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Abstract

In the Skyrme model atomic nuclei are modelled as quantized soliton solutions in a
nonlinear field theory of pions. The mass number is given by the conserved topological
charge B of the solitons. Conventionally, Skyrmions are semiclassically quantized within
the rigid body approach. In this approach Skyrmions are effectively treated as rigid rotors
in space and isospace that is it is assumed that Skyrmions do not deform at all when they
spin and isospin. This approximation resulted in qualitative and encouraging quantitative
agreement with experimental nuclear physics data. In this talk, we point out that the
theoretical agreement could be further improved by allowing classical Skyrmion solutions to
deform as they spin and isospin. As a first step towards a better understanding of how nuclei
can be approximated by classically spinning and isospinning soliton solutions, we study how
classical Skyrmion solutions of topological charges B = 1−4, 8 deform when classical isospin
is added.

1 Introduction

Skyrmions are topological soliton solutions of the Skyrme model [1, 2] – a nonlinear effective field
theory of pions. They can be used to describe nucleons and nuclei [3, 4], with an identification
between soliton and baryon numbers. The allowed quantum states of light atomic nuclei of mass
numbers 1 to 8, 10, 12 have been determined [5, 6] and in most cases correct spin, parity and
isospin quantum numbers for the ground states and various excited states have been obtained.
Recently, Skyrmion solutions of baryon number 12 have been used to reproduce the rotational
excitations of Carbon-12 [7]. In particular, the recently experimentally observed rotational band
of the Hoyle state can be understood quantitatively.

Nevertheless, the vast majority of the nuclear spectra calculated from the Skyrme model
are based on the rigid body quantization [3, 4]. This is effectively a study of rigidly spinning
Skyrmion solutions, that is any deformations and symmetry changes that might be due to
centrifugal effects are neglected. The allowed spin and isospin quantum numbers are determined
from the symmetries of the static classical Skyrme soliton solutions for vanishing spin and
isospin, see for example Refs. [8, 9, 10]. In particular, for even mass numbers, the allowed
quantum states for each Skyrmion and their excitation energies [6] are in reaonable agreement
with experimental observed nuclei states. However, the Skyrme model’s predictions for odd mass
numbers [5] are far less accurate. For example, to obtain the correct physical ground states of
Lithium-7 and Beryllium-7 nuclei, the charge 7 Skyrmion has to be deformed significantly [11].
The icosahedrally symmetric Skyrmion solution which is the lowest energy solution [12] with
baryon number 7 and for vanishing spin and isospin is found to be far too symmetric to model
the lowest allowed spin states of the 7Li/7Be isospin doublet.
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(a) B = 2 (b) B = 2 (c) B = 3 (d) B = 4 (e) B = 4

k = 0, ω = 0 k = 0, ω = 0 k = 0, ω = 0 k = 0, ω = 0 k = 0, ω = 0

k = 13, ω = 1.4 k = 11, ω = 1.4 k = 20, ω = 1.5 k = 25, ω = 1.5 k = 28, ω = 1.5

Figure 1: Baryon density isosurfaces of B = 2 − 4 Skyrmion solutions with pion mass µ = 1.5
and as a function of isospin K and angular frequency ω. Note that the isospin K is given in
units of 4π, i.e. we define k = K/4π. The isosrotation axes are chosen to be: (a) K̂ = (0, 1, 0),

(b) K̂ = (0, 0, 1), (c) K̂ = (0, 0, 1), (d) K̂ = (0, 0, 1), (e) K̂ = (0, 1, 0).

It has been pointed out by several authors [13, 14, 15, 16, 17] that one very promising way
to improve the Skyrme model’s agreement with experimental nuclear physics data is to allow
Skyrmion solutions to deform when they spin and isospin. This can change the symmetries of the
solutions and might result in different allowed quantum states [5]. Indeed, allowing Skyrmions to
deform axially symmetrically as they spin resulted for charge-1 and charge-2 Skyrmion solutions
in a significant reduction of their rotational energy contribution [14, 15, 16]. Furthermore, it
revealed that there does not exist a spinning charge-1 Skyrmion solution that models both the
nucleon and the delta resonance if the pion mass parameter mπ of the Skyrme model is set to
its experimental value. Finally, recent numerical investigations of isospinning soliton solutions
in other models of the Skyrme family (e.g. baby Skyrmions [18, 19], Hopf solitons [20, 21])
beyond the rigid body approximation demonstrated that the geometrical shape and energies
can be significantly affected when centrifugal effects are taken into account.

