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Abstract

Genome-wide association (GWA) studies have identified numerous, replicable, genetic associations between common
single nucleotide polymorphisms (SNPs) and risk of common autoimmune and inflammatory (immune-mediated) diseases,
some of which are shared between two diseases. Along with epidemiological and clinical evidence, this suggests that some
genetic risk factors may be shared across diseases—as is the case with alleles in the Major Histocompatibility Locus. In this
work we evaluate the extent of this sharing for 107 immune disease-risk SNPs in seven diseases: celiac disease, Crohn’s
disease, multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and type 1 diabetes. We have
developed a novel statistic for Cross Phenotype Meta-Analysis (CPMA) which detects association of a SNP to multiple, but
not necessarily all, phenotypes. With it, we find evidence that 47/107 (44%) immune-mediated disease risk SNPs are
associated to multiple—but not all—immune-mediated diseases (SNP-wise PCPMA,0.01). We also show that distinct groups
of interacting proteins are encoded near SNPs which predispose to the same subsets of diseases; we propose these as the
mechanistic basis of shared disease risk. We are thus able to leverage genetic data across diseases to construct biological
hypotheses about the underlying mechanism of pathogenesis.
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Introduction

The human immune-mediated diseases are the result of aberrant

immune responses. These immune responses may lead to chronic

inflammation and tissue destruction, often targeting a specific organ

site. The outcome of this process is immune-mediated inflammatory

and autoimmune disease, affecting approximately 5% of the

population [1].

Extensive clinical and epidemiologic observations have shown

that immune-mediated inflammatory and autoimmune diseases

can occur either in the same individual or in closely related family

members. This clustering of multiple diseases appears more
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frequently than expected if disease processes were independent. As

each of the immune-mediated inflammatory and autoimmune

diseases has strong genetic influences on disease risk [2–7], the

observed clustering of multiple diseases could be due to an overlap

in the causal genes and pathways [8,9].

The patterns of clustering of diseases across the population are

complex [10] – each disease has a prevalence between 0.01%–3%,

so direct assessment of co-aggregation within individuals or

families does not result in the very large samples required for

genetic or epidemiological investigation. Thus it is unsurprising

that to date, these observations have yet to be translated into

determinants of the shared molecular etiologies of disease.

Recent GWA studies in immune-mediated and autoimmune

diseases have identified 140 regions of the genome with statistically

significant and robust evidence of presence of disease susceptibility

loci. A subset of these loci have been shown to modulate risk of

multiple diseases [3,6,11–14]. In addition, there is evidence that

loci predisposing to one disease can have effects on risk of a second

disease [15], although the risk allele for one disease may not be the

same as for the second [16].

Together, these observations support the hypothesis of a common

genetic basis of immune-mediated and autoimmune diseases [17].

There is now the ability to estimate both the number of loci

contributing to risk of multiple diseases and the spectrum of diseases

that each locus influences. In addition, grouping variants by the

diseases they influence should provide insight into the specific

biological processes underlying co-morbidity and disease risk.

In this report, we systematically investigate the genetic com-

monality in immune-mediated inflammatory and autoimmune

diseases by examining the contributions of associated genomic risk

regions in seven diseases: celiac disease (CeD), Crohn’s disease

(CD), multiple sclerosis (MS), psoriasis (Ps), rheumatoid arthritis

(RA), systemic lupus erythematosus (SLE) and type 1 diabetes

(T1D). We find that nearly half of loci identified in GWAS studies

of an individual disease influence risk to at least two diseases,

arguing for a genetic basis to co-morbidity. We also find several

variants with opposing risk profiles in different diseases. Support-

ing the idea that common patterns of association implicate shared

biological processes, we further demonstrate that loci clustered by

the pattern of diseases they affect harbor genes encoding

interacting proteins at a much higher rate than by chance. These

results suggest that multi-phenotype mapping will identify the

molecular mechanisms underlying co-morbid immune-mediated

inflammatory and autoimmune diseases.

Results

We first test our hypothesis of common genetic determinants by

examining evidence of association of genetic variants in known

immune-mediated and autoimmune disease susceptibility loci to

multiple disease phenotypes. We collated a list of 140 single

nucleotide polymorphisms (SNPs) representing reported associations

to at least one immune-mediated disease at genome-wide significance

levels. Where data for the reported SNP itself were not available in

our GWA studies (Table 1), we chose a proxy in high linkage

disequilibrium to the reported marker (r2.0.9 in HapMap/CEU).

