Effect of divalent metal cations on hydroxyapatite dissolution kinetics relevant to dental caries and erosion.
Lingawi, Hanadi Saud

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author

For additional information about this publication click this link.
http://qmro.qmul.ac.uk/jspui/handle/123456789/3144

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk
EFFECT OF DIVALENT METAL CATIONS ON HYDROXYAPATITE DISSOLUTION KINETICS RELEVANT TO DENTAL CARIES AND EROSION

HANADI SAUD LINGAWI
BDS MSc Dent Rad MClin Dent Paeds

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Medicine, University of London

May 2012

Centre for Oral Growth and Development
Institute of Dentistry
Queen Mary’s School of Medicine and Dentistry
University of London
Declaration regarding plagiarism

I declare that the coursework material attached herewith is entirely my own work and that I have attributed any brief quotations both at the appropriate point in the text and in the bibliography at the end of this piece of work.

I also declare that I have not used extensive quotations or close paraphrasing and that I have neither copied from the work of another person, nor used the ideas of another person, without proper acknowledgement.

Name: Hanadi Saud Lingawi Course: PhD

Title of work submitted:
Effect of Divalent Metal Cations on Hydroxyapatite Dissolution Kinetics Relevant to Dental Caries and Erosion

Examination: A thesis submitted for the degree of Doctor of Philosophy, University of London

Signature: Date
Abstract

In recent years there has been an increasing awareness of the influence of various trace elements on reducing the progression of dental caries and of erosion. However, there are few clinical and even fewer in-vitro studies of the cariostatic effect of some trace elements on the progression of dental caries. Further, there is currently no consensus on the underlying physico-chemical mechanism on the influence of trace elements on these processes.

The aim of this study was to investigate the effect of three divalent cations; zinc (Zn\(^{2+}\)), strontium (Sr\(^{2+}\)) and copper (Cu\(^{2+}\)), on the physical-chemistry influencing hydroxyapatite (HAp) dissolution kinetics, using scanning microradiography (SMR), under simulated cariogenic and erosive conditions relevant to the oral environment.

Compressed and sintered porous HAp discs were used as model systems for dental enamel. These discs were exposed to demineralising solutions containing a range of concentrations of Zn\(^{2+}\), Sr\(^{2+}\) and Cu\(^{2+}\), and either 0.1% acetic acid at pH 4.0 resembling dental caries, or 0.3% citric acid at pH 2.8 resembling erosion conditions.

SMR is a development of the photographic microradiography technique of mineral quantification by means of X-ray absorption, but allows real-time quantification measurement of the rate of HAp mineral loss (RD\(_{\text{HAp}}\)). Sequential SMR experiments during which the HAp disc was exposed to demineralising solution, containing each cation in either increasing or decreasing concentration order (separated by 30 minutes of washing with de-ionised water) allowed evaluation of the persistence of the influence of the divalent cations being investigated.

The results showed that all three divalent cations decreased RD\(_{\text{HAp}}\) significantly under both investigated conditions but via two different mechanisms.

It was proposed that Zn\(^{2+}\) and Cu\(^{2+}\) decrease the RD\(_{\text{HAp}}\) through a surface controlled mechanism whereas Sr\(^{2+}\) decreases the RD\(_{\text{HAp}}\) through a solid phase change. This information will be useful as part of the development of therapeutic products which include these ions for the prevention of dental caries and erosion.
I dedicate this research work to the soul of my beloved mother

Hayat Bakhsh

(1941-2012)

May God rest her soul in Heaven
Acknowledgements

Here I would like to thank all those who were involved in and supported me in my PhD research.

I am thankful to my academic supervisor, Dr Paul Anderson, who stood by me through this entire PhD journey. Also I would like to thank my second supervisor, Dr Michele Barbour from the University of Bristol, for making me feel welcome, giving me access to her department facilities and giving me the chance to experience and enjoy the taste of collaborative work between different institutes.

I am also grateful to Dr Richard Lynch from GlaxoSmithKline (GSK) and Honorary Research Fellow at University of Liverpool, who was generous with his time and advice regarding our zinc experiments; Dr Rory Wilson for his help with XRD; Professor Robert Hill for his enriching discussions linking the academic research and industrial worlds; Dr Natalia Karpukhina for her valuable discussions about strontium; and Dr Siân Jones from the University of Bristol for her patient tutoring that made my trips to Bristol such a joy.

A special thanks to Dr Sharif Islam at QMUL who offered me the guidance during the statistical analysis of the data.

I cannot thank enough Professor Mark Hector, now the Dean of Dentistry at University of Dundee, who has been a great support and enormous help during the process of my GDC registration and during my work as an honorary clinical lecturer at the Paediatric Dentistry Department at QMUL.

I am deeply thankful to Dr Jacqueline Brown at King’s College, University of London for being such an inspiration since I was her student at King’s College during my MSc in Dental Radiology course.
ACKNOWLEDGEMENTS

I wish to thank the Dental Materials Science Laboratory at the School of Oral and Dental Sciences, University of Bristol for supplying this project with the HIMED hydroxyapatite discs.

My deep appreciation and gratitude go to the Saudi Ministry of Higher Education and the Saudi Cultural Bureau in UK for their financial grant and their continuous support throughout my course of studies.

My immense gratitude goes to my parents for their continued love and support, and to my sister Dr Arij, without whose encouragement I would have never reached this stage of my PhD.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>2</td>
</tr>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Dedication</td>
<td>4</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>5</td>
</tr>
<tr>
<td>Table of contents</td>
<td>6</td>
</tr>
<tr>
<td>List of figures</td>
<td>15</td>
</tr>
<tr>
<td>List of tables</td>
<td>22</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>24</td>
</tr>
</tbody>
</table>

PART I: INTRODUCTION AND LITERATURE REVIEW

CHAPTER 1: Introduction

1.1 General introduction
1.2 General aim
1.3 Thesis layout

CHAPTER 2: Human Dental Enamel

2.1 Dental enamel chemical composition
2.2 Dental enamel structure
2.3 Physical properties of dental enamel
2.4 Trace elements in dental enamel
2.4.1 Carbonate
2.4.2 Fluoride
2.4.3 Magnesium
2.5 Hydroxyapatite as a model system for dental enamel

CHAPTER 3: Dental Enamel Caries and Erosion

3.1 Dental enamel caries
3.1.1 Introduction to dental enamel caries
3.1.2 Aetiology of dental caries
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3 Histology and chemical changes in enamel caries</td>
<td>41</td>
</tr>
<tr>
<td>3.1.4 Methods of dental caries detection</td>
<td>44</td>
</tr>
<tr>
<td>3.1.5 Prevalence of dental caries</td>
<td>45</td>
</tr>
<tr>
<td>3.2 Dental erosion</td>
<td>48</td>
</tr>
<tr>
<td>3.2.1 Introduction to dental erosion</td>
<td>48</td>
</tr>
<tr>
<td>3.2.2 Aetiology of dental erosion</td>
<td>49</td>
</tr>
<tr>
<td>3.2.3 Prevalence of dental erosion</td>
<td>52</td>
</tr>
<tr>
<td>3.2.4 Methods of dental erosion detection and assessments</td>
<td>53</td>
</tr>
<tr>
<td>3.3 Laboratory techniques for assessment of dental hard tissue loss</td>
<td>54</td>
</tr>
<tr>
<td>3.3.1 Scanning electron microscopy</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2 Environmental scanning electron microscopy</td>
<td>55</td>
</tr>
<tr>
<td>3.3.3 Atomic force microscopy</td>
<td>55</td>
</tr>
<tr>
<td>3.3.4 Surface profilometry</td>
<td>55</td>
</tr>
<tr>
<td>3.3.5 Nanoindentation and microindentation</td>
<td>56</td>
</tr>
<tr>
<td>3.3.6 Chemical analysis</td>
<td>56</td>
</tr>
<tr>
<td>3.3.7 Microradiography</td>
<td>57</td>
</tr>
<tr>
<td>CHAPTER 4: Calcium Apatite Dissolution Models</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>58</td>
</tr>
<tr>
<td>4.1.1 Diffusion controlled and surface controlled models</td>
<td>58</td>
</tr>
<tr>
<td>4.1.2 Self inhibition (calcium rich layer formation) model</td>
<td>59</td>
</tr>
<tr>
<td>4.1.3 Stoichiometric/Non-stoichiometric dissolution model</td>
<td>60</td>
</tr>
<tr>
<td>4.1.4 Chemical model</td>
<td>60</td>
</tr>
<tr>
<td>4.1.5 Nanoscale enamel dissolution model</td>
<td>61</td>
</tr>
<tr>
<td>4.2 Summary</td>
<td>62</td>
</tr>
<tr>
<td>CHAPTER 5: Zinc</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>63</td>
</tr>
<tr>
<td>5.2 Zinc in the oral cavity</td>
<td>65</td>
</tr>
<tr>
<td>5.3 Effect of zinc on calculus formation</td>
<td>66</td>
</tr>
<tr>
<td>5.3.1 Zinc containing mouthwashes</td>
<td>66</td>
</tr>
<tr>
<td>5.3.2 Zinc containing toothpastes</td>
<td>67</td>
</tr>
<tr>
<td>5.4 Effect of zinc on dental caries</td>
<td>69</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Effect of zinc on dental erosion</td>
<td>70</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect of zinc on hydroxyapatite dissolution</td>
<td>70</td>
</tr>
</tbody>
</table>

CHAPTER 6: Strontium

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>73</td>
</tr>
<tr>
<td>6.2</td>
<td>Strontium in bone</td>
<td>75</td>
</tr>
<tr>
<td>6.3</td>
<td>Strontium in the oral cavity</td>
<td>76</td>
</tr>
<tr>
<td>6.4</td>
<td>Effect of strontium on hydroxyapatite dissolution</td>
<td>77</td>
</tr>
<tr>
<td>6.5</td>
<td>Effect of strontium on dental caries</td>
<td>77</td>
</tr>
<tr>
<td>6.6</td>
<td>Effect of strontium on dentine hypersensitivity</td>
<td>79</td>
</tr>
</tbody>
</table>

CHAPTER 7: Copper

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td>7.2</td>
<td>Effect of copper on dental plaque</td>
<td>82</td>
</tr>
<tr>
<td>7.3</td>
<td>Effect of copper on dental caries</td>
<td>84</td>
</tr>
<tr>
<td>7.4</td>
<td>Effect of copper on enamel demineralisation</td>
<td>85</td>
</tr>
</tbody>
</table>

CHAPTER 8: X-ray Microscopy

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Nature of electromagnetic radiation</td>
<td>88</td>
</tr>
<tr>
<td>8.2</td>
<td>X-ray generation</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>8.2.1 Introduction</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>8.2.2 Modern X-ray tube</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>8.2.3 Microfocus tubes</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>8.2.4 Electron impact X-ray source</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>8.2.5 Factors affecting X-ray beam quantity and quality</td>
<td>94</td>
</tr>
<tr>
<td>8.3</td>
<td>X-ray interaction with matter</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>8.3.1 Attenuation mechanisms</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>8.3.2 X-ray attenuation Beer’s law</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>8.3.3 Types of attenuation coefficient (LAC)</td>
<td>100</td>
</tr>
<tr>
<td>8.4</td>
<td>X-ray detection</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8.4.1 Introduction to semiconductors</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8.4.2 Multichannel analysers (MCA)</td>
<td>101</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

CHAPTER 9: Scanning Microradiography Theory and Methodology

9.1 Introduction 102
9.2 SMR system apparatus 104
 9.2.1 X-ray generator 105
 9.2.2 X-ray detector 105
 9.2.3 SMR stage 105
 9.2.4 SMR cells 106
 9.2.5 Area scanning 106
 9.2.6 Data analysis 107

PART II: METHODOLOGY

CHAPTER 10: Modification of Real-Time Scanning Microradiography for The Quantitative Measurements of Dissolution Kinetics of Compressed Permeable Hydroxyapatite Discs Over Short Period of Time

10.1 Introduction 111
10.2 SMR system apparatus used in this study 112
 10.2.1 X-ray generation 112
 10.2.2 X-ray detector 113
 10.2.3 SMR stage 114
10.3 Area scanning 115
10.4 Data analysis at a point 115
10.5 The effect of SMR data sampling frequency on the statistics of mineral mass loss calculation
 10.5.1 Effect of even sampling frequency 117
 10.5.2 Effect of multiple SMR cells simultaneous scanning 121
10.6 SMR cell design and specimen preparation 124
 10.6.1 SMR cells 124
 10.6.2 Specimen preparation 126
10.7 Demineralisation solutions 127
 10.7.1 0.1% acetic acid pH 4.0 127
 10.7.2 0.3% citric acid pH 2.8 128
PART III : DEVELOPMENT OF A PROTOCOL

Introduction to Development of a Protocol 130

CHAPTER 11: Characterisation of HIMED and Plasma-Biotal Compressed Hydroxyapatite Disc

11.1 Introduction 132
11.2 Aims and objectives 132
11.3 Materials and methods 133
 11.3.1 X-ray microtomography 133
 11.3.2 X-ray diffraction 134
11.4 Results 134
 11.4.1 MXT 134
 11.4.2 XRD 136
11.5 Conclusions 138

CHAPTER 12: Comparison of Demineralisation results of HIMED and PLASMA-BIOTAL Hydroxyapatite Discs

12.1 Aims and objectives 139
12.2 Materials and methods 139
 12.2.1 SMR 139
 12.2.2 HAp discs 139
 12.2.3 Demineralisation solutions 140
12.3 Results 140
12.4 Conclusions 142

CHAPTER 13: Demineralisation of Compressed Hydroxyapatite Discs with Acidic Buffer at a Range of pH Values Over Short Period of Time

13.1 Introduction 144
13.2 Aims and objectives 144
13.3 Materials and methods 145
 13.3.1 SMR 145
 13.3.2 HAp discs 145
13.3.3 Demineralisation solutions 145
13.4 Results 146
13.4.1 0.3% citric acid demineralisation solution 146
13.4.2 0.1% acetic acid demineralisation solution 149
13.5 Discussion 152
13.6 Conclusions 153

CHAPTER 14: The Effect of Demineralisation Solution on Compressed Hydroxyapatite Discs Dissolution Studied Using Scanning Microradiography

14.1 Introduction 154
14.2 Aims and objectives 154
14.3 Materials and methods 155
14.3.1 SMR 155
14.3.2 HAp discs 155
14.3.3 Demineralisation solutions 155
14.3.4 Circulating pump 155
14.4 Results 158
14.5 Discussion 161
14.6 Conclusions 163

CHAPTER 15: The Effect of High Concentration of Strontium (Sr\(^{2+}\)) on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography

15.1 Introduction 164
15.2 Aims and objectives 164
15.3 Materials and methods 165
15.3.1 HAp discs 165
15.3.2 Demineralisation solutions 165
15.3.3 SMR 165
15.4 Results 166
15.4.1 0.1% acetic acid pH4.0 with 6% strontium acetate 166
15.4.2 0.1% acetic acid pH4.0 with 8% strontium acetate 167
15.4.3 de-ionised water with 6% strontium acetate 168
PART IV: EXPERIMENTAL WORK

CHAPTER 16: Effect of Zinc Ions (Zn$^{2+}$) on Hydroxyapatite Dissolution Kinetics Studies Using Scanning Microradiography

16.1 Introduction 174
16.2 Aims and objectives 174
16.3 Materials and methods 175
 16.3.1 HAp discs 175
 16.3.2 Demineralisation solutions HAp discs 176
 16.3.3 SMR 176
16.4 Results 177
 16.4.1 0.1% acetic acid pH 4.0 177
 16.4.2 0.3% citric acid pH 2.8 181
16.5 Discussion 185
16.6 Conclusions 192

CHAPTER 17: Effect of Strontium Ions (Sr$^{2+}$) at a Range of Concentrations (0-30 ppm) on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography

17.1 Introduction 193
17.2 Aims and objectives 194
17.3 Materials and methods 194
 17.3.1 HAp discs 195
 17.3.2 Demineralisation solutions 195
 17.3.3 SMR 195
17.4 Results 196
 17.4.1 0.1% acetic acid pH 4.0 196
 17.4.1 0.3% citric acid pH 2.8 200
17.5 Discussion 203
TABLE OF CONTENTS

17.6 Conclusions 211

CHAPTER 18: Effect of Copper Ions (Cu^{2+}) on Hydroxyapatite Dissolution Kinetics

18.1 Introduction 212
18.2 Aims and objectives 213
18.3 Materials and methods 213
 18.3.1 HAp discs 214
 18.3.2 Demineralisation solutions 214
 18.3.3 SMR 214
18.4 Results 215
 18.4.1 0.1% acetic acid pH 4.0 215
 18.4.2 0.3% citric acid pH 2.8 219
18.5 Discussion 223
18.6 Conclusions 231

PART V: GENERAL DISCUSSION, CONCLUSIONS, CLINICAL IMPLICATIONS AND RECOMMENDED FUTURE WORKS

CHAPTER 19: General Discussion, Conclusions, Clinical Implications, and Recommended Future Works

19.1 General discussion 232
19.2 Conclusions 236
19.3 Clinical implication 237
 19.3.1 Zinc 239
 19.3.2 Strontium 240
 19.3.3 Copper 241
19.4 Recommended future works 241

REFERENCES 244

APPENDIX I: ABSTRACTS FOR CONFERENCE PRESENTATIONS AND PAPERS IN PREPARATION 256
List of figures

FIGURE 2.1 (a) Hexagonal unit structure of HAp with ions arranged around the central hydroxyl column (c-axis). (b) Examples of substitutes in biological apatite straining the lattice parameters and changing the crystal behaviour (Robinson, 2000)

FIGURE 3.1 Schematic for enamel caries zones as classified by Silverstone (1981)

FIGURE 3.2 Upper arch of child with gastro-oesophageal reflux showing generalised erosion affecting maxillary teeth particularly on the palatal surface (Welbury et al., 2005)

FIGURE 3.3 Schematics of citrate ion where two and three of the hydrogen ions have been lost (a and b respectively) and calcium ion is attracted (Lussi, 2006)

FIGURE 3.4 Dental erosion affecting both maxillary and mandibular teeth particularly palatal and lingual surfaces (Lazarchik and Filler, 1997)

FIGURE 5.1 Schematic figure for the structure of Zn-doped HAp, where yellow, blue, red, black, green and gray refer to calcium1 site, calcium2 site, oxygen, hydrogen, zinc and phosphate groups respectively (Tang et al., 2009)

FIGURE 7.1 The effect of Cu²⁺ concentration on the phosphate released from powdered human enamel (Brookes et al., 2003) after the conversion of Cu²⁺ concentrations from mmol/L to ppm

FIGURE 8.1 X-ray as an electromagnetic wave, where the electric and magnetic fields are perpendicular to each other and to the direction of propagation (Seibert, 2004)

FIGURE 8.2 The electromagnetic spectrum in terms of wave length (illustration from abrisa glass & coatings, 2005)

FIGURE 8.3 First X-ray photograph taken by Roentgen showing his wife’s fingers (Assmus, 1995)

FIGURE 8.4 Schematic diagram showing basic components of an X-ray tube (a) and X-ray tube used in SMR machine (PANalytical®) with silver (Ag) target (b)

FIGURE 8.5 A typical X-ray spectrum produced by a tube with tungsten target showing continuous and characteristic radiation

FIGURE 8.6 Factors affecting the X-ray spectrum. (a) changing the tube voltage changes the X-ray spectrum; (b) effect of tube current on the X-ray spectrum; (c) effect of target material
on the spectrum; (d) adding a filter changes the shape of the X-ray spectrum (Pobe, 1998)

FIGURE 8.7 X-ray attenuation mechanism: (a) Photoelectric effect; (b) Simple scatter; (c) Compton scatter 99

FIGURE 8.8 Attenuation of a monochromatic X-ray beam of intensity I_0 by a homogenous material thickness x 99

FIGURE 9.1 SMR machine with its main components X-ray source, X-Y stage, and detector 104

FIGURE 9.2 Schematic representation of the SMR system main components and their connections 104

FIGURE 9.3 Area scan of an SMR cell with the specimen centrally located where X and Y axis represents specimen position coordinates on the SMR stage. Two line scans drawn across the specimen (■) and scanning parameters are shown on the side 107

FIGURE 9.4 Example of data analysis and construction of time profile of hap mineral mass loss at the scanning positions during the demineralisation process the error in each is of the order of 0.002 g/cm2 109

FIGURE 10.1 Schematic diagram of the cross section of the aperture assembly $D = 10 \mu m \pm 0.5 \mu m$, $L = 20 \mu m \pm 1.0 \mu m$ 113

FIGURE 10.2 The main components of the SMR machine including the X-ray source, X-ray detector, X-Y scanning stage, and the mounting frame with SMR cells 114

FIGURE 10.3 Typical example of linear change in projected mineral mass content over the experimental duration and the calculation of the RD_{HAp} 116

FIGURE 10.4 Change in the projected HAp hap mineral mass content over 24 h at 100% sampling frequency 117

FIGURE 10.5 Change in the projected HAp mineral mass content over 24 h at 50% sampling frequency 118

FIGURE 10.6 Change in the projected HAp mineral mass content over 24 h at 25% sampling frequency time 118

FIGURE 10.7 Change in the projected HAp mineral mass content over 24 h at 10% sampling frequency 119

FIGURE 10.8 Change in the projected HAp mineral mass content over 24 h at 100% sampling frequency 121

FIGURE 10.9 Change in the projected HAp hap mineral mass content over 24 h 122
at 50% sampling frequency

FIGURE 10.10 Change in the projected HAp mineral mass content over 24 h at 33% sampling frequency

FIGURE 10.11 Change in the projected HAp mineral mass content over 24 h at 25% sampling frequency

FIGURE 10.12 Schematic diagram showing top and side views of the new design for SMR cells with dimensions

FIGURE 10.13 New SMR cell design developed to accommodate fitting the complete HAp disc required in this thesis

FIGURE 11.1 HIMED and Plasma-Biotal HAp discs placed flat and fixed on a Perspex stand with aluminum wire to be mounted on XMT rotation stage

FIGURE 11.2 Reconstructed images of coronal sections through two compressed HAp discs showing larger pores in upper HAp disc (HIMED) and evenly distributed and sized pores in lower HAp disc (Plasma-Biotal)

FIGURE 11.3 Reconstructed images of axial sections through 4 HAp discs top two and lower right discs (HIMED) showing uneven distribution of larger sized pores while lower left disc (Plasma-Biotal) shows even distribution of equally sized pores

FIGURE 11.4 XRD pattern for HIMED HAp disc from 20–40 (2θ)

FIGURE 11.5 XRD pattern for Plasma-Biotal HAp disc from 20-40 (2θ)

FIGURE 11.6 Typical XRD pattern of fully crystalline HAp with principal diffraction peaks (Prevéy, 2000)

FIGURE 12.1 The change in RD$_{\text{HAp}}$ for Plasma-Biotal and HIMED HAp discs as a function of 0.1% acetic acid at a range of pH values

FIGURE 12.2 The change in RD$_{\text{HAp}}$ for Plasma-Biotal and HIMED HAp discs as a function of 0.3% citric acid at a range of pH values

FIGURE 13.1 The change in HAp disc mineral mass content in response to 20 h demineralisation by 0.3% citric acid pH 3.2 followed by 4 h of de-ionised water

FIGURE 13.2 The change in HAp disc mineral mass content in response to 20 h demineralisation by 0.3% citric acid pH 3.2 followed by 4 h of de-ionised water

FIGURE 13.3 The change in projected HAp mineral mass content in response to 20 h demineralisation by 0.3% citric acid pH 3.6 followed by 4 h of de-ionised water
FIGURE 13.4 The change in projected HAp mineral mass content in response to 20 h demineralisation by 0.3% citric acid pH 4.0 followed by 4 h of de-ionised water

FIGURE 13.5 The change in projected HAp mineral mass content in response to 20 h demineralisation by 0.1% acetic acid pH 2.8 followed by 4 h of de-ionised water

FIGURE 13.6 The change in projected HAp mineral mass content in response to 20 h demineralisation by 0.1% acetic acid pH 3.2 followed by 4 h of de-ionised water

FIGURE 13.7 The change in projected HAp mineral mass content in response to 20 h demineralisation by 0.1% acetic acid pH 3.6 followed by 4 h of de-ionised water

FIGURE 13.8 The change in projected HAp mineral mass content in response to 20 h demineralisation by 0.1% acetic acid pH 4.0 followed by 4 h of de-ionised water

FIGURE 13.9 The change in RD$_{HAp}$ in response to changing the demineralisation solution at a range of pH values

FIGURE 13.10 The change in RD$_{HAp}$ in response to changing the demineralisation solution at a range of [H$^+$]

FIGURE 14.1 Watson Marlow 205U electric pump with circulating solution

FIGURE 14.2 The electric pump connected to the SMR cells via tubing while demineralisation solution is circulating into and out of the SMR cells

FIGURE 14.3 Typical example of the change in projected HAp mineral mass content over a period of 24 h in response to 0.1% acetic acid pH 4.0 demineralisation solution at 0 ml/min circulation rate.

FIGURE 14.4 Typical example of the change in projected HAp mineral mass content over a period of 24 h in response to 0.1% acetic acid pH 4.0 demineralisation solution at 0.97 ml/min circulation rate

FIGURE 14.5 The mean rate of demineralisation (g/cm2/h) plotted against the change in demineralisation solution circulation speed (RPM). A curve has been fitted for viewing purposes only

FIGURE 15.1 Increased projected HAp mineral mass content over a period of 40 h in response to exposure to 0.1% acetic acid pH 4.0 demineralisation solution containing 6% strontium acetate

FIGURE 15.1 Increased projected HAp mineral mass content over a period of 40 h in response to exposure to 0.1% acetic acid pH 4.0 demineralisation solution containing 8% strontium acetate
FIGURE 15.3 Increased projected HAp mineral mass content over a period of 40 h in response to exposure to de-ionised water pH7 containing 6% strontium acetate 168

FIGURE 15.4 Increased projected HAp mineral mass content over a period of 40 h in response to exposure to de-ionised water pH7 containing 8% strontium acetate 169

FIGURE 16.1 Schematic diagram of an SMR cell with HAp disc in place connected to the peristaltic pump (p) for circulating the demineralisation solution over a period of 20 h followed by 30 minutes of de-ionised water 175

FIGURE 16.2 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.1% acetic acid pH 4.0 with 5 ppm Zn$^{2+}$ demineralisation solution at increasing Zn$^{2+}$ concentration sequence. 178

FIGURE 16.3 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.1% acetic acid pH 4.0 with 5 ppm Zn$^{2+}$ demineralisation solution at decreasing Zn$^{2+}$ concentration sequence 179

FIGURE 16.4 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.3% citric acid pH 2.8 with 5 ppm Zn$^{2+}$ demineralisation solution at increasing Zn$^{2+}$ concentration sequence 182

FIGURE 16.5 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.3% citric acid pH 2.8 with 5 ppm Zn$^{2+}$ demineralisation solution at decreasing Zn$^{2+}$ concentration sequence 183

FIGURE 16.6 The effect of Zn$^{2+}$ at a range of 0–20 ppm on mean RD$_{HAp}$ in increasing Zn$^{2+}$ concentration sequence under caries-like conditions 187

FIGURE 16.7 The effect of Zn$^{2+}$ at a range of 20–0 ppm on mean RD$_{HAp}$ in decreasing Zn$^{2+}$ concentration sequence under caries-like conditions 187

FIGURE 16.8 The effect of 0.1% acetic acid pH 4.0 with different Zn$^{2+}$ concentration (ppm) on RD$_{HAp}$ (g/cm2/h) at both increasing and decreasing concentration sequence 188

FIGURE 16.9 The effect of Zn$^{2+}$ at a range of 0–20 ppm on mean RD$_{HAp}$ in increasing Zn$^{2+}$ concentration sequence under erosion-like conditions. 190

FIGURE 16.10 The effect of Zn$^{2+}$ at a range of 0–20 ppm on mean RD$_{HAp}$ in increasing Zn$^{2+}$ concentration sequence under erosion-like conditions 190

FIGURE 16.11 The effect of 0.3% citric acid pH 2.8 with different Zn$^{2+}$ 191
concentration (ppm) on RD_{HAp} (g/cm2/h) at both increasing and decreasing concentration sequence

FIGURE 17.1 Schematic diagram of an SMR cell with HAp disc in place, connected to the peristaltic pump (p) for circulating the demineralisation solution over a period of 20 hours followed by 30 minutes of de-ionised water

FIGURE 17.2 Typical example of the change in projected HAp mineral mass content over a period of ≈ 20 h in response to 0.1% acetic acid pH 4.0 with 20 ppm Sr$^{2+}$ demineralisation solution at increasing Sr$^{2+}$ concentration sequence

FIGURE 17.3 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.1% acetic acid pH 4.0 with 20 ppm Sr$^{2+}$ demineralisation solution at decreasing Sr$^{2+}$ concentration sequence

FIGURE 17.4 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.3% citric acid pH 2.8 with 20 ppm Sr$^{2+}$ demineralisation solution at increasing Sr$^{2+}$ concentration sequence

FIGURE 17.5 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.3% citric acid pH 2.8 with 20 ppm Sr$^{2+}$ demineralisation solution at decreasing Sr$^{2+}$ concentration sequence

FIGURE 17.6 The effect of Sr$^{2+}$ at a range of 30-0 ppm on mean RD_{HAp} at increasing Sr$^{2+}$ concentration sequence under caries-like conditions

FIGURE 17.7 The effect of Sr$^{2+}$ at a range of 30-0 ppm on mean RD_{HAp} at decreasing Sr$^{2+}$ concentration sequence under caries-like conditions

FIGURE 17.8 The effect of 0.1% acetic acid pH 4.0 with different Sr$^{2+}$ concentrations (ppm) on RD_{HAp} (g/cm2/h) at both increasing and decreasing concentrations sequences

FIGURE 17.9 The effect of Sr$^{2+}$ at a range of 0-30 ppm on mean RD_{HAp} at increasing Sr$^{2+}$ concentration sequence under erosion-like conditions

FIGURE 17.10 The effect of Sr$^{2+}$ at a range of 0-30 ppm on mean RD_{HAp} at decreasing Sr$^{2+}$ concentration sequence under erosion-like conditions

FIGURE 17.11 The effect of 0.3% citric acid pH 2.8 with different Sr$^{2+}$ concentrations (ppm) on RD_{HAp} (g/cm2/h) at both increasing and decreasing concentrations sequences

FIGURE 18.1 Schematic diagram of an SMR cell with HAp disc in place connected to the peristaltic pump (p) for circulating the
demineralisation solution over a period of 20 h followed by 30 minutes of de-ionised water

FIGURE 18.2 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.1% acetic acid pH 4.0 with 22.5 ppm Cu$^{2+}$ demineralisation solution at increasing Cu$^{2+}$ concentration sequence

FIGURE 18.3 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.1% acetic acid pH 4.0 with 22.5 ppm Cu$^{2+}$ demineralisation solution at decreasing Cu$^{2+}$ concentration sequence

FIGURE 18.4 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.3% citric acid pH 2.8 with 22.5 ppm Cu$^{2+}$ demineralisation solution at increasing Cu$^{2+}$ concentration sequence

FIGURE 18.5 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.3% citric acid pH 2.8 with 22.5 ppm Cu$^{2+}$ demineralisation solution at increasing Cu$^{2+}$ concentration sequence

FIGURE 18.6 The effect of Cu$^{2+}$ at a range of 0–180 ppm on mean RD$_{\text{HAp}}$ at increasing Cu$^{2+}$ concentration sequence under caries-like conditions

FIGURE 18.7 The effect of Cu$^{2+}$ at a range of 180-0 ppm on mean RD$_{\text{HAp}}$ at decreasing Cu$^{2+}$ concentration sequence under caries-like conditions

FIGURE 18.8 (a) The effect of Cu$^{2+}$ concentration on phosphate released from powdered enamel as published by Brookes et al. (2003) after the conversion of mmol/L to ppm; (b) example of the effect of Cu$^{2+}$ at a range of 0-180 ppm on mean RD$_{\text{HAp}}$ as observed in this study

FIGURE 18.9 The effect of 0.1% acetic acid pH 4.0 with different Cu$^{2+}$ concentrations (ppm) on RD$_{\text{HAp}}$ (g/cm2/h) at both increasing and decreasing concentrations sequences

FIGURE 18.10 The effect of Cu$^{2+}$ at a range of 0–180 ppm on mean RD$_{\text{HAp}}$ at increasing Cu$^{2+}$ concentration sequence under erosion-like conditions

FIGURE 18.11 The effect of Cu$^{2+}$ at a range of 180–0 ppm on mean RD$_{\text{HAp}}$ at increasing Zn$^{2+}$ concentration sequence under erosion-like conditions

FIGURE 18.12 The effect of 0.1% acetic acid pH 4.0 with different Cu$^{2+}$ concentrations (ppm) on RD$_{\text{HAp}}$ (g/cm2/h) at both increasing and decreasing concentrations sequences
List of tables

TABLE 3.1 Eccles and Jenkins erosion grading scale cited in (Lazarchik and Filler, 1997) 53

TABLE 10.1 The RD_{HAp}, R^2 and SE calculated at different sampling frequencies using Microsoft Office Excel 2003® and TableCurve 2D® programs 120

TABLE 10.2 The RD_{HAp}, R^2 and SE calculated at different sampling frequencies representing different number of SMR cells scanned simultaneously, using Microsoft Office Excel 2003® and TableCurve 2D® programs 124

TABLE III.A Experiments performed for developing the thesis protocol 131

TABLE 12.1 RD_{HAp} for both types of HAp discs in response to change in demineralisation solution type and pH values 140

TABLE 14.1 Manufacturer tubes specifications and flow rate as factor of change in pumping speed 156

TABLE 14.2 The measured flow rate in ml/min corresponding to each circulating speed in RPM. 157

TABLE 14.3 The calculated RD_{HAp} during the exposure to 0.1% acetic acid pH 4.0 at various circulation speeds (in triplicate) 158

TABLE 14.4 Statistical analysis, for the data in Figure 14.3, using TableCurve 2D® 159

TABLE 14.5 Statistical analysis, for the data in Figure 14.4, using TableCurve 2D® 160

TABLE 15.1 A summary of the protocol to be used in the SMR studies in this thesis 172

TABLE 16.1 Statistical analysis, for the data in Figure 16.2, using TableCurve 2D® 178

TABLE 16.2 Statistical analysis, for the data in Figure 16.3, using TableCurve 2D® 179

TABLE 16.3 RD_{HAp} and calculated SE for each demineralising solution 180

TABLE 16.4 Statistical analysis, for the data in Figure 16.4, using TableCurve 2D® 182

TABLE 16.5 Statistical analysis, for the data in Figure 16.5, using TableCurve 2D 183
TABLE 16.6 RD_{HAp} and calculated SE for each demineralising solution
TABLE 17.1 Statistical analysis, for the data in Figure 17.2, using TableCurve 2D®
TABLE 17.2 Statistical analysis, for the data in Figure 17.3, using TableCurve 2D®
TABLE 17.3 RD_{HAp} and SE for each demineralisation solution at different Sr^{2+} concentrations at both increasing and decreasing concentration sequences
TABLE 17.4 Statistical analysis, for the data in Figure 17.4, using TableCurve 2D®
TABLE 17.5 Statistical analysis, for the data in Figure 17.5, using TableCurve 2D®
TABLE 17.6 The RD_{HAp} and SE for each demineralisation solution at different Sr^{2+} concentrations at both increasing and decreasing concentration sequences
TABLE 18.1 Statistical analysis, for the data in Figure 18.2, using TableCurve 2D®
TABLE 18.2 Statistical analysis, for the data in Figure 18.3, using TableCurve 2D®
TABLE 18.3 RD_{HAp} and SE for each demineralisation solution at different Cu^{2+} concentrations at both increasing and decreasing concentration sequences
TABLE 18.4 Statistical analysis, for the data in Figure 18.4, using TableCurve 2D®
TABLE 18.5 Statistical analysis, for the data in Figure 18.5, using TableCurve 2D®
TABLE 18.6 The RD_{HAp} and SE for each demineralisation solution at different Cu^{2+} concentrations at both increasing and decreasing concentration sequences
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Intercept</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celsius</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>Calcium ion</td>
</tr>
<tr>
<td>CMR</td>
<td>Conventional contact microradiography</td>
</tr>
<tr>
<td>Cu$^{2+}$</td>
<td>Copper ion</td>
</tr>
<tr>
<td>DEJ</td>
<td>Dentine enamel junction</td>
</tr>
<tr>
<td>DMFT</td>
<td>Decayed, missing, filled permanent tooth</td>
</tr>
<tr>
<td>ESEM</td>
<td>Environmental scanning electron microscopy</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>H$^+$</td>
<td>Hydrogen ion</td>
</tr>
<tr>
<td>HAp</td>
<td>Hydroxyapatite</td>
</tr>
<tr>
<td>I</td>
<td>Transmitted X-rays intensity</td>
</tr>
<tr>
<td>I_o</td>
<td>Incident of X-rays intensity</td>
</tr>
<tr>
<td>LAC</td>
<td>Linear attenuation coefficient</td>
</tr>
<tr>
<td>m</td>
<td>Mass per unit area</td>
</tr>
<tr>
<td>MAC</td>
<td>Mass attenuation coefficient</td>
</tr>
<tr>
<td>MCA</td>
<td>Multiple channel analyser</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>RD$_{HAp}$</td>
<td>Hydroxyapatite demineralisation rate</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SMR</td>
<td>Scanning microradiography</td>
</tr>
<tr>
<td>Sr$^{2+}$</td>
<td>Strontium ion</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>XMT</td>
<td>X-ray microtomography</td>
</tr>
<tr>
<td>Zn$^{2+}$</td>
<td>Zinc ion</td>
</tr>
<tr>
<td>μ</td>
<td>LAC in cm$^{-1}$</td>
</tr>
<tr>
<td>μ_m</td>
<td>Mass attenuation coefficient</td>
</tr>
</tbody>
</table>
PART I: INTRODUCTION AND LITERATURE REVIEW
CHAPTER 1

Introduction

1.1 General introduction

Dental caries is a result of mineral dissolution of dental hard tissue, caused by the acid metabolic end products of oral bacteria that are capable of fermenting carbohydrates, particularly sugars. It is a multifactorial process and the presence of other factors, such as the host and enough time for the fermentation and acid production to take place, is required for caries to develop.

