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The integrity of online games has important economic consequences for both the gaming

industry and players of all levels, from professionals to amateurs. Where there is a high

likelihood of cheating, there is a loss of trust and players will be reluctant to participate d

particularly if this is likely to cost them money.

Chess is a game that has been established online for around 25 years and is played over

the Internet commercially. In that environment, where players are not physically present

“over the board” (OTB), chess is one of the most easily exploitable games by those who wish

to cheat, because of the widespread availability of very strong chess-playing programs.

Allegations of cheating even in OTB games have increased significantly in recent years, and

even led to recent changes in the laws of the game that potentially impinge upon players’

privacy.

In this work, we examine some of the difficulties inherent in identifying the covert use

of chess-playing programs purely from an analysis of the moves of a game. Our approach is

to deeply examine a large collection of games where there is confidence that cheating has

not taken place, and analyse those that could be easily misclassified.

We conclude that there is a serious risk of finding numerous “false positives” and that,

in general, it is unsafe to use just the moves of a single game as prima facie evidence of

cheating. We also demonstrate that it is impossible to compute definitive values of the

figures currently employed to measure similarity to a chess-engine for a particular game,

as values inevitably vary at different depths and, even under identical conditions, when

multi-threading evaluation is used.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Online game playing constitutes a large element of recrea-

tional Internet usage,with significant sums ofmoney involved

by game creators, game hosting sites and those who play the

games. Inevitably, cheating is commonplace and often seeks

to exploit system vulnerabilities (Yan and Randell, 2009). To

combat this, game server's user agreements often include
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rved.
terms such as, “…the Software may include functionality

designed to identify software or hardware processes or func-

tionality that may give a player an unfair competitive advan-

tage” (Valve Corporation, 2014). In turn, this can give rise to

concerns among users about their privacy being violated by

intrusive scanning techniques (Newell, 2014).

Chess is one of the many online games that has become

highly vulnerable to cheating in the form of “exploiting
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https://core.ac.uk/display/30705526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:d.j.barnes@kent.ac.uk
mailto:jch27@kent.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2014.10.002&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2014.10.002
http://dx.doi.org/10.1016/j.cose.2014.10.002
http://dx.doi.org/10.1016/j.cose.2014.10.002


c om p u t e r s & s e c u r i t y 4 8 ( 2 0 1 5 ) 5 8e7 3 59
machine intelligence” (Yan and Randell, 2009) since the

widespread availability of chess engines on home computers

that are easily stronger than the best human players. In the

chess community, finding ways to determine whether a

player is making their own decisions, or simply playing the

choice of a strong program, has become a pressing issue.

Interestingly, allegations of cheating are not confined to on-

line play. A number of cheating complaints in over-the-board

(OTB) play have recently received a lot of attention in the

mainstream news media (chessvibes). This has led to quite a

number of changes in tournament-playing conditions d such

as the use of metal detectors and the complete ban of mobile

phones among players and even spectators, but also occa-

sional requests for full body searches where cheating is sus-

pected (Chess.com, 1152). Indeed, the world governing body of

chess, FIDE, has now approved procedures in the formal Rules

of Chess that are akin to those of online game servers in terms

of their personal intrusiveness: Allowing arbiters to request a

full search of bags, clothes and other items in private (FIDE,

2014).

The taint of cheating in both OTB and online chess is

bringing bad publicity and discouraging sponsorship and

clearly needs addressing if it is not to play a major role in

slowing down the wider spread of official online chess tour-

naments and titles, making monetising the millions of users

of online chess servers much harder.

Increased suspicion that cheating might be taking place

inevitably leads to a surge in allegations of cheating d

whether well founded or not. Where no physical evidence of

cheating is available, the primary source for an allegation is

usually a demonstration of similarity between a human

player's moves and those chosen by a powerful chess engine.

Our aim in this paper is to sound a note of caution over the

degree to which such a similarity should be taken as prima

facie evidence of cheating, with the burden of proof then

resting on the accused player to demonstrate a negative. We

provide evidence of the multiple inherent difficulties and

limitations of supporting allegations of chess cheating purely

through the use of chess-engine similarity analysis of suspect

games, particularly when the sample of such games is small.

Through an extensive analysis of games covering a wide

historical period, we conclude that no isolated comparison

between played moves and an engine's evaluations can be

taken as authoritative evidence of cheating. Among other

data, we illustrate our conclusions by highlighting several

“false positive” games which, had they not been played well

before the current availability of strong chess engines, might

have been subject to completely wrong allegations of cheat-

ing. We also show how “evidence” to support a cheating case

can easily be massaged and cherry-picked by a number of

techniques that we describe and analyse in depth.

1.1. Related work on cheating

1.1.1. Chess cheating
Our work has similarities to that by chess-cheating analysis

pioneer Kenneth Regan (Regan's chess page) but also has some

significant differences, and is complementary to it. Prof.

Regan has published a number of papers in the area (Di Fatta

et al., 2009; Haworth et al., 2010; Regan et al., 2012; Regan and
Haworth, 2011) and has proposed a set of techniques based on

predictive analytics. The strength of chess players is measured

by the ELO system, originally defined by Dr. Arpad Elo (Elo,

1978). Players gain or lose points depending upon their re-

sults, and the number of points won or lost depends on the

comparative strength of their opponents. Regan uses a

player's ratings before and after a tournament, as well as their

performance level within the tournament, to determine

whether their move selection is statistically consistent with

the historical move selection of similarly rated players, when

compared against a strong chess engine's move selection.

