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Abstract
The size of the human population is relevant to the development of a sustainable world, yet

the forces setting growth or declines in the human population are poorly understood. Gener-

ally, population growth rates depend on whether new individuals compete for the same en-

ergy (leading to Malthusian or density-dependent growth) or help to generate new energy

(leading to exponential and super-exponential growth). It has been hypothesized that expo-

nential and super-exponential growth in humans has resulted from carrying capacity, which

is in part determined by energy availability, keeping pace with or exceeding the rate of popu-

lation growth. We evaluated the relationship between energy use and population size for

countries with long records of both and the world as a whole to assess whether energy

yields are consistent with the idea of an increasing carrying capacity. We find that on aver-

age energy use has indeed kept pace with population size over long time periods. We also

show, however, that the energy-population scaling exponent plummets during, and its tem-

poral variability increases preceding, periods of social, political, technological, and environ-

mental change. We suggest that efforts to increase the reliability of future energy yields may

be essential for stabilizing both population growth and the global socio-economic system.

Introduction
Understanding the factors that regulate the size of human populations is crucial to the develop-
ment of an ecologically sustainable society. Current views about what sets population growth
rates in contemporary human societies, however, are poorly integrated and suggest important
roles for diverse factors such as water [1], economics [2], development [3], immigration [4],
age structure [5], energy [6], evolved fertility behaviors [7], and cultural evolution [8]. This is
unfortunate because forecasts of global human population size are still based strictly on statisti-
cal extrapolation of historical trends and not on mechanisms of population regulation [6,9],
leaving great uncertainty about expectations for future population size [3,10].

One important potential mechanism of population regulation in humans is a negative rela-
tionship between population size and per capita resource availability, which generates density-
dependent, or ‘Malthusian’, growth [11–15]. (Note that in this paper, for simplicity, we will
talk about the ‘size’ of human populations, even though the feedback from population size to
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population growth rate is known as ‘density’ dependence. Population density is population size
per area, and in this paper area is constant through time in all cases except the United States.)
Given a constant resource supply to a population, the per capita availability of resources de-
clines as the population grows. As resources become scarce, individuals consume less, driving
down birth rates and/or raising death rates. When per capita resource use is low enough such
that birth rates are approximately equal to death rates through time, a dynamic steady-state
known as a carrying capacity (K) is reached. In this scenario, a population is regulated by the
density-dependence of resource availability. It is not, however, clear whether density-depen-
dence is operating in the human population and what the carrying capacity of humanity is at
the global scale [16,17].

The effect of population size on population growth rates is mediated through the availability
of resources to individuals. Although many resources may influence birth and death rates (e.g.,
water), energy is a uniquely universal currency because all forms of work require energy expen-
diture. This applies to the metabolic rates of individuals in wild populations [18] as well as to
the industrial energy use of modern human populations, as energy is used to harvest food, de-
liver water, and provide health care [19–22]. We therefore suggest that an important step to-
wards an integrated, mechanistic understanding of regulation in the global human population
is an understanding of how energy supplies are linked to population size.

Generally, the relationship between energy use and population size can be written as a
power law: Etot = e0N

ε, where Etot is the total energy used by the population, e0 is a scaling con-
stant, N is population size, and ε is a scaling exponent [18,23,24]. The steepness of the scaling
relationship, captured by ε, distinguishes three categorically distinct types of growth regimes.
First, Malthusian growth occurs when ε< 1 (i.e., sublinear scaling of energy use with popula-
tion size), as per capita levels of energy use decline with increasing population size, generating
the typical negative density dependence that limits population growth. However, for growth re-
gimes characterized by ε� 1 (linear scaling), energy is not limiting and the population may
grow exponentially. This is because the per capita levels of energy use are independent of popu-
lation size, allowing population growth rate to remain approximately constant through time.
Third, the super-exponential growth regime is characterized by ε> 1 (super-linear scaling), in-
dicating a positive feedback between population size and the ability of the population to access
and use energy. When ε> 1, the population is effectively moving further below carrying capac-
ity through time in spite of the fact that it is increasing in total size. Thus, the hypothesis that
the human carrying capacity has increased through time is equivalent to the hypothesis of a
super-linear scaling between population size and energy use.

