sλ
∣∣ λ ` n} is a complete set of non-isomorphic, irreducible CSn-modules.

Proof. See Theorem 4.12 in [25]. �

Noteworthy are the two one-dimensional irreducible CSn-modules, namely the trivial

module and the sign module, which are labelled by the partitions (n) and (1n), respectively.

In later chapters, we will find it more beneficial to study characters rather than the

corresponding modules. Throughout, we shall use χλ to denote the ordinary irreducible
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character of Sn corresponding to the partition λ, which is precisely the character afforded

by the Specht module Sλ.

If the characteristic of the field k is a prime p, then in general the Specht modules are

not irreducible. However, if λ is p-regular, by which we mean that λ has no non-zero part

repeated p times, then Sλ has a simple head Dλ = Sλ/ radSλ.

Theorem 2.2.5

Suppose that k is a field of prime characteristic p. The set{
Dλ

∣∣ λ is a p-regular partition of n
}

is a complete set of non-isomorphic, irreducible kSn-modules.

Proof. See Theorem 11.5 in [25]. �

2.2.3 An alternative description of Young permutation modules

For Chapters 4 and 5, it will be very useful for us to have at our disposal information about

kSn-homomorphisms from Sλ to Mµ, where λ and µ are both partitions of n. In particular,

we would like a basis for HomkSn

(
Sλ,Mµ

)
. To facilitate this, we need to think more about

the way we describe Mµ; the description of Young permutation modules that we saw in §2.2.1

will not suffice and so we now review a well-known alternative description.

Thus far, we have insisted that λ-tableaux contain each of the numbers 1 to n exactly

once. In what follows, we require a new kind of tableau, namely one which is allowed to have

repeated entries. We will keep the notation used by James in [25] and use capital letters to

denote such tableaux.

Let λ ` n and let µ � n. A λ-tableau T is said to be of type µ if every positive integer i

occurs µi times in T . Define T (λ, µ) := {T | T is a λ-tableau of type µ}. Further, a tableau

T ∈ T (λ, µ) is called semistandard if the numbers are non-decreasing along rows of T and

strictly increasing down the columns of T . We write T0(λ, µ) to denote the set of semistandard

tableaux in T (λ, µ).

As we might hope, there is a well-defined action of Sn on the λ-tableaux of type µ. Fix

a λ-tableau t and take T ∈ T (λ, µ). Following James in [25, p.44], let (i)T be the entry in T

which occurs in the same position as i occurs in t. Define the action of Sn on T (λ, µ) by

(i)(Tπ) = (iπ−1)T

where T ∈ T (λ, µ), π ∈ Sn and 1 ≤ i ≤ n.
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§2.2.4. Semistandard homomorphisms

Example 2.2.6

Take λ =
(
3, 2, 12

)
and µ = (5, 2). If we choose

t =

1 3 4
2 6
5
7

and T =

1 1 2
1 1
1
2

,

then π = (2 3 7) ∈ S7 acts on T in the following way:

Tπ =

1 1 2
2 1
1
1

.

With this action, we now have all that we need to present the new description of Mµ: we

take Mµ to be the kSn-module spanned, as a vector space, by λ-tableaux of type µ. It is easy

to see that this is equivalent to our original description of the Young permutation module:

take a λ-tableau of type µ, say T , and a fixed λ-tableau t. We obtain a unique µ-tabloid {tT }
as follows: if (i)T = j, then put i in row j of {tT }. Moreover, the actions are consistent: if

T corresponds to {tT }, then Tπ corresponds to {tT }π.

Example 2.2.7

Let λ, µ, t, T and π be as in Example 2.2.6. The µ-tabloid corresponding to T is

1 2 3 5 6
4 7 .

Further, the µ-tabloid corresponding to Tπ is

1 3 7 5 6
4 2 =

1 2 3 5 6
4 7 π.

2.2.4 Semistandard homomorphisms

Carter and Lusztig [7] observed that a basis for HomkSn

(
Sλ,Mµ

)
can be constructed from

suitable homomorphisms between Young permutation modules. The theory that we have

developed thus far leads us naturally to defining the maps Mλ → Mµ that we will need

to write down the basis. In [25, §13], James captures the essence of Carter and Lusztig’s

arguments when the characteristic of the ground field is not equal to two. This is sufficient

for our purposes, since we will in fact require that the characteristic of k is zero when we

come to use the basis.

Let t be a fixed λ-tableau. The tableaux T1, T2 ∈ T (λ, µ) are described as being row

equivalent if T2 = T1π for some π ∈ Rt. If T ∈ T (λ, µ), we define θ̂T : Mλ → Mµ on

λ-tabloids by

θ̂T : {t} 7−→
∑

T ′∼rowT

T ′, (2.3)
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where the notation T ′ ∼row T indicates that we sum over all T ′ ∈ T (λ, µ) which are row

equivalent to T . We extend this map to a homomorphism by allowing group elements to act.

The map θ̂T is clearly well-defined. Indeed, we know that the stabiliser of {t} under the

action of Sn is the row stabiliser Rt of t and, using the definition of row equivalent tableaux,

it is clear that Rt fixes the image ({t})θ̂T .

Example 2.2.8

If we take {t} ∈M(3,2,12) and T ∈ T
((

3, 2, 12
)
, (5, 2)

)
as in Example 2.2.6, then

θ̂T :

1 3 4
2 6
5
7

7−→
1 1 2
1 1
1
2

+

1 2 1
1 1
1
2

+

2 1 1
1 1
1
2

.

We are now in a position to define semistandard homomorphisms. Given a map1

θ̂T : Mλ →Mµ, let θT ∈ HomkSn

(
Sλ,Mµ

)
be its restriction to the Specht module Sλ:

θT = θ̂T
∣∣
Sλ
.

If T is a semistandard tableau, then we call θT a semistandard homomorphism. For brevity,

we omit some of the details in the following calculation, but we present the image of et under

θT using both of the descriptions of Mµ that we have met.

Example 2.2.9

Take λ = (4, 2) and µ =
(
32
)
. Choosing t = 1 2 3 4

5 6
and T = 1 1 1 2

2 2
, we have that

κt = 1− (1 5)− (2 6) + (1 5)(2 6) and

θT : et 7−→
(

1 1 1 2
2 2

+ 1 1 2 1
2 2

+ 1 2 1 1
2 2

+ 2 1 1 1
2 2

)
κt

= 1 1 1 2
2 2

+ 1 1 2 1
2 2

+ 2 2 1 2
1 1

+ 2 2 2 1
1 1

− 2 1 1 2
1 2

− 2 1 2 1
1 2

− 1 2 1 2
2 1

− 1 2 2 1
2 1

=
1 2 3
4 5 6 +

1 2 4
3 5 6 +

3 5 6
1 2 4 +

4 5 6
1 2 3

− 2 3 5
1 4 6 −

2 4 5
1 3 6 −

1 3 6
2 4 5 −

1 4 6
2 3 5 .

1A reader familiar with the notation used by James in [25, §13] may notice that James uses θT to denote

the map between the Young permutation modules Mλ and Mµ that is labelled by T ∈ T
(
λ, µ

)
. In our

notation, this map is θ̂T : Mλ → Mµ. James then denotes the restriction of the map to the Specht module

by θ̂T , whereas we do the opposite, using θT . This seemingly unnecessary switch will simplify our notation

significantly in later chapters.
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§2.2.5. Induction and restriction of Specht modules

Observe that, in the setting of Example 2.2.9, 1 2 1 1
2 2

κt = 2 1 1 1
2 2

κt = 0. The

following proposition from [25, p.45] describes exactly when this happens, i.e. when a tableau

T is killed by the action of the signed column sum κt.

Proposition 2.2.10

Let λ, µ ` n and fix a λ-tableau t. A column of T ∈ T (λ, µ) contains two identical numbers

if and only if Tκt = 0.

Convincing ourselves of the validity of Proposition 2.2.10 is not difficult. If a number is

repeated in a column of T , say in the positions of t labelled by x and y, then T
(
1−(x y)

)
= 0.

We can always find a set of representatives for the cosets of 〈(x y)〉 in Ct, say {α1, . . . , αr},
and thus write κt =

(
1 − (x y)

)∑r
i=1 sgn(αi)αi. It follows immediately that Tκt = 0. For

the converse, proceed by contradiction.

With this result in mind, fix a λ-tableau t and consider the image of the generator et ∈ Sλ

under θT . Since

(et)θT = ({t}κt) θT = ({t})θTκt =

 ∑
T ′∼rowT

T ′

κt =
∑

T ′∼rowT

(T ′κt),

it is clear that sometimes θT is the zero map. However, by restricting our attention to

semistandard tableaux, we are able to guarantee that the corresponding semistandard homo-

morphisms are non-zero. They are in fact the only homomorphisms that we need to write

down a basis for HomkSn

(
Sλ,Mµ

)
, as the next result states.

Theorem 2.2.11

Assume that either char(k) 6= 2 or that λ ` n is 2-regular, that is, λ does not have two equal

non-zero parts. The set {
θT
∣∣ T ∈ T0(λ, µ)

}
is a basis for HomkSn

(
Sλ,Mµ

)
.

Proof. See [25, p.48]. �

Corollary 2.2.12

In the setting of Theorem 2.2.11, dim
(
HomkSn

(
Sλ,Mµ

))
is equal to the number of semis-

tandard λ-tableaux of type µ.

2.2.5 Induction and restriction of Specht modules

In this work, we will often need to induce and restrict Specht modules. There are several

classical results which describe the modules that are obtained. The first such result is the

Branching Rule, which gives the decomposition of a Specht module that has been induced

from Sn to Sn+1 or restricted from Sn to Sn−1.
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Theorem 2.2.13 (Branching Rule)

Let λ be a partition of n and let [λ] be the corresponding Young diagram. Defined over a field

of characteristic zero, the restriction of Sλ to Sn−1 decomposes as

Sλ
y
Sn−1

∼=
⊕
ν∈V

Sν ,

where V := {ν ` n− 1 | [ν] arises by removing a box from [λ]}. Similarly,

Sλ
xSn+1 ∼=

⊕
ω∈W

Sω,

where W := {ω ` n+ 1 | [ω] arises by adding a box to [λ]}.
If the Specht module Sλ is defined over a field of prime characteristic, then Sλ

y
Sn−1

and

Sλ
xSn+1 have a filtration by Specht modules, with the factors occuring being those Sν , where

ν ∈ V , and Sω, where ω ∈W , respectively.

Proof. See Theorems 9.2 and 9.3 in [25]. �

Before continuing, we should make precise the adding and removing of boxes described

in the Branching Rule. We may remove any box (sometimes called a node) from [λ] that can

be described as removable: if (i, j) ∈ [λ] denotes the box in the ith row and jth column of [λ],

then, formally, a removable node is a node (i, λi) such that λi > λi+1. Similarly, there is a

notion of an addable node, which is of the form (1, λ1 + 1), (λ′1 + 1, 1), or (i, λi + 1) for any

1 < i ≤ λ′1 such that λi < λi−1.

The next classical result, the Littlewood–Richardson Rule, addresses the problem of in-

ducing the outer tensor product of two Specht modules, say Sλ�Sµ (where λ ` n and µ ` `),
from the subgroup Sn×S` ≤ Sn+`. In particular, the decomposition of the induced module

is given in terms of so-called Littlewood–Richardson coefficients (which are combinatorially

defined, see Theorem 2.8.13 in [26]). In Chapter 7, we will require the character-theoretic

statement of the result. However, we remark that a version of the result, proved by James

and Peel in [27], exists over a field of arbitrary characteristic. In [25, §16], James gives a

thorough exposition of the theory needed to prove the Littlewood–Richardson Rule, including

a detailed description of a method by which the Littlewood–Richardson coefficients may be

computed.

Theorem 2.2.14 (Littlewood–Richardson Rule)

If λ is a partition of n and µ is a partition of `, then(
χλ × χµ

)xSn+`

Sn×S`
=
∑
ν`n+`

cνλ,µχ
ν ,

where cνλ,µ is the Littlewood–Richardson coefficient corresponding to the partitions λ, µ, ν.
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§2.2.6. Hooks and the Murnaghan–Nakayama Rule

When Sµ is the trivial S`-module or the sign S`-module, the result is particularly elegant.

The following corollary addresses these two special cases.

Corollary 2.2.15

Let ` ∈ N and λ ` n.

1. (Young’s Rule) If we define

W col
` := {ω ` n+ ` | [ω] arises by adding ` boxes to [λ], no two in a column}

then (
χλ × 1S`

)xSn+`
=

∑
ω∈W col

`

χω.

2. (Pieri’s Rule) If we define

W row
` := {ω ` n+ ` | [ω] arises by adding ` boxes to [λ], no two in a row}

then (
χλ × sgnS`

)xSn+`
=

∑
ω∈W row

`

χω.

Remark. Given λ ` n and its corresponding Young diagram [λ], we will describe the process

of adding ` boxes to [λ] such that no two are added in the same column as a Young’s Rule

addition of ` boxes. We define a Pieri’s Rule addition of ` boxes similarly.

2.2.6 Hooks and the Murnaghan–Nakayama Rule

In the last section, we alluded to the fact that we may regard the Young diagram correspond-

ing to λ ` n as a set of nodes [λ] = {(i, j) | i ≥ 1, 1 ≤ j ≤ λi}. For a node (a, b) ∈ [λ], we

define the (a, b)-hook to be the subset

ha,b := {(a, j) ∈ [λ] | j ≥ b} ∪ {(i, b) ∈ [λ] | i ≥ a}

and we define the length of the (a, b)-hook to be the number of nodes in ha,b. We say that

ha,b is an `-hook if it has length `.

Example 2.2.16

Given that λ = (4, 3, 3), the hook h1,2 is shown below.

In this case, the hook length is 5.
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§2.2.6. Hooks and the Murnaghan–Nakayama Rule

If λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .) are partitions such that the Young diagram [λ]

completely contains [µ], i.e. µi ≤ λi for all i, then the skew-partition λ/µ is the object

corresponding to the (not necessarily connected) Young diagram which remains when the

nodes in [µ] are removed from [λ].

A skew-partition λ/µ is said to be a rim hook (also referred to as a border strip) if the

Young diagram of λ/µ is a connected part of the rim of [λ], not containing any 2× 2 square,

that can be removed to leave the Young diagram of a proper partition, specifically [µ]. If

the rim hook contains ` nodes, then we say that it has length ` and we describe it as a rim

`-hook. We define the height 〈λ/µ〉 of the rim hook λ/µ to be one less than the number of

its non-empty rows. There is a natural one-to-one correspondence between `-hooks and rim

`-hooks: the rim hook corresponding to ha,b has precisely the same end nodes as ha,b, i.e.

(a, λa) and (λ′b, b).

Example 2.2.17

In the setting of the Example 2.2.16, the rim 5-hook corresponding to h1,2 is shown below.

This rim hook has height 〈(4, 3, 3)/(2, 2, 1)〉 = 2.

The notion of a rim `-hook is crucial for the statement of the next theorem, known as

the Murnaghan–Nakayama Rule, which provides us with a way of computing entries in the

character table of Sn. For a proof, we refer the reader to [25, §21].

Theorem 2.2.18 (Murnaghan–Nakayama Rule)

If ρπ ∈ Sn, where ρ is an `-cycle and π ∈ Sn−` permutes the remaining n− ` symbols, then

χλ(ρπ) =
∑
µ

(−1)〈λ/µ〉χµ(π)

where the sum is over µ such that λ/µ is a rim `-hook.

Since any character of Sn is a class function, and the conjugacy classes of Sn are labelled

by (representatives of each of the) cycle types, it makes sense to write χλ(c1, c2, . . . , cr), where

χλ is the irreducible character labelled by the partition λ of n, and c1, c2, . . . , cr are the cycle

lengths of an element of Sn written in disjoint cycle notation. Formally, we define

χλ(c1, c2, . . . , cr) := χλ(σ) where σ ∈ Sn has cycle type (c1, c2, . . . , cr).

Example 2.2.19

Let λ = (4, 3, 3) and choose an element of cycle type (5, 3, 2) in S10. There is only one way

to remove a rim 5-hook from [4, 3, 3] and subsequently a rim 3-hook, followed by a rim 2-hook,

which is as shown below.
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§2.2.7. Blocks of symmetric groups

Thus, applying the Murnaghan–Nakayama Rule, we find that

χ(4,3,3)(5, 3, 2) = χ(2,2,1)(3, 2) = −χ(2)(2) = −χ∅(∅) = −1.

Remark. Although it is not obvious, the character value is independent of the order in which

the rim hooks are removed.

2.2.7 Blocks of symmetric groups

In the sequel, will make use of a few results concerning blocks of symmetric groups. The most

important such result, which, despite having been proved, still takes the name Nakayama’s

Conjecture, is a very elegant statement describing when two Specht modules lie in the same

block. Before we see this result, we need a couple of definitions.

Given a partition λ of n, the p-core of λ is the partition corresponding to the Young

diagram that remains after as many p-rim hooks have been removed from [λ] as possible;

the number of hooks which are removed is the p-weight of λ. Although not immediately

obvious, given any partition λ, both the p-core and p-weight of λ are well-defined (see [26,

Theorem 2.7.16]). The blocks of the symmetric group Sn are labelled by (γ,w), where γ is

a p-core and w is the p-weight associated to γ.

Theorem 2.2.20 (Nakayama’s Conjecture)

The Specht modules Sλ and Sµ lie in the p-block B(γ,w) of Sn if and only if the partitions

λ and µ have the same p-core γ and the same p-weight w.

Proof. See Theorem 6.1.21 in [26]. �

2.3 Wreath products

The main objects of study in this work are modules for the symmetric group which are

induced from the trivial module for a certain imprimitive wreath product. For this reason,

we should take the time to understand wreath products, which we now define as Kerber does

in [28, §2]. The reader may also refer to [26, §4.1] for details of this construction.

If G is a finite group and H ≤ Sn acts on the set Ω := {1, 2, . . . , n}, then the wreath

product of G and H is the group

G oH :=
{

(f ;π) | f : Ω→ G, π ∈ H
}

with multiplication defined by

(f ;π) ·
(
f ′;π′

)
:=
(
f · f ′π; ππ′

)
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§2.3.1. Representations of wreath products

where f ′π : Ω→ G is defined by
(
(ω)π

)
f ′π := (ω)f ′ for all ω ∈ Ω and multiplication of the maps

f1, f2 : Ω → G is defined point-wise using the product in G, i.e. (ω)
(
f1 · f2

)
= (ω)f1 · (ω)f2

for all ω ∈ Ω. Thus, f · f ′π : ω ∈ Ω 7→ (ω)f · (ω)f ′π = (ω)f · (ωπ−1)f ′ ∈ G.

An important normal subgroup of G oH is the base group

G∗ := {(f ; 1H) | f : Ω→ G}.

We should note that G∗ is precisely the direct product of n copies of G, say G1, . . . , Gn, where

Gi := {(f ; 1H) | (j)f = 1G ∀ j 6= i} ∼= G.

A complement of G∗ is the subgroup H ′ := {(e;π) | π ∈ H} ∼= H, where e : Ω → G is the

identity map (ω)e = 1G for all ω ∈ Ω. Since G∗ ∩ H ′ =
{

(e; 1H)
}

, the identity element in

G oH, it follows that G oH = G∗ ·H ′.
The case that is of interest to us is when G = Sm and H = Sn, acting on the set

Ω = {1, 2, . . . , n} in the natural way. In this case,

Sm oSn =
(
Sm × · · · ×Sm

)
oSn,

the semidirect product of the n-fold direct product of copies of Sm with Sn, where Sn acts

by permuting the copies of Sm. For clarity, it is sometimes helpful to write (f ;π) ∈ Sm oSn

as
(
f1, . . . , fn;π

)
.

There is a natural embedding of Sm o Sn into Smn. Indeed, we let the ith copy of Sm

permute {(i− 1)m+ 1, . . . , im} ⊆ {1, 2, . . . ,mn} according to fi, and we let π ∈ Sn permute

the n blocks

{1, . . . ,m}, {m+ 1, . . . , 2m}, . . . , {(n− 1)m+ 1, . . . ,mn}.

For example, under this embedding,

•
(
(13), (23); 1

)
∈ S3 oS2 is mapped to (1 3)(5 6) ∈ S6;

•
(
1, (132); (12)

)
∈ S3 oS2 is mapped to (4 6 5)(1 4)(2 5)(3 6) = (1 4 3 6 2 5) ∈ S6.

2.3.1 Representations of wreath products

We will benefit from having at our disposal notation that allows us to effectively study

representations of wreath products. We will continue to concern ourselves with only the

wreath product Sm oSn, noting that the general theory is discussed in detail in §4.3-4.4 of

James and Kerber’s book [26]. However, we will not adopt James and Kerber’s notation.

Instead, we find the notation used by Chuang and Tan in [8] the most convenient for our

purposes; it is this notation we now present.
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§2.3.1. Representations of wreath products

There is a natural action of the symmetric group Sn by place permutations on the n-fold

tensor power Tn(kSm) := kSm ⊗ · · · ⊗ kSm. We may then define a k-algebra

Tn(kSm)⊗ kSn,

with multiplication(
(a1 ⊗ · · · ⊗ an)⊗ σ

)(
(b1 ⊗ · · · ⊗ bn)⊗ τ

)
=
(
a1b(1)σ−1 ⊗ · · · ⊗ anb(n)σ−1

)
⊗ στ

for (a1 ⊗ · · · ⊗ an), (b1 ⊗ · · · ⊗ bn) ∈ Tn(kSm) and σ, τ ∈ kSn. This k-algebra is isomorphic

to the group algebra of Sm oSn. Furthermore, if n = (n1, . . . , nr) is a composition of n, so

that Sn is the Young subgroup Sn1 × · · · ×Snr , then

k(Sm oSn) := Tn(kSm)⊗ kSn
∼= k(Sm oSn1)⊗ · · · ⊗ k(Sm oSnr)

is a subalgebra of k(Sm oSn).

Given a k(Sm o Sn)-module V and a kSn-module X, we may construct from V ⊗ X a

k(Sm oSn)-module, denoted by V �X, by equipping it with the action

(v ⊗ x)(f ⊗ π) = v(f ⊗ π)⊗ xπ

for v ∈ V , x ∈ X, f ∈ Tn(kSm) and π ∈ Sn. Note that any kSn-module may be viewed as a

k(Sm oSn)-module by inflating along the canonical surjection Sm oSn � Sn. In particular,

the inflation Inf SmoSn
Sn

X = kSmoSn�X, where kSmoSn denotes the trivial k(Sm oSn)-module.

Furthermore, in our setting, V �X is the usual inner tensor product of V and Inf SmoSn
Sn

X

over the group algebra k(Sm oSn).

If M is a kSm-module, then the n-fold tensor power Tn(M) = M ⊗ · · · ⊗M is a module

for Tn(kSm), with component-wise action coming from that of kSm on M . This action may

be extended to an action of Tn(kSm)⊗ kSn by allowing any element of Sn to act by place

permutations. We denote the resulting Tn(kSm)⊗ kSn
∼= k(Sm oSn)-module by T (n)(M).

Finally, if λ is a partition of n, we define a k(Sm oSn)-module,

T λ(M) := T (n)(M)� Sλ.

In particular, if λ = (n), then T (n)(M)� S(n) = T (n)(M) and so this definition is unambigu-

ous.

Chuang and Tan prove an analogue of the Littlewood–Richardson Rule, which will be

used extensively in Chapter 7 of this work. The statement we give here is again not the most

general version of their result [8, Lemma 3.3(1)]; we remain in the setting outlined thus far.
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§2.3.1. Representations of wreath products

Lemma 2.3.1

Let M be a kSm-module and let n = (n1, . . . , nr) � n. For each i ∈ {1, 2, . . . , r}, let λi ` ni.
If λ ` n and c(λ;λ1, . . . , λr) denotes the Littlewood–Richardson coefficient associated to the

partitions λ, λ1, . . . , λr, then inducing the k(Sm oSn)-module T λ
1
(M)⊗ · · · ⊗ T λr(M) yields(

T λ
1
(M)⊗ · · · ⊗ T λr(M)

)xSmoSn

SmoSn

∼=
⊕
λ`n

c(λ;λ1, . . . , λr)T λ(M).

We conclude this chapter with a brief discussion about simple k(Sm oSn)-modules. We

will see that they may be constructed from collections of simple kSm-modules and so it seems

apt that they are labelled by (tuples of) partitions. Here we will detail the construction when

k = C, but a reader seeking more generality may refer to [8, Definition 3.6].

Let {Mi | i ∈ I} be a set of irreducible CSm-modules. Further, suppose that λi ` ni and∑
i∈I ni = n. The module

M(λ) = M
(
λ1, λ2, . . .

)
:=

(⊗
i∈I

T λ
i
(Mi)

)x
SmoSn

∏
i∈I(SmoSni )

is an irreducible C(Sm o Sn)-module. If, further, {Mi | i ∈ I} is a complete set of non-

isomorphic simple CSm-modules, then
{
M(λ)

∣∣ λ = (λi)i∈I with λi ` ni and
∑

i∈I ni = n
}

is a complete set of non-isomorphic simple C(Sm oSn)-modules.

Example 2.3.2

A family of non-isomorphic simple C(Sm oSn)-modules is{
T ν
(
Sµ
)

= T (n)
(
Sµ
)
� Sν

∣∣ µ ` m, ν ` n}.
In particular, the trivial module for C(Sm oSn) is T (n)

(
S(m)

)
.
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Chapter 3

Foulkes modules

3.1 Foulkes modules

In this section, we introduce the main objects of study in this work. The action of the

symmetric group Smn on the collection of set partitions of a set of size mn into n sets, each

of size m, gives rise to a kSmn-module called the Foulkes module H(mn). As was indicated in

§2.3, H(mn) is the kSmn-module induced from the trivial module of the imprimitive wreath

product Sm oSn. In particular,

H(mn) =
(
T (n)

(
S(m)

))xSmn

SmoSn
.

For most of this work, we will focus our attention on the characteristic zero setting and

thus take k = C. It will often be convenient for us to work with ordinary characters rather

than modules and so we note that the permutation character of Smn afforded by H(mn) is

ϕ(mn) =
(

Inf SmoSn
Sn

1Sn

)xSmn

SmoSn
,

where the trivial character 1Sn = χ(n) of Sn is inflated along Sm oSn � Sn.

In the characteristic zero setting, Foulkes modules are the subject of a longstanding

conjecture, which provides the main motivation for the study of Foulkes modules in this

thesis. Foulkes’ Conjecture asserts that for all natural numbers m and n with m < n, and

for all partitions λ of mn, 〈
ϕ(mn), χλ

〉
≥
〈
ϕ(nm), χλ

〉
.

However, this is not the only formulation of the conjecture. The conjecture may also be

stated in terms of plethysms or modules for the general linear group, as we will now explain.

26



§3.2. Reformulations of Foulkes’ Conjecture

3.2 Reformulations of Foulkes’ Conjecture

Foulkes’ original statement, made in 1950 in [15], was given in terms of plethysms of Schur

functions. Plethysm multiplication, which may be defined for any two symmetric functions,

was introduced by Littlewood in [31, §4]. We begin this section by collecting together some key

facts from [33, Ch. I] about the ring of symmetric functions (in countably many independent

variables), denoted by Λ, following which we will define plethysm.

The Schur function sλ in the variables x1, x2, . . . , x` is defined1 by

sλ(x1, . . . , x`) =
∑

xT ,

where the sum is over all possible semistandard λ-tableaux T whose entries – which need not

be distinct – are elements of {1, . . . , `}, and xT = xα1
1 xα2

2 · · ·x
α`
` is the monomial (of degree

`) such that αi is the number of occurrences of the digit i in T .

Example 3.2.1

If λ = (3, 1) and ` = 2, then the following are all the semistandard (3, 1)-tableaux containing

the entries 1 and 2:
1 1 1
2

, 1 1 2
2

and 1 2 2
2

.

Hence, s(3,1) = x3
1x2 + x2

1x
2
2 + x1x

3
2.

We highlight two Schur functions that will be of particular significance later: if

xα := xα1
1 xα2

2 · · ·x
α`
` for α ∈ N`, so that the degree of xα is |α| =

∑
j αj , then

s(n)(x1, . . . , x`) =
∑
|α|=n

xα =: hn(x1, . . . , x`),

where hn denotes the complete symmetric function corresponding to n ∈ N0, and

s(1n)(x1, . . . , x`) =
∑

1≤i1<i2<...<in≤`
xi1xi2 · · ·xin =: en(x1, . . . , x`),

where en denotes the elementary symmetric function corresponding to n ∈ N0.

The ring of symmetric functions is a polynomial ring which has several generating sets.

For example, Λ is freely generated by the set of elementary symmetric functions or the set

of complete symmetric functions. Additionally, we can write down a variety of bases for Λ,

all indexed by partitions. Indeed, if λ = (λ1, λ2, . . .) is a partition, define eλ := eλ1eλ2 · · ·
and hλ := hλ1hλ2 · · · . With this notation, the Schur functions sλ, the elementary symmetric

functions eλ and the complete symmetric functions hλ are three commonly used bases.

1There are several definitions of Schur functions. Indeed, for an alternative, see [33, Ch. I, §3]. The

definition chosen here was selected due to its simplicity to state and its combinatorial nature.
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Plethysm may be defined for any two symmetric functions: let f, g ∈ Λ and write g as a

sum of monomials, i.e. g =
∑

α cαx
α. The plethysm2 f ◦ g is defined by

f ◦ g := f(y1, y2, . . .)

where the new variables yi are defined by∏
i

(1 + yit) =
∏
α

(1 + xαt)cα .

However, if the two symmetric functions are Schur functions, then cα = 1 for all α, and so

we may avoid this formal definition by thinking about the plethysm sλ ◦ sµ as the symmetric

function which is obtained by substituting the monomials in sµ for the variables of sλ.

Example 3.2.2

If λ = (3) and µ = (2), then

s(2)(x, y) = x2 + xy + y2

and

s(3) ◦ s(2)(x, y) = s(3)

(
x2, xy, y2

)
= x6 + x5y + 2x4y2 + 2x3y3 + 2x2y4 + xy5 + y6.

Before we present the statement of Foulkes’ Conjecture in terms of plethysms, we take the

opportunity to introduce an important involution. Define the ring automorphism ω : Λ→ Λ

on the polynomial generators er by ω : er 7→ hr for any r ∈ N0. Consequently, from the

definition of the Schur functions s(n) and s(1n) given above, it is clear that ω : s(1n) 7→ s(n).

More generally,

ω : sλ 7→ sλ′ (3.1)

which is Equation (3.8) in [33, Ch. I]. We mention one more important application of this

involution, which is to plethysms (see [33, p.136]). If f ∈ Λm and g ∈ Λn, where elements of

Λi are the homogeneous symmetric functions of degree i, then

ω : f ◦ g 7→

f ◦ (g)ω n even;

(f)ω ◦ (g)ω n odd.
(3.2)

We now wish to understand how to translate information about characters of the sym-

metric group into the language of symmetric functions. For full details, we refer the reader to

the discussion given by Macdonald in [33, Ch. I, §7]. Let C(Sn) denote the ring of (ordinary)

2In the literature, a variety of different notation is used for plethysms. For example, the plethysm sλ ◦ sµ
may also be denoted by sλ[sµ] or by {µ} ⊗ {λ} – the latter was the preferred notation for Foulkes and

Littlewood, c.f. Chapter 1. Further, if λ (or µ) is a partition consisting of a single part, then it is common to

write, for example, sm or {m} instead of s(m) or {(m)}, respectively.
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characters of Sn, with ring structure defined by χ1χ2 = (χ1 × χ2)
xSmn
Sm×Sn for χ1 ∈ C(Sm)

and χ2 ∈ C(Sn). The characteristic map

ch :
⊕
n≥0

C(Sn)→ Λ

is an isomorphism of rings, defined on irreducible characters of Sn by ch : χλ → sλ. Under

this map, the image of the character afforded by the C(Smn)-module
(
T ν
(
Sµ
))xSmn is the

plethysm sν ◦ sµ. Hence, the Foulkes character ϕ(mn) corresponds to the plethysm s(n) ◦ s(m).

Asking for the decomposition of the Foulkes character ϕ(mn) as a sum of irreducible charac-

ters of Smn is therefore equivalent to decomposing s(n) ◦ s(m) as a sum of Schur functions.

Moreover, stated in the language of symmetric functions, Foulkes’ Conjecture asserts that,

for m < n, s(n) ◦ s(m) − s(m) ◦ s(n) is a sum of Schur functions with non-negative coefficients.

The notion of plethysm also arises in the representation theory of the general linear

group, thus providing a third setting in which Foulkes’ Conjecture can be stated. If V is a

finite dimensional complex vector space, then it makes sense to consider the GL(V )-module

Symm
(

Symn(V )
)
, where Symi denotes the ith symmetric power. The effect on the corre-

sponding formal characters of composing the two symmetric powers in this way is precisely

the plethysm operation s(m) ◦ s(n) described above. Foulkes’ Conjecture in the general lin-

ear group setting states that if m < n, then there is an embedding of GL(V )-modules

Symn
(

Symm(V )
)
↪→ Symm

(
Symn(V )

)
.

Despite having numerous settings in which to tackle Foulkes’ Conjecture, it is still an open

problem. However, some progress has been made. Work by Thrall in his 1942 paper [43] gives

the explicit decomposition of both ϕ(2n) and ϕ(m2), which we record in Theorem 3.2.3. We

note that these two Foulkes characters are multiplicity free, which means that the multiplicity

with which any irreducible summand appears in the character decomposition is at most one.

Theorem 3.2.3

The complete decomposition of the Foulkes character ϕ(2r) is given by

ϕ(2r) =
∑
λ`r

χ2λ,

where 2λ denotes the partition of 2r obtained by doubling the length of each part of λ.

Similarly, ϕ(r2) decomposes as

ϕ(r2) =

br/2c∑
i=0

χ(2r−2i, 2i).

Theorem 3.2.3 is sufficient to verify Foulkes’ Conjecture when m = 2 and, together with a

few small examples with m and n at most six, was known to Foulkes when he conjectured the

general result. Further progress was made by Dent and Siemons, who proved the conjecture
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when m = 3 in [11]; by McKay, verifying the m = 4 case in [36]; and by Müller and

Neunhöffer (see [37]), and Evseev, Paget and Wildon (see [13]), who computationally verified

Foulkes’ Conjecture for m + n ≤ 19. We remark that the authors of [13] used an algorithm

for computing character multiplicities, which will be discussed further in Chapter 6 of this

work. The only other result which directly addresses Foulkes’ Conjecture is an asymptotic

result due to Brion (see the corollary in [4, §1.3]) proving that the conjecture holds when n

is sufficiently large compared to m, although Brion does not give an explicit bound.

3.3 Generalised Foulkes modules

In this thesis, we will also consider a generalisation of the Foulkes modules discussed in §3.1.

For any partition ν of n, we may construct a k(Sm o Sn)-module, T ν
(
S(m)

)
, which we can

induce to obtain a kSmn-module

H(mn)
ν :=

(
T ν
(
S(m)

))xSmn

SmoSn
.

We refer to these modules as generalised Foulkes modules; the ordinary characters afforded

by these modules are defined by ϕ
(mn)
ν =

(
Inf SmoSn

Sn
χν
)xSmn

SmoSn , where χν is the ordinary

character for the kSn-module Sν . The image of ϕ
(mn)
ν under the characteristic map is sν◦s(m)

and the corresponding GL(V )-module is ∆ν
(

Symm(V )
)
, where ∆ν is the Schur functor corre-

sponding to the partition ν of n. For more details about this construction and representations

of the general linear group, see [17, Chapter 8] or [18, §6.1].

We remark that the Foulkes module H(mn) is precisely H
(mn)
(n) , but we will usually omit

the subscript in this case. Twisted Foulkes modules, which arise by choosing ν = (1n) for the

above construction, will also feature prominently in this work. For ease of notation, we let

K(mn) := H
(mn)
(1n) and τ (mn) := ϕ

(mn)
(1n) .

The twisted Foulkes character τ (2r) can be elegantly described (see, for example, [33,

Ch. I, §8, Ex. 6]) if we introduce the following notation: let α = (α1, . . . , α`) ` r have distinct

parts. Define λ = 2[α] to be the partition of 2r which has λi := αi + i for 1 ≤ i ≤ ` and

leading diagonal hook lengths 2α1, . . . , 2α`.

6
4

2

Figure 3.1: Young diagrams corresponding to the partitions 2[(3)] = (4, 1, 1)

and 2[(2, 1)] = (3, 3), showing the leading diagonal hook lengths.

Similarly, the decomposition of the character τ (r2) is detailed in [46, Equation (5)]. The

following theorem collects together these two results.
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§3.3. Generalised Foulkes modules

Theorem 3.3.1

The complete decomposition of the twisted Foulkes character τ (2r) is

τ (2r) =
∑

χ2[α],

where the sum is over all α ` r which have distinct parts.

Similarly, τ (r2) decomposes as

τ (r2) =

b(r−1)/2c∑
i=0

χ(2r−2i−1, 2i+1).

For example, if we take r = 3, then the only partitions which have distinct parts are (3)

and (2, 1). Moreover, 2[(3)] = (4, 1, 1) and 2[(2, 1)] = (3, 3) (c.f. Figure 3.1) and so

τ (23) = χ(4,1,1) + χ(3,3).

Also using Theorem 3.3.1, we obtain the decomposition τ (32) = χ(5,1)+χ(3,3). This example is

indicative of the fact that there is no direct analogue of Foulkes’ Conjecture for the generalised

Foulkes characters.

Much of the progress that has been made in understanding the structure of generalised

Foulkes modules has been via symmetric functions. The plethysm sν ◦ s(m) with ν ` n,

corresponding to ϕ
(mn)
ν , has been fully described in the following cases:

• s(2) ◦ s(m) and s(n) ◦ s(2): work by Thrall [43], as detailed in Theorem 3.2.3 above.

• s(12) ◦ s(m) and s(1n) ◦ s(2): results from [33, 46], which are detailed in Theorem 3.3.1

above.

• s(3) ◦ s(m): work originally by Thrall [43], and re-proved by Dent and Siemons [11] in a

symmetric group setting as part of their proof of Foulkes’ Conjecture when m = 3.

The reader may have noticed that all non-zero coefficients in the plethysms s(2) ◦ s(m),

s(n) ◦ s(2), s(12) ◦ s(m) and s(1n) ◦ s(2) were equal to one. However, these are somewhat

special cases and this multiplicity free property should not be expected in general. For

example, we see coefficients greater than one appearing in s(3) ◦ s(m) for m ≥ 6.

• sν ◦ s(m) where ν is a partition of 2, 3 or 4: the plethysms s(2) ◦ s(m), s(3) ◦ s(m) and

s(4) ◦ s(m) are computed explicitly by Howe in [22, §3.5], but the author remarks in

§3.6(b) that all other plethysms with ν ` 2, 3, 4, respectively, can be obtained by an

‘averaging method’. A method for calculating the plethysms sν ◦ s(m) where ν ` 4 can

also be found in Duncan’s paper [12], which pre-dates Howe’s work. However, if m is

not small, the method appears to be computationally demanding. In [16], Foulkes gives

a much simpler method for determining the coefficients in sν ◦ s(m) where ν ` 4, which

is effective for all m, no matter how large.
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3.4 Existing results about constituents of generalised Foulkes

characters

In this section, we collect together a variety of results that either give information about

constituents of a special form, or describe relationships between constituents. The list of

results is by no means exhaustive, but we aim to give an overview of the current state of the

research into generalised Foulkes characters. We will often translate results into symmetric

group language, since statements in this form will be most convenient for us in subsequent

chapters.

A paper by Weintraub [44], detailing several observations about plethysms, is a good

starting point for our discussion. In this paper, the author conjectures a result about the

multiplicities of ‘even partitions’ in certain Foulkes modules. Two independent proofs of the

conjecture have since been given: first in [6], and subsequently in [34]. We define a partition

to be even if each of its parts is even.

Theorem 3.4.1 (Weintraub’s Conjecture)

Let m,n ∈ N be such that m is even. If λ is an even partition of mn with at most n parts,

then
〈
ϕ(mn), χλ

〉
6= 0.

This is not the only noteworthy result in Weintraub’s paper. Constituents labelled by

two-row partitions or by hook partitions can often provide a good starting point when seeking

general information about a character. The following proposition includes information about

the multiplicities with which hook-like constituents appear in ϕ(mn) and τ (mn).

Proposition 3.4.2

If λ =
(
mn− j(n− 1), jn−1

)
for 0 ≤ j ≤ m, then

〈
ϕ(mn), χλ

〉
=

1 j even;

0 j odd,
and

〈
τ (mn), χλ

〉
=

1 j odd;

0 j even.

If λ = (mn− j, 1j), i.e. a hook partition, or λ = (mn− j − 2, 2, 1j), then the multiplicity of

the corresponding constituent χλ in the Foulkes character is given by

〈
ϕ(mn), χλ

〉
=

1 j = 0;

0 j > 0.