Since modern chess engines are rated hundreds of ELO

points above the best human player, a tournament perfor-

mance that is significantly higher than what would normally

be expected may be the result of obtaining machine assis-

tance. Regan's is a very interesting approach and, so far, the

only available one. The approach has a strong statistical

foundation but care is needed in its application, particularly

when considering players whose performance is improving

rapidly, which is not uncommon among young players, for

instance.

It is important to note that we employ a slightly different

methodology and way of measurement, and a quite different

treatment of the opening moves which becomes apparent in

Appendix A. Further differences with the work of Regan are

presented where most appropriate through the rest of the

paper.

Apart from the seminal works of Regan and his colleagues,

the academic or scientific literature on chess cheating is

scarce. We should, however, note Friedel's very interesting

historical discussion and examples (Friedel, 2001), and some

other works that, although not focused on chess cheating,

have produced interesting and useful results like those by

Guid and Bratko (Guid and Bratko, 2006, 2011; Guid et al., 2008).

An additional obstacle for researchers and progress in this

area is that the numerous online chess servers that have

developed their in-house techniques for detecting cheating

have, in all cases, kept their methodology secret and seem

unprepared to disclose any information publicly. This security

by obscurity approach, as we have seen in so many other se-

curity fields, is destined to fail in the long term.

1.1.2. Cheating in online games
In other domains, numerous researchers have worked over

the years in detecting cheating in games, particularly in online

ones. The most insightful works are those by Jeff Yan and his

team (Yan, 2003; Yan and Randell, 2005, 2009; Yan and Choi,

2002; YeungJohn et al., 2006). Most of these focus on massive

multiplayer online games (MMOGs) over distributed systems

covering, for example, techniques like aimbots, wall-hacking,

speedhacks and ghosting d following the naming taxonomy

proposed in (Yan and Randell, 2005). It is also worth noting

that Yan and Randell added “violation of fairness” to the

traditional consequences of security violations (Yan and

Randell, 2009).

We believe the strong differences between chess (particu-

larly over the board play) and these MMOGs make this line of

related cheating research interesting but of limited relevance

to our domain. For example, (Yan, 2003) investigates the se-

curity failures of an online Bridge server, dividing them into

http://dx.doi.org/10.1016/j.cose.2014.10.002
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two categories: those due to a single player cheats, and those

due to collusion between multiple players. The work covers

techniques like card eavesdropping, client hacking, the

exploitation of bad randomness or opportunistic escaping,

illicit information passing, deadlocks, etc.

While not directly involving the exploitation of machine

intelligence, it is also worth mentioning the security analysis

conducted on the Internet Chess Club (Black et al., 2006),

which is one of the most popular online chess servers, where

the authors point out numerous security issueswith its client/

server communication protocol, and show how these could be

exploited, not only to expose credit card information but also

to gain unlimited powers over an ICC user, including easy

wins over unsuspecting rivals.

To conclude this brief introduction to the existing related

works, we note an interesting statistical behavioural analysis

presented in (Laurens et al., 2007), based on the central hy-

pothesis that players engaged in cheating exhibit behaviour

which is significantly distinguishable from normal play. The

paper establishes links between cheating detection and

intrusion detection, seems promising and general enough to

be applicable to other games, though it is initially limited to

Half-Life 2.

In summary, cheating in the gaming community is wide-

spread, particularly where financial rewards for players are

available. The detection and prevention of cheating are

important features for the viability of gaming communities

and their hosts but grounds for allegations must always be

based on a robust and credible analysis.

Our aim with this article is not primarily to offer an alter-

native to Regan's approach but to show the limitations of the

sort of naive analysis that is commonly followed by non-

experts. This should move people to act with extreme

caution in the easy levelling of cheating allegations. Alterna-

tively, you can view our contribution in this article as a set of

difficult questions that need to be answered by any cheating-

detection technique: how to detect, deal with and remove d

or at least take fully into accountd the large number of “false

positives” that occur naturally, so that cheating accusations

are sound and well-founded in the future.
1 http://www.cs.kent.ac.uk/~djb/chessplag/.
2. Materials and methods

As sources for the games to be analysed, and for the classifi-

cation of opening moves, we used the ChessBase cbmega

database (ChessBase) covering the 19th and 20th centuries, and

Mark Crowther's TWIC archive (Crowther) containing games

from 1997 to 2013. We used Stockfish v3.0 (Romstad et al.,) for

our analysis because it is one of the strongest open source and

freely available chess engines, but the same methodology

could be applied using any UCI-compatible chess engine

(Kahlen, 2004).