Interestingly, the history of global human population growth has included periods charac-
terized by all three growth regimes (density-dependent, exponential, and super-exponential;
Fig 1 [25]). For example, super-exponential occurred around the mid-1900s, exponential
growth occurred from ~4000 to ~1000 BC, and sub-linear growth has been occurring ~1980
through today (Fig 1, inset). It is well known that throughout this time, global energy use in-
creased with the size of the human population [26], yet it is unclear what the level of energy
yield (ε) has been and whether it has varied in time or space. That is, it is only known that
ε> 0 on average, but not which of the three regimes have been characteristic at which periods
or how the value of ε varies through time. Nonetheless, there is growing support for the idea
that the exponential and super-exponential growth seen historically for industrial human pop-
ulations was enabled by positive feedbacks from population size to carrying capacity [5, 16,27–
29]. This feedback could happen in several ways. First, harnessing novel energy sources may
free societies from “photosynthetic” energy constraints, as seen in England in the early phases
of the Industrial Revolution [30]. Second, information and transportation networks may im-
prove the efficiency of extraction, processing, storage, and transportation of energy [28,31–34].
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And finally, an increasing diversity of economic roles could enhance the ability of the popula-
tion to extract and use resources [35]. In short, there are good reasons to believe that humans
are at least episodically capable of having the super-linear energy yields that can cause carrying
capacity to increase. Current evidence, however, does not support this hypothesis. A recent
cross-country examination suggests ε = 0.75 [36], which would not lead to exponential or
super-exponential growth and is therefore inconsistent with the idea that carrying capacity has
been increasing through time. We suggest that a within-country analysis of energy use through
time is needed for determining whether a positive feedback from population size to energy
use exists.

In addition to helping understand the dynamics of the human population, the link between
energy use and population size is crucial for developing a comprehensive strategy for global
sustainability. Energy use is inextricably linked to population dynamics as well as the manufac-
ture and distribution of goods and services that support food production and our socio-eco-
nomic system overall [21,37,38]. Yet many question the ability of humans to keep extracting
energy at the same rate as we have in the past and suggest that resource constraints may occur
at the national or global level in the future [21],[39–42]. It is unknown how changes in resource
supply would alter ε and change the growth regime. In addition, instability in the yield of ener-
gy, measured as variance in ε through time, could be linked to social or political processes that
could in turn influence the population’s growth regime.

Here we investigate the scaling of energy use with population size through time, for the
globe and for countries with long-term records on population size and energy use. We evalu-
ate whether the scaling of energy use with population size is quantitatively in agreement
with the hypothesis that exponential and super-exponential population growth in humans
have been enabled by energy availability keeping up with or outpacing population size, re-
spectively. We further investigate temporal variability in the yield of energy in light of
historical factors.

Fig 1. Global population size through time. The inset shows a period of sub-exponential growth in recent history. Data from [25].

doi:10.1371/journal.pone.0130547.g001
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Materials and Methods
Total primary energy use (also known as energy consumption, primary energy consumption,
or total primary energy supply, but hereafter just energy use) reflects the ability of human pop-
ulations to extract and use a variety of energy types from the environment. Typically, energy
use for a given country in a given year is the simple sum of all the energy actually used that was
derived from oil, coal, wind, and all other sources. It includes all within country production
and imports, and excludes losses to heat and exports, meaning that the heat waste from a
power plant or electricity loss from the grid is not counted toward the energy use [22,42]. We
used long-term data on total energy use and population size for Sweden (from 1800 to 2000
[43]) and England and Wales (from 1560 to 2000 [44]). We paired long-term data on energy
use in the United States [45,46] with population size data from the US Census Bureau [47–49].
Data for the United States covered 1790 to 2012, during which time the United States did not
have a constant geographic area. We include all the data for the United States for completeness,
but the data are most insensitive to area effects after about the mid-1800s. For the world, we
combined population and energy data from several sources [42,50,51].