Dental caries is a worldwide health problem affecting both industrial and developing countries. According to Peterson (2003) approximately five billion people worldwide have experienced dental caries. It continues to be a major problem in dentistry and therefore should receive attention in everyday practice, not only considering treatment and restorative aspects but also preventive aspect.

Dental erosion is the loss of tooth hard tissue caused by acids without bacterial involvement. It is generally agreed that the reported prevalence of dental erosion is increasing. This may be due to greater awareness of the condition among dentists, and the increase in ageing populations worldwide, and the adult population retaining more natural teeth as they age due to developments in dentistry and dental care. In addition, younger individuals appear to exhibit increased dental erosion,
which may be due to more acidic diets and dietary eating disorders such as bulimia and anorexia.

Although dental erosion is increasingly recognised as an important aetiology in the loss of tooth structure, not only in adults but in adolescents and children as well, little is established concerning diagnostic criteria, treatment and preventive strategies. There is still a lot to be done in this field.

Mature dental enamel is acellular highly mineralised dental tissue that consists mostly of impure forms of hydroxyapatite (HAp). Carbonate, sodium and magnesium are the most abundant impurities; however a large number of impurities may exist. These may alter the physical and chemical properties of HAp and accordingly affect its demineralisation process. This thesis will address the effect of three divalent cations, zinc (Zn$^{2+}$), strontium (Sr$^{2+}$) and copper (Cu$^{2+}$), on the HAp demineralisation process under caries and erosion-like conditions in an attempt to understand their effect on the kinetics of HAp demineralisation process and their potential usefulness as a part of a preventive oral regimen against dental caries and erosion.

In this thesis the technique used for studying the effect of divalent cations on HAp demineralisation, is scanning microradiography (SMR). It is a method of mineral quantification by means of X-ray absorption in which the radiographic emulsion is replaced by a solid state detector. As part of the experimental work done for this thesis, the standard SMR technique has been modified to allow reliable quantitative data to be obtained over a short period of time (24 h or less), and the newly developed technique has been used in all the studies in this thesis.
1.2 General aim

The general aim of this study was to investigate the effect of the divalent cations zinc, strontium and copper on the physical chemistry influencing HAp dissolution kinetics, using scanning microradiography under simulated cariogenic and erosive conditions relevant to the oral environment.

1.3 Thesis layout

This thesis has been divided into four parts:

Part I, comprises the introduction to the thesis and the literature review. It is divided into nine chapters. The first three chapters deal with the literature review of dental enamel, dental caries and dental erosion with a brief overview of some of the available dissolution models for calcium phosphates. Chapters 5, 6 and 7 contain a detailed literature review of Zn\(^{2+}\), Sr\(^{2+}\), and Cu\(^{2+}\) respectively, as the divalent cations of interest in this thesis. Chapter 8 and Chapter 9 are concerned with the review of X-ray microradiography including X-ray generation, types of X-ray tubes, X-ray interactions with matter, X-ray attenuation and X-ray detection. Finally, the last chapter in Part I is a review of the literature on scanning microradiography as a technique of interest to this thesis.

Part II contains the methodology. It describes in detail the modifications made to the SMR technique, as part of the work in this thesis, so that it can be used to produce a reliable quantitative data over a short period of time (24 h or less).

Part III describes the protocol development. It consists of five chapters investigating the several changeable SMR parameters aimed at developing a protocol to be used for the rest of the experiments in this thesis.
Part IV consists of three chapters investigating the three divalent cations. Each chapter includes its own introduction, aims and objectives, materials and methods, results and discussion.

Finally, the work presented in this thesis is collectively summarised and addressed in Part V through an overall discussion, conclusions, discussion of the clinical implications and recommendations for future work.
CHAPTER 2

Human Dental Enamel

2.1 Dental enamel chemical composition

Dental enamel is a highly mineralised acellular dental tissue that is often referred to as an inorganic-organic two-phase system. It consists of ≈ 98 wt.% or 96 volume % calcium HAp, with multiple impurities, and ≈ 2 wt.% organic matrix and water (Elliott, 1994).

The organic matrix consists mainly of proteins. However, lipids, carbohydrates, and other organic molecules are also present (Wilson et al., 1999). The protein concentration in dental enamel varies in a systematic manner. A high concentration of proteins has been reported to be located at the inner enamel of fissures and at the cervical margins (Robinson et al., 1983).

The inorganic components are mainly in the form of impure HAp. Hydroxyapatite is a naturally occurring mineral with the chemical formula Ca$_5$(PO$_4$)$_3$(OH), but now usually written as the stoichiometrically correct atomic composition containing 10 calcium atoms: Ca$_{10}$(PO$_4$)$_6$(OH)$_2$. Inclusion of carbonate, sodium, fluoride and other ions result in the impure form of the HAp that is present in human dental enamel (Elliott, 1997). In enamel crystal, phosphate ions can be replaced by carbonate ions, calcium ions can be replaced by sodium, and hydroxyl ions can be replaced by fluoride ions. Although there is no limit to the possible
extent of this substitution, 100% replacement is very rare. For example a 100% substitution of hydroxyl ions by fluoride ions lead to the formation of fluorapatite which is rarely found in biological tissue (except in shark enameloid) (Elliott, 1994). Substitution and distribution of some common impurities will be discussed in detail in Section 2.4.

\section*{2.2 Dental enamel structure}

The basic structural units of human enamel are \(\approx 5 \) µm wide enamel rods or sometimes referred to as enamel prisms (Boyde, 1997). Enamel rods extend from the enamel-dentine junction to the tooth surface and are separated by the interrod region. Each enamel rod is formed by tightly compacted highly organised enamel mineral crystals (crystallites). The mature enamel crystallites are narrow crystals with flattened hexagonal cross section (\(\approx 30 \) to 50 nm in width and elongated along the c-axis) (Boyde et al., 1988). In cross section, the enamel rods may be compared to a keyhole with the top, or head, oriented toward the crown of the tooth and the tail, oriented toward the root of the tooth. The angle at which the rods approach the enamel surface varies from 90° in the cervical region to approximately 10° in the cuspal region. Many authors like Ripa et al. (1966), Whittaker (1982), Shellis (1984), Kodaka et al. (1989) and Kodaka et al. (1991) have reported that unlike the enamel bulk, surface enamel is prismless. The crystallites at the outer enamel are aligned parallel to each other and perpendicular to the enamel surface resulting in a more mineralised and densely packed layer with lack of inter-rod space.
2.3 Physical properties of dental enamel

Through crystallographic work Brudevold et al. (1960) concluded that the composition of enamel crystal is of pure HAp and therefore the mineral density of enamel would be equal to that of HAp (≈ 3.15 g/cm³). However, later studies (Elliott, 1997) showed that enamel consists mainly of the impure form of HAp with multiple impurities, particularly carbonate ions that partially replace the phosphate ions. This significantly reduces enamel density (between 2.99 and 3.02 g/cm³). Even though enamel density is less than was previously thought, still dental enamel is considered very dense and rigid material. The high rigidity and density makes it very brittle unless supported by the underlying dentine.

Another characteristic feature of enamel that affects its physical properties is enamel pores, which result from the imperfections in the packing of enamel crystallites. They are usually filled or partially filled with inter-prismatic substance. Authors have classified enamel pores into three main categories (Boyde and Oksche, 1989, Shellis and Dibdin, 2000). The first type is the small hexagonal tubule like pores (1-10 nm in diameter). They are located within the body of the enamel prism due to the random crystal orientation around the c-axis. They are the more abundant type of pores and count for 1-5 vol% of enamel. The second type is the prisms junctions pores. They are the largest in size but fewer in number and represent a minor fraction of the total enamel porosity. The third type is the intra-prismatic but their porosity is difficult to measure and little is known about them.

As a result of enamel structural architecture, particularly porosity, dental enamel is considered permeable to water, ions and small size organic molecules. The diffusion of water, ions and small organic molecules is controlled by many factors. Principally they are controlled by pore number, pore size and the inter-connectivity
between the pores. The partial acceptance or rejection of ion transport through the enamel pores depending on the charge of the diffusing ions is another controlling factor. To a lesser extent; the organic matrix also plays a role in affecting the permeability and transport process through enamel. For example, protein in the enamel matrix limits ionic diffusion. Also the mobility of water through enamel pores is significantly affected by the hydration of proteins (Shellis and Dibdin, 2000).

2.4 Trace elements in dental enamel

Dental enamel is composed mostly of biological apatites. They are impure form of HAp and differ from HAp in their composition, crystal size, morphology and stoichiometry. For example the Ca:P molar ratio in dental enamel is 1.62 - 1.64 while the Ca:P molar ratio in pure HAp is 1.67. This leads to the general idea that biological apatites are calcium deficient or non-stoichiometric. Pure HAp consists of calcium, phosphate and hydroxyl ions (Figure 2.1(a)) while biological apatites contain small amounts of various trace elements such as CO$_3^{2-}$, Mg$^{2+}$, Na$^+$, F$^-$, Zn$^{2+}$, Cu$^{2+}$, Sr$^{2+}$ and others in addition to the main components, Ca$^{2+}$, PO$_4^{3-}$, and OH$^-$ (Figure 2.1(b)).
Once the anions or cations become incorporated into the apatite structural lattice they alter the physico-chemical properties of the apatite. Such changes involve changes in crystal lattice parameters (reflecting the size and amount of substituents), change in crystallinity (crystal size and strain), change in crystal morphology and change in dissolution properties. The following section discusses some common substituents in dental enamel.

2.4.1 Carbonate

There has been controversy about the carbonate (CO$_3^{2-}$) substitution site in the apatite lattice. However, there is now general agreement that carbonates can either substitute for the phosphate ions which is called the B-type substitution (LeGeros and Tung, 1983) or substitute for the hydroxyl group which is called the A-type substitution (Elliott *et al.*, 1985). Carbonates poorly fit into the HAp lattice causing lattice strain and accordingly more soluble crystals. This is typically illustrated in the A-type substitution, when the hydroxyl group is substituted by less well-fitting carbonate which weakens the core of the crystal lattice along the c-axis.

FIGURE 2.1 (a) Hexagonal unit structure of HAp with ions arranged around the central hydroxyl column (c-axis). (b) Examples of substitutes in biological apatite straining the lattice parameters and changing the crystal behaviour (schematic drawing idea after Robinson (2000))
PART I: INTRODUCTION AND LITERATURE REVIEW

The weak central core has been suggested to be responsible for the greater solubility of the crystals at the centre (Marshall and Lawless, 1981).

B-type substitution is usually associated with sodium ion replacement for calcium. Therefore, the sodium concentration of the lattice is considered an indirect indicator of carbonate concentration.

Like many other elements, carbonate distribution and concentration vary throughout enamel thickness, with increasing concentration from the surface (1 wt%) towards the inner enamel (4 wt%) (Robinson, 2000).

2.4.2 Fluoride

Fluoride can substitute in the apatite crystal either as F\(^-\) or CO\(_3\)F\(^-\) by filling hydroxyl vacancies or by substituting the hydroxyl ion (Elliott, 1994). When fluoride ion (ionic radius \(\approx 1.36\) Å) substitutes the hydroxyl ion (ionic radius, 1.40 Å) on the c-axis it causes a reduction in the crystal volume and the lattice becomes more dense which reduces the crystal dissolution constant and enhances its chemical stability (Aoba, 1997). This substitution involves reduction at both the a and the c-axis (Kay et al., 1964) and reduces the lattice energy bringing more stability to the lattice (Robinson et al., 1995b).

Unlike carbonate, fluoride shows a higher distribution concentration at the outer enamel surface than the inner enamel (Robinson, 2000).

2.4.3 Magnesium

Magnesium is considered a principal minor constituent of biological apatite. There is uncertainty about the incorporation of magnesium in the HAp lattice (Verbeeck, 1986). It has been reported that magnesium can substitute for calcium ions. However this is a very minimal substitution as only a small amount of
magnesium can be accommodated in the HAp crystal lattice (0.3 wt%) (Featherstone et al., 1983b). Another possibility is that magnesium adheres to the crystal surface layer, either as an adsorbed element on the surface or attached loosely in the hydration layer, rather than being incorporated in the structure (Robinson, 2000). Like carbonates, magnesium shows higher concentrations in the inner enamel layer than in the outer surface (Robinson, 2000).

In conclusion, the topic of structure, chemistry and properties of enamel apatite has received a lot of attention from researchers and lots of fundamental work has been published in this area including published textbooks and review papers such as LeGeros (1991), Ten Cate and Featherstone (1991), Johnsson and Nancollas (1992), Elliott (1994), Shellis and Duckworth (1994) and Aoba (1997). It is particularly important to remember that dental enamel mineral contains not only HAp, but an apatite like structure with a wide variety of substitutes that might alter its physico-chemical properties. Zinc, strontium and copper as divalent metal cations are of special interest to this thesis. Their effect will be discussed in details in Chapter 5, 6 and 7 respectively.

2.5 Hydroxyapatite as a model system for dental enamel

Hydroxyapatite is commonly used as laboratory and, to a lesser extent, mathematical model for dental enamel mineral. However, there is still some controversy as to whether HAp can be used as a good representative of dental enamel mineral.

In this section a brief over view of the similarities and differences between HAp and dental enamel is discussed.

2. Chemical composition: HAp has a constant composition that can be summarised in the chemical formula $\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2$ while dental enamel has variable chemical composition with various impurities such as CO_3^{2-} 2 to 4 wt% replacing PO_4^{3-} and Na^+ 0.25 to 0.9 wt% (Section 2.3).

3. Density: due to the difference in chemical composition, enamel has a lower mineral density (2.99-3.02 g/cm3) compared to the mineral density of HAp (3.15 g/cm3).

4. Porosity: HAp typically has higher pores percentage, but pores are more evenly sized and distributed, while dental enamel has overall lower porosity. Pores size and distribution not only varies in dental enamel of different teeth, they even vary between different areas in the same tooth.

Even though HAp and dental enamel minerals differ in some aspects, HAp is still generally accepted as representative of dental enamel, and presents several significant advantages. From the practical point of view HAp is considered convenient to use as it is easier to obtain and requires no ethical approval. Further, HAp has a well-defined chemical composition and density when compared to enamel minerals. It also has the advantage of composition adaptability as it can be chemically adapted by the addition of impurities such as fluoride or sodium at precise levels of concentration, if needed, to mimic enamel minerals. Synthetic sintered HAp allows the use of larger size samples and gives reliable measurement repeatability due to its uniformity in chemical composition,
while for enamel minerals the repeatability of measurements is unreliable due to structural variations. So in conclusion, HAp aggregates are not expected to react identically to dental enamel as they are much more structurally and chemically homogeneous than enamel, but are believed to exhibit very similar dissolution kinetics and they can be used as a model for enamel in attempts to understand \textit{in vivo} caries or erosion formation (Shellis \textit{et al.}, 2010).
CHAPTER 3

Dental Enamel Caries and Erosion

3.1 Dental enamel caries

3.1.1 Introduction to dental enamel caries

Dental caries is the most common chronic disease affecting children (Filstrup et al., 2003). It is five times more common than asthma (Donahue et al., 2005). Its distribution varies between countries, regions within the same country as well as social class and ethnic groups (Petersen, 2005, Christensen et al., 2010). According to the National Survey of Children’s Health in the United Kingdom, almost 40% of the 5 years old children in England and Wales in 2003 had dental caries (Pitts et al., 2007).

Although the prevalence and extent of dental caries have fallen greatly in the UK between the late 1970s and the current day, as well as in many other countries such as Nordic countries and Switzerland, yet this decline seems to have slowed down, and dental caries continues to be considered a significant problem.

According to the WHO 2003 report on oral health, caries remains a problem despite great improvements in the dental public health (Petersen and Yamamoto, 2005). The report showed that caries has declined in many developed countries from a decayed, missing and filled permanent teeth (DMFT) level of 4.5 to 2.5 for children aged 12 years between the years 1980 and 1998, however, over the same
period of time the DMFT of the same age group increased from 1.5 to 2.5 in developing countries. This is alarming considering that most of our world today is made up of developing countries (Sgan-Cohen and Mann, 2007).

Therefore, dental caries is still considered a problem worth managing particularly through well-planned comprehensive dental health promotion and preventive strategies.

3.1.2 Aetiology of dental caries

For as long as the science of dentistry has existed, there have been theories about the causes of dental caries. However, today all experts in cariology generally agree that dental caries is a complicated multifactorial process that leads to destruction of dental hard tissue and that it is a localised destruction of dental hard tissue caused by acids produced by dental plaque bacteria (Fejerskov et al., 2008). It can take place on any tooth surface in the oral cavity when dental plaque is left to accumulate for enough time to allow its bacteria to ferment the dietary carbohydrate (Kidd and Fejerskov, 2004). Bacterial carbohydrate fermentation results in acid production, such as, lactic acid, acetic acid, etc, which reduces the dental plaque pH below 5.0 within 1-3 minutes (Kidd, 2005). Exposure of tooth surface to repeated attacks of low pH may result in demineralisation. However, when the acid produced in dental plaque is neutralised by saliva, the pH increases again and minerals may be regained and remineralisation occur.

The cumulative result of the de- and remineralisation attacks determine whether the tooth will undergo demineralisation or remineralisation (Aoba, 2004). The process of demineralisation or remineralisation takes place frequently during the day leading to cavitation, repair or a maintenance state.
However dental caries is not only an infectious disease induced by diet. It is a complicated multifactorial process with multiple factors affecting the initiation and progression of the disease. There are factors that directly contribute to caries development. These include a host, dietary substrate, bacteria and sufficient time frame. Oral environmental factors include, saliva buffering capacity, salivary composition and flow rate, sugar consumption, frequency and sugar clearance rate. Also important are plaque pH, types of microbial species, and the use of fissure sealant, antimicrobial agents and fluoride. Finally, relevant personal factors include the level of education, behaviour and attitude towards oral care, sociodemographic status and many others (Harris et al., 2004).

Dental caries is recognised as a preventable disease. Furthermore, it is known that cavitation is quite a late stage in the disease development and that before cavitation; the progress of the disease may be arrested or reversed if a favourable oral environment is achieved.

3.1.3 Histology and chemical changes in enamel caries

Silverstone (1981) has studied the histological changes of enamel in carious lesions and divided them into four zones, starting from the outer enamel surface layer to the enamel dentine junction (EDJ). These four zones are: surface, body of the lesion (25-50%), dark (5-10%) and translucent (Figure 3.1).

FIGURE 3.1 Schematic for enamel caries zones as classified by Silverstone (1981)
1. Surface Zone

The surface zone is the outermost zone, usually about 40 µm thick. During the process of dental caries, acids produced by bacteria diffuse into enamel and decrease its pH which starts the demineralisation process. As a result of the decrease in pH and the protonation of some phosphates (PO_4^{3-}) to hydrogen phosphates (HPO_4^{2-}), apatite crystals become unstable. This step is described as the formation of an active demineralisation site. As a result of the redistribution of charges and instability in the apatite crystal bonds, calcium is released. The release of calcium and protonation of phosphates, due to the drop in pH at the tooth outer surface, will form an undersaturated layer, a principal requirement for mineral dissolution.

As the demineralisation process continues, more acids will continue to diffuse inwards and more ions will be released and diffuse outwards. This outward and inward exchange is a key model in describing enamel caries-subsurface demineralisation. According to this theory, demineralisation starts at the subsurface layer while the outer surface layer remains intact (Silverstone, 1981). The subsurface demineralisation characteristic of dental enamel are cited in the literature to be due to irregularities in structure, the organic matrix in dental enamel, or the presence of a dental plaque layer (Isaac et al., 1958, Zahradnik and Moreno, 1977). However, some in vitro studies on HAp aggregates have demonstrated subsurface demineralisation. This indicates that subsurface demineralisation is a characteristic of HAp rather than dental enamel (Mortimer and Tranter, 1971, Zahradnik et al., 1976, Anderson and Elliott, 1985). Some models have been suggested in the literature to explain the mechanism that relates inward and outward flux of ions across the surface zone, such as the coupled diffusion model. The surface zone can
be considered as the relatively intact layer of enamel with mineral mass loss of less than 1%.

2. Translucent Zone

The enamel in this zone has more porosity and appears translucent when embedded with Canada balsam and looked at under a light microscope (Silverstone, 1981). This zone shows a 10-fold increase in pore volume when compared to intact enamel and accounts for approximately 1% of mineral loss, mostly mineral that is rich in carbonate and magnesium (Robinson, 2000).

3. Dark Zone

If a tooth section is put into quinoline and viewed with polarised light the body of the lesion will be outlined by a dark area (dark zone) (Kidd, 2005). The dark zone looks dark because quinoline, being a large molecule, cannot get into the little holes, which therefore remain filled with air giving a dark appearance while the body of lesion which looks dark in water now looks translucent with quinoline (Ten Cate, 1998).

The dark zone is similar to the translucent zone as they both show porosity and mineral loss, yet the dark zone shows mineral loss of about 5-10% and in addition to the large pores seen in the translucent zone small pores are seen in the dark zone (Robinson, 2000). The small pores in the dark zone show partial reversal of carious lesions when exposed to saliva or synthetic calcifying solution in experiments. Some studies (Crabb, 1966b, Crabb, 1966a, Silverstone, 1966, Clarkson et al., 1984, Robinson et al., 1990) have shown that when artificial caries-like lesions are exposed to saliva or synthetic calcifying solution, there is reduction in the pore volume throughout the whole lesion. This suggests that the dark zone represents a zone
where both demineralisation and remineralisation take place. This reflects the
dynamic nature of the caries process which involves episodes of demineralisation
and remineralisation simultaneously (Robinson, 2000).

Therefore, it has been suggested that the dark zone represent a dynamic stage
between demineralisation and remineralisation according to the surrounding

4. **Body of Lesion**

The body of the lesion is the main part of the lesion and considered as the final
stage of enamel demineralisation. The body of lesion is formed when the pore
volume is so great that there is a catastrophic collapse of the enamel structure,
followed by the collapse of the outer enamel surface layer (Robinson et al., 1983,
Shellis et al., 1993).

3.1.4 Methods of dental caries detection

Dental caries diagnosis is mostly carried out using visual examination of the
tooth surface with or without the use of a dental probe. This method of examination
is well established, however studies have shown that almost half of occlusal carious
lesions can be missed using this method of examination.

The use of the dental probe (explorer) in caries detection is controversial. In
the USA it is considered that a sharp explorer tip should be used to detect any
softness in the surface, while in Europe this practice is believed to add little benefit
to caries detection. On the contrary, it might cause iatrogenic damage to the enamel
surface and facilitate caries progression or initiation.

Proximal caries detection in posterior teeth can be challenging, especially in
cases of heavy contact. The use of dental wedges, orthodontic separators or trans-
illumination might be of help. The use of dental radiographs is the method of choice by most dentists. However, radiographs are not helpful in detecting caries at early stages of development. In dental arches with crowding or rotated teeth the use of bite wings become of very little value, so accordingly the use of radiographs become more helpful in detecting advanced dentinal lesions.

Nowadays, a new caries detection and scoring system has been introduced, the International Caries Detection and Assessment System (ICDAS) (Ismail et al., 2007). It is a clinical scoring system that can be used for dental education, clinical practice, research, and epidemiology (Pitts, 2004). It is designed to be based on a better quality of collective information to achieve appropriate diagnosis, prognosis, and clinical management at both the individual and public health levels. ICDAS has the advantage of enabling personalisation of caries management for each case independently, which helps in providing better and longer term results (Ismail et al., 2008).

3.1.5 Prevalence of dental caries

In early 1900 the first statistics on dental decay were published (Yates, 1949, Marthaler, 2004). That was approximately the time when the first university dental faculties were training dental students. The number of these early statistics was very low and they are difficult to interpret. Around the 1950s, indices and methods of conducting surveys of dental diseases were developed, and in the 1960s many epidemiological studies started.

Until the 1960s the published surveys suggested that the prevalence of dental caries in children of Western European countries was high with an average of more
than 5 DMFT for 12 year old children and 10 DMFT for 15 year old children (Marthaler, 2004).

Between the 1970s and the 1980s there was a remarkable decline in the prevalence of dental decay in children in many industrialised countries. This reduction is mainly due to the development and the widespread use of fluoridated tooth pastes (Downer et al., 1985, Downer, 1993).

During the decades since then, consensus from around the world shows that dental caries has declined significantly. In 1985, FDI data demonstrated caries declined particularly in nine countries: Denmark, Finland, Norway, Sweden, Australia, the Netherlands, New Zealand, the United Kingdom and the USA (Marthaler, 2004). In 12 year old children in the Netherlands the decrease in dental caries showed the average DMFT decreased steadily from eight in 1965 to one in 1993. Similarly, most of the European data showed that caries prevalence in children continued to decline until the 1990s (Downer et al., 1985). Although the last National Children’s Dental Health Survey in the UK in 2003 showed that overall dental caries in children continued to decline over the last decade yet there was an observation of an increase in caries prevalence among particular groups such as the lower social classes and migrants (Harker and Morris, 2005). This is shown in a Swedish study, with Turkish immigrant children having more caries than Swedish children both in the primary and permanent teeth (Mejàre and Mjönes, 1989). However, children born in Turkey had more caries in the primary dentition than those born in Sweden. Turkish immigrant children therefore constitute a high risk group for caries and need supervision early after immigration. Also, increasing immigration has been identified as a new factor, leading to increases in the overall
dental caries prevalence rate in Switzerland, given that migrants form 20% of Swiss residents.

Most recent studies have reported that dental caries is increasing particularly in developing countries. This is alarming given that most of today’s world population is made of developing countries.

The National Oral Health Survey in the Philippines reported an alarming 97.1% of 6 year old with dental caries and 84.7% with symptoms of dental infection. The overall prevalence of dental caries among 6-12 year old school children was 92.3% (Carino et al., 2003). In Mexico, the prevalence of dental caries increased by more than 20% among children in just over one year from 14.2% to 34.7% in fewer than 18 months. An epidemiological survey in Sao Paulo, Brazil showed that the prevalence of dental caries in permanent teeth among 12 year old children was 53.6% (Gomes et al., 2004). In Palestine, the DMFT score was 6.5 in an oral health survey (Bagramian et al., 2009). In Saudi Arabia there is lack of national oral health survey. However local and regional surveys reported a high DMFT score in 12 years old children. In Riyadh area for example the mean DMFT was 5.06 (AlDosari et al., 2004). Another study conducted in the western region (Jeddah) reported a mean DMFT of 5.71 (Alamoudi et al., 1996).

In summary dental caries remains a major health concern worldwide and an action is needed to control the spread of this problem.
3.2 Dental erosion

3.2.1 Introduction to dental erosion

Dentists have been aware of the phenomenon of dental hard tissue loss that is not attributed to dental caries but for years only little has been done about it. Recently, such dental hard tissue loss has been increasingly seen in the younger population (Welbury et al., 2005). The phenomenon of tooth wear can be classified as attrition, abrasion or erosion. Attrition is loss of the tooth hard surface due to tooth to tooth contact (bruxism). Abrasion is physical wear due to tooth surface contact against hard surfaces such as a faulty brushing technique with a hard toothbrush or the habit of nail biting or biting against a pen or pencil while thinking. Erosion can be defined as the loss of dental hard tissue due to acids without the involvement of bacteria (Figure 3.2).

FIGURE 3.2 Upper arch of child with gastro-oesophageal reflux showing generalised erosion affecting maxillary teeth particularly on the palatal surface (Welbury et al., 2005)
3.2.2 **Aetiology of dental erosion**

Erosion can be due to intrinsic factors or extrinsic factors. For example the pH of stomach acid can reach below 1.0 and therefore any regurgitation or vomiting is harmful to the teeth and causes more severe destruction than that caused by other dietary acids (Bartlett and Coward, 2001). Gastro-intestinal tract disorders or eating disorders (e.g. bulimia and anorexia nervosa) are the most common causes of dental erosion by gastric acid (Meurman *et al.*, 1994, Schroeder *et al.*, 1995). However, extrinsic factors are considered the most common cause of dental erosion. Extrinsic factors are most commonly in the form of acidic foods or drinks such as fruit, fruit juices, carbonated drinks, and sports drinks. Many of these acids are usually unnoticed by their consumers and their effect is underestimated (Gandara and Truelove, 1999). Pure baby fruit juices, for example, have been shown to have a pH value below 5.5. Many of these drinks are given to infants in a feeding bottle and the combination of the prolonged exposure of the tooth to the juice and its highly acidic nature may result in excessive tooth surface loss (Zerob, 2004). Soft drinks represent a major factor of dental erosion through their ability to cause enamel and dentin dissolution, and they are in particular available to all age groups (Nyvad, 1999). In 1995, one study showed that 56-85% of USA school children consumed at least one soft drink per day, from this group 20% consumed four or more servings daily (Grenby, 1996). Although the nature of the acidic food or drink has a strong effect on the degree of dental erosion, it is not the only controlling factor (Amaechi and Higham, 2005).

It was found that the volume, frequency and time of consumption affect the degree of dental erosion as erosive tooth surface loss tends to be higher in cases of high volume of consumption and when the intake is at bed time (Moazzez *et al.*, 2005).
2000). Behavioural factors can influence the impact of these dietary acids on the dentition. For example, excessive consumption of acidic food or beverages, or unusual eating and drinking habits such as sipping an acidic drink over a long period of time, will increase the acid challenge to the teeth (Johansson et al., 2004). Other acidic foods and drinks such as wine, and vinegar are potentially erosive (Chaudhry et al., 1997, Piekarz et al., 2008). The most commonly found acids in soft drinks are; citric, phosphoric, malic and tartaric acids (Grenby, 1996). A study of sour sweets, which are popular among children came to an important conclusion: that all the sour sweets tested were found to be erosive, and some of them were even more erosive than orange juice (Chu et al., 2010). This is important to know, especially for paediatricians and paediatric dentists who are concerned about children’s dietary habits and diet analysis (Chadwick, 2008, Brand et al., 2009, Wagoner et al., 2009). Oral hygiene products such as toothpastes, and some low pH medications, like vitamin C tablets, have been reported to show erosive potential (Lussi, 2006). Environmental acids are also potential risk factors. Acidic fumes such as sulfuric and hydrochloric acid fumes in some working places have been reported to show erosive potential (Petersen and Gormsen, 1991).

Dental erosion can be clinically observed at early stages of development as a loss of surface contour with a shiny, glass like appearance (Asher and Read, 1987). In the past it was thought that erosion involved the total loss and destruction of the whole enamel thickness while some studies have demonstrated signs of subsurface demineralisation (Meurman and Gate, 1996). Therefore the chemical processes of dental enamel erosion and dental enamel caries are quite similar, apart from the source of acids and the lack of dark zone. The absence of dark zone might be due to the very low pH in the case of erosion. Lussi and Featherstone have studied the
chemistry of dental erosion (Lussi, 2006). A key factor in dental erosion is that it takes place in a highly acidic environment and the mineral loss can be a result of simple interaction with hydrogen ions such as in the case of acetic acid.

\[
\text{CH}_3\text{COOH} \leftrightarrow \text{CH}_3\text{COO}^- + \text{H}^+ \quad (3.1)
\]

However, it is more likely that erosion is a complex interaction involving the effect of the hydrogen ions as well as the effect of the chelating agent. A typical example of this complex interaction is citric acid. As citric acid dissolves in water, it dissociates into a mixture of hydrogen ions, acid anion (citrate) and non-dissociated acid. Citric acid has the capability of producing three hydrogen ions from each molecule:

\[
\text{HOOCCH}_2\text{COH(COOH)CH}_2\text{COOH} \leftrightarrow \text{HOOCCH}_2\text{COH(COOH)CH}_2\text{COO}^- + \text{H}^+ \quad (3.2)
\]

\[
\text{HOOCCH}_2\text{COH(COOH)CH}_2\text{COO}^- \leftrightarrow \text{OOCHCH}_2\text{COH(COOH)CH}_2\text{COO}^- + \text{H}^+ \quad (3.3)
\]

\[
\text{OOOCHCH}_2\text{COH(COOH)CH}_2\text{COO}^- \leftrightarrow \text{OOOCHCH}_2\text{COH(COO)CH}_2\text{COO}^- + \text{H}^+ \quad (3.4)
\]

Citric acid has three pK\(_a\) values (pK\(_{a1}\) = 3.13, pK\(_{a2}\) = 4.76 and pK\(_{a3}\) = 6.40). Therefore citric acid can be found in solution in any of the forms showed in the equations above depending on the solution pH (Lussi, 2006).

On one side the hydrogen ion can interact with the enamel surface crystals and combine with phosphate and/or carbonate ions, while on the other hand the chelating agent (citrate) has high affinity to attract calcium ions as illustrated in Figure 3.3.

FIGURE 3.3 Schematics of citrate ion where two and three of the hydrogen ions have been lost (\(a\) and \(b\) respectively) and calcium ion is attracted (Lussi, 2006)
3.2.3 Prevalence of dental erosion

The prevalence of dental erosion is not well documented since national dental surveys are not commonly conducted worldwide and rarely include measures of erosive tooth wear. In addition, it is often difficult to compare the outcomes of different epidemiological studies on dental erosion due to the use of different examination standards, including scoring systems, samples and groups examined (Lussi, 2006). There is however some evidence that the prevalence of erosion is increasing (Linnett and Seow, 2001, Nunn et al., 2003).

In 1993 the UK National Child Dental Health Survey (Nunn et al., 2003) included an assessment of the prevalence of erosion of both primary and permanent incisor teeth. The survey reported that 52% of 5 year old children had erosion on the palatal surface of their primary incisors with 24% advanced approaching the pulp. On the other hand the prevalence of erosion on the palatal surface of permanent incisor was 27% of 15 years old children with 2% showed progression into the pulp (Lussi, 2006). Studies have shown that socio-economic status may also play a role in the prevalence of erosion, which could be due to different eating, drinking and possibly oral hygiene habits. Some studies reported more erosion in higher socio-economic classes other studies have reported different results, so the issue is still controversial (Millward et al., 1994, Al-Dlaigan et al., 2001).

At the present time it is clear that dental erosion is an important condition affecting the dental hard tissues. But there is no clear answer to whether this problem is actually increasing or whether it has remained constant with figures reflecting only an increased awareness of the condition.
3.2.4 Methods of dental erosion detection and assessments

Enamel erosion at its early stages is detected as loss of surface contour with a shiny, glass like appearance which can easily go unnoticed by the patient and/or the dentist. This is followed by a stage of tooth sensitivity and fracture of thinned enamel, particularly thinned incisal edges. As erosion progresses more of the yellowish dentin layer becomes exposed (Figure 3.4).

FIGURE 3.4 Dental erosion affecting both maxillary and mandibular teeth particularly palatal and lingual surfaces (Lazarchik and Filler, 1997)

Eroded lesions classically look dished out, hard and smooth (Lazarchik and Filler, 1997). Eccles and Jenkins proposed a set of diagnostic criteria to classify erosion based on its clinical appearance (Table 3.1).

<table>
<thead>
<tr>
<th>Rating</th>
<th>Erosion Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0</td>
<td>No involvement of surface</td>
</tr>
<tr>
<td>Grade 1</td>
<td>Loss of enamel surface features; no dentin involvement</td>
</tr>
<tr>
<td>Grade 2</td>
<td>Exposure of dentin on less than 1/3 of surface</td>
</tr>
<tr>
<td>Grade 3</td>
<td>Exposure of dentin on more than 1/3 of surface</td>
</tr>
</tbody>
</table>
There are several other classifications used in the literature. Some are only applicable for adults and not children, such as the Smith and Knight Tooth Wear Index (Smith and Knight, 1984). A modified version of the Smith and Knight Tooth Wear Index that can be used for children was developed by O’Sullivan et al. (1998). It is a more detailed index that takes into consideration the site, severity and area affected. A third index, considered more simple and practical was proposed by Aine et al. (1993). This index is mainly used for children with gastro-oesophageal reflux but is suitable for adults and children, primary, mixed and permanent dentition. The number of different indices for dental erosion indicates that there is no single index fulfilling all the relevant required criteria. This complicates comparisons between data obtained from different studies.

3.3 Laboratory techniques for assessment of dental hard tissue loss

There are many techniques to assess the loss of dental hard tissue and the softness of the enamel surface. With all the available literature it is now clear that the complex mechanism of dental enamel mineral dissolution might not be fully understood and evaluated by a single technique, but instead would require many techniques with different approaches for full understanding. This section will briefly mention some of the commonly used techniques.

3.3.1 Scanning electron microscopy

Scanning electron microscopy (SEM) is a qualitative measure. It can be used to image the surface changes after erosive attacks. It can be used on both polished and unpolished surfaces after gold sputtering. In enamel, acid attacks due to
immersion of specimens in erosive solutions lead to a surface etching and exposure of enamel prisms to various extents. For SEM, sample preparation would involve drying of the specimen which may cause additional alteration to the eroded surface. Precipitates formed by dissolved enamel minerals may block some enamel surface and SEM might not detect the blocked enamel prisms in such cases.

3.3.2 Environmental scanning electron microscopy (ESEM)

The ESEM has an advantage over the SEM in that it does not require sample preparation, and sample examination can be performed without metal or carbon coating, which reduces the artefacts. Both SEM and ESEM are suitable for use with native surfaces yet both methods provide qualitative assessment and do not provide detailed quantitative information about the eroded surface.

3.3.3 Atomic force microscopy (AFM)

Atomic force microscopy (AFM) also provides qualitative measures. The main application of the AFM is high resolution imaging of different materials. AFM enables imaging of surface topography as well as differences in elasticity. AFM was used in many studies for qualitative evaluation of eroded surfaces. It can also be used to quantitatively measure hardness changes.

3.3.4 Surface profilometry

Surface profilometry involves scanning specimens with a light beam or a contact stylus with diameter of about 2-20 µm. The contact stylus is loaded with a force of a few milliNewtons. With surface profilometry complete surface mapping can be achieved. In cases involving thin and weak enamel surfaces, profilometry might be affected by the tendency of the contact stylus to penetrate this fragile layer.
The laser or white light beam stylus has the advantage of having a higher resolution over the contact stylus and of course beams will not penetrate a fragile surface. Yet it has the disadvantage of producing over shots at sharp edges such as at the bottom of a groove and these will result in artefacts.