Themove text of the PGN (Edwards, 1994) format of a game

was converted from standard-algebraic notation (SAN) to

long-algebraic notation via pgn-extract (Barnes), as this is the

format used in UCI. We wrote a piece of software, which we

refer to hereafter as “the analyser” which translated the

moves of a game to a series of UCI position commands. Each

position command was then passed by the analyser to the
chess engine to be evaluated to the required depth. The ana-

lyser received back the engine's evaluations and wrote them

to a file in XML format (Fig. 1). We developed a separate pro-

gram, based around an XML parser, to read the XML files and

compute the metrics we describe in Section 2.1. The source

code of both the analyser and metrics tool are available

online.1

The chess engine was run in MultiPV (i.e., multi-best-line)

mode and set to return evaluations for the five best moves

in each position (but the analyser allows the number ofmoves

to be varied as required). Both opening books and endings

table bases were turned off. When the engine did not consider

the actual move played in the position to be one of the five

best, we detected this and forced its evaluation. As shown in

Fig. 1, the engine's output consists of either an integer evalu-

ation of the value for each move (expressed as a positive or

negative number of centipawns) or “mate in N”.

In contrast to our selective approach, Regan uses an

exhaustive search of each position but eliminates branches

having an evaluation greater than 300 centipawns. Our

handling of opening moves, which is new and different from

any previously used in the related literature, is covered in

detail on Section 2.2.

2.1. Metrics

The most obvious test to use when comparing moves by a

human player against those picked by a chess engine is the

percentage of the human moves matching those preferred by

the engine. Regan calls this the “move matching percentage”

(MM). The conventional conclusion derived from a 100%

match would be that the human played the moves suggested

by the engine and, therefore, was self-evidently cheating.

What is less obvious is what an 80% or a 90% match means,

and that is where Regan uses rating-related statistical analysis

to help the inquiry. Players have ratings (similar to rankings)

based on past performance, which can be used to spot

outlying improvements in performance that could be the

result of machine assistance.

We determine a similar metric to MM, although ours is

calculated slightly differently so we refer to it as the “coinci-

dence value” (CV) to avoid any confusion.

Coincidence Value (CV) is a figure between 0 and 1 repre-

senting the proportion of non-book moves chosen by a

player with the same evaluation as the engine's preferred

move.

CV differs from MM in that the latter is the percentage of

played moves that are identical to the engine's preferred

move, whereas CV is the percentage of those having the same

evaluation.

Our CV values are then, by definition, always greater-than

or equal-to the corresponding MM values. Our justification

for the difference is that the identification of whether a

particular move is better than another when the evaluations

are the same is an arbitrary decision that may well vary from

run to run. Section 3.2 discusses in more detail the issues

http://www.cs.kent.ac.uk/
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with the repeatability of evaluations over multiple runs. In

addition, choosing a second or third ranked (but equally

good) movemight potentially be a good strategy employed by

a cheater for easily bypassing naive rank-based detection

schemes without resorting to play weaker chess moves. An

extension of this detection-avoidance techniquewould be for

a player occasionally to choose sub-optimal moves that are

still a good second or third choice of the engine, leading to

MM/CV values below 100%. MM or CV are clearly too crude a

measure to reliably detect cheating on their own.

Regan, therefore, also determines the “average error” (AE)

as a second metric.

Average error (AE) is the mean difference in evaluation

between the best move and the played move for non-book

moves, expressed in centipawns.

The difference will always be�0 but we will use the phrase

“low error” to mean a value close to zero. The idea is that a

very low AEmight be indicative of cheating even in the face of

an MM/CV that does not appear to give cause for concern.

We also use this metric. However, we note that evaluation

differences involving mating moves are not easily expressed

as a number of centipawns in the form they are returned by a

UCI engine. For instance when:

� The engine finds a shorter forced mate than the one

played.
� The engine finds a forced mate but the played move does

not lead to forced mate.

� The engine finds a non-mating move but a weaker move

leading to forced mate was played.

While it could be argued that it should be possible to

ascribe a centipawn-equivalent to each of these cases, we

prefer to omit such instances from the otherwise entirely

numerical analysis. The only exception is the occurrence of

alternative forced mates of the same length via different

moves, which we score as a difference of zero.

2.2. Treatment of opening moves

The opening moves of a chess game inevitably repeat the

moves of games that have been played in the past, and well-

trodden move sequences are known as an “opening book”.

Such repetitions can easily last twenty moves or more and

high-level players usually stick to familiar, well understood

opening lines. Opening lines are classified under 3-letter “ECO

codes.”

We do not include book moves in the engine's analysis on

the grounds that they tell us little of use in determining

coincidence. Given the wide period of time we were covering,

it is important to differentiate the opening knowledge a

player at the beginning of the 20th century would have from

one at the end of the century. Therefore, in order to differ-

entiate opening moves derived from book knowledge from

http://dx.doi.org/10.1016/j.cose.2014.10.002
http://dx.doi.org/10.1016/j.cose.2014.10.002
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those requiring analytical thought, we built a historical

database of board positions from all the games available to us

(c. 7M) and not just those that we analysed for this study (c.

120K).

The resulting database contains around 87 million

different positions. Each entry consists of a hashed For-

sytheEdwards Notation (FEN) position2 and the date at

which that position was first encountered in a game in our

compilation. The database is structured as a set of approx-

imately 500 tables, one per 3-character ECO classification. A

game is entered into the database by determining its ECO

code and then generating the FEN positions for the first 20

moves.