Proof. See Proposition 2.5 in [44]. �

Example 3.4.3

If m = 4 and n = 5, then Proposition 3.4.2 tells us the following information about the

Foulkes character ϕ(45):
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•
〈
ϕ(45), χ(20)

〉
=
〈
ϕ(45), χ(12,24)

〉
=
〈
ϕ(45), χ(45)

〉
= 1;

•
〈
ϕ(45), χ(16,14)

〉
=
〈
ϕ(45), χ(8,34)

〉
= 0;

•
〈
ϕ(45), χ(20−j,1j)

〉
= 0 for all j ≥ 1;

•
〈
ϕ(45), χ(18,2)

〉
= 1 and

〈
ϕ(45), χ(18−j,2,1j)

〉
= 0 for all j ≥ 1.

More recently, improvements were made to the second part of Proposition 3.4.2: in [30],

Langley and Remmel considered the multiplicity of the Schur functions labelled by partitions

of the form (mn− b, 1b), (mn− a− b, a, 1b) and (mn− 2a− b, 2a, 1b) in the plethysms sν ◦ sµ
(where ν ` n and µ ` m); and Giannelli [19] used symmetric group character-theoretic

methods to determine the multiplicities of an even larger class of constituents, labelled by

partitions whose shape is close to that of a hook, in the Foulkes character ϕ(mn).

Maximal constituents of generalised Foulkes characters have been investigated by several

authors. In [1], Agaoka conjectured the form of the lexicographic maximal constituent of

sν ◦ sµ and its associated multiplicity; a proof of the conjecture was given by Iijima in [23].

A statement of the result in the special case µ = (m) is Proposition 3.4.4, below. Yang also

gives many results on the lexicographic maximal constituent of plethysms in [47].

Proposition 3.4.4

Let m,n ∈ N and let ν =
(
ν1, . . . , ν`

)
` n. The lexicographic maximal constituent of ϕ

(mn)
ν is

labelled by

ν∗ := (ν1 + n(m− 1), ν2, . . . , ν`)

and
〈
ϕ

(mn)
ν , χν

∗
〉

= 1.

Paget and Wildon give a complete description of the minimal constituents of generalised

Foulkes modules in the dominance order: their work in [40] gives the results for ϕ(mn), and

for all other ν ` n, a description of the minimal constituents of ϕ
(mn)
ν can be found in [41].

We note that, in the dominance order there is, in general, not a unique minimal constituent.

Paget and Wildon prove an extreme case of this fact, that all constituents of τ (2n) are minimal,

and therefore also maximal, in the dominance order. However, in certain special cases, ϕ
(mn)
ν

does have a unique minimal constituent (see [41, Corollary 7.3]). In particular, we note the

following results; the multiplicities concerned can also be deduced from Proposition 3.4.2.

Corollary 3.4.5

If m is even, then the unique minimal constituent of ϕ(mn) is χ(mn) and
〈
ϕ(mn), χ(mn)

〉
= 1.

If m is odd, then the unique minimal constituent of τ (mn) is χ(mn) and
〈
τ (mn), χ(mn)

〉
= 1.

Remark. It is clear that the unique minimal constituent with respect to the dominance order

will also be the (unique) lexicographic minimal constituent.
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In addition to the results concerning constituents of a special form, there are also sev-

eral results that establish relationships between constituents of generalised Foulkes modules.

Foulkes’ Second Conjecture – so named by Brion, who proved it in [4, §2] – is an example of

such a result.

Theorem 3.4.6 (Foulkes’ Second Conjecture)

Let λ = (λ1, λ2, . . . , λ`) be a partition of mn and suppose that
〈
ϕ(mn), χλ

〉
= r ≥ 0. If

λ̃ := (λ1 + n, λ2, . . . , λ`), then
〈
ϕ((m+1)n), χλ̃

〉
≥ r.

If we restrict our attention to those constituents of the Foulkes character ϕ(mn) that are

labelled by partitions λ such that λ2 ≤ m, then Foulkes’ Second Conjecture can be generalised

in the following way.

Theorem 3.4.7 ([44, Corollary 1.8])

Let λ = (λ1, λ2, . . . , λ`) be a partition of mn that satisfies λ2 ≤ m and fix ν ` n. For any

q ≥ 0, if λ̃ := (λ1 + nq, λ2, . . . , λ`) ` (m+ q)n, then〈
ϕ

(
(m+q)n

)
ν , χλ̃

〉
=
〈
ϕ(mn)
ν , χλ

〉
.

In Chapters 4 and 5, we will prove a variety of results of this type. However, we will no

longer always fix ν or n.
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Chapter 4

Semistandard homomorphism

results for fixed n

In this chapter, we apply the general theory about semistandard homomorphisms, using it to

establish some structural relationships between Foulkes modules. We also extend the theory

to study the structure of twisted Foulkes modules, K(mn). In the last chapter, we alluded

to the fact that it will be necessary to work over a ground field of characteristic zero. So,

henceforth, we fix k = C, unless otherwise specified. The reason for this will become clear in

§4.1.1.

4.1 The setting

4.1.1 Foulkes modules

One way to study the structure of the Foulkes module is to look for maps from the Specht

module Sλ into H(mn), where λ ` mn. In particular, finding such a non-zero map identifies

Sλ as a composition factor of H(mn). We have already acquired most of the machinery that

we need to construct suitable maps: in §2.2.4, we defined semistandard homomorphisms θT ,

where T is a semistandard λ-tableau of type µ, which form a basis for Hom
(
Sλ,Mµ

)
.

Observe that there is a natural surjection ψ from the Young permutation module M (mn)

into H(mn), which is defined on (mn)-tabloids by

ψ :

x1 x2 . . . xm

xm+1 xm+2 . . . x2m

...
...

...

x(n−1)m+1 x(n−1)m+2 . . . xnm

7−→
{
X1, X2, . . . , Xn

}
,

where Xi := {x(i−1)m+1, x(i−1)m+2, . . . , xim} for all 1 ≤ i ≤ n. So, ψ is the map which sends

an (mn)-tabloid, say {t}, to the set partition consisting of the n sets which correspond to the
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n rows of {t}.
Computationally, it is often easier to work completely with the description of M (mn) in

terms of λ-tableaux of type (mn), thus avoiding the need to involve (mn)-tabloids in the

calculations. Let T denote the image of the tableau T ∈ M (mn) under ψ. Observe that two

tableaux T1, T2 ∈ T
(
λ, (mn)

)
are equivalent under ψ if there exists a relabelling permutation

π ∈ Sn such that T1 ∗π = T2. This says that entries in two equivalent tableaux will have the

same pattern. For example, if

t = 1 2 3 4 5
6

, T1 = 1 1 1 2 2
2

and T2 = 2 2 2 1 1
1

,

so that T1 ∗ (1 2) = T2, then the (32)-tabloids corresponding to T1 and T2 are

1 2 3
4 5 6 and

4 5 6
1 2 3 ,

respectively, and T1 = T2. We should note that if two tableaux T1, T2 ∈ T
(
λ, (mn)

)
are

equivalent under ψ, then this will be true regardless of the choice of t, because t just serves

as a labelling tableau.

If we take µ = (mn), then we can construct a map θT : Sλ → H(mn) by composing a

semistandard homomorphism with the surjection ψ : M (mn) � H(mn), as shown in Figure 4.1.

Moreover,
{
θT
∣∣ T ∈ T0

(
λ, (mn)

)}
is a spanning set for HomCSmn

(
Sλ, H(mn)

)
. The Foulkes

module H(mn) is not only a quotient of M (mn); we can also view it as a submodule of M (mn).

Indeed, there is a CSmn-homomorphism ψ′ : H(mn) ↪→ M (mn) defined on set partitions

{X1, . . . , Xn}, where Xi = {x(i−1)m+1, x(i−1)m+2, . . . , xim}, by

ψ′ : {X1, . . . , Xn} 7−→
1

n!

∑
σ∈Sn


x1 x2 . . . xm

xm+1 xm+2 . . . x2m

...
...

...

x(n−1)m+1 x(n−1)m+2 . . . xnm

∗ σ

 ,

where the effect of σ is to permute the rows of the (mn)-tabloid. It is clear that ψ′ ◦ ψ = id,

where id denotes the identity map on H(mn).

Example 4.1.1

The image of the set partition
{
{1, 2}, {3, 4}, {5, 6}

}
under ψ′ is

1

6

 1 2
3 4
5 6

+
1 2
5 6
3 4

+
3 4
1 2
5 6

+
3 4
5 6
1 2

+
5 6
1 2
3 4

+
5 6
3 4
1 2

 .

We should observe that the map ψ′ is only defined if we are working over a field of

characteristic zero, or a field of characteristic p with p > n. Herein lies the reason for

specifying k = C at the start of the chapter. Maschke’s Theorem applies in this setting, so
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Sλ H(mn) M (mn) H(mn)

θT

ψ′ ψ

θT id

Figure 4.1: Maps between Specht modules, Foulkes modules and Young permutation modules

we know that the group algebra CSmn is semisimple and thus, over C, the submodule H(mn)

is a direct summand of M (mn).

All CSmn-homomorphisms from Sλ to H(mn) will be linear combinations of the maps

θT = θT ◦ψ, where θT is a basis element of HomCSmn
(
Sλ,M (mn)

)
. Unfortunately, it is rarely

obvious whether the composition of θT and ψ will yield a non-zero map. Examples 4.1.2

and 4.1.3 illustrate this point.

Example 4.1.2

Take λ = (4, 2), m = 3 and n = 2. Choose t = 1 2 3 4
5 6

and T = 1 1 1 2
2 2

. In

Example 2.2.9, we showed that

(et)θT =
1 2 3
4 5 6 +

1 2 4
3 5 6 +

3 5 6
1 2 4 +

4 5 6
1 2 3 −

2 3 5
1 4 6 −

2 4 5
1 3 6 −

1 3 6
2 4 5 −

1 4 6
2 3 5 .

So, the image of (et)θT under ψ is

2
({
{1, 2, 3}, {4, 5, 6}

}
+
{
{1, 2, 4}, {3, 5, 6}

}
−
{
{2, 3, 5}, {1, 4, 6}

}
−
{
{2, 4, 5}, {1, 3, 6}

})
.

This means that
(
θT : S(4,2) → H(32)

)
6= 0 and we conclude that S(4,2) appears in H(32) as

a composition factor.

Example 4.1.3

Take λ = (5, 1), m = 3 and n = 2.

If we choose t = 1 2 3 4 5
6

and T = 1 1 1 2 2
2

, then κt = 1− (1 6) and

(et)θT =

(
1 1 1 2 2
2

+ 1 1 2 1 2
2

+ 1 2 1 1 2
2

+ 2 1 1 1 2
2

+ 1 1 2 2 1
2

+ 1 2 1 2 1
2

+ 2 1 1 2 1
2

+ 1 2 2 1 1
2

+ 2 1 2 1 1
2

+ 2 2 1 1 1
2

)
κt

= 1 1 1 2 2
2

+ 1 1 2 1 2
2

+ 1 2 1 1 2
2

+ 1 1 2 2 1
2

+ 1 2 1 2 1
2

+ 1 2 2 1 1
2

− 2 1 1 2 2
1

− 2 1 2 1 2
1

− 2 2 1 1 2
1

− 2 1 2 2 1
1

− 2 2 1 2 1
1

− 2 2 2 1 1
1
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=
1 2 3
4 5 6 +

1 2 4
3 5 6 +

1 3 4
2 5 6 +

1 2 5
3 4 6 +

1 3 5
2 4 6 +

1 4 5
2 3 6

− 2 3 6
1 4 5 −

2 4 6
1 3 5 −

3 4 6
1 2 5 −

2 5 6
1 3 4 −

3 5 6
1 2 4 −

4 5 6
1 2 3 .

Visibly, all terms will cancel when we compute ((et)θT )ψ and thus,(
θT : S(5,1) −→ H(32)

)
= 0.

In order to conclude that a Specht module Sλ does not appear as a composition factor of

H(mn), it is necessary to show that all possible CSmn-homomorphisms θT : Sλ → H(mn) are

zero maps; this means studying the homomorphisms arising from all possible semistandard

λ-tableaux of type (mn). The reader may have noticed that there is only one semistandard

(5, 1)-tableau of type
(
32
)
, namely the tableau T which was chosen in Example 4.1.3, and

so we have in fact examined all CSmn-homomorphisms θT : S(5,1) → H(32). Thus, the

calculation shows that S(5,1) does not appear as a composition factor of H(32).

The inability to easily determine whether the composition of θT and ψ will yield a non-zero

map is perhaps indicative of the reasons why, for arbitrary m and n, there are surprisingly

few results about the structure of Foulkes modules that have been proved using semistandard

homomorphisms. In §4.3, we will present two existing results which can be proved using these

techniques.

4.1.2 Twisted Foulkes modules

The setting for twisted Foulkes modules is very similar. Let µ be a partition of n. Recall

from Fulton [17, §7.4] that M̃µ is the vector space spanned by all oriented µ-column tabloids

|t|, corresponding to µ-tableaux t. This means that if σ ∈ Ct, then |tσ| = sgn(σ)|t|.
Take µ = (1n). The twisted Foulkes module K(mn) is the vector space spanned by all

oriented column (1n)-tabloids

|X| =

∣∣∣∣∣∣∣∣∣∣∣

X1

X2

...

Xn

∣∣∣∣∣∣∣∣∣∣∣
such that the entries of the corresponding (1n)-tableaux X are disjoint sets Xi, each of size m,

and
⋃n
i=1Xi = {1, 2, . . . ,mn}. The symmetric group Smn acts in the obvious way, permuting

1, 2, . . . ,mn. If a permutation in Smn has the effect of swapping exactly two of the sets Xi

within the oriented column tabloid, then the resulting element of K(mn) has the opposite

orientation and so differs from the original one only by a sign.

38



§4.1.2. Twisted Foulkes modules

Analogous to ψ : M (mn) → H(mn), there is a well-defined surjection φ : M (mn) → K(mn),

which is defined on (mn)-tabloids by

φ :

x1 x2 . . . xm

xm+1 xm+2 . . . x2m

...
...

...

x(n−1)m+1 x(n−1)m+2 . . . xnm

7−→

∣∣∣∣∣∣∣∣∣∣∣

{x1, x2, . . . , xm}
{xm+1, xm+2, . . . , x2m}

...

{x(n−1)m+1, x(n−1)m+2, . . . , xnm}

∣∣∣∣∣∣∣∣∣∣∣
.

Just as we saw in the last section, we may use the alternative description of M (mn) and

thus work entirely with λ-tableaux of type (mn). We will denote the image of such a tableau

T ∈ M (mn) under φ by T . If t is the fixed labelling tableau, then T = |X|, where |X| is the

oriented column tabloid whose entries are the sets Xi = {x | (x)T = i}.

Example 4.1.4

If t and T are as in Example 4.1.3, then (1)T = (2)T = (3)T = 1 and (4)T = (5)T = (6)T = 2

and so

φ : T 7→

∣∣∣∣∣{1, 2, 3}{4, 5, 6}

∣∣∣∣∣ .
Working with this description of M (mn), we need to pay attention to more than just the

pattern of the entries in the tableaux; given T1, T2 ∈ T
(
λ, (mn)

)
such that T1 ∗ π = T2 for

π ∈ Sn, we must also record the sign of the permutation π. Indeed, swapping two rows in

the (mn)-tabloid yields, under φ, two elements of K(mn) which differ by a sign. For example,(
1 2 3
4 5 6

)
φ =

∣∣∣∣∣{1, 2, 3}{4, 5, 6}

∣∣∣∣∣ = −

∣∣∣∣∣{4, 5, 6}{1, 2, 3}

∣∣∣∣∣ = −
(

4 5 6
1 2 3

)
φ.

In general this means that if T1 ∗ π = T2, then sgn(π)T1 = T2.

Over C, we have K(mn) appearing as a direct summand of M (mn). To see this, observe

that there is a CSmn-homomorphism φ′ : K(mn) ↪→M (mn) defined on basis elements by

φ′ :

∣∣∣∣∣∣∣∣∣∣∣

{x1, x2, . . . , xm}
{xm+1, . . . , x2m}

...

{x(n−1)m+1, . . . , xnm}

∣∣∣∣∣∣∣∣∣∣∣
7−→ 1

n!

∑
σ∈Sn

sgn(σ)


x1 x2 . . . xm

xm+1 xm+2 . . . x2m

...
...

...

x(n−1)m+1 x(n−1)m+2 . . . xnm

∗ σ

 ,

where the effect of σ is to permute the rows of the (mn)-tabloid. Just as we saw in the

Foulkes module setting, the composition φ′ ◦ φ is the identity map on K(mn). Moreover, all

CSmn-homomorphisms θT : Sλ → K(mn) (which span HomCSmn
(
Sλ,K(mn)

)
) arise as the

composition of a semistandard homomorphism θT ∈ HomCSmn
(
Sλ,M (mn)

)
with the surjec-

tion φ : M (mn) � K(mn).
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Example 4.1.5

Reconsider Example 4.1.3, this time composing θT with φ. We see that

(et)θT = 2

(∣∣∣∣∣{1, 2, 3}{4, 5, 6}

∣∣∣∣∣+

∣∣∣∣∣{1, 2, 4}{3, 5, 6}

∣∣∣∣∣+

∣∣∣∣∣{1, 3, 4}{2, 5, 6}

∣∣∣∣∣+

∣∣∣∣∣{1, 2, 5}{3, 4, 6}

∣∣∣∣∣+

∣∣∣∣∣{1, 3, 5}{2, 4, 6}

∣∣∣∣∣+

∣∣∣∣∣{1, 4, 5}{2, 3, 6}

∣∣∣∣∣
)

and thus we can conclude that S(5,1) is a summand of K(32).

4.2 Notation and definitions

In this section, we introduce some definitions and notation that we will use throughout the

rest of the chapter.

• If λ ` n and t is any λ-tableau, then define t
(j)
i to be the entry of t in the ith row and

jth column. Let `j be the number of entries in column j of t.

• Similarly, denote the jth column of T ∈ T (λ, µ) by T (j) and let T
(j)
i be the entry in the

ith row of the jth column of T .

• If λ ` n and t is any λ-tableau, then define

C
(j)
t := S{

t
(j)
1 ,t

(j)
2 ,...,t

(j)
`j

}.
With this definition, the column stabiliser Ct of t is

Ct = C
(1)
t × C

(2)
t × · · · × C

(λ1)
t ,

where λ1 is the first part of λ.

It will be helpful later to be able to ‘split’ tableaux into component parts. For this reason,

we introduce notation which will allow us to express a tableau T as the join of two (or more)

components. We define T = T1 ∨ T2 to be the tableau obtained by concatenating the rows of

T1 and T2. In particular, when reading from left to right, row i of T consists of the entries of

row i of T1, followed by the entries of row i of T2. For example, if

T1 =
1 1 1
2 3
4 4

and T2 = 2 2 3 3
4

then

T = T1 ∨ T2 =
1 1 1 2 2 3 3
2 3 4
4 4

.
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4.3 The results

Studying Foulkes modules using semistandard homomorphisms is not unprecedented. In [10],

Dent used semistandard homomorphisms to great effect, giving a new proof of a version of

Foulkes’ Second Conjecture (see Theorem 4.3.1). She also established a relationship between

irreducible constituents of Foulkes modules by ‘adding two columns’ to a labelling partition

(Theorem 4.3.6 (i)). In this section, we give statements of these results and prove their

analogues for twisted Foulkes modules. In §4.4, we will conjecture versions of the results for

generalised Foulkes modules.

4.3.1 Foulkes’ Second Conjecture

Dent’s version of Foulkes’ Second Conjecture, proved in [10, Theorem 3.10], concerns only

the partitions λ such that λ2 ≤ m; as such, it is a special case of Theorem 3.4.7. Imposing

this restriction on the choice of λ actually leads to a stronger statement than the original

result, since explicit multiplicities of certain constituents in the decomposition of H((m+1)n)

can be given.

Theorem 4.3.1 [Dent]

Let λ = (λ1, λ2, . . . , λ`) be a partition of mn which satisfies λ2 ≤ m. Suppose that Sλ appears

in H(mn) with multiplicity r ≥ 0. If λ̃ := (λ1 + n, λ2, . . . , λ`), then Sλ̃ appears in H((m+1)n)

with multiplicity equal to r.

It is in fact also possible to prove the original result using semistandard homomorphisms,

thus giving a new proof of Theorem 3.4.6 that is similar to Dent’s proof of Theorem 4.3.1.

We do this now to illustrate the techniques in preparation for later results, where the proofs

are more complicated.

We know that the set
{
θT
∣∣T ∈ T0

(
λ, (mn)

)}
is a basis for HomCSmn

(
Sλ,M (mn)

)
. The

following lemma shows that a suitable subset of this basis gives rise to the basis elements for

HomCSmn
(
Sλ, H(mn)

)
.

Lemma 4.3.2

If Sλ appears in H(mn) with multiplicity r ≥ 0, then there exist T1, . . . , Tr ∈ T0

(
λ, (mn)

)
such

that
{
θT1 , . . . , θTr

∣∣ θTi : Sλ → H(mn) ∀ 1 ≤ i ≤ r
}

is a basis for HomCSmn
(
Sλ, H(mn)

)
.

Proof. By Theorem 2.2.11,
{
θT
∣∣ T ∈ T0

(
λ, (mn)

)}
is a basis for HomCSmn

(
Sλ,M (mn)

)
.

Therefore,
{
θT
∣∣ T ∈ T0

(
λ, (mn)

)}
spans HomCSmn

(
Sλ, H(mn)

)
and pruning this spanning set

yields a basis for HomCSmn
(
Sλ, H(mn)

)
. Since we assumed that dim HomCSmn

(
Sλ, H(mn)

)
=r,

the basis is
{
θT1 , . . . , θTr

}
for some T1, . . . , Tr ∈ T0

(
λ, (mn)

)
. �
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Let us now set up some notation, which we will need to complete the proof of Theo-

rem 3.4.6. Let T be a semistandard λ-tableau of type (mn). Choose t to be the usual

λ-tableau that has entries 1, 2, . . . ,mn in increasing order along rows. Define t̃ to be the

λ̃-tableau

t̃ := t ∨ mn+ 1 mn+ 2 . . . mn+ n

and consider the λ̃-tableau T̃ = T ∨ N , where N := 1 2 . . . n . It is important to notice

that T̃ is not necessarily semistandard. However, since T is semistandard, T̃ certainly has

distinct entries in each of its columns.

Lemma 4.3.3

Let λ = (λ1, λ2, . . . , λ`) be a partition of mn. If
(
θT : Sλ → H(mn)

)
6= 0 for some tableau

T ∈ T0

(
λ, (mn)

)
, then

(
θ
T̃

: Sλ̃ → H((m+1)n)
)
6= 0.

Proof. Assume that
(
θT : Sλ → H(mn)

)
6= 0. Since Sλ is a cyclic module with generator

et, it follows that (et)θT 6= 0. Pick any basis element R appearing in (et)θT with non-zero

coefficient. We know that there must be at least one such R, otherwise we contradict the

fact that (et)θT 6= 0. Since ψ is surjective, there exists R ∈ T
(
λ, (mn)

)
such that ψ(R) = R.

Using the definition of et, we may write

(et)θT =
∑

T ′∼rowT

T ′κt =
∑

T ′∼rowT,
π∈Ct

sgn(π)T ′π.

If we isolate R in the sum, then

(et)θT =
∑

T ′∼rowT,
π∈Ct:
T ′π=R

sgn(π)R +
∑

T ′∼rowT,
π∈Ct:
T ′π 6=R

sgn(π)T ′π

and the coefficient of R is

C =
∑

T ′∼rowT,
π∈Ct:
T ′π=R

sgn(π) 6= 0.

To prove the lemma, it will be sufficient to prove that the coefficient C of R̃ in (et̃)θT̃
is non-zero. We first determine an expression for C in the same way as we identified the

coefficient of R in (et)θT . We have that

(et̃)θT̃ =
∑

T ′′∼rowT̃ ,
ρ∈Ct̃:
T ′′ρ=R̃

sgn(ρ)R̃ +
∑

T ′′∼rowT̃ ,
ρ∈Ct̃:
T ′′ρ6=R̃

sgn(ρ)T ′′ρ
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and hence

C =
∑

T ′′∼rowT̃ ,
ρ∈Ct̃:
T ′′ρ=R̃

sgn(ρ).

It is clear that Ct̃ = Ct because elements of these column stabilisers only affect the first

λ2 columns of t and t̃. Thus, we may as well sum over π ∈ Ct and simplify the expression for

C to

C =
∑

T ′′∼rowT̃ ,
π∈Ct:
T ′′π=R̃

sgn(π).

Take T ′′ ∼row T̃ , π ∈ Ct such that T ′′π = R̃. Since π can only affect the first λ2 columns

of T ′′, T ′′π = R̃ implies that T ′′ = T ′∨Nσ for some T ′ ∼row T and σ ∈ S{mn+1,mn+2,...,mn+n},

permuting only the entries of N . So,

C =
∑

T ′∼rowT, π∈Ct,
σ∈S{mn+1,...,mn+n}:

(T ′∨Nσ)π=R̃

sgn(π) =
∑

T ′∼rowT, π∈Ct,
σ∈S{mn+1,...,mn+n}:

T ′π∨Nσ=R̃

sgn(π).

By definition of R̃, T ′π ∨Nσ = R̃ if and only if T ′π ∨Nσ = R ∨N . Comparing the

component parts, it follows that T ′π = R and Nσ = N . Furthermore, any relabelling of

the component parts must be compatible, which means that there is no choice for σ: σ must

permute the entries of N in exactly the same way as the entries of R are relabelled to obtain

T ′π. Thus, we conclude that

C =
∑

T ′∼rowT,
π∈Ct:
T ′π=R

sgn(π) = C . �

Lemma 4.3.3 is sufficient to prove the existence of Sλ̃ as a composition factor in H((m+1)n).

To complete the proof of Theorem 3.4.6, it just remains to prove that the multiplicity with

which Sλ̃ appears is bounded below by the multiplicity of Sλ in H(mn). We first need one

more piece of information.

Let B ⊆
{
R
∣∣ R ∈ T

(
λ, (mn)

)}
be a basis for H(mn). Let B :=

{
R̃
∣∣∣ R ∈ B

}
and let J

be an indexing set for the elements of B. As a consequence of the construction of R̃ ∈ B and

the definition of the labelling tableau t̃, if R is the set partition {X1, . . . , Xn}, we may take

R to be the λ-tableau of type (mn) that has entries (x)R = i if x ∈ Xi (for 1 ≤ x ≤ mn) and

then R̃ ∈ B is the set partition {X1∪{mn+ 1}, . . . , Xn∪{mn+n}}. Since B is a basis, and

therefore all of its elements are distinct, the elements of B must also be distinct. It follows

that the formal sum
∑

j∈J βjR̃j is equal to zero only if βj = 0 for all j ∈ J . In other words,

B is a linearly independent set, which we may extend to a basis for H((m+1)n).
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Proof of Theorem 3.4.6. Suppose that Sλ appears in H(mn) with multiplicity r ≥ 0. By

Lemma 4.3.2, we have a basis
{
θT1 , . . . , θTr

}
for HomCSmn

(
Sλ, H(mn)

)
, whose elements are

labelled by T1, . . . , Tr ∈ T0

(
λ, (mn)

)
.

For a contradiction, suppose that
∑r

i=1 αiθT̃i = 0 for some scalars αi, which are not all

zero. It follows that (et̃)
(∑r

i=1 αiθT̃i

)
= 0 and so the coefficient of any basis element R̃ in

(et̃)
(∑r

i=1 αiθT̃i

)
is zero. If we let Ci denote the coefficient of R̃ in (et̃)θT̃i , then

r∑
i=1

αiCi = 0.

Applying Lemma 4.3.3, each Ci is equal to the coefficient of R in (et)θTi . Thus, the coefficient

of R in (et)
(∑r

i=1 αiθTi
)

is
∑r

i=1 αiCi and so is also zero. We chose R̃ arbitrarily and so we

have that for all R ∈ T
(
λ, (mn)

)
, R has coefficient zero in (et)

(∑r
i=1 αiθTi

)
. It follows that

(et)

(
r∑
i=1

αiθTi

)
= 0.

Since et is a generator for Sλ, this implies that
∑r

i=1 αiθTi = 0, but
{
θT1 , . . . , θTr

}
is a linearly

independent set and so αi = 0 for all 1 ≤ i ≤ r, which contradicts the assumption on the

scalars αi. �

We conclude this section by indicating how the proof of Theorem 3.4.6 may be modified

to obtain a proof of the following theorem, which is the obvious analogue of Foulkes’ Second

Conjecture for twisted Foulkes modules. In this new result, no conditions are imposed on

the partition λ and so it gives information about a larger family of constituents of K((m+1)n)

than those covered by Weintraub’s result (Theorem 3.4.7). However, we are not able to be

as precise about the multiplicities with which the constituents appear in the decomposition.

Theorem 4.3.4

Let λ = (λ1, λ2, . . . , λ`) be a partition of mn and suppose that Sλ appears in K(mn) with

multiplicity r ≥ 0. If λ̃ = (λ1 + n, λ2, . . . , λ`), then Sλ̃ appears with multiplicity ≥ r in

K((m+1)n).

The following lemma, which is analogous to Lemma 4.3.2, establishes a basis for the space

HomCSmn
(
Sλ,K(mn)

)
. It is proved in the obvious analogous way.

Lemma 4.3.5

If Sλ appears in K(mn) with multiplicity r ≥ 0, then there exists T1, . . . , Tr ∈ T0

(
λ, (mn)

)
such that

{
θT1 , . . . , θTr

∣∣ θTi : Sλ → K(mn) ∀ 1 ≤ i ≤ r
}

is a basis for HomCSmn
(
Sλ,K(mn)

)
.
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In establishing the existence of Sλ̃ as a composition factor of K((m+1)n), a little more

care must be taken. Indeed, whilst the arguments are mostly identical, the expression for the

(non-zero) coefficient of R in (et)θT is∑
T ′∼rowT,

π∈Ct, σ∈Sn:
T ′π=R∗σ

sgn(π) sgn(σ)

and the initial expression for the coefficient of R̃ in (et̃)θT̃ is

C :=
∑

T ′′∼rowT̃ ,
ρ∈Ct̃, τ∈Sn:

T ′′ρ=R̃∗τ

sgn(ρ) sgn(τ).

The proof proceeds in the same manner as in the Foulkes setting, with the permutation

τ ∈ Sn continuing to appear in the argument. When it is necessary to compare component

parts, it is concluded (in the twisted Foulkes setting) that T ′π = R ∗ τ and Nσ = N ∗ τ , and

thus that σ is uniquely determined by τ , since σ must permute the entries of N in exactly

the same way as τ relabels the entries of R. The proof is completed by deducing that

C =
∑

T ′∼rowT,
π∈Ct, τ∈Sn:
T ′π=R∗τ

sgn(π) sgn(τ),

which is precisely equal to the non-zero coefficient of R in (et)θT .

The conclusion of the proof of Theorem 4.3.4, establishing a lower bound on the multi-

plicity with which Sλ̃ appears as a composition factor in K((m+1)n), is again analogous to

that of Theorem 3.4.6.

4.3.2 Dent’s two column result

Part (i) of the following result was proved – using semistandard homomorphisms – by Dent

in [10, Theorem 3.8]. We will refer to this result as “Dent’s two column result”, since it

establishes a relationship between irreducible constituents of Foulkes modules via the addition

of two columns of length n to a labelling partition. Part (ii) of Theorem 4.3.6 may be viewed

as the analogue of part (i) applicable to twisted Foulkes modules.

Theorem 4.3.6

Let λ = (λ1, λ2, . . . , λ`) ` mn and define λ̂ :=
(
λ1 + 2, . . . , λ` + 2, 2n−`

)
` (m+ 2)n.

(i) (Dent) If Sλ appears in H(mn) with multiplicity r ≥ 0, then Sλ̂ appears in H((m+2)n)

with multiplicity r.

45



§4.3.2. Dent’s two column result

(ii) If Sλ appears in K(mn) with multiplicity r ≥ 0, then Sλ̂ appears in K((m+2)n) with

multiplicity r.

The author cannot find any record of part (ii) of Theorem 4.3.6 in the literature. However,

as we will see shortly, it is a straightforward corollary of a known result due to Newell [38]. In

this section, we will use semistandard homomorphisms to give a new proof of Newell’s result

– the original proof was in terms of plethysms – thus also proving part (ii) of Theorem 4.3.6.

Our methods are indicative of those that are required to prove Theorem 4.3.6 directly.

Theorem 4.3.7 [Newell]

Let λ = (λ1, λ2, . . . , λ`) ` mn and define λ̃ :=
(
λ1 + 1, . . . , λ` + 1, 1n−`

)
` (m+ 1)n.

(i) If Sλ appears in H(mn) with multiplicity r ≥ 0, then Sλ̃ appears in K((m+1)n) with

multiplicity r.

(ii) If Sλ appears in K(mn) with multiplicity r ≥ 0, then Sλ̃ appears in H((m+1)n) with

multiplicity r.

We will use notation consistent with the proof of Foulkes’ Second Conjecture, redefined

in the following way, so as to make it applicable to the current setting. Suppose that T is a

λ-tableau of type (mn) and define T̃ , a λ̃-tableau of type ((m+ 1)n), in the following way:

T̃
(j)
i :=

T
(j−1)
i if j > 1;

i if j = 1 and i ∈ {1, 2, . . . , n}.

If T is chosen to be semistandard, then the construction of T̃ ensures that T̃ is also semis-

tandard. Given t, the λ-tableau that has entries 1, 2, . . . ,mn in increasing order along rows,

define t̃ to be the λ̃-tableau

t̃
(j)
i :=

t
(j−1)
i if j > 1;

mn+ i if j = 1 and i ∈ {1, 2, . . . , n}.

We should note that this choice of t̃ is not standard. For example, if m = 2, n = 3 and we

choose

T = 1 1 2 2
3 3

and t = 1 2 3 4
5 6

,

then

T̃ =
1 1 1 2 2
2 3 3
3

and t̃ =
7 1 2 3 4
8 5 6
9

.

The first step towards proving part (i) of Theorem 4.3.7 is the following lemma, which

establishes the existence of Sλ̃ as a summand of K((m+1)n).
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Lemma 4.3.8

Under the assumptions of part (i) of Theorem 4.3.7, if
(
θT : Sλ → H(mn)

)
6= 0 for some

semistandard λ-tableau T of type (mn), then
(
θ
T̃

: Sλ̃ → K((m+1)n)
)
6= 0. Moreover, the

coefficient of any basis element R in (et)θT is equal to the coefficient of R̃ in (et̃)θT̃ .

Proof. Consider the image of the generator et̃ of Sλ̃ under θ
T̃

:

(et̃)θT̃ =
∑

T ′′∼rowT̃

T ′′κt̃. (4.1)

In Proposition 2.2.10, it was seen that if a tableau does not have distinct entries in its columns,

then multiplication by the signed column sum yields zero. Thus, when examining the sum

in (4.1), we can save ourselves some unnecessary work if we restrict our attention to those

T ′′ satisfying T ′′κt̃ 6= 0.

We claim that if T ′′ is such that T ′′κt̃ 6= 0, then T ′′ ∼row T̃ if and only if T ′ ∼row T , where

T ′′ = T̃ ′ and T ′κt 6= 0. Indeed, T ′ ∼row T implies that T̃ ′ ∼row T̃ by construction. Further,

since T ′κt 6= 0, we know that T̃ ′κt̃ 6= 0 and so it follows from T ′′ = T̃ ′ that T ′′ ∼row T̃ and

T ′′κt̃ 6= 0.

For the converse, assume that T ′′ ∼row T̃ . We need to identify those T ′′ which have

distinct entries in columns, so that T ′′κt̃ 6= 0 is satisfied. Consider row i of T ′′ for some i > `

where, recall, ` is the number of parts of λ. The only entry in this row is i (occurring precisely

once) and thus, row i of T ′′ is the same as row i of T̃ . Now consider row ` of T ′′: entries in this

row are all greater than or equal to ` because T ′′ ∼row T̃ and T̃ is semistandard. Hence, there

are two cases to consider: either T ′′
(1)
` = T̃

(1)
` = `; or, in the rearranging of the rows of T̃ to

obtain T ′′, some digit α := T̃
(j)
` > ` (j ≥ 2) has been permuted with T̃

(1)
` . In the second case,

T ′′ contains a repeated digit in column 1, namely α, and thus T ′′κt̃ = 0. Hence, we deduce

that we must have T ′′
(1)
` = `. Working inductively up the rows using similar arguments, we

can conclude that we must have T ′′
(1)
i = i for all 1 ≤ i ≤ `− 1 and thus that T ′′(1) = T̃ (1). It

follows that T ′′ ∼row T̃ with T ′′κt̃ 6= 0 implies that T ′ ∼row T , where T ′′ = T̃ ′ and T ′κt = 0,

as required.

As a consequence of the claim, we can rewrite the sum in (4.1) as

(et̃)θT̃ =
∑

T ′∼rowT

T̃ ′ κt̃. (4.2)

Now, assume that
(
θT : Sλ → H(mn)

)
6= 0. We know that (et)θT 6= 0 and therefore there

exists at least one R appearing with non-zero coefficient C in (et)θT . Pick any such R. Since

ψ is surjective, there exists R ∈ T
(
λ, (mn)

)
such that ψ : R 7→ R. We look to determine the

coefficient C of R̃ in (et̃)θT̃ .
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We first need to obtain expressions for C and C, which is how we now proceed. We may

write

(et)θT =
∑

T ′∼rowT

T ′κt =
∑

T ′∼rowT,
π∈Ct

sgn(π)T ′π

and subsequently, isolating R in the sum, we see that

(et)θT =
∑

T ′∼rowT,
π∈Ct:
T ′π=R

sgn(π)R +
∑

T ′∼rowT,
π∈Ct:
T ′π 6=R

sgn(π)T ′π

and

C =
∑

T ′∼rowT,
π∈Ct:
T ′π=R

sgn(π) 6= 0. (4.3)

Similarly, we may isolate R̃ in the expression for (et̃)θT̃ . Doing so, we obtain

(et̃)θT̃ =
∑

T ′∼rowT,
ρ∈Ct̃

sgn(ρ)T̃ ′ ρ =
∑

T ′∼rowT,
ρ∈Ct̃, τ∈Sn:

T̃ ′ ρ=R̃∗τ

sgn(ρ) sgn(τ)R̃ +
∑

T ′∼rowT,
ρ∈Ct̃:

T̃ ′ ρ6=R̃∗τ
∀ τ∈Sn

sgn(ρ) sgn(τ)T̃ ′ ρ

and thus, we have the following expression for C:

C =
∑

T ′∼rowT,
ρ∈Ct̃, τ∈Sn:

T̃ ′ ρ=R̃∗τ

sgn(ρ) sgn(τ). (4.4)

Since we can express the column stabiliser as Ct̃ = Ct × C(1)

t̃
, we may express ρ ∈ Ct̃ as

ρ = πy, where π ∈ Ct and y ∈ C(1)

t̃
. Also, since π ∈ Ct, it fixes all entries in column 1 of T ′

and thus T̃ ′ π = T̃ ′π. So,

C =
∑

T ′∼rowT,

π∈Ct, y∈C(1)

t̃
,

τ∈Sn:

T̃ ′πy=R̃∗τ

sgn(π) sgn(y) sgn(τ). (4.5)

Take T ′ ∼row T , π ∈ Ct, y ∈ C(1)

t̃
and τ ∈ Sn such that T̃ ′πy = R̃ ∗ τ . Then T̃ ′πy is

a relabelling of R̃ by τ . Since y permutes only column 1 of T̃ ′π, it must be that T ′π is a

relabelling of R. Let σ ∈ Sn be the permutation which relabels R to give T ′π. The element

y ∈ C(1)

t̃
must permute column 1 of T̃ ′π in such a way that it is a relabelling of column 1 of

R and also consistent with the relabelling of R by σ. So, it must be that τ = σ and that

y is in fact completely determined by σ, i.e. if Y0(T ′π) :=
{
y ∈ C(1)

t̃

∣∣∣ T̃ ′πy = R̃ ∗ τ
}

, then
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necessarily
∣∣Y0(T ′π)

∣∣ = 1. Furthermore, sgn(y) = sgn(σ) and so sgn(y) sgn(τ) = sgn(σ)2 = 1.

Hence, using (4.3), we deduce that

C =
∑

T ′∼rowT,
π∈Ct, σ∈Sn,
y∈Y0(T ′π):
T ′π=R∗σ

sgn(π) =
∑

T ′∼rowT,
π∈Ct, σ∈Sn:
T ′π=R∗σ

∣∣Y0(T ′π)
∣∣ sgn(π) =

∑
T ′∼rowT,

π∈Ct, σ∈Sn:
T ′π=R∗σ

sgn(π) = C

and so C is non-zero.

We can also make deductions in the case where R arises with zero coefficient in (et)θT ,

i.e. if ∑
T ′∼rowT,
π∈Ct:
T ′π=R

sgn(π) = 0. (4.6)

In this case, we know that R̃ also arises with coefficient zero in (et̃)θT̃ . The argument is

exactly the same as in the non-zero coefficient case, except that we conclude the argument

using (4.6) instead of (4.3). �

We now make some additional observations which will be useful when we complete the

proof of Theorem 4.3.7.