A systematic study of classically spinning and isospinning Skyrmion solutions beyond the
rigid body approximation is still lacking. However, in our recent article [22] we performed
numerical full field simulations of isospinning Skyrmion solutions with baryon numbers B =
1−4, 8, without imposing any spatial symmetries. Our investigations can be seen as a first step
towards a better understanding of classically spinning Skyrmions and their possible applications
in nuclear and particle physics.

The talk is based on our recent publication [22] and organized as follows. In Section 2 we
briefly sketch our approach to the minimization problem of constructing classically isospinning
soliton solutions in the Skyrme Model. In Section 3 we point out our main findings on isospin-
ning Skyrme solitons with topological charges B = 1 − 4, 8. A brief summary and conclusion
of our results is given in Section 4.

2 Isospinning Skyrmion Solutions

Restricting to static field configurations, we can define the Skyrme model by its energy functional

MB =

∫ {
(∂iφ · ∂iφ) + 1

2

[
(∂iφ · ∂iφ)2 − (∂iφ · ∂jφ)2

]
+ 2µ2 (1− σ)

}
d3x , (1)

where µ is a dimensionless pion mass parameter and we use the sigma model notation. We collect
the scalar meson field σ and the pion isotriplet π = (π1, π2, π3) together in a four component
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unit vector φ = (σ,π). To ensure fields have finite potential energy and a well-defined integer
degree B the Skyrme field φ has to approach the vacuum configuration at spatial infinity, that
is φ → (1, 0, 0, 0) as |x| → ∞. Therefore, the domain can be formally compactified to a 3-
sphere S3

space and the Skyrme field φ is then given by a mapping S3
space → S3

iso labelled by the
topological invariant B = π3(S

3) ∈ Z. We display in the first rows of Fig. 1 and 2 baryon density
isosurfaces for the Skyrmion solutions of minimal energy for baryon numbers B = 1− 4, 8 and
with pion mass value µ. For B = 1 the soliton solutions have been found to have spherical
symmetry, axial symmetry for B = 2, platonic symmetry for B = 3, 4 and dihedral symmetry
for B = 8. For baryon number B = 8, there exist two very different Skyrme configurations of
comparable energy [23] – one with D4h and the other with D6d symmetry.

Table 1: Skyrmions of baryon number B = 1 − 4, 8. We list the energies MB, the energy
per baryon MB/B, the diagonal elements of the inertia tensors Uij , Vij ,Wij and the symmetry
group G of the Skyrme solitons. Note that energies MB are given in units of 12π2 and that
the mass parameter is chosen to be µ = 1. The calculated configurations correspond to global
energy minima for given baryon number B. For B = 8 we are unable to decide within the limits
of our numerical accuracy which configuration is of lower energy.

B G MB MB/B U11 U22 U33 V11 V22 V33 W11 W22 W33

1 O(3) 1.415 1.415 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5
2 D∞h 2.720 1.360 97.0 97.0 68.9 153.8 153.8 275.4 0.0 0.0 137.7
3 Td 3.969 1.323 124.1 124.1 124.1 402.8 402.8 402.8 85.2 85.2 85.2
4 Oh 5.177 1.294 148.2 148.2 177.4 667.6 667.6 667.6 0.0 0.0 0.3
8 D6d 10.235 1.279 296.3 296.3 285.2 2261.4 2261.4 3036.3 0.1 0.1 137.9

D4h 10.235 1.279 298.4 292.1 326.9 4093.9 4094.8 1381.3 0.1 0.0 0.1

Note that the classical soliton mass (1) is expressed in terms of Skyrme units, that is the
energy and length units are given by Fπ/4e and 2/eFπ, respectively. Here e is a dimensionless
parameter and Fπ is the pion decay constant. The dimensionless pion mass µ is proportional to
the tree-level pion mass mπ, explicitly µ = 2mπ/eFπ. Conventionally, the Skyrme parameters e
and Fπ are determined by fixing the energies of rigidly spinning spin 1/2 and spin 3/2 Skyrmions
to the masses of the nucleon and delta resonance, assuming the experimental value mπ =
138 MeV for the pion mass [3, 4]. This approach results in the standard values Fπ = 108 MeV,
e = 4.84 and µ = 0.526. Throughout this talk we consider pion values µ between 0.5 and 2.
These pion mass values are motivated by the observations in Refs. [14, 24, 5, 6] that larger pion
mass values (in particular, µ > 0.526) yield improved results when applying the Skyrme model
to nuclear physics.