Each FEN position in the first 20 moves of a game is then

checked against the database table for the game's overall ECO

classification. If the position has not been seen before, then

this game's date is entered in the table as the first known

occurrence of that position. If the position has been met

before and this game pre-dates the date of the existing entry,

then the new date replaces the old one, otherwise the table is

not changed for that position.

For each game analysed in this study, its overall ECO code

was determined and its FEN positions generated in a similar

way. The positions were then looked up in the corresponding

table of the database in order to determine how much of the

game was known theory at the time the game was played. An

important point to note here is that only positions that were

encountered in games prior to the date at which the game was

played are used in determining the book-depth of the game.

The book depth was then added to the game as a pseudo-PGN

tag d BookDepth d which was passed on to the analyser (see

Fig. 1). One limitation of the approach is that games that are

given different ECO codes, but transpose to the same position

will not be compared.3

Our approach differs from Regan's general method of

considering the first 8 moves of each game to be book. How-

ever, when analysing particular games in detail, Regan does

appear to identify the move at which a novelty is first played

and begin his analysis at that point. See, for example, his

detailed analysis of the games played by Ivanov at the Zadar

Open in 2012 (Regan Letter) which were subject to allegations

of cheating. In Appendix A we compare our own identification

of the starting point for non-book moves in those games with

his.

While we do not claim that our database is exhaustive nor

necessarily fully historically accurate, we do consider this to

be a much better way to exclude book moves from analysis

than simply assuming an arbitrary cut-off point for all games.

This novel approach should also give a more accurate evalu-

ation of the coincidence levels of similar games that were

played at quite different historical periods.
2 FEN concisely encodes game state, including whether castling
is still permitted for each side and how many moves have
occurred since the last pawn capture since this can be used to
declare a draw.

3 An example of this is noted in the discussion of game 2 in
Appendix A.
2.3. Historical analysis

As the starting point for our study we randomly selected

from the cbmega database (ChessBase) around 70,000 games

for the period up to 1950 and 50,000 for the period from 1950

to 2005. We analysed these games to the modest search

depth of 8.4

Since we were primarily interested in identifying games

with low AE and high CV, we selected all games with AE� 13

for analysis at depth 10, along with a 10% random selection

from the remaining games in order to reduce the risk of

missing interesting ones through the relatively low search

depth. This gave us 25,000 games at depth 10. We then

repeated this process for depths 12e22 by progressively nar-

rowing the upper limit of AE, although we dropped the

random sampling after depth 10. This selection process

roughly halved the number of games analysed at each suc-

cessive depth until we had around 250 at depth 22.5
3. Results

Figs. 2 and 3 show the ranges of AE and CV values produced

from our sample at depth 8; both are plotted against the

number of non-book moves played. We excluded all games

where fewer than 10 non-bookmoveswere played. Each game

generates two points d one for each player d which con-

tributes to the symmetry in Fig. 3.

Even at this low analysis depth there are several clear

trends that we see repeated at larger depths:

� Games where one player has a high AE tend to be shorter

than those with a low AE. This is unsurprising as earlier

blunders or weak moves tend to lead either to resignation

or rapid superiority for the opponent.

� Games with a high CV (�0.8) tend to be relatively short,

although there are still several shown here extending as far

as 70 moves after the opening.

� Several games have a CV of 1.0, although all those shown

here (except one) are of fewer than 20 moves. If played

today, such games would be prime candidates for false

allegations of cheating.

Another apparent effect, clearly shown in Fig. 3 is what we

can call “human-probabilistic fatigue”: as the length of the

game increases, its CV shows a remarkable decrease which is

consistent with human players becoming increasingly tired

and committingmoremistakes. This happens in combination

with the common fact that more challenges need to be solved,

so the likelihood of error-free games probabilistically decays

after each move, but more markedly so in the case of human
4 The computational facilities available to us when we started
this work did not allow us to go any deeper with such a large
number of games.

5 We should note here that the assumption implicit in this
selection process d that low CV/high AE games at low search
depth will not give high CV/low AE values at high search depths
(and vice versa) d is not entirely well founded. It was purely used
as an arbitrary mechanism to reduce the sample size at
increasing depths.

http://dx.doi.org/10.1016/j.cose.2014.10.002
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players. This would clearly not be the case where chess-

engines are used, so long games involving cheating would

likely appear as outliers in this diagram. On the other hand,

short high-CV games are relatively common, most likely as a

result of home opening or early-middlegame preparation. We

plan to use these findings in the future as the basis for an easy

rule to quickly characterise suspect games.

For comparison with the games analysed to depth 8, Figs. 4

and 5 show the range of AE and CV values at search depth 20

plotted against the number of non-book moves. The number

of games is, of course, considerably smaller as a result of our

progressive filtering process. At this depth, games where both

players had a large AE have not persisted. Note that there are
Fig. 3 e CV at
no games beyond 40 moves where either player has an AE

worse than �30 and it can be seen that there are still a

considerable number of games with a very small AE over a

large number of moves.