We saw from the proof of Lemma 4.3.8 that all basis elements of K((m+1)n) that appear

with non-zero coefficient in (et̃)θT̃ are of the form T̃ ′ ρ for some T ′ ∼row T and ρ ∈ Ct̃. In

other words, (et̃)θT̃ features exactly those oriented column tabloids

R̃ω :=

∣∣∣∣∣∣∣∣∣∣∣

X1 ∪
{
t̃
(1)
(1)ω

}
X2 ∪

{
t̃
(1)
(2)ω

}
...

Xn ∪
{
t̃
(1)
(n)ω

}

∣∣∣∣∣∣∣∣∣∣∣
such that R = {X1, X2, . . . , Xn} is a set partition appearing in (et)θT with non-zero coeffi-

cient, and ω ∈ Sn.

Additionally, the proof of Lemma 4.3.8 showed that if the coefficient of a basis element

R in (et)θT is C, then the oriented column tabloid R̃ (with ω = idSn) appears in (et̃)θT̃ with

coefficient C = C.
We could, quite reasonably, have proved Lemma 4.3.8 by looking at the coefficient of R̃ω

(for ω 6= idSn) instead and we would have found that its coefficient in (et̃)θT̃ is C = sgn(ω) C.
Indeed, an expression for the coefficient of R̃ω is∑

T ′∼rowT,
ρ∈Ct̃, τ∈Sn:

T̃ ′ ρ=R̃ω∗τ

sgn(ρ) sgn(τ) =
∑

T ′∼rowT,

π∈Ct, y∈C(1)

t̃
,

τ∈Sn:

T̃ ′πy=R̃ω∗τ

sgn(π) sgn(y) sgn(τ). (4.7)
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§4.3.2. Dent’s two column result

We now reason in the same way as we did following (4.5): y is again completely determined

by σ (but this time y = wσ) and, as before, τ = σ. So

sgn(y) sgn(τ) = sgn(ω) sgn(σ)2 = sgn(ω)

and the result follows. Consequently, we know that if
(
θT : Sλ → H(mn)

)
= 0, then(

θ
T̃

: Sλ̃ → K((m+1)n)
)

= 0.

Now, let B ⊆
{
R | R ∈ T

(
λ, (mn)

)}
be a basis for H(mn). For each R, there exists R

such that ψ : R 7→ R, from which we may construct R̃. Using reasoning similar to that given

after the proof of Lemma 4.3.3, the set B :=
{

R̃
∣∣∣ R ∈ B

}
is a linearly independent subset

of K((m+1)n) because B is linearly independent. We will use this property of B to complete

the proof of Theorem 4.3.7.

Proof of part (i) of Theorem 4.3.7. Since the set
{
θT
∣∣ T ∈ T0

(
λ̃, ((m+ 1)n)

)}
is a basis for

HomCS(m+1)n

(
Sλ̃,M ((m+1)n)

)
, it follows that

{
θT
∣∣ T ∈ T0

(
λ̃, ((m+ 1)n)

)}
is a spanning set

for HomCS(m+1)n

(
Sλ̃,K((m+1)n)

)
. However, the left-most column of a semistandard λ̃-tableau

of type ((m+ 1)n) is completely determined. Indeed, the digits 1, 2, . . . , n must appear down

the column in increasing order. Therefore, every semistandard λ̃-tableau of type ((m+ 1)n)

arises as T̃ , where T is a semistandard λ-tableau of type (mn). So, in fact, the spanning set

for HomCS(m+1)n

(
Sλ̃,K((m+1)n)

)
is
{
θ
T̃

∣∣ T ∈ T0

(
λ, (mn)

)}
.

Prune the spanning set to get a basis, say
{
θ
Ũ1
, . . . , θ

Ũs

}
. Showing that

{
θU1 , . . . , θUs

}
is a linearly independent subset of HomCSmn

(
Sλ, H(mn)

)
will be sufficient to prove that

s ≤ dim HomCSmn
(
Sλ, H(mn)

)
= r.

If
{
θU1 , . . . , θUs

}
is not linearly independent, then

∑s
i=1 γiθUi = 0 for some scalars γi,

which are not all zero. So, (et)
(∑s

i=1 γiθUi
)

= 0 and the coefficient of any basis element R

in (et)
(∑s

i=1 γiθUi
)

=
∑s

i=1 γi(et)θUi is zero, i.e.

s∑
i=1

γiC
R
i = 0,

where CR
i is the coefficient of R in (et)θUi . Thus, also, for any ω ∈ Sn,

s∑
i=1

γi sgn(ω)CR
i = sgn(ω)

s∑
i=1

γiC
R
i = 0. (4.8)

By Lemma 4.3.8 and the ensuing observation, the coefficient CR̃ωi of R̃ω (for any choice

of ω) in (et̃)θŨi is sgn(ω)CR
i and so (4.8) says that, for all ω ∈ Sn, the coefficient of R̃ω in

(et̃)
(∑s

i=1 γiθŨi

)
is
∑s

i=1 γiC
R̃ω
i = 0. Since R was chosen arbitrarily, we can conclude that

all set column tabloids R̃ω have coefficient zero in (et̃)
(∑s

i=1 γiθŨi

)
; hence, it follows that
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(et̃)
(∑s

i=1 γiθŨi

)
= 0. Since et̃ is a generator for Sλ̃, this implies that

∑s
i=1 γiθŨi = 0 and

thus γi = 0 for all i, which contradicts the assumptions on {γi | 1 ≤ i ≤ s}.

By Lemma 4.3.2, we have a basis for HomCSmn
(
Sλ, H(mn)

)
given by

{
θT1 , . . . , θTr

}
with

T1, . . . , Tr ∈ T0 (λ, (mn)). We claim that
{
θ
T̃1
, . . . , θ

T̃r

}
is a linearly independent set of

homomorphisms, and therefore that Sλ̃ arises as a summand of K(m+1)n with multiplicity at

least r. This claim will be sufficient to complete the proof of the theorem.

For a contradiction, suppose that
∑r

i=1 αiθT̃i = 0 for some scalars αi, which are not all

zero. It follows that

(et̃)

(
r∑
i=1

αiθT̃i

)
= 0

and so the coefficient of any basis element R̃ in (et̃)
(∑r

i=1 αiθT̃i

)
is zero. We can write

this coefficient of R̃ as
∑r

i=1 αiCi, where Ci is the coefficient of R̃ in θ
T̃i

. However, from

Lemma 4.3.8, we know that Ci is equal to the coefficient of R in (et)θTi and thus we deduce

that the coefficient of R in (et)
(∑r

i=1 αiθTi
)

is
∑r

i=1 αiCi = 0. Since R̃ was chosen arbitrarily,

we can conclude that for all R ∈ T (λ, (mn)), R has coefficient zero in (et)
(∑r

i=1 αiθTi
)
. A

subset of
{
R
∣∣ R ∈ T (λ, (mn))

}
is a basis for H(mn) and thus (et)

(∑r
i=1 αiθTi

)
= 0. Since

et is a generator for Sλ, we deduce that
∑r

i=1 αiθTi = 0, and the linear independence of the

set
{
θTi
∣∣ 1 ≤ i ≤ r

}
tells us that αi = 0 for all i, which is the required contradiction. �

Example 4.3.9

Take λ = (4, 2), m = 3 and n = 2. Choose t = 1 2 3 4
5 6

and T = 1 1 1 2
2 2

.

In Example 4.1.2, we saw that
(
θT : S(4,2) → H(32)

)
6= 0. In particular,

(et)θT = 2
({
{1, 2, 3}, {4, 5, 6}

}
+
{
{1, 2, 4}, {3, 5, 6}

}
−
{
{2, 3, 5}, {1, 4, 6}

}
−
{
{2, 4, 5}, {1, 3, 6}

})
.

Now, with λ̃ = (6, 2), t̃ = 7 1 2 3 4
8 5 6

and T̃ = 1 1 1 1 2
2 2 2

we have

(
et̃
)
θ
T̃

=

(
1 1 1 1 2
2 2 2

+ 1 1 1 2 1
2 2 2

+ 1 1 2 1 1
2 2 2

+ 1 2 1 1 1
2 2 2

+ 2 1 1 1 1
2 2 2

)
κt

= 1 1 1 1 2
2 2 2

+ 1 1 1 2 1
2 2 2

− 2 2 2 1 2
1 1 1

− 2 2 2 2 1
1 1 1

− 1 2 1 1 2
2 1 2

− 1 2 1 2 1
2 1 2

+ 2 1 2 1 2
1 2 1

+ 2 1 2 2 1
1 2 1

− 2 1 1 1 2
1 2 2

− 2 1 1 2 1
1 2 2

+ 1 2 2 1 2
2 1 1

+ 1 2 2 2 1
2 1 1

+ 2 2 1 1 2
1 1 2

+ 2 2 1 2 1
1 1 2

− 1 1 2 1 2
2 2 1

− 1 1 2 2 1
2 2 1
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and thus, the image of
(
et̃
)
θ
T̃

under φ is

(
et̃
)
θ
T̃

= 2

(∣∣∣∣∣{1, 2, 3, 7}{4, 5, 6, 8}

∣∣∣∣∣+

∣∣∣∣∣{1, 2, 4, 7}{3, 5, 6, 8}

∣∣∣∣∣−
∣∣∣∣∣{2, 3, 5, 7}{1, 4, 6, 8}

∣∣∣∣∣−
∣∣∣∣∣{2, 4, 5, 7}{1, 3, 6, 8}

∣∣∣∣∣
−

∣∣∣∣∣{1, 2, 3, 8}{4, 5, 6, 7}

∣∣∣∣∣−
∣∣∣∣∣{1, 2, 4, 8}{3, 5, 6, 7}

∣∣∣∣∣+

∣∣∣∣∣{2, 3, 5, 8}{1, 4, 6, 7}

∣∣∣∣∣+

∣∣∣∣∣{2, 4, 5, 8}{1, 3, 6, 7}

∣∣∣∣∣
)
.

Proof of part (ii) of Theorem 4.3.7. The proof is entirely analogous to the proof of part (i),

making the following changes:

• replacing occurrences of θT by θT and vice versa;

• replacing HomCS(m+1)n

(
Sλ̃,K((m+1)n)

)
by HomCS(m+1)n

(
Sλ̃, H((m+1)n)

)
, and similarly

HomCSmn
(
Sλ, H(mn)

)
by HomCSmn

(
Sλ,K(mn)

)
;

• replacing occurrences of R with R, and R̃ with R̃. �

We mentioned at the start of §4.3.2 that Dent’s two column result would follow from

Theorem 4.3.7. We complete this section with a proof of this claim.

Proof of Theorem 4.3.6. Let λ = (λ1, . . . , λ`) ` mn, as in the statement of the theorem, and

observe that
˜̃
λ = λ̂.

(i) Apply part (i) of Theorem 4.3.7, followed by part (ii) of Theorem 4.3.7, taking λ = λ̃

and increasing n by one when applying part (ii).

(ii) Apply part (ii) of Theorem 4.3.7, followed by part (i) of Theorem 4.3.7, taking λ = λ̃

and increasing n by one when applying part (i). �

4.4 Conjectures

We conjecture that Foulkes’ Second Conjecture and Dent’s two column result both have ana-

logues for any generalised Foulkes module H
(mn)
ν . It is certainly reasonable to expect Foulkes’

Second Conjecture to generalise, since a relationship of this type has already been established

(for any ν) for labelling partitions of a particular form (recall Theorem 3.4.7). Additionally,

data1 obtained using MAGMA supports these conjectures. However, the semistandard ho-

momorphism theory is not yet sufficiently developed to handle generalised Foulkes modules

unless ν = (n) or ν = (1n) and so we would need to find a different approach to prove the

results.

1A selection of data can be found in Appendix C.
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Conjecture 4.4.1

Let λ = (λ1, λ2 . . . , λ`) ` mn, ν ` n and suppose that Sλ appears in H
(mn)
ν with multiplicity

r ≥ 0. If λ̃ =
(
λ1 + 2, . . . , λ` + 2, 2n−`

)
, then Sλ̃ appears in H

((m+2)n)
ν with multiplicity equal

to r.

Conjecture 4.4.2

Let λ = (λ1, λ2, . . . , λ`) ` mn, ν ` n and suppose that Sλ appears in H
(mn)
ν with multiplicity

r ≥ 0. If λ̃ = (λ1 + n, λ2, . . . , λ`), then Sλ̃ appears in H
((m+1)n)
ν with multiplicity ≥ r.

In the same way that Dent’s two column result follows from Theorem 4.3.7, we now

conjecture a result that generalises Theorem 4.3.7, from which Conjecure 4.4.1 would follow

as a straightforward corollary.

Conjecture 4.4.3

Let λ = (λ1, λ2, . . . , λ`) ` mn and define λ̃ :=
(
λ1 + 1, . . . , λ` + 1, 1n−`

)
` (m + 1)n. If Sλ

appears in H
(mn)
ν with multiplicity r ≥ 0, then Sλ̃ appears in H

((m+1)n)
ν′ with multiplicity equal

to r.
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Chapter 5

Semistandard homomorphism

results for fixed m

So far, all of the results featuring semistandard homomorphisms have been structural results

for fixed n. In this section, we fix m. Given a constituent of the Foulkes module H(mn) for a

particular choice of natural numbers m and n, we prove the existence of related constituents

in H(mn+a), where a ∈ N, and determine a lower bound on the multiplicities with which

these constituents appear. Where appropriate, we prove analogues of the results for twisted

Foulkes modules.

In this chapter, we keep the notation that we introduced in §4.2, redefining it where

necessary to suit the new setting, and we continue to work over a ground field of characteristic

zero.

5.1 The results

The principal aim of this chapter is to prove the following two new theorems. We were

motivated to establish a result similar to Theorem 4.3.7, but where m is fixed, and the ‘new’

constituent arises from the addition of a row of length m, rather than a column: the outcome

is Theorem 5.1.1. In Theorem 5.1.2, we extend the idea further by adding longer rows.

Specifically, we prove a relationship between irreducible constituents of (ordinary) Foulkes

modules via the addition of a row, whose length is a multiple of m, above all other rows of

the labelling partition.

Theorem 5.1.1

Let λ = (λ1, λ2 . . . , λ`) be a partition of mn. Let q ∈ N0 be minimal such that 0 ≤ λq+1 ≤ m.

Define λ̃ := (λ1, . . . , λq,m, λq+1, . . . , λ`) if q 6= 0 and λ̃ := (m,λ1, . . . , λ`) if q = 0, so that λ̃

is a partition of m(n+ 1).
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1. Suppose that m is even. If Sλ appears in H(mn) with multiplicity r ≥ 0, then Sλ̃ appears

in H(mn+1) with multiplicity ≥ r.

2. Suppose that m is odd. If Sλ appears in K(mn) with multiplicity r ≥ 0, then Sλ̃ appears

in K(mn+1) with multiplicity ≥ r.

Remark. If q = 0 in Theorem 5.1.1, then all parts of λ have size at most m. Additionally, we

deduce from Theorem 4.13 in [25], and the fact that H(mn) is a direct summand of M (mn),

that the Specht modules that are summands of H(mn) are labelled by partitions that have at

most n rows1. Thus, in this case, it must be that λ = (mn) and so λ̃ = (mn+1).

Theorem 5.1.2

Let λ = (λ1, λ2 . . . , λ`) be a partition of mn such that 0 ≤ λ1 < 2m and for any a ≥ 2, define

λ̃ := (am, λ1, . . . , λ`), which is a partition of m(n+a). Suppose that m is even. If Sλ appears

in H(mn) with multiplicity r ≥ 0, then Sλ̃ appears in H(mn+a) with multiplicity ≥ r.

In the case of Theorem 5.1.1, we cannot change the parity of m. For example, S(7,4,4) is a

composition factor of H(53), appearing with multiplicity one, but S(7,5,4,4) does not appear as

a composition factor of H(54). Similarly, the obvious analogue of Theorem 5.1.2 in the twisted

Foulkes setting is false: taking m = 3, n = 2, a = 2 and λ = (5, 1) provides a counterexample,

since S(5,1) appears as a composition factor of K(32) with multiplicity one, but S(6,5,1) does

not appear as a composition factor of K(34).

The statement of Theorem 5.1.2 is not as general as we would hope. Ideally, we would

like to be able to remove the condition that 0 ≤ λ1 < 2m, so that we are free to choose any

constituent Sλ of H(mn). At least for small m and n, there is data2 to support this conjecture.

However, the likelihood of proving this conjecture using semistandard homomorphisms is slim,

as the tableaux involved are hard to control.

We illustrate the theorems with some examples.

Example 5.1.3

1. S(10,2) appears in H(43) with multiplicity 1;

S(10,4,2) appears in H(44) with multiplicity 2;

S(10,42,2) appears in H(45) with multiplicity 3.

2. S(7,12) appears in K(33) with multiplicity 1;

S(7,3,12) appears in K(34) with multiplicity 1;

S(7,32,12) appears in K(35) with multiplicity 1;

S(7,33,12) appears in K(36) with multiplicity 1.

1An entirely similar statement holds for K(mn).
2This data was produced using the computational algebra software MAGMA. Some data is included in

Appendix C for reference.
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3. S(6,2) appears in H(42) with multiplicity 1;

S(12,6,2) appears in H(45) with multiplicity 4.

Remark. The examples illustrate that it is impractical to attempt to predict the growth of

the multiplicities without deeper insight.

5.2 Tableaux

When we come to prove part 1 of Theorem 5.1.1, a key element will be showing that if(
θT : Sλ → H(mn)

)
6= 0 for some λ-tableau T of type (mn), then

(
θ
T̃

: Sλ̃ → H(mn+1)
)
6= 0,

where T̃ is an appropriately chosen λ̃-tableau of type (mn+1). Thus, the proof will depend

heavily on the choice of T̃ . The proof of part 2 will be entirely similar. We will also require

an appropriate tableau for Theorem 5.1.2. In this section, we present candidates for T̃ .

5.2.1 Tableaux for Theorem 5.1.1

Recall from Theorem 5.1.1 that, for a given λ = (λ1, . . . , λ`), q ∈ N0 is minimal such that

0 ≤ λq+1 ≤ m. So, any λ-tableau will have the following shape:

>m

≤m

row 1
...
...

row q

row q+1
...
...

row `

.

Let T be a λ-tableau of type (mn) and define T̃ in the following way:

T̃
(j)
i :=


T

(j)
i i ≤ q;

n+ 1 i = q + 1 and j ∈ {1, 2, . . . ,m};

T
(j)
i−1 i > q + 1.

(5.1)

If T is semistandard, then the construction of T̃ ensures that T̃ has distinct entries in columns,

and that entries are non-decreasing along rows. However, T̃ is certainly not semistandard in

general.

Take t to be the λ-tableau which has the digits 1, 2, . . . ,mn in increasing order along

rows. Define the labelling tableau t̃ by

t̃
(j)
i :=


t
(j)
i i ≤ q;

mn+ j i = q + 1 and j ∈ {1, 2, . . . ,m};

t
(j)
i−1 i > q + 1.
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We should note that this choice of t̃ is not standard in general.

We illustrate the construction of T̃ and t̃ in the following example.

Example 5.2.1

Let λ = (5, 1) and let m = 3, n = 2. If we take

T = 1 1 1 2 2
2

and t = 1 2 3 4 5
6

,

then

T̃ =
1 1 1 2 2
3 3 3
2

and t̃ =
1 2 3 4 5
7 8 9
6

.

With these choices of tableaux, we are able to rewrite the column stabiliser Ct̃ of t̃, and

subsequently the signed column sum κt̃, in a more helpful way. Let `j be the number of

entries in column j of t. Take explicit coset representatives y
(j)
i of C

(j)
t in C

(j)

t̃
: for 1 ≤ j ≤ m

and 1 ≤ i ≤ `j + 1, define y
(j)
i to be the transposition

y
(j)
i :=

(
t̃
(j)
i mn+ j

)
if i 6= q + 1

and the identity permutation if i = q + 1. We may write

C
(j)

t̃
=

`j+1⊔
i=1

C
(j)
t y

(j)
i for 1 ≤ j ≤ m and C

(j)

t̃
= C

(j)
t for m+ 1 ≤ j ≤ λ1,

and then

Y :=


m∏
j=1

y(j)
xj

∣∣∣∣∣∣ xj ∈ {1, 2, . . . , `j + 1} for all 1 ≤ j ≤ m

 (5.2)

is a set of representatives for the cosets of Ct in Ct̃. If we define κ
(j)
t :=

∑
π∈C(j)

t
sgn(π)π,

then we can rewrite κt̃ as

κt̃ =

m∏
j=1

κ(j)
t

`j+1∑
i=1

sgn
(
y

(j)
i

)
y

(j)
i

 λ1∏
j=m+1

κ
(j)
t

= κ
(1)
t κ

(2)
t · · ·κ

(λ1)
t

m∏
j=1

`j+1∑
i=1

sgn
(
y

(j)
i

)
y

(j)
i


= κt

m∏
j=1

`j+1∑
i=1

sgn
(
y

(j)
i

)
y

(j)
i

 .

5.2.2 Tableaux for Theorem 5.1.2

We also require a candidate T̃ for the λ̃-tableau of type (mn+a) needed for Theorem 5.1.2.

Given a λ-tableau T of type (mn), define T̃ in the following way:

T̃
(j)
i :=

γ if i = 1 and j ∈ {(γ − 1)m+ 1, (γ − 1)m+ 2, . . . , γm} with 1 ≤ γ ≤ a;

T
(j)
i−1 + a if i > 1.
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If T is semistandard, then the construction of T̃ ensures that T̃ is also semistandard. Again,

take t to be the λ-tableau that has 1, 2, . . . ,mn in increasing order along rows. Define t̃ to

be the labelling tableau

t̃
(j)
i =

mn+ j if i = 1 and j ∈ {1, 2, . . . , am};

t
(j)
i−1 if i > 1.

Example 5.2.2

Let λ = (3, 1) and m = n = 2. Take T = 1 1 2
2

and t = 1 2 3
4

.

If a = 3, then

T̃ =
1 1 2 2 3 3
4 4 5
5

and t̃ =
5 6 7 8 9 10
1 2 3
4

.

Just as in §5.2.1, we are able to rewrite Ct̃ and κt̃. For the above choice of t̃,

C
(j)

t̃
=

`j+1⋃
i=1

C
(j)
t y

(j)
i for 1 ≤ j ≤ λ1 and C

(j)

t̃
= S{

t̃
(j)
1

} for λ1 < j ≤ am,

where `j is the number of entries in column j of t and, for any 1 ≤ j ≤ m and any

1 ≤ i ≤ `j + 1, the coset representative, y
(j)
i of C

(j)
t in C

(j)

t̃
is defined to be the trans-

position y
(j)
i :=

(
t̃
(j)
i mn+ j

)
if i 6= 1 and the identity permutation if i = 1. Therefore, since

C
(j)

t̃
is the symmetric group on 1 symbol for all λ1 < j ≤ am, we have that

κt̃ =
am∏
j=1

 ∑
ρ∈C(j)

t̃

sgn(ρ)ρ

 =

λ1∏
j=1

 ∑
ρ∈C(j)

t̃

sgn(ρ)ρ


=

λ1∏
j=1

κ(j)
t

`j+1∑
i=1

sgn
(
y

(j)
i

)
y

(j)
i


= κt

λ1∏
j=1

`j+1∑
i=1

sgn
(
y

(j)
i

)
y

(j)
i


and so every ρ ∈ Ct̃ can be written uniquely in the form ρ = πy for some π ∈ Ct and y ∈ Y ,

where

Y :=


λ1∏
j=1

y(j)
xj

∣∣∣∣∣∣ xj ∈ {1, 2, . . . , `j + 1} for all 1 ≤ j ≤ λ1

 . (5.3)

5.3 Proof of part 1 of Theorem 5.1.1

We now have all that we need to prove part 1 of Theorem 5.1.1. The following lemma is

sufficient to prove the existence of Sλ̃ as a composition factor in H(mn+1). Some of the details

in the proof of Lemma 5.3.1 will be important when we later address the part of Theorem 5.1.1

concerning multiplicities.
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Lemma 5.3.1

In the setting of part 1 of Theorem 5.1.1, if we have a non-zero CSmn-homomorphism

θT : Sλ → H(mn) for some tableau T ∈ T0

(
λ, (mn)

)
, then

(
θ
T̃

: Sλ̃ → H(mn+1)
)
6= 0.

Proof. Assume that
(
θT : Sλ → H(mn)

)
6= 0. Since Sλ is a cyclic module with generator et,

it follows that (et)θT 6= 0. Pick any basis element R appearing with non-zero coefficient in

(et)θT . Since ψ is surjective, there exists R ∈ T
(
λ, (mn)

)
such that ψ : R 7→ R. We may

write

(et)θT =
∑

T ′∼rowT

T ′κt =
∑

T ′∼rowT,
π∈Ct

sgn(π)T ′π,

which allows us to identify the coefficient C of R as

C =
∑

T ′∼rowT,
π∈Ct:
T ′π=R

sgn(π) 6= 0. (5.4)

We may isolate R̃ in (et̃)θT̃ in much the same way:

(et̃)θT̃ =
∑

T ′′∼rowT̃

T ′′κt̃ =
∑

T ′′∼rowT̃ ,
ρ∈Ct̃:
T ′′ρ= R̃

sgn(ρ)R̃ +
∑

T ′′∼rowT̃ ,
ρ∈Ct̃:
T ′′ρ 6= R̃

sgn(ρ)T ′′ρ

and, visibly, its coefficient C is

C =
∑

T ′′∼rowT̃ ,
ρ∈Ct̃:
T ′′ρ= R̃

sgn(ρ). (5.5)

To prove the lemma, it will suffice to prove that C is non-zero.

We make an observation which allows us to write C in a more helpful form: that T ′′ ∼row T̃

if and only if T ′ ∼row T , where T ′ ∈ T
(
λ, (mn)

)
is such that T ′′ = T̃ ′ . To see this, observe

that if T ′′ ∼row T̃ , then it is possible to remove row q + 1 of T ′′ – the row of length m

containing only (n + 1)s – leaving a λ-tableau, say T ′, which is row equivalent to T . The

reverse implication is clear.

Using this observation, together with the definition of Y in (5.2) and the expression of

ρ ∈ Ct̃ as ρ = πy (where π ∈ Ct and y ∈ Y ), we have that

C =
∑

T ′∼rowT,
π∈Ct, y∈Y :

T̃ ′πy=R̃

sgn(π) sgn(y).

Take T ′ ∼row T , π ∈ Ct and y ∈ Y such that T̃ ′πy = R̃. Since π ∈ Ct, it must fix row q + 1

of T̃ ′ . Thus, the definition of the ∼ construction ensures that T̃ ′π = T̃ ′π and so

T̃ ′πy = R̃ ⇐⇒ T̃ ′πy = R̃. (5.6)
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The construction of R̃ guarantees that the entries in row q+ 1 of R̃ are all the same. It then

follows from (5.6) that the entries in row q+ 1 of T̃ ′πy are all the same. Using a construction

argument again, the entries in row q + 1 of T̃ ′π are all identical. So, for the entries in row

q + 1 of T̃ ′πy to also be identical, it must be that y ∈ Y either fixes row q + 1 of T̃ ′π – in

which case y ∈ Y is the identity permutation, which we denote by id – or it must swap every

identical entry, which is n+ 1, in row q + 1 with some β ∈ B, where

B :=
{
β ∈ {1, . . . , n}

∣∣∣ β appears in precisely the columns 1, . . . ,m of T̃ ′π
}
.

In the latter case, if, for all 1 ≤ j ≤ m, β appears in row bj 6= q + 1 in column j of T̃ ′π, then

y = yβ :=
∏m
j=1 y

(j)
bj

. Define

Y0

(
T̃ ′π

)
:= {y ∈ Y | y = id or y = yβ for any β ∈ B}.

We have just seen that T̃ ′πy = R̃ implies that y ∈ Y0

(
T̃ ′π

)
, and it is easy to see that if

y ∈ Y0

(
T̃ ′π

)
, then T̃ ′πy = R̃. So, we only need to sum over y ∈ Y0

(
T̃ ′π

)
, i.e.

C =
∑

T ′∼rowT,

π∈Ct, y∈Y0
(
T̃ ′π

)
:

T̃ ′πy=R̃

sgn(π) sgn(y).

Moreover, if y = id, then T̃ ′π = R̃. If y = yβ, which swaps every n+1 in row q+1 with some

1 ≤ β ≤ n, then y has the effect of relabelling T̃ ′π by the transposition ((n + 1) β) ∈ Sn+1

and so T̃ ′πy = R̃ if and only if T̃ ′π ∗ ((n+ 1) β) = R̃. In both cases, T̃ ′π is a relabelling of

R̃.

Let d be the number of digits in the set {1, 2, . . . , n} that appear in precisely columns

1, 2, . . . ,m of R. By construction of R̃, there are necessarily d+1 of the digits {1, 2, . . . , n+1}
in precisely columns 1, 2, . . . ,m of R̃. Since T̃ ′π is a relabelling of R̃, we conclude that∣∣∣Y0

(
T̃ ′π

)∣∣∣ = d+ 1.

We also know that if y ∈ Y0

(
T̃ ′π

)
, then

sgn(y) =

1 y = id;

(−1)m otherwise.

Since m is even, this says that sgn(y) = 1 for all y ∈ Y0

(
T̃ ′π

)
. Hence, we may write the

expression for C as

C = (d+ 1)
∑

T ′∼rowT,
π∈Ct:
T̃ ′π=R̃

sgn(π).
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Finally, we should observe that T̃ ′π is a relabelling of R̃ if and only if T ′π is a relabelling

of R. Indeed, this follows from the fact that row q + 1 of T̃ ′π is identical to row q + 1 of R̃;

both contain m entries, all of which are n+1. So, using the expression for C given in (5.4), we

are able to conclude that the coefficient of R̃ in (et̃)θT̃ is a non-zero multiple of the coefficient

C of R in (et)θT : more precisely

C = (d+ 1)
∑

T ′∼rowT,
π∈Ct:
T ′π=R

sgn(π) = (d+ 1)C . (5.7)

�

To complete the proof of part 1 of Theorem 5.1.1, it remains to prove that the multiplicity

with which Sλ̃ appears as a composition factor in the decomposition of H(mn+1) is bounded

below by the multiplicity of Sλ in the decomposition of H(mn).

Let B ⊆
{
R | R ∈ T

(
λ, (mn)

)}
be a basis for H(mn). Observe that there is a bijection

B → B :=
{

R̃ | R ∈ B
}

defined on set partitions by

R = {X1, X2, . . . , Xn} 7−→
{
X1, X2, . . . , Xn, {mn+ 1, . . . ,mn+m}

}
= R̃.

This is a direct consequence of the construction of R̃ and the definition of the labelling tableau

t̃. So, since B is a basis, and therefore all its elements are distinct, the set partitions which

are elements of B =
{

R̃j

∣∣∣ 1 ≤ j ≤ |B|
}

must also be distinct. It follows that the formal

sum
∑|B|

j=1 βjR̃j is equal to zero only if βj = 0 for all 1 ≤ j ≤ |B|. In other words, B is a

linearly independent set, which can be extended to a basis for H(mn+1).

Suppose that Sλ appears in H(mn) with multiplicity r ≥ 0. By Lemma 4.3.2, there is a

basis
{
θT1 , . . . , θTr

}
for HomCSmn

(
Sλ, H(mn)

)
, where T1, . . . , Tr ∈ T0

(
λ, (mn)

)
.

For a contradiction, assume that
∑r

i=1 αiθT̃i = 0 for some scalars αi, which are not

all zero. It follows that (et̃)
(∑r

i=1 αiθT̃i

)
= 0 and so the coefficient of any basis element

R̃ in (et̃)
(∑r

i=1 αiθT̃i

)
is zero. If we let Ci denote the coefficient of R̃ in (et̃)θT̃i , then∑r

i=1 αiCi = 0. Applying the result in (5.7), each Ci is equal to a certain non-zero multiple

of the coefficient Ci of R in (et)θTi . In particular, Ci = (d + 1)Ci, where d is the number of

digits in the set {1, 2, . . . , n} that appear in precisely columns 1, 2, . . . ,m of R, and so does

not depend on i. Thus, the coefficient of R in (et)
(∑r

i=1 αiθTi
)

is 1
d+1

∑r
i=1 αiCi and so is

also zero. We chose R̃ arbitrarily and so, for all R ∈ T
(
λ, (mn)

)
, R has coefficient zero in

(et)
(∑r

i=1 αiθTi
)
. Hence, (et)

(∑r
i=1 αiθTi

)
= 0. Since et is a generator for the Specht module

Sλ, this implies that
∑r

i=1 αiθTi = 0, which contradicts the assumptions on {αi | 1 ≤ i ≤ r}.

5.4 Proof of part 2 of Theorem 5.1.1

The proof of part 2 of Theorem 5.1.1 proceeds in much the same way as that of part 1.

However, as we saw in Chapter 4, when in the twisted Foulkes setting we must pay particular
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attention to the relabellings of certain tableaux.

We proceed by proving the existence of Sλ̃ as a composition factor in K(mn+1).

Lemma 5.4.1

Under the assumptions of part 2 of Theorem 5.1.1, if for some tableau T ∈ T0

(
λ, (mn)

)
we

have a non-zero CSmn-homomorphism θT : Sλ → K(mn), then
(
θ
T̃

: Sλ̃ → K(mn+1)
)
6= 0.

Proof. Assume that
(
θT : Sλ → K(mn)

)
6= 0. Since Sλ is a cyclic module with generator

et, it follows that (et)θT 6= 0. Pick any basis element R appearing in (et)θT with non-zero

coefficient. Since φ is surjective, there exists R ∈ T
(
λ, (mn)

)
such that φ : R 7→ R. We may

write

(et)θT =
∑

T ′∼rowT

T ′κt =
∑

T ′∼rowT,
π∈Ct

sgn(π)T ′π

and if we isolate R in the sum, then we establish that the coefficient C of R in (et)θT is

C =
∑

T ′∼rowT,
π∈Ct, σ∈Sn:
T ′π=R∗σ

sgn(π) sgn(σ) 6= 0. (5.8)

In the same way, we may obtain an expression for the coefficient C of R̃ in (et̃)θT̃ : we find

that

C =
∑

T ′′∼rowT̃ ,
ρ∈Ct̃, τ∈Sn+1:

T ′′ρ= R̃∗τ

sgn(ρ) sgn(τ).

To prove the lemma, it will suffice to prove that C is non-zero.

We may make the same observation as in the proof of Lemma 5.3.1: that T ′′ ∼row T̃ if

and only if T ′ ∼row T , where T ′ ∈ T
(
λ, (mn)

)
is such that T ′′ = T̃ ′ . Using this observation,

together with the definition of Y in (5.2) and the expression of ρ ∈ Ct̃ as ρ = πy (where

π ∈ Ct and y ∈ Y ), we have that

C =
∑

T ′∼rowT,
π∈Ct, y∈Y,
τ∈Sn+1:

T̃ ′πy=R̃∗τ

sgn(π) sgn(y) sgn(τ).

Take T ′ ∼row T , π ∈ Ct, y ∈ Y and τ ∈ Sn+1 such that T̃ ′πy = R̃ ∗ τ . Since π ∈ Ct, it must

fix row q + 1 of T̃ ′ . Thus, the ∼ construction ensures that T̃ ′π = T̃ ′π and so

T̃ ′πy = R̃ ∗ τ ⇐⇒ T̃ ′πy = R̃ ∗ τ. (5.9)

Further, we are able to conclude that y ∈ Y either fixes row q+ 1 of T̃ ′π or it must swap

every identical entry (which is n+ 1) in row q + 1 with some digit β ∈ B, where

B :=
{
β ∈ {1, . . . , n}

∣∣∣ β appears in precisely the columns 1, . . . ,m of T̃ ′π
}
.
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So, either y ∈ Y is the identity permutation, or y = yβ for β ∈ B (with yβ defined exactly as

in the proof of Lemma 5.3.1). Define Y0

(
T̃ ′π

)
:= {y ∈ Y | y = id or y = yβ for any β ∈ B}.

We have just seen that T̃ ′πy = R̃ ∗ τ implies that y ∈ Y0

(
T̃ ′π

)
, and it is easy to see that

if y ∈ Y0

(
T̃ ′π

)
then T̃ ′πy = R̃ ∗ τ . So we need only sum over y ∈ Y0

(
T̃ ′π

)
and therefore

C =
∑

T ′∼rowT,

π∈Ct, y∈Y0
(
T̃ ′π

)
,

τ∈Sn+1:

T̃ ′πy=R̃∗τ

sgn(π) sgn(y) sgn(τ).

Moreover, if y = id, then T̃ ′π = T̃ ′πy = R̃ ∗ τ . If y = yβ, which swaps every n + 1 in

row q + 1 with some 1 ≤ β ≤ n, then y has the effect of relabelling T̃ ′π by the transposition

((n+ 1) β) ∈ Sn+1 and in this case, T̃ ′πy = R̃ ∗ τ if and only if T̃ ′π ∗ ((n+ 1) β) = R̃ ∗ τ .

At this point, we may write the expression for the coefficient C as

C =
∑

T ′∼rowT,
π∈Ct, τ∈Sn+1,

y=id∈Y0
(
T̃ ′π

)
:

T̃ ′π=R̃∗τ

sgn(π) sgn(y) sgn(τ) +
∑

T ′∼rowT,
π∈Ct, τ∈Sn+1,

y∈Y0
(
T̃ ′π

)
\{id}:

T̃ ′π∗((n+1) β)=R̃∗τ

sgn(π) sgn(y) sgn(τ).

Using the fact that m is odd, we know that if y ∈ Y0

(
T̃ ′π

)
, then sgn(y) = 1 if y = id

and sgn(y) = (−1)m = −1 otherwise. So, we may write C as

C =
∑

T ′∼rowT,
π∈Ct, τ∈Sn+1:

T̃ ′π=R̃∗τ

sgn(π) sgn(τ) −
∑

T ′∼rowT, π∈Ct,
τ∈Sn+1, β∈B:

T̃ ′π∗((n+1) β)=R̃∗τ

sgn(π) sgn(τ). (5.10)

The requirement that T̃ ′π ∗ ((n+ 1) β) = R̃ ∗ τ says that T̃ ′π is a relabelling of R̃. Let

d be the number of digits in the set {1, 2, . . . , n} that appear in precisely columns 1, 2, . . . ,m

of R. By construction of R̃, there are d+ 1 of the digits {1, 2, . . . , n+ 1} in precisely columns

1, 2, . . . ,m of R̃. So, since T̃ ′π is a relabelling of R̃, this forces
∣∣∣Y0

(
T̃ ′π

)
\{id}

∣∣∣ = |B| = d.

Consider the first sum in the right-hand side of (5.10) and observe that T̃ ′π = R̃ ∗ τ
implies that T ′π is a relabelling of R. Indeed, if T̃ ′π = R̃∗τ , then τ must not affect row q+1

of R, otherwise T̃ ′π will not have (n+ 1)s in row q + 1 (which it must do, by the definition

of the ∼ construction). So, there exists a unique σ ∈ Sn which satisfies T ′π = R ∗ σ: take

σ = τ , from which it follows that sgn(σ) = sgn(τ).

Similarly, considering the second sum in the right-hand side of (5.10), we see that

T̃ ′π ∗ ((n+ 1) β) = R̃ ∗ τ implies that T ′π is a relabelling of R. In this case, if we de-
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fine σ ∈ Sn by σ = τ((n+ 1) β), then T ′π = R ∗ σ and sgn(σ) = − sgn(τ). Thus,

C =
∑

T ′∼rowT,
π∈Ct, σ∈Sn:
T ′π=R∗σ

sgn(π) sgn(σ) − |B|
∑

T ′∼rowT,
π∈Ct, σ∈Sn:
T ′π=R∗σ

sgn(π)
(
− sgn(σ)

)

= (d+ 1)
∑

T ′∼rowT,
π∈Ct, σ∈Sn:
T ′π=R∗σ

sgn(π) sgn(σ)

and so, using the expression for C given in (5.8), we are finally able to conclude that the

coefficient of R̃ in (et̃)θT̃ is a non-zero multiple of the coefficient C of R in (et)θT : more

precisely

C = (d+ 1)C . (5.11)

�

To complete the proof of part 2 of Theorem 5.1.1, it remains to prove that the multiplicity

with which Sλ̃ appears as a composition factor in the decomposition of K(mn+1) is bounded

below by the multiplicity of Sλ in the decomposition of K(mn). The proof mirrors of part 1

of Theorem 5.1.1, using Lemma 4.3.5 instead of Lemma 4.3.2.