For all four data sets, we analyzed the relationship between energy use and population size
using ordinary least squares regression. We assessed the slope of the relationship between the
natural log of energy use on the natural log of population size (ε) using moving windows of
19 consecutive measurements through time. This procedure accommodated the considerable
non-linearity of the relationship in log space (Fig 2) and also provided an objective means of

Fig 2. Relationship between energy use (W) and population size for the world, the United States,
Sweden, and England andWales through time. The relationships are highly variable, but overall, the
slopes are greater than one (that is, the exponent in the power-law function relating energy use to population
size overall), indicating support for a positive feedback between population size and energy use. Lines with
slopes of one (ε = 1) are shown as reference. The black lines show overall fits and gray shaded regions show
95% confidence intervals on the regression lines.

doi:10.1371/journal.pone.0130547.g002
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identifying changes in slope and variability through time. These moving windows were then
smoothed over 20 consecutive measurements. Other choices for the size of the moving regres-
sion and smoothing window produced qualitatively the same results, but shorter windows
tended to exaggerate the variability, due to over-fitting, and longer windows were insensitive to
the non-linearities. We also tested for a difference in the overall slope before and after the in-
dustrial revolution in England and Wales (1780) and Sweden (1830) using a t-test.

Results
The scaling exponent relating total energy use to population size (ε; Fig 2) was clearly greater
than 1 overall for all four time series. Energy use increased superlinearly with population size
for Sweden (ε = 2.09, 95% ci’s = 1.98–2.20, R2 = 0.88), England andWales (ε = 1.90,
ci’s = 1.88–1.92, R2 = 0.99), the United States (ε = 1.42, ci’s = 1.39–1.45, R2 = 0.99), and the
world (ε = 1.63, ci’s = 1.57–1.69, R2 = 0.98). The time series were non-linear in log space, indi-
cating temporal variation in the yield of energy. The moving window regressions revealed fluc-
tuations that were large enough for ε to drop below 1 and even 0 for some periods of time,
indicating density-dependent population regulation, especially for England and Wales (Fig
3A). The standard deviation of ε varied widely through time for the United States, Sweden, and
England and Wales (Fig 3B). Strong bursts of variability were temporally associated with

Fig 3. The scaling parameter for ε has been highly variable through time. Each panel shows the running mean of ε (slope of the regression of logE on
logN, see methods) with a 19-year window smoothed over 20 years. The light brown bar shows the confidence range of mean slope over the entire time
period.A. For the world, ε showed a pronounced shift from a little over 2 to 1 from the 1960’s to the 1980’s, with the beginning of this decline coinciding with
the peak world population growth rate in 1963 [9]. B. For England andWales, ε was highly variable, plummeting during the Little Ice Age and duringWorld
War I and the Oil Crises of the 1970s.C. Sweden showed an increase in ε after the Industrial Revolution but also showed a decline in ε during both world
wars. D. The United States showed a steadily increasing e until about the 1960s when it showed a severe drop coinciding with the Oil Crises of the 1970s.

doi:10.1371/journal.pone.0130547.g003
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World Wars I and II, the oil shocks of 1973–1980, and the Little Ice Age for England and
Wales (Fig 3B). The mean ε differed significantly before and after the industrial revolution
both for England andWales (1.07 before, 1.73 after, t = -6.35, d.f. = 421, p< 0.001) and Sweden
(0.35 before, 2.50 after, t = -4.27, d.f. = 181, p< 0.001).

Variability in the estimates of ε naturally follow shifts in its magnitude (Fig 3). For the three
country-level data sets, there were consistent spikes in the standard deviation of ε during
major events (e.g., Little Ice Age) and as major events approached (world wars, stock market
crash, and oil crises).