Fig. 6 shows the region of Fig. 4 for which AE values range

from �15 to 0. The fact that both players tend to have a

similarly low AE and high CV in longer games can clearly be

seen towards the right-hand side of each plot. In particular,

note the pair of points around (91,�3) on the AE plot, whose CV

values are 0.85 and 0.82. Yet this 100-move game between

Carames and Fedorovsky was played in 1965 (Appendix B.1),

so it clearly did not involve any engine assistance. The link

between game length and high accuracy from both players
depth 8.

http://dx.doi.org/10.1016/j.cose.2014.10.002
http://dx.doi.org/10.1016/j.cose.2014.10.002
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clearly reduces the significance of coincidence and accuracy

in support of cheating allegation in long games, unless lev-

elled equally at both players.

However, this example does illustrate that high-CV and

low-AE play is perfectly possible for human players over a

large number ofmoves. This naturally leads us to consider the

issue of “false positives”.

3.1. False positives

The CarameseFedorovsky game illustrates that great care

must be taken on assuming that high CV/MM and low AE

values are clear indicators of cheating. In this section wewant
 0
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Fig. 5 e CV at
to present a number of further games that, given the period at

which they were played, can safely be discarded as not

involving any computer-based cheating. We call this collec-

tion of games the “false positives”, because they would likely

trigger alarms in any automated cheating detection mecha-

nism based simply on move accuracy or correlation when

measured or compared with computer moves. Given the

sampling technique we have used, our false-positive collec-

tion is in no way exhaustive, and it could easily be enlarged

from the 92 games it now contains with access to more

powerful computational resources than we had available. We

believe it is interesting to present and discuss some of these

games in more detail.
 60  70  80  90  100
r of moves

depth 20.
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Chronologically, we can start with the effort by the

legendary Paul Morphy with black against Hiram Kennicott in

1857 (Appendix B.2). Our analysis of historical book depth

found that the first 29 half-moves were not new, and were

probably well known to both players. After that point, and in a

very tactical position, Morphy played ten “perfect” newmoves

that ensured he won the game smoothly. At depth 18, Stock-

fish matches 100% of these moves.

Is this strange? Well, if Morphy had been playing today he

would very likely be accused of cheating, because in the same

year he posted another “perfect” performance, with black and

blindfolded no less. The game was played against John Wil-

liam Schulten in New York and included 13 new consecutive

perfect moves (analysis at depth 16). If this were not enough,

not much later, in 1859 we see the same player defeat

Augustus Mongredien in their seventh match game in Paris,

which he won convincingly by 7.5e0.5. Another exceptional

performance by Morphy happened in 1866, when he defeated

C. Muarian in New Orleans. This game showed 12 consecutive

new perfect moves from Morphy and is another 100% match

with Stockfish's suggestions at depth 18.

One can argue that all these games have in common that

they were quite short, and that finding 10 perfect moves in

succession should be rare but not so worrying in the case of

one of the all time greats like Morphy. We would disagree, at

least partially, with that view.

The game betweenWeiss and Burille given in Appendix B.3

is a good case in point. It was played in the 6th USA Congress

in New York betweenMiksa (Max)Weiss (the co-winner of the

Congress, with Chigorin) and the position after 13 half-moves

had been encountered before in our historical database. From

that point on, Mr. Weiss won the game by playing 26 consec-

utive moves that exactly match our engine's choices at depth

20. This is a much larger series of perfect moves than that we

saw in the Morphy examples. Surely due to computer cheat-

ing, except for the fact that the year was 1889.
Among our admittedly limited search for similar “false

positive” games our list of possible “cheaters” include names

like Anderssen, Zukertort, Alekhine, Euwe, Spielmann, Capa-

blanca, Marshall, Steinitz, Rubinstein, Gruenfeld, Flohr, Keres,

Botvinnik, Reshevsky, Pachman, Unzicker, Petrosian, etc. But

also fairly unknown players like Liebert, Book, Prandstetter,

Garcia Vera, Raud, Tyroler, Prochazka, Ekstrom, Turover, Gilg,

Santa Cruz, Dely, and many others. All of these played moves

that gave a CV of 1.0 at one or more depths.

A potential explanation that might be offered for this per-

fect accuracy phenomenon is that perhaps all the related

games were highly tactical, with a very limited number of

available options, which could have helped in finding the right

move every time. This is a good attempt to explain and

characterise these “false positive” games, but it is not without

its faults as the game between Browne and Timman

(Appendix B.4) demonstrates. This is a relatively long game of

40 moves, played with perfect accuracy by Walter Browne for

23 moves, after the divergence from our book record at move

17. While the game is tactical, Browne also has to take posi-

tional decisions of roughly equivalent value at (at least) moves

24, 26, 31, 32, and 37.

Should we accuse Walter Browne of cheating? Of course

not. First of all, this is only a single game, and no cheating

accusation should be based on a single game because, as we

have already seen, such perfect sequences happen at all levels

of the game, and in roughly all types of game and position.

Only when there is some sort of supporting external evi-

dence and this happens in a number of games (and still very

cautiously, as we sawMorphy and others hadmultiple perfect

games through the years) can we start to give any cheating

accusation some credibility.

The idea of false positives should be easy to grasp for most

chess players, and particularly for professional players. Un-

fortunately this seems not always to be the case, as the un-

fortunate incident involving Igor Kurnosov in the 2009

http://dx.doi.org/10.1016/j.cose.2014.10.002
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Aeroflot Tournament seems to illustrate. In this tournament,

one of the largest and most prestigious of the calendar, top

seed GM Shakhriyar Mamedyarov accused his Russian oppo-

nent Igor Kurnosov of computer-assisted cheating and drop-

ped out of the event after resigning their game in round six.

