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Abbreviations and notations

AE : Absolute error

APR : Average posterior risk

BLINEX : Bounded linear exponential

LINEX : linear exponential

l(d, θ) : Loss function

p(x|θ) : Probability density function

p(x|θ) : Likelihood of the data

p(θ) : Prior density

p(θ|x) : Posterior density

PR : Posterior risk

APR : Average posterior risk
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SSD : Sample Size Determination

TC(n) : Total cost for an optimal sample of size n

E[TC(n)] : Expected total cost for an optimal sample of size n

u(d, θ) : Utility function
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Abstract

This thesis consists of two parts. The purpose of the first part of the research is

to obtain Bayesian sample size determination (SSD) using loss or utility function

with a linear cost function. A number of researchers have studied the Bayesian SSD

problem. One group has considered utility (loss) functions and cost functions in

the SSD problem and others not. Among the former most of the SSD problems are

based on a symmetrical squared error (SE) loss function. On the other hand, in

a situation when underestimation is more serious than overestimation or vice-versa,

then an asymmetric loss function should be used. For such a loss function how

many observations do we need to take to estimate the parameter under study? We

consider different types of asymmetric loss functions and a linear cost function for

sample size determination. For the purposes of comparison, firstly we discuss the

SSD for a symmetric squared error loss function. Then we consider the SSD under

different types of asymmetric loss functions found in the literature. We also introduce

a new bounded asymmetric loss function and obtain SSD under this loss function.

In addition, to estimate a parameter following a particular model, we present some

theoretical results for the optimum SSD problem under a particular choice of loss

function. We also develop computer programs to obtain the optimum SSD where the

analytic results are not possible.

In the two parameter exponential family it is difficult to estimate the parameters

when both are unknown. The aim of the second part is to obtain an optimum de-

cision for the two parameter exponential family under the two parameter conjugate

utility function. In this case we discuss Lindley’s (1976) optimum decision for one
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parameter exponential family under the conjugate utility function for the one param-

eter exponential family and then extend the results to the two parameter exponential

family. We propose a two parameter conjugate utility function and then lay out the

approximation procedure to make decisions on the two parameters. We also offer a

few examples, normal distribution, trinomial distribution and inverse Gaussian distri-

bution and provide the optimum decisions on both parameters of these distributions

under the two parameter conjugate utility function.
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Chapter 1

Literature Review

1.1 Introduction

In this thesis we will focus on loss functions, utility functions and Bayesian sample

size determination (SSD). For point estimation we need to consider either a loss or

a utility function. The decision depends on the pattern (shape) of loss or utility

function adopted in a particular situation. This shape could either be a symmetric or

an asymmetric form. Apart from the squared error loss function, very little attention

has been paid to obtaining optimum sample size under specific loss functions. We

mainly consider asymmetric loss functions and a linear cost function to determine

an optimum sample size. We will also investigate estimation of the parameters of

bivariate exponential family under a bivariate conjugate utility function.

The aim of this chapter is to review the literature related to loss functions,
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Bayesian sample size determination and Lindley’s (1976) paper on the conjugate

utility function. In the first section we discuss different types of loss functions found

in the literature. Then we review the literature related to the Bayesian SSD. Finally

we review Lindley’s (1976) paper on conjugate utility functions.

A loss function l(d, θ) represents losses incurred when we estimate the parameter

θ by d. There is always some difference observed between the estimate and the

parameter. Let d be an estimate of parameter θ. Loss is generally measured as some

function of the difference d−θ or the ratio d
θ
. For one parameter, if we fix θ we might

get different values of d as an estimate of θ. If d = θ there is no loss, if d < θ we call it

underestimation, on the other hand if d > θ then we call it overestimation. Now we

can define a loss function as a function of d and θ and denote it by l(d, θ). The loss

function, l(d, θ) is defined to be a real valued function satisfying i) l(d, θ) ≥ 0 for all

possible estimates d and all θ under the chosen population ii) l(d, θ) = 0 for d = θ.

In the Bayesian approach to estimate any parameter we consider some prior dis-

tribution representing our beliefs about θ with density p(θ). We collect a sample

x1,x2,. . .xn of size n from the probability density function p(x|θ) and the likelihood

of the sample is p(x|θ). Now combining the prior and the likelihood and using Bayes

theorem we have an updated information about the parameter of interest θ repre-

sented by the posterior distribution of θ with density p(θ|x). We obtain a Bayes

estimate, d̂ of the parameter θ by choosing a particular form of loss function, l(d, θ).