The construction of spinning and isospinning Skyrmion solutions requires the computation
of the inertia tensors. The isospin (Uij), spin (Vij) and mixed (Wij) inertia tensors are given
explicitly by the integrals [25, 26, 22]

Uij = 2

∫ {(
πdπ

dδij − πiπj
)

(1 + ∂kφ · ∂kφ)− εideεjfg
(
πd∂kπ

e
)(

πf∂kπ
g
)}

d3x , (2a)

Vij = 2

∫
εilmεjnpxlxn

(
∂mφ · ∂pφ− (∂kφ · ∂mφ) (∂k φ · ∂pφ)

+ (∂kφ · ∂kφ) (∂mφ · ∂pφ)

)
d3x , (2b)

Wij = 2

∫
εjlmxl

(
εideπ

d∂mπ
e (1 + ∂kφ · ∂kφ)− (∂kφ · ∂mφ)

(
εifgπ

f∂kπ
g
))

d3x . (2c)
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We list in Table 1 the energies and the diagonal elements of the inertia tensors Uij , Vij ,Wij for
Skyrmions with baryon numbers B = 1− 4, 8 of symmetry group G. We find that in each case
the off-diagonal entries are small and are of the order of 10−2 times the diagonal entries or less.
In the following, all inertia tensor elements will be rounded to one decimal place.

(a) D6d (b) D6d (c) D4h (d) D4h (e) D4h

k = 0, ω = 0 k = 0, ω = 0 k = 0, ω = 0 k = 0, ω = 0 k = 0, ω = 0

k = 30, ω = 0.9 k = 30, ω = 0.9 k = 30, ω = 0.9 k = 30, ω = 0.9 k = 30, ω = 0.9

Figure 2: Baryon density isosurfaces of D6d and D4h symmetric B = 8 Skyrmion solutions with
pion mass µ = 1 and as a function of isospin K. The isosrotation axes are chosen to be: (a)

K̂ = (0, 0, 1), (b) K̂ = (0, 1, 0), (c) K̂ = (1, 0, 0), (d) K̂ = (0, 1, 0), (e) K̂ = (0, 0, 1).

Uniformly isospinning soliton solutions in Skyrme models are obtained by solving one of the
following equivalent variational problems [21] for φ:

(1) Extremize the pseudo energy functional Fω (φ) = MB − 1
2ωiUijωj for fixed angular fre-

quency ω ,

(2) Extremize the Hamiltonian H = MB + 1
2KiU

−1
ij Kj for fixed isospin Ki = Uijωj .

In this talk, we will use a hybrid of approach (1) and (2). We fix the isospin K to be
constant. Then we consider the energy

E = MB +
1

2
ωiUijωj , (3)

which implies
Ki = Uijωj . (4)

The corresponding body-fixed spin angular momenta are given by

Li = −W T
ijωj = −WijU

−1
jk Kk . (5)

Hence, in our approach, if Wij is non-zero, then the configuration will obtain classical spin. We
will discuss this further in Section 3. We could now express the energy (3) as a function of K
and then minimise the energy E. However, it is more convenient to calculate ω using (4) and
then minimize the pseudo energy

Fω = MB −
1

2
ωiUijωj . (6)

Since we only fix K but not L, the value of ω is not conserved during the minimization. Hence
for each step, we recalculate ω using (4).
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3 Numerical Results