Remark. Our result in Theorem 5.1.1 also establishes a relationship between terms in the

plethysms s(n) ◦ s(1m) and s(n+1) ◦ s(1m), without any restriction on the parity of m. Indeed,

determining the decomposition of H(mn) and K(mn) into irreducible constituents corresponds

to finding an expression for s(n)◦s(m) and s(1n)◦s(m), respectively, in terms of Schur functions

sλ. Applying the involution ω defined in §3.2, we find that ω(s(n) ◦ s(m)) = s(n) ◦ s(1m) when

m is even and ω(s(1n) ◦ s(m)) = s(n) ◦ s(1m) when m is odd. Since ω(sλ) = sλ′ , (see (3.1)), the

adding of a row of length m described in Theorem 5.1.1 corresponds to adding a column of

length m to a partition labelling a Schur function in the plethysm s(n) ◦ s(1m).

5.5 Proof of Theorem 5.1.2

The approach that we will take in order to prove Theorem 5.1.2 will echo the approach used

in the previous two sections. So, in the setting of Theorem 5.1.2, we begin by establishing

the existence of Sλ̃ as a composition factor of H(mn+a) for any a ≥ 2. Recall that, for this

section, we define λ̃ := (am, λ1, . . . , λ`) and we redefine t̃ and T̃ as in §5.2.2.

Lemma 5.5.1

Under the assumptions of Theorem 5.1.2, if we have
(
θT : Sλ → H(mn)

)
6= 0 for some tableau

T ∈ T0

(
λ, (mn)

)
, then

(
θ
T̃

: Sλ̃ → H(mn+a)
)
6= 0 for any a ≥ 2.

Proof. Assume that
(
θT : Sλ → H(mn)

)
6= 0; it follows that (et)θT 6= 0. Pick any basis

element R appearing with non-zero coefficient C in (et)θT . Since ψ is surjective, there exists
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R ∈ T
(
λ, (mn)

)
such that ψ : R 7→ R. An expression for the coefficient C is

C =
∑

T ′∼rowT,
π∈Ct:
T ′π=R

sgn(π). (5.12)

Fix a ≥ 2. It will suffice to show that the coefficient C of R̃ in (et̃)θT̃ is non-zero, where

C :=
∑

T ′′∼rowT̃ ,
ρ∈Ct̃:
T ′′ρ=R̃

sgn(ρ).

Firstly, recall from §5.2.2 that ρ may be expressed as ρ = πy for some unique π ∈ Ct and

y ∈ Y , the definition of Y being that given in (5.3). Secondly, take T ′′ ∼row T̃ , π ∈ Ct and

y ∈ Y such that T ′′πy = R̃. Entries in row 1 of T ′′πy must have the same pattern as entries in

row 1 of R̃, the latter being 1 . . . 1 2 . . . 2 . . . a . . . a, with m copies of each digit. Also note that

the first row of R̃ is the same as the first row of T̃ . Since there is only one entry in columns

λ1 + 1, . . . , am of T ′′, πy fixes these columns. Hence, entries in columns λ1 + 1, . . . , am of

T ′′ must be a relabelling (by ω ∈ Sa, say) of the entries in columns λ1 + 1, . . . , am of R̃.

Since λ1 < 2m, to preserve the pattern of the first row, we must have the entries in columns

m+ 1, . . . , λ1 in row 1 of T ′′ equal to the entry in columns λ1 + 1, . . . , 2m, which is (2)ω. The

fact that T ′′ ∼row T̃ tells us that there is one remaining digit (repeated m times), which is

the entry in columns 1, . . . ,m of row 1 of T ′′. We conclude that row 1 of T ′′ is of the form

(1)ω (1)ω . . . (1)ω

m copies

(2)ω (2)ω . . . (2)ω

m copies

. . . . . . . . . (a)ω (a)ω . . . (a)ω

m copies

,

where ω ∈ Sa. Entries in the remaining rows of T ′′ are T ′′
(j)
i+1 := T ′

(j)
i + a (where 1 ≤ i ≤ `)

for some T ′ ∼row T , that is, rows 2, 3, . . . , ` + 1 of T̃ ′ . It follows that T ′′ = T̃ ′ ∗ ω, where

ω ∈ Sa ⊆ Sa+n, and so the expression for C becomes

C =
∑

T ′∼rowT, ω∈Sa,
π∈Ct, y∈Y :

(T̃ ′∗ω)πy=R̃

sgn(π) sgn(y).

We must determine the y ∈ Y for which
(
T̃ ′ ∗ ω

)
πy = R̃ holds. Recall that π ∈ Ct fixes

row 1 of T ′′. Therefore,
(
T̃ ′ ∗ ω

)
πy = R̃ if and only if

(
T̃ ′π ∗ ω

)
y = R̃. To preserve the

pattern of row 1 of T̃ ′π ∗ ω, y must either fix row 1; or swap every (1)ω in row 1 with a digit

β ∈ B (and fix every (2)ω, . . . , (a)ω because λ1 < 2m), where

B :=
{
β ∈ {a+ 1, . . . , a+ n}

∣∣∣ β appears in precisely columns 1, 2 . . . ,m of T̃ ′π ∗ ω
}
.
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In other words, if, for all 1 ≤ j ≤ m, a β appears in row bj 6= 1 in column j of T̃ ′π ∗ ω, then

y ∈ Y0 :=
{

id
}
∪
{
yβ :=

∏m

j=1
y

(j)
bj

for any β ∈ B
}
⊆ Y ;

note that Y0 depends on T̃ ′π ∗ ω. In fact,
(
T̃ ′π ∗ ω

)
y =

(
T̃ ′π ∗ ω

)
if and only if y ∈ Y0.

Let d be the number of digits in the set {1, . . . , n} that appear in precisely columns

1, . . . ,m of R. By construction of R̃ and the requirement that T̃ ′π ∗ ω = R̃, we deduce that

|Y0\{id}| = d. Also, since m is even, if y ∈ Y0 then y is even. This knowledge allows us to

write C as

C =
∑

T ′∼rowT,
ω∈Sa, π∈Ct:
T̃ ′π∗ω=R̃

|Y0| sgn(π) = (d+ 1)
∑

T ′∼rowT,
ω∈Sa, π∈Ct:
T̃ ′π∗ω=R̃

sgn(π).

Finally, we should observe that T̃ ′π ∗ ω = R̃ implies that T ′π = R. Conversely, given

any T ′ ∼row T and π ∈ Ct such that T ′π = R, setting T ′′ = T̃ ′ ∗ ω for some ω ∈ Sa we find

that T ′′ ∼row T̃ and, for y ∈ Y0, T ′′πy = T̃ ′π ∗ ω = R̃. Hence, using the expression for C

given in (5.12), we conclude that the coefficient of R̃ in (et̃)θT̃ is a non-zero multiple of the

coefficient C of R in (et)θT : more precisely

C = |Sa|(d+ 1)
∑

T ′∼rowT,
π∈Ct:
T ′π=R

sgn(π) = a!(d+ 1)C . (5.13)

�

It just remains to verify the bound on the multiplicity with which Sλ̃ appears as a com-

position factor in the decomposition of H(mn+a). We will make use of the fact that, if

B ⊆
{
R
∣∣ R ∈ T

(
λ, (mn)

)}
is a basis for H(mn), then the set B :=

{
R̃
∣∣∣ R ∈ B

}
⊆ H(mn+a)

is linearly independent. Indeed, for any a ≥ 2, there exists a bijection B → B defined on set

partitions by

{X1, . . . , Xn} 7→
{
X1, . . . , Xn, {mn+1, . . . ,mn+m}, . . . , {mn+(a−1)m+1, . . . ,mn+am}

}
.

Since elements of B are distinct, elements of B must also be distinct. Thus, the formal sum∑|B|
j=1 βjR̃j is equal to zero only if βj = 0 for all 1 ≤ j ≤ |B|.
If Sλ appears in H(mn) with multiplicity r ≥ 0, then there is a basis

{
θT1 , . . . , θTr

}
for

HomCSmn
(
Sλ, H(mn)

)
, where Ti ∈ T0

(
λ, (mn)

)
for all i. For a contradiction, assume that∑r

i=1 αiθT̃i = 0 for some scalars αi that are not all zero. It follows that (et̃)
(∑r

i=1 αiθT̃i

)
= 0

and so the coefficient of any R̃ in (et̃)
(∑r

i=1 αiθT̃i

)
is zero. If we let Ci denote the coefficient

of R̃ in (et̃)θT̃i , then
∑r

i=1 αiCi = 0. Applying the result in (5.13), Ci = a!(d+ 1)Ci, where d

does not depend on i. Thus, the coefficient of R in (et)
(∑r

i=1 αiθTi
)

is 1
a!(d+1)

∑r
i=1 αiCi and

so is also zero. We chose R̃ arbitrarily and so we have that for all R ∈ T
(
λ, (mn)

)
, R has
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coefficient zero in (et)
(∑r

i=1 αiθTi
)
. Hence, (et)

(∑r
i=1 αiθTi

)
= 0. Since et is a generator for

the Specht module Sλ, this implies that
∑r

i=1 αiθTi = 0, which contradicts the assumptions

on {αi | 1 ≤ i ≤ r}. This completes the proof of Theorem 5.1.2.

5.6 A prime characteristic theorem

Theorem 5.1.1 gives a description of composition factors of H(mn+1) and K(mn+1) over fields

of characteristic zero. It is natural to ask whether anything can be said if instead we work

over fields of prime characteristic p. As it happens, only minor changes need to be made to

Theorem 5.1.1 to obtain such a result if p > n+ 1.

Theorem 5.6.1

Let k be a field of prime characteristic, p > n+1. Let λ = (λ1, λ2, . . . , λ`) be a partition of mn

and let q ∈ N0 be minimal such that 0 ≤ λq+1 ≤ m. Define λ̃ := (λ1, . . . , λq,m, λq+1, . . . , λ`)

if q 6= 0 and λ̃ := (m,λ1, . . . , λ`) if q = 0, so that λ̃ is a partition of m(n + 1). For

T ∈ T0

(
λ, (mn)

)
, define T̃ as in (5.1).

1. Suppose that m is even. If θT is a non-zero element of HomkSmn

(
Sλ, H(mn)

)
, then

θ
T̃
∈ HomkSmn

(
Sλ̃, H(mn+1)

)
is non-zero.

2. Suppose that m is odd. If θT is a non-zero element of HomkSmn

(
Sλ,K(mn)

)
, then

θ
T̃
∈ HomkSmn

(
Sλ̃,K(mn+1)

)
is non-zero.

The requirement that p > n+ 1 is far from desirable. However, since n ∈ N, we avoid the

often troublesome case p = 2. Further, with this condition, the proofs given in §5.3 and §5.4

are sufficient to prove Theorem 5.6.1. Indeed, the only additional thing that we really need

to check is that d+ 1 remains non-zero, but this does not pose us a problem. Recall that d is

defined to be the number of digits in the set {1, 2, . . . , n} which appear in precisely columns

1, 2, . . . ,m of R. The cardinality of the set guarantees that d ≤ n, from which we can deduce

that d+ 1 < p and so cannot be equal to zero. Straightforward modular arithmetic then tells

us that (d+ 1)
∑

sgn(π) 6= 0, and so the result still holds.

It is also possible to prove a result similar to Theorem 5.1.2 over fields of prime charac-

teristic, making some minor adjustments as indicated above.
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Chapter 6

The smallest non-even constituent

of the Foulkes character ϕ(4
n)

For any m,n ∈ N, there is a combinatorial description of the minimal partitions (in the

dominance order) that label irreducible summands of H(mn) [40]. When m is even, there is

a unique minimal constituent of H(mn) – which is, of course, minimal with respect to the

lexicographic order – and this is labelled by the partition (mn). However, in general, these are

the only ‘small’ constituents of H(mn) that can be completely described. In this chapter, we

build on the knowledge about minimal constituents and investigate lexicographically small

constituents of Foulkes modules when m is even.

We will prove that no partition with first part equal to m+1 can label a constituent of the

ordinary Foulkes character ϕ(mn) if m is even. Focusing on the case m = 4, we will also prove

that if λ = (λ1, . . . , λ`) ` 4n labels a summand of ϕ(4n), then either λ1 ≥ 7 or λ has all parts

even. Finally, we will give a complete description of constituents of ϕ(4n) that have λ1 = 7

and λ2 < 7. As a consequence, we prove that when n ≥ 3, the minimal (lexicographically

ordered) summand which has an odd part is labelled by (7, 4n−2, 1).

In the course of this chapter, we will also prove some new results about generalised

Foulkes characters. Of particular note is Theorem 6.2.6, which gives a formula for calculating

multiplicities of constituents of any generalised Foulkes character ϕ
(mn)
ν .

6.1 Preliminaries

In this section, we present some general results, which will be useful in §6.3. We first need a

preliminary lemma.

Lemma 6.1.1

There is only one double coset of Smn−1 and Sm oSn in Smn.
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Proof. If we let e denote the identity element of Smn, then the number of elements in the

double coset (Sm oSn) e (Smn−1) is

| (Sm oSn) e (Smn−1) | = | (Sm oSn) (Smn−1) |

=
|Sm oSn||Smn−1|
| (Sm oSn) ∩Smn−1|

.

Observing that |Sm oSn| = n!(m!)n and

| (Sm oSn) ∩Smn−1| = | (Sm oSn−1)×Sm−1| = |Sm oSn−1||Sm−1|,

a simple computation yields

| (Sm oSn) e (Smn−1) | = n!(m!)n(mn− 1)!

(n− 1)!(m!)n−1(m− 1)!
= (mn)! = |Smn|.

Thus, we conclude that |(Sm oSn)\Smn/Smn−1| = 1. �

With this lemma, we are able to prove a generalisation of the ‘central observation’ needed

for the proof of Lemma 1 in [24], namely Proposition 6.1.2. Subsequently, we will state

a corollary, detailing two important special cases of Proposition 6.1.2, which will be used

repeatedly in this chapter.

Proposition 6.1.2

Let m,n ∈ N and let ν be a partition of n. Define the set

P := {ρ ` n− 1 | [ρ] is obtained by removing a removable node from [ν]}.

If ϕ
(mn)
ν denotes the character afforded by the generalised Foulkes module H

(mn)
ν , then

ϕ(mn)
ν

y
Smn−1

=
∑
ρ∈P

(
ϕ

(mn−1)
ρ × 1Sm−1

)xSmn−1

Sm(n−1)×Sm−1

,

where 1Sm−1 is the trivial character of the symmetric group Sm−1.

Proof. The character ϕ
(mn)
ν

y
Smn−1

is afforded by the module

H(mn)
ν

y
Smn−1

=
(
T (n)(kSm)� Sν

)xSmn

SmoSn

y
Smn−1

.

Using Mackey’s Theorem, together with Lemma 6.1.1, we conclude that

H(mn)
ν

y
Smn−1

∼=
(
T (n)(kSm)� Sν

)y
(SmoSn)∩Smn−1

xSmn−1

=
(
T (n)(kSm)� Sν

)y
(SmoSn−1)×Sm−1

xSmn−1

=
((
T (n−1)(kSm)� (Sν) ↓Sn−1

)
� kSm−1

)xSmn−1

.
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Consequently, an application of the Branching Rule yields

H(mn)
ν

y
Smn−1

∼=

⊕
ρ∈P

T (n−1)(kSm)� Sρ
� kSm−1

xSmn−1

(SmoSn−1)×Sm−1

,

from which, using the properties of induction stated in Lemma 2.1.1, it follows that

H(mn)
ν

y
Smn−1

∼=
⊕
ρ∈P

((
T (n−1)(kSm)� Sρ

)
� kSm−1

)xSm(n−1)×Sm−1

(SmoSn−1)×Sm−1

xSmn−1

Sm(n−1)×Sm−1

=
⊕
ρ∈P

((
T (n−1)(kSm)� Sρ

)xSm(n−1)

SmoSn−1

� kSm−1

)xSmn−1

Sm(n−1)×Sm−1

=
⊕
ρ∈P

(
H(mn−1)
ρ � kSm−1

)xSmn−1

Sm(n−1)×Sm−1

.

The statement of the proposition is precisely the relationship satisfied by the ordinary char-

acters afforded by these modules. �

Corollary 6.1.3

In the setting of Proposition 6.1.2,

1. if ν = (n), so that ϕ
(mn)
ν is the Foulkes character ϕ(mn), then

ϕ(mn)
y
Smn−1

=
(
ϕ(mn−1) × 1Sm−1

)xSmn−1

;

2. if ν = (1n), so that ϕ
(mn)
ν is the twisted Foulkes character τ (mn), then

τ (mn)
y
Smn−1

=
(
τ (mn−1) × 1Sm−1

)xSmn−1

.

We will now prove a result which says that, if m is even, no partition with first part equal

to m + 1 can label a constituent of the Foulkes character ϕ(mn). An analogous result for

twisted Foulkes characters is also given. However, we will only give a detailed proof of the

result in the Foulkes setting, since the twisted Foulkes result is very similar; at the end of the

proof, we indicate the modifications that need to be made to prove the second result.

Proposition 6.1.4

Fix an even natural number, m. Given any n ∈ N, if λ ` mn such that λ1 = m+ 1, then〈
ϕ(mn), χλ

〉
= 0.

If instead we fix m to be an odd natural number, then, under the same assumptions on λ,〈
τ (mn), χλ

〉
= 0.
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Proof. We proceed inductively to prove the first part of the proposition.

The proposition clearly holds when n = 1: in this case, we simply have ϕ(m1) = χ(m). For

some n = r − 1 ≥ 1, assume that no constituent of ϕ(mr−1) is labelled by a partition whose

first part is equal to m+ 1. Consider ϕ(mr) and let λ =
(
(m+ 1)i, λi+1, . . . , λ`

)
` mr, where

i ∈ N is as large as possible.

If λ labels a constituent of ϕ(mr), then all constituents of χλ
y
Smr−1

appear in ϕ(mr)
y
Smr−1

.

By part 1 of Corollary 6.1.3,

ϕ(mr)
y
Smr−1

=
(
ϕ(mr−1) × 1Sm−1

)xSmr−1

.

So, our inductive assumption, together with the fact that
〈
ϕ(mr−1), χ(mr−1)

〉
= 1, allows us

to conclude that

ϕ(mr)
y
Smr−1

=

χ(mr−1) +
∑
µ∈M

aµχ
µ

× 1Sm−1

x
Smr−1

,

where M is the set of partitions which label constituents of ϕ(mr−1) and have first part at

least m+ 2, and aµ denotes the multiplicity with which χµ appears in ϕ(mr−1).

Young’s Rule tells us how to decompose
(
χ(mr−1) × 1Sm−1

)xSmr−1 , yielding

ϕ(mr)
y
Smr−1

=

m−1∑
b=0

χ(m+b,mr−2,m−1−b) +

∑
µ∈M

aµχ
µ × 1Sm−1

x
Smr−1

.

Observe that ϕ(mr)
y
Smr−1

has a unique constituent with first part m, namely χ(mr−1,m−1),

and a unique constituent with first part m + 1, which is χ(m+1,mr−2,m−2). We have three

cases to consider.

Case I (i = 1): In this case, λ = (m + 1, λ2, . . . , λ`) with λ2 ≤ m. An application of

the Branching Rule shows that the only constituent appearing in χλ
y
Smr−1

that has

first part equal to m is χ(m,λ2,...,λ`). It follows that (m,λ2, . . . , λ`) = (mr−1,m − 1)

and therefore that ` = r, λi = m for all 2 ≤ i ≤ ` − 1 and λ` = m − 1. Thus,

λ = (m+ 1,mr−2,m− 1).

Re-examining χλ
y
Smr−1

with r 6= 2, we see that

χλ
y
Smr−1

= χ(mr−1,m−1) + χ(m+1,mr−3, (m−1)2) + χ(m+1,mr−2,m−2),

but χ(m+1,mr−3, (m−1)2) does not appear in ϕ(mr)
y
Smr−1

. Thus,
〈
ϕ(mr), χλ

〉
= 0.

If r = 2, then λ = (m + 1,m − 1) ` 2m. It is immediate from the known decomposi-

tion of ϕ(m2) that
〈
ϕ(m2), χ(m+1,m−1)

〉
= 0, because all irreducible constituents in the

decomposition are labelled by partitions that have two parts, which are both even.
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Case II (i = 2): In this case, λ = ((m + 1)2, λ3, . . . , λ`). If λ3 6= 0, then, applying the

Branching Rule, we see that χ((m+1)2,λ3,...,λ`−1,λ`−1) is a constituent of χλ
y
Smr−1

, but

not a constituent of ϕ(mr)
y
Smr−1

. Thus,
〈
ϕ(mr), χλ

〉
= 0.

If λ3 = 0, then λ = (m+ 1,m+ 1) ` mr for some r ≥ 2. It follows that this is the case

m = 2 and r = 3, but we know that
〈
ϕ(23), χ(3,3)

〉
= 0.

Case III (i ≥ 3): In this case, all constituents of χλ
y
Smr−1

are labelled by partitions which

have at least their first two parts equal to m+ 1. Since no constituent of ϕ(mr)
y
Smr−1

has this property, we are forced to conclude that
〈
ϕ(mr), χλ

〉
= 0.

In all three cases we saw that
〈
ϕ(mr), χλ

〉
= 0. Thus, no constituent of ϕ(mr) is labelled by a

partition with first part equal to m+ 1. The result follows by induction.

The proof of the second part of the proposition, concerning the twisted Foulkes character

τ (mn), is proved in an entirely similar manner, taking m to be odd and using part 2 of

Corollary 6.1.3 instead of part 1. �

In §6.3, we will be turning our attention to constituents of ϕ(4n) that are labelled by

partitions whose first part is equal to six. In light of Proposition 6.1.4, if we are to be

methodical then these are the next constituents of ϕ(4n) in the lexicographic order that

we would like to be able to describe. It is already possible to say something about such

constituents. Indeed, recall Weintraub’s Conjecture, presented in Chapter 3, which asserts

that if m is even, then
〈
ϕ(mn), χ2λ

〉
6= 0 for any partition λ of mn/2.

6.2 A recursive formula for generalised Foulkes characters

In §6.3, we will sharpen Weintraub’s Conjecture in the case where m = 4 and χλ is labelled

by a partition of 4n that has first part equal to six. To do this, we will rely heavily on

Lemma 6.2.8, a recursion formula due to Evseev, Paget and Wildon, which arises as a corollary

of the main theorem in their paper [13, Theorem 1.5]. We will, in fact, prove a more general

version of this lemma, obtaining a recursive formula with which multiplicities of constituents

of any generalised Foulkes character ϕ
(mn)
ν can be computed. We need a few definitions,

which we shall give exactly as in [13], before we can state the result.

If λ/µ is a skew-partition, then we define a border strip tableau of shape λ/µ to be an

assignment of the elements of a set J ⊆ N to the boxes of the Young diagram of λ/µ so that

the entries in the rows and columns are non-decreasing, and for each j ∈ J , the boxes labelled

j form a border strip; if J = {1, . . . , r}, and for each j ∈ J the border strip formed by the

boxes labelled j has length αj , then we say that the tableau has type (α1, . . . , αr). Recall

that the height 〈λ/µ〉 of λ/µ is defined to be one less than the number of its non-empty rows.
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Definition 6.2.1

Let T be a border strip tableau. The sign of T is defined by sgn(T ) = (−1)h, where h is the

sum of the heights of the border strips forming T .

Definition 6.2.2

Let λ/µ be a border strip in a partition λ. If the lowest-numbered row of λ met by λ/µ is row

r then we define the first row number of λ/µ to be r, and write N(λ/µ) = r.

In the next definition it is useful to note that if T is a border strip tableau of shape λ/µ

and type (α1, . . . , αr), then there are partitions

µ = λ0 ⊂ λ1 ⊂ · · · ⊂ λr−1 ⊂ λr = λ

such that for each j ∈ {1, . . . , r}, the border strip in T labelled j is λj/λj−1.

Definition 6.2.3

Let m,n ∈ N and let λ/µ be a skew-partition of mn. Given a composition γ = (γ1, . . . , γd)

of n, let γ?m = (γ1, . . . , γ1, γ2, . . . , γ2, . . . , γd, . . . , γd) denote the composition of mn obtained

from γ by repeating each part m times. An m-border strip tableau of shape λ/µ and type

γ is a border strip tableau of shape λ/µ and type γ?m such that for each j ∈ {1, . . . , d}, the

first row numbers of the border strips

λ(j−1)m+1/λ(j−1)m, . . . , λjm/λjm−1,

corresponding to the m parts in γ?m of length γj, satisfy

N
(
λ(j−1)m+1/λ(j−1)m

)
≥ · · · ≥ N

(
λjm/λjm−1

)
. (6.1)

Example 6.2.4

Let λ = (5, 4, 3, 3, 1), µ = (3, 2, 1), γ = (1, 2, 2), n = 5 and m = 2. There is only one 2-border

strip tableau of shape (5, 4, 3, 3, 1)/(3, 2, 1) and type (1, 2, 2), which is

T =

1 2
4 4

5 6
3 5 6
3

.

In this case, we have N
(
λ5/λ4

)
= 4 = N

(
λ6/λ5

)
, N

(
λ3/λ2

)
= 5 ≥ 2 = N

(
λ4/λ3

)
and

N
(
λ1/λ0

)
= 1 = N

(
λ2/λ1

)
, so condition (6.1) is satisfied. The heights of the border strips

labelled 1, 2, 3, 4, 5, 6 are 0, 0, 1, 0, 1, 1, respectively, and so

sgn(T ) = (−1)3 = −1.

We need one final definition before we state the result.
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Definition 6.2.5

Define the `-sign of λ/µ, denoted by ε`(λ/µ), to be the sign of any m-border strip tableau of

shape λ/µ and type (`).

Remark. There is at most one m-border strip tableau of shape λ/µ and type (`) (see [13,

p.15]).

The next result is the main result of this section: a recursive formula is given, which

allows character multiplicities to be computed for any generalised Foulkes character ϕ
(mn)
ν

that is labelled by a partition ν of n. This result is a generalisation of the recursive formula

for ordinary Foulkes characters, proved by Evseev, Paget and Wildon in [13]. As such, the

proof of Theorem 6.2.6 is modelled on the proof of Proposition 5.1 in [13].

Theorem 6.2.6

Let m,n ∈ N and let ν be a partition of n. If λ ` mn, then〈
ϕ(mn)
ν , χλ

〉
=

1

n

n∑
`=1

∑
µ

ε`(λ/µ)
∑
ρ

(−1)〈ν/ρ〉
〈
ϕ(mn−`)
ρ , χµ

〉
where we sum over partitions µ ⊆ λ for which there exists an m-border strip tableau of shape

λ/µ and type (`), and we sum over ρ such that ν/ρ is a rim `-hook.

Remark. In general, the calculations involved in the computation of a character multiplicity〈
ϕ

(mn)
ν , χλ

〉
will be lengthy. Therefore, we should not rely on such a formula for obtaining

complete decompositions of ϕ
(mn)
ν , especially for large m and n. However, we shall see in the

next section that Theorem 6.2.6 can still be very useful for determining the multiplicity of a

particular irreducible character in the decomposition of ϕ
(mn)
ν .

Proof. If λ ` mn and ν ` n, then using Frobenius Reciprocity followed by inflation-deflation

reciprocity [13, Equation (11)], we have that〈
ϕ(mn)
ν , χλ

〉
=
〈(

Inf SmoSn
Sn

χν
)xSmn

SmoSn , χ
λ
〉

=
〈

Inf SmoSn
Sn

χν , χλ
ySmn
SmoSn

〉
=
〈
χν ,DefSn

(
χλ
ySmn
SmoSn

)〉
.

Since DefSn

(
χλ
ySmn
SmoSn

)
= DefresSn χ

λ (by the definition of DefresSn given in [13, p.3]), it

follows that 〈
ϕ(mn)
ν , χλ

〉
=
〈
χν ,DefresSn χ

λ
〉

=
1

|Sn|
∑
g∈Sn

(
DefresSn χ

λ
)
(g) χν(g).
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For any g ∈ Sn, g and g−1 lie in the same conjugacy class and so χν(g) = χν(g−1) = χν(g).

Furthermore, we may write g ∈ Sn as the product of an `-cycle containing the symbol 1, say

x ∈ S`, and some h ∈ Sn−` which acts on the remaining n− ` symbols. Since the number of

possible `-cycles is (n− 1)!/(n− `)!, we deduce that〈
ϕ(mn)
ν , χλ

〉
=

1

n!

n∑
`=1

(n− 1)!

(n− `)!
∑

h∈Sn−`

(
DefresSn χ

λ
)

(xh)χν(xh),

where x ∈ S` is an `-cycle. Applying Proposition 4.5 of [13] – which says that(
DefresSn χ

λ
)

(xh) =
∑
µ

(
DefresS` χ

λ/µ
)

(x)
(
DefresSn−` χ

µ
)

(h),

where the sum is over µ ⊆ λ with |λ/µ| = m` – gives〈
ϕ(mn)
ν , χλ

〉
=

1

n

n∑
`=1

1

(n− `)!
∑

h∈Sn−`

∑
µ

(
DefresS` χ

λ/µ
)

(x)
(
DefresSn−` χ

µ
)

(h)χν(xh).

Now, using the Murnaghan–Nakayama Rule to decompose χν(xh) as
∑

ρ(−1)〈ν/ρ〉χρ(h) yields

〈
ϕ(mn)
ν , χλ

〉
=

1

n

n∑
`=1

∑
h∈Sn−`

∑
µ

∑
ρ

(−1)〈ν/ρ〉

(n− `)!
(

DefresS` χ
λ/µ
)
(x)
(
DefresSn−` χ

µ
)
(h)χρ(h),

where the third sum is over partitions µ ⊆ λ with |λ/µ| = m`, and the fourth sum is over ρ

such that ν/ρ is a rim `-hook. Proposition 4.3 of [13] shows that

(
DefresS` χ

λ/µ
)
(x) =

ε`(λ/µ) if ∃ an m-border strip tableau of shape λ/µ and type (`);

0 otherwise,

and thus,〈
ϕ(mn)
ν , χλ

〉
=

1

n

n∑
`=1

∑
µ

ε`(λ/µ)
∑
ρ

(−1)〈ν/ρ〉

(n− `)!
∑

h∈Sn−`

(
DefresSn−` χ

µ
)

(h)χρ(h)

=
1

n

n∑
`=1

∑
µ

ε`(λ/µ)
∑
ρ

(−1)〈ν/ρ〉
〈
ϕ(mn−`)
ρ , χµ

〉
,

where, as above, the second sum is over µ ⊆ λ for which there exists an m-border strip tableau

of shape λ/µ and type (`), and the third sum is over ρ such that ν/ρ is a rim `-hook. �

We illustrate the application of the formula with the following example.

Example 6.2.7

Let m = 2 and n = 4. If λ = (5, 2, 1) and ν = (3, 1), then

〈
ϕ

(24)
(3,1), χ

(5,2,1)
〉

=
1

4

4∑
`=1

∑
µ

ε`
(
(5, 2, 1)/µ

)∑
ρ

(−1)〈(3,1)/ρ〉
〈
ϕ(24−`)
ρ , χµ

〉
,
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where we sum over partitions µ ⊆ (5, 2, 1) for which there exists a 2-border strip tableau of

shape (5, 2, 1)/µ and type (`), and we sum over ρ such that (3, 1)/ρ is a rim `-hook.

We look to remove two `-hooks from [5, 2, 1] such that the first row numbers are weakly

increasing and the remaining Young diagram has at most 4− ` rows.

There are four ways to remove two 1-hooks.

µ = (4, 1, 1),

ε1

(
λ/µ

)
= 1

µ = (5, 1),

ε1

(
λ/µ

)
= 1

µ = (4, 2),

ε1

(
λ/µ

)
= 1

µ = (3, 2, 1),

ε1

(
λ/µ

)
= 1

There is no way to remove two 2-hooks from [5, 2, 1] and leave a proper partition. However,

there is one way in which two 3-hooks may be removed.

µ = (2),

ε3

(
λ/µ

)
= −1

There is also no way to remove two 4-hooks from [5, 2, 1] and leave a proper partition.

We now need to determine those ρ for which (3, 1)/ρ is a rim `-hook. We only need to

concern ourselves with ` = 1 and ` = 3, but it is clear that there are no partitions ρ for which

(3, 1)/ρ is a rim 3-hook. The following diagrams detail the possibilities when ` = 1.

ρ = (2, 1), 〈(3, 1)/(2, 1)〉 = 0 ρ = (3), 〈(3, 1)/(3)〉 = 0

Thus,〈
ϕ

(24)
(3,1), χ

(5,2,1)
〉

=
1

4

(〈
ϕ

(23)
(2,1), χ

(4,1,1)
〉

+
〈
ϕ

(23)
(2,1), χ

(5,1)
〉

+
〈
ϕ

(23)
(2,1), χ

(4,2)
〉

+
〈
ϕ

(23)
(2,1), χ

(3,2,1)
〉

+
〈
ϕ

(23)
(3) , χ

(4,1,1)
〉

+
〈
ϕ

(23)
(3) , χ

(5,1)
〉

+
〈
ϕ

(23)
(3) , χ

(4,2)
〉

+
〈
ϕ

(23)
(3) , χ

(3,2,1)
〉)

. (6.2)

At this point, the formula can be used repeatedly to compute character multiplicities that

feature in the sum on the right-hand side of (6.2). For instance, consider
〈
ϕ

(23)
(2,1), χ

(4,1,1)
〉

.

We look to remove two `-hooks from [4, 1, 1] such that the first row numbers are weakly in-

creasing and the remaining Young diagram has at most 3− ` rows.

There is one way in which two `-hooks may be removed for ` = 1, 2 and 3.
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µ = (3, 1),

ε1

(
(4, 12)/µ

)
= 1

µ = (2),

ε2

(
(4, 12)/µ

)
= −1

µ = ∅,
ε3

(
(4, 12)/µ

)
= 1

We now need to determine those ρ for which (2, 1)/ρ is a rim `-hook. There are no

partitions ρ for which (2, 1)/ρ is a rim 2-hook. The following diagrams detail the possibilities

when ` = 1 and ` = 3.

ρ = (12),

〈(2, 1)/(12)〉 = 0

ρ = (2),

〈(2, 1)/(2)〉 = 0

ρ = ∅,
〈(2, 1)/∅〉 = 1

So, the multiplicity of χ(4,1,1) in ϕ
(23)
(2,1) is〈

ϕ
(23)
(3,1), χ

(4,1,1)
〉

=
1

3

(〈
ϕ

(22)
(12)

, χ(3,1)
〉

+
〈
ϕ

(22)
(2) , χ

(3,1)
〉
−
〈
ϕ

(20)
∅ , χ∅

〉)
. (6.3)

Of course, the multiplicities in the sum on the right-hand side of (6.3) can again be computed

using the recursive formula. However, we know that ϕ
(22)
(12)

= χ(3,1) and ϕ
(22)
(2) = χ(4) + χ(2,2).

Also, by convention,
〈
ϕ

(20)
∅ , χ∅

〉
= 1 and so

〈
ϕ

(23)
(3,1), χ

(4,1,1)
〉

=
1

3
(1 + 0− 1) = 0.

Computing the other multiplicities in the sum on the right-hand side of (6.2) in an entirely

similar manner, we find that〈
ϕ

(24)
(3,1), χ

(5,2,1)
〉

=
1

4

(
0 + 0 + 1 + 0 + 1 + 1 + 1 + 0

)
= 1.

Setting ν = (n) in Theorem 6.2.6, we recover the recursive formula proved in [13], a

statement of which is given in the following lemma.

Lemma 6.2.8

Let m,n ∈ N. If λ is a partition of mn, then〈
ϕ(mn), χλ

〉
=

1

n

n∑
`=1

∑
µ

sgn(λ/µ)
〈
ϕ(mn−`), χµ

〉
, (6.4)

where the second sum is over partitions µ of m` such that there exists an m-border strip

tableau of shape λ/µ and type (`).
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6.3 Constituents of ϕ(4n) labelled by partitions with first part

equal to six

In this section, we will focus on the case m = 4. We still need a few more results before

we are able to say something about the smallest non-even constituent of ϕ(4n). The first

of these results addresses constituents of ϕ(4n) that are labelled by partitions whose first

part is equal to six. We can already expect constituents labelled by partitions of the form

λ = (6a, 4b, 2c) (for a, b, c ∈ N0 satisfying a + b + c ≤ n) to appear in the decomposition of

ϕ(4n); this is predicted by Weintraub’s Conjecture. However, we prove that these are the only

partitions with first part equal to six that label constituents appearing in ϕ(4n) with non-zero

multiplicity.

Proposition 6.3.1

Given any n ∈ N, let λ be a partition of 4n with at most n parts and such that λ1 = 6.

1. If λ has an odd part, then
〈
ϕ(4n), χλ

〉
= 0.

2. If λ has all parts even, then
〈
ϕ(4n), χλ

〉
= 1.

Proof. We proceed inductively.

When n = 1, the result is trivially true because the only constituent of ϕ(41) is the trivial

character, χ(4). For some n = r− 1 ≥ 1, assume that the statements of the proposition hold.

We want to apply Lemma 6.2.8 to determine the multiplicity of constituents of ϕ(4r)

labelled by partitions of the form λ = (6a, 4b, 2c), where a, b, c are non-negative integers

satisfying a+ b+ c ≤ r. So, for any given triple (a, b, c) satisfying this condition, we seek the

possible ways in which we can remove four rim hooks of length ` from [λ] – from now on we

will just write `-hooks – such that the first row numbers are non-decreasing. Let [λ∗] be the

Young diagram that remains after the four `-hooks have been removed.

If we remove the four `-hooks from [λ] in such a way as to leave an odd part, then our

inductive assumptions tell us that
〈
ϕ(4r−`), χλ

∗〉
= 0. Similarly, if λ∗ has in excess of r − `

parts, we know that
〈
ϕ(4r−`), χλ

∗〉
= 0. Hence, we only need to worry about the ways to

remove four `-hooks so that all parts of λ∗ are even and the remaining number of parts is at

most r− `, since these are the only partitions that make a non-zero contribution to the sum

on the right-hand side of (6.4). Further, our inductive assumptions ensure that if λ∗ has all

parts even, then
〈
ϕ(4r−`), χλ

∗〉
= 1. To guarantee that all parts of λ∗ are even and that the

first row numbers are non-decreasing, we must always remove hooks ‘in pairs’. By a pair, we

mean two adjacent `-hooks of the same height (see Figure 6.1).

The only possible exceptions can occur when ` = 2 (see the possibilities labelled (vii)–(ix)

below). However, in each of these special cases, the two horizontal 2-hooks have height zero
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a

b

c

a

b

c

Figure 6.1: A pair of `-hooks (left) and two `-hooks of the same height, which do not form a

pair (right).

and so we may as well view them as a pair. We have just indicated the significance of ‘pairing’

up `-hooks: both hooks in the pair have the same height. As a consequence, we always have

sgn(λ/λ∗) = 1. Thus, the task of computing
〈
ϕ(4r), χλ

〉
using Lemma 6.2.8 reduces to a

straightforward combinatorial problem.

We can group the possible ways to remove four `-hooks from
[
6a, 4b, 2c

]
so that no odd

parts remain after their removal and so that the first row numbers are non-decreasing. There

are ten such groups to be considered, labelled (i)–(x) below.

Note that we always insist that a 6= 0, so that λ has first part equal to six. Further, we

will always be looking to satisfy the following parts condition: given 1 ≤ ` ≤ r, the Young

diagram [λ∗] that remains after removing the four `-hooks must have at most r − ` rows. If

the parts condition is not satisfied, then
〈
ϕ(4r), χλ

∗〉
= 0.

a

b

c

(i): This `-hook removal is applicable for

any ` ≤ a whenever the parts condition

a + b + c ≤ r − ` is satisfied. The case

b < ` is allowed.

a

b

c

(ii): This `-hook removal is applicable for

any ` ≤ c 6= 0 whenever the parts condi-

tion a+ b+ c ≤ r is satisfied.
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a

b

c

(iii): This `-hook removal is applicable for

any c + 4 ≤ ` ≤ a whenever the parts

condition a+ b− 2 ≤ r − ` is satisfied.

a

b

c

(iv): This `-hook removal is applicable for

any ` ≤ b 6= 0 whenever the parts condi-

tion a+ b+ c ≤ r is satisfied.

a

b

c

(v): This `-hook removal is applicable for

b + 4 ≤ ` ≤ b + c + 2 whenever the parts

condition a+ b+ c ≤ r is satisfied.

a

b

c

(vi): This `-hook removal is applicable for

b+c+6 ≤ ` ≤ a+b+2 whenever the parts

condition a− 4 ≤ r − ` is satisfied.

a

b

c

(vii): This `-hook removal is applicable

for ` = 2 whenever a ≥ 2 and the parts

condition a+ b+ c ≤ r − 1 is satisfied.

a

b

c

(viii): This `-hook removal is applicable

for ` = 2 whenever b 6= 0 and the parts

condition a+ b+ c ≤ r − 1 is satisfied.
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a

b

c

(ix): This `-hook removal is applicable for

` = 2 whenever c 6= 0 and the parts con-

dition a+ b+ c ≤ r is satisfied.

a

c

(x): This `-hook removal is applicable for

` = c + 3 whenever b = 0 and the parts

condition a ≤ r − 1− (c+ 2) is satisfied.

We benefit from considering the following three cases (and their sub-cases) separately.