3.3.5 Nanoindentation and microindentation

The nanoindentation technique is used to investigate enamel dissolution by measuring the hardness of the enamel surface. It is known that enamel dissolution involves softening of the enamel surface; therefore the surface hardness measurement would represent an indirect method in measuring the degree of erosion or dissolution. Mostly the indenter is a diamond tip which is pressed onto a surface with a given load and duration, resulting in three sided pyramidal indentation. Microindentations in sound enamel have typical indentation depths of micrometers or tens of micrometers, while on the other hand, nanoindentations in sound enamel have sub-micrometer indentation depths, typically hundreds of nanometres. We should not forget the fact that the hardness of the surface measured is affected by many factors like the immediate surrounding material, and material as far away as ten times the diameter of the indentation itself.

3.3.6 Chemical analysis

Chemical analysis methods are based on the principle that dental enamel consists of 34%-39% calcium (dry weight) and 16%-18% phosphorus (Lussi, 2006). Measuring the amount of calcium and/or phosphate dissolved in any solution in which a dental structure has been placed for some time, gives an indirect estimate of the amount of demineralisation that has occurred. A calcium sensitive electrode and
a specific pH for the surrounding environment are required for this technique to work precisely.

Chemical analysis is considered the main competing technique for measuring mineral loss. It has the advantages of being much cheaper than X-ray based techniques and its small size makes it easy to carry out in any laboratory. The chemical method also has the advantage of being able to detect very small mineral loss using unpolished uncoated native tooth samples, yet these methods are applied in vitro only (Barbour, 2002).

However it is important to remember that dental enamel dissolution involves the formation of other phases of calcium phosphate complexes and does not simply dissolve to its basic constituents of calcium and phosphate. Therefore the measurement of calcium and/or phosphate in the demineralisation solution may not be an accurate representative of the amount of demineralisation that took place in the dental hard structure. Also an intensive solution preparation is required to allow the measurement of calcium and phosphate with a minimal amount of solution no less than 100µl.

3.3.7 Microradiography

Microradiography is a method of special interest to this thesis as it is the technique to be used in all the experiments in this thesis. Therefore, it is discussed in details in Chapter 9.

The selection of SMR as the technique of choice for the experimental work in this thesis was based on that SMR was initially developed by Jim Elliott in QMUL around 1980 and modified by Jim Elliott and Paul Anderson around 1985 giving the Dental Physical Science Department at QMUL a worldwide reputation in SMR technology with pioneers working in this field.
CHAPTER 4

Calcium Apatites Dissolution Models

4.1 Introduction

There have been many proposed dissolution models for HAp dissolution (Dorozhkin, 2002). Each of these models has its own strengths, weaknesses and limitations. These models provide important information with regards to factors affecting HAp dissolution. These factors can be classified into:

I: Factors associated with solutions such as pH, composition, saturation, and hydrodynamics
II: Factors associated with bulk solid such as chemical composition, solubility and particle size
III: Factors associated with the surface such as defects, absorbed ions, and phase transformation

In this chapter some of the previously published models for calcium apatite dissolution models will be discussed in an attempt to highlight the part of the dissolution mechanism that each model focuses on.

4.1.1 Diffusion controlled and surface controlled models

These types of models are concerned with the study of the dissolution reaction controlling step, and the transport rates of chemical reagents (H\(^+\) and anions of acids) from solution to the HAp crystal surface and the transport of the
dissolution products away from the HAp crystal surface to the bulk solution (Ca$^{2+}$ and PO$_4^{3-}$). Both mechanisms are concerned with the rate controlling mechanism (driving force), which is the concentration gradient with in the Nernst diffusion layer in the case of the diffusion model or the gradient of the ionic chemical potential at the apatite-solution interface in the case of the surface controlled model (Margolis, 1992).

The question of whether enamel dissolution is a surface or diffusion controlled or a combination of both is a question that still has no single defined answer. Some early studies such as those by White and Nancollas (1977) and Higuchi et al. (1965) described the dissolution of HAp as a diffusion controlled. Other more recent studies suggest that the dissolution of HAp is not limited purely by diffusion and that surface processes play an important role in controlling the overall kinetics depending on the surrounding conditions (Budz and Nancollas, 1988, Anderson et al., 2004).

4.1.2 Self-inhibition (calcium rich layer formation) model

This model was created following studies of the dissolution kinetics of apatite powders in acidic buffer with solution pH between 3.7 and 6.9, under constant composition (Dorozhkin, 2002, Tang et al., 2003). It was noticed that during the initial period of dissolution (first 2-5 min) the amount of Ca$^{2+}$ released into the bulk of solution was less than the uptake of H$^+$. This was explained as follows: as the first amount of Ca$^{2+}$ is released into the solution some Ca$^{2+}$ ions probably through coupled diffusion are returned from the solution back to the apatite and adsorb to its surface. This Ca$^{2+}$ rich surface layer acts as a semipermeable ionic membrane (Dorozhkin, 1997b).
As the dissolution process continues, more Ca\(^{2+}\) released into the solution increases, and therefore H\(^{+}\) uptake decreases until electric neutrality is achieved. Therefore, the overall apatite dissolution process decreases with time (Thomann et al., 1990, Mafe et al., 1992).

4.1.3 Stoichiometric/Non-stoichiometric dissolution models

Stoichiometric dissolution is also called congruent dissolution; it is the type of dissolution that occurs when the ions present in the solid dissolve simultaneously with dissolution rates proportional to their molar concentrations in the solid (Dorozhkin, 2002). Non stoichiometric dissolution (incongruent dissolution) occurs when the ions present in the solid dissolve with different dissolution rates from their molar concentrations (Dorozhkin, 2002), resulting in a situation where a surface layer is formed with a chemical composition different from that of the bulk of the solid. It has been reported that in calcium phosphate apatite with a calcium to phosphate ratio between 1.67 to 2, the calcium ions are the first to dissolve while when the calcium to phosphate ratio is less than 1.67, the phosphate ions tend to be the first ions to dissolve. Studies have shown that stoichiometric and non-stoichiometric dissolution of apatite can occur at the same apatite crystal at different stages of dissolution, and that whether the apatite will dissolve stoichiometrically or non-stoichiometrically depends on its chemical composition (Margolis, 1992, Pearce et al., 1995).

4.1.4 Chemical model

The chemical dissolution model for dissolution of HAp was introduced with the concept that HAp unit cell (Ca\(_{10}\)(PO\(_4\)\(_6\))(OH)\(_2\)) is unlikely to dissolve by detachment of a single molecule at a time, breaking down to its 18 ionic components.
Instead, it is expected that HA\textsubscript{p} would dissolve via a series of chemical reactions (Dorozhkin, 1997b, Dorozhkin, 1997a).

Previously, the chemical equation for HA\textsubscript{p} dissolution was thought to be:

\[
\text{Ca}_{10} (\text{PO}_4)_{6} (\text{F},\text{OH})_{2} + 14\text{H}^+ \rightarrow 10\text{Ca}^{2+} + 6\text{H}_2\text{PO}_4^- + 2\text{HF}, \text{2H}_2\text{O} \quad (4.1)
\]

or

\[
\text{Ca}_{10} (\text{PO}_4)_{6} (\text{F},\text{OH})_{2} \rightarrow 10\text{Ca}^{2+} + 6\text{PO}_4^{3-} + 2\text{F}^-, \text{2OH}^- \quad (4.2)
\]

The new concept of HA\textsubscript{p} dissolution is that apatite would pass through four stages of chemical reactions to dissolve (Dorozhkin, 2002).

\[
\text{Ca}_5 (\text{PO}_4)_3 (\text{F},\text{OH}) + \text{H}_2\text{O} + \text{H}^+ \rightarrow \text{Ca}_5 (\text{PO}_4)_3 (\text{H}_2\text{O})^+ + \text{HF}, \text{H}_2\text{O} \quad (4.3)
\]

\[
2\text{Ca}_5 (\text{PO}_4)_3 (\text{H}_2\text{O})^+ \rightarrow 3\text{Ca}_3 (\text{PO}_4)_2 + \text{Ca}^{2+} + 2\text{H}_2\text{O} \quad (4.4)
\]

\[
\text{Ca}_3 (\text{PO}_4)_2 + 2 \text{H}^+ \rightarrow \text{Ca}^{2+} + 2\text{CaHPO}_4 \quad (4.5)
\]

\[
\text{CaHPO}_4 + \text{H}^+ \rightarrow \text{Ca}^{++} + \text{H}_2\text{PO}_4 \quad (4.6)
\]

During the stages of the dissolution process, different calcium phosphates and biological apatites can be formed with various stoichiometries which control the dissolution process by either facilitating or inhibiting it according to the type of compound being formed.

4.1.5 Nanoscale enamel dissolution model

Traditional understanding of the dissolution process assumes that the dissolution of minerals is spontaneous and continuous and that all the solid phase can be dissolved in under saturated solutions until equilibrium is reached. Wang has lately introduced another vision for the dissolution process (Wang et al., 2005, Wang et al., 2006) in which the reaction is accompanied by the formation of dissolution pits and subsequent displacement of pit steps. Pit formation increases surface
roughness. This roughness leads to an increase in the crystal/solution interfacial area. Subsequent dissolution proceeds through the growth of these pits. However, it has been found that demineralisation reactions actually involve particle size dependent critical conditions of energetic control at the molecular level. Only when the pits are larger than a critical size do they contribute to the reaction, this critical value is of a nanoscale level. This model of dissolution establishes a clear link between the microscopic physics of step dynamics and the bulk behaviour of the crystals during dissolution. It also emphasises the importance of surface energy during dissolution.

4.2 Summary

This brief discussion of the different available models for the study of apatite dissolution, shows that a complete understanding of HAp demineralisation cannot be achieved using a single model and whether the model is concerned with the dissolution process at the solid solution interface, at the solid itself or at the bulk solution external to the dissolving solid. They all explain HAp demineralisation at different sites of the HAp that might be taking place simultaneously and are complementery to each other.
CHAPTER 5

Zinc

5.1 Introduction

Zinc (Zn\(^{2+}\)) is a metallic chemical element with an atomic number 30. It has atomic weight 65.39. Its pure metal has a hexagonal close-packed crystal structure. Its melting point is 420°C and boiling point 907°C. Its only common oxidation state is \(2^+\).

Zinc is found abundantly in tissues throughout the body. Approximately 60% of total zinc pool is found in muscle tissues, ≈ 30% in bone, ≈ 5% in skin and as a trace element in teeth (section 2.4) (Christianson, 1991, Hambidge, 2000). It is involved in many body functions; it is necessary for normal collagen synthesis, mineralisation of bone, immune system function and proper healing (Thomas and Bishop, 2007) Therefore, it is considered a dietary essential trace element. It can be naturally present in some food such as oysters, lobster, most sea food, red meat, beans and nuts. It is also added to other foods such as cereals and is available as a dietary supplement (Lawler and Klevay, 1984, Hambidge, 2000, Brooks et al., 2005). In addition to standard tablets and capsules, some zinc is added to lozenges and nasal sprays for treatment of the common cold (Weismann et al., 1990, McElroy and Miller, 2002).
The current Recommended Dietary Allowances (RDAs) for zinc are 8 mg/day for a female adult and 11 mg/day for a male adult. For pregnant and lactating women, the RDAs increase up to 12-14 mg/day. The upper margin for the daily intake of zinc should not exceed 40 mg/day (Maret and Sandstead, 2006). Iron supplements might interfere with zinc absorption, therefore taking iron supplements between meals helps reducing their effect on zinc absorption. On the other hand high zinc intake can inhibit copper absorption sometimes causing copper deficiency and associated anaemia (Lawler and Klevay, 1984, Milne et al., 1984). For this reason dietary supplements containing high level of zinc sometimes contain copper as well.

Zinc deficiency is characterised by growth retardation and reduced bone density as zinc stimulates both bone growth and mineralisation as well as regulating osteoclast activities (Yamaguchi et al., 1987, Kishi and Yamaguchi, 1994, Yamaguchi, 1998). Other symptoms include loss of appetite and impaired immune defense. In more severe cases, zinc deficiency, can cause weight loss, taste abnormalities, mental lethargy and delayed wound healing. Hair loss, diarrhoea, delayed sexual maturation, impotence, hypogonadism in males, eye and skin lesions are also not uncommon (Maret and Sandstead, 2006) in severely zinc-deficient patients.

The difficulty of diagnosing zinc deficiency lies in that none of these symptoms is specific and they are often associated with other health conditions. Therefore, a medical examination is necessary to diagnose zinc deficiency (Golden, 1989). Zinc ion levels in the body are difficult to measure using laboratory tests, because of their distribution throughout the body as a component of many proteins and nucleic acids. Plasma and serum zinc level are the most commonly used for testing zinc deficiency. People with gastrointestinal diseases such as Crohn’s disease
and ulcerative colitis are more susceptible to zinc deficiency as gastrointestinal diseases may increase the loss of zinc from the gastrointestinal tract and lower zinc absorption or uptake (Wapnir, 2000).

Zinc toxicity can occur in both acute and chronic forms. Acute adverse effects of high zinc intake include nausea, vomiting, loss of appetite, abdominal cramps, diarrhoea, and headache. Approximately 500 mg zinc can cause acute toxicity while the intake of 150-450 mg zinc per day is enough to cause chronic toxicity (Fosmire, 1990).

5.2 Zinc in the oral cavity

Zinc is naturally present in the oral cavity, in the teeth, saliva and dental plaque. It is one of the trace elements present in teeth and shows a distribution pattern similar to that of fluoride and lead (Robinson et al., 1995a) with higher concentration at the surface structure of dental enamel and lower concentrations at the subsurface. Concentrations of zinc in the subsurface enamel of teeth range from 430 to 2100 parts per million (ppm), with most zinc deposition taking place before tooth eruption (Brudevold et al., 1963, Brudevold et al., 1975). After eruption, zinc concentration at the enamel surface increases further, suggesting incorporation occurring during post eruption exposure to oral fluids. With ageing excessive zinc content is lost over the years in a similar fashion to fluoride (Weatherell et al., 1972, Weatherell et al., 1973).

Zinc concentration analysis through cross sections of the tooth crown show highest zinc concentration in the enamel surface layer and decrease in concentrations towards the dentino-enamel junction. In dentine there is also a gradient in zinc level
with the greatest concentration occurring adjacent to the pulp. The level of zinc in
the bulk of the coronal dentine is approximately the same as that in junctional
enamel. Near the pulp zinc concentrations increase sharply and approach those of
external enamel (Brudevold *et al.*, 1963).

Much research has been conducted to investigate zinc concentrations in
saliva. A range of values between 0.01 to 0.2 ppm have been reported (Bales *et al*.,
Zinc is also naturally present in dental plaque and researchers have studied zinc
concentrations in both dry as well as wet dental plaque. It was found that zinc
concentrations in dry plaque ranged between 6 ppm and 31 ppm, which is estimated
to be around seven folds more than the reported zinc concentration in wet plaque.
The difference in concentrations between the dry and wet plaque is justifiable
assuming that drying increases the apparent concentration (Tatevossian, 1978, Agus

5.3 **Effect of zinc on calculus formation**

5.3.1 **Zinc containing mouthwashes**

Mouthwashes containing zinc salts were first reported to reduce dental plaque
growth in the early 1970s (Picozzi *et al*., 1972, Fischman *et al*., 1973), followed by
other studies investigating the effect of zinc containing mouthwashes on dental
plaque growth, and calculus formation (Schmid *et al*., 1974, Compton and Beagrie,

The role of zinc in calculus formation was confirmed in later work (Harrap *et al*.,
1983) which stressed the importance of the use of high concentrations of zinc
and sufficient frequency of application to suppress calculus formation (Harrap et al., 1984). Prolonged retention of zinc in the mouth is thought to be important for its activity (Bonesvoll and Gjermo, 1978, Afseth et al., 1983a).

After using mouthwashes containing zinc salts, approximately 40% of the amount of the applied zinc is retained in the oral cavity. Its concentration rapidly decreases to a low concentration yet significantly above the zinc baseline in 30 to 60 min. This rapid clearance phase is followed by a slow clearance phase that extends for many hours. The elevated zinc concentration persists in dental plaque for up to 13 hours (h) after application. The incorporation of zinc citrate to mouthwashes was reported to successfully reduce plaque by approximately 8% (Addy et al., 1980), but the clinical significance is unknown.

5.3.2 Zinc containing toothpastes

Toothpastes are more widely used than mouthwashes. Therefore they are considered a more desirable method for delivering an antiplaque agent. Yet the incorporation of antiplaque ingredients into toothpastes presents several difficulties. Toothpastes formulations are quite complex and some of the ingredients may affect activity of the therapeutic agent. For example the availability of chlorhexidine is reported to be affected by anionic detergents usually present in toothpastes (Addy et al., 1992). Also the concentrations of the antiplaque ingredients should be higher than in mouthwashes as the dose of dentifrice used in the mouth is only about 0.1 to 0.2 of that used in the mouthwashes.

Zinc was introduced into toothpastes in the form of zinc citrate. Literature review shows much research done on this. Studies have managed to clearly show that zinc containing toothpastes show the same antiplaque activity as that reported

The mechanism by which zinc affects plaque growth is not clearly established. Zinc might bind to the oral bacterial surface altering its surface potential (Ollsenn and Glantz, 1977) and accordingly might affect bacterial adhesion to teeth (Skjörland et al., 1978). Or, it might be zinc’s capability to inhibit acid production by bacteria in plaque (Oppermann and Rölla, 1980, Oppermann et al., 1980, Harrap et al., 1983) by altering the metabolic activity of the oral bacteria hence reducing bacterial growth (Afseth, 1983, Afseth et al., 1983c, Saxton et al., 1986, Hall et al., 2003).

Zinc has been used for a long time for its antiplaque activity as well as to reduce oral malodor. Oral malodor (halitosis) is a condition that originates from bacterial metabolism of proteins from saliva, sloughed oral tissue and food debris leading to the formation of amines, alcohol and particularly volatile sulphur compounds such as hydrogen sulfide (H_2S) (Young et al., 2001, Young et al., 2003). Zinc salts are found to be highly effective in reducing H_2S since they are chemically able to neutralise H_2S as well as acting as antimicrobial agents (Bradshaw et al., 1993).

Oral availability in adequate quantities is a necessary prerequisite of any agent for antiplaque activity in vivo. Data demonstrates that approximately 30% of zinc citrate is retained in the oral cavity after brushing (Cummins, 1991). Gilbert and Ingramm (1988) had demonstrated that after brushing with 1gm toothpaste containing zinc, 25 to 38% of the zinc was retained in the oral tissues. Zinc levels in saliva remained significantly above baseline level for at least 2 h after application.
Another study determined a significant increase in salivary zinc levels, highest 5 minutes after brushing with toothpaste containing 0.75% zinc citrate. This was followed up by gradual reduction in zinc concentration, approximately reaching the base line levels after 7 h (Oezdemir et al., 1998).

5.4 Effect of zinc on dental caries

Due to the success of incorporating zinc in toothpastes and mouthwashes and the demonstration of their ability to reduce plaque and calculus, zinc containing toothpastes and mouthwashes have been used in treating and preventing periodontal diseases (Mellberg and Chomicki, 1983).

Since zinc incorporation in toothpastes has extended to involve its incorporation in some fluoridated toothpastes, more research work was needed to determine if zinc might affect fluoride deposition in dental enamel and whether its incorporation in fluoridated toothpastes showed a synergistic/antagonist or no effect.

Mellberg and Chomicki (1983) suggested that zinc citrate inhibits fluoride uptake by artificial enamel caries and gave two explanations: either the inhibition is due to zinc reaction with monofluorophosphate (MFP) ions in the solution inhibiting its reaction with enamel, or most likely there is reaction of zinc with the phosphate ions in the enamel lesion (caries) which leads to the formation of insoluble zinc phosphate complex. Zinc phosphate complex coats the HAp surface, precipitates and blocks the diffusion of fluoride into the carious sites.

On the other hand more recent in vivo studies have demonstrated a reduction in enamel demineralisation with the use of zinc containing fluoride toothpastes (Lynch, 2011). However the demineralisation reduction could not be entirely due to the interaction of zinc with HAp as it may, to a degree, be the result of the
antimicrobial effect of zinc (Ten Cate, 1993, Churchley et al., 2011). Further research is recommended to study the direct and individual effect of Zn\(^{2+}\) on enamel demineralisation.

5.5 Effect of zinc on dental erosion

As mentioned before, most of the research done on zinc has concentrated on zinc effects on dental plaque and calculus formation which is indirectly linked to, management of oral malodor, and to a lesser extent on zinc anti-caries effects.

A review of the literature on the effect of zinc on dental erosion did not reveal any work done on the use of zinc as a preventive aspect or in cases of dental erosion. In fact many publications have studied the erosive potential of zinc fumes (zinc oxide, zinc chloride) specially on industrial workers (Remun et al., 1982).

Zinc’s ability to inhibit apatite dissolution under acidic erosive like conditions and the potential usefulness of zinc as an ingredient in toothpastes for erosion prevention purposes is a subject that has been overlooked and requires further research.

5.6 Effect of zinc on hydroxyapatite dissolution

The exact mechanism by which the divalent cations reduced enamel dissolution has been an issue of controversy as ion uptake by HAp from solution can occur via two methods.

Method 1: As HAp dissolves in the acidic environment, phosphates are released. Phosphates can react with metal cations in the solution to form new low soluble
divalent metal (Me) phosphate crystals with an apatitic structure that precipitates according to the Equation 5.1 and 5.2:

\[
\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2 + 14\text{H}^+ \rightarrow 10\text{Ca}^{2+} + 6\text{H}_2\text{PO}_4^- + 2\text{H}_2\text{O} \quad (5.1)
\]

\[
10\text{Me}^{2+} + 6\text{H}_2\text{PO}_4^- + 2\text{H}_2\text{O} \rightarrow \text{Me}_{10}(\text{PO}_4)_6(\text{OH})_2 + 14\text{H}^+ \quad (5.2)
\]

Method 2: This involves some \(\text{Ca}^{2+}\) being substituted with the divalent metal cation by a diffusion process and adsorbed onto the surface (Equation 5.3)

\[
\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2 + x\text{Me}^{2+} \rightarrow (\text{Ca}_{10-x})\text{Me}_x(\text{PO}_4)_6(\text{OH})_2 + x\text{Ca}^{2+} \quad (5.3)
\]

Therefore, we can say that zinc might adsorb on to the HAp surface and block high energy “kink” sites on the outer surface. According to Xu *et al.* the adsorption method occurs at pre equilibrated HAp. Otherwise zinc might be incorporated in the HAp lattice forming new zinc phosphate crystals that precipitate (Xu *et al.*, 1994). At zinc concentrations of \(\geq 1\) ppm, hopeite \((\text{Zn}_3(\text{PO}_4)_2.4\text{H}_2\text{O})\) is formed. Zinc is incorporated into the HAp lattice forming a hopeite layer at the surface (Xu *et al.*, 1994). Hopeite is usually formed at low pH. As the pH increases, other forms of apatitic structures such as scholzite \((\text{CaZn}_2(\text{PO}_4)_2.2\text{H}_2\text{O})\) and zincite \((\text{ZnO})\) are formed.

The incorporation of zinc as a divalent metal cation in HAp and in particular its binding site is still not clearly understood. One reason for this uncertainty is the presence of two structurally distinct cation sites Ca1 and Ca2, in the HAp lattice which appear to be suitable for zinc substitution (Figure 5.1). A considerable amount of research has been done on metal ion preference in the HAp structure (Mayer *et al.*, 1994, Terra *et al.*, 2002, Tamm and Peld, 2006, Matsunaga, 2008, Tang *et al.*, 2009, Matsunaga *et al.*, 2010) and still the debate continues regarding the selection criteria influencing how metal ions choose between Ca1 and Ca2 sites.
When Zn$^{2+}$ occupies the Ca2 site, the result is an overall shrinkage and more stability in the crystal. The local HAp lattice shrinkage brings the ZnO$_4$ tetrahedron and the channel OH$^-$ groups in the HAp lattice closer, minimising the effect on the adjacent Ca1 sites and avoiding any disruption of the framework (Elliott, 1994).

Ca2 site preference is in case of pure HAp, but in biological apatite when there is an especially high concentration of carbonate (CO$_3^{2-}$) and which also may be Ca$^{2+}$ deficient which is the case in teeth, this might influence the uptake of Zn$^{2+}$ and its site binding. From reviewing the literature and the mechanism through which Zn$^{2+}$ affects the hydroxyapatite demineralisation rate (R_{DHAp}) it seems that both, adsorption and incorporation are not mutually exclusive, and it is likely that both mechanisms are implicated in reducing HAp solubility in the presence of Zn$^{2+}$, to a greater or lesser extent.
CHAPTER 6

Strontium

6.1 Introduction:

Strontium (Sr) is one of the most abundant elements on earth, forming about 0.04% of the earth’s crust. It is element number 38 of the periodic table of elements, and was first discovered in 1808 near a village in Scotland called Strontian, after which the metal was named (Murray, 1993). It has mass number 87.62, a melting point of 777°C and a boiling point of 1384°C. Strontium can exist in two oxidation states: Sr⁺ and Sr²⁺. Under normal environmental conditions, only the Sr²⁺ oxidation state is stable enough to be important. Strontium is reactive with water to produce strontium hydroxide and hydrogen gas. Natural strontium is not radioactive and exists in four stable types (or isotopes), each of which can be written as ⁸⁴Sr, ⁸⁶Sr, ⁸⁷Sr, and ⁸⁸Sr. Rocks, soil, dust, coal, oil, surface and underground water, air, plants, and animals all contain varying amounts of strontium. Strontium concentrations in most materials are a few ppm, yet strontium is considered abundant trace element in seawater, at an average concentration of 8.1 ppm (Angino et al., 1966). The human body contains an average of 320 mg of strontium, almost all of it is in bone, teeth and connective tissue (Schweissing and Grupe, 2003).

Strontium compounds, such as strontium carbonate, are used in making ceramics and glass products, paint, fluorescent lights, medicines, and other products.
Strontium can also exist as radioactive isotopes. 90Sr, or strontium ninety, is the most hazardous of the radioactive isotopes of the chemical element strontium. 90Sr is formed in nuclear reactors or during the explosion of nuclear weapons. The radioactive half-life is the time that it takes for half of a radioactive strontium isotope to give off its radiation and change into a different element. 90Sr has a half-life of 29 years.

Strontium is not an essential trace element, and therefore, there is no established recommended daily intake, no defined level of deficiency and no identified symptoms of strontium toxicity or strontium overdose. It is usually abundant in milk, dairy products, vegetables (such as spinach, lettuce, and carrots), red meat as well as seafood. Therefore the body usually gets the little strontium it needs through diet. However, therapeutic doses of strontium supplements range from 10 mg to 1000 mg and more daily. Such a high dose is usually prescribed for the treatment of osteoporosis, as strontium plays a role in promoting osteoblastic, and inhibiting osteoclastic, activity (Meunier et al., 2004).

Once strontium enters the bloodstream, it is distributed throughout the body, where it can enter and leave the cells quite easily. In the body, strontium behaves very much like calcium. Most of the strontium will accumulate mainly in bone (in adults, strontium mostly attaches to the surfaces of bones). Strontium is eliminated from the body through urine, faeces, and sweat.
6.2 Strontium in bone

Strontium has close chemical similarity to calcium; therefore it behaves in a similar manner to calcium and is involved in the development of tooth and bone at times when calcification is taking place. Strontium can replace calcium to some extent in various situations in the body, such as replacing a proportion of calcium in the hydroxyapatite lattice in bone and teeth.

The human placenta plays a selective role against strontium transfer from maternal blood to the foetus during early pregnancy; this selective permeability becomes free passage towards the end of pregnancy. The strontium concentration of the foetus is determined entirely by the strontium level in the mother’s blood (ingested by the mother during pregnancy).

According to very early studies, strontium deposition in bone can take place through two methods (Likins et al., MacDonald et al., 1951, Glas and Lagergren, 1961).

Method one: involves rapid incorporation of strontium. It refers to the blood strontium deposited by ionic exchange, surface adsorption, and preosseous protein binding.

Method two: involves slow incorporation of strontium into the lattice structure of the bone crystals during their formation.

Method one and method two are both considered valid and we cannot be certain about which of the two strontium deposition processes contributes to the initially formed bone and tooth tissues.

Most recent studies have shown that postnatal and through life, strontium accumulates in bone, in particular where active remodeling is taking place as it stimulates the cell replication of osteoblasts which ultimately increase the rate of
new bone formation and decrease bone resorption by inhibiting osteoclast differentiation and activity (Canalis et al., 1996, Marie et al., 2001, Baron and Tsouderos, 2002). Accordingly strontium has been used in medications for the treatment and prevention of osteoporosis (Bonnelye et al., 2008).

6.3 Strontium in the oral cavity

Strontium in the oral cavity is present in teeth, dental plaque as well as in saliva. There has been considerable research on the role and distribution of trace elements in dental enamel, and these have succeeded in demonstrating the concentration distribution pattern through the dental enamel thickness. While most of the trace elements studied (eg. Zn$^{2+}$, Cu$^{2+}$, F, Fe$^{2+}$, Mn$^{2+}$) showed a higher concentration at the outer enamel layer, Sr$^{2+}$ and Mg$^{2+}$ showed a different distribution pattern. Their concentration gradually increased with age and more towards the dentino-enamel junction (Frank et al., 1989, Reitznerová et al., 2000). Human enamel was reported to have mean values between 70 and 286 µg/g of strontium, with a median value of 115 µg/g (Curzon and Cutress, 1983). Less strontium is found in dentine than in enamel (Frostell et al., 1977, Frank et al., 1989). Strontium concentrations on tooth surfaces can be affected by the amount of strontium in the drinking water. The issue of the relationship between Sr$^{2+}$ concentration in water and in the enamel surface and its relation to caries resistance has been a topic of interest since the 1950s (Steadman et al., 1958, Barmes, 1969).

Although Sr$^{2+}$ is not considered one of the elements with significant quantities in dental plaque, it has been detected in plaque fluid from subjects who lived in an area where the strontium level in drinking water ranged between 0.4 and 17.9 mmol/l (Margolis, 1994).
Curzon studied the whole resting saliva for 14 year old school children in different areas with different strontium levels in drinking water in Wisconsin (U.S.A.) and found that strontium concentrations in saliva were weakly related to its concentrations in drinking water. He also reported a negative relationship between strontium concentrations in saliva and caries prevalence (Curzon, 1984).

6.4 Effect of strontium on hydroxyapatite dissolution

The mechanism of Sr\(^{2+}\) behaviour in HAp is controversial. Grynpas (1993) thought that the incorporation of Sr\(^{2+}\) in the HAp lattice weakened the lattice structure and increased its solubility. Le Geros (1991) also found that the substitution of some Ca\(^{2+}\) in calcium apatite by Sr\(^{2+}\) causes the crystal lattice to expand and the solubility to increase. This is due to the larger ionic radius of Sr\(^{2+}\) (≈1.12Å) than the ionic radius of Ca\(^{2+}\) (≈0.99Å) (Kikuchi et al., 1994). On the other hand Christoffersen et al. (1997) and Dedhiya et al. (1973) found that Sr\(^{2+}\) strongly inhibited HAp dissolution due to the formation of a Ca\(_3\)Sr\(_2\)(PO\(_4\))\(_3\)OH surface complex, with up to 40% strontium substitution (Heslop et al., 2003). It was also indicated by Christoffersen et al. (1997) that the solubility of strontium-substituted apatite increases with the increase in strontium content. In comparison with results obtained from Verbeeck et al. (1981), up to 10% Strontium substituted apatite give a reduction in HAp dissolution (Li et al., 2007).

6.5 Effect of strontium on dental caries

Research work on the effect of strontium on dental caries goes back to as the mid-1960s, when Losee and Adkins showed that post eruption exposure to high
strontium doses had an anti-carious effect. Gedalia and Curzon also studied the
effect of prenatal, pre-eruptive and postnatal administered strontium on rat teeth and
found that strontium showed an anti-carious effect (Gedalia et al., 1975, Joseph et
al., 1977, Ashrafi et al., 1980, Curzon et al., 1982). The pre-and post-eruptive effects
of low doses of strontium on dental caries in rats were reported to be associated with
the lowest caries level. It was also reported that the uptake of strontium by enamel
was significantly correlated with its concentration in diet (Ashrafi et al., 1980).

In 1969 Losee and Adkins (1969) published a 10 year study carried out by
the United States Naval Dental Service which involved dental examination of
approximately 270,000 naval recruits, and showed only 360 completely caries-free
individuals. Out of the 360 caries-free individuals, 36 individuals belonged to one
small area near Rossburg, Ohio, where the water had a higher strontium
concentration. Likewise, Curzon (1985) conducted studies on 80 young boys from
five different communities in Ohio and his results indicated an inverse relationship
between caries prevalence and strontium level in drinking water. Curzon et al.
(1978) also carried out a study on 1313 children aged 12 to 14 years and suggested
that strontium in drinking water supplies may be associated with an inhibition of
dental caries, particularly during the tooth development period, presumably through
incorporation in the apatite crystal. Similar results were obtained from Athanassouli
et al. (1983) who investigated the possible cariostatic effect of high strontium levels
in drinking water and concluded that a low DMFT index was associated with high
strontium concentration in drinking water.

Studies on the effects of strontium and fluoride applied together showed that
the combination appeared to be more effective in controlling dental caries than
fluoride alone (Featherstone et al., 1983a, Curzon, 1985, Curzon, 1988, Thuy et al., 2008).

6.6 Effect of strontium on dentine hypersensitivity

Strontium containing toothpastes for the treatment of tooth hypersensitivity were introduced to the market around five decades ago. Strontium chloride was introduced commercially as the first tubule occluding agent in the original Sensodyne™ toothpaste (Dowell and Addy, 1983). Due to the reaction that occurs between strontium chloride and fluoride, an insoluble strontium fluoride is formed and that is the rational for calling the original Sensodyne™ product a fluoride free toothpaste. In the 1970s however, strontium chloride was mostly replaced by potassium nitrate. Strontium containing toothpastes were later modified by the incorporation of strontium acetate in place of strontium chloride. Strontium acetate is compatible with fluoride and does not form insoluble precipitates (Cummins, 2010). Eight percent strontium acetate showed rapid and lasting relief of hypersensitivity (Layer and Hughes, 2010). Together 8% strontium acetate with 1040 ppm fluoride are considered the optimal combination available currently on the market for the treatment of tooth hypersensitivity (Hughes et al., 2010, Mason et al., 2010). Three potential mechanisms of action for strontium salts, in terms of treatment for dentine hypersensitivity have been proposed in the literature. First, it is believed that strontium causes some degree of nerve depolarisation. Second, strontium shows chemical similarities to calcium and is capable of replacing lost calcium in the HAp lattice. Third, a layer of fine particles may be deposited by the strontium salts leading to the occlusion of the dentinal tubules.
In conclusion, strontium has proved its effectiveness in the management of tooth hypersensitivity. However, its anti-carious effect is still an area of controversy and more research is needed.
CHAPTER 7

Copper

7.1 Introduction:

Copper (Cu2+) is a highly conductive metal (thermally and electrically). It has atomic number 29 and mass 63.546. Its melting point is 1084.62°C and its boiling point is 2562°C. Copper is a transition metal with different oxidation states: Cu1+ (cuprous), Cu2+ (cupric), Cu3+ and Cu4+. The cupric state is found most often in biological systems. The name copper originates from the word Cyprium (means metal of Cyprus) which was later on shortened to Cuprum and this goes back to the Roman Empire when copper was discovered in Cyprus (Dhavalikar, 1997).

Copper is an essential trace element for human metabolism. It is needed for many body functions such as red blood cell synthesis, synthesis of particular enzymes responsible for body metabolism and, energy production, and it also assists in iron absorption (Danks, 1988). Copper also forms part of the enzyme imine oxidase which is involved in collagen crosslinking (Knott and Bailey, 1998).

Copper is abundant in regular diets. The RDA of 2 mg is usually obtained easily from a balanced diet. It is rare to be truly deficient in copper (Klevay, 1998). Copper is found in seafood, organ meat (such as liver, kidney and heart), nuts (such as cashew and almond), soybeans, lentils as well as dried fruits (Klevay, 1998). Humans may also obtain copper inadvertently using copper cookware. When food is
prepared and left to set for an extended period of time in copper cookware, this may allow copper transfer from the cookware surface. One may also get copper unnoticeably from water coming through copper pipes. In many regions of the world, drinking water supplies are constructed from copper tubing. Copper plumbing leaches a small amount of copper into drinking tap water supplies. The WHO has published a document in 2004 about copper in drinking water (WHO, 2004).

 Copper deficiency can occur in early life due to insufficient copper in infants exclusively fed a cow’s milk diet, because of the low copper content of cow’s milk, and its limited absorption into cow’s milk (Dorner et al., 1989). In adult life, copper deficiency can arise after burns, chronic diarrhoea, intestinal diseases and pancreatic diseases.

 Acute copper toxicity is very rare and mainly restricted to the accidental drinking of solutions of copper nitrate or copper sulphate. However, these solutions and other organic copper salts have a powerful emetics effect and in large doses they are normally rejected by the body by vomiting. Chronic copper poisoning is also very rare in healthy humans as healthy human livers are capable of excreting considerable amount of copper (Turnlund et al., 1990, Turnlund et al., 1998).

7.2 Effect of copper on dental plaque

 In 1940, Hanke reported the effect of copper on dental plaque and referred to this as the “destruction of plaque” (Hanke, 1940). Since then, the antimicrobial effect of copper ions on oral bacteria has been a subject of interest for researchers, but the antibacterial effect of ions other than copper, particularly zinc or silver on biofilm formation, appears to have received much more attention.
In vitro studies have reported the antibacterial effect of copper ions against oral bacteria. Due to the variety of oral microorganisms and the variety of tests, the extent of the effect of copper ions has been different across the various studies, and therefore difficult to compare. For example, Maltz and Emilson (1982) studied the effects of various fluoride salts on oral bacteria. They and others reported bactericidal effects of copper fluoride on several species of oral bacteria, and concluded that metal salts of fluoride (SnF$_2$ and CuF$_2$) showed a stronger antibacterial effect than non-metal fluoride compounds, which is in accordance with other studies (Andres et al., 1974, Yoon and Berry, 1979, Mayhew and Brown, 1981).