We construct stationary isospinning soliton solutions by numerically solving the energy mini-
mization problem formulated in Section 2. Note that spinning Skyrmions with zero pion mass
radiate away their energy, see [27] for a detailed discussion. For pion mass µ > 0 stationary
solutions exist up to an angular frequency ωcrit = µ. At ωcrit the values of the energy and
angular momentum are finite, and therefore, the corresponding angular momenta Kcrit (and
Lcrit) is also finite, see [14]. The situation is different for baby Skyrmions where energy and
moment of inertia diverge at ωcrit [18, 19, 28] for µ < 1. From the point of view of numerics,
this behavior is challenging. For ω < ωcrit the problem is well-posed, whereas for ω > ωcrit the
solutions become oscillatory which is difficult to detect in a finite box. Physically, this corre-
sponds to pion radiation, and the fact that stationary solutions do not exist. Numerically, we
can find energy minimizers for ω > ωcrit but this is an artefact of the finite box approximation.
By convention, throughout this talk, when displaying inertia tensors and energies as a function
of isospin, we will cut our graphs at the critical isospin value Kcrit.

The numerical energy minimization calculations are performed with a second order gradient
flow algorithm with a friction term included. During the energy relaxation kinetic energy is
removed periodically by setting φ̇ = 0 at all grid points every 50th timestep. We use the rational
map ansatz [29] to generate initial Skyrme field configuration of given topological charge B and
symmetry group G. For each isospin value |K| the damped field evolution algorithm converges
to a minimum of the pseudo energy functional (6). Minimal energy solutions at lower |K| are
used as initial conditions for higher |K|.

Note that we orientate the Skyrmion solutions in isospace such that their principal axes
are aligned with the chosen isorotation axes. We visualize the different orientations of Skyrme
solitons using Manton’s and Sutcliffe’s field colouring scheme [17]. We illustrate the colouring
for a B = 1 Skyrmion solution in Fig. 3: The points where the normalised pion isotriplet π̂
takes the values π̂1 = π̂2 = 0 and π̂3 = +1 are shown in white and those where π̂1 = π̂2 = 0 and
π̂3 = −1 are coloured black. The red, blue and green regions indicate where π̂1 + iπ̂2 takes the
values 1, e2πi/3, e4πi/3, respectively and the associated complementary colors in the RGB colour
scheme (cyan, yellow and magenta) show the segments where π̂1 + iπ̂2 = −1, e5πi/3, eπi/3.

Figure 3: Three different views of the baryon isodensity of a B = 1 Skyrmion. The orientation
in isospace is visualized using the field colouring scheme given in [17, 30, 23].

For topological charges B = 1 − 4, our numerical simulations are carried out on regular,
cubic grids of (200)3 grid points with a lattice spacing ∆x = 0.1 and time step size ∆t = 0.01.
For charge 8 Skyrmion solutions, we use cubic grids containing (201)3 lattice points and with the
same lattice spacing ∆x = 0.1. The finite difference scheme used is fourth order accurate in the
spatial derivatives. More details on the numerical implementation can be found in Refs. [12, 22].

3.1 Lower Charge Skyrmions (1 ≤ B ≤ 4)

In this section, we summarize our findings [22] on isospinning Skyrme solitons of topological
charges B = 1−4. We investigate how classical isospin affects the geometrical shape and energy
of Skyrmions. For each Skyrme configuration we perform numerical simulations of isospinning
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Skyrme solitons for all possible choices of the isospin axis. Numerical results are shown for mass
values µ = 0.5, 1, 1.5 and 2.

3.1.1 B = 1

For the O(3) symmetric charge-1 Skyrmion solution, we choose K̂ = (0, 0, 1) as isospin axis.
We observe that isospinning B = 1 solutions are well approximated by an axially symmetric
ansatz [14, 15, 16] when allowing for centrifugal deformations. We display in Fig. 4 (a) the
total energy Etot as a function of isospin K for B = 1 Skyrmions of mass value µ = 1 and
calculated without imposing any symmetry constraints on the isospinning Skyrme configuration.
In our 3D simulations the soliton’s energy is given by Etot(K) = M1 + K2/2U33 and the
energy curve terminates at Kcrit = 6.5 × 4π (ωcrit = µ = 1). Stable, internally spinnning
solutions cease to exist beyond this critical value, but energy and moments of inertia remain
finite at Kcrit = 6.5× 4π. We find that the energy curve Etot(K) matches within the limits of
our numerical accuracy the energies of isospinning B = 1 Skyrmions when assuming an axial
symmetry.