For each case, we summarise all possibilities for `-hook removal in tabular form; we discuss

a couple of sub-cases of Case I in full detail to illustrate the reasoning.

Case I (a+ b+ c ≤ r − 2):

In this case, a, b, c must satisfy 6a+ 4b+ 2c = 4r and a+ b+ c ≤ r − 2. It follows that

a ≥ c+ 4, using which we deduce that

1

2
(a+ c) + 2 =

1

2
(a+ c+ 4) ≤ 2a

2
= a. (6.5)

Table 6.1 summarises the possibilities for `-hook removal when b 6= 0.

c ≥ 2 c = 1 c = 0

(i) ` ≤ 1
2 (a− c) ` ≤ 1

2 (a− 1) ` ≤ 1
2a

(ii) 1 ≤ ` ≤ c ` = 1 —

(iii) c+ 4 ≤ ` ≤ 1
2 (a+ c) + 2 5 ≤ ` ≤ 1

2 (a+ 1) + 2 4 ≤ ` ≤ 1
2a+ 2

(iv) 1 ≤ ` ≤ b 1 ≤ ` ≤ b 1 ≤ ` ≤ b
(v) b+ 4 ≤ ` ≤ b+ c+ 2 — —

(vi) b+ c+ 6 ≤ ` ≤ 1
2 (a+ c) + b+ 4 b+ 7 ≤ ` ≤ 1

2 (a− 1) + b+ 4 b+ 6 ≤ ` ≤ 1
2a+ b+ 4

(vii) ` = 2 ` = 2 ` = 2

(viii) ` = 2 ` = 2 ` = 2

(ix) ` = 2 ` = 2 —

(x) — — —

Table 6.1: Possibilities for `-hook removal when a+ b+ c ≤ r − 2 and b 6= 0.

Let us discuss the sub-case b 6= 0, c ≥ 2 in more detail. First observe that if b 6= 0 and

c ≥ 2, then r = 3a
2 + b + c

2 . The only possibility for `-hook removal that we can rule

out completely is shown in diagram (x), since it requires b = 0.
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We can remove `-hooks as shown in diagram (i) for any ` ≤ a provided that the parts

condition holds. However, the parts condition (a + b + c ≤ r − `) is only satisfied if

the hooks have length ` ≤ 1
2(a − c). By contrast, we can remove `-hooks as shown in

diagram (ii) for any 1 ≤ ` ≤ c and the parts condition always holds. We can remove

`-hooks as shown in diagram (iii) if c + 4 ≤ ` ≤ a provided that a + b − 2 ≤ r − `.
This parts condition says that a + b − 2 ≤ 3a

2 + b + c
2 − `, from which it follows that

` ≤ 1
2(a+c)+2. Our earlier observation told us that min

{
a, 1

2(a+c)+2
}

= 1
2(a+c)+2

and thus, we can remove `-hooks as shown in diagram (iii) for values of ` satisfying

c+ 4 ≤ ` ≤ 1
2(a+ c) + 2. The possibility shown in diagram (iv) is straightforward: we

can remove `-hooks for 1 ≤ ` ≤ b and the parts condition is always satisfied. Similarly,

we can remove `-hooks as in diagram (v) for b + 4 ≤ ` ≤ b + c + 2 without violating

the parts condition. The possibility shown in diagram (vi) requires ` ≥ b + c + 6 and

` ≤ a + b + 2. The parts condition a − 4 ≤ r − ` implies that ` ≤ a
2 + b + c

2 + 4,

which we know by (6.5) can never be greater than a+ b+ 2. Therefore, we may remove

`-hooks for values of ` satisfying b+ c+ 6 ≤ ` ≤ 1
2(a+ c) + b+ 4. The remaining three

possibilities, namely (vii)–(ix), are all only possible if ` = 2 and the parts condition

holds automatically.

So, applying Lemma 6.2.8, we find that〈
ϕ(4r), χ(6a,4b,2c)

〉
=

1

r

[
a− c

2
+ c+

(
a+ c

2
+ 2− (c+ 3)

)
+ b+

(
b+ c+ 2− (b+ 3)

)
+

(
a+ c

2
+ b+ 4− (b+ c+ 5)

)
+ 1 + 1 + 1

]
=

1

r

[
3a

2
+ b+

c

2

]
= 1.

If instead we consider the sub-case b 6= 0 and c = 1, then we deduce that a ≥ 5 and

r = 3a
2 +b+ 1

2 . Our reasoning proceeds almost exactly as in the previous case (b 6= 0 and

c ≥ 2), taking c = 1 where appropriate. The only exception is the possibility labelled

(v) which, unlike in the previous case, must be ruled out. Indeed, to remove `-hooks in

the way indicated in diagram (v) we require ` ≤ b + c + 2 = b + 3 and ` ≥ b + 4, but

these cannot both be satisfied.

So, applying Lemma 6.2.8, we find that

〈
ϕ(4r), χ(6a,4b,2)

〉
=

1

r

[
a− 1

2
+ 1 +

(
a+ 1

2
+ 2− 4

)
+ b

+

(
a+ 1

2
+ b+ 4− (b+ 6)

)
+ 1 + 1 + 1

]
=

1

r

[
3a

2
+ b+

1

2

]
= 1.

We omit the details for the sub-case b 6= 0, c = 0, but an application of Lemma 6.2.8
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yields〈
ϕ(4r), χ(6a,4b)

〉
=

1

r

[
a

2
+

(
a

2
+ 2− 3

)
+ b+

(
a

2
+ b+ 4− (b+ 5)

)
+ 1 + 1

]
=

1

r

[
3a

2
+ b

]
= 1.

A similar table (Table 6.2) shows the possibilities for `-hook removal when b = 0.

c ≥ 2 c = 1 c = 0

(i) ` ≤ 1
2 (a− c) ` ≤ 1

2 (a− 1) ` ≤ 1
2a

(ii) 1 ≤ ` ≤ c ` = 1 —

(iii) c+ 4 ≤ ` ≤ 1
2 (a+ c) + 2 5 ≤ ` ≤ 1

2 (a+ 1) + 2 4 ≤ ` ≤ 1
2a+ 2

(iv) — — —

(v) 4 ≤ ` ≤ c+ 2 — —

(vi) c+ 6 ≤ ` ≤ 1
2 (a+ c) + 4 7 ≤ ` ≤ 1

2 (a+ 1) + 4 6 ≤ ` ≤ 1
2a+ 4

(vii) ` = 2 ` = 2 ` = 2

(viii) — — —

(ix) ` = 2 ` = 2 —

(x) ` = c+ 3 ` = 4 ` = 3

Table 6.2: Possibilities for `-hook removal when a+ b+ c ≤ r − 2 and b = 0.

Applying Lemma 6.2.8 for each of the above three cases yields〈
ϕ(4r), χ(6a,2c)

〉
=

1

r

[
a− c

2
+ c+

(
a+ c

2
+ 2− (c+ 3)

)
+ (c+ 2− 3) +

+

(
a+ c

2
+ 4− (c+ 5)

)
+ 1 + 1 + 1

]
=

1

r

[
3a

2
+
c

2

]
= 1,

〈
ϕ(4r), χ(6a,2)

〉
=

1

r

[
a− 1

2
+ 1 +

(
a+ 1

2
+ 2− 4

)
+

(
a+ 1

2
+ 4− 6

)
+ 1 + 1 + 1

]
=

1

r

[
3a

2
+

1

2

]
= 1

and 〈
ϕ(4r), χ(6a)

〉
=

1

r

[
a

2
+

(
a

2
+ 2− 3

)
+

(
a

2
+ 4− 5

)
+ 1 + 1

]
=

1

r

[
3a

2

]
= 1,

when c ≥ 2, c = 1 and c = 0, respectively.

In case I, we used on several occasions the fact that 1
2(a + c) + 2 ≤ a. This inequality only

holds if a+b+c ≤ r−2 and thus, we need to address the case a+b+c > r−2 separately. We

in fact consider the only two remaining cases individually as each of them requires slightly

different treatment.
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Case II (a+ b+ c = r − 1):

In this case, a, b, c must satisfy 6a + 4b + 2c = 4r and a + b + c = r − 1. From these

conditions, we deduce that a = c + 2 (and since c ≥ 0, this means that a ≥ 2). The

possibilities for `-hook removal can be summarised as follows in Table 6.3.

b 6= 0

c ≥ 2 c = 1 c = 0

(i) ` = 1 ` = 1 ` = 1

(ii) 1 ≤ ` ≤ c ` = 1 —

(iii) — — —

(iv) 1 ≤ ` ≤ b 1 ≤ ` ≤ b 1 ≤ ` ≤ b
(v) b+ 4 ≤ ` ≤ b+ c+ 2 — —

(vi) — — —

(vii) ` = 2 ` = 2 ` = 2

(viii) ` = 2 ` = 2 ` = 2

(ix) ` = 2 ` = 2 —

(x) — — —

b = 0

c ≥ 2 c = 1 c = 0

(i) ` = 1 ` = 1 ` = 1

(ii) 1 ≤ ` ≤ c ` = 1 —

(iii) — — —

(iv) — — —

(v) 4 ≤ ` ≤ c+ 2 — —

(vi) — — —

(vii) ` = 2 ` = 2 ` = 2

(viii) — — —

(ix) ` = 2 ` = 2 —

(x) ` = c+ 3 ` = 4 ` = 3

Table 6.3: Possibilities for `-hook removal when a+ b+ c = r − 1.

Thus, applying Lemma 6.2.8 in each of the above sub-cases, we conclude that if b 6= 0

then 〈
ϕ(4r), χ(6c+2,4b,2c)

〉
=

1

r

[
1 + c+ b+

(
b+ c+ 2− (b+ 3)

)
+ 1 + 1 + 1

]
=
b+ 2c+ 3

r
= 1,〈

ϕ(4r), χ(63,4b,2)
〉

=
1

r

[
1 + 1 + b+ 1 + 1 + 1

]
=
b+ 5

r
= 1

and 〈
ϕ(4r), χ(62,4b)

〉
=

1

r

[
1 + b+ 1 + 1

]
=
b+ 3

r
= 1,

when c ≥ 2, c = 1 and c = 0, respectively.

Similarly, if b = 0, then〈
ϕ(4r), χ(6c+2,2c)

〉
=

1

r

[
1 + c+ (c+ 2− 3) + 1 + 1 + 1

]
=

2c+ 3

r
= 1

when c ≥ 2, 〈
ϕ(4r), χ(63,2)

〉
=

1

r

[
1 + 1 + 1 + 1 + 1

]
=

5

r
= 1

when c = 1, and 〈
ϕ(4r), χ(62)

〉
=

3

r
= 1

when c = 0.
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Case III (a+ b+ c = r):

In this case we have that a, b, c must satisfy 6a + 4b + 2c = 4r and a + b + c = r. We

are forced to conclude that c = a 6= 0. The possibilities for `-hook removal are detailed

in Table 6.4.

a = c ≥ 2, a = c = 1, a = c = 1
2r,

b 6= 0 b = r − 2 b = 0

(i) — — —

(ii) 1 ≤ ` ≤ a ` = 1 1 ≤ ` ≤ a
(iii) — — —

(iv) 1 ≤ ` ≤ b 1 ≤ ` ≤ b —

(v) b+ 4 ≤ ` ≤ a+ b+ 2 — 4 ≤ ` ≤ a+ 2

(vi) — — —

(vii) — — —

(viii) — — —

(ix) ` = 2 ` = 2 ` = 2

(x) — — —

Table 6.4: Possibilities for `-hook removal when a+ b+ c = r.

Thus, applying Lemma 6.2.8, we find that when a = c ≥ 2 and b 6= 0:〈
ϕ(4r), χ(6a,4b,2a)

〉
=

1

r

[
a+ b+

(
a+ b+ 2− (b+ 3)

)
+ 1
]

=
2a+ b

r
= 1.

Similarly, when a = c = 1 and b = r − 2, we have〈
ϕ(4r), χ(6,4r−2,2)

〉
=

1

r

[
1 + b+ 1

]
=
b+ 2

r
= 1,

and if a = c = r
2 , b = 0 then〈
ϕ(4r), χ(6r/2,2r/2)

〉
=

1

r

[
a+ a+ 2− 3 + 1

]
=

2a

r
= 1.

In all cases, we saw that
〈
ϕ(4r), χλ

〉
= 1. That is, if λ = (6, λ2, . . .) has at most n parts,

all of which are even, then χλ is a constituent of ϕ(4r) and it appears with multiplicity one.

It remains to verify that, if λ has an odd part, then
〈
ϕ(4r), χλ

〉
= 0. We keep the same

inductive assumptions and let λ = (6, λ2, . . . , λ`) ` 4r be such that λi is odd. Necessarily,

there exists j 6= i satisfying 2 ≤ j ≤ ` such that λj is also odd. We want to show that χλ is

not a constituent of ϕ(4r).

For a contradiction, assume that λ2 6= 6. If χλ is a constituent of ϕ(4r), then all con-

stituents of χλ
y
S4r−1

must appear as constituents of ϕ(4r)
y
S4r−1

. In particular, the Branching
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Rule tells us that χ(5,λ2,...,λ`) is a constituent of ϕ(4r)
y
S4r−1

=
(
ϕ(4r−1) × 1S3

)xS4r−1

. Corol-

lary 2.2.15(1) then tells us that that we must be able to obtain [5, λ2, . . . , λ`] by a Young’s

Rule addition of three boxes to the Young diagram corresponding to a constituent of ϕ(4r−1).

Taking m = 4 in Proposition 6.1.4, we know that no partition with first part equal to

five can label a constituent of ϕ(4r−1). Hence, the only way that we can obtain [5, λ2, . . . , λ`]

by the method described above is if the constituent of ϕ(4r−1) is the minimal constituent,

χ(4r−1). Further, there is only one way to add the three boxes to
[
4r−1

]
without violating the

conditions of Young’s Rule; this possibility is illustrated below.

...
...
...
...

r
[
5, 4r−2, 2

]
=

Thus, we conclude that λ = (6, 4r−2, 2), which is a contradiction because λ must have (at

least) two odd parts. It follows that λ2 = 6.

Maintaining notation, so that λi and λj are odd parts of λ, consider the partition

λ =
(
6q, λq+1, . . . , λi−1, λ

s
i , λi+s, . . . , λj−1, λ

t
j , λj+t, . . . , λ`

)
where 2 ≤ q ≤ i− 1 and s+ t ≥ 2. Note that q is maximal so that λq+1 < 6. We may as well

assume that λi is the first odd part of λ and that none of λi+s, . . . , λj−1 are odd parts of λ.

Let λ] be the partition obtained from λ by removing the last box from row i−1. Crucially,

we note that λ] has at least three odd parts: λi−1 − 1, λi and λj , and the first two of these

are consecutive. The Branching Rule tells us that χλ
]

is a constituent of χλ
y
S4r−1

. However,

we claim that χλ
]

is not a constituent of
(
ϕ(4r−1) × 1S3

)xS4r−1 .

We want to know: from which constituents of ϕ(4r−1) could χλ
]

have arisen? Corol-

lary 2.2.15(1) tells us that we should expect to obtain
[
λ]
]

by a Young’s Rule addition of

three boxes to the Young diagram corresponding to a constituent of ϕ(4r−1). Therefore, we

know that χλ
]

cannot have arisen from χ(4r−1) because we cannot obtain more than one row

of six boxes by adding three boxes to
[
4r−1

]
. We also know that no constituent of ϕ(4r−1) is

labelled by a partition whose first part is equal to five (Proposition 6.1.4). Further, by the

inductive hypothesis, there are no odd parts in any partition labelling a constituent of ϕ(4r−1)

that has first part equal to six. Thus, we just need to consider constituents of ϕ(4r−1) of the

form χ(6a,4b,2c), where a, b, c are non-negative integers such that 6a+ 4b+ 2c = 4(r− 1), and

ask whether it is possible to obtain
[
λ]
]

from a Young diagram corresponding to a partition

of the form (6a, 4b, 2c) without violating the conditions imposed by Corollary 2.2.15(1). The

following diagram indicates places where the boxes may be added using the symbol ×.
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...
...

...
...
...
...

...
...
...
...
...
...

a

b

c

× × ×

× ×

× ×

× ×

Since λ] has first part equal to six, the boxes are not added to a row of length six in

[6a, 4b, 2c]; we must obtain
[
λ]
]

by adding boxes in rows a+ 1, b+ 1 or c+ 1. Moreover, the

conditions of Young’s Rule do not permit us to add three boxes to [6a, 4b, 2c] in such a way

as to obtain two odd parts of the same size. However, we know that λ] has at least three odd

parts and that the first two are consecutive, so the only candidate for λ] is (6a, 5, 3, 2c−1, 1),

which is obtained by a Young’s rule addition of three boxes to [6a, 4, 2c].

...
...

...
...
...
...
...
...

a

c

Moreover, this means that s = t = 1, i = a+ 2 and j = ` = a+ c+ 2, from which we conclude

that λ = (6a+1, 3, 2c−1, 1), with a, c ≥ 1.

Assume now, for a contradiction, that c ≥ 2. In this case, the Branching Rule tells us

that χ(6a+1,3,2c−2,12) is a constituent of χλ
y
S4r−1

. However, this cannot be a constituent of(
ϕ(4r−1) × 1S3

)xS4r−1 ; if it were, then, by the same reasoning as given earlier, we must be

able to obtain
[
6a+1, 3, 2c−2, 12

]
by a Young’s Rule addition of three boxes to a constituent

labelled by a partition of 4(r − 1) with all even parts. Clearly this cannot happen, since

creating the two parts of size one would require two boxes to have been added in the same

column. Hence, we are forced to conclude that c = 1.

We are left considering the possibility that λ =
(
6a+1, 3, 1

)
with a ≥ 1. Recall that λ is

a partition of 4r. Certainly, λ can only take the above form if a satisfies 3(a+ 1) = 2(r− 1).

If such an a exists, then we claim that
〈
ϕ(4r), χλ

〉
= 0.

For a contradiction, assume that m(6a+1,3,1) :=
〈
ϕ(4r), χ(6a+1,3,1)

〉
6= 0, with a ≥ 1. Ap-

plying the Branching Rule, it follows that χ(6a+1,2,1) is a constituent of χ(6a+1,3,1)y
S4r−1

and

hence, is also a constituent of ϕ(4r)
y
S4r−1

.
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From our earlier calculations we know that m(6a+1,22) :=
〈
ϕ(4r), χ(6a+1,22)

〉
= 1. Indeed,

the partition (6a+1, 22) has all parts even and there exists, by assumption, a ≥ 1 such that

3(a+ 1) = 2(r − 1). Further,

χ(6a+1,22)y
S4r−1

= χ(6a,5,22) + χ(6a+1,2,1),

and thus we deduce that〈
ϕ(4r)

y
S4r−1

, χ(6a+1,2,1)
〉
≥ m(6a+1,3,1) +m(6a+1,22) = m(6a+1,3,1) + 1. (6.6)

By part 1 of Corollary 6.1.3, ϕ(4r)
y
S4r−1

=
(
ϕ(4r−1) × 1S3

)xS4r−1 . For comparison, we

need to determine the multiplicity of χ(6a+1,2,1) in
(
ϕ(4r−1)×1S3

)xS4r−1 . This means that we

need to identify the ways in which
[
6a+1, 2, 1

]
may be obtained by a Young’s Rule addition

of three boxes to the Young diagram corresponding to a constituent of ϕ(4r−1). The only

possible constituent is χ(6a,4,2), with the boxes added as shown in the diagram below.

...
...
...
...
...
...

a

We deduce that χ(6a+1,2,1) appears in
(
ϕ(4r−1) × 1S3

)xS4r−1 with multiplicity equal to the

multiplicity with which χ(6a,4,2) appears in ϕ(4r−1). Since (6a, 4, 2) is an even partition, our

inductive assumptions tells us that
〈
ϕ(4r−1), χ(6a,4,2)

〉
= 1 and therefore that

1 =
〈(
ϕ(4r−1) × 1S3

)xS4r−1 , χ(6a+1,2,1)
〉

=
〈
ϕ(4r)

y
S4r−1

, χ(6a+1,2,1)
〉
. (6.7)

Finally, (6.6) and (6.7) allow us to deduce that m(6a+1,3,1) = 0, which is a contradiction.

It follows immediately that the entire statement of the proposition holds for n = r and thus,

by induction, the proposition is proved. �

6.4 The smallest non-even constituent of ϕ(4n)

We now state and prove the main theorem of this chapter.

Theorem 6.4.1

Let n be any natural number and let λ = (λ1, . . . , λ`) ` 4n. If
〈
ϕ(4n), χλ

〉
6= 0, then either

λ1 ≥ 7 or λ has all parts even.
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Proof. Proposition 3.4.2 tells us that
〈
ϕ(4n), χ(4n)

〉
= 1 and the partition (4n) is clearly

minimal. Noting that (4n) is the largest (lexicographically ordered) partition that has first

part equal to four, the theorem follows from this fact, together with Proposition 6.1.4 and

Proposition 6.3.1. �

We now present a description of the constituents of ϕ(4n) that have first part equal to

seven and all subsequent parts strictly less than seven. Following this, we will be able to

identify the lexicographically smallest non-even constituent of ϕ(4n).

Proposition 6.4.2

Assume that λ =
(
7, λ2, . . . , λ`

)
` 4n with λ2 < 7.

• If λ2 < 4, then
〈
χλ, ϕ(4n)

〉
= 0.

• If λ2 = 4, then either λ = (7, 4n−2, 1) with n ≥ 2, in which case
〈
χλ, ϕ(4n)

〉
= 1; or

otherwise
〈
χλ, ϕ(4n)

〉
= 0.

• If λ2 = 5, then either λ = (7, 5, 4n−4, 3, 1) with n ≥ 4, in which case
〈
χλ, ϕ(4n)

〉
= 1; or

otherwise
〈
χλ, ϕ(4n)

〉
= 0.

• If λ2 = 6, then

– when n ≥ 5,
〈
χ(7,6a,5,4b,2c), ϕ(4n)

〉
= 1 for any a, c ∈ N and b ∈ N0 satisfying

a+ b+ c+ 2 < n and 6 + 3a+ 2b+ c = 2n;

– when n ≥ 4,
〈
χ(7,6a,4b,3,2c), ϕ(4n)

〉
= 1 for any a ∈ N and b, c ∈ N0 satisfying

a+ b+ c+ 2 < n and 5 + 3a+ 2b+ c = 2n;

– when n ≥ 4,
〈
χ(7,6a,4b,2c,1), ϕ(4n)

〉
= 1 for any a, b ∈ N and c ∈ N0 satisfying

a+ b+ c+ 2 ≤ n and 4 + 3a+ 2b+ c = 2n;

– when n ≥ 6,
〈
χ(7,6a,5,4b,3,2c,1), ϕ(4n)

〉
= 1 for any a ∈ N and b, c ∈ N0 satisfying

a+ b+ c+ 4 ≤ n and 8 + 3a+ 2b+ c = 2n;

otherwise
〈
χλ, ϕ(4n)

〉
= 0.

When proving this proposition, will will repeatedly use the same strategy, so we outline

our approach here and present some notation which will simplify the proof. For a partition

λ = (7, λ2, . . . , λ`) of 4n with λ2 < 7, we will want to determine mλ :=
〈
ϕ(4n), χλ

〉
. To do

this, we will pick a constituent of χλ
y
S4n−1

, say χλ
]
, where λ] ` 4n − 1, and look at its

multiplicity in both ϕ(4n)
y
S4n−1

and (ϕ(4n−1) × 1S3)
xS4n−1 . Let

I
(
λ]
)

:=
{
ρ ` 4n

∣∣∣ 〈χρyS4n−1
, χλ

]
〉

= 1 and mρ :=
〈
ϕ(4n), χρ

〉
6= 0
}
\{λ}.

Also define

J
(
λ]
)

:=
{
µ ` 4(n− 1)

∣∣∣ 〈(χµ × 1S3)
xS4n−1 , χλ

]
〉

= 1 and mµ :=
〈
ϕ(4n−1), χµ

〉
6= 0
}
.
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By part 1 of Corollary 6.1.3, we know that〈
ϕ(4n)

y
S4n−1

, χλ
]
〉

=
〈

(ϕ(4n−1) × 1S3)
xS4n−1 , χλ

]
〉
,

from which it follows that

mλ +
∑

ρ∈I(λ])

mρ =
∑

µ∈J (λ])

mµ. (6.8)

We will use this equation to calculate mλ.

Proof. Fix n ∈ N and let λ = (7, λ2, . . . , λ`) ` 4n with λ2 < 7. Suppose that λ labels a

constituent of ϕ(4n). We know that λ can have at most one part of each odd size, otherwise

the Young diagram corresponding to χ(6,λ2,...,λ`) (which appears in the restriction of χλ to

S4n−1) cannot be obtained by adding three boxes to the Young diagram corresponding to a

constituent of ϕ(4n−1) without violating the condition for Young’s Rule that no two boxes are

added in the same column. Furthermore, λ must have an even number of odd parts and so

either precisely one of λ2, . . . , λ` is odd, or else λ must have four odd parts: λ1 = 7, a part

of size five, a part of size three and a part of size one.

If λ2 < 4, then λ = (7, 3a, 2b, 1c) for some a, c ∈ {0, 1} and b ∈ N0 satisfying the conditions

7+3a+2b+c = 4n and a+b+c+1 ≤ n. It is not hard to check that the only valid partitions

of 4n for which these constraints hold are λ = (7, 3, 2) with n = 3 and λ = (7, 1) with n = 2.

However, any constituent of ϕ(42) has at most two parts, both of which are even. Thus,〈
ϕ(42), χ(7,1)

〉
= 0. To rule out the possibility that λ = (7, 3, 2) labels a constituent of ϕ(43),

we appeal to the work of Dent and Siemons in [11]: a straightforward application of part (i)

of their Theorem 4.1 reveals that
〈
ϕ(43), χ(7,3,2)

〉
= 0.

Let us now consider the case λ2 = 4: it is clear that λ with this property must have

exactly two odd parts.

• If λ2 = 4 and the two odd parts of λ are of size seven and size one, then λ = (7, 4a, 2b, 1)

for some a ∈ N and b ∈ N0 satisfying a+b+2 ≤ n and 4+2a+b = 2n. These conditions

on a and b are only both satisfied if b = 0. Hence, the only possibility is λ = (7, 4n−2, 1)

for some n ≥ 3.

Choose λ] = (6, 4n−2, 1). It is easy to see that

I
(
λ]
)

=
{(

6, 4n−2, 2
)}

and J
(
λ]
)

=
{(

6, 4n−3, 2
)
,
(
4n−1

)}
.

Using Proposition 6.3.1 and the fact that
〈
ϕ(4n−1), χ(4n−1)

〉
= 1, the equation (6.8)

allows us to conclude that mλ = 1 + 1− 1 = 1.

• If λ2 = 4 and λ has precisely two odd parts, one of size seven and one of size three, then

λ = (7, 4a, 3, 2b) for some a ∈ N and b ∈ N0 satisfying a+ b+ 2 ≤ n and 5 + 2a+ b = 2n.
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We conclude from these conditions on a and b that b ≤ 1. However, it is not possible to

find a such that λ ` 4n when b = 0 and so we are left considering the possibility that

λ = (7, 4n−3, 3, 2) for some n ≥ 4.

Choosing λ] = (6, 4n−3, 3, 2), we find that

I
(
λ]
)

=
{(

6, 4n−2, 2
)}

and J
(
λ]
)

=
{(

6, 4n−3, 2
)}
.

Hence, by Proposition 6.3.1 and (6.8), we deduce that mλ = 1− 1 = 0.

Let us now consider partitions λ = (7, 5, λ3, . . . , λ`) of 4n. If λ of this form has precisely

two odd parts, then λ = (7, 5, 4a, 2b) for some a, b ∈ N0 satisfying 6 + 2a + b = 2n and

a+ b+ 2 ≤ n. It follows from these conditions that b ≤ 2. If b = 1, then it is not possible to

find a such that λ ` 4n, so we just need to consider b = 2 and b = 0. Note that χλ cannot be

a constituent of ϕ(4n) if n < 3, since then λ 0 4n. In fact, when b = 2, we actually require

n ≥ 4 to guarantee that λ ` 4n.

• If b = 0, then it must be that λ = (7, 5, 4n−3) for some n ≥ 3. In this case, we choose

λ] = (6, 5, 4n−3) and thus, I
(
λ]
)

=
{(

62, 4n−3
)}

and J
(
λ]
)

=
{(

6, 4n−3, 2
)}

. Using

Proposition 6.3.1, it follows from (6.8) that mλ = 1− 1 = 0.

• If b = 2, then λ = (7, 5, 4n−4, 22) for n ≥ 4. Choose λ] = (6, 5, 4n−4, 22) and observe

that I
(
λ]
)

=
{(

62, 4n−4, 22
)}

. Partitions µ ∈ J
(
λ]
)

can have at most n − 1 parts,

otherwise mµ = 0. So, this means that there is only one possibility for µ: we have

J
(
λ]
)

=
{(

6, 4n−3, 2
)}

. Using Proposition 6.3.1 and (6.8), we find that mλ = 1−1 = 0.

If λ2 = 5 and λ has four odd parts, then clearly λ = (7, 5, 4a, 3, 2b, 1) for some a, b ∈ N0

satisfying 8 + 2a+ b = 2n and a+ b+ 4 ≤ n. It is not hard to show that these conditions are

only both satisfied when b = 0 (and thus a = n − 4). Hence, if n < 4, it is immediate that〈
χλ, ϕ(4n)

〉
= 0.

Assuming that n ≥ 4, we have λ = (7, 5, 4n−4, 3, 1). Choose λ] = (6, 5, 4n−4, 3, 1). In this

case, I
(
λ]
)

= ∅ and J
(
λ]
)

=
{(

6, 4n−3, 2
)}

. Hence, Proposition 6.3.1 and (6.8) lead us to

conclude that mλ = 1− 0 = 1.

If λ2 = 6, then we have four cases to consider.

• If λ = (7, 6, λ3, . . . , λ`) has two odd parts, the second of which is five, then λ takes the

form λ = (7, 6a, 5, 4b, 2c) for some a ∈ N and b, c ∈ N0 satisfying 6 + 3a + 2b + c = 2n

and a+ b+ c+ 2 ≤ n. It is clear that if n < 3, then λ 0 4n. Since we require a 6= 0 to

avoid overlapping with a case that we have already considered, we restrict our attention

to n ≥ 5. Choose λ] = (6a+1, 5, 4b, 2c).
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It is clear that I
(
λ]
)

=
{(

6a+2, 4b, 2c
)}

, but we need to take care when determining

J
(
λ]
)
. We find that

J
(
λ]
)

=


{(

6a+1, 4b, 2
)}

if c = 0 and a+ b+ 2 < n;{(
6a+1, 4b, 2c+1

)
,
(
6a+1, 4b+1, 2c−1

)}
if c 6= 0 and a+ b+ c+ 2 < n;{(

6a+1, 4b+1, 2c−1
)}

if c 6= 0 and a+ b+ c+ 2 = n.

Indeed, the following diagrams indicate when and how
[
6a+1, 5, 4b, 2c

]
may be obtained

by a Young’s Rule addition of three boxes to
[
6a+1, 4b+1, 2c−1

]
and

[
6a+1, 4b, 2c+1

]
.

...
...

...
...
...
...

...
...
...
...
...
...a+ 1

b

c

This is possible if

a+ b+ c+ 2 < n.

...
...

...
...
...
...

...
...
...
...
...
...a+ 1

b

c

This is possible if c 6= 0 and

a+ b+ c+ 1 < n.

Note that, when the conditions c = 0 and a + b + 2 = n are both satisfied, that fact

that λ = (7, 6a, 5, 4b) must be a partition of 4n leads us to deduce that a = −2, which

is impossible.

So, applying Proposition 6.3.1, we deduce from (6.8) that

mλ =


1− 1 = 0 if c = 0 and a+ b+ 2 < n;

2− 1 = 1 if c 6= 0 and a+ b+ c+ 2 < n;

1− 1 = 0 if c 6= 0 and a+ b+ c+ 2 = n.

• If λ = (7, 6, λ3, . . . , λ`) has two odd parts, the second of which is three, then λ takes the

form λ = (7, 6a, 4b, 3, 2c) for some a ∈ N and b, c ∈ N0 satisfying 5 + 3a + 2b + c = 2n

and a+ b+ c+ 2 ≤ n. We restrict our attention to n ≥ 4 to ensure that λ ` 4n.

Choose λ] = (6a+1, 4b, 3, 2c). It follows that I
(
λ]
)

=
{(

6a+1, 4b+1, 2c
)}

and that

J
(
λ]
)

=


{(

6a, 4b+1, 2
)
,
(
6a+1, 4b

)}
if c = 0 and a+ b+ 2 < n;{(

6a+1, 4b, 2c
)
,
(
6a, 4b+1, 2c+1

)}
if c 6= 0 and a+ b+ c+ 2 < n;{(

6a+1, 4b, 2c
)}

if c 6= 0 and a+ b+ c+ 2 = n.
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Again, we need not worry about the case c = 0 and a+ b+ 2 = n, since then, the fact

that λ = (7, 6a, 4b, 3) must be a partition of 4n forces a = −1, which is not possible.

Consequently,

mλ =

2− 1 = 1 if c ∈ N0 and a+ b+ c+ 2 < n;

1− 1 = 0 if c 6= 0 and a+ b+ c+ 2 = n.

• If λ = (7, 6, λ3, . . . , λ`) has two odd parts, the second of which is one, then λ takes the

form λ = (7, 6a, 4b, 2c, 1) for some a ∈ N and b, c ∈ N0 satisfying 4 + 3a + 2b + c = 2n

and a+ b+ c+ 2 ≤ n. We restrict our attention to n ≥ 4 to ensure that λ ` 4n.

Choose λ] = (6a+1, 4b, 2c, 1). In this case, I
(
λ]
)

=
{(

6a+1, 4b, 2c+1
)}

and

J
(
λ]
)

=


{(

6a, 4, 2c
)}

if b = 0 and a+ c+ 1 < n;{(
6a+1, 4b−1, 2c+1

)
,
(
6a, 4b+1, 2c

)}
if b 6= 0 and a+ b+ c+ 1 < n.

Thus,

mλ =

1− 1 = 0 if b = 0 and a+ c+ 1 < n;

2− 1 = 1 if b 6= 0 and a+ b+ c+ 1 < n.

• If λ2 = 6 and λ has four odd parts, then λ is of the form (7, 6a, 5, 4b, 3, 2c, 1) for some

a ∈ N and b, c ∈ N0 satisfying 8 + 3a+ 2b+ c = 2n and a+ b+ c+ 4 ≤ n. It is not hard

to see that we require n ≥ 6 to ensure that λ ` 4n and thus, if n < 6, it is immediate

that
〈
ϕ(4n), χλ

〉
= 0.

Choose λ] = (6a+1, 5, 4b, 3, 2c, 1). In this case, we have

I
(
λ]
)

= ∅ and J
(
λ]
)

=
{(

6a+1, 4b+1, 2c+1
)}
.

Hence, mλ = 1− 0 = 1. �

Using Theorem 6.4.1 and Proposition 6.4.2, we can conclude that S(7,4n−2,1) must be the

smallest non-even constituent of H(4n) when n ≥ 3. Moreover, it appears with multiplicity

one.

We conclude this chapter by illustrating Proposition 6.4.2 with the following example, in

which we determine explicitly the constituents χλ of ϕ(46) that are labelled by a partition

with (necessarily) at most six parts, satisfying λ1 = 7 and λ2 < 7.

Example 6.4.3

If n = 6, then Proposition 6.4.2 tells us that
〈
ϕ(46), χ(7,44,1)

〉
= 1 and

〈
ϕ(46), χ(7,5,42,3,1)

〉
= 1.

Moreover, these are the only constituents of ϕ(46) (appearing with non-zero multiplicity) that

are labelled by a partition satisfying λ1 = 7 and λ2 ≤ 5.

To determine all constituents χλ of ϕ(46) that are labelled by a partition satisfying λ1 = 7

and λ2 = 6, there are several cases to consider:
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• For λ = (7, 6a, 5, 4b, 2c), the only tuple (a, b, c) ∈ N × N0 × N satisfying the conditions

a+ b+ c+ 2 < 6 and 6 + 3a+ 2b+ c = 12 is (1, 1, 1).

• For λ = (7, 6a, 4b, 3, 2c), the tuples (a, b, c) ∈ N×N0 ×N0 that satisfy a+ b+ c+ 2 < 6

and 5 + 3a+ 2b+ c = 12 are (2, 0, 1) and (1, 2, 0).

• For λ = (7, 6a, 4b, 2c, 1), the tuples (a, b, c) ∈ N × N × N0 for which a + b + c + 2 ≤ 6

and 4 + 3a+ 2b+ c = 12 hold are (1, 2, 1) and (2, 1, 0).

• Finally, for λ = (7, 6a, 5, 4b, 3, 2c, 1), the only tuple (a, b, c) ∈ N×N0×N0 satisfying the

conditions a+ b+ c+ 4 ≤ 6 and 8 + 3a+ 2b+ c = 12 is (1, 0, 1).

Thus, Proposition 6.4.2 allows us to conclude that〈
ϕ(46), χ(7,6,5,4,2)

〉
= 1,〈

ϕ(46), χ(7,6,6,3,2)
〉

= 1,

〈
ϕ(46), χ(7,6,4,4,3)

〉
= 1,〈

ϕ(46), χ(7,6,4,4,2,1)
〉

= 1,

〈
ϕ(46), χ(7,6,6,4,1)

〉
= 1,〈

ϕ(46), χ(7,6,5,3,2,1)
〉

= 1

and that this is an exhaustive list of constituents arising with non-zero multiplicity in ϕ(46)

that are labelled by a partition satisfying λ1 = 7 and λ2 = 6.

6.5 Conjectures

We conjecture the following more general statements about near-minimal constituents of

ϕ(mn) and τ (mn), which extend the results proved in Proposition 6.3.1.

Conjecture 6.5.1

Given any m ∈ N that is even, and any n ∈ N, let λ ` mn with at most n parts, such that

λ1 = m+ 2.

1. If λ has an odd part, then
〈
ϕ(mn), χλ

〉
= 0.

2. If λ has all parts even, then
〈
ϕ(mn), χλ

〉
= 1.

Choose m ∈ N that is odd, but let n and λ satisfy the same conditions as above.

1. If λ has an even part, then
〈
τ (mn), χλ

〉
= 0.

2. If λ has all parts odd, then
〈
τ (mn), χλ

〉
= 1.

We expect the proof of this conjecture to be similar to that of Proposition 6.3.1, but

requiring a more extensive case-by-case analysis to cope with any even natural number m. A

slightly different treatment may be required to prove the part of the conjecture concerning

twisted Foulkes characters, though modelling it on the proof of Proposition 6.3.1 should still

be possible.
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We also make the following conjecture, concerning the lexicographically smallest con-

stituents of ϕ(mn) (with m even) and τ (mn) (with m odd) that have an odd part and an even

part, respectively. The data provided in Appendix C supports the conjecture.

Conjecture 6.5.2

If m > 3 is even and n ≥ 3, then the lexicographically smallest constituent of ϕ(mn) that has

an odd part is

χ(m+3,m(n−2),m−3).

Similarly, if m ≥ 3 is odd and n ≥ 3, then the lexicographically smallest constituent of τ (mn)

that has an even part is

χ(m+3,m(n−2),m−3).
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Chapter 7

The decomposition of ϕ
(2n)
ν

In Chapter 3, we presented the explicit decompositions of the Foulkes character ϕ(2n) = ϕ
(2n)
(n)

(Theorem 3.2.3) and the twisted Foulkes character τ (2n) = ϕ
(2n)
(1n) (Theorem 3.3.1). In this

chapter, we extend these known results when m = 2, giving formulae for the decomposition of

ϕ
(2n)
ν when ν is a partition that has two rows or two columns, or is a hook partition. Whilst

these formulae allow us to decompose the character, information about multiplicities is not

immediately visible. For this reason, we will also derive the complete explicit decomposition

of ϕ
(2n)
ν in a few special cases that are particularly elegant. We will see from the explicit

decompositions that, in general, ϕ
(2n)
ν does not exhibit the multiplicity free property possessed

by the characters ϕ
(2n)
(n) and ϕ

(2n)
(1n).

The results presented in this chapter are the outcome of joint work with Rowena Paget.

7.1 The decomposition when ν is a two-row partition

The principal result of this section is the following theorem, which provides a formula for the

decomposition of the character ϕ
(2n)
ν when ν = (n− r, r). The character multiplicities in the

decomposition are given in terms of Littlewood–Richardson coefficients.

Theorem 7.1.1

The character ϕ
(2n)
(n−r,r) decomposes as

ϕ
(2n)
(n−r,r) =

∑
λ`2n

∑
α,β

cλ2α,2β −
∑
γ,δ

cλ2γ,2δ

χλ,

where the second sum is over partitions α of n− r, β of r, γ of n− r + 1 and δ of r − 1.