In vivo studies have also shown that copper ions have antibacterial activity. There is a controversy about whether chlorhexidine is more of an efficient antibacterial agent than copper. Waerhaug et al. (1984) reported that the antibacterial effect of copper ions was not as noticeable as that of chlorhexidine, which has been reported to be the most effective antibacterial agent for the reduction of plaque and gingivitis (Waerhaug et al., 1984, Ciancio, 1992). However, Waler and Rolla (1982) have studied and compared the effect of chlorhexidine, copper, and silver containing solutions, and found that although chlorhexidine showed the best results it was not significantly different from the effects of copper ions, whereas the efficacy of silver was the least statistically significant. Whether the antimicrobial effect of chlorhexidine is significantly better than that of copper or not, copper has the advantage of causing less staining than chlorhexidine which causes darker and more difficult stains to remove (Mandel, 1988). Also, the taste of both copper and chlorhexidine mouthwashes is a problem, but copper containing mouthwash is considered to be more acceptable than chlorhexidine mouthwashes (Waerhaug et al.,
1984). Thus, copper containing products show promise for future use in the
treatment of oral infections and deserve further study (Mandel, 1988).

7.3 Effect of copper on dental caries

As discussed in Section 7.2, studies have shown that copper salts exhibit an
inhibitory effect on bacterial dental plaque. Studies on the ability of copper to inhibit
dental caries initiation and progression go back as far as the 1950s when it was
reported that copper has an inhibitory effect on dental caries in hamsters (Hein,
1953). Later Afseth et al. studies investigated the cariostatic effect of copper on rats
and on human dental enamel (Afseth et al., 1980, Afseth et al., 1983b, Afseth et al.,
1984a, Afseth et al., 1984b).

Both *in vivo* and *in vitro* studies, showed copper as a potent cariostatic agent.
Its cariostatic property is demonstrated through its ability to reduce the number of
bacteria in dental plaque as well as decrease smooth surface dental caries scores
(Oppermann and Johansen, 1980, Afseth et al., 1983b, Mandel, 1988, Davey and
Embry, 1992).

Afseth *et al.* studied the effects of copper sulphate (in the form of a
mouthwash), fluoride (in the form of fluoridated water), and the combination of
both, on dental caries in rats. They noticed that the group receiving topical Cu²⁺
treatment together with fluoride in the drinking water gave the lowest smooth surface
caries score and the lowest number of bacteria in dental plaque. These results were
comparable to results found in previous studies (Larson and Amsbaugh, 1975,
Afseth *et al.*, 1984a).
PART I: INTRODUCTION AND LITERATURE REVIEW

According to the literature, copper exerts its cariostatic function through two mechanisms. First, is the antibacterial action of copper on dental plaque bacteria (bactericidal/bacteriostatic effect). Copper has the ability to a) limit bacterial growth, by inhibiting glycolysis through oxidation of thiol groups in the enzymes involved in the glycolysis process, leading to decreased acid production by bacteria, and b) stopping important metabolic reactions in plaque bacteria such as the bacterial ability to convert urea to ammonia (Maltz and Emilson, 1982, Afseth et al., 1984b, Rosalen et al., 1996a, Rosalen et al., 1996b). Second is the ability of copper to form copper phosphate crystals on the tooth surface that protect the enamel and increase its resistance to acidic mediated dissolution. However, very few studies have been carried out to verify this second mechanism (Koulourides et al., 1968, Rosalen et al., 1996a, Brookes et al., 2003, Abdullah et al., 2006) and this is one of the aims of this thesis.

7.4 Effect of copper on enamel demineralisation

A literature review of the effects of copper on dental enamel demineralisation shows that most research has been done to explore its cariostatic effects due to its bactericidal properties. Only a few studies have been carried out to examine the direct effect of Cu$^{2+}$ on the acid mediated dissolution mechanism of dental enamel.

Afseth et al. studied the effect of copper applied topically or in drinking water on the caries experience in rats. They reported that 1.0 mmol/l Cu$^{2+}$ in drinking water and 5.0 mmol/l Cu$^{2+}$, topically applied, inhibited caries formation in a rat model. They also reported that although the *Streptococcus mutans* count was lowered when copper was delivered topically or in drinking water, the *Streptococcus*
mutans count was only statistically significantly reduced when copper was delivered in drinking water. This shows that copper may have a direct effect on enamel demineralisation, which Afseth et al. explained with reference to the ability of Cu\(^{2+}\) to electrostatically bind to various acid groups in dental plaque and stay retained in dental plaque for a long duration (Afseth et al., 1984a, Afseth et al., 1984b).

Brookes et al. (2003) studied the inhibitory effect of copper in the form of copper sulphate under erosion-like conditions using acetic acid pH 3.2. They found that copper decreased enamel dissolution, and by studying a range of copper concentrations, they found that the peak of the reduction in enamel dissolution was achieved by 90 ppm Cu\(^{2+}\), whereas higher copper concentrations did not show a statistically significant reduction in enamel dissolution rate.

![FIGURE 7.1](image)

FIGURE 7.1 The effect of Cu\(^{2+}\) concentration on the phosphate released form powdered human enamel (Brookes et al., 2003) after the conversion of Cu\(^{2+}\) concentrations from mmol/L to ppm

The same group measured the molar calcium to phosphate ratio in the demineralisation solution in the presence of Cu\(^{2+}\). It was found that there is a higher calcium to phosphate ratio in the demineralisation solution compared to the calcium
to phosphate ratio in enamel (≈1.88 compared and ≈1.55, respectively) suggesting that copper ions replace calcium ions, forming copper phosphate crystals on the enamel surface. This has a more stable structure which has a lower dissolution rate when exposed to an acidic attack (Abdullah et al., 2006). They concluded that the Cu$^{2+}$ inhibition effect of enamel demineralisation may be a surface controlled mechanism rather than a change in structural phase (Brookes et al., 2003) and might even occur at the level of the Stern layer as discussed by Mafe et al. (1992).

In conclusion, this literature review shows that Cu$^{2+}$ has potential usefulness as a cariostatic agent both as an antimicrobial agent against dental plaque bacteria causing caries and periodontal disease, and as a mineral mass loss protective agent, against caries and erosion. More research is needed to explore the mechanisms by which Cu$^{2+}$ alters HAp dissolution kinetics.
CHAPTER 8

X-ray microscopy

8.1 Nature of electromagnetic radiation

Radiation can be defined as the transmission of energy through space and matter (White and Pharoah, 2008). This transmission can take place in two forms; particulate and electromagnetic. Particulate radiation consists of atomic nuclei or subatomic particles moving in a high velocity such as α-rays and β-rays, while electromagnetic radiation is the movement of energy through space as a combination of electric and magnetic fields (White and Pharoah, 2008).

Electromagnetic radiation is a wave in space or through matter with the electric and magnetic field components perpendicular to each other and perpendicular to the direction of energy propagation as demonstrated in Figure 8.1 (Seibert, 2004).

FIGURE 8.1 X-ray is an electromagnetic wave, where the electric and magnetic fields are perpendicular to each other and to the direction of propagation (Seibert, 2004)
Electromagnetic radiation is classified into several types according to their wave frequency. Radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-ray and gamma rays are all examples of electromagnetic waves. Of these, radio waves have the longest wave length and gamma rays have the shortest (Figure 8.2).

![Electromagnetic spectrum](http://www.centennialofflight.gov/essay/Dictionary/ELECTROSPECTRUM/DI159.htm)

FIGURE 8.2 The electromagnetic spectrum in terms of wave length

8.2 X-ray generation

8.2.1 Introduction

More than one hundred years ago, in 1895, Wilhelm Conrad Roentgen discovered X-ray generation. He was the first to call them X-rays. One of the first X-ray photographs taken was the hand of Roentgen’s wife taken three days before Christmas on 22 December 1895 (Figure 8.3). The image displayed both her wedding ring and bones (Assmus, 1995).
First X-ray photograph taken by Roentgen showing his wife’s fingers (Assmus, 1995)

To generate X-rays Roentgen used a large induction coil connected to vacuumed glass tube. His detection system comprised of a paper screen covered with crystals of barium platinocyanide, set up in a dark room. On 28 December 1895 he announced his discovery and gave an accurate description of many of the basic properties of the rays (Assmus, 1995).

8.2.2 Modern X-ray tube

Roentgen’s idea of X-ray generation was to introduce a high voltage to a residual gas at 10^{-3} mmHg pressure, leading to the formation of electrons and positively charged ions. The positive ions bombard a curved cathode releasing electrons which are accelerated towards the anode under high voltage producing X-ray. In roentgen X-ray generation, it was essential to maintain the gas pressure constant because changes in the pressure resulted in change in voltage between the anode and cathode of the tube.
In 1913 William Coolidge introduced a new source of electrons in the form of a hot tungsten spiral filament in a vacuumed glass. The filament is heated by a current provided by a battery and accordingly the electron current could be controlled independently of the applied voltage (Assmus, 1995).

The basic operating equipment for generating X-rays is the X-ray tube, and is composed of cathode and anode. The cathode acts as a source of the electrons to be directed at the anode. Both anode and cathode are enclosed in an evacuated glass tube. Electrons from the cathode are generated and when they strike the target in the anode they produce X-rays.

In order for an X-ray tube to generate X-rays it is fundamental that it should have a power supply that is capable of establishing a high voltage potential between the anode and the cathode which is required to accelerate the electrons (Figure 8.4).
PART I: INTRODUCTION AND LITERATURE REVIEW

I. Cathode

The cathode consists of a filament and a focusing cup (Figure 8.4(a)). The filament is the source of electrons. It is a coil of tungsten wire about 2 mm in diameter and 1 cm in length, mounted on two stiff wires that act as holder and at the same time supply the filament with electrical current. To achieve a small focal spot the electrons are focused by a small metal focusing cup maintained at the same high voltage as the filament.

II. Anode

The anode is a target embedded in a copper block that is usually cooled. The target material is made up of an element that has a high atomic number, high melting point and a low vapour pressure at the X-ray operating temperature. In an X-ray tube the anode is kept at a high positive potential in comparison to the filament. When the filament is heated electrons are generated. These electrons accelerate through the potential difference between the anode and the cathode. They hit the target and transfer their kinetic energy to X-ray photons. Only a small amount of the electrons’ kinetic energy produces X-ray photons, while about 99% is converted to heat. This explains the need for a target material with high melting point. X-ray tube anodes can be the fixed (stationary) type or the rotating anode type. In this study a fixed anode X-ray set was used (Figure 8.4 (b)).

III. X-ray tube envelope

The X-ray tube components are engulfed by a tightly air evacuated glass envelope. When the accelerated electrons generated by the cathode hit the target at the anode, they transfer their kinetic energy into heat and X-ray photons and the X-rays leave the X-ray tube case through two or more windows, usually made from
beryllium as they need to be vacuum tight but highly transparent to X-rays (Figure 8.4).

8.2.3 Microfocus tubes

Microfocus X-ray tubes are used in situations when a fine X-ray beam size is critical. With a microfocus tube, a high resolution and high magnification is achievable (Figure 8.4(b)). They are usually demountable X-ray tubes with a very small focal spot. The focal spot size determines the size of the actual X-ray source.

8.2.4 Electron impact X-ray source

When the accelerated electrons hit the target on the anode they are capable of producing two different types of radiation; continuous spectrum radiation and characteristic radiation (Figure 8.5).

![Figure 8.5](image.png)

FIGURE 8.5 A typical X-ray spectrum produced by a tube with tungsten target showing continuous and characteristic radiation

I. Continuous radiation

There is a small probability that some electrons from the filament may penetrate the electron cloud and pass close to or interact with the nucleus or nuclear field of the target atoms. This interaction involves the deflection of the electron by
the nucleus accompanied by large energy loss by the electron. This energy is emitted as high energy electromagnetic X-radiation that is usually referred to as continuous or Brehmsstrahlung or braking radiation. Continuous radiation contains many energy levels. When the tube voltage is increased, the intensity of all wavelengths in the continuous spectrum increases as well as the maximum energy position.

II. Characteristic radiation

This type of radiation occurs simultaneously with Brehmsstrahlung production. This process involves the interaction of an electron from the filament with individual orbital electrons in the atoms of the target material. If it has enough energy, a filament electron may eject an orbital electron from an inner shell (K, L or M) of the target atom. This is followed by an outer-shell electrons dropping into inner shells to fill the vacancy, and the difference in energy is emitted in the form of characteristic radiation. This is called characteristic radiation because it is "characteristic" for the element and named according to the shell which captured the electron. For example, characteristic radiation resulting from an outer shell electron filling a vacant site in the K shell is named K-characteristic radiation.

8.2.5 Factors affecting X-ray beam quantity and quality

X-ray beam quantity usually refers to a measure of the amount or number of photons in the beam. The words quantity, exposure and intensity are interchangeable as the higher the quantity or amount of radiation the greater the exposure. On the other hand, quality of X-ray beam refers to the measurements of its penetrating power ie. its average photon energy.
There are many factors affecting the quantity and quality of the final X-ray beam. These include: tube voltage, tube current, distance from target, target material and position across the beam and filtration (Figure 8.6).

I. Tube voltage (V)

Increasing the voltage (V) accelerates the electrons emitted from the heated filament, and the total intensity (I) is proportional to V^2:

$$I \propto V^2 \quad (8.1)$$

Also the higher the tube voltage, the higher the maximum photon energy will be, and hence the more penetrative the beam:

$$E_{\text{max}} \propto V^2 \quad (8.2)$$

II. Tube current (A)

The total intensity increases on increasing the filament current since this result in an increase in the tube current which increases the number of electrons hitting the target:

$$I \propto A \quad (8.3)$$

III. Distance from target

There is an inverse square relation between the X-ray intensity (I) and the distance (d) from the target:

$$I \propto \frac{1}{d^2} \quad (8.4)$$

IV. Target material

Target materials with high atomic number (Z) and high density are more efficient in X-ray production:

$$I \propto Z \quad (8.5)$$
V. Filtration

The purpose of using of filters is to modify the beam spectrum by differential attenuation of different photon energies. For example in diagnostic radiology the filters are designed to remove the unwanted low energy photons which will be otherwise absorbed by the body tissue without contribution to the final radiographic image.

VI. Summary

Summarising the effect of the above factors on the X-ray spectrum is illustrated in Figure 8.6, and the X-ray intensity equation can be written as:

\[I \propto \frac{V^2 \cdot A \cdot Z}{d^2} \] \hspace{1cm} (8.6)

FIGURE 8.6 Factors affecting the X-ray spectrum. (a) changing the tube voltage changes the X-ray spectrum; (b) effect of tube current on the X-ray spectrum; (c) effect of target material on the spectrum; (d) adding a filter changes the shape of the X-ray spectrum (Pobe, 1998)
8.3 X-ray interaction with matter

As an X-ray beam passes through an object, there are three possible ways in which the photons will react:

I. Penetrate the section of matter without interacting.

II. Interact with the matter and be completely absorbed by depositing their energy.

III. Interact and be scattered or deflected from their original direction and deposit part of their energy.

X-rays attenuation depends on the X-rays energy level, density, and atomic number of the material.

8.3.1 Attenuation mechanisms

The attenuation mechanisms in general of any object are summarised in (Figure 8.7) and described as follows:

I. Photoelectric absorption

The photoelectric interaction involves an interaction between a photon and an electron from an inner orbital shell at the matter. Usually inner shells electrons bind firmly to the atom and when their binding energy is only slightly less than the energy of the photon, they get ejected from the atom and move a relatively short distance from their original location. The energy transfer is a two-step process; the first step involves the photoelectric interaction in which the photon transfers its energy to the electron, the second step involves the electron depositing its energy in the surrounding matter. The photon's energy is divided into two parts by the interaction. A portion of the energy is used to overcome the electron's binding energy and to
remove it from the atom. The remaining energy is transferred to the electron as kinetic energy and is deposited near the interaction site. When the electron is ejected out of the shell a vacancy is created, usually in shell K or L. This vacancy is then filled by an electron moving from an outer shell. The difference in energy between the two shells produces a characteristic X-ray photon (Aichinher et al., 2004, White and Pharoah, 2004).

II. Compton scattering

Compton scatter occurs when incoming photon has greater energy than the binding energy of the electron in the atom. As a result only part of the photon energy is used to eject the electron from its shell (usually outer shell electron). The photon leaves the site of the interaction in a different direction with reduced energy and the electron (called recoil electron) distributes its energy via ionisation.

III. Pair production

Pair production is a photon-matter interaction. It takes place when the incident X-ray has energy greater than 1.02 MeV. The interaction of the incident photon with the electric field of the nucleus produces an electron-positron pair. This is not a very common type of interaction and not relevant to this study.

IV. Coherent scattering

In coherent scattering, an incident photon interacts with matter and excites an atom, causing it to vibrate. The vibration causes the photon to scatter. The coherent scattering can be also referred to as Thompton scattering.
PART I: INTRODUCTION AND LITERATURE REVIEW

8.3.2 X-ray attenuation: Beer’s law

Beer's law, also known as Beer–Lambert law or the Lambert–Beer law, relates the absorption of electromagnetic radiation to the properties of the attenuating material. A monochromatic X-ray beam is attenuated exponentially as it passes through a medium (Figure 8.8). This relationship is expressed by Beer’s law as:

\[I = I_o e^{-\mu x} \]

(8.7)

where

- \(I \) is the intensity of the attenuated beam
- \(I_o \) is the initial intensity of the beam
- \(x \) is the thickness of the medium
- \(\mu \) is the linear attenuation coefficient (LAC)
8.3.3 Types of attenuation coefficient (LAC)

I. Linear attenuation coefficient (LAC)

The linear attenuation coefficient (μ) of an element or material refers to the fraction of the beam of X-rays that is absorbed or scattered per unit thickness of the material. It has units of cm\(^{-1}\).

II. Mass attenuation coefficient (MAC)

The mass attenuation coefficient describes the attenuation per unit area density of material, and has units of m\(^2\)kg\(^{-1}\) but is normally expressed as cm\(^2\)g\(^{-1}\). This is because at a given photon energy, the linear attenuation coefficient can vary significantly for the same material if it exhibits differences in physical density.

$$\mu_m = \frac{\mu}{\rho} \quad (8.8)$$

where

μ is the linear attenuation coefficient

ρ is the density

8.4 X-ray detection

8.4.1 Introduction to semiconductors

There are different types of X-ray detection system, these include: solid state semiconductor detectors, X-ray films, gas detectors and scintillation detectors. In this section only the semiconductor detectors are going to be discussed in details, as this is the type of detector used in this study.
In semiconductors and insulators the electrons are confined to different bands of energy and are forbidden from other regions. The band gap represents the energy difference between the valence band and the conduction band. For semiconductors the band gap energy is small but not zero with an upper limit of $\approx 4\text{eV}$, while for insulators the band gap is large. The main example of these solid state semiconductor detectors are high purity germanium detectors (HPGe) and lithium drifted silicon detectors (Si(Li)). A high purity germanium detector is used in this study.

The basic principle behind the operation of semiconductor detectors is that as the photon passes through the detector, an electron–hole pair is created. These electron-hole pairs are produced when an electron acquires enough energy to overcome the band gap and jump from the valence band to the conduction band in the detector material. Electron–hole pairs are considered the basic information carriers in solid state detectors (Singh, 2000, Seibert and Boone, 2005).

8.4.2 Multichannel analysers (MCA)

The role of the MCA is to convert the voltage pulses from the detector preamplifier into digital pulses. These digital pulses are organised in electric “bins” which correspond to different ranges of voltage pulse. Important characteristics of an MCA are linearity and stability with respect to temperature changes, and analogue to digital conversion time. In this study a DSPEC Plus (EG & G ORTEC, TN, USA) is used as both amplifier and MCA. This MCA system uses a zero dead-time correction technique developed by ORTEC to correct the actual number of counts by determining the number of events that must be added to account for pulse pile-up.
CHAPTER 9

Scanning Microradiography (SMR) Theory and Methodology

9.1 Introduction

Scanning microradiography is an X-ray attenuation technique which was initially developed by Elliott et al. (1981). It was later modified by Anderson and Elliott (1985) to observe real-time physical and chemical changes in specimens. The aim behind the concept of developing the SMR was to overcome the difficulties associated with the conventional contact microradiography (CMR) such as inhomogeneity of the film emulsion due to manufacture variation, saturation of the photographic emulsion as well as nonlinear response and noise at low X-ray exposures (Anderson, 1988, Anderson, 1993).

SMR is a point by point X-ray absorption technique which enables measurement of the intensity of approximately 15 µm transmitted X-ray beams as they are attenuated by passing through a specimen mounted on the SMR moving specimen holder stage. The stage has an accuracy of movement of approximately 0.1 µm. It travels a distance of 600 mm horizontally in the X-axis direction and 200 mm vertically in the Y-axis direction, driven by a stepper motor and controlled by a computer (Anderson, 1993). The transmitted photons are detected and counted via a high purity Germanium detector which eliminates the need for close contact between
specimen and detector. This allows for the creation of separate environmental chambers enclosing each specimen, which can be altered by, for example, changing the degree of saturation, chemical composition, pH and the circulating rate of the solution, all independently of other chambers. SMR allows the study of more than one specimen simultaneously during an experiment on a single stage. Computer control of the stage enables the order of scanning of the specimens as well as parameters of the scanning to be controlled independently. SMR can be considered the technique of choice for precise measurement of changes in mineral mass as the experiment conditions can be modified and the effect of the modifications on the experimented sample can be observed, measured and monitored in real time over a selected period of time that can be up to 1000 h. The disadvantages of SMR include that it is much more complex than CMR, it needs a very stable X-ray source and has a lower spatial resolution, and areas need more time for measurements (Anderson, 1993).

Scanning can be achieved in either a “parallel” or a “perpendicular” direction depending on the direction of the acid attack in relation to the X-ray beam. When the acid attack is perpendicular to the central X-ray beam it is called “perpendicular mode” (Anderson et al., 1998). When the acid attack is parallel to the central beam, it is called “parallel mode” (Anderson et al., 1998). In this study the “parallel mode” was used.
9.2 SMR system apparatus

FIGURE 9.1 SMR machine with its main components X-ray source, X-Y stage, and detector

FIGURE 9.2 Schematic representation of the SMR system main components and their connections
The SMR system apparatus consists of three main components; X-ray generator, SMR stage with SMR cell’s mounting frame, and X-ray detector (Figure 9.1 and Figure 9.2).

9.2.1 X-ray generator

SMR requires a very stable X-ray source that demands a high voltage high stability power supply. An Enraf-Nonious® FR590 X-ray microfocus generator was used with a PANalytical® X-ray tube with a silver (Ag) target that gives a characteristic Kα peak at 22.1 keV (Figure 8.4). An approximately 15 µm aperture made up from 90% gold and 10% platinum is used to produce an X-ray beam of approximately 15 µm diameter (Siscoglou, 2008).

9.2.2 X-ray detector

The X-ray detector used is a high purity germanium detector (Ametek, PA, USA). The detector was coupled to digital spectrometer and multichannel analyser DSPEC PLUS™ (Digital Gamma-Ray Spectrometer, ORTEC®, Ametek, PA, USA), which allows spectrum capture (for details of the multichannel analyser refer to Section 8.4.2). The information in a single voltage (analogue) pulse from a detector and amplifier is then sent to a digital converter where it is converted into a sequence of digital values. Counting can be narrowed to only those energy values that fall within a certain range of energy and therefore monochromatisation of the X-ray beam can be achieved (Kosoric, 2006).

9.2.3 SMR stage

The SMR apparatus has two stages that move in X and Y directions (Micromech, UK). The horizontal stage moves in the X-axis direction for a distance
of 600 mm while the vertical stage moves in the Y-axis direction for a distance of 200 mm. Each stage is controlled by a stepper of 0.1 µm resolution linear encoder and moved by stepper motors controlled by software (written by Dr P. Anderson, Queen Mary University of London) and connected to a computer terminal. The software was designed to enable the stage to perform up to 30 experiments simultaneously with 30 different parameters (time, number of steps, step size, standards, etc.).

9.2.4 SMR cells

The SMR cells are made up of polymethyl methacrylate-PMMA. The dimensions of the cells are 4.0 cm x 5.0 cm. Each cell has a centrally located chamber of 2.5 cm in diameter and 4.0 mm depth. Each cell has a cover made up of the same material and dimensions as the cell itself but with 1.0 mm thickness (refer to Section 10.3 for SMR cell details). Once the SMR cells are ready with the specimen disc securely positioned in the centre of the chamber, and the covers securely sealed with silicon and screws, the SMR cells can then be mounted on to the SMR stage.

9.2.5 Area scanning

Before the main experiment begins, an area scanning of each specimen should be performed. The area scan gives an indication of the status of the specimen and its exact location coordinates on the SMR scanning stage (Figure 9.3).
From the specimen area scan, two horizontal lines are chosen at approximately 2 mm apart. These lines are called line scans. On each line scan 13 points are chosen. The points are called scanning positions and refer to the points on the specimen that are going to be scanned throughout the experiment to determine any change in their mineral content. The 1st and the last scanning positions are located outside the specimen and are used as a reference (I\textsubscript{0}) value.

9.2.6 Data analysis

For the duration of the experiment the 13 scanning positions on each line scan are continuously scanned and real time counts are detected by the detector. Data analysis begins by standardising the counts at the chosen point against a standard measurement which is a point outside the specimen, to correct for variations in X-ray
generator and X-ray counting chain characteristics. According to Beer’s law (Section 8.3.2), for monochromatic radiation the intensity of transmitted beam through a sample is:

\[I = I_0 \ e^{-\mu x} \quad (9.1) \]

where \(I \) is the transmitted X-ray intensity, \(I_0 \) is the incident X-ray intensity, and \(x \) is the sample thickness and \(\mu \) is the linear attenuation coefficient.

Knowing the density of the material, \(\rho \), the linear attenuation coefficient is divided by the density of the material (\(\mu/\rho \)) and the equation can be written as:

\[I = I_0 \ e^{-\mu m M} \quad (9.2) \]

where \(\mu_m \) is the mass absorption coefficient and \(M \) is the mass per unit area of the specimen (g/cm\(^2\)).

Equation 9.2 can be also written as

\[m = \frac{1}{\mu_m} \left[\ln \frac{1}{N} - \ln \frac{1}{N_0} \right] \quad (9.3) \]

where \(N \) is the number of transmitted photons and \(N_0 \) is the number of incident photon, taken outside of the specimen.

Differentiating this gives the error of the \(m \) as:

\[\delta m = \frac{1}{\mu_m} \left[\frac{1}{\sqrt{N}} + \frac{1}{\sqrt{N_0}} \right] \quad (9.5) \]

\[\frac{1}{\sqrt{N_0}} \] can be neglected as the number of incident X-ray photons, \(N_0 \), is very high (\(\approx 500,000 \)). \(N \), the number of transmitted X-ray photons, is typically about 50,000 which give a fractional error in \(m \) of \(\approx 0.5 \% \) (Figure 9.4).
PART I: INTRODUCTION AND LITERATURE REVIEW

FIGURE 9.4 Example of data analysis and construction of time profile of HAp mineral mass loss at the scanning positions during the demineralisation process. The error in each point is of the order of 0.002 g/cm2.

Using Equation 9.3, the mass of HAp per unit area (g/cm2) can be calculated by using the mass attenuation coefficient of HAp (4.69 cm2/g) calculated for AgKα radiation. At the selected point the X-ray attenuation value can be then converted to a value for mass of HAp per unit area (g/cm2). Based on the assumption that the mineral loss in HAp is linear with time, the demineralisation rate can then be calculated as:

\[m = at + b \]

(9.4)

where m is the projected mass of HAp per unit area, t is the time, a is the rate of demineralisation, and b is the intercept on the y axis.
CHAPTER 10

Modification of Real-time Scanning Microradiography for the Quantitative Measurements of Dissolution Kinetics of Compressed Hydroxyapatite Discs over Short Period of Time

10.1 Introduction

The development of the SMR technique has been on-going for over 20 years, with several generations. Early versions of SMR had significant drawbacks particularly associated with the SMR stage. The first drawback was the lengthy repeat time between measurements of the same point due to the slow movement of the stage. The second drawback was the low accuracy in stage positioning (5 \(\mu \text{m} \) accuracy).

Later versions of SMR were developed to overcome the problems associated with the stage by using a commercial X-Y stage. This provided much higher positioning accuracy, and a faster travel through the X and Y axes, which allowed a significant increase in sample positioning speed and reduced the length of the repeat time between successive measurements of the same point. Another improvement in the later version of SMR was the use of the same computer to control both stage motion, and detector photon counting system. The later versions were used to study mineral content changes in specimens over long periods of time and studying
multiple scanning positions. The experimental periods of time might extend for several weeks in order to allow accurate measurements of changes in specimens mineral mass content.

For the work described in this thesis, modifications to the operation technique were developed in order to allow the use of SMR for the detection of \(\text{RD}_{\text{HAp}} \) over short time periods of 24 h or less. In this Chapter, the SMR technique modification and the development of a new SMR protocol (short scanning protocol) will be discussed. This short scanning protocol was used in all the experiments described in this thesis.

10.2 SMR system apparatus used in this study

10.2.1 X-ray generation

An Enraf-Nonius® (now Bruker) FR590 X-ray microfocus generator was used with a silver (Ag) target PANalytical® X-ray tube (Figure 8.4), and was run at 8 mA and 40 kV. The Ag target gives a characteristic K\(\alpha \) peak at 22.1 keV.

A 10 \(\mu \)m aperture (Imaging Equipment, UK) was used with this generator. The aperture has a cross section of 10 \(\mu \)m ± 0.5 \(\mu \)m, length of 20 \(\mu \)m ± 1 \(\mu \)m and is constructed from 90% gold and 10% platinum (Figure 10.1). The percentage of X-rays transmitted decreases the further the distance from the centre of the aperture and increases with higher energy levels, with 20% transmission at 47 keV, but almost 0% transmission at 20 keV. The number of SMR measurements is approximately 1800 in 24 h. Therefore a standardisation method was used to correct for variations in the X-ray generator throughout, and X-ray counting chain characteristics, by scanning a standard point usually located in the pure polymethyl methacrylate (PMMA) which
is unaffected by the experimental setup, by recording data for approximately 30 seconds repeatedly every 10 scan measurements.

![Figure 10.1 Schematic diagram of the cross section of the aperture assembly D= 10 µm ± 0.5, L= 20 µm ±1.0](image)

10.2.2 X-ray detector

A solid state high purity germanium (HPGe) planar photon detector system (*ORTEC*® Ametek, PA, USA) was used for all studies reported in this thesis. This was an *ORTEC*® HPGe detector (GLP planar P-type detector) with 0.3 µm ion implanted window thickness, 0.127 mm beryllium absorbing layers and useful energy range 3 kV to 300 kV. It was connected to a DSPEC PLUSTM (Digital Gamma-Ray Spectrometer, ORTEC®, Ametec, PA, USA) which acts as both digital amplifier and a multi-channel analyser.

The information in a single voltage (analogue) pulse from the detector is amplified and then sent to an analogue-digital converter where the signal is converted into a sequence of digital values. Electronic monochromatisation of the beam was achieved by only counting pulses that fell within a particular energy range.
10.2.3 SMR stage

As discussed in Section 9.2.3, the SMR apparatus consists of two orthogonally mounted stages (Parker Automation, UK) fitted with optical encoders (Renishaw). The horizontal stage moves in the X-axis direction for a distance of 600 mm, and the vertical stage moves in the Y-axis direction for a distance of 200 mm (Figure 10.2). The stages are fitted with end of travel and home sensors. They are controlled and moved by stepper motors with 0.1 μm accuracy linear encoders under computer control. The computer software was designed to enable the stage to perform up to 30 experiments simultaneously with 30 different parameters (time, number of steps, step size, standards, etc.) (Figure 10.2).
10.3 Area scanning

The area scanning technique followed in this study is the same as the standard area scanning technique discussed in Section 9.2.5 and gives the exact location of the HAp disc coordinates on the SMR scanning stage. However, in this study, one centrally located point at the centre of the HAp disc was chosen using the area scanning analysis and used as the scanning position. A second point, the standard point, was located in the SMR cell wall (PMMA) i.e. not in the sample and therefore unaffected by changes in the experimental setup. The counting time for the centrally located scanning position was 30 seconds with a standard reading taken after every 10 measurements. The scanning time for the standard was 30 seconds. This modification resulted in a much shorter experiment time, as the considerable movement time between different scanning positions was not required. A large number of data points (≈ 1800) were obtained resulting in good statistical accuracy over the 24 h experimental duration.

10.4 Data analysis at a point

Data analysis begins by standardising the count data at the chosen point against the standard measurement to correct for any variations in the long term X-ray generation and X-ray counting chain characteristics. According to (Equation 9.2) and (Equation 9.3) the transmitted photon counts can be converted to mineral mass content per unit area and accordingly the projected mineral mass content of HAp per unit area (g/cm2) can be calculated. This is followed by plotting the projected mineral content as a function of time (Figure 10.3).
Based on the assumption that the change in the projected mineral mass content is linear with time, the demineralisation rate can then be calculated as:

\[y = a + bx \] \hspace{1cm} (10.1)

where \(y \) is the projected mass of HAp per unit area, \(x \) is the time, \(b \) is the rate of demineralisation, and \(a \) is the intercept with the Y-axis.

Accordingly, Figure 10.3 shows that the change in the projected HAp mineral mass content over 24 h is \(\approx 2\% \) and the \(RD_{\text{HAp}} \) is \(3.17 \times 10^{-4} \) g/cm\(^2\)/h.

10.5 The effect of SMR data sampling frequency on the statistics of mineral mass loss calculation

One of the main advantages of the SMR technique is that it is designed to enable the scanning of up to 30 different SMR cells with 30 different scanning
parameters simultaneously. The SMR experiments are usually run for several weeks. This involves a large amount of the data collected over the experimental duration which allows the scanning of multiple SMR cells simultaneously.

However, in this thesis, a modified SMR technique was developed aiming at shorter experimental durations (24 h or less), involving a reduction in the number of data collected to ≈1800 data counts in 24 h.

10.5.1 Effect of even sampling frequency

Figures 10.4, 10.5, 10.6 and 10.7 show the changes in the projected HAp mineral mass content over 24 h at 100%, 50%, 25% and 10% sampling frequencies respectively.

FIGURE 10.4 Change in the projected HAp mineral mass content over 24 h at 100% sampling frequency
FIGURE 10.5 Change in the projected HAp mineral mass content over 24 h at 50% sampling frequency

FIGURE 10.6 Change in the projected HAp mineral mass content over 24 h at 25% sampling frequency
Table 10.1 summarises the calculated changes in RD$_{\text{HAp}}$, R^2 and standard error (SE), using Microsoft Office Excel 2003$^\circledR$ and TableCurve 2D$^\circledR$ programs, at different sampling frequencies when a HAp disc was exposed to 0.1% acetic acid pH 4.0 demineralisation solution for 24 h.
TABLE 10.1 The RD$_{HAp}$, R^2 and SE calculated at different sampling frequencies using Microsoft Office Excel 2003® and TableCurve 2D® programs

<table>
<thead>
<tr>
<th>Sampling frequency</th>
<th>RD$_{HAp}$ (g/cm2/h)</th>
<th>R^2</th>
<th>Standard error</th>
<th>Standard error in RD$_{HAp}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>calculated by Microsoft Office Excel</td>
<td>calculated by TableCurve 2D</td>
<td>calculated by Microsoft Office Excel</td>
<td>calculated by TableCurve 2D</td>
</tr>
<tr>
<td>100%</td>
<td>3.32x10$^{-4}$</td>
<td>3.32x10$^{-4}$</td>
<td>5.56 x10$^{-1}$</td>
<td>5.56 x10$^{-1}$</td>
</tr>
<tr>
<td>50%</td>
<td>3.33x10$^{-4}$</td>
<td>3.33x10$^{-4}$</td>
<td>5.49 x10$^{-1}$</td>
<td>5.50 x10$^{-1}$</td>
</tr>
<tr>
<td>33.3%</td>
<td>3.31x10$^{-4}$</td>
<td>3.31x10$^{-4}$</td>
<td>5.75 x10$^{-1}$</td>
<td>5.75 x10$^{-1}$</td>
</tr>
<tr>
<td>25%</td>
<td>3.29x10$^{-4}$</td>
<td>3.29x10$^{-4}$</td>
<td>5.26 x10$^{-1}$</td>
<td>5.26 x10$^{-1}$</td>
</tr>
<tr>
<td>20%</td>
<td>3.26x10$^{-4}$</td>
<td>3.26x10$^{-4}$</td>
<td>5.21 x10$^{-1}$</td>
<td>5.21 x10$^{-1}$</td>
</tr>
<tr>
<td>16.6%</td>
<td>3.31x10$^{-4}$</td>
<td>3.31x10$^{-4}$</td>
<td>5.72 x10$^{-1}$</td>
<td>5.72 x10$^{-1}$</td>
</tr>
<tr>
<td>14.3%</td>
<td>3.30x10$^{-4}$</td>
<td>3.30x10$^{-4}$</td>
<td>5.48 x10$^{-1}$</td>
<td>5.50 x10$^{-1}$</td>
</tr>
<tr>
<td>12.5%</td>
<td>3.30x10$^{-4}$</td>
<td>3.30x10$^{-4}$</td>
<td>5.20 x10$^{-1}$</td>
<td>5.20 x10$^{-1}$</td>
</tr>
<tr>
<td>11.1%</td>
<td>3.25x10$^{-4}$</td>
<td>3.25x10$^{-4}$</td>
<td>5.72 x10$^{-1}$</td>
<td>5.72 x10$^{-1}$</td>
</tr>
<tr>
<td>10%</td>
<td>3.25x10$^{-4}$</td>
<td>3.25x10$^{-4}$</td>
<td>5.16 x10$^{-1}$</td>
<td>5.16 x10$^{-1}$</td>
</tr>
</tbody>
</table>

As observed from Table 10.1 the difference in the calculated RD$_{HAp}$, over different sampling frequencies ranged between 100% (1800 data counts) and 10% (180 data counts) using both Microsoft Office Excel 2003® and TableCurve 2D®, was 0.07x10$^{-4}$ g/cm2/h which represents a maximum difference of 2%. Figures 10.4-10.7 are examples of different sampling frequencies, 100%, 50%, 25% and 10% respectively. This emphasises the advantage of using the standard error (SE) in statistical evaluation on the use of R^2, since the SE takes in account the sample size while R^2 represent the accuracy of fit.
10.5.2 Effect of multiple SMR cells simultaneous scanning

Some of the experiments in this thesis involved the scanning of two or three SMR cells simultaneously which led to a reduction in the observed data by 50% or 33% respectively. Figures 10.8-10.11 show real-data from simultaneous scanning of one to four SMR cells respectively. The reduction in the observed data counts was reflected in a systematic repetitive interrupted pattern (gaps) in the data points.