As shown in Fig. 4 (a), the rigid body formula proves to be a good approximation for
small isospins (K ≤ 3 × 4π), whereas for higher isospin values Etot(K) deviates from the
quadratic behavior. At the critical angular frequency ωcrit = 1 (Kcrit = 6.5 × 4π) the rigid
body approximation gives an approximate 7% larger energy value for the isospinning soliton
solution. The associated isospin inertia tensor Uij (2a) is diagonal and its diagonal elements as a
function of isospin K are shown in Fig. 4 (b). For small isospin values the Skyrme configuration
possesses, within our numerical accuracy, O(3) symmetry (Uij = Vij = Wij = Λδij where the
moment of inertia Λ is calculated to be 47.5) and as K increases the soliton solution deforms
by breaking the spherical symmetry to an axial symmetry (the tensors of inertia (2) are all
diagonal and satisfy U11 = U22 = u, V11 = V22 = v, W11 = W22 = w and U33 = V33 = W33).
At the critical angular frequency ωcrit = 1 (Kcrit = 6.5 × 4π) we find numerically u = 66.7,
v = 67.9, w = 58.52 and U33 = 80.9.

(a) Mass-Spin relationship (b) Inertia-Spin relationship

Figure 4: Isospinning B = 1 Skyrmion (µ = 1). A suitable start configuration of topological
charge 1 is numerically minimized using a damped field evolution (3D modified Newtonian flow)
on a (200)3 grid with a lattice spacing of ∆x = 0.1 and a time step size ∆t = 0.01. We choose the
z axis as our isorotation axis. Our energy results are compared with those obtained assuming an
axially-symmetric deforming B = 1 Skyrme configuration. Furthermore, we include the energy
curve for a rigidly isorotating Skyrme configuration.

As pointed out in Section 2, Skyrme configurations can acquire classical spin if the mixed
inertia tensor Wij is non-zero. For B = 1 we display in Fig. 5 (a) the acquired spin L as a
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function of isospin K for a range of pion masses µ when isospinning about K̂ = (0, 0, 1). Since
axial symmetry is preserved, L grows linearly with K. Numerically, the slope is found to be
−0.99 and agrees well with the expected one L/K = −W33/U33 = −1 for an axially symmetric
charge one configuration with W33 = U33. Stationary, isospinning Skyrme configurations can
only be constructed up to the critical isospin Kcrit = U33ωcrit with ωcrit = µ. Consequently, the
functions L(K) terminate at the points Lcrit = −Kcrit. Spin L and isospin K have the same
magnitude and are of opposite sign. This agrees with the Finkelstein-Rubinstein constraints
that are commonly imposed when quantizing B = 1 Skyrmions [9] .

(a) B = 1, K̂ = (0, 0, 1) (b) B = 2, K̂ = (0, 0, 1)

(c) B = 3, K̂ = (0, 0, 1) (d) B = 8 (D6d symmetry), K̂ = (0, 0, 1)

Figure 5: Spin L as a function of isospin K for Skyrmion solutions of topological charge B =
1− 3, 8 and with pion mass µ. The isospin axes are chosen as indicated. Here, we only display
isospinning Skyrme configurations with non-zero L.

3.1.2 B = 2

For B = 2, we investigate isospinning Skyrmion solutions with isospin axes K̂ = (0, 1, 0)

and K̂ = (0, 0, 1). Isospinning around K̂ = (0, 1, 0) leads to a novel configuration with D4

symmetry and isospinning around K̂ = (0, 0, 1) can result into the break up into two charge-
1 Skyrmions (see baryon density isosurfaces displayed in Fig. 1 (a),(b)). Note that for fixed
isospin the D4 symmetric Skyrme configuration has lower energy than the one formed by two
charge 1 Skyrmions and isospinning around K̂ = (0, 0, 1). Indeed, we observe that when
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perturbing a B = 2 Skyrmion isospinning around K̂ = (0, 0, 1) the configuration can relax into

the lower energy B = 2 configuration isospinning around K̂ = (0, 1, 0). For the D4 symmetric
configuration, we verify numerically that the spin L = −W22ω vanishes for all classically allowed
isospin values K. Therefore, this configuration may become important for calculating excited
states of the Deuteron with non-zero isospin [17].