The proof of this result and many of the subsequent results in this chapter will make use

of the following lemma, which can be viewed as a corollary of Lemma 2.3.1.
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§7.1. The decomposition when ν is a two-row partition

Lemma 7.1.2

If ν ` n− r and µ ` r, then(
ϕ(mn−r)
ν × ϕ(mr)

µ

)xSmn

Sm(n−r)×Smr
=
∑
λ`n

cλν,µϕ
(mn)
λ .

Proof. An application of Lemma 2.3.1 with M = kSm , λ1 = ν ` n− r and λ2 = µ ` r yields(
T ν(kSm)⊗ Tµ(kSm)

)xSmoSn

(SmoSn−r)×(SmoSr)
∼=
⊕
λ`n

cλν,µT
λ(kSm).

Inducing further, up to Smn, and using properties of induction detailed in Lemma 2.1.1, it

follows that(
T ν(kSm)⊗ Tµ(kSm)

)xSmn

(SmoSn−r)×(SmoSr)
∼=
⊕
λ`n

cλν,µ T
λ(kSm)

xSmn
SmoSn .

Exploiting the properties of induction further, we can rewrite the left-hand side of the above

isomorphism as (
Tµ(kSm)⊗ Tµ(kSm)

)xSm(n−r)×Smr

(SmoSn−r)×(SmoSr)

xSmn

Sm(n−r)×Smr
;

it then follows that (
H(mn−r)
ν ⊗H(mr)

µ

)xSmn

Sm(n−r)×Smr
∼=
⊕
λ`n

cλν,µH
(mn)
λ .

The result in the statement of the lemma is simply the relationship satisfied by the corre-

sponding ordinary characters. �

Proof of Theorem 7.1.1. Setting m = 2, ν = (n− r) and µ = (r) in Lemma 7.1.2 yields(
ϕ

(2n−r)
(n−r) × ϕ

(2r)
(r)

)xS2n

S2(n−r)×S2r

=
∑
λ`n

cλ(n−r),(r)ϕ
(2n)
λ

= ϕ
(2n)
(n−r,r) + ϕ

(2n)
(n−r+1,r−1) + · · ·+ ϕ

(2n)
(n−1,1) + ϕ

(2n)
(n) ,

since cλ(n−r),(r) = 1 if and only if [λ] can be obtained from [n− r] by a Young’s Rule addition

of r boxes, and zero otherwise. From an entirely similar application of Lemma 7.1.2, we

conclude that(
ϕ

(2n−r+1)
(n−r+1) × ϕ

(2r−1)
(r−1)

)xS2n

S2(n−r+1)×S2(r−1)

= ϕ
(2n)
(n−r+1,r−1) + · · ·+ ϕ

(2n)
(n−1,1) + ϕ

(2n)
(n) ,

and thus, using the known decomposition of the Foulkes character ϕ
(2k)
(k) , we obtain the fol-

lowing expression for ϕ
(2n)
(n−r,r):

ϕ
(2n)
(n−r,r) =

( ∑
α`n−r

χ2α ×
∑
β`r

χ2β

)x
S2n

−

( ∑
γ`n−r+1

χ2γ ×
∑
δ`r−1

χ2δ

)x
S2n

.
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§7.1. The decomposition when ν is a two-row partition

An application of the Littlewood–Richardson Rule yields

ϕ
(2n)
(n−r,r) =

∑
λ`2n

∑
α,β

cλ2α,2βχ
λ −

∑
λ`2n

∑
γ,δ

cλ2γ,2δχ
λ,

which is the required result. �

The decomposition of ϕ
(2n)
(n−1,1) is particularly elegant if we define aλ to be the number of

distinct parts of a partition λ.

Corollary 7.1.3

The complete decomposition of ϕ
(2n)
(n−1,1) into irreducible constituents is

ϕ
(2n)
(n−1,1) =

∑
γ`n

(a2γ − 1)χ2γ +
∑
µ

χµ,

where we sum over µ ` 2n, with at most n parts, which have all but two parts even and the

two odd parts distinct.

Proof. Set r = 1 in Theorem 7.1.1:

ϕ
(2n)
(n−1,1) =

∑
λ`2n

 ∑
α`n−1

cλ2α,(2) −
∑
γ`n

cλ2γ,∅

χλ,

where ∅ denotes the empty partition. Clearly cλ2γ,∅ = 1 if and only if λ = 2γ; otherwise

cλ2γ,∅ = 0. Now consider the first Littlewood–Richardson coefficient:

cλ2α,(2) =

1 if [λ] may be obtained from [2α] by a Young’s Rule addition of two boxes;

0 otherwise.

Hence, cλ2α,(2) is non-zero if and only if either λ is an even partition, or λ has precisely two

odd parts, which are distinct. In the latter case, χλ will appear in the decomposition of

ϕ
(2n)
(n−1,1) with multiplicity one. The Young diagram corresponding to an even partition, say

2γ, is obtainable by a Young’s Rule addition of 2 boxes from a2γ different partitions of the

form 2α. Indeed, the position of the two added boxes could be at the end of the last row of

any given size, as illustrated in Figure 7.1. Thus, we conclude that the decomposition of

ϕ
(2n)
(n−1,1) into irreducibles is

ϕ
(2n)
(n−1,1) =

∑
γ`n

a2γχ
2γ +

∑
µ

χµ

−∑
γ`n

χ2γ

=
∑
γ`n

(a2γ − 1)χ2γ +
∑
µ

χµ,

where we sum over µ ` 2n, with at most n parts, which have all but two parts even and the

two odd parts distinct. �
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§7.2. The decomposition when ν has two columns

...
...
...
...

a

(a) There is only one way in which the

Young diagram
[
(2γ1)a

]
can have arisen

by the Young’s Rule addition of two

boxes: from
[
(2γ1)a−1, 2γ1 − 2

]
.

...
...
...
...b

a

(b) The Young diagram
[
(2γ1)a, (2γ2)b

]
can have arisen in two ways: either

from
[
(2γ1)a−1, 2γ1 − 2, (2γ2)b

]
or from[

(2γ1)a, (2γ2)b−1, 2γ2 − 2
]
.

Figure 7.1: Examples of resulting partitions that have all parts even.

7.2 The decomposition when ν has two columns

The formula for the decomposition of ϕ
(2n)
(2r,1n−2r)

is obtained in much the same way as that

for ϕ
(2n)
(n−r,r).

Theorem 7.2.1

The character ϕ
(2n)
(2r,1n−2r)

decomposes as

ϕ
(2n)
(2r,1n−2r)

=
∑
λ`2n

∑
α,β

cλ2[α],2[β] −
∑
γ,δ

cλ2[γ],2[δ]

χλ,

where the second sum is over partitions α of n− r, β of r, γ of n− r + 1 and δ of r − 1, all

with no repeated parts.

Proof. Setting m = 2, ν = (1n−r) and µ = (1r) in Lemma 7.1.2 yields(
ϕ

(2n−r)
(1n−r) × ϕ

(2r)
(1r)

)xS2n

S2(n−r)×S2r

=
∑
λ`n

cλ(1n−r),(1r)ϕ
(2n)
λ

= ϕ
(2n)
(1n) + ϕ

(2n)
(2,1n−2)

+ · · ·+ ϕ
(2n)
(2r,1n−2r)

,

since cλ(1n−r),(1r) = 1 if and only if [λ] can be obtained from [1n−r] by a Pieri’s Rule addition

of r boxes, and zero otherwise. Applying Lemma 7.1.2 a second time, we conclude that

ϕ
(2n)
(2r,1n−2r)

=
(
ϕ

(2n−r)
(1n−r) × ϕ

(2r)
(1r)

)xS2n

S2(n−r)×S2r

−
(
ϕ

(2n−r+1)
(1n−r+1)

× ϕ(2r−1)
(1r−1)

)xS2n

S2(n−r+1)×S2(r−1)

.

Using the known decomposition of the twisted Foulkes character ϕ
(2k)

(1k)
, we obtain the following

expression for ϕ
(2n)
(2r,1n−2r)

:

ϕ
(2n)
(2r,1n−2r)

=

(∑
α

χ2[α] ×
∑
β

χ2[β]

)x
S2n

−

(∑
γ

χ2[γ] ×
∑
δ

χ2[δ]

)x
S2n

,
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§7.3. The decomposition when ν is a hook partition

where we sum over all α ` n − r, β ` r, γ ` n − r + 1 and δ ` r − 1, which have distinct

parts. The result follows from an application of the Littlewood–Richardson Rule. �

Setting r = 1 in Theorem 7.2.1 results in another simple decomposition, the statement of

which requires the following notation: for a partition γ, let bγ := |{i | γi > γi+1 + 1}|.

Corollary 7.2.2

The character ϕ
(2n)
(2,1n−2)

decomposes into irreducible constituents as

ϕ
(2n)
(2,1n−2)

=
∑
γ

(
b2[γ] − 1

)
χ2[γ] +

∑
µ

χµ,

where the first sum is over all partitions γ of n that have distinct parts, and the second sum

is over all partitions µ of 2n – with at most n parts – whose Young diagram may be obtained

by the addition of two boxes to a partition of the form 2[α] (where α ` n− 1) in such a way

that the two added boxes do not lie in the same column and do not lie at opposite ends of any

leading diagonal hook.

Proof. The result follows from Theorem 7.2.1, by setting r = 1 and carefully analysing the

Littlewood–Richardson coefficients that appear in the resulting formula for ϕ
(2n)
(2,1n−2)

. �

7.3 The decomposition when ν is a hook partition

In this section, we present two formulae for the decomposition of ϕ
(2n)
(n−r,1r).

Theorem 7.3.1

The character ϕ
(2n)
(n−r,1r) decomposes into irreducible constituents as

ϕ
(2n)
(n−r,1r) =

∑
λ`2n

 r∑
j=0

(−1)j
∑

α(j),β(j)

cλ
2α(j), 2[β(j)]

χλ,

where the third sum is over all partitions α(j) of n−r+ j, and over all partitions β(j) of r− j
with distinct parts. Alternatively,

ϕ
(2n)
(n−r,1r) =

∑
λ`2n

n−r∑
j=1

(−1)j−1
∑

γ(j), δ(j)

cλ
2γ(j), 2[δ(j)]

χλ,

where the third sum is over all partitions γ(j) of n− r− j, and over all partitions δ(j) of r+ j

with distinct parts.

Proof. Setting m = 2, ν = (n− r) and µ = (1r) in Lemma 7.1.2, we conclude that(
ϕ

(2n−r)
(n−r) × ϕ

(2r)
(1r)

)xS2n

S2(n−r)×S2r

=
∑
λ`n

cλ(n−r),(1r)ϕ
(2n)
λ

= ϕ
(2n)
(n−r,1r) + ϕ

(2n)
(n−r+1,1r−1)

.
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§7.3. The decomposition when ν is a hook partition

Using the known decompositions of ϕ
(2k)
(k) and ϕ

(2k)

(1k)
, and applying the Littlewood–Richardson

Rule, we obtain the following expression for ϕ
(2n)
(n−r,1r):

ϕ
(2n)
(n−r,1r) =

∑
α(0)

χ2α(0) ×
∑
β(0)

χ2[β(0)]

x
S2n

S2(n−r)×S2r

− ϕ(2n)
(n−r+1,1r−1)

=
∑
λ`2n

 ∑
α(0),β(0)

cλ
2α(0),2[β(0)]

χλ − ϕ(2n)
(n−r+1,1r−1)

summing over partitions α(0) of n− r, and partitions β(0) of r which have distinct parts. In

an entirely similar manner, we may obtain an expression for ϕ
(2n)
(n−r+1,1r−1)

:

ϕ
(2n)
(n−r+1,1r−1)

=
∑
λ`2n

 ∑
α(1),β(1)

cλ
2α(1),2[β(1)]

χλ − ϕ(2n)
(n−r+2,1r−2)

,

this time summing over partitions α(1) of n− r + 1, and partitions β(1) of r − 1 which have

distinct parts. Thus,

ϕ
(2n)
(n−r,1r) =

∑
λ`2n

 ∑
α(0),β(0)

cλ
2α(0),2[β(0)]

−
∑

α(1),β(1)

cλ
2α(1),2[β(1)]

χλ + ϕ
(2n)
(n−r+2,1r−2)

.

Repeating this process, we obtain the first formula stated in the theorem.

To obtain the second formula, we setm = 2, ν = (n−r−1) and µ = (1r+1) in Lemma 7.1.2.

This tells us that

ϕ
(2n)
(n−r,1r) =

(
ϕ

(2n−r−1)
(n−r−1) × ϕ

(2r+1)
(1r+1)

)xS2n

S2(n−r−1)×S2(r+1)

− ϕ(2n)
(n−r−1,1r+1)

.

We again use the known decompositions of ϕ
(2k)
(k) and ϕ

(2k)

(1k)
, and appeal to the Littlewood–

Richardson Rule, yielding

ϕ
(2n)
(n−r,1r) =

∑
λ`2n

 ∑
γ(1),δ(1)

cλ
2γ(1),2[δ(1)]

χλ − ϕ(2n)
(n−r−1,1r+1)

,

where the sum is over partitions γ(1) of n − r − 1, and δ(1) of r + 1 with distinct parts. A

recursive process, obtaining expressions for ϕ
(2n)
(n−r−1,1r+1)

, ϕ
(2n)
(n−r−2,1r+2)

and so on, leads to

the second formula stated in the theorem. �

In the language of symmetric functions, the results in Theorems 7.1.1, 7.2.1 and 7.3.1

decompose the plethysms sν ◦ s(2) when ν has either two rows or two columns, or ν is a hook

partition. However, we note that by applying the ω involution defined in Chapter 3, the
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plethysms sν ◦ s(12) (and the corresponding characters of S2n) are also determined for those

ν specified above. In particular, if sν ◦ s(2) =
∑

λ`2nmλsλ, with mλ ∈ N0 for all λ, then

sν ◦ s(12) =
∑
λ`2n

mλsλ′ ,

where λ′ denotes the conjugate partition of λ.

Example 7.3.2

Setting n = 3 in Corollary 7.1.3, we find that ϕ
(23)
(2,1) = χ(5,1) + χ(4,2) + χ(3,2,1). Hence, the

plethysm s(2,1) ◦ s(12) decomposes as

s(2,1) ◦ s(12) =
(
s(2,1) ◦ s(2)

)
ω

= s(5,1)′ + s(4,2)′ + s(3,2,1)′

= s(2,14) + s(22,12) + s(3,2,1).

7.4 Explicit decompositions

We have already seen the explicit decompositions of ϕ
(2n)
(n−1,1) and ϕ

(2n)
(2,1n−2)

. These concise

decompositions were relatively easy to obtain and far more enlightening than the corre-

sponding formulae which gave rise to them. However, in general, without an easy way to

determine Littlewood–Richardson coefficients, obtaining the explicit decomposition of ϕ
(2n)
ν

may be quite involved, even with the formulae that we have presented thus far. Indeed, in

this section, we see that more work is required to determine the explicit decompositions of

ϕ
(2n)
(n−2,2) and ϕ

(2n)
(n−2,12)

.

Proposition 7.4.1

Define {λ} := {λi | λi > 0} and rλ := |{j | j is a repeated part of λ}|. Further, for X,Y ⊆ N,

define Nλ(X | Y ) := |{j ≥ 0 | 2j+x ∈ {λ} ∀x ∈ X, 2j+y /∈ {λ} ∀ y ∈ Y }|. The multiplicities

of the constituents of ϕ
(2n)
(n−2,12)

and ϕ
(2n)
(n−2,2) are given in Table 7.1.

Remark. A small amount of calculation is required to determine the multiplicities of con-

stituents labelled by even partitions and partitions which have two odd parts. Consequently,

such constituents may appear in ϕ
(2n)
(n−2,12)

or ϕ
(2n)
(n−2,2) with zero multiplicity.

Proof. Let us consider first the multiplicities of constituents in ϕ
(2n)
(n−2,12)

. Theorem 7.3.1 tells

us that

ϕ
(2n)
(n−2,12)

=

 ∑
α(0)`n−2

cλ
2α(0), (3,1)

−
∑

α(1)`n−1

cλ
2α(1), (2)

+
∑
α(2)`n

cλ
2α(2), ∅

χλ.

Now, clearly cλ
2α(2),∅ = 1 if and only if λ = 2α(2), and zero otherwise. Hence, the third sum

in the above equation will only contribute to the multiplicity of constituents labelled by even
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λ Multiplicity of χλ as a constituent of ϕ
(2n)
ν

ν = (n− 2, 12) ν = (n− 2, 2)

λ has all parts even
(
aλ
2

)
− aλ + 1 aλ(aλ − 2) +Nλ(4 | 2) + rλ

λ has 2 odd parts that are

distinct, and all other parts

even

Nλ(3 | 2) + 2Nλ(2 | 1)

+Nλ(1, 2 | ∅)− 1

2Nλ(2 | 1) +Nλ(1, 2 | ∅)
+Nλ(3 | 1, 2)− 1

λ has 2 equal odd parts and

all other parts even
Nλ(3 | 2) +Nλ(2 | 1) 0

λ has 4 odd parts that are

distinct and all other parts

even

3 3

λ has 4 odd parts, one re-

peated and two distinct,

and all other parts even

1 1

λ has 4 odd parts, form-

ing two pairs of equal odd

parts, and all other parts

even

0 1

λ not of the above form 0 0

Table 7.1: Multiplicities of constituents of ϕ
(2n)
(n−2,12)

and ϕ
(2n)
(n−2,2).

partitions. Similar analysis shows that the second sum makes a contribution to multiplicities

of constituents labelled by even partitions and constituents labelled by partitions which have

two distinct odd parts and all other parts even.

To determine the form that partitions labelling constituents which appear in ϕ
(2n)
(n−2,12)

with non-zero multiplicity may take, it remains to consider the first sum. The Littlewood–

Richardson Rule says that cλ
2α(0),(3,1)

is non-zero if [λ] may be obtained from the Young

diagram
[
2α(0)

]
by adding (four boxes containing) three 1s and one 2 in such a way that no

two of the 1s appear in the same column, and, when reading from right to left in successive

rows, each i is preceded by more (i− 1)s than is. In particular, this means that, of the four

numbers added, the top right-most number should be a 1. Additionally, the Littlewood–

Richardson Rule requires any (λ/2α(0))-tableau to be semistandard. Ensuring that these

conditions are satisfied leads to the following possibilities.
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• If we add all three 1s in the same row (and the 2 in a suitable position), then we

necessarily obtain a partition which has two distinct odd parts.

• If we add precisely two of the three 1s in the same row and the third 1 in a different

row (with the 2 in any suitable position) then the resulting partition may have either

all parts even; two equal odd parts; or two distinct odd parts.

• If we add the three 1s in three different rows (and the 2 in any suitable position), then

the resulting partition may have either four distinct odd parts; four odd parts, of which

precisely two are equal; or two distinct odd parts.

We note that we cannot add all four boxes to
[
2α(0)

]
in the same row and satisfy the conditions

of the Littlewood–Richardson Rule. This is because the tableaux 2 1 1 1 , 1 2 1 1 and

1 1 2 1 are not semistandard and in the tableau 1 1 1 2 , the right-most number is not

1.

Thus, only constituents labelled by partitions of the form described in the statement of

the proposition may appear in ϕ
(2n)
(n−2,12)

with non-zero multiplicity. In particular, we can

already rule out the possibility that λ has four odd parts (forming two pairs of equal odd

parts) and all other parts even. It remains to determine the non-zero multiplicities in the

other cases.

Case I: Assume that λ is an even partition, say λ = 2γ for some γ ` n. The argument used

in the proof of Corollary 7.1.3 shows that the multiplicity of χ2γ is∑
α(0)`n−2

c2γ

2α(0),(3,1)
− (a2γ − 1) ,

where, recall, a2γ denotes the number of distinct parts of 2γ. Now consider c2γ

2α(0),(3,1)
.

If a2γ = 1, i.e. all parts of 2γ are equal, then [2γ] cannot have arisen from any
[
2α(0)

]
.

If a2γ ≥ 2, then the Young diagram [2γ] can only have arisen by the addition of two

of the three 1s in one row, and the addition of the remaining 1, followed by the 2, in

another row, as indicated by Figure 7.2.

1 1

1 2

Figure 7.2: Configuration from which [2γ] can arise.
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Moreover, the pair of 1s must be higher than the 1 2 combination in the diagram

(although not directly above), so as not to violate the Littlewood–Richardson Rule.

Thus, the number of ways in which [2γ] can have arisen is given by the binomial

coefficient
(a2γ

2

)
.

We conclude that the multiplicity with which χ2γ appears is
(a2γ

2

)
−a2γ +1, noting that

that there is no ambiguity in the case when a2γ = 1, since
(

1
2

)
− 1 + 1 = 0− 1 + 1 = 0.

Case II: Assume that λ has two distinct odd parts, say λi and λj with i < j. The

multiplicity of a constituent labelled by a partition of this form is∑
α(0)`n−2

cλ
2α(0), (3,1)

−
∑

α(1)`n−1

cλ
2α(1), (2)

=
∑

α(0)`n−2

cλ
2α(0), (3,1)

− 1.

Again, we must determine when [λ] may be obtained from a Young diagram correspond-

ing to 2α(0) for some partition α(0) of n − 2 by the addition of four boxes containing

three 1s and one 2, without violating the Littlewood–Richardson Rule. The possible

configurations are shown in Figure 7.3.

We conclude that, in this case,∑
α(0)`n−2

cλ
2α(0), (3,1)

= Nλ(1, 3 | 2) +Nλ(3 | 1, 2) +Nλ(1, 2 | ∅) + 2Nλ(2 | 1).

Observing that

{
j ≥ 0 | 2j+1, 2j+3 ∈ {λ}, 2j+2 /∈ {λ}

}
∪
{
j ≥ 0 | 2j+3 ∈ {λ}, 2j+1, 2j+2 /∈ {λ}

}
=
{
j ≥ 0 | 2j + 3 ∈ {λ}, 2j + 2 /∈ {λ}

}
and therefore that Nλ(1, 3 | 2)+Nλ(3 | 1, 2) = Nλ(3 | 2), we deduce that the multiplicity

of χλ is Nλ(3 | 2) +Nλ(1, 2 | ∅) + 2Nλ(2 | 1)− 1.

Case III: Assume that λ has precisely two equal odd parts, denoted by λi and λi+1. In

this case the multiplicity of χλ is
∑

α(0)`n−2 c
λ
2α(0),(3,1)

. Now, the Young diagram [λ] can

arise from one of two types of configurations, as shown in Figure 7.4.

Thus, the multiplicity of χλ is Nλ(3 | 2) +Nλ(2 | 1).

Case IV: Assume that λ has four distinct odd parts, say λi1 , λi2 , λi3 , λi4 . As in the previous

case, the multiplicity of χλ is precisely
∑

α(0)`n−2 c
λ
2α(0),(3,1)

. The Young diagram [λ]

can have arisen from some
[
2α(0)

]
in precisely three ways:

• the three 1s having been added in rows i1, i2 and i3, and the 2 added in row i4;

• the three 1s having been added in rows i1, i2 and i4, and the 2 added in row i3; or
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2
1 1 1

(a) This configuration can occur for

all j ≥ 0 such that 2j + 3 ∈ {λ},
2j + 1 ∈ {λ} and 2j + 2 /∈ {λ}.

2

1 1 1

or

1

1 1 2

(b) This type of configuration can occur for all j ≥ 0 such

that 2j + 3 ∈ {λ}, 2j + 2 /∈ {λ} and 2j + 1 /∈ {λ}.

1

1 1
2 or

1

1 1
2

(c) This type of configuration can occur for all j ≥ 0 such

that 2j + 2 ∈ {λ}, 2j + 1 ∈ {λ}.

or or

(d) This type of configuration occurs for all j ≥ 0 such that 2j + 2 ∈ {λ}, 2j + 1 /∈ {λ}, always with

two ways to fill the four added boxes with three 1s and one 2 (not violating the Littlewood–Richardson

Rule). Reading from right to left, the boxes may be filled in the following ways: for the left diagram,

either 1112 or 1211; for the middle diagram, either 1121 or 1211; for the right diagram, either 1112

or 1121.

Figure 7.3: Possible configurations from which [λ] can arise.
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1 1

1
2

row i
row i+ 1

or

1 1

1
2

i
i+ 1

(a) This type of configuration can occur whenever there

exists j ≥ 0 such that 2j + 2 ∈ {λ} and 2j + 1 /∈ {λ}.

1
1 1 2

row i
row i+ 1

(b) This configuration can occur for

all j ≥ 0 such that 2j+3 ∈ {λ} and

2j + 2 /∈ {λ}.

Figure 7.4: Possible configurations from which [λ] can arise.

• the three 1s having been added in rows i1, i3 and i4, and the 2 added in row i2.

Of course, we must exclude the possibility that the 2 is added in row i1, since in this

configuration the top right-most digit is a 2. Therefore, the multiplicity of χλ is three.

Case V: Assume that λ has four odd parts, precisely two being equal. Let λi1 = λi1+1, λi2

and λi3 denote the odd parts of λ, making no assumption about their ordering other

than that λi1 and λi1+1 are consecutive. Once again, the multiplicity of χλ is precisely∑
α(0)`n−2 c

λ
2α(0),(3,1)

. There is a unique way in which [λ] may arise (not violating the

Littlewood–Richardson Rule): the three 1s having been added in rows i1, i2 and i3, and

the 2 added in row i1 + 1. This is true regardless of the ordering of λi1 , λi2 and λi3 and

therefore the position of the two equal odd parts among the four odd parts of λ. Thus,

in this case, the coefficient of any χλ is one.

This verifies the multiplicities given in Table 7.1 of the constituents of ϕ
(2n)
(n−2,12)

.

To determine the multiplicities of constituents in the decomposition of ϕ
(2n)
(n−2,2), we use

Theorem 7.1.1, which tells us that

ϕ
(2n)
(n−2,2) =

∑
λ`2n

 ∑
α`n−2

(
cλ2α,(4) + cλ2α,(2,2)

)
−
∑
γ`n−1

cλ2γ,(2)

χλ.

A careful and lengthy analysis of the Littlewood–Richardson coefficients, similar to the anal-

ysis used to determine multiplicities in ϕ
(2n)
(n−2,12)

, yields the result in the proposition. �
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Chapter 8

Twisted Foulkes modules in prime

characteristic

Thus far, our investigations into the structure of generalised Foulkes modules have all been

conducted in the characteristic zero setting. In this chapter, we investigate the modular

structure of twisted Foulkes modules, focusing our attention on the case m = 2.

The structure of the ‘ordinary’ Foulkes module H(2n) (when defined over fields of odd

prime characteristic) has already been studied. In his D.Phil thesis [45], Wildon studies

summands of H(2n) in blocks of arbitrary weight, with much success. For example, he shows

that, under certain conditions, the only summands of H(2n) in a given block are projective. In

blocks of small weight, more is known: when 2n < 3p, where p is the (odd prime) characteristic

of the ground field, Wildon determines the structure of the unique indecomposable summand

of H(2n) lying in the principal block of S2n, which is found to be a Scott module.

There are strong similarities between Wildon’s findings and the results in this chapter.

For example, when n = p (an odd prime), we find that there is a unique indecomposable

summand of K(2p) lying in the principal block. In §8.4, we describe the Loewy layers of this

summand; this is, in some sense, an analogue of Wildon’s Scott module result.

When p = 2, the structure of K(2n) is very different and, with the exception of a few

small examples that we shall see in §8.1, we will not address this case at all. However, we

refer an interested reader to [9], in which Collings determines both the fixed point sets and

the vertices of the indecomposable summands of H(2n). Collings’ work also addresses the

modular structure of K(2n), since K(2n) ∼= H(2n) in characteristic two.

In this chapter, the following lemma, which provides us with some initial information

about the structure of K(2n) and its indecomposable summands, will be very useful.

Lemma 8.0.1

The twisted Foulkes module K(2n) is self-dual.
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Proof. Since K(2n)∗ =
[
T (1n)(S(2))

xS2n

S2oSn

]∗
, the result follows from Lemma 2.1.1(4); the fact

that 1-dimensional modules are self-dual; and the fact that (M1 ⊗M2)∗ ∼= M∗1 ⊗M∗2 for any

kG-modules M1 and M2 (see [2, p.39]). �

8.1 The structure of K(2n) in prime characteristic for small n

To begin our investigation into the structure of K(2n), we use the computational algebra

software MAGMA to compute explicitly the structure of the twisted Foulkes modules K(22),

K(23) and K(24) over fields of prime characteristic.

We refer the reader to §B.2 – see the function Socle(n,p) – for details of the MAGMA

code that is used to obtain the information about dimensions of indecomposable summands

and the socle series of the modules.

8.1.1 The structure of K(22)

Over a field of characteristic two, K(22) has two simple indecomposable summands, whose

dimensions are 1 and 2. Using knowledge about the ordinary character τ (22) = χ(3,1) and the

decomposition matrix of S4 in characteristic two (see James and Kerber [26]), we conclude

that

K(22) ∼= D(4) ⊕D(3,1).

Over a field of characteristic p ≥ 3,

K(22) ∼= S(3,1) ∼= D(3,1).

Indeed, MAGMA calculations show that, over a field of characteristic three, K(22) has a

unique indecomposable summand of dimension three, which is simple; the decomposition

matrix of S4 in characteristic three confirms the structure. If p ≥ 5, then in particular

p > 2n = 4 and so, just as in the characteristic zero case, K(22) ∼= S(3,1).

8.1.2 The structure of K(23)

We need only concern ourselves with primes p < 6 because when p > 2n = 6, the structure

of K(23) over a field of characteristic p is the same as in the characteristic zero setting, i.e.

K(23) ∼= S(4,1,1) ⊕ S(3,3).

Henceforth, for ease of notation, we will write M ∼ X1 +X2 + · · ·+Xt if the kS2n-module

M has composition factors X1, X2, . . . , Xt. If M1 and M2 are kS2n-modules that have the

same composition factors, then we may write M ∼ N .
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Over a field of characteristic two, the decomposition matrix of S6 tells us that

S(4,1,1) ∼ 2D(6) +D(5,1) +D(4,2) and S(3,3) ∼ D(6) +D(4,2).

MAGMA calculations show that K(23) has two indecomposable summands: a summand of

dimension one – we know this must be the trivial kS6-module D(6) – and a summand of

dimension fourteen. MAGMA calculations also tell us the dimensions of the modules in

the socle series of the second of these summands, which are 4, 5, 9, 10, 14. Thus, comparing

dimensions with the dimensions of the composition factors known to be present and using

the fact that K(23) is self-dual, we conclude that, over a field of characteristic two,

K(23) ∼= D(6) ⊕



D(4,2)

D(6)

D(5,1)

D(6)

D(4,2)


.

A similar analysis over a field of characteristic three tells us that S(4,1,1) ∼ D(5,1) +D(4,1,1)

and S(3,3) ∼ D(5,1) + D(3,3). Using MAGMA, we find that K(23) is indecomposable and the

modules in the socle series have dimensions 4, 11 and 15. Thus,

K(23) ∼=
D(5,1)

D(3,3) ⊕D(4,1,1)

D(5,1)

.

Over a field of characteristic five, MAGMA calculations show that

K(23) ∼= S(4,1,1) ⊕ S(3,3).

Indeed, MAGMA tells us that K(23) has two summands, whose dimensions are 5 and 10.

Further, the partitions (4, 1, 1) and (3, 3) are visibly 5-cores – hence the corresponding Specht

modules lie in two different blocks: B
(
(4, 1, 1), 0

)
and B

(
(3, 3), 0

)
– and it is easy to check

using the hook formula that dimS(4,1,1) = 10 and dimS(3,3) = 5.

8.1.3 The structure of K(24)

For p ≥ 3, the structure of K(24) is obtained in much the same way as that of K(22) and

K(23). We find that, over a field of characteristic three,

K(24) ∼=
D(5,2,1)

D(5,3) ⊕D(4,3,1)

D(5,2,1)
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and, over a field of characteristic p ≥ 5,

K(24) ∼= S(5,1,1,1) ⊕ S(4,3,1).

Over a field of characteristic two, the structure ofK(24) is more complicated. The following

table shows the dimensions of the three indecomposable summands and the modules in their

corresponding socle series, obtained using MAGMA.

Dimension of indecomposable

summands

Dimension of modules

in the socle series

1 1

28 8, 14, 20, 28

76 14, 21, 61, 62, 76

Table 8.1: The dimensions of indecomposable summands of K(24).

The decomposition matrix of S8 in characteristic two (see [26]) tells us that

S(5,1,1,1) ∼ D(8) + 2D(7,1) +D(6,2) +D(5,3),

S(4,3,1) ∼ 2D(8) +D(7,1) +D(6,2) +D(5,3) +D(4,3,1).

Hence, K(24) ∼ 3D(8) + 3D(7,1) + 2D(6,2) + 2D(5,3) + D(4,3,1). However, in order to confirm

the structure of the module, we need some additional information; we require information

about the heart of the indecomposable summand M of dimension 76. Using MAGMA again

– making use of the function K24decomp(p) (see §B.2) – we find that the heart of M is

decomposable:

Dimension of indecomposable

summand

Dimension of modules

in the socle series

6 6

42 1, 41, 42

Table 8.2: The dimensions of indecomposable summands of the heart of M .

Thus, comparing dimensions, we conclude that

K(24) ∼= D(8) ⊕


D(5,3)

D(7,1)

D(7,1)

D(5,3)

⊕


D(6,2)

D(7,1) ⊕


D(8)

D(4,3,1)

D(8)


D(6,2)


.
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8.2 The abacus

A partition λ may be displayed on an abacus consisting of p runners that are labelled (from

left to right) by 0, 1, . . . , p − 1. We choose p to be the characteristic of the field k. The

positions on the runners are labelled numerically, as follows.

0 1 2 3 . . . p− 1

p p+ 1 p+ 2 p+ 3 . . . 2p− 1

2p 2p+ 1 2p+ 2 . . . . . .

Given a partition λ = (λ1, λ2, . . . , λr) of n, we obtain an abacus configuration for λ by

placing beads, •, in positions βi = λi − i+ r for 1 ≤ i ≤ r. Where there is no bead, we write

−.

On a p-runner abacus, removing a rim p-hook from [λ] corresponds to sliding a bead on

the abacus up one position into a gap directly above it on the runner. In this way, the abacus

configuration for a p-core of a partition λ can be obtained from that of λ by sliding all beads

on the abacus up as far as possible.

Example 8.2.1

Let λ = (5, 4, 2, 1). We calculate that β1 = 8, β2 = 6, β3 = 3 and β4 = 1. Thus, if p = 5, we

obtain the following abacus configuration for λ.

0 1 2 3 4

If instead we had chosen p = 7, then the abacus configuration that we would obtain is

0 1 2 3 4 5 6

.

Observe that (5, 4, 2, 1) is both a 5-core and a 7-core.

8.2.1 Abacus configurations

Let α = (α1, . . . , α`) be a partition of n with distinct parts. What does 2[α] look like on a

p-runner abacus? To construct the abacus:

Step 1 Put α1 beads on the abacus, in positions 0, 1, 2, . . . , α1 − 1.

Step 2 Counting backwards from the last bead, take the α`
th bead and move it to the right,

across α` gaps.
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Step 3 Again, counting backwards from the last bead, take the α`−1
th bead and move it

to the right, across α`−1 gaps. The bead should be placed it in the next available gap

(which is possibly after a series of beads that immediately follow the α`−1 gaps).

Step 4 Continue, as above, until the first bead (which is the α1
th bead when counting

backwards from the last bead) has been moved; the partition represented on the abacus

is now 2[α].

Furthermore, the beads on the abacus representing 2[α] will be in positions α1 + αi for all

1 ≤ i ≤ `, and positions α1 − j for all 1 ≤ j ≤ α1 such that j /∈ {α1, α2, . . . , α`}. There are

no other beads on the abacus and so we note that there will be gaps in positions α1 − αi for

all 1 ≤ i ≤ `.

Example 8.2.2

Let α = (4, 3, 2) and choose p = 11.

Step 1 Place four beads on the abacus, in positions 0-3.

0 1 2 3 4 5 6 7 8 9 10

Step 2 Move the second bead from the end – this is the bead in position 2 – to the right,

across two gaps.

0 1 2 3 4 5 6 7 8 9 10

Step 3 Move the third bead from the end, which is in position 1, to the right, across three

gaps.

0 1 2 3 4 5 6 7 8 9 10

Step 4 Finally, move the fourth bead from the end, which is the bead in position 0, to the

right, across four gaps.

0 1 2 3 4 5 6 7 8 9 10

This is the abacus configuration representing the partition 2[(4, 3, 2)] = (5, 5, 5, 3).
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8.3 The structure of K(2n) in characteristic p > n

Theorem 8.3.1

If n < p, then K(2n) is semisimple. In particular,

K(2n) =
⊕
α

S2[α],

where the sum is over all partitions α of n that have distinct parts.

Proof. If p = 2, then the statement of the theorem is trivial. In this case, we have that

K(21) = S(2) = D(2).

Consider p odd. The ordinary character afforded by K(2n) is

τ (2n) =
∑

χ2[α],

where the sum is over all partitions α of n that have distinct parts. Consider any 2[α]

labelling a constituent of τ (2n). It will be sufficient to show that 2[α] is a p-core, since then

the Specht module S2[α] is the unique indecomposable module lying in B(2[α], 0), the weight

zero p-block labelled by the p-core 2[α]. The result will then follow from the (unique) block

decomposition of K(2n).

Now, since n < p, we certainly cannot remove two (or more) p-hooks and so the p-weight

of 2[α] is at most one. To rule out the possibility that the p-weight is one, let α = (α1, . . . , α`)

and look at the abacus configuration for 2[α].

If α1 ≤ bp/2c, then all beads are on row one of the abacus and so the p-weight of 2[α]

is certainly zero. If α1 ≥ dp/2e, then there are beads on exactly two rows of the abacus.

Moreover, the beads on the second row are in positions α1 + αi > p− 1. We will show that,

whenever α1 + αi > p − 1 for some 1 ≤ i ≤ `, there exists 1 ≤ j < α1 with j /∈ {α2, . . . , α`}
such that

α1 + αi = α1 − j + p. (8.1)

This means that, on runner i, we have the configuration shown in Figure 8.1 and hence the

Figure 8.1: A bead configuration

lower bead on the runner cannot be raised. Again, in this case, the p-weight of 2[α] is zero.

We note that the configuration shown in Figure 8.1 cannot arise from a situation in which

α1 + αi1 = α1 + αi2 + p for some 1 ≤ i1, i2 ≤ `, since then it follows that αi1 = αi2 + p and

hence
∑`

i=1 αi > n.
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Let α1 + αi > p − 1 for some 1 ≤ i ≤ `, so that there is a bead on the second row of

the abacus. For a contradiction, assume that there is a gap directly above this bead on the

runner, in position α1+αi−p. Clearly α1+αi−p ≤ α1, which means that α1+αi−p = α1−αq
for some 1 ≤ q ≤ `, or equivalently, that p− αi = αq for 1 ≤ q ≤ `.

Certainly, p− αi 6= αi, since otherwise, it follows that p is even, which is a contradiction.

So, p− αi = αq ∈ {α1, . . . , α`}\{αi}. However, in this case,

n =
∑̀
j=1

αj ≥ αi + αq = p > n,

which is again a contradiction. Therefore, we conclude that p − αi 6= αq for any 1 ≤ q ≤ `.

Now, setting j = p − αi, we see that 1 ≤ j ≤ α1 and j /∈ {α1, α2, . . . , α`}. Moreover,

α1 + αi = α1 − j + p, which says that condition (8.1) holds. �

8.4 The structure of K(2p) in characteristic p

Throughout this section, let p be an odd prime. We will investigate the structure of K(2p),

defined over a field of characteristic p. The structure of K(22) over a field of characteristic

two, which was described explicitly in §8.1.1, is somewhat different. For instance, all inde-

composable summands of K(22) lie in the principal block of S4. The next proposition shows

that this is not necessarily the case when p is odd.

Proposition 8.4.1

Let p be an odd prime and let K(2p) be defined over a field of characteristic p. Every summand

of K(2p) lies in either a weight zero p-block of S2p or in the weight two principal block B0(S2p).

Proof. We examine the p-weight and p-core of each partition 2[α], where α ` p has distinct

parts; there are several cases to consider.

Case I: If α = (p), then 2[α] =
(
p+ 1, 1p−1

)
, which has p-weight 2 and empty p-core.

Case II: If α = (p−r, r) for 1 ≤ r ≤ b(p−1)/2c, then 2[α] =
(
p−r+1, r+2, 2r−1, 1p−2r−1

)
.

So, on a p-runner abacus, the partition 2[α] has configuration

0 1 2 . . . . . . p−1

p− 2r − 1 r − 1 r

and therefore, the beads on runners 0 and p − 2r can both be raised. It follows that,

when α is a two-row partition, 2[α] has p-weight 2 and empty p-core.
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Case III: If α ` p has ` > 2 distinct parts, then the abacus configuration representing 2[α]

has beads on at most two rows of the abacus. Indeed, for any 1 ≤ i ≤ `, α1 +αi > 2p−1

is impossible. To see this, observe that α1 ≤ p−2 and thus 2α1 < 2p−1. Additionally,

α1 + αi < 2α1 for all 2 ≤ i ≤ `.