FIGURE 10.8 Change in the projected HAp mineral mass content over 24 h at 100% sampling frequency
FIGURE 10.9 Change in the projected HAp mineral mass content over 24 h at 50% sampling frequency

FIGURE 10.10 Change in the projected HAp mineral mass content over 24 h at 33% sampling frequency
As observed in Table 10.2, the difference in the calculated RD_{HAp} over different sampling frequencies ranged between 3.32×10^{-4} g/cm2/h when one SMR cell was scanned at a time and 3.28×10^{-4} g/cm2/h when three SMR cells were scanned simultaneously. However, the calculated standard of error shows that 33% reduction in data counts, scanning three SMR cells simultaneously, lead to approximately 0.04×10^{-4} change in SE which supports the reliability of scanning two or three SMR cells simultaneously.

In this thesis scanning of simultaneous scanning of up to three SMR cells was used in some of the experiments. TableCurve 2D® was used to demonstrate the results as it gives a higher level of statistical analysis by calculating the SE for both a and b (Section 9.2.6) which is more statistically important than R^2.

FIGURE 10.11 Change in the projected HAp mineral mass content over 24 h at 25% sampling frequency
TABLE 10.2 The RD_{HAp}, R^2 and SE calculated at different sampling frequencies representing multiple SMR cells scanned simultaneously, using Microsoft Office Excel 2003® and TableCurve 2D® programs

<table>
<thead>
<tr>
<th>Sampling frequency</th>
<th># of SMR cells</th>
<th>RD_{HAp} (g/cm^2/h) calculated using Microsoft Office Excel</th>
<th>RD_{HAp} (g/cm^2/h) calculated using TableCurve 2D</th>
<th>R^2 calculated using Microsoft Office Excel</th>
<th>R^2 calculated using TableCurve 2D</th>
<th>Standard error calculated using Microsoft Office Excel</th>
<th>Standard error calculated using TableCurve 2D</th>
<th>Standard error in RD_{HAp} (%) calculated using TableCurve 2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>1</td>
<td>3.32x10^{-4}</td>
<td>3.32x10^{-4}</td>
<td>5.56x10^{-1}</td>
<td>5.56x10^{-1}</td>
<td>7.17x10^{-6}</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>2</td>
<td>3.25x10^{-4}</td>
<td>3.25x10^{-4}</td>
<td>5.67x10^{-1}</td>
<td>5.67x10^{-1}</td>
<td>9.56x10^{-6}</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>33.3%</td>
<td>3</td>
<td>3.28x10^{-4}</td>
<td>3.28x10^{-4}</td>
<td>5.68x10^{-1}</td>
<td>5.68x10^{-1}</td>
<td>1.19x10^{-5}</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>4</td>
<td>3.37x10^{-4}</td>
<td>3.37x10^{-4}</td>
<td>6.38x10^{-1}</td>
<td>6.38x10^{-1}</td>
<td>1.16x10^{-5}</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>5</td>
<td>3.19x10^{-4}</td>
<td>3.19x10^{-4}</td>
<td>5.62x10^{-1}</td>
<td>5.62x10^{-1}</td>
<td>1.45x10^{-5}</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16.6%</td>
<td>6</td>
<td>3.00x10^{-4}</td>
<td>3.00x10^{-4}</td>
<td>5.08x10^{-1}</td>
<td>5.08x10^{-1}</td>
<td>1.77x10^{-5}</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>14.3%</td>
<td>7</td>
<td>3.10x10^{-4}</td>
<td>3.10x10^{-4}</td>
<td>5.48x10^{-1}</td>
<td>4.71x10^{-1}</td>
<td>1.71x10^{-5}</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12.5%</td>
<td>8</td>
<td>3.50x10^{-4}</td>
<td>3.50x10^{-4}</td>
<td>7.17x10^{-1}</td>
<td>7.17x10^{-1}</td>
<td>1.33x10^{-3}</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>11.1%</td>
<td>9</td>
<td>3.00x10^{-4}</td>
<td>3.00x10^{-4}</td>
<td>5.53x10^{-1}</td>
<td>5.53x10^{-1}</td>
<td>1.90x10^{-5}</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>10</td>
<td>3.72x10^{-4}</td>
<td>3.72x10^{-4}</td>
<td>4.02x10^{-1}</td>
<td>4.02x10^{-1}</td>
<td>2.51x10^{-5}</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

10.6 SMR cell design and specimen preparation

10.6.1 SMR cells

FIGURE 10.12 Schematic diagram showing top and side views of the new design for SMR cells with dimensions
FIGURE 10.13 New SMR cell design developed to accommodate fitting of the complete HAp disc required in this thesis

Modifications of the previous SMR cells designs (either two wells design to allow experiments using powder or one small chamber design to test sections or small specimens) was required to enable fitting of the entire HAp disc (Figure 10.12). An SMR cell with one large (25.0 mm) central chamber was required for this study. Four SMR cells were prepared from polymethyl methacrylate (PMMA), with dimensions of 40.0 mm x 50.0 mm. Each cell has a centrally located chamber of 25.0 mm diameter and 4.0 mm depth and a cover made up of the same material as the cell itself, with the same dimensions but with 1.0 mm thickness (Figure 10.13). Each SMR cell has two holes on the top and one hole on the bottom. One butterfly needle is connected to the top hole and one to the hole at the bottom of the SMR cell, to allow solution to be pumped in and out, maintaining its circulation throughout the experiment. The butterfly needles are Hospira Venisystems Butterfly® (product # P293A05, needle length 20.0 mm, needle diameter 0.8 mm). The second top hole allows the escape of air and prevents building up of internal pressure within the cell and leakage within the cell in case of pump failure. A single permeable compressed HAp disc is securely placed in the centre of the SMR cell chamber and the cover is securely sealed with silicon and screws.
10.6.2 Specimen preparation

In this study permeable compressed sintered HAp discs were used as a representative of dental enamel. The HAp discs were all products of Plasma-Biotec Ltd, UK, with dimensions of 13.0 mm in diameter x 2.0 mm thickness and 20 wt % porous (HAp discs type selection will be discussed later in Chapter 11 and Chapter 12). All the compressed HAp discs were preconditioned by the preconditioning technique followed at the Oral Surface Science Department, School of Oral & Dental Sciences, University of Bristol, Bristol, UK. The idea behind preconditioning the HAp discs was to remove any loose particles or more soluble materials on the surface of the disc. The HAp discs were preconditioned by being submerged in a beaker containing a stirred solution of citric acid (0.3% normal pH) and turned over after 15 minutes. The discs were then washed by deionised water and left on filter paper for few hours to dry. The discs were then coated with acid resistant nail varnish on all surfaces leaving only one surface exposed so that the acid could diffuse through into the solid disc. Finally the discs were sterilised by autoclaving under usual conditions of 121°C (given by 15 p.s.i. pressure from 100% steam) for 30 min sterilisation time.

In this study a single HAp disc was placed in each SMR cell. The HAp disc was placed in the centre of the SMR cell chamber, covered by the SMR cell cover which was sealed with silicone rubber compound (RS Components Ltd, Corby, Northants, UK, product # 692-542) to prevent leakage and tightened up with nine screws (Figure 10.4). SMR cells were then mounted on the SMR cells mounting frame on the SMR X-Y stage. The cells were securely mounted on the SMR X-Y stage by screws, filled and circulated with de-ionised water to keep the specimen...
hydrated. By this stage, the SMR cells with the HAp discs specimens were ready for area scanning.

10.7 Demineralisation solutions

10.7.1 0.1% acetic acid pH 4.0

In this study 0.1% acetic acid pH 4.0 was used as representative of caries-like conditions. In clinical situations dental caries develop in response to organic acids particularly lactic acid produced by plaque bacteria through fermentation of dietary carbohydrates. Therefore, in ideal situation lactic acid should have been used to resemble caries like condition but since lactic acid is quite expensive to obtain and difficult to find in pure form therefore acetic acid was chosen. Acetic acid has been used in many studies in this lab and other research centres and it has been shown that the role of acetic acid in demineralisation is similar to that of lactic acid (Margolis, 1992, Gao et al., 1993, Anderson et al., 2004, Elliott et al., 2005). Acetic acid pH 4.0 was particularly selected because previous SMR studies using acetic acid pH 4.5 required a longer experimental duration to obtain a reliable data as the first 24h data were noisy.

One litre of 0.1% acetic acid pH 4.0 was prepared from acetic acid 100% (AnalaR NORMAPUR, VWR International Ltd. England, product # 20104.334, batch # 08G310506) and de-ionised water (Milipore, Direct-Q5; France). No additional calcium or phosphate was added and the solution was buffered with 1 Molar HCl or KOH solutions as necessary to reach the targeted pH level. The pH adjustment was done using Orion-pH/ISE meter Model 710.
PART II: METHODOLOGY

10.7.2 0.3% citric acid pH 2.8

0.3% citric acid pH 2.8 was used as representative of erosion-like conditions. This is following protocol used by the Dental Materials Science Laboratory at the School of Oral and Dental Sciences, University of Bristol in studying dental erosion in vitro. One litre of 0.3% citric acid pH 2.8 was prepared from citric acid (AnalaR NORMAPUR, VWR International Ltd. England, product # 100813M, batch # K91366639 730) and de-ionised water (Milipore, Direct-Q5; France). No additional calcium or phosphate was added and the solution was buffered with 1 Molar HCl or KOH solutions as necessary to reach the targeted pH level. The pH adjustment was done using Orion-pH / ISE meter Model 710.

Each solution was stored separately in one litre bottle, sterilised by autoclaving at 121°C achieved with 15 psi pressure, 100% steam) and 30 minutes sterilisation time.

Demineralisation solutions were prepared fresh on the experiment day. When the same solution was used in a series of experiments on successive days or at different pH values, the demineralisation solution was made as a bulk solution and divided into multiple one litre bottles. Each solution was stored separately in one litre bottle, sterilised by autoclaving at 121°C achieved with 15 psi pressure, 100% steam) and 30 minutes sterilisation time. The pH was then adjusted on the day of the experiment. Solutions were circulated at 24 RPM (0.80 ml/min) using Watson Marlow Pump 205U, UK (Section 14.3). All experiments were carried out at room temperature, in a thermostatically controlled laboratory (at 22 ± 1°C).

Details of the specific solution used in the experiments are given in the materials and methods section of each experiment.
PART III: DEVELOPMENT OF A PROTOCOL
Introduction to Development of a Protocol

The scanning microradiography technique has been previously used to study the kinetics of enamel and HAp dissolution under erosive and caries simulating conditions, over a long period of time extending up to 1000 h. However, studying the kinetics of HAp dissolution over a short period of time (24 h or less) has not been studied previously using the SMR technique in this laboratory. Therefore, a development of a protocol was required.

The development of a protocol involved investigating several changeable parameters regarding the SMR technique, type of HAp discs to be used, demineralisation solution circulation rate and the concentration of divalent cations.

With regards to the SMR technique, it was modified and tested for its ability and reliability in detecting RD$_{\text{HAp}}$ over a period of 24 h or less (Chapter 13).

In this thesis HAp was used as an analogue for dental enamel (Section 2.5). Similar studies in this laboratory have mostly used one of two types of HAp discs, either Plasma-Biotal HAp discs or Hitemco Medical Applications (HIMED) HAp discs. In order to choose between these two types of discs, they were investigated by X-ray microtomography (XMT), X-ray diffraction (XRD) and SMR to help in selecting the most suitable type for this thesis (Chapter 11 and Chapter 12).

The circulation rate of demineralising solution adjacent to a dissolving surface is an important parameter in SMR experiments since it has a considerable
influence on the rate of dissolution of solids. Therefore different demineralisation solution circulation speeds were investigated (Chapter 14).

Finally the effect of Sr$^{2+}$ in high concentrations was investigated (Chapter 15). Summary of the experiments done to finalise the protocol is given in Table III.A.

TABLE III.A Experiments performed for developing the thesis protocol

<table>
<thead>
<tr>
<th>Protocol component</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMR technique and duration</td>
<td>▪ Modification of SMR technique to reliably detect RD$_{\text{HAp}}$ over a short period of time</td>
</tr>
<tr>
<td></td>
<td>▪ Investigate the demineralisation of compressed HAp discs with altering acidic buffer with de-ionised water over short period of time</td>
</tr>
<tr>
<td>Selection of HAp discs</td>
<td>▪ Characterisation of HIMED and Plasma-Biotal compressed HAp discs using X-ray diffraction and X-ray microtomography</td>
</tr>
<tr>
<td></td>
<td>▪ Comparison between HIMED and Plasma-Biotal compressed HAp discs response (RD$_{\text{HAp}}$) to exposure to demineralisation solutions using SMR</td>
</tr>
<tr>
<td>Demineralisation solution</td>
<td>▪ Study the effect of demineralisation solution circulation speed on compressed HAp discs dissolution kinetics using SMR</td>
</tr>
<tr>
<td>circulation speed</td>
<td></td>
</tr>
<tr>
<td>Sr$^{2+}$ concentrations</td>
<td>▪ Study the effect of high concentration (desensitising toothpaste concentration) of Sr$^{2+}$ on HAp dissolution kinetics studied using SMR</td>
</tr>
</tbody>
</table>
CHAPTER 11

Characterisation of HIMED and Plasma-Biotal

Compressed Hydroxyapatite Discs

11.1 Introduction

In this thesis permeable HAp discs were used as an analogue for dental enamel. Similar studies in this laboratory have used one of two types of HAp discs. The first type was Plasma-Biotal Ltd, UK, permeable, compressed and sintered HAp discs with dimensions of 13.0 mm in diameter x 2.0 mm thickness and 20 wt% nominal porosity. The second type of HAp disc was the product of Hitemco Medical Applications, (HIMED), USA, permeable, compressed and sintered HAp discs with dimensions of 12.05 mm in diameter x 1.25 mm in thickness and 20 wt% nominal porosity.

11.2 Aims and objectives

The aim of this study was to compare the dissolution behaviour of the Plasma-Biotal and HIMED permeable compressed HAp discs and select the type of HAp discs to be used in this thesis.
The objectives were to investigate the HAp discs purity, uniformity and porosity using X-ray diffraction (XRD) and X-ray microtomography (XMT) techniques.

11.3 Materials and methods

11.3.1 X-ray microtomography

Three permeable compressed HAp discs of each type were randomly selected and scanned using the fourth generation in-house developed XMT system with a laboratory X-ray generator (Ultrafocus HMX 160, X-Tek system Ltd, 5µm source, tungsten target, 160 kV) operated at 90 kV and 200µA (Davis and Elliott, 1997).

Two permeable compressed HAp discs were placed flat and fixed by sticky wax to a Perspex stand that was mounted on the XMT rotation stage and oriented so that the XMT axis of rotation was as perpendicular as possible to the HAP disc surface (Figure 11.1)

![FIGURE 11.1 HIMED and Plasma-Biotal HAp discs placed flat and fixed on a Perspex stand with aluminum wire to be mounted on the XMT rotation stage](image)
11.3.2 X-ray diffraction

Three randomly selected compressed HAp discs of each type were tested for their mineral content and purity by X-ray diffraction. X-ray diffraction was carried out using an XPERT-PRO diffractometer system, 1500 W sealed tube with a copper (Cu) target ran at 40 mA tube current and 45 kV generator voltage to provide CuKα radiation. The diffraction patterns were then collected from continuous scans ranging from 5 to 120 2-theta angle.

11.4 Results

11.4.1 XMT

For the XMT, data analysis and visual display of the XMT data set was done using the Amira™ software package (TGS Template Graphics Software Inc., USA). The Amira™ program allows visualisation of single slices as well as surface and volume rendered images enabling viewing of a sample from any angle.

A comparison of the reconstructed images from both types of HAp discs reveals that they were of evenly uniformity in porosity, whereas HIMED compressed discs showed greater distribution and larger variety in pores sizes (Figure 11.2 and Figure 11.3).
FIGURE 11.2 Reconstructed images of coronal sections through two compressed HAp discs showing larger pores in upper HAp disc (HIMED (a)) and evenly distributed and sized pores in lower HAp disc (Plasma-Biotal (b))

FIGURE 11.3 Reconstructed images of axial sections through HIMED HAp discs (a,b,and c) showing uneven distribution of larger sized pores while Plasma-Biotal HAp disc (d) shows even distribution of equally sized pores
11.4.2 XRD

Typical examples of the obtained XRD pattern for the HIMED compressed HAp discs and the Plasma-Biotal compressed HAp discs are shown in Figure 11.4 and Figure 11.5.

FIGURE 11.4 XRD pattern for HIMED HAp disc from 20-40 (20)
PART IV: EXPERIMENTAL WORK

FIGURE 11.5 XRD pattern for Plasma-Biotal HAp disc from 20-40 (20)

FIGURE 11.6 Typical XRD pattern of fully crystalline HAp with principal diffraction peaks (Prevéy, 2000)
11.5 Discussion

It was visually apparent from the XMT reconstructed images that the Plasma-Biotal HAp discs had better uniformity with regard to pore size and distribution, compared to HIMED HAp discs.

The results shown from the XRD confirmed that both types of HAp discs contain only hexagonal HAp. When compared to a classical HAp XRD pattern (Figure 11.6), both HIMED and Plasma-Biotal compressed HAp discs showed a classical HAp XRD pattern with no additional peaks. However, there is a peak missing in the Plasma-Biotal XRD results at about 31 degrees 2theta diffraction angle. There is no explanation to this finding and further research is needed in this area.

11.6 Conclusion

The narrow and sharp principal diffraction peaks indicate fully crystalline HAp with no difference in purity and crystal structure between the two types of discs.
CHAPTER 12

Comparison of Demineralisation Results of HIMED and Plasma-Biotal Hydroxyapatite Discs

12.1 Aims and objectives

The aim was to compare the demineralisation rate of HIMED and Plasma-Biotal HAp discs.

The objective was to measure RD_{HAp} of the two types of HAp discs in response to exposure to different demineralisation solutions of various pH values using the SMR technique.

12.2 Materials and methods

12.2.1 SMR

For details of the SMR technique refer to Chapter 10

12.2.2 HAp discs

Two randomly selected HAp discs from each type (HIMED and Plasma-Biotal) were preconditioned, sterilised and coated with acid resistant nail varnish on all surfaces except one and positioned in the centre of the SMR cells (for sample preparation details refer to Section 10.6.2).
12.2.3 Demineralisation solution

In this study, 4 litres of 0.1% acetic acid solution pH 2.8, 3.2, 3.6 and 4.0 were prepared. Similarly 0.3% citric acid solution was prepared (for demineralisation solution preparation details refer to Section 10.7). One HAp disc from each type of discs was exposed to the full series of 0.1% acetic acid demineralisation solutions (pH 2.8, followed by 3.2, 3.6 and 4.0) for 24 h for each pH value. The HAp disc was washed with de-ionised water (without pH adjustment) for 30 min between solutions with different pH values. The same applied to 0.3% citric acid. Each experiment was duplicated.

12.3 Results

The mineral mass content of each HAp disc was continuously measured throughout the experiment duration. RD_{HAp} was calculated and the results are summarised in Table 12.1 and Figures 12.1 and 12.2.

<table>
<thead>
<tr>
<th>pH</th>
<th>0.1% acetic acid</th>
<th>0.3% citric acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plasma-Biotal disc RD_{HAp} (g/cm²/h)</td>
<td>HIMED disc RD_{HAp} (g/cm²/h)</td>
</tr>
<tr>
<td>2.8</td>
<td>4.44 x 10^{-4}</td>
<td>4.16 x 10^{-4}</td>
</tr>
<tr>
<td>3.2</td>
<td>4.32 x 10^{-4}</td>
<td>3.67 x 10^{-4}</td>
</tr>
<tr>
<td>3.6</td>
<td>3.79 x 10^{-4}</td>
<td>3.30 x 10^{-4}</td>
</tr>
<tr>
<td>4.0</td>
<td>3.69 x 10^{-4}</td>
<td>3.10 x 10^{-4}</td>
</tr>
</tbody>
</table>
FIGURE 12.1 The change in $R_{D_{\text{HAp}}}$ for Plasma-Biotal and HIMED HAp discs as a function of 0.1% acetic acid at a range of pH values.

FIGURE 12.2 The change in $R_{D_{\text{HAp}}}$ for Plasma-Biotal and HIMED HAp discs as a function of 0.3% citric acid at a range of pH values.
12.4 Discussion

The rate of hydroxyapatite dissolution can be affected by multiple factors (Section 4.1) among them; the chemical composition of the bulk solid, the pore size and distribution of the bulk solid, and the pH value of the demineralisation solution.

The use of XMT, XRD and the SMR in the experiments in Chapter 11 and Chapter 12 was to find the best HAp amongst the two available types to be used in this thesis.

Based on the results of the XMT study (Chapter 11), the Plasma-Biotal HAp discs showed better uniformity with regards to pore size and distribution compared to the HIMED HAp discs. Since larger pores are known to facilitate diffusive transport of ions, it was expected that the HIMED HAp discs will show faster demineralisation rates. The results shown in Table 12.1 demonstrate that RD$_{\text{HAp}}$ for the Plasma-Biotal HAp discs was faster than that for the HIMED HAp discs though they both showed the same pattern in response to change in the pH value of the demineralisation solution. There is no clear explanation for this observation and further investigation is required.

12.5 Conclusions

SMR results showed that HIMED HAp discs were less soluble than Plasma-Biotal HAp discs when exposed to the demineralisation solutions particularly citric acid. However both discs followed a similar trend in change in RD$_{\text{HAp}}$ when subjected to different demineralisation solutions with different pH values.

Based on the results obtained for the experiments described in Chapter 11 and Chapter 12 it was concluded that both types of discs are made up from fully
crystalline HAp with no difference in purity or crystal structure and showed a similar trend in change in RD_{HAp} when subjected to demineralisation solutions, however according to the XMT results Plasma-Biotal HAp discs had better uniformity and porosity than HIMED HAp discs. Therefore it was decided to use Plasma-Biotal HAp discs in all the experiments in this thesis.
CHAPTER 13

Demineralisation of Compressed Hydroxyapatite Discs with Acidic Buffers at a Range of pH Values over Short Period of Time

13.1 Introduction

In many *in vitro* studies of model systems for dental caries and erosion, the solid is usually exposed to demineralising or remineralising solution, but altering solution conditions involves interrupting the experiment. A major advantage of the SMR is that the experimental conditions can be altered without interrupting the experiment. Using the SMR technique in conjunction with pH cycling systems allows mimicking of pH conditions in the oral cavity (White, 1995, Harless and Wefel, 2003, Thaveesangpanich *et al.*, 2005).

13.2 Aims and objectives

The main aim of this experiment was to test the ability of the SMR technique to detect changes in HAp mineral mass content in response to exposure to acidic buffers at a range of pH values over a short period of time (24 h or less). A further aim was to investigate whether information could be obtained about the transient stage between exposure to acid buffer and the de-ionised water.
The objectives were to obtain reliable quantitative measures of the
demineralisation rate of compressed HAp discs in acidic buffer followed by de-
ionised water using SMR, over periods of 24 h or less.

13.3 Materials and methods

13.3.1 SMR

For details of the SMR technique refer to Chapter 10.

13.3.2 HAp discs

Four HAp compressed discs (Plasma-Biotal, UK) were used in this study. All
discs were preconditioned, sterilised, and painted with acid resistant nail varnish on
all surfaces but one, leaving this surface exposed to the demineralising solution.
Each disc was placed in a separate SMR and mounted in the centre of the SMR cell
chamber. For details of specimen preparation refer to Section 10.6.2.

13.3.3 Demineralisation solutions

In this study 0.1% acetic acid and 0.3% citric acid solutions of pH 2.8, 3.2,
3.6 and 4.0 were buffered with 1M KOH, with no addition of calcium or phosphate.
Each demineralisation solution was stored separately in a 1 litre bottle (for details of
solution preparation refer to Section 10.7). Demineralisation solutions were
circulated through the SMR cell at a slow rate of 0.19cm³/min. The circulation rate
was set at a slow rate to avoid, as much as possible, any mechanical erosion that
might arise from a fast circulation of acidic solutions. The same HAp disc was
exposed to 0.1% acetic acid at pH 2.8 for 20 h followed by 4 h of de-ionised water,
then 0.1% acetic acid at pH 3.2 for 20 h, followed by 4 h of de-ionised water and similarly at pH 3.6 and 4.0. The HAp mineral mass content was measured continuously over the 24 h experiment time. The experiment was repeated with 0.3% citric acid solution. All experiments were performed in a thermostatically controlled laboratory at a temperature of $22^\circ C \pm 1^\circ C$ and were duplicated.

13.4 Results

To assess the effect of the acidic buffers at a range of pH values, over a short periods of time, on R_{DHAp}, the mineral mass content of each HAp disc was continuously measured over the duration of the experiment of 24 h. Typical examples of the results obtained are illustrated in Figures 13.1 to 13.8.

13.4.1 0.3% citric acid demineralisation solution

![Graph](image.png)

FIGURE 13.1 The change in projected HAp mineral mass content in response to 20 h of demineralisation by 0.3% citric acid pH 2.8 followed by 4 h of de-ionised water.
FIGURE 13.2 The change in projected HAp mineral mass content in response to 20 h of demineralisation by 0.3% citric acid pH 3.2 followed by 4 h of de-ionised water

y = -4.38E-04x + 6.80E-01
$R^2 = 5.74E-01$

y = -8.94E-06x + 6.72E-01
$R^2 = 3.70E-05$

FIGURE 13.3 The change in projected HAp mineral mass content in response to 20 h of demineralisation by 0.3% citric acid pH 3.6 followed by 4 h of de-ionised water

y = -6.84E-06x + 6.60E-01
$R^2 = 1.09E-05$

y = -2.80E-04x + 6.65E-01
$R^2 = 3.41E-01$
FIGURE 13.4 The change in projected HAp mineral mass content in response to 20 h of demineralisation by 0.3% citric acid pH 4.0 followed by 4 h of de-ionised water

\[
y = 7.74 \times 10^{-6}x + 6.55 \times 10^{-1}
\]
\[R^2 = 1.87 \times 10^{-5}\]

\[
y = -2.37 \times 10^{-4}x + 6.60 \times 10^{-1}
\]
\[R^2 = 3.20 \times 10^{-1}\]
13.4.2 0.1% acetic acid demineralisation solution

FIGURE 13.5 The change in projected HAp mineral mass content in response to 20 h of demineralisation by 0.1% acetic acid pH 2.8 followed by 4 h of de-ionised water.

FIGURE 13.6 The change in projected HAp mineral mass content in response to 20 h of demineralisation by 0.1% acetic acid pH 3.2 followed by 4 h of de-ionised water.
FIGURE 13.7 The change in projected HAp mineral mass content in response to 20 h of demineralisation by 0.1% acetic acid pH 3.6 followed by 4 h of de-ionised water

FIGURE 13.8 The change in projected HAp mineral mass content in response to 20 h of demineralisation by 0.1% acetic acid pH 4.0 followed by 4 h of de-ionised water
Figure 13.9 summarises the $R_{D_{\text{HAp}}}$ for all demineralisation solutions at the investigated pH range.

Figure 13.9 The change in $R_{D_{\text{HAp}}}$ in response to changing the demineralisation solution at a range of pH values.

Figure 13.10 The change in $R_{D_{\text{HAp}}}$ in response to changing the demineralisation solution at a range of $[\text{H}^+]$.

![Graph showing the change in $R_{D_{\text{HAp}}}$ vs. pH and $[\text{H}^+]$.](image)
13.5 Discussion

Previously, SMR has been used to provide precise quantitative measurements of mineral mass changes in real-time in studies measuring the kinetics of demineralisation and remineralisation of enamel and HAp, particularly over long periods of time (up to 1000 h). These long periods of experiments (1 week or more) were required to obtain reliable quantitative kinetic dissolution data. This study has demonstrated that experimental time can be reduced to 20 h while still obtaining enough photon counts to obtain reliable data. This was achieved through optimising the X-ray generator and detection system parameters. In previous experiments, the generator was usually run at lower tube currents and voltages such as 6 mA and 36 kV or 1.5 mA and 45 kV which according to Equation 8.6 give a relative value of X-ray intensity \((I)\) of 7776 and 3037 respectively. Increasing the photon energy means increasing the penetration power of the photons and accordingly increasing the photons counts. Therefore, in this study, the current and voltage were increased to 8 mA and 39 kV increased the spectrum intensity to 12108 which represent almost doubling the photon counts (for calculation details refer to Section 8.2.5). By doubling the photon counts, detection of more data over a shorter period of time was achievable and accordingly it became possible to obtain more accurate data during the first 24 h of HAp demineralisation. The results (Figure 13.9) demonstrated that the linear relationship between the loss of mineral mass content and time (previously found with longer SMR studies), is also observed by SMR over the shorter duration used in this study. The essentially linear loss of mineral with time has been attributed to a surface controlled process of dissolution of the mineral at the advancing front of the HAp disc.
A further finding was the instantaneous reduction in the demineralisation rate of the compressed HAp discs following the change to de-ionised water. This suggests that the demineralisation process is a surface controlled process rather than diffusion controlled. If switching from demineralisation solution to de-ionised water resulted in gradual decrease in RD_{HAp}, and hence a curve seen, this would have suggested that a diffusion controlled process in which the diffusion of the dissolution products out the acids and into the compressed HAp disc had an influence on RD_{HAp}. However, taking in consideration the small size and the porosity of the discs, the change in the circulating solution will not take more than few minutes to affect the diffusion whether at the HAp surface or within the pores. Therefore, studying the transient stage should include a close look at the data of the first few minutes of change in solutions. This is not possible with the current technique and experiment methodology. With the amount of data obtained within 1 h or less would be too noisy and inconclusive. Testing the transient stage is beyond the scope of this experiment (Bollet-Quivogne et al., 2005, Bollet-Quivogne et al., 2007).

13.6 Conclusions

In conclusion, the study in this chapter has demonstrated that SMR can be used to quantitatively measure the dissolution of permeable compressed HAp discs under artificial caries and erosion-like conditions for periods of 24 h or less. This technique can be used to measure the efficacy of various therapies to reduce the impact of dental caries and erosion.
CHAPTER 14

Effect of Circulation Speed of Demineralisation Solutions on Compressed Hydroxyapatite Discs Dissolution Rate Studied Using Scanning Microradiography

14.1 Introduction

The circulation speed of demineralising solution adjacent to a dissolving surface has a considerable influence on the rate of dissolution of solids. This is particularly pertinent to dissolution studies of enamel and similar studies of model systems for dental caries using compressed hydroxyapatite discs as the substrate.

This chapter summarises the experimental study on the effect of the circulation speed of demineralisation solution on permeable compressed HAp disc dissolution kinetics.

14.2 Aims and objectives

The aim of this study was to compare the RD_{HAp} as a function of the demineralisation solution circulation speed.

* The work described in this chapter was presented at the European Organisation for Caries Research Conference (ORCA), Montpellier, France (September, 2010).
The objective of this study was to investigate the effect of pumping speed (solution circulating speed) on compressed HAp discs dissolution rates over a period of 24 h, using SMR.

14.3 Materials and methods

14.3.1 SMR

For details of the SMR technique refer to Chapter 10.

14.3.2 HAp discs

Three randomly selected compressed HAp discs (Plasma-Biotal, UK) were used in this study. All discs were preconditioned, sterilised, and painted with acid resistant nail varnish on all surfaces leaving one surface exposed to the demineralising solution. Each disc was placed in a separate SMR cell and mounted in the centre of the SMR cell chamber (Section 10.6.2).

14.3.3 Demineralisation solutions

0.1% acetic acid solution pH 4.0 was used in this study as representative of dental caries-like conditions. For solution details refer to Section 10.7. The HAp disc exposed surface was subjected to the demineralising solution for duration of 24 h followed by 30 min of de-ionised water. The circulation speed was then changed to the next investigated speed.

14.3.4 Circulating pump

An automatic/manual control multi-channel cassette pump (Watson-Marlow Bredel pumps, Cornwall UK, model 205U), Figure 14.1 and Figure 14.2, was used
with orange colour coded tubes (Altec™, Altec Products Limited, Cornwall, UK, product number 116-0532-08, bore size = 0.89 mm) used for pumping solution into the cell, and blue colour coded tubes (product of Altec™, product number 116-0532-08, bore size = 1.65 mm) to pump the solution out of the cell. The pump tubes were then connected to 2.0 m long transmission tube of 1.5 mm diameter, and were securely connected (via Altec™ barbed straight tubing adapter, product number 05-44-5513), to butterfly needles (Hospira Venisystems Butterfly®, product number P293A05, needle length 20.0 mm, needle diameter 0.8 mm), which were inserted into the cells as shown in Figure 14.1 and 14.2.

FIGURE 14.1 Watson Marlow 205U electric pump with circulating solution

FIGURE 14.2 The electric pump connected to the SMR cells via tubing while the demineralisation solution circulates into and out of the SMR cells

<table>
<thead>
<tr>
<th>Table 14.1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube code</td>
<td>Orange / Orange</td>
<td>Blue / Blue</td>
</tr>
<tr>
<td>Pore size</td>
<td>0.89 mm</td>
<td>1.65 mm</td>
</tr>
<tr>
<td>Flow rate at 0.5 RPM</td>
<td>0.016 ml/min</td>
<td>0.043 ml/min</td>
</tr>
<tr>
<td>Flow rate at 90 RPM</td>
<td>2.92 ml/min</td>
<td>7.69 ml/min</td>
</tr>
</tbody>
</table>
PART IV: EXPERIMENTAL WORK

The flow rate at each of the circulating speeds to be used in this experiment (0, 6, 12, 18, 24, 30, 36 RPM) was measured, using orange-orange tubes, and calculated in ml/min (Table 14.2).

TABLE 14.2 The measured flow rate in ml/min corresponding to each circulating speed in RPM.

<table>
<thead>
<tr>
<th>Parestaltic pump speed (RPM)</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured flow rate (ml/min)</td>
<td>0</td>
<td>0.19</td>
<td>0.39</td>
<td>0.58</td>
<td>0.80</td>
<td>0.97</td>
<td>1.17</td>
</tr>
</tbody>
</table>

The demineralising solutions were circulated around the compressed HAp disc at various circulating speeds of 0, 6, 12, 18, 24, 30, 36 RPM (0, 0.19, 0.39, 0.58, 0.80, 0.97, and 1.17 ml/min respectively). The investigated solution circulation speeds were chosen in the range of slow speeds in order to keep mechanical erosion of the surfaces to a minimum and avoid the possibility of cell tube/cell leakage while maintaining a continuous circulation. Each measurement was repeated in triplicate. All experiments were run in a thermostatically controlled laboratory at a temperature of 22°C ± 1°C.
14.4 Results

For each of the 21 experiments, the relative mass per unit area of the compressed HAp disc was measured over the 24 h demineralisation cycle and the RD$_{\text{HAp}}$ was calculated (Table 14.3).

TABLE 14.3 The calculated RD$_{\text{HAp}}$ during the exposure to 0.1% acetic acid pH 4.0 at various circulation speeds (in triplicate)

<table>
<thead>
<tr>
<th>Peristaltic pump speed (RPM)</th>
<th>Peristaltic pump speed (ml/min)</th>
<th>RD$_{\text{HAp}}$ (1) $\text{g/cm}^2/\text{h}$</th>
<th>RD$_{\text{HAp}}$ (2) $\text{g/cm}^2/\text{h}$</th>
<th>RD$_{\text{HAp}}$ (3) $\text{g/cm}^2/\text{h}$</th>
<th>Mean RD$_{\text{HAp}}$ $\text{g/cm}^2/\text{h}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>6.13$\times 10^{-6}$</td>
<td>6.85$\times 10^{-6}$</td>
<td>6.76$\times 10^{-6}$</td>
<td>6.58$\times 10^{-6}$</td>
</tr>
<tr>
<td>6</td>
<td>0.19</td>
<td>1.20$\times 10^{-4}$</td>
<td>1.13$\times 10^{-4}$</td>
<td>1.22$\times 10^{-4}$</td>
<td>1.18$\times 10^{-4}$</td>
</tr>
<tr>
<td>12</td>
<td>0.39</td>
<td>1.48$\times 10^{-4}$</td>
<td>1.62$\times 10^{-4}$</td>
<td>2.14$\times 10^{-4}$</td>
<td>1.70$\times 10^{-4}$</td>
</tr>
<tr>
<td>18</td>
<td>0.58</td>
<td>2.44$\times 10^{-4}$</td>
<td>2.56$\times 10^{-4}$</td>
<td>2.42$\times 10^{-4}$</td>
<td>2.40$\times 10^{-4}$</td>
</tr>
<tr>
<td>24</td>
<td>0.80</td>
<td>2.68$\times 10^{-4}$</td>
<td>2.92$\times 10^{-4}$</td>
<td>2.92$\times 10^{-4}$</td>
<td>2.72$\times 10^{-4}$</td>
</tr>
<tr>
<td>30</td>
<td>0.97</td>
<td>3.07$\times 10^{-4}$</td>
<td>3.03$\times 10^{-4}$</td>
<td>2.97$\times 10^{-4}$</td>
<td>3.13$\times 10^{-4}$</td>
</tr>
<tr>
<td>36</td>
<td>1.17</td>
<td>3.12$\times 10^{-4}$</td>
<td>3.17$\times 10^{-4}$</td>
<td>3.19$\times 10^{-4}$</td>
<td>3.16$\times 10^{-4}$</td>
</tr>
</tbody>
</table>

Typical examples of the real-time change in HAp projected mineral mass following the exposure to 0.1% acetic acid pH 4.0 with demineralisation solution circulation speeds between 0.00 and 0.97 ml/min are demonstrated in Figure 14.4 and Figure 14.5 respectively.
FIGURE 14.3 Typical example of the change in projected HAp mineral mass content over a period of 24 h in response to 0.1% acetic acid pH 4.0 demineralisation solution at 0 ml/min circulation speed

(□ Within 1 SD, □ 2 SD< □ 3 SD< □ 4 SD)

<table>
<thead>
<tr>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (g/cm²)</td>
<td>0.720</td>
<td>1.067e-04</td>
<td>6748.5202</td>
</tr>
<tr>
<td>b (g/cm²/h)</td>
<td>-6.13e-6</td>
<td>7.791e-06</td>
<td>-0.786</td>
</tr>
</tbody>
</table>
FIGURE 14.4 Typical example of the change in projected HAp mineral mass content over a period of 24 h in response to 0.1% acetic acid pH 4.0 demineralisation solution at 0.97 ml/min circulation speed

(■ Within 1 SD, □ < 2 SD, △ < 3 SD, ▢ < 4 SD)

<table>
<thead>
<tr>
<th>TABLE 14.5</th>
<th>Statistical analysis, for the data in Figure 14.4, using TableCurve 2D®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>SE</td>
</tr>
<tr>
<td>a (g/cm²)</td>
<td>0.684</td>
</tr>
<tr>
<td>b (g/cm²/h)</td>
<td>-3.07e-4</td>
</tr>
</tbody>
</table>
The mean RD_{HAp} (g/cm2/h) for the triplicate experiments at each circulation speed was calculated and plotted against demineralisation solution circulation speed (ml/min) as demonstrated in Figure 14.5.