However, if we choose K̂ = (0, 0, 1) as isospin axis, the B = 2 Skyrmion gains spin L =
−W33K as K increases, see Fig. 5 (b). For µ = 1 the axial symmetry remains unbroken and
hence L depends linearly on K. We confirm that the numerically calculated slope −1.97 agrees
well with the expected one L/K = −W33/U33 = −2 as W33 = 2U33 for an axially symmetric

charge two configuration. For larger mass values µ isospinning around the K̂ = (0, 0, 1) leads
to the break up into two B = 1 Skyrmions orientated in the attractive channel. The axial
symmetry is broken at KSB, and the B = 2 Skyrmion solution starts to split into two B = 1
Skyrmions. As the isospin K increases further L is approximately −K. In this regime the
isospinning configuration is well described by two separated, axially symmetric deformed B = 1
Skyrmions. This is consistent with head-on scattering of two spinning B = 1 Skyrmions in
the attractive channel [31] where the configuration of closest approach is not the torus but a
configuration of two separated Skyrmions. The attractive channel has also been discussed in
[32] when quantising the Deuteron. This degree of freedom was essential for comparing the
spatial probability distribution of the deuteron with experimental values [33, 34, 17].

In summary, for B = 2 we observe that Skyrme configurations with non-zero W and hence
non-zero spin L show centrifugal effects and separate out whereas states with W = 0 tend
to stay more compact. Isospinning the charge 2 Skyrmion about its (0, 0, 1)-axis results in the
breakup into two well separated charge one Skyrmions, whereas isospinning about (0, 1, 0) yields
compact D4-symmetric B = 2 configurations of lower energy.

3.1.3 B = 3

For B = 3, we isorotate the minimal-energy tetrahedron about its K̂ = (0, 0, 1) axis. For mass
value µ = 1.5 and K sufficiently large, we observe that the isospinning B = 3 Skyrmion forms
a distorted “pretzel ” configuration – a state that has previously been found to be meta-stable
[35, 36] for vanishing isospin K (see baryon density isosurfaces in Fig. 1 (c)). For higher pion
masses µ, we find that the tetrahedral charge-3 Skyrmion even can break into lower-charge
Skyrmions as the angular frequency ω increases. For pion mass µ = 2 the isospinning charge-3
Skyrmion solution seems to pass through the distorted “pretzel ” configuration as ω increases.
Then it breaks into a toroidal B = 2 Skyrmion solution and a B = 1 Skyrmion before reaching
its upper frequency limit ωcrit = µ.

For B = 3 we display in Fig. 5 (c) the L(K) graphs for pion masses µ = 1, 1.5, 2. We observe
that as long as the tetrahedral symmetry remains unbroken the spin L inreases linearly with
K. Breaking of the tetrahedral symmetry results in a lower W and hence a lower increase in L
for higher K values.

3.1.4 B = 4

For B = 4 there are two different isospin axes: K̂ = (0, 0, 1) and K̂ = (0, 1, 0). For K̂ = (0, 0, 1)
we find that the octahedral symmetry remains unbroken (see baryon density isosurfaces shown in

Fig. 1 (d)). When choosing K̂ = (1, 0, 0) or K̂ = (0, 1, 0) as our isorotation axis, we observe that
with increasing angular frequency ω the octahedrally-symmetric charge-4 Skyrmion solution
becomes unstable to break up into a pair of toroidal B = 2 Skyrmions (see Fig. 1 (e)). Similar
to the B = 2 case, we find that the Skyrmion configuration of lowest energy for given isospin K
is the solution for which the constituents stay closer together, that is the B = 4 cube isospinning
about K̂ = (0, 0, 1). The charge four solutions which split into two D4 symmetric charge-2 tori
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are of higher energy for all classically allowed isospin values K. For both axis choices the mixed
inertia tensor W and hence L vanish for all classically allowed isospin values K.

3.2 Higher Charge Skyrmions (B = 8)

For B = 8 it is interesting to observe that all configurations are breaking up into constituents,
either into two B = 4 parts or into four B = 2 parts, see Fig. 2. Note that physically B = 8
may describe beryllium 8Be which is unstable to splitting up into two α particles, see e.g. [37].