Since 2[α] is a partition of 2p, it can have p-weight at most two. However, we will see

that whenever there is a bead in the second row of the abacus configuration, there is

also a bead in the first row, directly above it on the runner, and thus 2[α] must be a

p-core.

Suppose that there is a bead in position α1 + αi > p − 1 and, for a contradiction,

suppose that there is a gap in position α1 + αi − p. Since α has at least three distinct

parts, αi ≤ p − 2 and hence α1 + αi − p ≤ α1 − 2. This means that there is a gap in

position α1 + αi − p if and only if α1 + αi − p = α1 − αq for some 1 ≤ q ≤ `, which

holds if and only if αi + αq = p. However, if q = i, then this says that p is even, which

is a contradiction; if q 6= i, then it follows that α ` p has exactly two parts, which is

another contradiction. �

Corollary 8.4.2

The Specht modules S2[(p−r,r)] with 0 ≤ r ≤ b(p− 1)/2c lie in B0(S2p).

8.4.1 Weight zero blocks

In Proposition 8.4.1 we saw that summands of K(2p) either lie in a weight zero p-block or in

the principal block of S2p. Further, we saw that if α is a partition of p that has at least three

parts, necessarily all distinct, then 2[α] has p-weight zero and these are the only partitions

2[α] with p-weight zero.

The unique indecomposable module lying in a weight zero p-block, say B(γ, 0), of S2p is

the simple Specht module Sγ . Since weight zero p-blocks are semisimple, we conclude that

the (direct) summands of K(2p) which are in weight zero p-blocks are those Specht modules

S2[α] for which α ` p has at least three parts, all distinct.

It just remains to consider the principal block of S2p.

8.4.2 Weight two blocks

In this section, we will show that there is a unique summand of K(2p) lying in the principal

block of S2p.

The first step towards determining the structure of summands of K(2p) lying in the prin-

cipal block of S2p is identifying the composition factors of each S2[(p−r,r)]. To do this, the

approach that we will take is to apply the Branching Rule to obtain a filtration by Specht

116



§8.4.2. Weight two blocks

modules for each S2[(p−r,r)]y
S2p−1

. For any 0 ≤ r ≤ b(p−1)/2c, S2[(p−r,r)] lies in B0(S2p) and

so its restriction will lie in a weight one p-block of S2p−1. The weight one p-blocks of S2p−1

are Brauer tree algebras, with the following Brauer trees (see Martin [35, Theorem 4.2.2]).

Let Bk be the weight one p-block of S2p−1 with p-core (k, 1p−k−1), where 1 ≤ k ≤ p− 1.

The Brauer tree of Bp−1 is

D(2p−1) D((p−1)2,1) D(p−1,p−i+1,1i−1) D(p−1,2,1p−2)

and the Specht modules S(2p−1) and S(p−1,p−i+1,1i−1) have the following structure:

S(2p−1) ∼= D(2p−1), S((p−1)2,1) ∼=
D((p−1)2,1)

D(2p−1)
(8.2)

and

S(p−1,p−i+1,1i−1) ∼=
D(p−1,p−i+1,1i−1)

D(p−1,p−i+2,1i−2)
(3 ≤ i ≤ p− 1). (8.3)

For 1 ≤ k ≤ p− 2, the Brauer tree of Bk is

D(p+k,1p−k−1)

D(p,k+1,1p−k−2)

D(p−j,k+1,2j ,1p−j−k−2) D(k+2,k+1,2p−k−2)

D(k2,2p−k−1,1)

D(k,k−`,2p−k−1,1`+1) D(k,2p−k,1k−1)

for 0 ≤ j ≤ p − k − 2 and 0 ≤ ` ≤ k − 2. The Specht modules S(p+k,1p−k−1), S(p,k+1,1p−k−2),

S(p−j,k+1,2j ,1p−j−k−2), S(k2,2p−k−1,1) and S(k,k−`,2p−k−1,1`+1) have the following structure:

S(p+k,1p−k−1) ∼= D(p+k,1p−k−1), S(p,k+1,1p−k−2) ∼=
D(p,k+1,1p−k−2)

D(p+k,1p−k−1)
, (8.4)

S(p−j,k+1,2j ,1p−j−k−2) ∼=
D(p−j,k+1,2j ,1p−j−k−2)

D(p−j+1,k+1,2j−1,1p−j−k−1)
(1 ≤ j ≤ p− k − 2), (8.5)

S(k2,2p−k−1,1) ∼=
D(k2,2p−k−1,1)

D(k+2,k+1,2p−k−2)
(8.6)

and

S(k,k−`,2p−k−1,1`+1) ∼=
D(k,k−`,2p−k−1,1`+1)

D(k,k−`+1,2p−k−1,1`)
(1 ≤ ` ≤ k − 2). (8.7)

We will make extensive use of the following lemma from [39, Lemma 4.1.1], which describes

the restrictions to S2p−1 of the simple modules lying in the principal block of S2p.
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Lemma 8.4.3

The simple modules lying in the principal block of S2p are

uk := D(p+k+1,1p−k−1) for 0 ≤ k ≤ p− 1,

vj,k := D(p−j,k+2,2j ,1p−j−k−2) for 0 ≤ j ≤ p− 2, 1 ≤ k ≤ p− j − 3,

wk := D((k+3)2,2p−k−3) for 0 ≤ k ≤ p− 4,

tj := D(p−j,2j+1,1p−j−2) for 0 ≤ j ≤ p− 3.

Restricting these modules to S2p−1,

D(p+k+1,1p−k−1)
y
S2p−1

= D(p+k,1p−k−1),

D(p−j,k+2,2j ,1p−j−k−2)
y
S2p−1

= D(p−j−1,k+2,2j ,1p−j−k−2) ⊕D(p−j,k+1,2j ,1p−j−k−2),

D((k+3)2,2p−k−3)
y
S2p−1

= D(k+3,k+2,2p−k−3),

D(p−j,2j+1,1p−j−2)
y
S2p−1

= D(p−j−1,2j+1,1p−j−2).

Proof. The proof of the first part of the lemma, which details the simple modules lying in

B0(S2p), is straightforward: the simples are the p-regular partitions that result from the

addition of two rim p-hooks to an empty p-core. To determine the restrictions of the simple

modules, we apply Kleshchev’s Theorem [29, Theorem 1.4]. We illustrate this idea for the

simple module uk, where 0 ≤ k ≤ p− 1.

Consider the abacus configuration for the partition (p+ k + 1, 1p−k−1), which is

residue k k+1 . . . p−1 0 . . . k−1

p− k − 1 k

R

R

A A

A
.

The nodes marked R are removable nodes and the gaps marked A indicate addable nodes.

Only the removable node of residue k is normal1; it is also the highest normal node on runner

0 and is therefore good. Let µ = (p+k, 1p−k−1) be the partition that is obtained by removing

this node from (p+ k + 1, 1p−k−1).

By Kleshchev’s Theorem, uk ↓S2p−1
∼= M , where M is an indecomposable module such

that soc(M) ∼= Dµ. Additionally, uk is self-dual, from which it follows that M is also self-dual

and so M/ rad(M) ∼= soc(M). However, since there is only one removable node of residue k,

we know (by Kleshchev’s Theorem) that M has only one composition factor isomorphic to

Dµ and, consequently, M ∼= Dµ. �

1For an explanation of terminology related to Kleshchev’s Theorem, we refer the reader to [29].
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We now have all the information that we need to determine the composition factors of

the Specht modules S2[(p−r,r)], where 0 ≤ r ≤ bp−1/2c. It will be convenient to handle some

small primes separately, so the next lemma only deals with the case p ≥ 7.

Lemma 8.4.4

Let p ≥ 7 be prime.

1. If α = (p), then 2[α] = (p+ 1, 1p−1) and

S2[α] ∼ D(p+1,1p−1) +D(p+2,1p−2) = u0 + u1;

2. If α = (p− 1, 1), then 2[α] = (p, 3, 1p−3) and

S2[α] ∼ D(p+2,1p−2) +D(p+3,1p−3) +D(p,3,1p−3) +D(p,4,1p−4)

= u1 + u2 + v0,1 + v0,2;

3. If α = (p− r, r), where 2 ≤ r ≤ p−3
2 , then 2[α] = (p− r + 1, r + 2, 2r−1, 1p−2r−1) and

S2[α] ∼ D(p−r+1,r+2,2r−1,1p−2r−1) +D(p−r+1,r+3,2r−1,1p−2r−2)

+D(p−r+2,r+2,2r−2,1p−2r) +D(p−r+2,r+3,2r−2,1p−2r−1)

= vr−1,r + vr−1,r+1 + vr−2,r + vr−2,r+1;

4. If α =
(
p+1

2 , p−1
2

)
, then 2[α] =

((
p+3

2

)2
, 2(p−3)/2

)
and

S2[α] ∼ D(((p+7)/2)2,2(p−7)/2) +D(((p+3)/2)2,2(p−3)/2) +D((p+5)/2,(p+3)/2,2(p−5)/2,1)

= w(p+1)/2 + w(p−3)/2 + v(p−5)/2,(p−1)/2.

Proof. Let p ≥ 7.

1. By the Branching Rule, S(p+1,1p−1)
y
S2p−1

∼ S(p,1p−1) + S(p+1,1p−2). Both Specht mod-

ules in the filtration are labelled by hook partitions and so, by a result due to Peel [25,

Theorem 24.1], we know that S(p,1p−1) ∼= D(p,1p−1) and S(p+1,1p−2) ∼= D(p+1,1p−2). Using

Lemma 8.4.3, observe that D(p,1p−1) is a composition factor of u0 ↓S2p−1 and not a

composition factor of any other restricted simple kS2p-module. Similarly, D(p+1,1p−2)

is only a composition factor of u1 ↓S2p−1 . Consequently, we deduce that

S(p+1,1p−1) ∼ D(p+1,1p−1) +D(p+2,1p−2).

2. Applying the Branching Rule, S(p,3,1p−3)
y
S2p−1

∼ S(p−1,3,1p−3) +S(p,2,1p−3) +S(p,3,1p−4).

The p-cores of the partitions labelling these Specht modules are (p − 1), (1p−1) and
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(2, 1p−3), respectively, and therefore, the weight one p-blocks of S2p−1 in which these

modules lie are Bp−1, B1 and B2.

By (8.3), we know that S(p−1,3,1p−3) ∼ D(p−1,3,1p−3) + D(p−1,4,1p−4). Now, taking

k = 1 and k = 2 in turn, (8.4) tells us that S(p,2,1p−3) ∼ D(p,2,1p−3) + D(p+1,1p−2) and

S(p,3,1p−4) ∼ D(p,3,1p−4) +D(p+2,1p−3). We need to examine the modules in Lemma 8.4.3

to determine which of them have the above simple kS2p−1-modules among their com-

position factors. We find that the simple modules can only arise as composition factors

in the following restrictions:

v0,1 ↓S2p−1 = D(p−1,3,1p−3) ⊕D(p,2,1p−3),

v0,2 ↓S2p−1 = D(p−1,4,1p−4) ⊕D(p,3,1p−4),

u1 ↓S2p−1 = D(p+1,1p−2),

and u2 ↓S2p−1 = D(p+2,1p−3).

Thus,

S(p,3,1p−3) ∼ D(p,3,1p−3) +D(p,4,1p−4) +D(p+2,1p−2) +D(p+3,1p−3).

3. If 2 ≤ r ≤ p−3
2 , then

S(p−r+1,r+2,2r−1,1p−2r−1)
y
S2p−1

∼ S(p−r,r+2,2r−1,1p−2r−1) + S(p−r+1,r+1,2r−1,1p−2r−1)

+ S(p−r+1,r+2,2r−2,1p−2r) + S(p−r+1,r+2,2r−1,1p−2r−2).

Let us consider each Specht module in the filtration in turn.

• The partition (p − r, r + 2, 2r−1, 1p−2r−1) has p-core (p − r, 1r−1) and therefore

the corresponding Specht module lies in the p-block Bp−r. Examining (8.7) with

k = p− r and ` = p− 2r − 2 tells us that

S(p−r,r+2,2r−1,1p−2r−1) ∼ D(p−r,r+2,2r−1,1p−2r−1) +D(p−r,r+3,2r−1,1p−2r−2).

• The p-core of (p − r + 1, r + 1, 2r−1, 1p−2r−1) is (r, 1p−r−1) and so, by (8.5) with

j = r − 1 and k = r,

S(p−r+1,r+1,2r−1,1p−2r−1) ∼ D(p−r+1,r+1,2r−1,1p−2r−1) +D(p−r+2,r+1,2r−2,1p−2r).

• The Specht module S(p−r+1,r+2,2r−2,1p−2r) lies in the block Bp−r+1. So, setting

k = p− r + 1, ` = p− 2r − 1 and using (8.7), we conclude that

S(p−r+1,r+2,2r−2,1p−2r) ∼ D(p−r+1,r+2,2r−2,1p−2r) +D(p−r+1,r+3,2r−2,1p−2r−1).
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• The p-core of the partition (p − r + 1, r + 2, 2r−1, 1p−2r−2) is (r + 1, 1p−r−2) and

hence, setting j = r − 1 and k = r + 1 in (8.5), we see that

S(p−r+1,r+2,2r−1,1p−2r−2) ∼ D(p−r+1,r+2,2r−1,1p−2r−2) +D(p−r+2,r+2,2r−2,1p−2r−1).

Again, we look to determine which simple kS2p-modules have these composition factors

in their restrictions to S2p−1. It is not hard to check that the following restricted

modules, which feature the correct composition factors, are the only possibility. We

have

vr−1,r ↓S2p−1 = D(p−r,r+2,2r−1,1p−2r−1) ⊕D(p−r+1,r+1,2r−1,1p−2r−1),

vr−1,r+1 ↓S2p−1 = D(p−r,r+3,2r−1,1p−2r−2) ⊕D(p−r+1,r+2,2r−1,1p−2r−2),

vr−2,r ↓S2p−1 = D(p−r+2,r+1,2r−1,1p−2r) ⊕D(p−r+1,r+2,2r−2,1p−2r)

and

vr−2,r+1 ↓S2p−1 = D(p−r+1,r+3,2r−2,1p−2r−1) ⊕D(p−r+2,r+2,2r−2,1p−2r−1).

Thus,

S(p−r+1,r+2,2r−1,1p−2r−1) ∼ D(p−r+1,r+2,2r−1,1p−2r−1) +D(p−r+1,r+3,2r−1,1p−2r−2)

+D(p−r+2,r+2,2r−2,1p−2r) +D(p−r+2,r+3,2r−2,1p−2r−1).

4. By the Branching Rule,

S

(
( p+3

2 )
2
,2(p−3)/2

)y
S2p−1

∼ S( p+3
2
, p+1

2
,2(p−3)/2) + S

(
( p+3

2 )
2
,2(p−5)/2,1

)
.

Since the partition
(
p+3

2 , p+1
2 , 2(p−3)/2

)
has p-core

(
p−1

2 , 1(p−1)/2
)

, composition factors

of the corresponding Specht module are

S( p+3
2
, p+1

2
,2(p−3)/2) ∼ D( p+3

2
, p+1

2
,2(p−3)/2) +D( p+5

2
, p+1

2
,2(p−5)/2,1).

A similar analysis of the partition

((
p+3

2

)2
, 2(p−5)/2, 1

)
shows that

(
p+3

2 , 1(p−5)/2
)

is

its p-core and

S

(
( p+3

2 )
2
,2(p−5)/2,1

)
∼ D

(
( p+3

2 )
2
,2(p−5)/2,1

)
+D( p+7

2
, p+5

2
,2(p−7)/2).

Using Lemma 8.4.3, we observe that the composition factors of these Specht modules

can only appear as composition factors in the following restricted simple kS2p-modules:

v(p−5)/2,(p−1)/2 ↓S2p−1 = D( p+5
2
, p+1

2
,2(p−5)/2,1) ⊕D

(
( p+3

2 )
2
,2(p−5)/2,1

)
,

w(p+1)/2 ↓S2p−1 = D( p+7
2
, p+5

2
,2(p−7)/2)
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and

w(p−3)/2 ↓S2p−1 = D( p+3
2
, p+1

2
,2(p−3)/2).

Hence, we conclude that

S

(
( p+3

2 )
2
,2(p−3)/2

)
∼ D

(
( p+7

2 )
2
,2(p−5)/2

)
+D

(
( p+3

2 )
2
,2(p−3)/2

)
+D( p+5

2
, p+3

2
,2(p−5)/2,1). �

To conclude this section, we address the small odd primes not covered by the last result.

Lemma 8.4.5

1. If p = 3, then

S2[(3)] = S(4,12) ∼ D(4,12) +D(5,1) = u0 + u1,

S2[(2,1)] = S(3,3) ∼ D(3,3) +D(5,1) = w0 + u1.

2. If p = 5, then

S2[(5)] = S(6,14) ∼ D(6,14) +D(7,13) = u0 + u1,

S2[(4,1)] = S(5,3,12) ∼ D(5,3,12) +D(5,4,1) +D(7,13) +D(8,12) = v0,1 + v0,2 + u1 + u2,

S2[(3,2)] = S(4,4,2) ∼ D(10) +D(5,4,1) +D(4,4,2) = u4 + v0,2 + w1.

Proof. The proof is entirely similar to the proof of Lemma 8.4.4. �

Remark. The composition factors of K(23) and K(25) that lie in the principal block are con-

sistent with the more general result given in Lemma 8.4.4. However, when p = 5, we see a

difference in notation due to the fact that w(p+1)/2 = w3 is not defined (cf. Lemma 8.4.3):

the simple module u4 = D(10) is a composition factor of K(25), whereas, for p ≥ 7, the simple

module w(p+1)/2 appears as a composition factor of K(2p).

8.4.3 Ext-quivers of the principal block of S2p

We now know the composition factors of K(2p) and in particular, which of those lie in the

principal block. For those composition factors lying in B0(S2p), we illustrate their position

on the Ext-quiver, also indicating their multiplicities. First, we briefly explain what we mean

by the Ext-quiver, so that we may later interpret the information it provides.

The Ext-quiver of an algebra A has vertices that correspond to the isomorphism classes

of irreducible A-modules. An arrow is drawn from the vertex corresponding to the module

Mi to the vertex corresponding to Mj if Ext1
A(Mi,Mj) 6= 0, or equivalently, if there is a

(non-split2) short exact sequence

0→Mj → X →Mi → 0.

2A split short exact sequence represents the zero element of Ext1A(Mi,Mj).

122



§8.4.4. Summands of K(2p) in the principal block of S2p

Moreover, the number of arrows Mi →Mj is dimk Ext1
A(Mi,Mj). If A is a symmetric algebra,

for example a group algebra, then dimk Ext1
A(Mi,Mj) = dimk Ext1

A(Mj ,Mi) and so we simply

draw edges between the vertices rather than bidirectional arrows.

Figures 8.2-8.4 show, for a variety of primes p, the part of the Ext-quiver of the principal

block of S2p (produced by Martin in Chapter 4 of his thesis [35]) that features the com-

position factors of K(2p) lying in B0(S2p). Unlabelled vertices in the quiver correspond to

(isomorphism classes of) irreducible modules that are not composition factors of K(2p); black

vertices correspond to composition factors of K(2p) that appear with multiplicity one; and

red vertices correspond to composition factors of K(2p) that appear with multiplicity two.

(5, 1)

(4, 12)

(3, 3)

Figure 8.2: Summands of K(23) in the principal block of S6 in characteristic 3.

(7, 13)

(5, 4, 1)

(6, 14)

(8, 12) (5, 3, 12)

(10) (4, 4, 2)

Figure 8.3: Summands of K(25) in the principal block of S10 in characteristic 5.

8.4.4 Summands of K(2p) in the principal block of S2p

To proceed, we prove the following result, which describes the summands of K(2p) that lie in

the principal block. We continue to assume that p is an odd prime and take inspiration from

Wildon’s work in [45], modelling our approach on the methods that he used to determine the

structure of the unique summand of H(2p) lying in the principal block of S2p.
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u0

u1

u2 v0,1

v0,2

v0,3 v1,2

v1,3

v(p−7)/2,(p−3)/2

v(p−7)/2,(p−1)/2

v(p−5)/2,(p−3)/2

v(p−5)/2,(p−1)/2

w(p+1)/2 w(p−3)/2

Figure 8.4: Summands of K(2p) in the principal block of S2p in characteristic p, for p ≥ 7.

Proposition 8.4.6

Let p be an odd prime. There is a unique, indecomposable non-projective summand of K(2p)

lying in B0(S2p).

The first step towards proving this result is establishing that K(2p) is a p-permutation

module, which can be done in several ways.

Our first – and simplest – method exploits the fact that the restriction or induction of a

p-permutation module is also a p-permutation module [5, Proposition (0.2)]. For this reason,

we may consider

L := T (1p)
(
S(2)

)yS2oSp
Sylp(S2oSp)

and since K(2p) = L
xS2p , it will be sufficient to show that L is a p-permutation module. Since

the order of the wreath product S2 o Sp is p! 2p, we easily deduce that |Sylp(S2 o Sp)| = p

124



§8.4.4. Summands of K(2p) in the principal block of S2p

and so Sylp(S2 o Sp) is isomorphic to the cyclic group Cp. Further, L ∼= sgnSylp(S2oSp), the

sign k Sylp(S2 o Sp)-module. However, since the sign of any permutation which generates

Sylp(S2 oSp) is 1, we in fact see that L ∼= 1Sylp(S2oSp), and thus is a p-permutation module.

Our second approach is to construct a suitable p-permutation basis. For this, we will

need to introduce some notation. Let X(2p) be the set of all (2p)-tabloids and recall that, as

a vector space, the Young permutation module M (2p) is spanned by X(2p). Given x ∈ X(2p),

which is of the form

x =

x1 xp+1

x2 xp+2

...
...

xp x2p

, (8.8)

where {x1, x2, . . . , x2p} = {1, 2, . . . , 2p}, define H(x) by

H(x) :=
{
{x1, xp+1}, {x2, xp+2}, . . . , {xp, x2p}

}
.

There is a natural action of σ ∈ SH(x)
∼= Sp, which permutes the rows of x according to σ.

Let R be the subspace of M (2p) spanned by{
x− sgn(σ)xσ

∣∣∣ x ∈ X(2p), σ ∈ SH(x)

}
and let x be the image x + R of x under the quotient map M (2p) → M (2p)/R ∼= K(2p). To

prove that K(2p) is a p-permutation module, it will be sufficient to construct a p-permutation

basis for K(2p) with respect to P := Sylp(S2p).

To construct a basis for K(2p), choose any x1 ∈ X(2p) and construct Ox1 = {x1g | g ∈ P},
the orbit of x1 under P . For i ≥ 2, choose xi /∈

⋃i−1
j=1Oxj and construct Oxi . Continue in

this manner, until
⋃
j Oxj = X(2p). Define Oxj := {xjg | xjg ∈ Oxj} and let

B =
⋃
j

Oxj ,

where B is viewed as a set of elements of K(2p). We will see that B is a basis for K(2p) which

is invariant under P = Sylp(S2p). More precisely, we will show that either no two elements

of an orbit Ox are equal under the quotient map, and thus the orbit is clearly P -invariant, or

that whenever xg1,xg2 ∈ Ox are such that they differ only by a permutation of their rows,

i.e. xg1 = xg2σ for some σ ∈ SH(xg2), then sgn(σ) = 1 and hence xg2 − xg1 ∈ R.

Let x ∈ X(2p), which is of the form given in (8.8), and let P = 〈q, r〉 ∼= Cp × Cp, where

q := (1 2 . . . p) and r := (p + 1 . . . 2p). Consider Ox = {xg | g ∈ P}. Define the type of a

row of x as follows: the row of x with entries xa and xp+a is

• of type 1 if xa ∈ {1, 2, . . . , p} and xp+a ∈ {p+ 1, . . . , 2p};
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• of type 2 if {xa, xp+a} ⊆ {1, 2, . . . , p}; and

• of type 3 if {xa, xp+a} ⊆ {p+ 1, . . . , 2p}.

Since p is odd, there must exist at least one type 1 row of x; such a row will not be fixed

by the action of qi or rj on x for any 1 ≤ i, j ≤ p− 1. Moreover, the only way that all entries

in rows of type 1, which are also elements of {1, 2, . . . , p} (or {p+ 1, . . . , 2p}), will also be in

a row of type 1 in xqi (or xrj , respectively) is if all rows of x are of type 1.

Suppose that not all rows of x are of type 1. Let row a be a type 1 row of x, whose entry

xa ≤ p is not in a row of type 1 in xqi for some 1 ≤ i ≤ p− 1. For any 1 ≤ i ≤ p− 1, qi fixes

those entries in x that are elements of {p+ 1, . . . , 2p}. In particular, qi fixes xp+a. Thus, we

have

xqi =

...
...

y xp+a ← row a
...

...

xa z
...

...

,

where y, z ≤ p. Similarly, for any 1 ≤ j ≤ p− 1, rj fixes those entries in x that are elements

of {1, . . . , p} and so we know that

xrj =

...
...

xa u ← row a
...

...

v xp+a
...

...

,

where u > p and v ∈ {1, . . . , 2p}\{xa, xp+a, u}. Comparing the rows of xqi and xrj that

contain xa, and noting that z ≤ p and u > p, it is clear that there cannot exist a permutation

σ ∈ SH(xrj), for which xqi = (xrj)σ. Thus, under the quotient map M (2p) → K(2p), no

two elements xg1,xg2 ∈ Ox are equal and hence Ox := {xg | xg ∈ Ox} contains p2 linearly

independent elements of K(2p).

If x is such that all of its rows are of type 1, and σ ∈ SH(xrj), then xqi = (xrj)σ if

and only if j = p − i and σ = (1 2 . . . , p)i. Further, since p is odd, sgn(σ) = 1. Clearly,

xqi − (xrp−i)(1 2 . . . , p)i ∈ R and hence, xqi = (xrp−i)(1 2 . . . , p)i in K(2p). It follows that

Ox = {xg | xg ∈ Ox} contains p linearly independent elements of K(2p).

Now that we have established that K(2p) is a p-permutation module, we look to apply the

Brauer correspondence. Recall that

K(2p) =
(
T (1p)

(
S(2)

))xS2p

S2oSp
.
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By Higman’s Criteria (Proposition 2.1.7), K(2p) is relatively k(S2 oSp)-projective. It follows

from Theorem 9.2 in [2] that K(2p)
y
S2oSp is relatively k

(
Sylp(S2 oSp)

)
-projective and there-

fore, using Higman’s Criteria again, K(2p) is relatively k
(

Sylp(S2 oSp)
)
-projective. Now, by

the definition of a vertex, we know that a vertex of any indecomposable summand of K(2p) is

a subgroup of Sylp(S2 oSp). We have already established that |Sylp(S2 oSp)| = p and that

Sylp(S2 oSp) ∼= Q := 〈(1 2 . . . p)(p+1 . . . 2p)〉. It follows that the vertices of indecomposable

summands of K(2p) are either trivial (in which case the summand is projective) or conjugate

to Q.

If M is a non-projective indecomposable summand of K(2p), then, under the Brauer cor-

respondence, M corresponds to the projective indecomposable k(NS2p(Q)/Q)-module M(Q).

Moreover, if K(2p) = M1 ⊕ · · · ⊕Ms (into indecomposable summands), then

K(2p)(Q) = M1(Q)⊕ · · · ⊕Ms(Q).

To verify that not all indecomposable summands of K(2p) are projective, we need to

compute the Brauer quotientK(2p)(Q) ofK(2p) with respect toQ = 〈qr〉, where q = (1 2 . . . p)

and r = (p+1 . . . 2p). By Corollary 2.1.21, K(2p)(Q) = 〈BQ〉k, where BQ denotes the subspace

of Q-fixed points in the p-permutation basis B of K(2p). A basis for BQ is given by the set of

oriented column tabloids 
bi =

∣∣∣∣∣∣∣∣∣∣∣

{1 , p+ 1}
{2 , p+ 2}

...

{ p , 2p }

∣∣∣∣∣∣∣∣∣∣∣
qi

∣∣∣∣∣∣∣∣∣∣∣
0 ≤ i ≤ p− 1


.

Indeed, computation shows that acting by (qr)j for some 0 ≤ j ≤ p − 1 permutes the rows

of a basis element bi. In particular, the rows are permuted by a p-cycle, which is an even

permutation, and so it follows that bi is fixed by (qr)j . Further, if b ∈ B is not one of the

basis elements bi, then b(qr)j 6= b for all 0 ≤ j ≤ p− 1.

Since dimK(2p)(Q) = p and thus, K(2p)(Q) 6= 0, it must be that Mi(Q) 6= 0 for some i.

In other words, there is at least one indecomposable summand of K(2p) with vertex Q.

Lemma 8.4.7

There is only one summand of K(2p) lying in B0(S2p) with vertex Q.

Proof. Since NS2p(Q) is a subgroup of S2p, it is clear that |NS2p(Q)| ≤ (2p)! and thus,

|NS2p(Q)/Q| ≤ (2p)!/p. Further, NS2p(Q)/Q contains an element of order p, namely πQ,

where π := (1 p + 1)(2 p + 2) · · · (p 2p). Therefore, | Sylp
(
NS2p(Q)/Q

)
| = p, from which it

follows (by Corollary 5.7 in [2]) that every projective k(NS2p(Q)/Q)-module has dimension

divisible by p. In particular, p divides dimMi(Q), which means that K(2p)(Q) = Mi(Q)

because dimK(2p)(Q) = p. �
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We are yet to exclude the possibility that there exist projective summands of K(2p) lying

in B0(S2p). This will complete the proof of Proposition 8.4.6.

Proof of Proposition 8.4.6. In Theorem I of [42], Scopes proves that, for a defect two block

of a symmetric group in prime characteristic, all diagonal entries in the Cartan matrix are

greater than or equal to three. That is, the multiplicity of a simple module Dλ as a compo-

sition factor of its projective cover P (λ) is at least three. In §8.4.2, we saw that all simple

modules lying in B0(S2p) arise with multiplicity at most two in K(2p). Hence Scopes’ result

ensures there cannot be any projective summands of K(2p) lying in the principal block. �

To summarise, we have seen that all projective summands of K(2p) lie in blocks of weight

zero and that there is one indecomposable non-projective summand of K(2p) lying in the

principal block of S2p. We will now describe the Loewy layers of the non-projective summand.

8.4.5 Loewy layers of non-projective summands

In this section we will describe the Loewy layers of the indecomposable non-projective sum-

mand of K(2p) lying in B0(S2p). We already know the composition factors that lie in B0(S2p),

so we just need to determine their position within the layers.

We continue to assume that p is an odd prime. Additionally, we will not address the case

p = 3, since the structure of K(23) is detailed in §8.1.2. However, we remark that we saw that

K(23) has a single summand; this summand is non-projective and lies in the principal block.

Theorem 8.4.8

If p = 5, then the Loewy layers of the non-projective indecomposable summand of K(25) are

D(5,4,1) ⊕D(7,13)

D(10) ⊕D(8,12) ⊕D(5,3,12) ⊕D(6,14) ⊕D(4,4,2)

D(5,4,1) ⊕D(7,13)

.

If p ≥ 7, then the Loewy layers of the non-projective indecomposable summand of K(2p) are

u1 ⊕ v0,2 ⊕ v1,3 ⊕ · · · ⊕ v(p−7)/2,(p−3)/2 ⊕ v(p−5)/2,(p−1)/2

u0 ⊕ u2 ⊕ v0,1 ⊕ · · · ⊕ v(p−5)/2,(p−3)/2 ⊕ v0,3 ⊕ · · · ⊕ v(p−7)/2,(p−1)/2 ⊕ w(p−3)/2 ⊕ w(p+1)/2

u1 ⊕ v0,2 ⊕ v1,3 ⊕ · · · ⊕ v(p−7)/2,(p−3)/2 ⊕ v(p−5)/2,(p−1)/2

.

As we observed at the end of §8.4.2, the only reason for isolating the case p = 5 in the

statement of Theorem 8.4.8 is to account for the fact that the simple module w(p+1)/2 is
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not defined when p = 5. In the proof of the theorem, we do not need to identify particular

composition factors and therefore we will not distinguish between the case p = 5 and the case

p ≥ 7.

Proof. Let p ≥ 5 and let M denote the unique non-projective indecomposable summand of

K(2p). For ease of notation, let Y = {Yi | 1 ≤ i ≤ p} be the set of composition factors of

M that arise with multiplicity one, and let Z = {Zj | 1 ≤ j ≤ (p − 1)/2} be the set of

composition factors of M that arise with multiplicity two.

For a contradiction, suppose that there exists 1 ≤ i ≤ p such that Yi ∈ Y is a composition

factor of soc(M). Since K(2p) is self-dual, it follows that M is self-dual and therefore Yi

must also be a composition factor of hd(M) = M/ rad(M) ∼= soc(M). Since Yi arises with

multiplicity one, this is only possible if hd(M) = soc(M). However, this means that the

Loewy length of M is one and Yi is a direct summand of M , which is a contradiction. Hence,

the composition factors of soc(M) must be a subset of Z. Moreover, these composition factors

must occur with multiplicity one in soc(M) (and multiplicity one in hd(M)), else either M

would not be self-dual or there would exist Zj ∈ Z with multiplicity greater than two in M ,

both of which are false.

For a contradiction, assume that there exists at least one Zj ∈ Z, which is not a

composition factor of soc(M) or hd(M). Consider heart(M) = rad(M)/ soc(M), which

we know must have Zj and Yi (for all 1 ≤ i ≤ p) among its composition factors. It

is clear from the Ext-quiver of B0(S2p) that Ext1(Zj1 , Zj2) = 0 for j1 6= j2 and there-

fore, Zj cannot be a composition factor of soc2(M)/ soc(M). It follows that M must have

Loewy length at least five and the set of composition factors of soc
(

heart(M)
)

is a subset

of Y . But, since heart(M) is also self-dual, this means that the same subset of Y must

also be the set of composition factors of heart(M)/ rad
(

heart(M)
)
. This is only possible if

heart(M)/ rad
(

heart(M)
)

= soc
(

heart(M)
)
, but then the Loewy length of M is at most

three, which is a contradiction. Hence, we conclude that soc(M) = hd(M) =
⊕(p−1)/2

j=1 Zj

and heart(M) =
⊕p

i=1 Yi. �
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Appendix A

The Ext-quiver of the principal

block of S2p in characteristic p

The following quiver was obtained by Martin in his D.Phil thesis [35].

u0

u1

u2

u3

u4

v0,1

v0,2

v0,3

v0,4

v1,1

v1,2

v1,3

v2,1

v2,2 v3,1

t0

t1

t2

t3

w0w1w2w3up−1

up−2

up−3

up−4

wp−3 wp−4 wp−5

v0,p−3

v0,p−4

v0,p−5

v1,p−4

v1,p−5

v1,p−6

v2,p−5

v2,p−6

vp−6,3

vp−7,3

vp−5,2

vp−6,2

vp−7,2

vp−4,1

vp−5,1

vp−6,1

tp−3

tp−4

tp−5

Figure A.1: The Ext-quiver of the principal block of S2p in characteristic p.

130



Appendix B

MAGMA Code

B.1 Decomposition of generalised Foulkes characters

The following MAGMA code enables the decomposition of the generalised Foulkes character

ϕ
(mn)
z to be computed, with z used here (instead of ν) to denote the partition of n which

labels the character. We use this code to generate the data given in §C.4-C.5.

function GenInf(m,n,z);

S:=SymmetricGroup(m*n);

ptn:=[m : i in [1..n]];

ptnforchar:=z;

H:=YoungSubgroup(ptn);

G:=Normalizer(S,H);

sym:=SymmetricGroup(n);

W:=WreathProduct(Sym(m),Sym(n));

x1:=W!([2,1]cat[i : i in [3..m*n]]);

y1:=W!([i : i in [2..m]]cat[1]cat[j : j in [m+1..m*n]]);

a1:=W!([m+i : i in [1..m]]cat[j : j in [1..m]]cat[k : k in [2*m+1..m*

n]]);

b1:=W!([i : i in [m+1..n*m]]cat[j: j in [1..m]]);

c1:=Sym(n)!([i : i in [2..n]]cat[1]);

q:=hom<G->sym|[G!x1->Id(sym),G!y1->Id(sym),G!a1->sym!(1,2),G!b1->sym!

c1]>;

symchar:=SymmetricCharacter(ptnforchar);

sgnSmwrSn:=LiftCharacter(symchar,q,G);

phi:=Induction(sgnSmwrSn,S);

return [<p,InnerProduct(phi,SymmetricCharacter(p))> : p in Partitions

(m*n)|InnerProduct(phi,SymmetricCharacter(p)) ge 1];

end function;
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Given m,n ∈ N, the following code decomposes ϕ
(mn)
ν for all partitions ν of n. Of course,

decomposing a single character can be computationally demanding and so this function is

only really of benefit for small m and n. We use this code to obtain the data given in §C.1-C.3.

function All(m,n);

"Decomposition of varphi^(m^n)_nu with <m,n> =", <m,n>;

for z in Partitions(n)

do "nu = ", z;

GenInf(m,n,z);

end for;

return "end";

end function;

B.2 The structure of K(2n) in prime characteristic

The following function computes the dimension of the indecomposable summands of K(2n)

in prime characteristic p and also returns (the dimension of) the modules appearing in the

socle series of K(2n).

function Socle(n,p);

S:=SymmetricGroup(2*n);

ptn:=[2 : i in [1..n]];

H:=YoungSubgroup(ptn);

N:=Normalizer(S,H);

function varx(i);

return S!(2*i-1,2*i);

end function;

function vary(j);

return S!(2*j-1,2*j+1)(2*j,2*j+2);

end function;

lst:=[varx(i) : i in [1..n]]cat[vary(j) : j in [1..n-1]];

G:=sub<S|lst>;

function matrixeltx(p);

return Matrix(GF(p),1,1,[1]);

end function;

function matrixelty(p);

return Matrix(GF(p),1,1,[-1]);

end function;

L:=[matrixeltx(p) : i in [1..n]]cat[matrixelty(p) : i in [1..n-1]];

A:=MatrixAlgebra<GF(p),1|L>;

repres:=GModule(G,A);
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K:=Induction(repres,SymmetricGroup(2*n));

IndS:=IndecomposableSummands(K);

"K2",n;

"characteristic", p;

return K,[<i,SocleSeries(i)> : i in IndS];

end function;

To fully determine the structure of K(24) in characteristic 2, we needed to obtain more

information about the heart of the indecomposable summand with the largest dimension.

function K24decomp(p);

S:=SymmetricGroup(2*4);

ptn:=[2 : i in [1..4]];

H:=YoungSubgroup(ptn);

N:=Normalizer(S,H);

G:=PermutationGroup<2*4|(1,2),(3,4),(5,6),(7,8),(1,3)(2,4),(3,5)(4,6)

,(5,7)(6,8)>;

A:=MatrixAlgebra<GF(p),1|[1],[1],[1],[1],[-1],[-1],[-1]>;

repres:=GModule(G,A);

K:=Induction(repres,SymmetricGroup(2*4));

IndS:=IndecomposableSummands(K);

I:=IndS[3];

J:=JacobsonRadical(I);

sc:=Socle(I);

Q:=quo<J|sc>;

IQ:=IndecomposableSummands(Q);

return [<i,SocleSeries(i)> : i in IQ];

end function;
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The decomposition of generalised

Foulkes characters

The following data was obtained using the MAGMA Code from Appendix B. For each gener-

alised Foulkes character ϕ
(mn)
ν , we record the partitions λ labelling the irreducible characters

that appear in its decomposition with non-zero multiplicity, together with the corresponding

character multiplicities mλ :=
〈
ϕ

(mn)
ν , χλ

〉
, as <λ, mλ>.