We did not consider SNPs in the human Major Histocompatibility

Complex (MHC) from this analysis, as its role in many of these

diseases is well-established and the classically associated alleles in the

HLA region are not well captured by SNPs [18]. We were able to

acquire data for either the reported SNP or a good proxy in 107 of

140 cases, and assembled genotype test summaries for these from

previously described GWA studies representing over 26,000 disease

cases (Table 1).

We have developed a cross-phenotype meta-analysis (CPMA)

statistic to assess association across multiple phenotypes. The

CPMA statistic determines evidence for the hypothesis that each

independent SNP has multiple phenotypic associations. Support

for this hypothesis would be shown by deviations from expected

uniformity of the distribution of association p-values, indicative of

multiple associations. The likelihood of the observed rate of

exponential decay of 2log10(p) is calculated and compared to the

null expectation (the decay rate should be unity) as a likelihood

ratio test (see Materials and Methods for details). This CPMA

statistic has one degree of freedom, as it measures a deviation in p-

value behavior instead of testing all possible combinations of

diseases for association to each SNP.

A total of 47 of the 107 SNPs tested have evidence of association

to multiple diseases (SNP-wise PCPMA,0.01; expectation roughly 1

by chance; binomial probability of observing this result

p = 3610264). This highly significant result confirms widespread

sharing of genetic loci between immune-mediated inflammatory

and autoimmune diseases. Further, these ‘‘multi-phenotype’’ SNPs

include many loci not previously known to be shared across

diseases, as well as new predictions of association for previously

known shared loci (Table 2).

Although our CPMA statistic is agnostic to effect direction in

each disease, a subset of the 47 multi-phenotype (CPMA positive)

SNPs appeared to have strong allelic effects in opposite directions

in different diseases [16]. A total of 9 SNPs had strong evidence of

such directional association (an association p,161024 with at

least one protective and one risk effect; lower panel in Table 2).

This suggests that shared associations have complex effects on

disease outcomes and may be of particular importance in

pathogenic processes.

Table 1. Participating studies.

Disease Cases Controls Reference

Celiac disease 3796 8154 22

Crohn’s disease 3230 4829 1

Multiple sclerosis 2624 7220 4

Psoriasis 1359 1400 5

Rheumatoid arthritis 5539 20169 6

Systemic Lupus
Erythematosus

1963 4329 23

Type 1 diabetes 7514 9045 24

Data were collated for seven phenotypes from meta-analyses incorporating all
known genome-wide association studies. SLE is the exception as no
comprehensive meta-analysis has yet been published; data were instead
obtained from a recent meta-analysis including some, but not all, known
genome-wide association studies. Note that controls overlap in some cases due
to the use of common shared sample genotypes.
doi:10.1371/journal.pgen.1002254.t001

Author Summary

Over the last five years we have found over 100 genetic
variants predisposing to common diseases affecting the
immune system. In this study we analyze 107 such variants
across seven diseases and find that almost half are shared
across diseases. We also find that the patterns of sharing
across diseases cluster these variants into groups; proteins
encoded near variants in the same group tend to interact.
This suggests that genetic variation may influence entire
pathways to create risk to multiple diseases.

Shared Genetic Effects in Autoimmune Disease
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We next examined the patterns of association across 47 multi-

phenotype SNPs to determine evidence of either a global autoim-

mune process or biological pathways influencing sets of diseases. On

visual inspection of these data we found a striking patterning of

associations across diseases: only one SNP (rs3184504, in an exon of

SH2B3) exhibited evidence of association to all seven diseases; the

others appeared to associate only to subsets of diseases (Table 2).

To formalize the analysis of association patterns across diseases,

we determined specific patterns of associations across SNPs by

computing SNP-SNP distances based on the level of association to

each disease followed by hierarchical clustering to group them

(Figure 1A; see Materials and Methods section for clustering

details). SNPs in loci encoding proteins known to interact clustered

together: for example, the independent effects at IL12B and

IL23R, which encode subunits of a ligand-receptor pair are in

the same region of the dendrogram. We next partitioned the

dendrogram ‘‘tree’’ into four clusters and summarized the cumula-

tive association of each cluster to each disease by combining our

underlying dataset of association p-values per cluster, per disease

using Fisher’s omnibus test (Figure 1B; see Materials and Methods

for details). Each cluster had a different pattern of associations

across diseases; these patterns suggest that the clusters represent

distinct co-morbid mechanisms.

Our underlying hypothesis has been that phenotype-driven

clusters represent distinct molecular mechanisms. This leads to

the prediction that components of these clusters/pathways are

encoded in associated loci; in other words, proteins encoded

around SNPs in the same cluster should interact. We test this

prediction by looking for connectivity between proteins encoded

around SNPs within each cluster as described elsewhere [19].