FIGURE 14.5 The mean rate of demineralisation (g/cm2/h) plotted against the change in demineralisation solution circulation speed (RPM). A curve has been fitted for viewing purposes only.

14.5 Discussion

In this study the demineralising solution circulation speed was altered with all other factors maintained constant in an attempt to study the effect of circulation speed on the RD_{HAp}. The selection criteria for the choice of the tested circulation speed involved; Firstly, the circulation rate should be fast enough to keep the solution in the SMR cell in state of pseudo constant composition without subjecting the fine SMR tubes to the danger of leakage/rupture. Secondly, to have a solution circulation rate that provides minimal possible physical erosion to the HAp disc. Therefore it was decided to test 0, 6, 12, 18, 24, 30, 36 RPM circulation rates. The calculated RD_{HAp} of the triplicate experiments at each circulation speed were similar
in value with a small standard deviation (Table 14.3). This represents the precision, repeatability and accuracy of the results.

Figure 14.3 represents a typical example of the effect of 0.1% acetic acid pH 4.0 on the RD_{HAp} when circulated at 0.00 ml/min. When the mineral mass content of the projected HAp was plotted against time for the 24 h scanning duration, 1800 scanning measurements were recorded. 1708 measurements were within 2 SE showing a good fit of the data. The data showed a hardly recognisable deceleration trend in the RD_{HAp} 6.13×10^{-6} g/cm2/h indicating that when the flow rate was zero, the compressed HAp discs dissolution rate was minimal. As the compressed HAp disc dissolves, its dissolution products of calcium, phosphate and hydroxyl ions neutralise the acidity of the acetic acid and quickly the acid loses its acidic strength.

When the circulation rate was increased to 0.97 ml/min the RD_{HAp} mineral mass content was measured by 1800 scanning measurements over 24 h. 1718 points from the obtained data fell within the range of 2 SE.

The mean of the triplicate experiment was 3.13×10^{-4} g/cm2/h with SE of 5.05×10^{-6}. The overall trend showed a linear and consistent regression in HAp mineral content over 24 h.

Figure 14.5 shows an exponential relationship between the mean RD_{HAp} in response to changes in the demineralisation solution circulation rate. Comparing the mean RD_{HAp} for each two successive circulation rates reveals that the change in RD_{HAp} was statistically significant as the demineralisation solution circulation rate increased from 0 RPM to 6 RPM, from 6 RPM to 12 RPM and from 12 RPM to 18 RPM. The calculated P value for each two successive circulation rates was 0.01, 0.05, and 0.01 respectively. However, as the demineralisation solution circulation
increased above 18 RPM the change in RD_{HAp} became statistically insignificant with P values of 1.78, 1.22 and 0.75 for demineralisation solution circulation rate changing from 18 RPM to 24 RPM, from 24 RPM to 30 RPM and from 30 RPM to 36 RPM respectively.

14.6 Conclusions

This study demonstrates that the solution composition in contact with a demineralising HAp surface achieved by sufficient circulation speed, or stirring, is an important parameter in HAp dissolution studies. Diffusive transport of dissolved substrate away from the dissolving HAp surface will influence the kinetics of the process.

This study helped in developing the research protocol to be used in the rest of the experiments in this thesis with regard to selecting the demineralisation solution circulation speed. It was decided to select 24 RPM (0.80 ml/min) as it was the highest circulating speed that showed a significant increase in RD_{HAp}.

- 163 -
CHAPTER 15

Effect of High Concentration of Strontium Ions (Sr$^{2+}$) on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography

15.1 Introduction

Toothpastes containing Sr$^{2+}$ were introduced to the market around five decades ago for the treatment of tooth hypersensitivity. Strontium chloride and strontium acetate were the most commonly used strontium compounds (Hughes et al., 2010, Mason et al., 2010). Strontium acetate has the advantage of being compatible with fluoride (Cummins, 2010). Toothpastes containing 6% and 8% strontium acetate showed rapid and lasting relief of hypersensitivity (Layer and Hughes, 2010). The chemical similarity between Sr$^{2+}$ and Ca$^{2+}$ made it possible for Sr$^{2+}$ to replace Ca$^{2+}$, in various structures in the body, including HAp. The effect of Sr$^{2+}$ on RD$_{\text{HAp}}$ remains an area of controversy (Kikuchi et al., 1994, Bigi et al., 2007). For further details on Sr$^{2+}$ background refer to Chapter 6.

15.2 Aims and objectives

The aim of this pilot study was to study the effect of Sr$^{2+}$, at concentrations comparable to those found in desensitising toothpastes, on the dissolution kinetics of porous HAp discs.
The objective was to measure the rate of HAp dissolution in permeable HAp discs using SMR under strictly controlled thermodynamic conditions at Sr$^{2+}$ concentrations relevant to desensitising toothpastes.

15.3 Materials and methods

15.3.1 HAp discs

Two HAp discs were used in this study. The details of the HAp disc preparation are described in Section 10.6.2.

15.3.2 Demineralisation solutions

Four solutions were prepared at strontium concentrations reported in desensitizing toothpastes containing 6% and 8% strontium acetate (Layer and Hughes, 2010);

1) 1 litre of 0.1% acetic acid pH 4.0 with 6% strontium acetate (*SIGMA-ALDRICH*™ product # 388548-500G and batch # 01715JJ).

2) 1 litre of 0.1% acetic acid pH 4.0 with 8% strontium acetate.

3) 1 litre of de-ionised water pH 7.0 with 6% strontium acetate (60,000 ppm)

4) 1 litre of de-ionised water pH 7.0 with 8% strontium acetate (80,000 ppm).

The pH of each solution was adjusted following addition of strontium acetate by addition of HCl or KOH 1 Molar solutions as necessary. The solutions were circulated at 0.80 ml/min (Table 14.2).

15.3.3 SMR

SMR Cell 1 contained 1 HAp disc that was exposed to 0.1% acetic acid pH 4.0 with 6% (60,000 ppm) strontium acetate then 0.1% acetic acid pH 4.0 with 8%
(80,000 ppm) strontium acetate for 40 h each. The two demineralising solution cycles were separated by 24 hours of de-ionised water.

SMR Cell 2 contained 1 HAp disc exposed to 6% (60,000 ppm) strontium acetate in de-ionised water followed by 8% (80,000 ppm) strontium acetate for 40 h each, separated by 24 h of de-ionised water.

15.4 Results

15.4.1 0.1% acetic acid pH 4.0 with 6% strontium acetate

![Graph showing increased projected HAp mineral mass content over a period of 40 h in response to exposure to 0.1% acetic acid pH 4.0 demineralisation solution containing 6% strontium acetate.

The results of the effect of 0.1% acetic acid pH 4.0 with 6% strontium acetate on RD$_{HAp}$ are shown in Figure 15.1. The RD$_{HAp}$ was stopped and the projected HAp mineral mass content increased at a rate of 5.14x10$^{-5}$ g/cm2/h.
15.4.2 0.1% acetic acid pH 4.0 with 8% strontium acetate

The results of the effect of 0.1% acetic acid pH 4.0 with 8% strontium acetate on RD$_{\text{HAp}}$ are shown in Figure 15.2. The RD$_{\text{HAp}}$ was stopped and the projected HAp mineral mass content increased at a rate of 7.19x10$^{-5}$ g/cm2/h.
15.4.3 De-ionised water pH 7.0 with 6% strontium acetate

The results of the effect of de-ionised water pH 7.0 with 6% strontium acetate on RD$_{HAp}$ are shown in Figure 15.3. The RD$_{HAp}$ was stopped and the projected HAp mineral mass content increased at a rate of 6.38x10^{-5} g/cm2/h.
15.4.4 De-ionised water pH 7.0 with 8% strontium acetate

The results of the effect of de-ionised water pH 7.0 with 8% strontium acetate on $R_{D_{HAP}}$ are shown in Figure 15.4. The $R_{D_{HAP}}$ was stopped and the projected HAp mineral mass content increased at a rate of 7.87×10^{-5} g/cm2/h.

15.5 Discussion

Demineralisation halted when the porous HAp disc was exposed to 0.1% acetic acid solution pH 4.0 containing either 6% or 8% strontium acetate. Over a period of 40 hours the mineral mass content of the HAp disc exposed to the demineralisation solutions actually increased. Similar results were obtained when the
PART IV: EXPERIMENTAL WORK

HAp disc was exposed to solutions containing 6% and 8% strontium acetate at pH 7.0.

The literature did not reveal any previous demineralisation experiments with solutions containing high strontium concentrations with which to compare the results. A possible explanation for the halt in RD_{HAp} and increase in the mineral mass content suggests that Sr^{2+} was precipitated on the HAp surface. Another possibility is that the high Sr^{2+} concentration in the solution might have affected the X-ray detection by the detector causing fewer photon counts, reflected as increased mineral mass content at the HAp disc.

Therefore in order to have good understanding of the effect of Sr^{2+} on RD_{HAp} it was decided to test the effect of strontium at low concentrations such as Sr^{2+} concentrations in water on the HAp dissolution kinetics.

15.6 Protocol summary

Based on the results obtained from Chapters 11-15, a final protocol for the experiments in this thesis has been developed.

Plasma-Biotat compressed permeable HAp discs will be used as a model for dental enamel (Chapter 11 and Chapter 12). The HAp discs should be preconditioned and sterilised (Section 10.6.2) prior to placement at the centre of the SMR cell. The HAp discs will be scanned using the modified SMR technique for measuring the RD_{HAp} over a period of 20 h to resemble the oral condition as much as possible while insuring obtaining enough photon counts for a reliable data. A statistician was consulted in regards to the sample size. Ideally the larger the sample size the more statistically sound and reliable the results are, but due to the nature of the SMR
experiments (length of the experiments and the large number of counts obtained over 20 h) it was justifiable to duplicate the experiments.

Based on the sampling time discussed in Section 10.5, scanning more than one SMR cell simultaneously would not affect the calculated RD_{HAp}, therefore the duplicate experiments will be run at the same time by scanning 2 SMR cells simultaneously. 0.1% acetic acid pH 4.0 demineralisation solution will be used a representative of caries-like condition and 0.3% citric acid pH 2.8 will be used for erosion-like conditions. These concentrations have been previously used in published work by the Dental Physical Sciences Laboratory at Queen Mary, University of London as well as by the Dental Materials Science Laboratory at the School of Oral and Dental Sciences, University of Bristol. The demineralisation solutions will be circulated at 24 RPM (0.80 ml/min) circulation speed (Section 14.6). The three divalent metal cations to be investigated are Zn^{2+}, Sr^{2+} and Cu^{2+}.

Zinc will be investigated at a range of concentrations relevant to Zn^{2+} concentrations in dental plaque (0, 5, 10, 15, and 20 ppm) (Section 16.2). Sr^{2+} will be investigated at a range of concentrations relevant to Sr^{2+} concentration in drinking water (0, 5, 10, 20, and 30 ppm) (Section 17.2) and Cu^{2+} will be investigated at a range of concentrations (0, 11.25, 22.50, 45, 90, 150 and 180 ppm) relevant to Cu^{2+} concentrations that have been investigated in other studies (Section 18.5).

Each cation will be investigated in a series of experiments in an increasing concentration sequence (e.g. 0, 5, 10, 15, and 20 ppm) or a series of experiments in a decreasing concentration sequence (e.g. 20, 15, 10, 5, and 0 ppm). All concentrations in one sequence, increasing or decreasing, should be done on the same HAp disc. For each cation concentration, the RD_{HAp} will be measured over a period of 20 h followed by 30 min of washing the HAp disc by de-ionised water at 90 RPM to
remove any loosely attached substances, followed by the next concentration for another 20 h and so on, through the whole series of increasing or decreasing concentration sequence. The idea behind investigating all different concentrations on a single HAp disc in a sequence of increasing or decreasing concentration sequence is an attempt to explore whether the investigated cation exhibits a long lasting effect. In that case the effect of the different concentrations, represented by \(\text{RD}_{\text{HAp}} \), in an increasing concentration sequence will show a different trend (pattern) than the trend shown by the same concentrations when investigated in a decreasing concentration sequence. In reverse, if both sequences of cation increasing and decreasing concentrations showed the same trend of effect on \(\text{RD}_{\text{HAp}} \) regardless of the type of sequence, this would be an indication that the cation showed a surface effect.

A summary of the final developed protocol for the experiments in this thesis is shown in Table 15.1.

TABLE 15.1 A summary of the protocol to be used in the SMR studies in this thesis

<table>
<thead>
<tr>
<th>Protocol component</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMR technique and</td>
<td>▪ The modified SMR technique for measuring (\text{RD}_{\text{HAp}}) over 24 h or less, to be used in this thesis</td>
</tr>
<tr>
<td>scanning duration</td>
<td>▪ Twenty hours of demineralisation is sufficient to be used as scanning duration and HAp discs to be washed with de-ionised water at 90 RPM for 30 min between different experimental conditions to remove any loosely bound substances on the surface</td>
</tr>
<tr>
<td>Selection of HAp discs</td>
<td>▪ Permeable compressed sintered Plasma-Biotal HAp discs will be used in this thesis as</td>
</tr>
</tbody>
</table>
| **Types of demineralisation solutions** | ▪ 0.1% acetic acid pH 4.0 simulating caries-like conditions
▪ 0.3% citric acid pH 2.8 simulating erosion-like conditions |
| **Demineralisation solution circulation rate** | ▪ 24 RPM (0.80 ml/min) demineralisation solution circulation speed |
| **Zn$^{2+}$ concentration** | ▪ Zn$^{2+}$ will be investigated at concentrations relevant to Zn$^{2+}$ concentration in dental plaque (e.g. 0, 5, 10, 15, and 20 ppm) |
| **Sr$^{2+}$ concentration** | ▪ High Sr$^{2+}$ concentrations such as in desensitising toothpastes are not suitable for use in studying RD$_{HAP}$ using the SMR technique, instead low Sr$^{2+}$ concentrations such as Sr$^{2+}$ concentrations in water (0, 5, 10, 20, and 30 ppm) will be used |
| **Cu$^{2+}$ concentration** | ▪ Cu$^{2+}$ will be investigated at a range of concentrations (0, 11.25, 22.50, 45, 90, 150 and 180 ppm) relevant to Cu$^{2+}$ concentrations that have been investigated in other studies |
PART IV: EXPERIMENTAL WORK
CHAPTER 16

Effect of Zinc Ions (Zn$^{2+}$) on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography *

16.1 Introduction

Zinc is a dietary essential trace element that was long ago incorporated in toothpastes because of its antiplaque activity and ability to reduce calculus formation as well as oral malodor (background information about Zn$^{2+}$ was discussed in Chapter 5). Few studies have been conducted on the direct effects of Zn$^{2+}$ on HAp dissolution under either erosion or caries-like conditions. The exact mechanism by which the Zn$^{2+}$ divalent metal cation alters HAp dissolution kinetics has been an issue of controversy (Section 5.6).

16.2 Aims and objectives

The aim of this study was to study the effect of Zn$^{2+}$ on the dissolution kinetics of permeable HAp discs, at a range of concentrations relevant to Zn$^{2+}$ concentrations in plaque.

* The work described in this Chapter was presented at the 2nd Zinc-UK meeting, London, UK (October 2010) and at the European Organisation for Caries research Conference, Kaunas, Lithuania, (July, 2011)
The objectives were to measure the \(\text{RD}_{\text{HAp}} \) under strictly controlled thermodynamic conditions at a range of 0, 5, 10, 15 and 20 ppm \(\text{Zn}^{2+} \) over a period of 20 h using SMR.

16.3 Materials and methods

The general protocol of the experiment is illustrated in Figure 16.1.

FIGURE 16.1 Schematic diagram of a SMR cell with HAp disc in place connected to the peristaltic pump (p) for circulating the demineralisation solution over a period of 20 h followed by 30 minutes of de-ionised water at both increasing and decreasing \(\text{Zn}^{2+} \) concentration sequence.

16.3.1 HAP discs

Eight HAp discs were used in this study. The details of the HAp disc preparation were described in Section 10.6.2.
16.3.2 Demineralisation solutions

A 5 litre batch solution of 0.1% acetic acid pH 4.0 was divided into five x 1 litre bottles. Into each, zinc acetate (Fisher Scientific UK Limited, Leicester, UK, code # Z/0700/50 and batch # 0951237) was added, so that the final Zn$^{2+}$ concentration was 0, 5, 10, 15 or 20 ppm. The solution pH was adjusted following addition of zinc acetate by using 1 Molar HCl or KOH solutions as necessary.

Similarly, a 5 litre batch solution of 0.3% citric acid pH 2.8 was divided into five 1 litre bottles. Into each, zinc acetate (product of Fisher Scientific UK Limited, Leicester, UK, code # Z/0700/50 and batch # 0951237) was added, so that the final concentration Zn$^{2+}$ was 0, 5, 10, 15 and 20 ppm. The solution pH was adjusted following addition of zinc acetate by using 1 Molar HCl or KOH solutions as necessary (Section 10.7). The demineralisation solutions were circulated at 0.80 ml/min.

16.3.3 SMR

Four HAp discs were fixed centrally in four SMR cells and demineralising solutions were circulated at 0.80 ml/min. The RD$_{\text{HAp}}$ was measured at a single centrally located point on each disc for approximately 20 h at 22 ± 1°C. Each experiment was repeated twice for both experiments with increasing, and decreasing Zn$^{2+}$ concentration steps. The same HAp disc was used for the entire series of different Zn$^{2+}$ concentrations, whether at increasing or decreasing Zn$^{2+}$ concentration sequences, with the disc being washed with de-ionised water for 30 min between each Zn$^{2+}$ concentrations sequences.

For the increasing Zn$^{2+}$ concentration sequence 20 h experiments; the HAp disc was exposed to demineralising solution, with no Zn$^{2+}$ added; followed by 30 min of washing by de-ionised water, followed by 20 h of exposure to demineralising
solution with 5 ppm Zn\(^{2+}\), followed by 30 min of washing by de-ionised water and so on through all the Zn\(^{2+}\) different concentrations. All steps were performed using the same HAp disc. In reverse, the decreasing sequence Zn\(^{2+}\) concentration experiments, the same HAp disc was exposed for 20 h to demineralising solution with, 20 ppm Zn\(^{2+}\) followed by 30 min of washing by de-ionised water, followed by 20 h of exposure to demineralising solution with 15 ppm Zn\(^{2+}\), followed by 30 min of washing by de-ionised water and so on through the decreasing Zn\(^{2+}\) concentrations. Each experiment was duplicated.

16.4 Results

16.4.1 0.1% acetic acid pH 4.0

For each one of the 20 acetic acid pH 4.0 demineralisation solutions experiments (containing five different Zn\(^{2+}\) concentrations), the mineral mass loss of each HAp disc was continuously measured throughout the experimental duration. Figure 16.2 and Figure 16.3 are typical examples of the real-time change in the projected HAp mineral mass content in response to exposure to 0.1% acetic acid solution pH 4.0 with 5 ppm Zn\(^{2+}\) for both increasing and decreasing Zn\(^{2+}\) concentration sequences respectively.

Figure 16.2 shows that the HAp projected mineral mass content decreased from 0.722 g/cm\(^2\) to 0.715 g/cm\(^2\) in 20 h. This reduction represents only a 0.9% loss of the projected HAp mineral mass over 20 h. While for Figure 16.3 the HAp projected mineral mass content decreased from 0.691 g/cm\(^2\) to 0.684 g/cm\(^2\) in 20 h which represents only a 1% loss in the HAp projected mineral content over 20 h.
FIGURE 16.2 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.1% acetic acid pH 4.0 with 5 ppm Zn$^{2+}$ demineralisation solution at increasing Zn$^{2+}$ concentration sequence

(■ Within 1 SD, □ < 2 SD, ▲ < 3 SD, ■ < 4 SD)

TABLE 16.1 Statistical analysis, for the data in Figure 16.2, using TableCurve 2D®

<table>
<thead>
<tr>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (g/cm2)</td>
<td>0.722</td>
<td>1.071e-04</td>
<td>6740.54</td>
</tr>
<tr>
<td>b (g/cm2/h)</td>
<td>-3.89e-4</td>
<td>9.277e-06</td>
<td>-40.34</td>
</tr>
</tbody>
</table>
FIGURE 16.3 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.1% acetic acid pH 4.0 with 5 ppm Zn²⁺ demineralisation solution at decreasing Zn²⁺ concentration sequence

(■ Within 1 SD, □ < 2 SD, ▼ < 3 SD, ▲ < 4 SD)

TABLE 16.2 Statistical analysis, for the data in Figure 16.3, using TableCurve 2D®

<table>
<thead>
<tr>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (g/cm²)</td>
<td>0.691</td>
<td>1.039e-04</td>
<td>6651.835</td>
</tr>
<tr>
<td>b (g/cm²/h)</td>
<td>-3.90e-4</td>
<td>9.001e-06</td>
<td>-43.387</td>
</tr>
</tbody>
</table>
TableCurve 2D®, automated curve fitting and equation discovery program, version 5.1 for Windows (SYSTAT® Software Inc, Richmond CA), was used to calculate the standard error (SE) for each experiment. The RD$_{\text{HAp}}$ was calculated and the resulting associated errors are summarised in Table 16.3.

TABLE 16.3 RD$_{\text{HAp}}$ and calculated SE for each demineralising solution

<table>
<thead>
<tr>
<th>Zn$^{2+}$ concentration (ppm)</th>
<th>RD$_{\text{HAp}}$ (g/cm2/h) for increasing Zn$^{2+}$ concentration sequence</th>
<th>RD$_{\text{HAp}}$ (g/cm2/h) for decreasing Zn$^{2+}$ concentration sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HAp disc1</td>
<td>SE</td>
</tr>
<tr>
<td>0</td>
<td>2.97 x10^{-4}</td>
<td>9.30 x10^{-6}</td>
</tr>
<tr>
<td>5</td>
<td>3.14 x10^{-4}</td>
<td>9.11 x10^{-6}</td>
</tr>
<tr>
<td>10</td>
<td>3.22 x10^{-4}</td>
<td>8.81 x10^{-6}</td>
</tr>
<tr>
<td>15</td>
<td>3.73 x10^{-4}</td>
<td>9.25 x10^{-6}</td>
</tr>
<tr>
<td>20</td>
<td>4.27 x10^{-4}</td>
<td>8.97 x10^{-6}</td>
</tr>
</tbody>
</table>
16.4.2 0.3% citric acid pH 2.8

Figure 16.4 and Figure 16.5 demonstrate the real-time change of HAp projected mineral mass following exposure to 0.3% citric acid pH 2.8 solution at a range of Zn$^{2+}$ concentrations, for both increasing and decreasing Zn$^{2+}$ concentration respectively.

Figure 16.4 shows that the HAp projected mineral mass content decreased from 0.589 g/cm2 to 0.535 g/cm2 in 20 h. This reduction represents a 9% loss in projected HAp mineral mass over 20 h. While for Figure 16.5 the HAp projected mineral mass content decreased from 0.505 g/cm2 to 0.449 g/cm2 in 20 h which represents a 10% loss in the projected mineral content over 20 h.
FIGURE 16.4 Typical example of the change in projected HA mineral mass content over a period of 20 h in response to 0.3% citric acid pH 2.8 with 5 ppm Zn²⁺ demineralisation solution at increasing Zn²⁺ concentration sequence.

(■ Within 1 SD, 1 SD< < 2 SD, 2 SD< < 3 SD, 3 SD< < 4 SD)

TABLE 16.4 Statistical analysis, for the data in Figure 16.4, using TableCurve 2D®

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (g/cm²)</td>
<td>0.589</td>
<td>1.87e-04</td>
<td>3143.845</td>
<td>0.5882, 0.5889</td>
</tr>
<tr>
<td>b (g/cm²/h)</td>
<td>-2.77e-3</td>
<td>1.62e-05</td>
<td>-170.807</td>
<td>-2.80e-3, -2.74e-3</td>
</tr>
</tbody>
</table>
FIGURE 16.5 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.3% citric acid pH 2.8 with 5 ppm Zn$^{2+}$ demineralisation solution at decreasing Zn$^{2+}$ concentration sequence

(■ Within 1 SD, □ < 2 SD, ▲ < 3 SD, ▼ < 4 SD)

TABLE 16.5 Statistical analysis, for the data in Figure 16.5, using TableCurve 2D®

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (g/cm2)</td>
<td>0.505</td>
<td>2.53e-04</td>
<td>1994.060</td>
<td>0.5048 - 0.5057</td>
</tr>
<tr>
<td>b (g/cm2/h)</td>
<td>-2.85e-3</td>
<td>2.20e-05</td>
<td>-129.974</td>
<td>-2.90e-3 - 2.81e-3</td>
</tr>
</tbody>
</table>
The change in RD_{HAp} after the sequential exposure to 0.3% citric acid pH 2.8 with various Zn$^{2+}$ concentrations was calculated and the results obtained are summarised in Table 16.6.

TABLE 16.6 RD_{HAp} and calculated SE for each demineralising solution

<table>
<thead>
<tr>
<th>Zn$^{2+}$ concentration (ppm)</th>
<th>RD_{HAp} (g/cm2/h) for increasing Zn$^{2+}$ concentration sequence</th>
<th>RD_{HAp} (g/cm2/h) for decreasing Zn$^{2+}$ concentration sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HAp disc1</td>
<td>SE</td>
</tr>
<tr>
<td>20</td>
<td>1.70x103</td>
<td>1.65x105</td>
</tr>
<tr>
<td>15</td>
<td>2.51x103</td>
<td>1.87x105</td>
</tr>
<tr>
<td>10</td>
<td>2.84x103</td>
<td>2.19x105</td>
</tr>
<tr>
<td>5</td>
<td>2.89x103</td>
<td>2.36x105</td>
</tr>
<tr>
<td>0</td>
<td>3.18x103</td>
<td>2.15x105</td>
</tr>
</tbody>
</table>
16.5 Discussion

Previous studies on the effect of Zn$^{2+}$ on de/remineralisation of enamel concluded that Zn$^{2+}$ interacts with the HAp either through adsorbing onto the surface of the crystals or through incorporation into the crystal lattice replacing Ca$^{2+}$ and forming zinc calcium phosphates (Xu et al., 1994, Stötzel et al., 2009).

In this study, for caries-like conditions, Figure 16.2 and Figure 16.3 represent typical examples of the change in projected HAp mineral mass content, over a period of ≈20 h when exposed to 0.1% acetic acid pH 4.0 with 5 ppm Zn$^{2+}$ demineralisation solution with increasing and decreasing concentration sequences respectively. In Figure 16.2 the change in mineral mass content (g/cm2) was plotted as a function of time (h). The data showed a linear regression trend for the projected HAp mineral mass content over time. One thousand and five hundred data counts were measured at a centrally located point on the permeable HAp disc over 20 h, of which only 76 data counts were outside 2 SD (5%).

Figure 16.3 shows demineralisation in caries-like conditions similar to those in Figure 16.2 but in the sequence when the Zn$^{2+}$ concentration experiments had been reversed. It shows a similar linear regression trend in projected HAp mineral mass content over the experimental duration. One thousand five hundred data counts were collected at a centrally located point on the permeable HAp disc over 20 h out of which 50 data counts were outside 2 SD (3.3%).

Table 16.3 shows the calculated demineralisation rates and the SE for each of the 20 experiments with various Zn$^{2+}$ concentrations. Calculations of SE gives a better insight into the accuracy of the data than R^2, particularly when dealing with large data sets as it takes into consideration the sample size while R^2 only represents...
a measure of goodness of fit. The calculated SE for the fitted parameters were low, as demonstrated in Table 16.3.

Figure 16.6 shows that as Zn\(^{2+}\) concentration increased at an increasing concentration sequence (0-20 ppm), the RD\(_{\text{HAp}}\) decreased. This reduction in RD\(_{\text{HAp}}\) was statistically significant (P≤0.05) for all Zn\(^{2+}\) concentrations investigated when compared to the control group (0 ppm). However, when the sequence of Zn\(^{2+}\) concentrations was reversed (20-0 ppm), the RD\(_{\text{HAp}}\) increased (Figure 16.7).
FIGURE 16.6 The effect of Zn\(^{2+}\) at a range of 0 – 20 ppm on mean RD\(_{\text{HAp}}\) at increasing Zn\(^{2+}\) concentration sequence under caries-like conditions.

FIGURE 16.7 The effect of Zn\(^{2+}\) at a range of 20 - 0 ppm on mean RD\(_{\text{HAp}}\) at decreasing Zn\(^{2+}\) concentration sequence under caries-like conditions.
PART IV: EXPERIMENTAL WORK

The average of each duplicate experiment, at each Zn\(^{2+}\) concentration, in both increasing and decreasing Zn\(^{2+}\) concentration sequence was calculated and illustrated in Figure 16.8.

Figure 16.8 shows that the relation between Zn\(^{2+}\) concentration and RD\(_{\text{HAp}}\) is the same for both, increasing and decreasing concentration sequences. An important outcome of this study is that the direction of the sequence of Zn\(^{2+}\) concentration has no effect on its capability to reduce RD\(_{\text{HAp}}\). This is as if Zn\(^{2+}\) was completely washed away when the HAp disc was rinsed by the de-ionised water between the different concentrations in each sequence. This supports the hypothesis that Zn\(^{2+}\) is not permanently incorporated into the HAp structure; but instead adheres to the HAp surface blocking dissolution nuclei and slowing the demineralisation rate.
For erosion-like conditions, Figure 16.4 and Figure 16.5 are typical examples of the change in projected HAp mineral mass content over a period of 20 h during exposure to 0.3% citric acid pH 2.8 with 5 ppm Zn2+ demineralisation solution during an increasing and a decreasing concentration sequences respectively.

Figure 16.4 shows a regression trend for the projected HAp mineral mass content over time. One thousand five hundred data counts were measured at a centrally located point on the permeable HAp disc over 20 h, of which only 55 data counts were outside 2 SD (3.6%).

Figure 16.5 shows demineralisation in erosion-like conditions similar to those for Figure 16.4 but with the sequence of the Zn2+ concentration experiments reversed. It shows a similar regression trend in projected HAp mineral mass content over the experimental duration. One thousand five hundred data counts were collected at a centrally located point on the permeable HAp disc over 20 h, out of which only 62 data counts were outside 2 SD (4.1%).

Table 16.4 shows the calculated demineralisation rates and the SE for each of the 20 experiments in which various Zn2+ concentrations were used.

Figure 16.9 shows the effect of Zn2+ on RD\textsubscript{HAp} at an increasing concentration sequence (0-20 ppm), that RD\textsubscript{HAp} decreased. This reduction in RD\textsubscript{HAp} was statistically significant (P≤0.05) for all Zn2+ concentrations investigated when compared to the control group (0 ppm). However, when the sequence of Zn2+ concentrations was reversed, as Zn2+ concentrations decreased (20-0 ppm), the RD\textsubscript{HAp} increased (Figure 16.10).
FIGURE 16.9 The effect of Zn\(^{2+}\) at a range of 0 – 20 ppm on mean RD\(_{\text{HAp}}\) at increasing Zn\(^{2+}\) concentration sequence under erosion-like conditions.

FIGURE 16.10 The effect of Zn\(^{2+}\) at a range of 20 – 0 ppm on mean RD\(_{\text{HAp}}\) at decreasing Zn\(^{2+}\) concentration sequence under erosion-like conditions.
Figure 16.11 shows the relation between Zn$^{2+}$ concentration and RD$_{HAp}$ is the same for both increasing and decreasing concentration sequences. An important outcome of this study is that it demonstrated that the sequence of Zn$^{2+}$ concentration in a series of experiments has no effect on its ability in reducing RD$_{HAp}$, i.e. Zn$^{2+}$ were completely washed away when the HAp disc was rinsed by de-ionised water between the different concentrations. This supports the hypothesis that Zn$^{2+}$ does not incorporate into the HAp structure; instead it adheres to the surface blocking some dissolution nuclei and slowing the demineralisation rate.

An overall comparison between the results of the effect of Zn$^{2+}$ on RD$_{HAp}$ in caries and erosion-like conditions clearly indicates that both showed a decrease in RD$_{HAp}$ with increasing Zn$^{2+}$ concentrations. All solutions with a range of Zn$^{2+}$ concentrations (5, 10, 15 and 20 ppm) showed a significant decrease (p ≤ 0.05) in RD$_{HAp}$ compared to the control solution (0 ppm Zn$^{2+}$). This suggests that Zn$^{2+}$ is in a
“loose equilibrium” with the HAp surface mineral, and therefore while there is Zn$^{2+}$ in the surrounding fluid some will be adsorbed onto the surface in a dynamic equilibrium. This finding is in agreement with Tan-Walker and Gilbert (1989), who showed that Zn$^{2+}$ reduced demineralisation significantly at physiologically relevant zinc concentrations added to a gel acid demineralisation system.

16.6 Conclusions

The results of this study demonstrated the inhibitory effect of Zn$^{2+}$ as a divalent metal cation on RD$_{\text{HAp}}$ under strictly controlled thermodynamic conditions relevant to dental caries and erosion. The results also support the hypothesis that Zn$^{2+}$ (under the experimental conditions) inhibits HAp dissolution by adsorbing to the surface of the HAp disc rather than having a substitution effect.
CHAPTER 17

Effect of Strontium Ions (Sr$^{2+}$) at a Range of Concentrations (0-30 ppm) on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography*

17.1 Introduction

Numerous clinical trials have reported the efficacy of a wide range of Sr$^{2+}$ containing compounds in the management of dentine hypersensitivity. The British and American Dental Associations have accredited various formulations for efficacy, including toothpastes incorporating strontium acetate and strontium chloride (Orchardson and Gillam, 2006). On the other hand the role of Sr$^{2+}$ in the prevention of dental caries shows many controversies. Experimental studies show that the replacement of Ca$^{2+}$ by Sr$^{2+}$ alter the HAp crystal lattice, and the formed strontium calcium apatite is more soluble than the HAp. However clinical studies showed that populations who lived in areas with high Sr$^{2+}$ water concentration level had higher Sr$^{2+}$ concentration in their enamel and experienced less dental caries than those from areas with lower Sr$^{2+}$ water concentration level (Curzon and Crocker, 1978, Curzon et al., 1978, Athanassouli et al., 1983, Curzon, 1985).

* The work described in this chapter was presented at the International Association of Paediatric Dentistry Conference, Athens, Greece, (June, 2011) and at the British Society of Oral and Dental Research, Sheffield, UK (September 2011).
17.2 Aims and objectives

The aim of this study was to investigate the effect of Sr\(^{2+}\) at concentrations of 0, 5, 10, 20 and 30 ppm on the dissolution kinetics of permeable HAp disc.

The objectives were to measure the rate of HAp dissolution of a permeable HAp disc using the SMR technique under strictly controlled thermodynamic conditions and Sr\(^{2+}\) range of concentrations relevant to concentrations found in drinking water supplies.

17.3 Materials and methods

The protocol of this experiment is illustrated in Figure 17.1.

FIGURE 17.1 schematic diagram of an SMR cell with HAp disc in place, connected to the peristaltic pump (p) for circulating the demineralisation solution over a period of 20 h followed by 30 minutes of de-ionised water at both increasing \(\Rightarrow\), and decreasing \(\Leftarrow\) Sr\(^{2+}\) concentration sequences
17.3.1 HAp discs

Eight HAp discs were used in this study. The details of the HAp disc preparation were described in Section 10.6.2.

17.3.2 Demineralising solutions

For cariogenic conditions, a 5 litre batch solution of 0.1% acetic acid pH 4.0 was divided into five 1 litre bottles. Into each one, strontium acetate (SIGMA-ALDRICH, Co., St. Louis, USA, product # 388548-500G and batch # 01715JJ SIGMA-ALDRICH™) was added, so that the final Sr$^{2+}$ concentration was 0, 5, 10, 20 and 30 ppm Sr$^{2+}$.

For erosive conditions, a 5 litre batch solution of 0.3% citric acid pH 2.8 was divided into five 1 litre bottles. Into each one, strontium acetate was added, so that the final Sr$^{2+}$ concentration was 0, 5, 10, 20 and 30 ppm Sr$^{2+}$.