To obtain the Bayes estimate first we need to find the posterior expected loss E[l(d, θ)]

by
∫
l(d, θ)p(θ|x)dθ which is also known as the posterior risk for θ. Then we min-

imize it with respect to d. For example, the Bayes estimate under a squared error
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loss function (d − θ)2 will be the mean of the posterior distribution and the Bayes

estimate under an absolute error loss function |d − θ|, will be the posterior median.

It is to be noted that the different loss functions will give different Bayes estimates

of θ and in any estimation procedure we can model these losses either in symmetric

or in asymmetric form. Now we will discuss symmetric loss functions.

1.2 Symmetric loss functions

If the amount of loss assigned by a loss function to a positive error is equal to the

negative error of the same magnitude, then the loss function is called a symmetric

loss function. Mathematically, a loss function l(d, θ) is said to be symmetric if it is a

function of |d− θ|. Some possible symmetric loss functions given by Mood, Graybill

and Boes (1974) are as follows. If we want to estimate θ by d then the squared error

loss function is defined as,

l1(d, θ) = a0(d− θ)2 (1.1)

where a0 > 0 is the scale of the loss function. This scale a0 is often taken equal to one.

If we are only interested in finding the Bayes estimate under the loss function then

this has no effect on the estimate. In SSD problems the scale does make a difference.

Some more symmetric loss functions are:

l2(d, θ) = |d− θ|,

l3(d, θ) =


A, if, |d− θ| > ε

0, if , |d− θ| ≤ ε, where A > 0
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l4(d, θ) = g(θ)|d− θ|r, for g(θ) ≥ 0 and r > 0.

l2 is called absolute error loss function. Note that both l1 and l2 increase as the error

d− θ increases in magnitude. l3 says that we lose nothing if the estimate d̂ is within

ε units of d and otherwise we lose an amount A. l4 is a general loss function that

includes both l1 and l2 as special cases. Here are some more symmetric loss functions

for the functions of the parameter.

If g(θ) denotes a function of θ, the absolute difference loss function is

lad(ĝ(θ), g(θ)) =| ĝ(θ)− g(θ) | (1.2)

Under this loss function the Bayes estimate of g(θ) will be the median of the posterior

distribution of g(θ). The well known squared error loss function is

lse(ĝ(θ), g(θ)) = (ĝ(θ)− g(θ))2. (1.3)

Under this loss function the Bayes estimate of g(θ) will be the mean of the posterior

distribution of g(θ). Another loss function named as the logarithmic loss function is

given by Brown (1968) as

lln(ĝ(θ), g(θ)) =| ln ĝ(θ)
g(θ)

| . (1.4)

The Bayes estimate of the function g(θ) under the logarithmic loss function (1.4) is

ĝ(θ) = exp

[∫
ln g(θ)p(θ|x)dθ

]
= exp [Eθ{ln g(θ)}] .

Now we will discuss asymmetric loss functions.
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1.3 Asymmetric loss functions

The use of symmetric loss function is based on the assumption that the loss is the

same in any direction. However, this assumption may not be valid in many practical

situations and the use of the symmetric loss function may be inappropriate. In such

cases a given positive error may be more serious than a given negative error of the

same magnitude or vice-versa. Now we will define the asymmetric loss function. Let

p(θ|x) be the posterior distribution of a continuous random variable θ for which it is

required to find an optimal decision d, associated with the error, d− θ (which could

be some other function of d and θ). The loss function, l(d, θ), can be written in the

form

l(d, θ) =


l1(d, θ), d ≥ θ

l2(d, θ), d < θ,

where, l′1(d, θ) > 0 for d − θ > 0 and l′2(d, θ) < 0 for d − θ < 0. It is required to

minimize the expected loss
∫
l(d, θ)p(θ|x)dθ and an optimal decision d̂ is a solution

of the following equation∫ ∞

d

l′1(d, θ)p(θ|x)dθ +

∫ d

−∞
l′2(d, θ)p(θ|x)dθ = 0. (1.5)

1.3.1 Asymmetric linear loss function

Granger (1969) obtained an optimum decision under the asymmetric linear loss (cost)

function of the form

l(d, θ) =


a(d− θ), d ≥ θ,

−b(d− θ), d < θ,
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where, a > 0, b > 0 and the solution of (1.5) is d∗ = F−1( a
a+b

), where F is the

posterior cumulative distribution function of θ. If the loss function is symmetric then

a = b and the posterior median is optimal.