C.1 Decompositions of ϕ
(2n)
ν for 2 ≤ n ≤ 5

Decomposition of varphi^(m^n)_nu with <m,n> = <2, 2>

nu = [ 2 ]

<[ 4 ], 1>

<[ 2, 2 ], 1>

nu = [ 1, 1 ]

<[ 3, 1 ], 1>

Decomposition of varphi^(m^n)_nu with <m,n> = <2, 3>

nu = [ 3 ]

<[ 6 ], 1>

<[ 4, 2 ], 1>

<[ 2, 2, 2 ], 1>

nu = [ 2, 1 ]

<[ 5, 1 ], 1>

<[ 4, 2 ], 1>

<[ 3, 2, 1 ], 1>

nu = [ 1, 1, 1 ]

<[ 4, 1, 1 ], 1>

<[ 3, 3 ], 1>
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Decomposition of varphi^(m^n)_nu with <m,n> = <2, 4>

nu = [ 4 ]

<[ 8 ], 1>

<[ 6, 2 ], 1>

<[ 4, 4 ], 1>

<[ 4, 2, 2 ], 1>

<[ 2, 2, 2, 2 ], 1>

nu = [ 3, 1 ]

<[ 7, 1 ], 1>

<[ 6, 2 ], 1>

<[ 5, 3 ], 1>

<[ 5, 2, 1 ], 1>

<[ 4, 3, 1 ], 1>

<[ 4, 2, 2 ], 1>

<[ 3, 2, 2, 1 ], 1>

nu = [ 2, 2 ]

<[ 6, 2 ], 1>

<[ 5, 2, 1 ], 1>

<[ 4, 4 ], 1>

<[ 4, 2, 2 ], 1>

<[ 3, 3, 1, 1 ], 1>

nu = [ 2, 1, 1 ]

<[ 6, 1, 1 ], 1>

<[ 5, 3 ], 1>

<[ 5, 2, 1 ], 1>

<[ 4, 3, 1 ], 1>

<[ 4, 2, 1, 1 ], 1>

<[ 3, 3, 2 ], 1>

nu = [ 1, 1, 1, 1 ]

<[ 5, 1, 1, 1 ], 1>

<[ 4, 3, 1 ], 1>

Decomposition of varphi^(m^n)_nu with <m,n> = <2, 5>

nu = [ 5 ]

<[ 10 ], 1>

<[ 8, 2 ], 1>

<[ 6, 4 ], 1>

<[ 6, 2, 2 ], 1>

<[ 4, 4, 2 ], 1>

<[ 4, 2, 2, 2 ], 1>

<[ 2, 2, 2, 2, 2 ], 1>

nu = [ 4, 1 ]

<[ 9, 1 ], 1>

<[ 8, 2 ], 1>

<[ 7, 3 ], 1>

<[ 7, 2, 1 ], 1>

<[ 6, 4 ], 1>

<[ 6, 3, 1 ], 1>

<[ 6, 2, 2 ], 1>

<[ 5, 4, 1 ], 1>

<[ 5, 3, 2 ], 1>

<[ 5, 2, 2, 1 ], 1>

<[ 4, 4, 2 ], 1>

<[ 4, 3, 2, 1 ], 1>

<[ 4, 2, 2, 2 ], 1>

<[ 3, 2, 2, 2, 1 ], 1>

nu = [ 3, 2 ]

<[ 8, 2 ], 1>

<[ 7, 3 ], 1>

<[ 7, 2, 1 ], 1>

<[ 6, 4 ], 1>

<[ 6, 3, 1 ], 1>

<[ 6, 2, 2 ], 2>

<[ 5, 4, 1 ], 1>

<[ 5, 3, 2 ], 1>

<[ 5, 3, 1, 1 ], 1>

<[ 5, 2, 2, 1 ], 1>

<[ 4, 4, 2 ], 1>

<[ 4, 3, 2, 1 ], 1>

<[ 4, 2, 2, 2 ], 1>

<[ 3, 3, 2, 1, 1 ], 1>

nu = [ 3, 1, 1 ]

<[ 8, 1, 1 ], 1>

<[ 7, 3 ], 1>

<[ 7, 2, 1 ], 1>

<[ 6, 3, 1 ], 2>

<[ 6, 2, 1, 1 ], 1>

<[ 5, 5 ], 1>

<[ 5, 4, 1 ], 1>

<[ 5, 3, 2 ], 2>

<[ 5, 3, 1, 1 ], 1>

<[ 5, 2, 2, 1 ], 1>

<[ 4, 4, 1, 1 ], 1>

<[ 4, 3, 3 ], 1>

<[ 4, 3, 2, 1 ], 1>

<[ 4, 2, 2, 1, 1 ], 1>

<[ 3, 3, 2, 2 ], 1>

nu = [ 2, 2, 1 ]

<[ 7, 2, 1 ], 1>

<[ 6, 4 ], 1>

<[ 6, 3, 1 ], 1>

<[ 6, 2, 2 ], 1>

<[ 6, 2, 1, 1 ], 1>

<[ 5, 4, 1 ], 1>

<[ 5, 3, 2 ], 1>

<[ 5, 3, 1, 1 ], 1>

<[ 5, 2, 2, 1 ], 1>

<[ 4, 4, 2 ], 1>

<[ 4, 3, 2, 1 ], 1>

<[ 4, 3, 1, 1, 1 ], 1>

<[ 3, 3, 3, 1 ], 1>
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nu = [ 2, 1, 1, 1 ]

<[ 7, 1, 1, 1 ], 1>

<[ 6, 3, 1 ], 1>

<[ 6, 2, 1, 1 ], 1>

<[ 5, 4, 1 ], 1>

<[ 5, 3, 2 ], 1>

<[ 5, 3, 1, 1 ], 1>

<[ 5, 2, 1, 1, 1 ], 1>

<[ 4, 4, 1, 1 ], 1>

<[ 4, 3, 3 ], 1>

<[ 4, 3, 2, 1 ], 1>

nu = [ 1, 1, 1, 1, 1 ]

<[ 6, 1, 1, 1, 1 ], 1>

<[ 5, 3, 1, 1 ], 1>

<[ 4, 4, 2 ], 1>

C.2 Decompositions of ϕ
(3n)
ν for 2 ≤ n ≤ 4

Decomposition of varphi^(m^n)_nu with <m,n> = <3, 2>

nu = [ 2 ]

<[ 6 ], 1>

<[ 4, 2 ], 1>

nu = [ 1, 1 ]

<[ 5, 1 ], 1>

<[ 3, 3 ], 1>

Decomposition of varphi^(m^n)_nu with <m,n> = <3, 3>

nu = [ 3 ]

<[ 9 ], 1>

<[ 7, 2 ], 1>

<[ 6, 3 ], 1>

<[ 5, 2, 2 ], 1>

<[ 4, 4, 1 ], 1>

nu = [ 2, 1 ]

<[ 8, 1 ], 1>

<[ 7, 2 ], 1>

<[ 6, 3 ], 1>

<[ 6, 2, 1 ], 1>

<[ 5, 4 ], 1>

<[ 5, 3, 1 ], 1>

<[ 4, 3, 2 ], 1>

nu = [ 1, 1, 1 ]

<[ 7, 1, 1 ], 1>

<[ 6, 3 ], 1>

<[ 5, 3, 1 ], 1>

<[ 3, 3, 3 ], 1>

Decomposition of varphi^(m^n)_nu with <m,n> = <3, 4>

nu = [ 4 ]

<[ 12 ], 1>

<[ 10, 2 ], 1>

<[ 9, 3 ], 1>

<[ 8, 4 ], 1>

<[ 8, 2, 2 ], 1>

<[ 7, 4, 1 ], 1>

<[ 7, 3, 2 ], 1>

<[ 6, 6 ], 1>

<[ 6, 4, 2 ], 1>

<[ 6, 2, 2, 2 ], 1>

<[ 5, 4, 2, 1 ], 1>

<[ 4, 4, 4 ], 1>

nu = [ 3, 1 ]

<[ 11, 1 ], 1>

<[ 10, 2 ], 1>

<[ 9, 3 ], 2>

<[ 9, 2, 1 ], 1>

<[ 8, 4 ], 1>

<[ 8, 3, 1 ], 2>

<[ 8, 2, 2 ], 1>

<[ 7, 5 ], 2>

<[ 7, 4, 1 ], 2>

<[ 7, 3, 2 ], 2>

<[ 7, 2, 2, 1 ], 1>

<[ 6, 5, 1 ], 1>

<[ 6, 4, 2 ], 2>

<[ 6, 4, 1, 1 ], 1>

<[ 6, 3, 3 ], 1>

<[ 6, 3, 2, 1 ], 1>

<[ 5, 5, 2 ], 1>

<[ 5, 4, 3 ], 1>

<[ 5, 4, 2, 1 ], 1>

<[ 5, 3, 2, 2 ], 1>

<[ 4, 4, 3, 1 ], 1>

nu = [ 2, 2 ]

<[ 10, 2 ], 1>

<[ 9, 2, 1 ], 1>

136



§C.3. Decompositions of ϕ
(4n)
ν for 2 ≤ n ≤ 4

<[ 8, 4 ], 2>

<[ 8, 3, 1 ], 1>

<[ 8, 2, 2 ], 1>

<[ 7, 4, 1 ], 1>

<[ 7, 3, 2 ], 1>

<[ 7, 3, 1, 1 ], 1>

<[ 6, 6 ], 1>

<[ 6, 5, 1 ], 1>

<[ 6, 4, 2 ], 2>

<[ 6, 3, 2, 1 ], 1>

<[ 5, 5, 1, 1 ], 1>

<[ 5, 4, 3 ], 1>

<[ 5, 3, 3, 1 ], 1>

<[ 4, 4, 2, 2 ], 1>

nu = [ 2, 1, 1 ]

<[ 10, 1, 1 ], 1>

<[ 9, 3 ], 1>

<[ 9, 2, 1 ], 1>

<[ 8, 4 ], 1>

<[ 8, 3, 1 ], 2>

<[ 8, 2, 1, 1 ], 1>

<[ 7, 5 ], 1>

<[ 7, 4, 1 ], 2>

<[ 7, 3, 2 ], 2>

<[ 7, 3, 1, 1 ], 1>

<[ 6, 5, 1 ], 2>

<[ 6, 4, 2 ], 1>

<[ 6, 4, 1, 1 ], 1>

<[ 6, 3, 3 ], 2>

<[ 6, 3, 2, 1 ], 1>

<[ 5, 5, 2 ], 1>

<[ 5, 4, 3 ], 1>

<[ 5, 4, 2, 1 ], 1>

<[ 5, 3, 3, 1 ], 1>

<[ 4, 3, 3, 2 ], 1>

nu = [ 1, 1, 1, 1 ]

<[ 9, 1, 1, 1 ], 1>

<[ 8, 3, 1 ], 1>

<[ 7, 4, 1 ], 1>

<[ 7, 3, 1, 1 ], 1>

<[ 6, 6 ], 1>

<[ 6, 4, 2 ], 1>

<[ 6, 3, 3 ], 1>

<[ 5, 5, 1, 1 ], 1>

<[ 5, 3, 3, 1 ], 1>

<[ 3, 3, 3, 3 ], 1>

C.3 Decompositions of ϕ
(4n)
ν for 2 ≤ n ≤ 4

Decomposition of varphi^(m^n)_nu with <m,n> = <4, 2>

nu = [ 2 ]

<[ 8 ], 1>

<[ 6, 2 ], 1>

<[ 4, 4 ], 1>

nu = [ 1, 1 ]

<[ 7, 1 ], 1>

<[ 5, 3 ], 1>

Decomposition of varphi^(m^n)_nu with <m,n> = <4, 3>

nu = [ 3 ]

<[ 12 ], 1>

<[ 10, 2 ], 1>

<[ 9, 3 ], 1>

<[ 8, 4 ], 1>

<[ 8, 2, 2 ], 1>

<[ 7, 4, 1 ], 1>

<[ 6, 6 ], 1>

<[ 6, 4, 2 ], 1>

<[ 4, 4, 4 ], 1>

nu = [ 2, 1 ]

<[ 11, 1 ], 1>

<[ 10, 2 ], 1>

<[ 9, 3 ], 1>

<[ 9, 2, 1 ], 1>

<[ 8, 4 ], 2>

<[ 8, 3, 1 ], 1>

<[ 7, 5 ], 1>

<[ 7, 4, 1 ], 1>

<[ 7, 3, 2 ], 1>

<[ 6, 5, 1 ], 1>

<[ 6, 4, 2 ], 1>

<[ 5, 4, 3 ], 1>
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nu = [ 1, 1, 1 ]

<[ 10, 1, 1 ], 1>

<[ 9, 3 ], 1>

<[ 8, 3, 1 ], 1>

<[ 7, 5 ], 1>

<[ 7, 4, 1 ], 1>

<[ 6, 3, 3 ], 1>

<[ 5, 5, 2 ], 1>

Decomposition of varphi^(m^n)_nu with <m,n> = <4, 4>

nu = [ 4 ]

<[ 16 ], 1>

<[ 14, 2 ], 1>

<[ 13, 3 ], 1>

<[ 12, 4 ], 2>

<[ 12, 2, 2 ], 1>

<[ 11, 4, 1 ], 1>

<[ 11, 3, 2 ], 1>

<[ 10, 6 ], 2>

<[ 10, 5, 1 ], 1>

<[ 10, 4, 2 ], 2>

<[ 10, 2, 2, 2 ], 1>

<[ 9, 6, 1 ], 1>

<[ 9, 5, 2 ], 1>

<[ 9, 4, 3 ], 1>

<[ 9, 4, 2, 1 ], 1>

<[ 8, 8 ], 1>

<[ 8, 6, 2 ], 2>

<[ 8, 5, 2, 1 ], 1>

<[ 8, 4, 4 ], 2>

<[ 8, 4, 2, 2 ], 1>

<[ 7, 7, 1, 1 ], 1>

<[ 7, 6, 3 ], 1>

<[ 7, 5, 3, 1 ], 1>

<[ 7, 4, 4, 1 ], 1>

<[ 6, 6, 4 ], 1>

<[ 6, 6, 2, 2 ], 1>

<[ 6, 4, 4, 2 ], 1>

<[ 4, 4, 4, 4 ], 1>

nu = [ 3, 1 ]

<[ 15, 1 ], 1>

<[ 14, 2 ], 1>

<[ 13, 3 ], 2>

<[ 13, 2, 1 ], 1>

<[ 12, 4 ], 2>

<[ 12, 3, 1 ], 2>

<[ 12, 2, 2 ], 1>

<[ 11, 5 ], 3>

<[ 11, 4, 1 ], 3>

<[ 11, 3, 2 ], 2>

<[ 11, 2, 2, 1 ], 1>

<[ 10, 6 ], 2>

<[ 10, 5, 1 ], 3>

<[ 10, 4, 2 ], 4>

<[ 10, 4, 1, 1 ], 1>

<[ 10, 3, 3 ], 1>

<[ 10, 3, 2, 1 ], 1>

<[ 9, 7 ], 2>

<[ 9, 6, 1 ], 3>

<[ 9, 5, 2 ], 4>

<[ 9, 5, 1, 1 ], 1>

<[ 9, 4, 3 ], 3>

<[ 9, 4, 2, 1 ], 2>

<[ 9, 3, 2, 2 ], 1>

<[ 8, 7, 1 ], 2>

<[ 8, 6, 2 ], 3>

<[ 8, 6, 1, 1 ], 1>

<[ 8, 5, 3 ], 3>

<[ 8, 5, 2, 1 ], 2>

<[ 8, 4, 4 ], 2>

<[ 8, 4, 3, 1 ], 2>

<[ 8, 4, 2, 2 ], 1>

<[ 7, 7, 2 ], 1>

<[ 7, 6, 3 ], 2>

<[ 7, 6, 2, 1 ], 2>

<[ 7, 5, 4 ], 2>

<[ 7, 5, 3, 1 ], 1>

<[ 7, 5, 2, 2 ], 1>

<[ 7, 4, 4, 1 ], 2>

<[ 7, 4, 3, 2 ], 1>

<[ 6, 6, 4 ], 1>

<[ 6, 6, 3, 1 ], 1>

<[ 6, 5, 4, 1 ], 1>

<[ 6, 5, 3, 2 ], 1>

<[ 6, 4, 4, 2 ], 1>

<[ 5, 4, 4, 3 ], 1>
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nu = [ 2, 2 ]

<[ 14, 2 ], 1>

<[ 13, 2, 1 ], 1>

<[ 12, 4 ], 2>

<[ 12, 3, 1 ], 1>

<[ 12, 2, 2 ], 1>

<[ 11, 5 ], 1>

<[ 11, 4, 1 ], 2>

<[ 11, 3, 2 ], 1>

<[ 11, 3, 1, 1 ], 1>

<[ 10, 6 ], 2>

<[ 10, 5, 1 ], 2>

<[ 10, 4, 2 ], 3>

<[ 10, 3, 2, 1 ], 1>

<[ 9, 6, 1 ], 2>

<[ 9, 5, 2 ], 2>

<[ 9, 5, 1, 1 ], 2>

<[ 9, 4, 3 ], 2>

<[ 9, 4, 2, 1 ], 1>

<[ 9, 3, 3, 1 ], 1>

<[ 8, 8 ], 2>

<[ 8, 7, 1 ], 1>

<[ 8, 6, 2 ], 3>

<[ 8, 5, 3 ], 2>

<[ 8, 5, 2, 1 ], 1>

<[ 8, 4, 4 ], 2>

<[ 8, 4, 3, 1 ], 1>

<[ 8, 4, 2, 2 ], 1>

<[ 7, 7, 1, 1 ], 1>

<[ 7, 6, 3 ], 1>

<[ 7, 6, 2, 1 ], 1>

<[ 7, 5, 4 ], 1>

<[ 7, 5, 3, 1 ], 2>

<[ 7, 4, 3, 2 ], 1>

<[ 6, 6, 4 ], 1>

<[ 6, 6, 2, 2 ], 1>

<[ 6, 5, 4, 1 ], 1>

<[ 6, 4, 4, 2 ], 1>

<[ 5, 5, 3, 3 ], 1>

nu = [ 2, 1, 1 ]

<[ 14, 1, 1 ], 1>

<[ 13, 3 ], 1>

<[ 13, 2, 1 ], 1>

<[ 12, 4 ], 1>

<[ 12, 3, 1 ], 2>

<[ 12, 2, 1, 1 ], 1>

<[ 11, 5 ], 2>

<[ 11, 4, 1 ], 3>

<[ 11, 3, 2 ], 2>

<[ 11, 3, 1, 1 ], 1>

<[ 10, 6 ], 1>

<[ 10, 5, 1 ], 4>

<[ 10, 4, 2 ], 2>

<[ 10, 4, 1, 1 ], 2>

<[ 10, 3, 3 ], 2>

<[ 10, 3, 2, 1 ], 1>

<[ 9, 7 ], 2>

<[ 9, 6, 1 ], 3>

<[ 9, 5, 2 ], 4>

<[ 9, 5, 1, 1 ], 1>

<[ 9, 4, 3 ], 3>

<[ 9, 4, 2, 1 ], 2>

<[ 9, 3, 3, 1 ], 1>

<[ 8, 7, 1 ], 2>

<[ 8, 6, 2 ], 2>

<[ 8, 6, 1, 1 ], 2>

<[ 8, 5, 3 ], 4>

<[ 8, 5, 2, 1 ], 2>

<[ 8, 4, 4 ], 1>

<[ 8, 4, 3, 1 ], 2>

<[ 8, 3, 3, 2 ], 1>

<[ 7, 7, 2 ], 2>

<[ 7, 6, 3 ], 2>

<[ 7, 6, 2, 1 ], 1>

<[ 7, 5, 4 ], 2>

<[ 7, 5, 3, 1 ], 2>

<[ 7, 5, 2, 2 ], 1>

<[ 7, 4, 4, 1 ], 1>

<[ 7, 4, 3, 2 ], 1>

<[ 6, 6, 3, 1 ], 1>

<[ 6, 5, 5 ], 1>

<[ 6, 5, 4, 1 ], 1>

<[ 6, 5, 3, 2 ], 1>

<[ 6, 4, 3, 3 ], 1>

<[ 5, 5, 4, 2 ], 1>

nu = [ 1, 1, 1, 1 ]

<[ 13, 1, 1, 1 ], 1>

<[ 12, 3, 1 ], 1>

<[ 11, 4, 1 ], 1>

<[ 11, 3, 1, 1 ], 1>

<[ 10, 6 ], 1>

<[ 10, 5, 1 ], 1>

<[ 10, 4, 2 ], 1>

<[ 10, 4, 1, 1 ], 1>

<[ 10, 3, 3 ], 1>

<[ 9, 6, 1 ], 1>

<[ 9, 5, 2 ], 1>

<[ 9, 5, 1, 1 ], 1>

<[ 9, 4, 3 ], 1>

<[ 9, 3, 3, 1 ], 1>

<[ 8, 7, 1 ], 1>

<[ 8, 6, 2 ], 1>

<[ 8, 5, 3 ], 1>

<[ 8, 5, 2, 1 ], 1>

<[ 8, 4, 3, 1 ], 1>

<[ 7, 7, 1, 1 ], 1>

<[ 7, 6, 3 ], 1>

<[ 7, 5, 4 ], 1>

<[ 7, 5, 3, 1 ], 1>

<[ 7, 3, 3, 3 ], 1>

<[ 6, 5, 3, 2 ], 1>

<[ 5, 5, 5, 1 ], 1>
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C.4 Further decompositions of ϕ(mn)

Decomposition of varphi^(3^5)

<[ 15 ], 1>

<[ 13, 2 ], 1>

<[ 12, 3 ], 1>

<[ 11, 4 ], 1>

<[ 11, 2, 2 ], 1>

<[ 10, 5 ], 1>

<[ 10, 4, 1 ], 1>

<[ 10, 3, 2 ], 1>

<[ 9, 6 ], 1>

<[ 9, 4, 2 ], 2>

<[ 9, 2, 2, 2 ], 1>

<[ 8, 6, 1 ], 1>

<[ 8, 5, 2 ], 1>

<[ 8, 4, 3 ], 1>

<[ 8, 4, 2, 1 ], 1>

<[ 8, 3, 2, 2 ], 1>

<[ 7, 6, 2 ], 1>

<[ 7, 5, 2, 1 ], 1>

<[ 7, 4, 4 ], 1>

<[ 7, 4, 3, 1 ], 1>

<[ 7, 4, 2, 2 ], 1>

<[ 7, 2, 2, 2, 2 ], 1>

<[ 6, 6, 3 ], 1>

<[ 6, 5, 2, 2 ], 1>

<[ 6, 4, 4, 1 ], 1>

<[ 6, 4, 2, 2, 1 ], 1>

<[ 5, 5, 3, 1, 1 ], 1>

<[ 5, 4, 4, 2 ], 1>

Decomposition of varphi^(4^5)

<[ 20 ], 1>

<[ 18, 2 ], 1>

<[ 17, 3 ], 1>

<[ 16, 4 ], 2>

<[ 16, 2, 2 ], 1>

<[ 15, 5 ], 1>

<[ 15, 4, 1 ], 1>

<[ 15, 3, 2 ], 1>

<[ 14, 6 ], 2>

<[ 14, 5, 1 ], 1>

<[ 14, 4, 2 ], 3>

<[ 14, 2, 2, 2 ], 1>

<[ 13, 7 ], 1>

<[ 13, 6, 1 ], 2>

<[ 13, 5, 2 ], 2>

<[ 13, 4, 3 ], 2>

<[ 13, 4, 2, 1 ], 1>

<[ 13, 3, 2, 2 ], 1>

<[ 12, 8 ], 2>

<[ 12, 7, 1 ], 1>

<[ 12, 6, 2 ], 4>

<[ 12, 5, 3 ], 1>

<[ 12, 5, 2, 1 ], 2>

<[ 12, 4, 4 ], 3>

<[ 12, 4, 3, 1 ], 1>

<[ 12, 4, 2, 2 ], 2>

<[ 12, 2, 2, 2, 2 ], 1>

<[ 11, 8, 1 ], 1>

<[ 11, 7, 2 ], 2>

<[ 11, 7, 1, 1 ], 1>

<[ 11, 6, 3 ], 3>

<[ 11, 6, 2, 1 ], 2>

<[ 11, 5, 4 ], 1>

<[ 11, 5, 3, 1 ], 2>

<[ 11, 5, 2, 2 ], 2>

<[ 11, 4, 4, 1 ], 2>

<[ 11, 4, 3, 2 ], 1>

<[ 11, 4, 2, 2, 1 ], 1>

<[ 10, 10 ], 1>

<[ 10, 9, 1 ], 1>

<[ 10, 8, 2 ], 3>

<[ 10, 7, 3 ], 2>

<[ 10, 7, 2, 1 ], 2>

<[ 10, 6, 4 ], 4>

<[ 10, 6, 3, 1 ], 2>

<[ 10, 6, 2, 2 ], 3>

<[ 10, 5, 4, 1 ], 2>

<[ 10, 5, 3, 2 ], 1>

<[ 10, 5, 3, 1, 1 ], 1>

<[ 10, 5, 2, 2, 1 ], 1>

<[ 10, 4, 4, 2 ], 3>

<[ 10, 4, 2, 2, 2 ], 1>

<[ 9, 8, 3 ], 1>

<[ 9, 8, 2, 1 ], 1>

<[ 9, 7, 4 ], 1>

<[ 9, 7, 3, 1 ], 2>

<[ 9, 7, 2, 2 ], 1>

<[ 9, 7, 2, 1, 1 ], 1>

<[ 9, 6, 5 ], 1>

<[ 9, 6, 4, 1 ], 3>

<[ 9, 6, 3, 2 ], 2>

<[ 9, 6, 2, 2, 1 ], 1>

<[ 9, 5, 4, 2 ], 2>
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<[ 9, 5, 4, 1, 1 ], 1>

<[ 9, 5, 3, 2, 1 ], 1>

<[ 9, 4, 4, 3 ], 1>

<[ 9, 4, 4, 2, 1 ], 1>

<[ 8, 8, 4 ], 2>

<[ 8, 8, 2, 2 ], 2>

<[ 8, 7, 4, 1 ], 2>

<[ 8, 7, 3, 2 ], 1>

<[ 8, 7, 3, 1, 1 ], 1>

<[ 8, 6, 6 ], 2>

<[ 8, 6, 5, 1 ], 1>

<[ 8, 6, 4, 2 ], 3>

<[ 8, 6, 3, 2, 1 ], 1>

<[ 8, 6, 2, 2, 2 ], 1>

<[ 8, 5, 5, 1, 1 ], 1>

<[ 8, 5, 4, 3 ], 1>

<[ 8, 5, 4, 2, 1 ], 1>

<[ 8, 4, 4, 4 ], 2>

<[ 8, 4, 4, 2, 2 ], 1>

<[ 7, 7, 5, 1 ], 1>

<[ 7, 7, 4, 1, 1 ], 1>

<[ 7, 7, 3, 3 ], 1>

<[ 7, 6, 5, 2 ], 1>

<[ 7, 6, 4, 3 ], 1>

<[ 7, 6, 4, 2, 1 ], 1>

<[ 7, 5, 4, 3, 1 ], 1>

<[ 7, 4, 4, 4, 1 ], 1>

<[ 6, 6, 6, 2 ], 1>

<[ 6, 6, 4, 4 ], 1>

<[ 6, 6, 4, 2, 2 ], 1>

<[ 6, 4, 4, 4, 2 ], 1>

<[ 4, 4, 4, 4, 4 ], 1>
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Decomposition of varphi^(5^2)

<[ 10 ], 1>

<[ 8, 2 ], 1>

<[ 6, 4 ], 1>

Decomposition of varphi^(5^3)

<[ 15 ], 1>

<[ 13, 2 ], 1>

<[ 12, 3 ], 1>

<[ 11, 4 ], 1>

<[ 11, 2, 2 ], 1>

<[ 10, 5 ], 1>

<[ 10, 4, 1 ], 1>

<[ 9, 6 ], 1>

<[ 9, 4, 2 ], 1>

<[ 8, 6, 1 ], 1>

<[ 8, 5, 2 ], 1>

<[ 7, 4, 4 ], 1>

<[ 6, 6, 3 ], 1>

Decomposition of varphi^(5^4)

<[ 20 ], 1>

<[ 18, 2 ], 1>

<[ 17, 3 ], 1>

<[ 16, 4 ], 2>

<[ 16, 2, 2 ], 1>

<[ 15, 5 ], 1>

<[ 15, 4, 1 ], 1>

<[ 15, 3, 2 ], 1>

<[ 14, 6 ], 2>

<[ 14, 5, 1 ], 1>

<[ 14, 4, 2 ], 2>

<[ 14, 2, 2, 2 ], 1>

<[ 13, 7 ], 1>

<[ 13, 6, 1 ], 2>

<[ 13, 5, 2 ], 2>

<[ 13, 4, 3 ], 1>

<[ 13, 4, 2, 1 ], 1>

<[ 12, 8 ], 2>

<[ 12, 7, 1 ], 1>

<[ 12, 6, 2 ], 3>

<[ 12, 5, 3 ], 1>

<[ 12, 5, 2, 1 ], 1>

<[ 12, 4, 4 ], 2>

<[ 12, 4, 2, 2 ], 1>

<[ 11, 8, 1 ], 1>

<[ 11, 7, 2 ], 2>

<[ 11, 7, 1, 1 ], 1>

<[ 11, 6, 3 ], 2>

<[ 11, 6, 2, 1 ], 1>

<[ 11, 5, 4 ], 1>

<[ 11, 5, 3, 1 ], 1>

<[ 11, 5, 2, 2 ], 1>

<[ 11, 4, 4, 1 ], 1>

<[ 10, 10 ], 1>

<[ 10, 9, 1 ], 1>

<[ 10, 8, 2 ], 2>

<[ 10, 7, 3 ], 1>

<[ 10, 7, 2, 1 ], 1>

<[ 10, 6, 4 ], 3>

<[ 10, 6, 3, 1 ], 1>

<[ 10, 6, 2, 2 ], 1>

<[ 10, 5, 4, 1 ], 1>

<[ 10, 4, 4, 2 ], 1>

<[ 9, 8, 3 ], 1>

<[ 9, 8, 2, 1 ], 1>

<[ 9, 7, 4 ], 1>

<[ 9, 7, 3, 1 ], 1>

<[ 9, 6, 5 ], 1>

<[ 9, 6, 4, 1 ], 1>

<[ 9, 6, 3, 2 ], 1>

<[ 9, 5, 4, 2 ], 1>

<[ 8, 8, 4 ], 1>

<[ 8, 8, 2, 2 ], 1>

<[ 8, 7, 4, 1 ], 1>

<[ 8, 6, 6 ], 1>

<[ 8, 6, 5, 1 ], 1>

<[ 8, 6, 4, 2 ], 1>

<[ 8, 4, 4, 4 ], 1>

<[ 7, 6, 4, 3 ], 1>

<[ 6, 6, 6, 2 ], 1>
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(1n)

Decomposition of varphi^(6^2)

<[ 12 ], 1>

<[ 10, 2 ], 1>

<[ 8, 4 ], 1>

<[ 6, 6 ], 1>

Decomposition of varphi^(6^3)

<[ 18 ], 1>

<[ 16, 2 ], 1>

<[ 15, 3 ], 1>

<[ 14, 4 ], 1>

<[ 14, 2, 2 ], 1>

<[ 13, 5 ], 1>

<[ 13, 4, 1 ], 1>

<[ 12, 6 ], 2>

<[ 12, 4, 2 ], 1>

<[ 11, 6, 1 ], 1>

<[ 11, 5, 2 ], 1>

<[ 10, 8 ], 1>

<[ 10, 7, 1 ], 1>

<[ 10, 6, 2 ], 1>

<[ 10, 4, 4 ], 1>

<[ 9, 6, 3 ], 1>

<[ 8, 8, 2 ], 1>

<[ 8, 6, 4 ], 1>

<[ 6, 6, 6 ], 1>

C.5 Further decompositions of ϕ
(mn)
(1n)

Decomposition of varphi^(3^5)_(1^5)

<[ 11, 1, 1, 1, 1 ], 1>

<[ 10, 3, 1, 1 ], 1>

<[ 9, 4, 2 ], 1>

<[ 9, 4, 1, 1 ], 1>

<[ 9, 3, 1, 1, 1 ], 1>

<[ 8, 6, 1 ], 1>

<[ 8, 5, 1, 1 ], 1>

<[ 8, 4, 3 ], 1>

<[ 8, 4, 2, 1 ], 1>

<[ 8, 3, 3, 1 ], 1>

<[ 7, 6, 2 ], 1>

<[ 7, 5, 2, 1 ], 1>

<[ 7, 5, 1, 1, 1 ], 1>

<[ 7, 4, 4 ], 1>

<[ 7, 4, 3, 1 ], 1>

<[ 7, 3, 3, 1, 1 ], 1>

<[ 6, 6, 3 ], 1>

<[ 6, 5, 3, 1 ], 1>

<[ 6, 4, 3, 2 ], 1>

<[ 6, 3, 3, 3 ], 1>

<[ 5, 5, 3, 1, 1 ], 1>

<[ 5, 3, 3, 3, 1 ], 1>

<[ 3, 3, 3, 3, 3 ], 1>

Decomposition of varphi^(4^5)_(1^5)

<[ 16, 1, 1, 1, 1 ], 1>

<[ 15, 3, 1, 1 ], 1>

<[ 14, 4, 2 ], 1>

<[ 14, 4, 1, 1 ], 1>

<[ 14, 3, 1, 1, 1 ], 1>

<[ 13, 6, 1 ], 1>

<[ 13, 5, 1, 1 ], 2>

<[ 13, 4, 3 ], 1>

<[ 13, 4, 2, 1 ], 1>

<[ 13, 4, 1, 1, 1 ], 1>

<[ 13, 3, 3, 1 ], 1>

<[ 12, 7, 1 ], 1>

<[ 12, 6, 2 ], 2>

<[ 12, 6, 1, 1 ], 1>

<[ 12, 5, 3 ], 1>

<[ 12, 5, 2, 1 ], 2>

<[ 12, 5, 1, 1, 1 ], 1>

<[ 12, 4, 4 ], 1>

<[ 12, 4, 3, 1 ], 2>

<[ 12, 3, 3, 1, 1 ], 1>

<[ 11, 8, 1 ], 1>
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(1n)

<[ 11, 7, 2 ], 1>

<[ 11, 7, 1, 1 ], 2>

<[ 11, 6, 3 ], 2>

<[ 11, 6, 2, 1 ], 2>

<[ 11, 6, 1, 1, 1 ], 1>

<[ 11, 5, 4 ], 1>

<[ 11, 5, 3, 1 ], 3>

<[ 11, 5, 2, 1, 1 ], 1>

<[ 11, 4, 4, 1 ], 1>

<[ 11, 4, 3, 2 ], 1>

<[ 11, 4, 3, 1, 1 ], 1>

<[ 11, 3, 3, 3 ], 1>

<[ 10, 10 ], 1>

<[ 10, 8, 2 ], 2>

<[ 10, 8, 1, 1 ], 1>

<[ 10, 7, 3 ], 2>

<[ 10, 7, 2, 1 ], 2>

<[ 10, 7, 1, 1, 1 ], 1>

<[ 10, 6, 4 ], 3>

<[ 10, 6, 3, 1 ], 3>

<[ 10, 6, 2, 2 ], 1>

<[ 10, 5, 4, 1 ], 2>

<[ 10, 5, 3, 2 ], 2>

<[ 10, 5, 3, 1, 1 ], 2>

<[ 10, 4, 4, 2 ], 1>

<[ 10, 4, 3, 3 ], 1>

<[ 10, 3, 3, 3, 1 ], 1>

<[ 9, 9, 1, 1 ], 1>

<[ 9, 8, 3 ], 1>

<[ 9, 8, 2, 1 ], 1>

<[ 9, 7, 4 ], 1>

<[ 9, 7, 3, 1 ], 3>

<[ 9, 7, 2, 1, 1 ], 1>

<[ 9, 6, 5 ], 1>

<[ 9, 6, 4, 1 ], 2>

<[ 9, 6, 3, 2 ], 2>

<[ 9, 6, 3, 1, 1 ], 1>

<[ 9, 5, 5, 1 ], 2>

<[ 9, 5, 4, 2 ], 1>

<[ 9, 5, 4, 1, 1 ], 1>

<[ 9, 5, 3, 3 ], 2>

<[ 9, 5, 3, 2, 1 ], 1>

<[ 9, 4, 3, 3, 1 ], 1>

<[ 8, 8, 4 ], 1>

<[ 8, 8, 3, 1 ], 1>

<[ 8, 8, 2, 2 ], 1>

<[ 8, 7, 5 ], 1>

<[ 8, 7, 4, 1 ], 2>

<[ 8, 7, 3, 2 ], 1>

<[ 8, 7, 3, 1, 1 ], 1>

<[ 8, 6, 6 ], 1>

<[ 8, 6, 5, 1 ], 1>

<[ 8, 6, 4, 2 ], 2>

<[ 8, 6, 3, 3 ], 1>

<[ 8, 6, 3, 2, 1 ], 1>

<[ 8, 5, 5, 2 ], 1>

<[ 8, 5, 5, 1, 1 ], 1>

<[ 8, 5, 4, 3 ], 1>

<[ 8, 5, 4, 2, 1 ], 1>

<[ 8, 5, 3, 3, 1 ], 1>

<[ 8, 3, 3, 3, 3 ], 1>

<[ 7, 7, 5, 1 ], 1>

<[ 7, 7, 4, 1, 1 ], 1>

<[ 7, 7, 3, 3 ], 1>

<[ 7, 6, 5, 2 ], 1>

<[ 7, 6, 4, 3 ], 1>

<[ 7, 6, 3, 3, 1 ], 1>

<[ 7, 5, 5, 3 ], 1>

<[ 7, 5, 5, 2, 1 ], 1>

<[ 7, 5, 3, 3, 2 ], 1>

<[ 6, 6, 4, 2, 2 ], 1>

<[ 6, 5, 5, 3, 1 ], 1>

<[ 5, 5, 5, 5 ], 1>

Decomposition of varphi^(5^2)_(1^2)

<[ 9, 1 ], 1>

<[ 7, 3 ], 1>

<[ 5, 5 ], 1>

Decomposition of varphi^(5^3)_(1^3)

<[ 13, 1, 1 ], 1>

<[ 12, 3 ], 1>

<[ 11, 3, 1 ], 1>

<[ 10, 5 ], 1>

<[ 10, 4, 1 ], 1>

<[ 9, 6 ], 1>

<[ 9, 5, 1 ], 1>

<[ 9, 3, 3 ], 1>

<[ 8, 5, 2 ], 1>

<[ 7, 7, 1 ], 1>

<[ 7, 5, 3 ], 1>

<[ 5, 5, 5 ], 1>

144



§C.5. Further decompositions of ϕ
(mn)
(1n)

Decomposition of varphi^(5^4)_(1^4)

<[ 17, 1, 1, 1 ], 1>

<[ 16, 3, 1 ], 1>

<[ 15, 4, 1 ], 1>

<[ 15, 3, 1, 1 ], 1>

<[ 14, 6 ], 1>

<[ 14, 5, 1 ], 1>

<[ 14, 4, 2 ], 1>

<[ 14, 4, 1, 1 ], 1>

<[ 14, 3, 3 ], 1>

<[ 13, 6, 1 ], 2>

<[ 13, 5, 2 ], 1>

<[ 13, 5, 1, 1 ], 2>

<[ 13, 4, 3 ], 1>

<[ 13, 3, 3, 1 ], 1>

<[ 12, 8 ], 1>

<[ 12, 7, 1 ], 2>

<[ 12, 6, 2 ], 2>

<[ 12, 5, 3 ], 2>

<[ 12, 5, 2, 1 ], 1>

<[ 12, 4, 3, 1 ], 1>

<[ 11, 8, 1 ], 1>

<[ 11, 7, 2 ], 1>

<[ 11, 7, 1, 1 ], 2>

<[ 11, 6, 3 ], 2>

<[ 11, 6, 2, 1 ], 1>

<[ 11, 5, 4 ], 1>

<[ 11, 5, 3, 1 ], 2>

<[ 11, 3, 3, 3 ], 1>

<[ 10, 10 ], 1>

<[ 10, 9, 1 ], 1>

<[ 10, 8, 2 ], 2>

<[ 10, 7, 3 ], 2>

<[ 10, 7, 2, 1 ], 1>

<[ 10, 6, 4 ], 2>

<[ 10, 6, 3, 1 ], 1>

<[ 10, 5, 5 ], 1>

<[ 10, 5, 4, 1 ], 1>

<[ 10, 5, 3, 2 ], 1>

<[ 9, 9, 1, 1 ], 1>

<[ 9, 8, 3 ], 1>

<[ 9, 7, 4 ], 1>

<[ 9, 7, 3, 1 ], 2>

<[ 9, 6, 5 ], 1>

<[ 9, 6, 3, 2 ], 1>

<[ 9, 5, 5, 1 ], 2>

<[ 9, 5, 3, 3 ], 1>

<[ 8, 8, 2, 2 ], 1>

<[ 8, 7, 5 ], 1>

<[ 8, 7, 4, 1 ], 1>

<[ 8, 6, 4, 2 ], 1>

<[ 8, 5, 5, 2 ], 1>

<[ 7, 7, 5, 1 ], 1>

<[ 7, 7, 3, 3 ], 1>

<[ 7, 5, 5, 3 ], 1>

<[ 5, 5, 5, 5 ], 1>

Decomposition of varphi^(6^2)_(1^2)

<[ 11, 1 ], 1>

<[ 9, 3 ], 1>

<[ 7, 5 ]

Decomposition of varphi^(6^3)_(1^3)

<[ 16, 1, 1 ], 1>

<[ 15, 3 ], 1>

<[ 14, 3, 1 ], 1>

<[ 13, 5 ], 1>

<[ 13, 4, 1 ], 1>

<[ 12, 6 ], 1>

<[ 12, 5, 1 ], 1>

<[ 12, 3, 3 ], 1>

<[ 11, 7 ], 1>

<[ 11, 6, 1 ], 1>

<[ 11, 5, 2 ], 1>

<[ 10, 7, 1 ], 1>

<[ 10, 5, 3 ], 1>

<[ 9, 9 ], 1>

<[ 9, 7, 2 ], 1>

<[ 9, 6, 3 ], 1>

<[ 8, 5, 5 ], 1>

<[ 7, 7, 4 ], 1>
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