Discussion
Throughout history, growing human populations have used more and more energy [26], yet
whether the pace of energy yield with population growth has been fast enough to account for
exponential and super-exponential growth has been unknown. Our results support the hypoth-
esis that carrying capacity has increased faster than population size through time [5], as the
yields of energy that would be needed to support this increase have occurred at the country
level (albeit for a few early industrialized countries) and the world as a whole (Fig 2). Increasing
per capita energy yields have in essence alleviated the effects of density-dependence for these
countries. Although direct observations of increases in carrying capacity have not been made
[16], the super-linear yield of energy will have allowed each new person, on average, access to
more energy than the one before. This positive feedback played a necessary role in allowing the
global population to continue growing very rapidly.

A high value of εmay be related to technologies that have drastically improved the capacity
for humans to extract energy from the environment, efficiencies in the structural organization
of societies, and a diversification of economic roles [28,32,35]. Undoubtedly, the increasing use
of non-renewable resources has maintained ε> 1 for most of the last 150 years [30]. It is likely
that the industrial revolution spurred an increase in the value of ε, as overall the time-averaged
slopes were significantly higher after the industrial revolution than before it for both England
andWales and Sweden. Nonetheless, some periods of super-linear scaling of energy use with
population size occurred for a century prior to the Industrial Revolution, at least in England
andWales, indicating that it is not just industrialization that has helped keep energy yields
high through time (Fig 3B).

The pre-Industrial Revolution energy yields were approximately linear for England and
Wales but were sublinear for Sweden. This difference suggests a qualitatively different popula-
tion dynamic in the two countries before the Industrial Revolution began. One possible expla-
nation for the difference is in the speed at which the Industrial Revolution began in the two
countries. Although there is debate, the consensus view is that the time at which the Industrial
Revolution took hold in England was around 1760–1780, and this is based on particularly visi-
ble signs of economic growth, like increases in foreign trade, and less so on the development of
extractive technologies that reduced the Malthusian constraints of labor and land [52–54]. In-
deed, coal did not become a major part of the energy use in Sweden until the end of the 19th

Century, with firewood and human muscle carrying most of the energy burden until post-1900
[43]. This delayed shift to fossil fuel reliance may underlie the later increase in exponent for
Sweden as compared to England. Likewise, the technologies that made industrial economies
possible were developed gradually in England, which could have kept the value of ε closer to 1
for some time before the Industrial Revolution really began to have a dramatic impact on eco-
nomic productivity. In contrast, if extractive technologies were adopted more rapidly and as a
package, rather than piecemeal through time, then this could delay the start of the Industrial
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Revolution but increase its pace, causing the value of ε to shift more rapidly from sublinear to
super-linear (see Fig 3C).

Despite the overall super-linear scaling, the yield of energy with population size was highly
variable through time (Figs 3 and 4). At the global level, an earlier superlinear yield (ε> 1) has
gradually shifted down to an approximately linear yield. England andWales showed several pe-
riods of sublinear (ε< 1) and even negative scaling (ε< 0), indicating that even industrialized
nations may occasionally experience per capita levels of energy supply that decline as the popu-
lation grows. This pattern suggests that the increasing demands of the population occasionally
do push up against the upper limits of population’s capacity to acquire and use energy. Al-
though not arising to the same degree in each country, there were notable decreases in the scal-
ing exponents during both world wars and the oil crises of the 1970s.

Notable increases in the variability of the exponent ε occurred during three periods (Fig 4).
First, England andWales showed increased variability in the energy yield during the Little Ice
Age. Second, European nations showed high variability across the World Wars. Finally, in-
creased variance was associated with oil shocks of the 1970s. At this point we note only the
temporal correlations between these political and environmental crises and increased variation
in the relationship between energy and population, rather than inferring causation. It is just as
possible that political upheaval altered the ability of societies to extract resources as it is that a
change in resource availability influenced political stability. Although our results show a clear
link between socio-economic stability and population dynamics [55], the world as a whole dis-
played less variability overall than countries, suggesting that there is some capacity of many
countries at a larger scale to buffer local variability [1].