Briefly, we define a genomic region around each SNP in terms of

linkage disequilibrium and consider any protein overlapping that

region. We then ask if proteins encoded around SNPs in the same

cluster interact using protein-protein interaction maps, excluding

interactions between proteins in the same region (see Materials

and Methods and [19]). We find that three of the four clusters we

define by patterns of association have significant connectivity

(Figure 1C; permuted P,0.05) by this method, suggesting that

these represent distinct molecular mechanisms affected by genetic

risk variants. Two of these groups of interacting proteins are also

preferentially expressed [19] in immune cell subtypes compared to

other tissue types (Figure S1), supporting our hypothesis that these

represent true pathways underlying pathogenesis.

Discussion

Immune-mediated inflammatory and autoimmune diseases have

been known to cluster in families, suggesting a strong genetic

component to risk. The genes in the human MHC (HLA complex)

have been associated with disease risk, suggesting a common

immune pathway. Less clear is whether other genetic variants

associated with individual diseases also form common pathways/

mechanisms for autoimmunity. Recent results from GWA studies

suggest that common genetic mechanisms may underlie the

observed clustering of multiple autoimmune diseases within a

person or family. In this work we have tested the hypothesis that

immunologically relevant genetic variation will either (1) under-

lie risk to all immune-mediated diseases, implicating a global

immunological process; (2) influence risk to a discrete subset of

diseases, implicating molecular entities underlying that co-morbid-

ity; or (3) modulate risk for only one disorder thereby implying a

disease-specific process.

A central goal of complex disease genetics is to uncover the

pathways perturbed in disease and shed light on the underlying

Figure 1. Patterns of association across diseases correlate with protein-protein interactions. A: 47 SNPs with evidence of association to
multiple diseases (Pcpma,0.01) fall into groups clustered by the pattern of association across diseases. Clusters are numbered arbitrarily. B: Clusters
show different patterns of association across diseases. We summarize the differential disease effects of each cluster with a cumulative association
statistic (Fisher’s method for combining p values). These patterns are different for each cluster, suggesting each represents a different co-morbid
mechanism. Note that these figures are based on the same underlying association statistics the clustering in the first panel is derived from. C: proteins
encoded within the linkage disequilibrium scope around SNPs in the same cluster interact either directly or via common intermediates. Three of our
four clusters have significant protein inter-connectivity (permuted P,0.05; see Materials and Methods and [19] for details).
doi:10.1371/journal.pgen.1002254.g001
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cellular processes. Despite a wealth of molecular insight into

immune function few key pathways underlying genetic susceptibility

to immune-mediated diseases have been elucidated. To identify

these processes in immune-mediated inflammatory and autoim-

mune disease, we tested genetic variation contributing to seven

diseases. We observed an overwhelming abundance of com-

monality across these phenotypes, assorting into cohesive pheno-

type-genotype groups that appear to underlie co-morbidities. By

analyzing loci known to associate to at least one disease, we are able

to identify groups of diseases that should be considered as a unified

phenotype and analyzed together. We further demonstrate that this

approach generates novel biological insights into pathogenesis, often

difficult to obtain from genomic studies of single traits [20].

We have described a novel statistic, CPMA, which assesses

evidence for multiple associations to a marker. Rather than

perform a meta-analysis, which would only detect association to all

phenotypes (or suffer from heterogeneity) or test all combinations

of phenotypes which would increase the multiple testing burden,

we look for deviation in the distribution of association p values.

Our statistic thus detects markers associated to at least some, but

not necessarily all, phenotypes; we note that this is a single degree

of freedom test, providing high power to reject the null hypothesis.

This power comes at the price of not knowing to which pheno-

types the marker is associate; we overcome this with our clustering

analysis, which resolves groups of markers associating to the same

diseases. Thus our analytic strategy is able to both detect shared

associations and identify the relevant phenotypes.

Our approach appears capable of distinguishing distinct genetic

effects in the same locus in addition to validated shared asso-

ciations. For example, it is now clear that the two signals in the

IL2/IL21 locus on chromosome 4q27 are distinct, with T1D

mapping to IL2 and other diseases to IL21 [21]. Our analysis

detects this difference, clustering the two SNPs representing these

associations separately (Figure 1, labeled ‘‘IL2’’ and ‘‘IL2/IL21’’,

respectively). Conversely, previous reports of an overlap in

association between T1D and celiac disease [15] were in regions

encoding genes highly expressed in T lymphocytes (RGS1, PTPN2

and CTLA4 in celiac; PTPN2 and CTLA4 in T1D). Our analysis

identifies all these regions as CPMA-positive and highlights the

second associations in T1D and celiac shown by Smyth et al.[15],

indicating that our approach could be used to prioritize marginal

associations for replication. We also observe other potential asso-

ciations. For example, rs2816316 on near RGS1 exhibits evidence

of association to MS; rs2542151 and rs1893217 on near PTPN2

has modest association to psoriasis. These last observations, whilst

suggestive, require further investigation given the known effects of

these regions on other diseases.