After the addition of strontium acetate, the pH of each demineralising solution was adjusted by using 1 Molar HCl or KOH solutions as necessary (Section 10.7).

17.3.3 SMR

HAp discs were located centrally in the SMR cells and demineralising solutions were circulated at 0.80 ml/min (Chapter 14). The rate of HAp demineralisation was measured at a centrally located point in each disc for a \approx20 h at 22 ± 1°C. Each experiment was repeated twice in both increasing (0 - 30 ppm) and decreasing (30 - 0 ppm) Sr$^{2+}$ concentrations sequence.

For the increasing Sr$^{2+}$concentration experiments; the HAp disc was exposed for \approx20 h to the demineralising solution with no Sr$^{2+}$ added; followed by 30 min of washing by de-ionised water, followed by \approx20 h of exposure to demineralising solution with 5 ppm Sr$^{2+}$, followed by 30 min of washing by de-ionised water and so
on through the increasing Sr\(^{2+}\) concentrations. All exposures were performed using the same HAp disc. In reverse, for the decreasing sequence Sr\(^{2+}\) concentration experiments, the same HAp disc was further exposed for \(\approx 20\) h to each demineralising solution with 30 min of washing by de-ionised water. The SMR cells were mounted on the SMR stage and scanned at the same time. Each experiment was duplicated.

17.4 Results

17.4.1 0.1% acetic acid pH 4.0

For each experiment of the 20 demineralisation experiments using 0.1% acetic acid pH 4.0 with various Sr\(^{2+}\) concentrations, the mineral mass loss of each HAp disc was continuously measured throughout the entire experimental duration. Figure 17.2 and Figure 17.3 are typical examples of the real-time change in the projected HAp mineral mass content in response to the exposure to 0.1% acetic acid pH 4.0 solution with 20 ppm Sr\(^{2+}\)concentration in both increasing and decreasing Sr\(^{2+}\)concentration sequences respectively.

For Figure 17.2 the HAp projected mineral mass content decreased from 0.776 g/cm\(^2\) to 0.772g/cm\(^2\) in 20 h. This reduction in projected mineral mass content represents only a 0.5% loss of projected HAp mineral content over 20 h. While for Figure 17.3 the HAp projected mineral mass content decreased from 0.677 g/cm\(^2\) to 0.675 g/cm\(^2\) in \(\approx 20\) h which represents 0.3% loss of projected mineral content over \(\approx 20\) h at a rate of \(1.05 \times 10^{-4}\) g/cm\(^2\)/h.
FIGURE 17.2 Typical example of the change in projected HAp mineral mass content over a period of ≈ 20 h in response to 0.1% acetic acid pH 4.0 with 20 ppm Sr$^{2+}$ demineralisation solution at increasing Sr$^{2+}$ concentration sequence.

(■ Within 1 SD, 1 SD < < 2 SD, 2 SD < < 3 SD, 3 SD < < 4 SD)

TABLE 17.1 Statistical analysis, for the data in Figure 17.2, using TableCurve 2D®

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (g/cm2)</td>
<td>0.776</td>
<td>1.651e-04</td>
<td>4697.25</td>
<td>0.7756 - 0.7762</td>
</tr>
<tr>
<td>b (g/cm2/h)</td>
<td>-1.82e-4</td>
<td>1.35e-05</td>
<td>-13.55</td>
<td>-2.09-4 - 1.57e-4</td>
</tr>
</tbody>
</table>
FIGURE 17.3 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.1% acetic acid pH 4.0 with 20 ppm Sr\(^{2+}\) demineralisation solution at decreasing Sr\(^{2+}\) concentration sequence

(■ Within 1 SD, □ 2 SD<, □ 3 SD<, □ 4 SD<)

TABLE 17.2 Statistical analysis, for the data in Figure 17.3, using TableCurve 2D\(^{®}\)

<table>
<thead>
<tr>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (g/cm(^2))</td>
<td>0.677</td>
<td>1.747e-04</td>
<td>3878.92</td>
</tr>
<tr>
<td>b (g/cm(^2)/h)</td>
<td>-1.05e-4</td>
<td>1.331e-05</td>
<td>-7.924</td>
</tr>
</tbody>
</table>
The \(\text{RD}_{\text{HAp}} \) and the SE for each of the 20 experiments, using 0.1% acetic acid pH 4.0, was calculated and the results associated errors were summarized in Table 17.3

TABLE 17.3 \(\text{RD}_{\text{HAp}} \) and SE for each demineralisation solution at different \(\text{Sr}^{2+} \) concentrations at both increasing and decreasing concentration sequences

<table>
<thead>
<tr>
<th>(\text{Sr}^{2+}) concentration (ppm)</th>
<th>HAp disc1</th>
<th>SE</th>
<th>HAp disc2</th>
<th>SE</th>
<th>HAp disc1</th>
<th>SE</th>
<th>HAp disc2</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.30x10^{-4}</td>
<td>1.28x10^{-3}</td>
<td>1.00x10^{-4}</td>
<td>1.18x10^{-3}</td>
<td>1.76x10^{-4}</td>
<td>1.31x10^{-3}</td>
<td>1.18x10^{-4}</td>
<td>1.28x10^{-5}</td>
</tr>
<tr>
<td>20</td>
<td>1.82x10^{-4}</td>
<td>1.51x10^{-3}</td>
<td>1.05x10^{-4}</td>
<td>1.43x10^{-3}</td>
<td>1.42x10^{-4}</td>
<td>1.69x10^{-3}</td>
<td>1.06x10^{-4}</td>
<td>1.43x10^{-5}</td>
</tr>
<tr>
<td>10</td>
<td>2.05x10^{-4}</td>
<td>1.23x10^{-3}</td>
<td>1.71x10^{-4}</td>
<td>1.57x10^{-3}</td>
<td>1.18x10^{-4}</td>
<td>1.65x10^{-3}</td>
<td>9.03x10^{-3}</td>
<td>1.30x10^{-5}</td>
</tr>
<tr>
<td>5</td>
<td>2.80x10^{-4}</td>
<td>9.61x10^{-3}</td>
<td>2.66x10^{-4}</td>
<td>1.25x10^{-3}</td>
<td>9.00x10^{-3}</td>
<td>1.28x10^{-3}</td>
<td>3.19x10^{-3}</td>
<td>1.75x10^{-4}</td>
</tr>
<tr>
<td>0</td>
<td>3.20x10^{-4}</td>
<td>1.25x10^{-3}</td>
<td>3.60x10^{-4}</td>
<td>1.38x10^{-3}</td>
<td>2.14x10^{-4}</td>
<td>1.09x10^{-3}</td>
<td>2.63x10^{-4}</td>
<td>1.35x10^{-5}</td>
</tr>
</tbody>
</table>
17.4.2 0.3% citric acid pH 2.8

Figure 17.4 and Figure 17.5 are typical examples of the real-time change in the HAp projected mineral mass content in response to the exposure to 0.3% citric acid pH 2.8 solution with 20 ppm Sr\(^{2+}\) concentrations in both increasing and decreasing Sr\(^{2+}\) concentrations respectively.

FIGURE 17.4 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.3% citric acid pH 2.8 with 20 ppm Sr\(^{2+}\) demineralisation solution at increasing Sr\(^{2+}\) concentration sequence

(■ Within 1 SD, □ 1 SD < ■ 2 SD, △ 2 SD < ■ 3 SD, □ 3 SD < □ 4 SD)

TABLE 17.4 Statistical analysis, for the data in Figure 17.4, using TableCurve 2D®

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (g/cm(^2))</td>
<td>0.432</td>
<td>2.026e-04</td>
<td>2132.276</td>
<td>0.4317</td>
</tr>
<tr>
<td>b (g/cm(^2)/h)</td>
<td>-3.66e-3</td>
<td>1.613e-05</td>
<td>-226.720</td>
<td>-3.689e-3</td>
</tr>
</tbody>
</table>
FIGURE 17.5 Typical example of the change in projected HAp mineral mass content over a period of 20 h in response to 0.3% citric acid pH 2.8 with 20 ppm Sr\(^{2+}\) demineralisation solution at decreasing Sr\(^{2+}\) concentration sequence.

(■ Within 1 SD, □ < 2 SD, ▢ < 3 SD, ▣ < 4 SD)

TABLE 17.5 Statistical analysis, for the data in Figure 17.5, using TableCurve 2D®

<table>
<thead>
<tr>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (g/cm(^2))</td>
<td>0.578</td>
<td>1.779e-04</td>
<td>3248.48</td>
</tr>
<tr>
<td>(b) (g/cm(^2)/h)</td>
<td>-3.38e-3</td>
<td>1.508e-05</td>
<td>-216.711</td>
</tr>
</tbody>
</table>
For each of the 20 demineralisation experiments using 0.3% citric acid pH 2.8 with various Sr\(^{2+}\) concentrations, the projected mineral mass loss of each HAp disc was continuously measured throughout the entire experiment duration. The RD\(_{\text{HAp}}\) and the SE were calculated and the results obtained are summarized in Table 17.6.

Table 17.6 The RD\(_{\text{HAp}}\) and SE for each demineralisation solution at different Sr\(^{2+}\) concentrations in both increasing and decreasing concentration sequences

<table>
<thead>
<tr>
<th>Sr(^{2+}) concentration (ppm)</th>
<th>0.3% citric acid pH 2.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RD(_{\text{HAp}}) (g/cm(^2)/h) increasing Sr(^{2+}) concentration sequence</td>
</tr>
<tr>
<td></td>
<td>HAp disc1</td>
</tr>
<tr>
<td>30</td>
<td>3.37 x 10(^{-3})</td>
</tr>
<tr>
<td>20</td>
<td>3.66 x 10(^{-3})</td>
</tr>
<tr>
<td>10</td>
<td>3.75 x 10(^{-3})</td>
</tr>
<tr>
<td>5</td>
<td>4.08 x 10(^{-3})</td>
</tr>
<tr>
<td>0</td>
<td>4.31 x 10(^{-3})</td>
</tr>
</tbody>
</table>
17.5 Discussion

In this study, Sr2+ at drinking water supply concentration levels was investigated at a range between 5 ppm and 30 ppm, based on the literature, particularly the work done by Little and Barrett (1976), Curzon \textit{et al.} (1978), Athanassouli \textit{et al.} (1983), Featherstone \textit{et al.} (1983a), Curzon (1985) and Thuy \textit{et al.} (2008).

The results of strontium 0 ppm solution were used as a control for comparison of the effect of different Sr2+ concentrations. Following the same experiment protocol used in the Zn2+ experiments, a series of demineralisation solutions was used, that differed only in the Sr2+ concentration, in either an increasing or a decreasing concentration sequence on the same permeable HAp disc. Running the experiments in a series of five experiments (≈20 h each), separated by 30 min of washing by stirred de-ionised water removed any loosely adsorbed material from the surface to evaluate the persistence effect of Sr2+.

Figure 17.2 and Figure 17.3 represents typical examples of the change in projected HAp mineral mass content, over a period of ≈20 h when exposed to 0.1% acetic acid pH 4.0 for caries-like conditions with 20 ppm Sr2+ demineralisation solution in increasing and decreasing concentration sequences respectively. The data showed a linear regression trend for the projected HAp mineral mass content over time. The systematic gaps in the recording of data over the experimental duration are because more than one SMR cell was scanned simultaneously over the experimental duration. As discussed in Chapter 10, the SMR technique utilizes a large number of data points to obtain good statistical accuracy. Scanning more than one SMR cell requires considerable move time, so bunches of data points were collected for each cell, but this does not affect the calculated RD\textsubscript{HAp} (Chapter 10).
In Figure 17.2, 606 data counts were measured at a centrally located point on the permeable HAp disc over ≈20 h, of which only 28 data counts were outside 2 SD (4.6%).

Figure 17.3 shows demineralisation in caries-like conditions similar to those in Figure 17.2 but with the sequence of the Sr$^{2+}$ concentration experiments reversed. It shows a similar linear regression trend for the projected HAp mineral mass content over the experimental duration. Six hundred and six data counts were collected at a centrally located point on the permeable HAp disc over ≈20 h out of which 24 data counts were outside 2 SD (3.9%).

Table 17.3 shows the calculated demineralisation rate and the SE for each of the 20 experiments with various Sr$^{2+}$ concentrations.

The effect of Sr$^{2+}$ on RD$_{\text{HAp}}$ at increasing concentrations of Sr$^{2+}$ sequence showed that as Sr$^{2+}$ concentration increased in the range from 0-30 ppm, RD$_{\text{HAp}}$ decreased (Figure 17.6). The reduction in RD$_{\text{HAp}}$ was statistically significant (P≤0.05) for all Sr$^{2+}$ concentrations investigated when compared to the control group (0 ppm). While the effect of Sr$^{2+}$ on RD$_{\text{HAp}}$ at decreasing concentrations of Sr$^{2+}$ sequence showed that as Sr$^{2+}$ concentration decreased in the range from 30 - 0 ppm, the RD$_{\text{HAp}}$ continued to decrease significantly, except for 0 ppm where the mean RD$_{\text{HAp}}$ increased (Figure 17.7).
FIGURE 17.6 The effect of Sr\(^{2+}\) at a range of 0 - 30 ppm on mean RD\(_{\text{HAp}}\) at increasing Sr\(^{2+}\) concentration sequence under caries-like conditions

FIGURE 17.7 The effect of Sr\(^{2+}\) at a range of 30 - 0 ppm on mean RD\(_{\text{HAp}}\) at decreasing Sr\(^{2+}\) concentration sequence under caries-like conditions
The average of each duplicate experiment, at each Sr2+ concentration at increasing and decreasing Sr2 concentration sequence was calculated and shown in Figure 17.8.

FIGURE 17.8 The effect of 0.1% acetic acid pH 4.0 with different Sr2+ concentrations (ppm) on RD\textsubscript{HAp} (g/cm2/h) at both increasing and decreasing concentrations sequences

Figure 17.8 shows that Sr2+ had an inhibitory effect on the RD\textsubscript{HAp}. The reduction in RD\textsubscript{HAp} was statistically significant with P≤0.05 for all Sr2+ concentrations when compared to the control group (0 ppm Sr2+ concentration). It also shows that the reduction in RD\textsubscript{HAp} was affected by the sequence of Sr2+ concentration. When the permeable HAp disc was exposed to caries simulating conditions containing 10 ppm Sr2+ at increasing Sr2+ concentration sequence the mean RD\textsubscript{HAp} was 1.88x10-4 g/cm2/h. However when the same experiment was repeated in a decreasing concentration sequence, the mean RD\textsubscript{HAp} was 1.04x10-4 g/cm2/h. A similar observation was seen for all investigated Sr2+ concentrations. It was observed that among the investigated Sr2+ concentrations, the maximum
reduction in R_D_{HAp} in increasing Sr^{2+} concentrations sequence experiments was achieved using 30 ppm Sr^{2+} while for the decreasing Sr^{2+} concentration sequence experiments the maximum reduction in R_D_{HAp} was achieved using 5 ppm Sr^{2+}. This supports the idea that Sr^{2+} replaces Ca^{2+} in the HAp crystal lattice and forming a different crystal phase (strontium-calcium-phosphate) which has a more permanent effect.

For erosion-like conditions Figure 17.4 and Figure 17.5 represents typical examples of the change in projected HAp mineral mass content over a period of ≈ 20 h when exposed to 0.3% citric acid pH 2.8 demineralisation solution containing 20 ppm Sr^{2+} at increasing and decreasing concentration sequence respectively. The data showed a linear regression trend for the projected HAp mineral mass content over time. The systematic periodic interruption in recording the data over the experimental duration is because of more than one SMR cell been scanned simultaneously over the experimental duration. Figure 17.4 shows that 606 data counts were counted at a centrally located point on the permeable HAp disc over ≈ 20 h out of which only 25 data counts were outside 2 SD (4.1%). The HAp projected mineral mass content decreased at approximately 10 times faster rate than in caries-like conditions. It decreased from 0.432 g/cm2 to 0.355 g/cm2 in ≈ 20 h. This reduction in projected HAp mineral mass content represent a 17.8% loss in projected HAp mineral content over ≈ 20 h. This further supports that caries is a slowly progressing disease while erosion involves a rapid loss of dental enamel.

Figure 17.5 represents the demineralisation in erosion-like conditions similar to those in Figure 17.4 but with the Sr^{2+} concentration sequence reversed. It shows a similar linear regression trend in projected HAp mineral mass content over the experimental duration. Six hundred and six data counts were counted at a centrally
located point on the permeable HAp disc over \(\approx 20 \) h out of which only 30 data counts were outside 2 SD (4.9%). The HAp projected mineral mass content decreased from 0.578 g/cm\(^2\) to 0.513g/cm\(^2\) in \(\approx 20 \) h which represents 11.4% loss of projected mineral content over \(\approx 20 \) h.

Table 17.4 shows the calculated demineralisation rate and the SE for each of the 20 experiments with various Sr\(^{2+}\) concentrations under erosion-like conditions.

The mean effect of Sr\(^{2+}\) on \(RD_{\text{HAp}} \) at increasing concentration sequence showed that as Sr\(^{2+}\) concentration increased in the range from 0-30 ppm, the \(RD_{\text{HAp}} \) decreased (Figure 17.9). The reduction in \(RD_{\text{HAp}} \) was statistically significant \(P \leq 0.05 \) for all Sr\(^{2+}\) concentrations investigated when compared to the control group (0 ppm). While the mean effect of Sr\(^{2+}\) on \(RD_{\text{HAp}} \) at a decreasing concentration sequence showed that as Sr\(^{2+}\) concentration decreased in the range from 30 - 5 ppm, the \(RD_{\text{HAp}} \) continued to decrease significantly except for 0 ppm where the mean \(RD_{\text{HAp}} \) increased (Figure 17.10).
FIGURE 17.9 The effect of Sr$^{2+}$ at a range of 0 - 30 ppm on mean R_{DH} at increasing Sr$^{2+}$ concentration sequence under erosion-like conditions.

FIGURE 17.10 The effect of Sr$^{2+}$ at a range of 30 - 0 ppm on mean R_{DH} at decreasing Sr$^{2+}$ concentration sequence under erosion-like conditions.
The average of each duplicate experiments, at each Sr\(^{2+}\) concentration, at both increasing and decreasing Sr\(^{2+}\) concentration sequence was calculated and shown in Figure 17.11.

![Figure 17.11](image)

Figure 17.11 The effect of 0.3% citric acid pH 2.8 with different Sr\(^{2+}\) concentrations (ppm) on RD\(_{\text{HAp}}\) (g/cm\(^2\)/h) at both increasing and decreasing concentrations sequences

Similar to caries-like conditions, Figure 17.11 shows that Sr\(^{2+}\) had an inhibitory effect on the RD\(_{\text{HAp}}\). The reduction in RD\(_{\text{HAp}}\) was statistically significant with \((P \leq 0.05)\) for all Sr\(^{2+}\) concentrations when compared to the control group (0 ppm Sr\(^{2+}\) concentration) and the reduction in RD\(_{\text{HAp}}\) was affected by the sequence of Sr\(^{2+}\) concentration in the experimental series. It was observed that among the investigated Sr\(^{2+}\) concentrations, the maximum reduction in RD\(_{\text{HAp}}\) in increasing Sr\(^{2+}\) concentrations sequence experiments was achieved using 30 ppm Sr\(^{2+}\) while for the decreasing Sr\(^{2+}\) concentration sequence experiments the maximum reduction in
RD$_{\text{HAp}}$ was achieved using 5 ppm Sr$^{2+}$, in support of the hypothesis that Sr$^{2+}$ replaces Ca$^{2+}$ in the HAp crystal lattice forming different crystal phase with longer lasting effect on the apatite dissolution. This can be clinically interpreted as better to give a larger dose of a Sr$^{2+}$ containing therapeutic agent (30 ppm of Sr$^{2+}$) initially, and then provide lower maintenance doses of 5 ppm.

Comparison of the results of the effect of Sr$^{2+}$ on RD$_{\text{HAp}}$ under caries and erosion-like conditions shows that they both shared similar regression trend in RD$_{\text{HAp}}$ in response to an increase in Sr$^{2+}$ concentrations. The results of this study also confirm that dental caries involves slowly progressive loss of mineral content while erosion involves a faster loss of mineral content (≈10 times faster), which can be explained by the nature of the effect of the two different acids as well as the difference in pH.

17.6 Conclusions

In conclusion, the addition of Sr$^{2+}$ decreased RD$_{\text{HAp}}$ under strictly controlled thermodynamic conditions relevant to both dental caries and erosion. However, this decrease was not reversed when the Sr$^{2+}$ concentration was subsequently decreased. This pattern of influence of Sr$^{2+}$ suggests a partial inclusion of Sr$^{2+}$ into the HAp lattice.
CHAPTER 18

Effect of Copper Ions (Cu\(^{2+}\)) on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography

18.1 Introduction

Copper is an essential element required for many normal body functions such as red blood cell synthesis, collagen cross linking as well as metabolism and production of energy.

Copper has been reported to be associated with low caries prevalence in animals such as rats, as well as in human beings. Its caries inhibitory property has been attributed mainly to its antimicrobial effect against oral bacteria associated with dental caries (Section 7.2).

The direct effect of copper ions on hydroxyapatite dissolution has not been studied as extensively as its antimicrobial effect (Section 7.4). There is still much uncertainty about the exact mechanism through which copper increases dental enamel resistance against acid attacks. For further details about copper please refer to Chapter 7.
18.2 Aims and objectives

The aim of this study was to investigate the effect of Cu\(^{2+}\) at a range of concentrations of 0 to 180 ppm on the dissolution kinetics of permeable HAp disc.

The objective was to measure the rate of HAp dissolution of a permeable HAp disc using the SMR under strictly controlled thermodynamic conditions relevant to dental caries and erosion at a range of Cu\(^{2+}\) concentrations relevant to those used in other studies.

18.3 Materials and methods

The protocol of this experiment is illustrated in Figure 18.1.

FIGURE 18.1 Schematic diagram of an SMR cell with HAp disc in place, connected to the peristaltic pump \((p)\) for circulating the demineralisation solution over a period of 20 h followed by 30 minutes of de-ionised water at both increasing \(\bigleftarrow\) and decreasing \(\bigrightarrow\) Cu\(^{2+}\) concentration sequences.
18.3.1 HAp discs

Eight HAp discs were used in this study. The details of the HAp discs preparation were described in Section 10.6.2.

18.3.2 Demineralising solutions

For cariogenic conditions, a 7 litre batch solution of 0.1% acetic acid pH 4.0 was divided into seven 1 liter bottles. Into each one, copper sulphate (SIGMA-ALDRICH™, Product code # 1000950043 and batch # 070M0268V) was added, so that the final Cu\(^{2+}\) concentrations were 0, 11.25, 22.50, 45, 90, 150, and 180 ppm.

For erosive conditions, a 7 litre batch solution of 0.3% citric acid pH 2.8 was divided into seven 1 liter bottles. Into each one, copper sulphate was added, so that the final Cu\(^{2+}\) concentration were of 0, 11.25, 22.50, 45, 90, 150, and 180 ppm.

After the addition of copper sulphate, the pH of each solution was adjusted by using 1 Molar HCl or KOH solutions as necessary (Section 10.6).

18.3.3 SMR

HAp discs were located centrally in the SMR cells and demineralising solutions were circulated at 0.80 ml/min. The rate of HAp demineralisation was measured at a centrally located point in each disc for \(\approx 20\) h at 22 ± 1°C. Each experiment was repeated for both increasing (0-180 ppm) and decreasing (180-0 ppm) Cu\(^{2+}\) concentration sequences.

For the increasing Cu\(^{2+}\) concentration experiments, the HAp disc was exposed for \(\approx 20\) h to demineralising solution with no Cu\(^{2+}\) added, followed by 30 min of washing by de-ionised water, followed by \(\approx 20\) h of exposure to demineralising solution with 11.25 ppm Cu\(^{2+}\), followed by 30 min of washing by de-ionised water and so on through the increasing Cu\(^{2+}\) concentrations. All exposures were performed using the same HAp disc (Figure 18.1). In reverse, for the decreasing Cu\(^{2+}\)
concentration experiments HAp disc was exposed for \(\approx 20 \) h to each demineralising solution with 30 min of washing by de-ionised water. The SMR cells were mounted on the SMR stage and scanned simultaneously. Each experiment was duplicated.

18.4 Results

18.4.1 0.1% acetic acid pH 4.0

For each experiment of the 28 demineralisation experiments using 0.1% acetic acid pH 4.0 with various \(\text{Cu}^{2+} \) concentrations, the mineral mass loss of each HAp disc was continuously measured throughout the entire experimental duration. Figure 18.2 and Figure 18.3 are typical examples of the real-time change in projected HAp mineral mass content in response to exposure to 0.1% acetic acid pH 4.0 solution with 22.5 ppm \(\text{Cu}^{2+} \) concentration in both increasing and decreasing \(\text{Cu}^{2+} \) concentration respectively.

Figure 18.2 shows that the projected HAp mineral mass content decreased from 0.671 g/cm\(^2\) to 0.667 g/cm\(^2\) in 20 h. This reduction represents only a 0.5% loss in the projected HAp mineral mass over 20 h at a rate of \(1.41 \times 10^{-4} \) g/cm\(^2\)/h. Such subtle changes are difficult to detect and measure without a powerful technique of high precision such as the SMR technique. While for Figure 18.3 the HAp projected mineral mass content decreased from 0.642 g/cm\(^2\) to 0.639 g/cm\(^2\) in \(\approx 20 \) h which represents a 0.5% loss in the projected mineral mass over \(\approx 20 \) h at a rate of \(2.1 \times 10^{-4} \) g/cm\(^2\)/h.
FIGURE 18.2 Typical example of the change in projected HAp mineral mass content over a period of ≈20 h in response to 0.1% acetic acid pH 4.0 with 22.5 ppm Cu\(^{2+}\) demineralisation solution at increasing Cu\(^{2+}\) concentration sequence

(□ Within 1 SD, ▪ 1 SD < ▀ 2 SD, ▼ 2 SD < ▉ 3 SD, ▻ 3 SD < ▹ 4 SD)

TABLE 18.1 Statistical analysis, for the data in Figure 18.2, using TableCurve 2D®

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (g/cm(^2))</td>
<td>0.670</td>
<td>1.760e-04</td>
<td>3809.40</td>
<td>0.6701</td>
</tr>
<tr>
<td>b (g/cm(^2)/h)</td>
<td>-1.41e-4</td>
<td>1.52e-05</td>
<td>-9.26</td>
<td>-1.70-4</td>
</tr>
</tbody>
</table>
FIGURE 18.3 Typical example of the change in projected HAp mineral mass content over a period of ≈20 h in response to 0.1% acetic acid pH 4.0 with 22.5 ppm Cu$^{2+}$ demineralisation solution at decreasing Cu$^{2+}$ concentration sequence.

(■ Within 1 SD, □■ < 2 SD, □■■ < 3 SD, □■■■ < 4 SD)

TABLE 18.2 Statistical analysis, for the data in Figure 18.2, using TableCurve 2D®

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (g/cm2)</td>
<td>0.642</td>
<td>1.830e-04</td>
<td>3509.40</td>
<td>0.6111 0.6418</td>
</tr>
<tr>
<td>b (g/cm2/h)</td>
<td>-2.10e-4</td>
<td>1.57e-05</td>
<td>-12.59</td>
<td>-2.42-4 -1.89e-4</td>
</tr>
</tbody>
</table>
The RD$_{\text{HAp}}$ and the SE for each of the 28 experiments, using 0.1% acetic acid pH 4.0 were calculated and the results obtained were summarized in Table 18.3.

TABLE 18.3 RD$_{\text{HAp}}$ and SE for each demineralisation solution at different Cu$^{2+}$ concentrations at both increasing and decreasing concentration sequences

<table>
<thead>
<tr>
<th>Cu$^{2+}$ concentration (ppm)</th>
<th>RD$_{\text{HAp}}$(g/cm2/h) increasing Cu$^{2+}$ concentration sequence</th>
<th>RD$_{\text{HAp}}$(g/cm2/h) decreasing Cu$^{2+}$ concentration sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAp disc1</td>
<td>SE</td>
<td>HAp disc2</td>
</tr>
<tr>
<td>180</td>
<td>9.40 x 10^{-5}</td>
<td>2.88 x 10^{-5}</td>
</tr>
<tr>
<td>150</td>
<td>9.50 x 10^{-5}</td>
<td>1.30 x 10^{-4}</td>
</tr>
<tr>
<td>90</td>
<td>1.14 x 10^{-4}</td>
<td>1.68 x 10^{-4}</td>
</tr>
<tr>
<td>45</td>
<td>1.26 x 10^{-4}</td>
<td>1.48 x 10^{-4}</td>
</tr>
<tr>
<td>22.5</td>
<td>1.41 x 10^{-4}</td>
<td>1.52 x 10^{-4}</td>
</tr>
<tr>
<td>11.25</td>
<td>2.30 x 10^{-4}</td>
<td>1.55 x 10^{-4}</td>
</tr>
<tr>
<td>0</td>
<td>3.68 x 10^{-4}</td>
<td>1.49 x 10^{-4}</td>
</tr>
</tbody>
</table>
18.4.2 0.3% citric acid pH 2.8

Figure 18.4 and Figure 18.5 are typical examples of the real-time change in projected HAp mineral mass content in response to exposure to 0.3% citric acid pH 2.8 solution with 22.5 ppm Cu²⁺ concentration in both increasing and decreasing Cu²⁺ concentration sequences respectively.

Figure 18.4 shows that the HAp projected mineral mass content decreased from 0.640 g/cm² to 0.625 g/cm² in 20 h. This reduction represents only a 2.3% loss in the projected HAp mineral mass over 20 h. While for Figure 18.5 the HAp projected mineral mass content decreased from 0.600 g/cm² to 0.580 g/cm² in ∼20 h which represents a 3.3% loss in the projected mineral content over ∼20 h.
FIGURE 18.4 Typical example of the change in projected HAp mineral mass content over a period of \(\approx 20 \) h in response to 0.3% citric acid pH 2.8 with 22.5 ppm Cu\(^{2+}\) demineralisation solution at increasing Cu\(^{2+}\) concentration sequence

(■ Within 1 SD, ▲ 2 SD, ▼ 3 SD, ▶ 4 SD)

TABLE 18.4 Statistical analysis, for the data in Figure 18.4, using TableCurve 2D®

<table>
<thead>
<tr>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = a + bx)</td>
<td>(r^2 = 0.784)</td>
<td>(\text{FitStdErr} = 0.00241)</td>
<td>(a = 0.640)</td>
</tr>
</tbody>
</table>

\(a\) (g/cm\(^2\))

| \(a\) (g/cm\(^2\)) | 0.640 | 1.841e-04 | 3486.08 | 0.6394 | 0.6401 |

| \(b\) (g/cm\(^2\)/h) | -7.31e-4 | 1.56e-05 | -46.77 | -7.62 | -7.00e-4 |
FIGURE 18.5 Typical example of the change in projected HAp mineral mass content over a period of ≈20 h in response to 0.3% citric acid pH 2.8 with 22.5 ppm Cu$^{2+}$ demineralisation solution at decreasing Cu$^{2+}$ concentration sequence

(▶ Within 1 SD, ▲ < 2 SD, □ < 3 SD, □ < 4 SD)

TABLE 18.5 Statistical analysis, for the data in Figure 18.4, using TableCurve 2D®

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>SE</th>
<th>t-value</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (g/cm2)</td>
<td>0.600</td>
<td>1.681e-04</td>
<td>3565.91</td>
<td>0.5993 - 0.6000</td>
</tr>
<tr>
<td>b (g/cm2/h)</td>
<td>-1.03e-3</td>
<td>1.43e-05</td>
<td>-71.85</td>
<td>-1.06 - 9.99e-4</td>
</tr>
</tbody>
</table>
For each of the 28 demineralisation experiments using 0.3% acetic acid pH 2.8 with various \(\text{Cu}^{2+}\) concentrations, the projected mineral mass loss of each HAp disc was continuously measured throughout the entire experimental duration. The \(\text{RD}_{\text{HAp}}\) and the SE were calculated and the results obtained are summarized in Table 18.6

TABLE 18.6

The \(\text{RD}_{\text{HAp}}\) and SE for each demineralisation solution at different \(\text{Cu}^{2+}\) concentrations at both increasing and decreasing concentration sequences.

<table>
<thead>
<tr>
<th>Cu(^2+) concentration (ppm)</th>
<th>(\text{RD}_{\text{HAp}}) (g/cm(^2)/h) increasing (\text{Cu}^{2+}) concentration sequence</th>
<th>(\text{RD}_{\text{HAp}}) (g/cm(^2)/h) decreasing (\text{Cu}^{2+}) concentration sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HAp disc1</td>
<td>SE</td>
</tr>
<tr>
<td>180</td>
<td>5.95 x 10(^-4)</td>
<td>2.01 x 10(^-5)</td>
</tr>
<tr>
<td>150</td>
<td>6.42 x 10(^-4)</td>
<td>1.75 x 10(^-5)</td>
</tr>
<tr>
<td>90</td>
<td>6.65 x 10(^-4)</td>
<td>1.43 x 10(^-5)</td>
</tr>
<tr>
<td>45</td>
<td>7.06 x 10(^-4)</td>
<td>1.65 x 10(^-5)</td>
</tr>
<tr>
<td>22.5</td>
<td>7.07 x 10(^-4)</td>
<td>1.42 x 10(^-5)</td>
</tr>
<tr>
<td>11.25</td>
<td>8.78 x 10(^-4)</td>
<td>1.30 x 10(^-5)</td>
</tr>
<tr>
<td>0</td>
<td>9.35 x 10(^-4)</td>
<td>1.56 x 10(^-5)</td>
</tr>
</tbody>
</table>
18.5 Discussion

The results from this study highlighted the importance of the direct and sole effect of Cu$^{2+}$ as divalent metal cation on the kinetics of HAp dissolution, in isolation from its antibacterial effect. The experiment investigated Cu$^{2+}$ at a range of concentrations from 0-180 ppm. Similar Cu$^{2+}$ concentrations were used in other previous studies (Afseth et al., 1984a, Brookes et al., 2003, Abdullah et al., 2006).

For caries-like conditions; Figure 18.2 and Figure 18.3 represent typical examples of the change in projected HAp mineral mass content, over a period of ≈20 h when exposed to 0.1% acetic acid pH 4.0 with 22.5 ppm Cu$^{2+}$ demineralisation solution in increasing and decreasing concentration sequences respectively. In Figure 18.2 the change in mineral mass content (g/cm2) was plotted as a function of time (h). The data showed a linear regression trend between the projected HAp mineral mass content over time. The systematic gaps in the recording the data over the experimental duration are because of more than one SMR cell been scanned simultaneously over the experimental duration. In Figure 18.2, 606 data counts were counted at a centrally located point on the permeable HAp disc over ≈20 h out of which 27 data counts were outside 2 S.D (4.5%).

Figure 18.3 represents the demineralisation in caries-like conditions similar to those in Figure 18.2 but with the sequence of Cu$^{2+}$ concentrations reversed. It shows a similar linear regression trend in projected HAp mineral mass content over the experimental duration. Six hundred and six data counts were collected at a centrally located point on the permeable HAp disc over ≈20 h out of which 29 data counts were outside 2 S.D (4.7%).

Table 18.3 shows the calculated demineralisation rate and the SE for each of the 28 experiments with various Cu$^{2+}$ concentrations.
The mean effect of Cu$^{2+}$ on RD$_{\text{HAp}}$ at increasing concentration sequence showed that as Cu$^{2+}$ concentration increased over the range from 0-180 ppm, RD$_{\text{HAp}}$ decreased (Figure 18.6). The reduction in RD$_{\text{HAp}}$ was statistically significant (P≤0.05) for all Cu$^{2+}$ concentrations investigated when compared to the control group (0 ppm). These results are in accordance with the observations of Hein et al. who reported caries reduction in hamsters with 50 ppm Cu$^{2+}$ as copper sulphate in drinking solutions (Hein, 1953). It also goes in accordance with the results obtained by Afseth et al. who reported a significant reduction in caries in rats at 65 ppm Cu$^{2+}$ applied as topical application (Afseth et al., 1984a). When the sequence of Cu$^{2+}$ concentrations was reversed, as Cu$^{2+}$ concentration decreased at a range of 180-0 ppm, RD$_{\text{HAp}}$ increased (Figure 18.7).
FIGURE 18.6 The effect of Cu$^{2+}$ at a range of 0 - 180 ppm on mean RD$_{\text{HAp}}$ at increasing Cu$^{2+}$ concentration sequence under caries-like conditions.

FIGURE 18.7 The effect of Cu$^{2+}$ at a range of 180 - 0 ppm on mean RD$_{\text{HAp}}$ at decreasing Cu$^{2+}$ concentration sequence under caries-like conditions.
The results of this study also show that the differences in reduction of RD_{HAp} obtained with 150 and 180 ppm Cu^{2+} concentration were not statistically significant when compared to the reduction observed with 90 ppm Cu^{2+}. These results are in agreement with those published by Brookes et al.(2003); as illustrated in Figure 18.8.

Figure 18.8 (a) The effect of Cu^{2+} concentration on phosphate released from powdered enamel published by Brookes et al.(2003) after the conversion of mmol/L to ppm; (b) Example of the effect of Cu^{2+} at a range of 0-180 ppm on mean RD_{HAp} as observed in this study
The average of each duplicate experiment, at each Cu$^{2+}$ concentration, for increasing and decreasing concentration sequence was calculated and presented in Figure 18.9.

FIGURE 18.9 The effect of 0.1% acetic acid pH 4.0 with different Cu$^{2+}$ concentrations (ppm) on RD$_{\text{HAp}}$ (g/cm2/h) at both increasing and decreasing concentrations sequences.