Fig 4. Variation in the scaling parameter e increased as major socio-political events approached and
during the Little Ice Age for England andWales. The world data set is not long enough to include in
this analysis.

doi:10.1371/journal.pone.0130547.g004
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It is likely that a continuation of a positive yield of energy with population size depends
strongly on the replacement of fossil fuel sources with renewable energy sources. It is not clear
at this time whether these replacement fuel sources could maintain ε where it has been or
whether it will drop, bringing the global population back to a density-dependent, Malthusian
growth regime. Some have argued that economic or physical limits will eventually slow the sup-
ply of energy to humanity’s global socio-economic system [21]. Furthermore, the increased use
of energy may have negative indirect consequences through larger amounts of waste produced
and larger ecological footprints [56,57]. Nonetheless, more distributed energy resources less
subject to political and social upheaval could reduce the variance in ε. In light of the theory
that increasing variability is an early-warning signal of state changes [58], greater effort to sta-
bilize the yield of energy may be warranted.

Although our results support the notion that rapid increases in resource availability helped
generate exponential and super-exponential population growth in humans, reductions in fertil-
ity as energy use and wealth have increased (the demographic transition) suggest that the role
of resources in population regulation could be operating by an entirely different pathway
[9,17,22,59]. Demographers are far from achieving a widely accepted explanation for causes of
fertility reduction [9,60], but energy use is clearly linked to a broad suite of life history traits re-
lated to fertility and mortality [22]. Recent research shows that economic factors are related to
fertility, but in regression models, indices of cultural transmission of fertility norms are often
significant as well [61,62]. It may be that resources play a more direct role than conventional
wisdom allows, even if the mechanism is different when individuals can use energy at rates sev-
eral-fold above their physiologically-determined metabolic rates [22]. Recent evidence of fertil-
ity increases in countries with access to high levels of energy, however, point to serious
deficiencies in our understanding of how resource use, or development in general, and birth
rates are linked [63].

Although greater efficiency in the use or generation of energy may obviate the need for high
energy yields, our results highlight the problem of what would keep ε near or greater than one
in the future. New technologies must be developed quickly enough to keep pace with popula-
tion size and the concurrent energy demands, or alternatively, societies could find ways to
reach higher mean standards of living with less energy per capita. The historical energy yields
demonstrated here show that each new unit of population requires more energy than the one
before it, a regime of growth that places great demands on innovation while generating high
per capita environmental costs [28,31,40,64]. There is a dynamic tension between harnessing
creativity to keep the rate of technological development fast enough to outpace Malthusian lim-
its and maintain population size, stability, and quality of life such that innovations can contin-
ue to have positive feedbacks with population size [65]. There is no empirical or theoretical
guarantee that innovations and technology can keep pace with population size, yet many as-
sume that the rapid growth since the Industrial Revolution is evidence that the growth ob-
served today and in recent history is necessarily self-sustaining in the long run [66,67]. Put
simply, super-linear energy yields are the primary reason for the impression that growth is self-
sustaining or that ecological carrying capacities are not applicable to human societies in the
modern era.

Conclusions
The finding that super-linear energy yields typify the growth of the modern human population
is an important additional piece of an emerging picture about how energy structures human
societies at multiple levels of organization. Historical demographers like Wrigley [30] and
Warde [44] revealed the importance of energy use as a driver for economic growth and
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emphasized how land and labor constraints are released with the transition to fossil fuels. Simi-
larly, but from a different analytical point of view, macro-ecological studies have revealed
strong associations between energy use and the drivers of population growth [6,21,67,68,69],
energy use and economic activity [21], population size and economic activity [28], and popula-
tion size and structural organization in cities [70]. Some classical anthropological research has
stressed the fundamental role of energy on societal processes [71,72] and economists have
linked oil prices and availability to economic growth [73]. Finally, work on ‘social metabolism’

[38] has linked material flows to transportation [31], efficiency and affluence [65], and ecologi-
cal impacts [74]. The interrelatedness of all these processes suggests that the dynamics of the
human population revolve around a complex mixture of energy-mediated ecological, evolu-
tionary, economic, political, social, and technological processes. A more synthetic, interdisci-
plinary, and mechanistic view of human population dynamics is urgently needed, as the size of
the human population is a central component of a sustainable future.
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