In summary, our multi-disease approach is applicable beyond

the immune-mediated inflammatory and autoimmune diseases, to

current studies of related traits in pharmacology, metabolic and

psychiatric disease and in genetic studies of cellular phenotypes

such as gene expression. For most studies of the genetic basis of

complex human phenotypes, the pathogenic processes are still far

from understood and biological pathways may be identified using

these methods. Ultimately, these results will contribute to an

improved molecular nosology of mechanistic definitions and,

ultimately, towards improving clinical care and human health.

Materials and Methods

Ethics statement
All data were drawn from previously published genome-wide

association studies from consortia with appropriate ethics oversight

from their respective institutional review boards. As only summary

data from a small number of markers across the genome were used

here no further ethical issues arise.

Patient cohorts
Data were obtained from previously described case/control

GWA studies of celiac disease [22], Crohn’s disease [2], multiple

sclerosis [5], psoriasis [6], rheumatoid arthritis [7], systemic lupus

erythematosus [23] and type I diabetes [24] as shown in Table 1.

We note that, with the exception of psoriasis, in these cohorts

diagnosis of a second immune-mediated disease is a criterion for

exclusion, thereby minimizing co-morbidity as a source of bias in

our study.

Locus selection
For our analysis we selected 140 independent SNPs (r2,0.2)

with reported associations to an immune-mediated disease in a

genome-wide association scan and replicated in independent

samples in that disease to combined genome-wide significance

[25]. We then chose proxies for those SNPs present on the major

versions of Affymetrix and Illumina genome-wide genotyping

platforms [26]; 107 SNPs had sufficient data coverage to be

included. Where possible we used the SNP originally reported; if

data were unavailable for that marker, we chose a high LD proxy

(HapMap/CEU r2.0.9) to represent the region.

Cross-phenotype meta-analysis
Our CPMA analysis relies on the expected distribution of p-

values for each SNP across diseases. Under the null hypothesis of

no additional associations beyond those already known, we expect

association values to be uniformly distributed and hence -ln(p) to

be exponentially decaying with a decay rate l= 1. We calculate

the likelihood of the observed and expected values of l and express

these as a likelihood ratio test:

CPMA~{2|
P½DataDl~1�
P½DataDl~l̂l�

This statistic therefore measures the likelihood of the null

hypothesis given the data; we can reject the null hypothesis if suf-

ficient evidence to the contrary is present. We note that, because

we only estimate a single parameter, our test is asymptotically

distributed as x2
df ~1. This gives us more statistical power than

relying on strategies combining association statistics, which would

consume multiple degrees of freedom.

SNP–SNP distance calculation and clustering
To compare the patterns of association for multi-phenotype

SNPs we first calculate SNP-SNP distances and then use hierar-

chical clustering on that distance matrix to assess relative relation-

ships between SNP association patterns.

Calculating distances based directly on p values or the underlying

association statistics is problematic, as each contributing study has

slightly different sample sizes and therefore different statistical

power to detect associations. Thus, distance functions based on

numeric data – which incorporate magnitude differences between

observations – would be biased if studies have systematically

different data. Normalization procedures can account for such

systematic differences but may fail to remove all bias. To reduce the

impact such systematic irregularities might have on our comparison,

we bin associations into informal ‘‘levels of evidence’’ categories. We

define four classes (1,p,0.05, 0.05,p,0.001, 0.001,p,1610-6,

161026,p) and thus reduce our data to a SNP x disease matrix

Shared Genetic Effects in Autoimmune Disease
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where entries are categorical variables describing these classes. We

then calculate the Euclidean distances between pairs of SNPs using

Gower’s method for categorical data [27], which accounts for the

discrete nature of the data.

To compare the distance relationships between SNPs we use

hierarchical agglomerative clustering. This process joins single

entities (in this case, SNPs) or groups of entities together if certain

criteria are met. Successive rounds of clustering are preformed in

an iterative way until all groups are joined, resulting in a tree of

relationships where similar entities cluster on the same branches.