1.3.2 Loss function from DeGroot (1970)

DeGroot (1970) discussed different types of loss functions and obtained the Bayes

estimates under these loss functions. Here is one example of the asymmetric loss

function defined for the positive values of the parameter. If d is an estimate of θ then

the loss function l(d, θ) will be,

l(d, θ) =

(
θ − d

d

)2

. (1.6)

1.3.3 Power and exponential loss

Britney and Winkler (1974) studied some loss functions other than linear and quadratic

form. They investigate the Bayesian point estimate under two special forms of loss

function namely, the power and the exponential loss functions. In the following we

will discuss these loss functions. Let

l(d, θ) =


l0(d, θ), d− θ ≥ 0,

lu(d, θ), d− θ < 0.

.

If l0(d, θ) = k0(d−θ)r and lu(d, θ) = ku(θ−d)s, then the loss function is called a power

loss function. On the other hand if l0(d, θ) = k0|er(d−θ)| and lu(d, θ) = ku|es(θ−d)| then

the loss function l(d, θ) is called an exponential loss function. For both the cases,
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ku,k0, r and s are positive and they are strictly convex functions if r > 1 and s > 1.

They also obtained an optimum Bayes estimate for a standard normal distribution

under both the power loss function and the exponential loss function respectively.

Finally, they suggested that in any Bayesian point estimation problem for an optimum

estimate it is important to specify the form of loss function carefully.

1.3.4 Linex loss function

Varian (1975) introduced a very useful asymmetric loss function. He explained that

in a particular area of the United States real estate assessors are required by law to

estimate the current market value of all taxable properties in their district each year.

This burden has been somewhat alleviated by the application of regression techniques

based on previous sales using an ordinary least square procedure. He worked entirely

with the appraisal of single family houses given their characteristics such as total liv-

ing area, number of bedrooms, etc. If the assessors’ estimate is denoted by d and the

actual value is θ, certain losses are incurred, denoted by l(d, θ). Now if the assessors’

office underestimate the value of a house, the loss is equal to the amount of underes-

timate. If the office overestimates the value of a house the California homeowner has

two courses of action; he can 1) complain to the assessors’ office, confer with them and

attempt to convince them that his home was over-assessed 2) present an appeal to

the Assessment Board of Equalization, which evaluates evidence presented by both

sides so as to correct the assessment. Both of these are lengthy procedures which

incur considerable expense for both parties. In such a situation the usual quadratic

loss function, (1.1) seems inappropriate because it assigns the same loss to overesti-
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mates as to underestimates and it is clear that the assessor’s loss function should be

asymmetric. He mentioned the following features:

1) The loss function should be linear for large negative errors.

2) The loss function should be increasing for positive errors at a greater than linear

rate.

3) Even if the court costs are constant, the probability of a complaint being sub-

mitted increases with the magnitude of the overestimate, and thus the loss function

should increase monotonically for positive errors. Finally, he proposed the following

asymmetric loss function as,

l(d, θ) = a exp[b(d− θ)]− c(d− θ)− a; (1.7)

which is called a linex (linear exponential) loss function with properties

1) for c = 1 , a = b−1 it has a minimum loss of 0 for d = θ;

2) it has exponential losses for large overestimates and linear losses for large under-

estimates;

3) parameters can be chosen to provide a variety of asymmetric effects;

4) it combines readily with a normal probability distribution.

Given a sample of previous sales of houses and their characteristics, he formulated

the following regression model,

y = Xβ + ε,

where y is an m vector of selling prices, X is an m × k matrix of the observed

characteristics of the houses, β is a k vector of unknown parameters, and ε is an m

vector of error terms, assumed to be distributed N(0, σ2I). Under the assumption

of normality and using the proposed loss function he obtained the loss minimizing
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estimator of β for a univariate case as

d = µ− bσ2

2
+ b−1 ln

c

ab
,

where, µ and σ2 is the mean and variance of β respectively following a normal distri-

bution. Finally, he compares his estimates obtained from a squared error loss function

with the linex loss function under different choices of priors.