For D6d symmetric Skyrmion solutions we find that when isospinning about K̂ = (0, 0, 1) there
exist a critical isospin value at which the soliton solution splits up into two B = 4 cubes.
This breakup process is reflected in the L(K) graph shown in Fig. 5 (d). For K ≤ 17 × 4π
(L ≥ −6.6 × 4π) the spin |L| grows linearly with K and the isospinning Skyrme configuration
preserves its dihedral symmetry. For higher isospin values K the dihedral symmetry is broken
and the isospinning solution starts to break apart into two B = 4 cubes of zero total spin L.
Fig. 5 (d) shows how L(K) decreases as K increases beyond K = 17 × 4π. When choosing

K̂ = (0, 1, 0) as isorotation axis, the D6d isospinning symmetric Skyrmion solutions breaks up
into four B = 2 tori. In this case, the total spin L is found to be zero (within the limits of our
numerical accuracy) for all classically allowed isospin values. For B = 8 Skyrme solitons with
approximate D4h symmetry we find that all the isosponning solutions investigated in this talk
(see baryon density isosurfaces in Fig. 2) possess zero total spin for all values of K.

4 Conclusions

In this talk we summarized our results on isospinning soliton solutions with topological charges
B = 1 − 4, 8 in the Skyrme model with the conventional mass term included and without
imposing any assumptions about the soliton’s spatial symmetries. Our numerical calculations
show that the qualitative shape of isospinning Skyrmion solutions can differ drastically from
the ones of the static (ω = 0) solitons. The deformations become increasingly pronounced as
the mass value µ increases. Briefly summarized, we distinguish the following types of behavior:

(i) Breakup into lower charge Skyrmions: Isospinning Skyrmion solutions can split into lower
charge Skyrmions at some critical breakup frequency value. Examples are the breakup
(for µ sufficiently large) of the B = 2 solution into two B = 1 Skyrmions when isospinning

about K̂ = (0, 0, 1); the breakup of the D4h and D6d symmetric B = 8 Skyrme config-

urations into four B = 2 tori when isospinning about K̂ = (0, 1, 0) and the breakup of
isospinning D4h and D6d Skyrmions into charge-4 subunits.

(ii) Formation of new solution types: Isospinning Skyrmion solutions can deform into config-
urations that do not exist at vanishing ω or are only metastable at ω = 0. An example
is the tetrahedral B = 3 Skyrmion (with µ = 1.5) which evolves with increasing ω into a
“pretzel ”-like configuration – a state that is only metastable at ω = 0 [35, 36].

(iii) Lifting of energy degeneracies: Adding isospin can remove energy degeneracies. For ex-

ample isospinning D6d and D4h symmetric Skyrme solitons about their K̂ = (0, 0, 1) axes
results for the configuration with approximate D4h symmetry in a lower energy value than
found for isospinning D6d solitons, thereby removing the degeneracy.

(iv) Spin generated from Isospin: If Wij is non-zero, then Skyrme configurations will obtain
classical spin when isospin is added. For example for B = 1 this gives states with spin
and isospin opposite, as required by the Finkelstein-Rubinstein constraints [9]. For B = 2
we observe that Skyrme configurations with non-zero mixed inertia tensor Wij show cen-
trifugal effects and separate out whereas states with Wij = 0 tend to stay more compact.
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Isospinning around K̂ = (0, 0, 1) leads to the breakup into two B = 1 Skyrmions orien-
tated in the attractive channel and with Lcrit given by approximately −Kcrit. Isospinning
around K̂ = (0, 1, 0) leads to a novel configuration with D4 symmetry of vanishing total
spin for all classically allowed isospin values K.

The types of deformations presented in this talk have been largely ignored in previous work
[5, 6] on modelling nuclei by quantized Skyrmion solutions and are exactly the ones we would like
to take into account when quantizing the Skyrme model. Spin and isospin quantum numbers of
ground states and excited states have so far almost exclusively been calculated within the rigid
body approach [8, 9, 10, 26], that is by neglecting any deformations and symmetry changes due
to centrifugal effects. Our numerical full field simulations clearly demonstrate the limitations of
this simplification. The symmetries of isospinning soliton solutions can change drastically and
the solitons are found to be of substantially lower energies than predicted by the rigid body
approach. This work offers interesting new insights into the classical behavior of Skyrmions and
gives an indication of which effects have to be taken into account when quantising Skyrmions.
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