In this analysis we cluster SNPs based on the Gower distance

matrix using Ward’s method for joining entities [28]. In contrast to

linkage clustering methods, Ward’s method seeks to minimize the

information lost during the clustering process, calculated as the

error sum of squares (ESS). The higher the ESS the more

information is being lost due to inaccuracy of grouping entities

together. This method thus seeks compact, spherical clusters of

data which are maximally similar.

All distance and clustering analysis was done using the StatMatch

and stats packages in the R programming language [29].

Cumulative association statistics
We compute per-cluster, per-disease cumulative association

statistics by combining p values using Fisher’s omnibus test, where

the cumulative statistic Scum on N p-values is defined as:

Scum~{2|
XN

i~1

lnpi

and Scum follows the x2 distribution with 2N degrees of freedom.

Protein–protein interaction analysis
We use previously described methodology [19] to assess

whether proteins encoded around SNPs in each cluster interact.

Briefly, we first compile lists of all proteins that an association may

affect by defining locus boundaries around each SNP in terms of

linkage disequilibrium and including all proteins overlapping this

region. We then use a high-confidence protein-protein interaction

map ([30] as modified in [19]) to ask whether proteins encoded

around SNPs in each cluster interact either directly or via a

common intermediary and assess the significance of such

observations relative to the local structure of the protein-protein

network as described elsewhere [19], using 4000 permutations.

These data and methodology are publicly available for download

and via a webserver (http://www.broadinstitute.org/mpg/dapple).

Supporting Information

Dataset S1 Complete SNP-wise association data. Here we

present the complete dataset on which we base our analysis. All

data have been previously published as detailed in the main

manuscript and in the key below, and are based on chi-square (1 df)

or Z association statistics. Where not provided, we computed Z

scores as the square root of the cognate chi-squared statistic. Sign

was assigned with reference to the minor allele declared in the

psoriasis GWAS (chosen arbitrarily). SNP - marker name. CHR –

chromosome. POS - physical position (hg18). major_al - major SNP

allele. minor_al - minor SNP allele. RA.Z - association Z score

for rheumatoid arthritis (Stahl et al.Nat Genet 2010) [7]. RA.P -

association p value for rheumatoid arthritis (Stahl et al.Nat Genet

2010) [7]. PS.Z - ditto for psoriasis (Nair et al. Nat Genet 2009) [6].

PS.P - ditto for psoriasis (Nair et al. Nat Genet 2009) [6]. MS.Z -

ditto for multiple sclerosis (De Jager et al. Nat Genet 2009) [5]. MS.P

- ditto for multiple sclerosis (De Jager et al. Nat Genet 2009) [5].

SLE.Z - ditto for systemic lupus erythematosus (Gateva et al. Nat

Genet 2009) [23]. SLE.P - ditto for systemic lupus erythematosus

(Gateva et al. Nat Genet 2009) [23]. CD.Z - ditto for Crohn’s disease

(Barrett et al. Nat Genet 2008) [2]. CD.P - ditto for Crohn’s disease

(Barrett et al. Nat Genet 2008) [2]. CeD.Z - ditto for celiac disease

(Hunt et al. Nat Genet 2008) [4]. CeD.P - ditto for celiac disease

(Hunt et al. Nat Genet 2008) [4]. T1D.Z - ditto for type I diabetes

(Barrett et al. Nat Genet 2009) [24]. T1D.P - ditto for type I diabetes

(Barrett et al. Nat Genet 2009) [24]. Disease - disease in which the

SNP was originally reported: AITD autoimmune thyroid disease;

AS ankylosing spondylitis; BD CD Crohn’s disease; MS multiple

sclerosis; PS psoriasis; SLE systemic lupus erythematosus; T1D type

1 diabetes; UC ulcerative colitis. cpma.p - p value for CPMA

statistic (chi-squared, 1 df). Genes - nearby notable genes.

(TAB)

Figure S1 Enrichment in immune tissue expression for inter-

acting genes encoded close to SNPs in (A) cluster 1 and (B) cluster

4. Following Rossin et al.[19] we looked for preferential expression

of significant network genes in tissue subsets. Of the genes encoded

around SNPs in clusters 1 and 4 (as defined in Figure 1), we found

that those participating in significant networks are enriched in

expression (purple circles) in immune tissues (red bars). Other

genes encoded around those SNPs are not enriched in the same

tissues (black circles). Thus interacting genes encoded around

SNPs associated to the same immune diseases are preferentially

expressed in immune tissues. Interacting genes for the remaining

significant group, cluster 2, were not enriched.

(PDF)
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