In the game, given in Appendix B.5, a known position is

reached after 16 White moves (not after 12. d5 as implicitly

claimed by Mamedyarov, but only after 16…Qd6, the novelty

with respect to RodshteineMargvelashvili, Budva, 2003). This

means that Kurnosov has played only 6 “perfect” moves (as

seen by Stockfish at depths 16 and 20, but not depths 12, 24

and 26, for example).

Such a coincidence is unremarkable, particularly between

strong professional players. This game would not have even

made our list of “false positives” due to Kurnosov having

played fewer than 10newperfectmoves at any depth level, and

is order of magnitudes less suspicious that any of the previously

shown cases. Fortunately, Chief arbiter Geurt Gijssen decided it

was not a convincing claim but nevertheless searched Kurno-

sov's jacket (“a pack of cigarettes, a lighter and a pen”).

Our conclusion is that this infamous cheating complaint is

totally without merit and should have been discarded on the

spot. Regan has also studied this game and, through

completely different methods, reached the same conclusion

that there is not evidence at all supporting any cheating al-

legations (Regan).6
3.2. Reliability and repeatability

In Section 3.1 we noted that in the Kursonov case we saw

agreement with the disputed moves at depths 16 and 20, but

not at other depths. This lack of agreement from a single en-

gine at different but similar depths raises interesting questions

of both reliability and repeatability when calculating metrics

such as MM/CV and AE. Since in the absence of objective

physical evidence the similarity of a player's moves to those of

an engine is usually the starting point for most allegations, we

sought to investigate how definitive any particular set of AE

and CV values might be, and how repeatable they are under

both similar and different conditions.

UCI engines have the capability to run in either single or

multi-threaded mode, configured via a Threads option. On a

multi-core machine, using multiple threads for game analysis

is clearly an attractive option since it allows either a particular

depth to be reached more quickly or greater depth to be

covered within a limited time.

We selected 11 games from our sample that had shown a

particularly high CV value at depth 14 for at least one of the

players, and re-analysed them multiple times at depths be-

tween 8 and 22 using either 1, 8 and 16 threads.

3.2.1. Repeatability in single-threaded mode
When an engine is run in single-threaded mode, our obser-

vations were that its evaluations for moves were identical

over multiple runs, and even across different machines,

assuming all other configuration was identical. Variation was
6 Unfortunately GM Kurnosov passed away recently in tragic
circumstances http://en.chessbase.com/post/ruian-gm-igor-
kurnosov-dies-in-car-accident-120813.
only evident at different search depths. Figs. 7 and 8 show the

results from analysing the 11 games using only a single thread

at depths between 8 and 22. Each column represents evalua-

tions for a single player's moves in a particular game at the

different depths. Note that two AE points for player 1 (�298 at

depth 20 and at �285 depth 22) and 1 for player 20 (�169 at

depth 20) are not shown in order not to distort the scale for the

majority of the points.

Aside from those of players 1 and 20, most of themove sets

exhibit little substantial variation in AE across allmove depths

(e.g., a range of 3.3 for player 15 and 3.5 for player 10), but 10 or

more points is fairly common. A spread is more evident in the

CV where several values that might be considered suspi-

ciously close to 1.0 at some depths are much more comfort-

ably around 0.8 in others.

3.2.2. Repeatability in multi-threaded mode
For multi-threaded mode we used either 8 or 16 threads on

machines with multiple cores. The machines were only being

used for the task of analysis. In contrast to single-threaded

mode, repeat runs at a single depth rarely resulted in iden-

tical AE or CV values. We observed exactly the same features

whether we used 8 or 16 threads, and there appeared to be no

significance in the particular number of threads used. Figs. 9

and 10 show the variation we observed in the same sample

of 11 games at depth 22 over four runs using 16 threads. As

with Fig. 7, we have avoided including the scores of players 1

and 20 in Fig. 9 in order to avoid distorting the scale. Both

figures include the equivalent values from the runs in single-

threaded mode for comparison purposes.

Multiple identical runs at a single depth result in variations

in both AE and CV values. A range of 0.1 in CV values is not

uncommon, for instance, and this feature is present at all

depths. While most of the AE variations are relatively small,

note that player 7's AE values range from �4.16 to �59.56. In

addition, the values omitted from Fig. 9 for players 1 and 20

exhibit evengreaterAEvariations:�101 to�310 for player 1 and

�103 to�617 for player 20. The values in single-threadedmode

at the same depth are �285 and �98, respectively. What is the

reason for such wide variations under identical conditions?

At each stage of a position's analysis, the move tree will be

searched in the order determined by the engine's developer

(e.g., depth-first or breadth-first). Unless some degree of

randomness is deliberately introduced into the time-

constrained, non-exhaustive search process the search will

be deterministic in a single-threaded implementation, and

always give the same result. This is why randomness is

commonly used in solving search-based optimisation prob-

lems, for instance, in order to introduce variation in an

attempt to escape local minima over multiple runs.