Figure 18.9 shows that Cu$^{2+}$ had an inhibitory effect on the RD$_{\text{HAp}}$. The percentage reduction in RD$_{\text{HAp}}$ detected in this experiment was around 75% reduction in caries-like conditions at Cu$^{2+}$ concentration of 180 ppm. This percentage is less than the percentage reduction in caries detection reported by Rosalen *et al.* (1996a) who reported 82% reduction at 150 ppm Cu$^{2+}$ concentration. The difference in reduction rate detected can be attributed to the principle difference between the two studies. The Rosalen *et al.* (1996a) study was an *in vivo* study, while this study is *in vitro*. In addition, the effect of Cu$^{2+}$ concentration in this study is determined from its direct effect on HAp reflected as a change in RD$_{\text{HAp}}$ whereas in other studies the effect of Cu$^{2+}$ is measured indirectly by its effect on caries score.
For erosion-like conditions Figure 18.4 and Figure 18.5 are typical examples of the change in projected HAp mineral mass content, over a period of ≈20 h when exposed to 0.3% citric acid pH 2.8 demineralisation solution containing 22.5 ppm Cu$^{2+}$ at increasing and decreasing concentration sequences respectively. The change in mineral mass content (g/cm2) was plotted as a function of time (h). The data showed a linear regression trend between the projected HAp mineral mass content over time. The systematic gaps in recording the data over the experimental duration were because of more than one SMR cell been scanned simultaneously over the experimental duration. In Figure 18.4, 606 data counts were counted at a centrally located point on the permeable HAp disc over ≈20 h out of which 31 data counts were outside 2 SD (5.1%).

Figure 18.5 represents the demineralisation in erosion-like conditions similar to those in Figure 18.4 but with the sequence reversed. It shows a similar linear regression trend in projected HAp mineral mass content over the experimental duration. Six hundred and six data counts were collected at a centrally located point on the permeable HAp disc over ≈20 h out of which 30 data counts were outside 2 SD (4.9%).

Table 18.6 shows the calculated demineralisation rate and the SE for each of the 28 experiments with various Cu$^{2+}$ concentrations.

The mean effect of Cu$^{2+}$ on RD$_{HAp}$ at increasing concentration sequences showed that as Cu$^{2+}$ concentration increased at a range of 0 - 180 ppm, the RD$_{HAp}$ decreased (Figure 18.10). The reduction in RD$_{HAp}$ was statistically significant ($P \leq 0.05$) for all Cu$^{2+}$ concentrations investigated when compared to the control group (0 ppm). However, when the sequence of Cu$^{2+}$ concentrations was reversed, as Cu$^{2+}$
concentration decreased at a range of 180-0 ppm, the RD_{HAp} increased (Figure 18.11).

FIGURE 18.10 The effect of Cu$^{2+}$ at a range of 0 - 180 ppm on mean RD_{HAp} at increasing Cu$^{2+}$ concentration sequence under erosion-like conditions

FIGURE 18.11 The effect of Cu$^{2+}$ at a range of 180 - 0 ppm on mean RD_{HAp} at decreasing Cu$^{2+}$ concentration sequence under erosion-like conditions
The average of each duplicate experiment, at each Cu\(^{2+}\) concentration, at both increasing and decreasing Cu\(^{2+}\) concentration sequences were calculated and shown in Figure 18.12. The dose response data obtained from this study demonstrated a significant and direct effect of Cu\(^{2+}\) on RD\(_{\text{HAp}}\) from the minimal investigated concentration of 11.25 ppm. However, Cu\(^{2+}\) concentrations of 150 ppm and 180 ppm did not show a statistically significant reduction in RD\(_{\text{HAp}}\). These results are similar to the results obtained from Brookes \textit{et al.} (2003) (Figure 7.1).

Figure 18.12 shows that the mean RD\(_{\text{HAp}}\) for Cu\(^{2+}\) decreasing sequence experiments is higher than the RD\(_{\text{HAp}}\) for Cu\(^{2+}\) increasing sequence experiments. The justification remains unclear and requires further investigations.

All the series of 7 different Cu\(^{2+}\) concentrations, whether at increasing or decreasing concentration sequence under conditions resembling artificial caries or erosion, showed the same trend in RD\(_{\text{HAp}}\) reduction/increase. The reversibility in
RD\textsubscript{HAp} through the increased or decreased Cu2+ concentration sequence supports the hypothesis that Cu2+ under the experimental conditions does not permanently change the HAp solid phase. Instead it affected the calcium-rich layer (stern layer) or adhered to the HAp surface blocking the dissolution pit (Wang \textit{et al.}, 2005).

18.6 Conclusions

In conclusion, the results of this study showed the direct inhibitory effect of Cu2+ as the divalent metal cation on HAp dissolution kinetics from the minimal investigated concentration as 11.25 ppm. The reversibility of the effect suggests a surface controlled action rather than change in the bulk composition. It demonstrates the potential usefulness of Cu2+ as a preventive agent against caries and erosion.
PART V: GENERAL DISCUSSION, CONCLUSIONS, CLINICAL IMPLICATIONS AND RECOMMENDED FUTURE WORKS
CHAPTER 19

General Discussion, Conclusions, Clinical Implications and Future Works

19.1 General discussion

In order to develop an effective preventive strategy for mineral loss in dental caries and erosion, it is essential to fully understand the physico-chemical processes involved in these two conditions and the factors affecting them. Unfortunately many aspects of the dental enamel demineralisation processes are still poorly understood. For example, the direct effects of various divalent cations-enamel interactions, relevant to demineralisation need further investigations and deeper understanding. Therefore, the main aim of this thesis was to investigate the effect of Zn$^{2+}$, Sr$^{2+}$ and Cu$^{2+}$, as divalent metal cations, on HAp dissolution kinetics relevant to dental caries and erosion-like conditions.

Ideally dental enamel should have been used. However, it was decided to use permeable compressed sintered HAp discs instead of dental enamel due to the uniformity and homogeneity of its structure compared to enamel. HAp has been extensively used in research as a model system for dental enamel (Margolis and Moreno, 1985, Anderson, 1993, Elliott et al., 2005).
Most previous studies on Zn$^{2+}$ and Cu$^{2+}$ were aiming at investigating their antimicrobial effect. However the scope of interest of this thesis was to investigate the direct and sole effect of divalent cations on the kinetics of HAp dissolution.

As part of this study, new methodologies have been devised. This included modification and optimisation of the SMR technique to obtain sufficient and statistically reliable data over short period of 24 h or less (Chapter 10). Further the developments of the research protocol which involved multiple experiments to investigate the effect of changing various experimental parameters on HAp dissolution kinetics. These studies included the characterization of the different types of HAp discs using XRD, XMT and SMR, the effect of various demineralisation solutions with range of pH on the RD$_{\text{HAp}}$, the effect of demineralisation solution circulation speed on RD$_{\text{HAp}}$ and the effect of high Sr$^{2+}$ concentrations on HAp dissolution kinetics. These studies are described in Chapters 11-15.

Studying the effect of divalent cations on the HAp dissolution kinetics via exposing a single HAp disc to a series of demineralisation solutions containing certain cations concentrations in both increasing and decreasing concentration sequence for 20 h at each concentration separated by 30 min of washing by de-ionised water, has proved to be a successful approach in evaluating the persistence/lack of persistence of the effect of the divalent cation under investigation. This experimental approach provided an insight to the different mechanisms through which the various divalent cations under investigation affected the HAp dissolution kinetics.

The results obtained from the effect of Sr$^{2+}$ on RD$_{\text{HAp}}$ (Chapter 17) showed that as Sr$^{2+}$ concentrations were increased the RD$_{\text{HAp}}$ decreased, and when the Sr$^{2+}$
concentrations were subsequently decreased, the R_{DHap} continued to decrease. This “persistence” of Sr$^{2+}$ effect on HAp dissolution was demonstrated in its ability to decrease R_{DHap} whether it was investigated at an increasing or decreasing concentration sequence. These results support the hypothesis that Sr$^{2+}$ substitutes some Ca$^{2+}$ in the HAp forming Sr-Ca-phosphates phase. The results of this substitution should lead to the formation of a less stable phase (Sr-Ca-phosphates) (LeGeros, 1991, Grynpas, 1993, Kikuchi et al., 1994) due to the difference in size between Sr$^{2+}$ and Ca$^{2+}$ ions (Section 6.4). However the explanation for the reduction in R_{DHap} that was observed from the results of this study, can be justified by the critically low Sr$^{2+}$ concentrations investigated (0–30 ppm) which lead to less than 10% strontium substituted apatites. This comes in agreement with the results reported by (Li et al., 2007) and (Verbeeck et al., 1981).

The results shown in Chapter 16 on the effect of using a range of Zn$^{2+}$ concentrations (0-20 ppm) on R_{DHap} demonstrated that Zn$^{2+}$ incorporated into caries and erosion-like demineralisation conditions, provided an inhibitory effect. As Zn$^{2+}$ concentrations were increased the R_{DHap} decreased, but when the Zn$^{2+}$ concentrations were subsequently decreased, the R_{DHap} increased again. This lack of “persistence” of Zn$^{2+}$ effect on HAp disc dissolution suggests that Zn$^{2+}$ exerts its effect through an adsorption mechanism (Stötzel et al., 2009), rather than incorporation into the crystal lattice mechanism as suggested in earlier studies (Mayer et al., 1994, Li et al., 2008, Ren et al., 2009).

Cu$^{2+}$ showed a similar effect as Zn$^{2+}$, suggesting similarly a surface controlled effect rather than long term effect in reducing R_{DHap} under dental caries and erosion-like conditions. However, the metallic taste and ability to cause teeth
discolorations of Cu$^{2+}$ will be limitations of its incorporation into therapeutic agents aiming at the prevention of dental caries and erosion.

Comparison between the results of the effects of the three divalent metal cations at 20 ppm concentration shows that Sr$^{2+}$ provides the best protection against HAp dissolution under both caries and erosion like conditions (58% and 50% respectively). Copper demonstrates a slightly lower inhibitory effect (53% and 15% reduction in RD$_{HAp}$ under caries and erosion like conditions respectively). Zinc demonstrated the lowest efficacy with 38% reduction in RD$_{HAp}$ under caries like conditions and 41% reduction in RD$_{HAp}$ under erosion like conditions. However, although as discussed in sections 16.6, 17.6 and 18.6, the mechanisms are different for the different ions, the dissolution inhibitions are similar.

Strontium and copper showed more protection for HAp against dissolution when exposed to acetic acid pH 4.0, while zinc was more protective under the erosive like conditions of citric acid pH 2.8. The exact reason behind this finding is not known and more research is needed in this area. However it is an interesting finding to be taken in consideration while selecting a suitable divalent cation when designing a therapeutic regimen, or to be incorporated as a food and drink modifier to protect against dental caries or erosion.

19.2 Conclusions

In this thesis, the effect of three divalent cations; Zn$^{2+}$, Sr$^{2+}$ and Cu$^{2+}$, on the physical-chemistry influencing HAp dissolution kinetics, under simulated cariogenic and erosive conditions relevant to the oral environment was studied using an SMR technique.
The following conclusions were drawn:

1. SMR has been shown to be a highly suitable technique for investigating the effect of cations on the kinetics of HAp dissolution. Among its advantages are its accuracy in obtaining real-time quantitative measurements, the way it allows alteration of the experimental conditions if required, to simulate the more dynamic environment mimicking the oral cavity, without interrupting the experiment.

2. SMR has previously been successfully used in experiments investigating de/remineralisation over long period of time extending up to several weeks; however the results in this thesis demonstrated that the SMR technique is also capable of obtaining quantitatively reliable data with high accuracy and precision over short time of 24 h or less.

3. The use of Zn$^{2+}$, Sr$^{2+}$ and Cu$^{2+}$ as therapeutic agents should not be simply confined to their role as antiplaque and calculus agents, or for the treatment and prevention of tooth hypersensitivity. Instead the ions’ use should be expanded to include prevention of dental caries and erosion by directly inhibiting dental tissue dissolution.

4. It was observed that Zn$^{2+}$ and Cu$^{2+}$ decreased RD$_{\text{HAp}}$ through a surface controlled mechanism whereas Sr$^{2+}$ decreased RD$_{\text{HAp}}$ through a solid phase change. This information will be useful as part of the development of therapeutic products which include these ions for the prevention of dental caries and erosion.
Clinical implications

Dental caries and erosion are worldwide problems, affecting populations in both industrial and developing countries. According to WHO 2003 (Petersen, 2003) dental caries alone affected approximately five billion people worldwide, and prevalence of dental erosion has increased in recent years. The recent increase in dental erosion might be due to a real increase in the disease due to faulty oral hygiene habits and/or diet with high erosive potential, or due to the increased awareness of the disease by both dentists and patients. Dental caries and erosion form a real problem and their control is a challenge.

In the past it was thought that dental caries and erosion are irreversible progressive dental tissue diseases. Nowadays with more research in the field, it has been realized that enamel and dentine constantly undergo through alternating demineralisation and remineralisation according to the surrounding oral environment. It is also known that demineralisation can be stopped at early stages of its development and remineralisation of very early lesions is possible. This depends on the early detection and proper management of the condition via therapeutic agents capable of controlling demineralisation and facilitating remineralisation of the affected enamel.

Nowadays the concept of minimally invasive dentistry is more appreciated by both dentists as well as by patients (Wilson, 2007). It is based on three basic principles; prevention, less intrusive treatment, and conservation of healthy tissues. The research interest in discovering and developing therapeutic agents that inhibit demineralisation and ideally facilitate remineralisation of dental enamel has increased recently. Historically, the ion of most interest in prevention of enamel demineralisation was fluoride. The discovery of fluoride caries-reducing effect was a
landmark in the history of dentistry. Until now almost all successful preventive treatments contain fluoride. Fluoride cariostatic effectiveness does not only lay in its effect on the apatite crystal lattice but also in its inhibition of mineral dissolution, inhibition of acid formation by dental plaque bacteria and promotion of remineralisation. Another element of interest to recent research is silver in its divalent and trivalent cation forms. Silver as a trivalent metal cation has demonstrated its ability in preventing against dental caries through its bacteriostatic effect. Most recent researches on salivary proteins have demonstrated that statherin and a subunit of protein STN21 have considerable effect in preventing HAp demineralisation, and these peptides can be used as therapeutic agents for the prevention or treatment of erosive and carious demineralisation.

In this thesis the three divalent cations of interest (Zn$^{2+}$, Sr$^{2+}$ and Cu$^{2+}$) showed positive results in their anti-carious and anti-erosive effect with promising clinical implications.

19.3.1 Zinc

Zn$^{2+}$ has been incorporated in oral hygiene products. It has been used in toothpastes and mouthwashes for its antiplaque effect and for its capability to reduce oral malodor. This is accomplished through its ability to alter bacterial metabolic activity leading to reduction in bacterial growth and capability to adhere to tooth surfaces. However, the results of this study have demonstrated that Zn$^{2+}$ has a direct effect on HAp dissolution kinetics under caries and erosion-like conditions. This effect is significant even at low concentrations such as 5 ppm Zn$^{2+}$. This expands the potential usefulness of Zn$^{2+}$ in playing a role as a therapeutic agent added to toothpastes and mouthwashes aiming at caries and erosion prevention. However, the results of this thesis have demonstrated that the surface effect of Zn$^{2+}$ in inhibiting
HAp dissolution should be taken into account in the design of the new Zn\(^{2+}\) containing therapeutic agents, for example allowing long term release of Zn\(^{2+}\) or more frequent applications this can be achieved through the incorporation of Zn\(^{2+}\) into chewing gum or mouthwashes. Zn\(^{2+}\) toxicity should not be of concern (Section 5.1) as it does not have to be added in high concentrations to provide the preventive effect.

19.3.2 Strontium

The second divalent metal cation studied in this thesis was Sr\(^{2+}\). One of the main clinical uses of Sr\(^{2+}\) is for the management of osteoporosis. Sr\(^{2+}\) stimulates osteoblast cell activities and inhibits osteoclast cell differentiation, reducing in bone resorption. This characteristic of Sr\(^{2+}\) has also led to its being favoured in dental implants, by introducing Sr\(^{2+}\) as component in some bioactive glass materials to facilitate the integration between the dental implant and bone.

Sr\(^{2+}\) has been also used for the prevention and management of tooth hypersensitivity. Strontium chloride has been introduced commercially as the first tubular occluding agent in Sensodyne™ Original toothpaste (Dowell and Addy, 1983). Sensodyne™ Rapid Relief is one of the latest products on the market to manage tooth hypersensitivity with strontium acetate as a key ingredient. In order for the Sr\(^{2+}\) to effectively block the dentinal tubules and reduce tooth sensitivity it has to be incorporated at high concentration (80,000 ppm of strontium acetate) (Layer and Hughes, 2010).

The results presented in this thesis have demonstrated a direct anti-carious and anti-erosive effect of Sr\(^{2+}\) through its incorporation into the apatite lattice forming strontium calcium phosphate which lowers the HAp dissolution rate when applied in low concentration (0-30 ppm). A potential clinical implication arising
from this study is the manufacture of toothpastes or mouthwashes with these low Sr2+ concentrations for caries and erosion prevention.

Another clinical implication is the use of Sr2+ in dental cements and glass ionomer cements. It will not only have the advantage of being more radiopaque which allow better follow up for caries progression, but the Sr2+ containing glass ionomer cement will also have the advantage of providing a local anti-carious and anti-erosive effect.

\subsection{19.3.3 Copper}

While Cu2+ has been used for its antimicrobial effect against dental plaque bacteria causing caries and periodontal diseases, not much attention has been given to the direct effect of Cu2+ in reducing the RD\textsubscript{HAp}. Cu2+ and Zn2+ both share the same mechanism of affecting the kinetics of HAp dissolution. However the salty metallic taste of Cu2+ and tooth discolouration might be a major drawback to its use in therapeutic agents for the prevention of dental caries and erosion.

\subsection{19.4 Recommended future works}

1) Studies of dental enamel: In this thesis, the SMR technique was successfully used to demonstrate the inhibitory effect of the three investigated divalent cations (Zn2+, Sr2+ and Cu2+) on RD\textsubscript{HAp}. However, knowing that dental enamel consists mainly of impure form of HAp, which contains multiple impurities, it would be beneficial for the results of this study to be used as a base for a future work that involves applying the same experiments using dental enamel.

2) Lower concentrations of investigated cations: The results of this thesis have shown that Zn2+, Sr2+ and Cu2+, significantly reduced RD\textsubscript{HAp} even at the minimal
investigated concentrations. However no concentrations less than 5 ppm were investigated. It would be of interest in future works to investigate the same cations at lower concentrations in an attempt to determine the lowest significantly effective dose for each of the three cations.

3) The use of other techniques: As scanning microradiography is a powerful technique concerned with quantifying changes in projected mineral mass content over a period of time it would be interesting in a future study to combine the SMR technique with another technique such as scanning electron microscopy (SEM) or atomic force microscopy (AFM). The scanning electron microscope can be used to reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. Using the energy dispersive X-ray spectroscopy (EDS) mode, SEM will be useful in qualitatively or semi-quantitatively determining the chemical compositions at selected point locations on the sample. Therefore, SMR and SEM could complement each other in a future work to obtain more detailed information about the mechanisms through which the investigated cations affect RD\textsubscript{HAp}. Through applying both techniques we might be able to get a better understanding of whether the divalent cations inhibit the RD\textsubscript{HAp} through adhering to the surface blocking dissolution nuclei or through replacing calcium ions within the apatite lattice altering the physico-chemical properties of the apatite.

4) Testing of therapeutic agents: Dental caries and erosion are still considered a significant problem affecting societies in both industrial as well as developing countries. Every effort should be made to control these diseases, whether by prevention or treatment. The world of dentistry is moving more towards non-invasive dentistry and the industrial companies are more along the lines of producing
preventive agents such as toothpastes, mouthwashes, gel *etc*. Therefore, considerably more work can be done applying the SMR technology on studying different therapeutic agents when their efficacy and effect on demineralisation/remineralisation need to be tested. The SMR technique benefits from accuracy and high precision in real-time detection of minute changes in mineral mass content, as well as allowing for the possibility of altering experimental conditions without interrupting the experiment. Taking these advantages into consideration, the SMR technique has superiority over other available techniques of mineral quantification.

REFERENCES

REFERENCES

echanisms
udy investigating the efficacy of a test dentifrice containing
ted milk on progression of
ptive
Hughes, N., Mason, S., Jeffery, P., Welton, H., Tobin, M., O’Shea, C. & Browne, M.

Hein, J. (1953) Effect of copper sulfate on initiation and progression of dental caries in the Syrian

REFERENCES

REFERENCES

REFERENCES

REFERENCES

APPENDIX I

ABSTRACTS FOR CONFERENCE PRESENTATIONS AND PAPERS IN PREPARATION
List of conferences presentations that have arisen from the work presented in this thesis

1. H. Lingawi, M.E. Barbour, P. Anderson
 Effect of Replenishment Rate of Demineralisation Solutions on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography, International Caries Research Conference, Montpellier, France (July, 2010)
 ORAL PRESENTATION

 Effect of Zinc ions (Zn\(^{2+}\)) on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography, 2\(^{nd}\) UK Zinc meeting, London, UK, (October, 2010)
 ORAL PRESENTATION

3. H. Lingawi, M.E. Barbour, P. Anderson
 POSTER PRESENTATION

 Effect of Zinc (Zn\(^{2+}\)) and Strontium (Sr\(^{2+}\)) Ions on Hydroxyapatite Thermodynamic Dissolution Kinetics, Weybridge Scientific Conference, Surry, UK, (April 2011)
 ORAL PRESENTATION

 Effect of Zinc (Zn\(^{2+}\)) and Strontium (Sr\(^{2+}\)) Ions on Hydroxyapatite Dissolution Relevant to Dental Caries and Erosion, International Association of Paediatric Dentistry, Athens, Greece, (June 2011)
 POSTER PRESENTATION
Effect of Zinc as Divalent Metal Cation on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography, International Caries Research Conference, Kaunas, Lithuania (July, 2011)
ORAL PRESENTATION

7. H. Lingawi, M.E. Barbour, P. Anderson
Cariostatic Influence of Sr\(^{2+}\) on Hydroxyapatite-disc Tooth Analogue Demineralisation, The British Society of Oral and Dental Research, Sheffield, UK (September 2011)
ORAL PRESENTATION

8. H. Lingawi, M.E. Barbour, P. Anderson
Effect of Sr\(^{2+}\) on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography, William Harvey Day, QMUL, (October, 2011)
POSTER PRESENTATION

9. H. Lingawi, M.E. Barbour, P. Anderson
ORAL PRESENTATION
List of papers in preparation that have arisen from the work presented in this thesis

1. H. Lingawi, P. Anderson
Real-time Scanning Microradiography for the Quantitative Measurements of Dissolution Kinetics of Compressed Hydroxyapatite Pellets

Effect of Zinc (Zn$^{2+}$) and Strontium (Sr$^{2+}$) Ions on Hydroxyapatite Dissolution Relevant to Dental Caries and Erosion
Caries Research
Published abstracts for oral presentations

Abstract

The replenishment of demineralising solution adjacent to a dissolving surface has considerable influence on the rate of dissolution of solids. This is particularly pertinent to dissolution studies of enamel, and similar studies of model systems for dental caries using compressed powders of hydroxyapatite as the substrate. As part of an overall investigation of the fundamental mechanisms influencing kinetics of enamel and hydroxyapatite dissolution, the aim was to compare the dissolution rates of compressed hydroxyapatite (HAP) powder discs as a function of replenishment rate of demineralising solution, using scanning microradiography (SMR). Compressed HAP powder discs product of Plasma –Biotal with 20 wt% nominal porosity were sterilised, coated with acid-resistant varnish on all surfaces except one, preconditioned, and located in an SMR cell volume 1.96 cm³. Demineralising solution (0.1% acetic acid buffered with 1M KOH, pH 4.0) was pumped at various replenishments rates using a variable speed circulating pump. The rate of HAP dissolution (RDHAP) was measured using SMR at a single centrally located point on each disc for periods of 24 h at 22°C. Each measurement was repeated in triplicate. The mean RDHAP was; 6.58x10⁻⁶, 1.18 x10⁻⁴, 1.70 x10⁻⁴, 2.40 x10⁻⁴, 2.72 x10⁻⁴, 3.13 x10⁻⁴, 3.16 x10⁻⁴ g.cm⁻².h⁻¹ at circulation speeds of 0, 0.19, 0.39, 0.58, 0.80, 0.97 and 1.17cm³.min⁻¹ respectively. The RDHAP statistically significantly increased for circulation speeds up to 0.78 cm³.min⁻¹, but did not change significantly at higher speeds. This study demonstrates that the solution composition in contact with a demineralising HAP surface achieved by sufficient replenishment rate, or stirring, is an important parameter in HAP dissolution studies. Diffusive transport of dissolved substrate away from the dissolving HAP surface will influence the kinetics of the process.

Abstract

Zinc (Zn$^{2+}$) is a dietary essential trace element necessary for various body functions. It is used in toothpaste for its anti-calculus properties and reducing oral malodour, but it may also have a role in inhibiting dissolution kinetics of enamel’s principal inorganic component; hydroxyapatite (HAp).

The aim of this study was to investigate the effect of Zn$^{2+}$ on surface physical chemistry influencing HAp dissolution by measuring the rate of HAp dissolution (RD$_{HAp}$) under strictly controlled thermodynamic conditions relevant to caries and erosion using scanning microradiography (SMR) at a range of Zn$^{2+}$ concentrations.

Compressed sintered HAp discs (Plasma-Biotal, UK) were coated with acid-resistant varnish on all surfaces except one, and located in an SMR cell. A bulk solution of 0.1% acetic acid pH4, divided into five (1 litre bottle) with the addition of 0, 5, 10, 15, 20 ppm Zn$^{2+}$ respectively was prepared. 0.3% citric acid pH2.8 solutions were similarly prepared.

The demineralising solution was circulated at 0.80cm3/min, and the RD$_{HAp}$ was measured using SMR at a single centrally located point on each disc for 24h at 22°C. Each experiment was repeated in duplicate for both increasing, and decreasing, Zn$^{2+}$ concentrations.

For acetic acid, the mean RD$_{HAp}$ decreased significantly (p< 0.05) from 4.38 x10$^{-4}$ (with no Zn$^{2+}$ added) to 3.81x10$^{-4}$, 3.19x10$^{-4}$, 3.02x10$^{-4}$, and 2.71x10$^{-4}$ g/cm2/h at Zn$^{2+}$ concentrations of 5, 10, 15 and 20 ppm respectively.

For citric acid, the mean RD$_{HAp}$ decreased significantly (p<0.05) from 3.12 x10$^{-3}$ (with no Zn$^{2+}$ added) to 2.83x10$^{-3}$, 2.73x10$^{-3}$, 2.45x10$^{-3}$ and 1.83x10$^{-3}$ g/cm2/h at Zn$^{2+}$ concentrations of 5, 10, 15 and 20 ppm respectively.

This study demonstrates that Zn$^{2+}$ decreased RD$_{HAp}$ under strictly controlled thermodynamic conditions relevant to caries and erosion, possibly due to inhibition of dissolution nuclei on the HAp surfaces.

Abstract

Objectives: Strontium (Sr$^{2+}$) has been demonstrated to be cariostatic. The evidence is controversial and the exact mechanism by which strontium decreases dental caries is unclear. Our aim is to study the effect of the divalent metal cation Sr$^{2+}$ on the kinetics of porous hydroxyapatite (HAp) disc dissolution using scanning microradiography (SMR) under artificial caries and erosion conditions.

Methods: Compressed 1mm thick sintered HAp discs (Plasma-Biotal, UK. 20wt% nominal porosity) used as tooth analogues, were preconditioned, coated with acid-resistant varnish on all surfaces leaving one surface exposed, and located centrally in SMR cell. 1L 0.1% acetic acid pH 4.0 (caries conditions) and 0.3% citric acid pH 2.8 (erosion conditions) demineralising solutions were prepared with each of 0, 5, 10, 20 and 30 ppm Sr$^{2+}$ respectively. Demineralising solution was circulated at 0.80 cm3/min, and the HAp demineralisation rate (RDHAp) was measured at a single centrally located point on each disc for 24 h at 22±1°C using SMR. Each experiment was repeated twice for both increasing, and decreasing sequences of Sr$^{2+}$ concentrations.

Results: Caries conditions: mean RD$_{HAp}$ decreased significantly from 3.40x10$^{-4}$ (0 ppm Sr$^{2+}$) to 2.73x10$^{-4}$ (5 ppm), 1.88x10$^{-4}$ (10 ppm), 1.44x10$^{-4}$ (20 ppm), and 1.15x10$^{-4}$ (30 ppm) g/cm2/h for increasing concentration sequence, and from 1.47 x10$^{-4}$ (30ppm Sr$^{2+}$) to 1.24x10$^{-4}$ (20 ppm), 1.04x10$^{-4}$ (10 ppm), 6.10x10$^{-5}$ (5 ppm) and 2.39x10$^{-4}$ (0 ppm) g/cm2/h for decreasing concentration sequence.

Erosion conditions: mean RD$_{HAp}$ decreased significantly from 4.22 x10$^{-3}$ (0 ppm Sr$^{2+}$) to 4.02x10$^{-3}$ (5 ppm), 3.58x10$^{-3}$ (10 ppm), 3.45x10$^{-3}$ (20 ppm) and 2.83x10$^{-3}$ (30 ppm) g/cm2/h for increasing concentration sequence, and from 3.94x10$^{-3}$ (30 ppm Sr$^{2+}$) to 3.55x10$^{-3}$ (20 ppm), 3.19x10$^{-3}$ (10 ppm) , 2.58x10$^{-3}$ (5 ppm) , and 3.65x10$^{-3}$ (0 ppm) g/cm2/h for decreasing concentration sequence.

Conclusion: Sr$^{2+}$ decreased RD$_{HAp}$ under strictly controlled thermodynamic conditions relevant to dental caries and erosion. The non-reversibility in RD$_{HAp}$ throughout the increasing and decreasing Sr$^{2+}$ sequences may be due to lasting effects of phase changes in HAp. This study demonstrates the potential usefulness of Sr$^{2+}$ in caries prevention.

Abstract

The literature on the cariostatic effects of strontium (Sr$^{2+}$) remains controversial and the mechanism is obscure. The aim was to study the effect of Sr$^2+$ in the demineralising solution on the kinetics of hydroxyapatite (HAp) dissolution using scanning microradiography (SMR) under artificial caries and erosion conditions. Hydroxyapatite discs (Plasma-Biotal, UK. 20wt% porosity) 1mm thick sintered, were used as enamel analogues, coated with acid-resistant varnish leaving one surface exposed, and located in an SMR cell. Demineralising solutions of 0.1% acetic acid pH4 simulating caries conditions, and 0.3% citric acid pH2.8, simulating erosive conditions were circulated through the SMR cells. The rate of demineralisation of the HAp discs ($R_{D_{HAp}}$) was measured using SMR. Further SMR measurements were carried out using identical demineralising conditions, but with increasing Sr$^{2+}$ concentrations of 5, 10, 20 and 30 ppm, and SMR measurements were continued for each case. The SMR measurements were then repeated at decreasing Sr$^{2+}$ concentrations (30, 20, 10, 5 and 0 ppm).

Results for Caries-like conditions showed $R_{D_{HAp}}$ decreased (3.40x10$^{-4}$, 2.73x10$^{-4}$, 1.88x10$^{-4}$ 1.44x10$^{-4}$, 1.15x10$^{-4}$ g.cm$^{-2}$.h$^{-1}$) at increasing Sr$^{2+}$ concentrations. $R_{D_{HAp}}$ also decreased (1.47x10$^{-4}$, 1.24x10$^{-4}$, 1.04x10$^{-4}$, 6.10x10$^{-5}$ g.cm$^{-2}$.h$^{-1}$) at decreasing Sr$^{2+}$ concentrations, except for 2.39x10$^{-4}$ g.cm$^{-2}$.h$^{-1}$ at 0 ppm.

Erosive-like conditions $R_{D_{HAp}}$ decreased (4.22x10$^{-3}$, 4.02x10$^{-3}$, 3.58x10$^{-3}$, 3.45x10$^{-3}$, 3.12x10$^{-3}$ g.cm$^{-2}$.h$^{-1}$) at increasing Sr$^{2+}$ concentrations. $R_{D_{HAp}}$ also decreased (3.94x10$^{-3}$, 3.55x10$^{-3}$, 3.19x10$^{-3}$, 2.58x10$^{-3}$ g.cm$^{-2}$.h$^{-1}$) at decreasing Sr$^{2+}$ concentrations except for 3.65x10$^{-3}$ g.cm$^{-2}$.h$^{-1}$ at 0 ppm.

In conclusion, Sr$^{2+}$ decreased $R_{D_{HAp}}$ under strictly controlled thermodynamic conditions relevant to caries and erosion. However, this decrease was not reversed when the Sr$^{2+}$ concentration was subsequently decreased. This pattern of the influence of Sr$^{2+}$ may result from the partial inclusion of Sr$^{2+}$ into the HAp lattice.

Effect of Demineralisation Solutions Circulation Rate on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography

H. Lingawi1, M.E. Barbour2, P. Anderson2

INTRODUCTION

The replenishment of demineralisation solution adjacent to a dissolving surface has considerable influence on the rate of dissolution of solids. This is particularly pertinent to dissolution studies of enamelled, and similar studies of molar systems for dental caries and enamel using compressed powders of hydroxyapatite (HAP) as the substrate.

AIM

As part of an overall investigation of the fundamental mechanisms influencing kinetics of enamel and HAP dissolution, the aim was to compare the dissolution rates of compressed HAP powder discs as a function of replenishment rate of demineralising solution, using scanning microradiography (SMR).

MATERIALS AND METHODS

- **HAP Discs:**
 - Compressed sintered HAP discs (Hitenco Medical Applications, USA) (d=12.05mm; s=1.25mm; 26 wt% nominal porosity), sterilised, coated with acid-resistant varnish on all surfaces except one, preconditioned, and located in an SMR cell (volume 1.96 cm³).
 - Demineralisation solution: 0.1% acetic acid buffered with 1M KOH, pH 4.0, circulated at various rates using a variable speed circulating pump.
 - Circulating rates: 0.0, 0.19, 0.39, 0.68, 0.78, 0.97 and 1.17 cm³.min⁻¹

Scanning Microradiography (SMR):

A technique of mineral quantification by means of X-ray absorption, measuring the change in X-ray transmission through the dissolving solid, when exposed to acid in a closed reaction cell over 24 hours.

RESULTS

![Compressed HAP disc dissolution rate over approximately 24h using 0.1% acetic acid pH 4.0 and 0.41 ml/min circulating speed.](image)

![Compressed HAP disc mean demineralisation rates in g/cm² as a function of changed demineralisation solution circulating rate.](image)

DISCUSSION / CONCLUSIONS

This study demonstrates that the solution composition in contact with a demineralising HAP surface achieved by sufficient replenishment rate, or circulating rate, is an important parameter in HAP dissolution studies. Diffusive transport of dissolved substrate away from the dissolving HAP surface will influence the kinetics of the process.

ACKNOWLEDGEMENTS:

The Gaûl University of Higher Education

REFERENCES:

www.smd.qmul.ac.uk/dental/oralgrowdev/biophysics/index.html

Effect of Strontium Ions on Hydroxyapatite Dissolution Kinetics Studied Using Scanning Microradiography

H. Lingawi, M.E. Barbour, P. Anderson

INTRODUCTION

Strontium (Sr) is a dietary essential trace element essential for many body functions such as collagen synthesis, mineralization of bone and immune system function. It is used in rootplugs and bone substitutes to reduce oral malodor as well as its anti-estrogen properties, but may also have a role in inhibiting the dissolution kinetics of Hydroxyapatite (HAP).

AIM

To investigate the effect of Sr as a divalent cation on the surface physical chemistry influencing HAP dissolution kinetics by measuring the rate of HAP dissolution (RDHAP) under strictly controlled thermodynamic conditions relevant to dental caries and erosion using scanning microradiography technique (SMR) at a range of Sr concentrations.

MATERIALS AND METHODS

- **HAP Discs:**
 Compressed dried HAP discs (Phosphate Bone, UK) (d=13mm, w=7mm, 20 wt% porosity), coated with acrylic resin varnish on all surfaces leaving one surface exposed to the demineralizing solution, preconditioned, sterilized, and located centrally in an SMR cell (volume 1.96 cm³).

- **Demineralization solution:**
 Back solution of 0.1% acetic acid pH 4.0 buffered with 3M KOH, divided into five (five beakers) without the addition of 0, 5, 10, 20 and 30 ppm Sr respectively was prepared. Demineralizing solution was circulated at 0.8 cm³/min.

- **Scanning Microradiography (SMR):**
 Technique of mineral quantification by means of X-ray absorption. Measuring the change in X-ray transmission through the dissolving solids, when exposed to acid in a closed reaction cell over 24 hours.

RESULTS

For citric acid pH 2.8, the RDHAP decreased significantly (p<0.05) from 2.22 x 10⁻⁵ cm²/min 0 Sr⁺⁺ added to 1.02 x 10⁻⁵, 1.89 x 10⁻⁵ and 2.59 x 10⁻⁵ cm²/min at Sr⁺⁺ concentrations of 5, 10, 15 and 20 ppm respectively, and from 3.34 x 10⁻⁵ to 2.35 x 10⁻⁵, 3.19 x 10⁻⁵ and 3.63 x 10⁻⁵ cm²/min at Sr⁺⁺ concentration of 30, 40, and 50 ppm respectively.

For acetic acid pH 4; the RDHAP decreased significantly (p<0.05) from 3.60 x 10⁻⁵ cm²/min (with 0 Sr⁺⁺ added) to 2.77 x 10⁻⁵, 1.86 x 10⁻⁵, 1.61 x 10⁻⁵, and 1.17 x 10⁻⁵ cm²/min at Sr⁺⁺ concentration of 5,10,15, and 20 ppm respectively in increasing Sr⁺⁺ concentration sequence, and from 1.47 x 10⁻⁵ to 1.24 x 10⁻⁵, 0.84 x 10⁻⁵, 0.46 x 10⁻⁵ and 0.23 x 10⁻⁵ cm²/min at Sr⁺⁺ concentration of 30, 40, and 50 ppm respectively.

CONCLUSIONS

This study demonstrates that Sr⁺⁺ in dissolving enamel caries decreases RDHAP under strictly controlled thermodynamic conditions relevant to dental caries and erosion, possibly due to lasting effect of phase changes in HAP.

REFERENCES