In contrast, a multi-threaded implementation in a multi-

core environment naturally introduces a degree of non-

determinism into the search process through the way the

threads are scheduled and managed. The nature of multi-

threaded scheduling means that, while each thread will

receive a broadly similar share of the available computing

resources, equality and synchronicity are not guaranteed. As a

consequence, a thread undertaking the search of a particular

line at any one point may receive either a greater or lesser

time on different runs of the engine, but rarely exactly the

http://en.chessbase.com/post/ruian-gm-igor-kurnosov-dies-in-car-accident-120813
http://en.chessbase.com/post/ruian-gm-igor-kurnosov-dies-in-car-accident-120813
http://dx.doi.org/10.1016/j.cose.2014.10.002
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same amount. It should also be appreciated that the search

depth set on an engine is generally only a lower bound. En-

gines will often search a little deeper when they find a

promising line that looks likely to give a more accurate

evaluation.

One way to explain the extreme variation we have

observed for the moves of players 1 and 20 at the greater

depths, therefore, is that occasionally a single evaluation

thread gets a slightly greater share of computation time, hits

lucky and finds a forcing line of moves that it pursues beyond

the pre-set search depth. For instance, in the case of player 20:

already in an inferior position, his penultimate move was
 0
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Fig. 8 e CV values for 11 games (22 player perform
scored as �1296, �1632, �8904 and �9034 on the four runs

(�1571 in single-threaded mode). The larger two values sug-

gest a much higher degree of confidence that themove played

will definitely lead to a loss. Such large values will clearly have

a very big impact on the average error for the game. In other

circumstances, a single such value within a long game could

turn a suspiciously small AE value into an innocuous looking

larger one.

Regan uses single-threaded mode for the sake of repeat-

ability of results. While it is reasonable to have some form of

repeatability to serve as the basis for discussion and further

investigation, our concern is that its use could create the
 15  20
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ances) at depths 8e22 using a single thread.
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misleading impression that a particular set of evaluations are,

in someway, definitive for a game. The point of the discussion

in this section is that a particular pair of AE and CV values

cannot be considered definitive without taking into account

how representative they are within a range of values that

could be produced for the same game under either slightly

different conditions (such as a different analysis depth) or

even the same conditions (in a multi-threaded environment).

It would be naive to assume that anyone using an engine for

the purposes of cheating would limit themselves to single

threaded mode, when the advantages of faster and deeper
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Fig. 10 e CV values for 11 games (22 player performances) over fo
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analysis with multi-threadedmode are obvious. Furthermore,

different chess-engines d of which there are many d intro-

duce an additional variability in the scoring of moves, further

strengthening the point that no definitive AE and CV values

can be authoritatively ascribed to a game.

These variations are, in many ways, highly inconvenient

for those seeking to detect cheating using comparisons such

as the oneswe have outlined. On the other hand there is also a

risk in that these effects could be abused in order to “massage”

evidence to support a cheating accusation: the accuser could

run the game over different engines, at different depths and in
 15  20
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16 cores
1 core

ur runs at depth 22 using 16 threads. (Single-core values at
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multi-threaded mode and present as evidence the more

“incriminating” values found from the large set of different

results obtained. Most chess players and arbiters are unfor-

tunately completely unaware of this potentially misleading

feature of multi-threaded evaluation, thus increasing the

likelihood that such malpractice would be successful.
4. Conclusions

Cheating in online games violates the trust of players and the

fairness of the game and the environment. Where there is

prize money involved, the results are, in effect, an act of theft.

In seeking to combat cheating, online gaming organisations

regularly require participants to accept conditions of use that

affect an individual's privacy, and could be exploited either

intentionally or unintentionally by those organisations. Chess

is one online game that is subject to these same pressures, and

we have noted that even participants in over-the-board chess

may have to subject themselves to body searches if subject to

an allegation of cheating.

We have explored the most obvious means of attempting

to demonstrate that a player has cheated at chess: comparing

the moves they played to those suggested by a strong chess

program. Using a large source of games beyond question, we

have identified a considerable number of games where the

human player selected identical moves to those of a modern

engine, but this demonstrates nothing more than accurate

play. Clearly, great care must be taken in assuming that a

100% (or close to it) match is prima facie evidence of cheating.

Furthermore, we have also demonstrated the even more

basic and worrying fact that it is impossible to compute

definitive values ofMM, CV andAE for a particular game. Their

values for a single game inevitably vary at different analysis

depths and even under identical conditions when multi-

threading evaluation is used. To this already high variability

we can add that of using different but similarly strong chess

engines to complete a picture that should raise some doubts

about the soundness of using these measures too blindly.

The remarkable fact is that even if a valid accusation were

to be based on the correct identification of the engine, the

search depth actually used, and all other engine configura-

tions, it could well be the case that, in a multi-threaded

setting, a 100% correspondence would not be demonstrated.

However, our study has shown that general trends do exist

in the relationship between game length and player accuracy:

The longer a game is played, the less likely it is that high MM/

CV and low AE values are insignificant. These trends could be

the basis of future anti-cheating tools but, as we have

conclusively shown, they should still be used with extreme

care to avoid false positives and biases that lead to wrong

accusations.

Rather than being entirely negative, another way to see

these conclusions is as a sanity check against frivolous and

hasty accusations and to provide thresholds for further

investigation, such as recommending a body search. More

work is clearly needed with a larger sample of games to

establish exactly where the length/coincidence borderline

should be drawn for a single game. Once this has been done, it

should be relatively easy to integrate both the analysis and
sanity-checking processes into a software tool to support

tournament arbiters in dealing with allegations, and to allow

both players involved to independently verify that the de-

cisions taken have been fair and unbiased.

We plan to extend this research to amuch larger collection

of games and later on to set up a cloud service providing this

analysis service (from PGN input) to automatically help tour-

nament organisers, arbiters and players. We ultimately want

to help to stop both chess cheating and the cheating paranoia

by offering FIDE, arbiters, players and the general public a

transparent set of rules and open source, freely available tools

to take founded, sound decisions. We do not believe in secu-

rity by obscurity, and hence our emphasis in publishing the

methods publicly and offering the source code of our tools.
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Appendix A. Opening Novelties by Borislav
Ivanov in the 2012 International Zadar Open

In his open letter to the ACP Board Members (Reganc), Ken-

neth Regan identified the opening novelties in the games

played by Ivanov in each round of the 2012 Zadar Open and

discarded all moves before them from his analysis. The use of

our opening database described in Section 2.2 identified

slightly different points for the novelties, most of which are

the result of transposition. The primary reason for the dif-

ferences is that he uses an opening book based on playerswith

an ELO rating of 2300þ, whereas we use all games available to

us from our game sources.

For these particular games, once we had identified the

putative book depth from the database, we then conducted an

exhaustive search of all games based on the final book posi-

tion in order to find thosematching. As illustrated under game

2, this has the advantage of picking up identical positions

reached via transposition in games that have been given

different ECO codes.

The differences between Regan's and our identification of

the opening novelties are as follows:

� Game 1: Regan gives 15. Bh4 as the novelty. We found 13

games played between 1994 and 2012 that had also reached

this position. These include Detter v Roeder, Cappelle la

Grande 1994 and Pokorny v Rykalin, Czech Open, Pardubice

2006. 15 … Nfd7 was the novelty we identified as previous

continuations had been: Nh7, g5 and Nh5.

� Game 2: Regan gives 9… Be7. We found 3 games in which

the position after 10 … OeO had been reached earlier, one

of which (Benedetto v Vidmar, Villa Ballester 2004) reached

an identical position after 12. Nxd5 but then continued

exd5. So the novelty we identified is 12… cxd5.

Our database search did not initially pick up the length of

this coincidence as the games were given different ECO

codes (A13 and D45).
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� Game 3: Regan gives 10… b6 and we found no games to

contradict this.

� Game 4: Regan gives 15. h4. We found 1 game in which the

position after 18. Ke2 had been reached by transposition

(Dziuba v Socko, Najdorf Memorial Open, Warsaw 2009), so

18 … Rad8 is the novelty.

� Game 5: Regan gives 10. Bc4.We found 1 game inwhich the

position after 13. OeO had been reached (Puschmann v

Szabo, Hungarian Championship 1997), so 13 … f5 is the

novelty.

� Game 6: Regan gives 9. Qc1. We found 1 game in which the

position after 10. OeO was reached (Geller v De Castro,

Skopje Olympiad 1972), so the novelty is 10 … Bb7.

� Game 7: Regan gives 10. g3. We found 2 games in which the

position after 11 … Nd7 was reached, after which 12. Qd2

was played, so 12. OeO is the novelty.

� Game 8: Regan gives 8. Nf3.We found 3 games in which the

position after 10. g3 was reached, so 10 … Be7 was the

novelty, Nc6 and Qb5 having previously been played.

� Game 9: Regan gives 11. h4.We found 2 games in which the

position after 13. Qf2 was reached so 13 … OeO is the

novelty, Nc4 and Qa5 having previously been played.
While the differences we describe are relatively small, we

note that players using widely-available commercial and free

game databases for their opening preparation or engine

opening books may well not limit themselves to only games

played at the highest level.

We feel, therefore, that it is important to eliminate from

comparison those moves that could easily be known to a

player whose play is called into question.
Appendix B. Sample Games

Games discussed in detail in the body of the paper.
Appendix B.1. CarameseFedorovsky, Buenos Aires, 1965

A game that is beyond question but with unusually high CV

values for both players over such a long game. At depth 20

with Stockfish 3.0, the CV values were 0.82 and 0.85, respec-

tively (AE �3.12 and �3.20), and at depth 22 they are even

higher at 0.86 and 0.89 (AE �3.09 and �2.52).
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Appendix B.2. Kennicott-Morphy, New York, 1857

At depth 18, Stockfish matches 100% of Morphy's final 10

moves.
Appendix B.3. Weiss-Burille, New York, 1889

At depth 20, 26 moves by Weiss matched those chosen by

Stockfish 3.0.
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Appendix B.4. BrowneeTimman, Wijk aan Zee, 1980

Walter Browne plays 23 moves with a perfect match to those

of Stockfish 3.0.
Appendix B.5. MamedyaroveKurnosov, Moscow, 2009

Subject to an allegation by Mamedyarov of cheating, only 6

moves were played by Kurnosov beyond those seen in previ-

ous games according to our analysis of the opening. Coinci-

dence to engine-selected moves is insignificant under these

circumstances.
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