1.3.5 Bounded loss function

Smith (1980) studied Bayes estimators under the bounded loss functions. He ex-

plained that the Bayes estimates should be made under a bounded loss function

rather than convex one, because in practice we can never lose an infinite amount. At

first he proposed the following loss functions called the step loss function with guage

u.

l(d, θ) =


0, (|d− θ| < u),

1, otherwise

where d is an estimate of a parameter θ. The expected loss function will be,

E[l(d, θ)] = 1− F (d+ u) + F (d− u),

where F (θ) is continuous. He also showed that, for d ∈ (k1, d2) then E[l(d, θ)] is

strictly decreasing and for d ∈ (d2, k2), then E[l(d, θ)] is strictly increasing and the

Bayes decision must lie in the interval (d1, d2). Then he obtained the Bayes estimates

under the step loss function for some standard distributions. He also introduced

another kind of loss function giving an additional information about the loss l(d, θ)
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namely, the ramp loss function as follows.

l(d, θ) =


B−1|d− θ|, (|d− θ| < B)

1, otherwise

where, B > 0. Finally he formalizes a Bayes decision interval under the family of loss

functions as,

lb(d, θ) =


κ(u)l∗(θ − d), l∗(θ − d) < c(u))

κ(u)c(u), otherwise

where, κ(u) > 0, c(u) is strictly increasing in u and l∗(θ − d) is some symmetric loss

function.

1.3.6 Linex loss function, Zellner (1986)

Zellner (1986) re-expressed the Varian’s (1975) loss function (1.7) with l(d, θ) = 0 for

a minimum to exist at d−θ = 0, then we must have ab = c and the linex loss function

reduced as,

l(d, θ) = a[exp(b(d− θ))− b(d− θ)− 1], (1.8)

with two parameters a > 0, b 6= 0, where, a is the scale of the loss function and b

determines its shape. Zellner (1986) also studied the properties of this loss function

showing for b > 1 the function is quite asymmetric with overestimation more costly

than underestimation. On the other hand when b < 0, the function rises almost

exponentially when w < 0 and almost linearly when w > 0, where w = d−θ. In figure

(1.1) we present the shape of the linex loss function for a different combinations of

parameters. For small values of b the function is almost symmetric and not far from a
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Figure 1.1: Shape of the linex loss function for different values of the scale parameter

a when b = 1.2 is kept fixed.

squared error loss function, that is, on expanding ebw ≈ 1+bw+b2w2/2, l(w) ≈ b2w2/2,

a squared error loss function. Zellner obtained the Bayes estimator under the linex

loss function (1.8) by minimizing the posterior expected loss or posterior risk (PR)

(we will discuss it in the section 1.4) as,

d̂lin = −1

b
ln[Eθ(e

−bθ)]. (1.9)

He used this estimate in an univariate prediction problem and extended the result

for multivariate cases. He showed the Bayes risk and the risk function for alternative

estimators of normal mean with prior as a N(0, τ 2) distribution. He also studied

the scalar parameters of an exponential distribution, a multiple regression model

parameter and multi-parameter problems under a linex loss function.
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1.3.7 Modified linex loss function

Despite the flexibility of the linex loss function (1.8) for the estimation of a location

parameter, it appears not to be suitable for the estimation of scale parameters and

other quantities. For these reasons Basu and Ibrahimi (1991) defined a modified linex

loss function as follows. If d is an estimate of θ, then the loss function is defined as,

lm(d, θ) ∝ exp

[
b

(
d

θ
− 1

)]
− b

(
d

θ
− 1

)
− 1, (1.10)

where the estimation error is expressed by d
θ

and the shape parameter is b 6= 0. Such

a modification does not change the main characteristics of Zellner’s (1986) linex loss

function described above. The posterior expectation of (1.10) is,

Eθ [lm(d, θ)] ∝ exp(−b)Eθ
{

exp

[
b

(
d

θ

)]}
− bEθ

(
d

θ

)
+ b− 1.

The value of d that minimizes Eθ [lm(d, θ)], say, θm, is the solution of

Eθ

[
θ−1 exp

{
b

(
θm
θ

)}]
= exp

[
Eθ

(
1

θ

)]
,

provided that all expectations are finite.

1.3.8 Asymmetric quadratic loss function

To estimate θ by d Cain (1991) considered an asymmetric quadratic loss function of

the following form

l(d, θ) =


a(d− θ)2, d ≥ θ

b(d− θ)2, d < θ,
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where, a > 0 and b > 0. Now to obtain an optimum decision d̂ under this loss function

we need to solve the equation (1.5). Clearly, if the loss function is symmetric then

the expected posterior loss is aV ar(θ|x).

1.3.9 Entropy loss function

Calabria and Pulcini (1994) proposed another alternative to the modified linex loss

function named general entropy loss function and defined it as,

le(d, θ) ∝
(
d

θ

)p
− p ln

(
d

θ

)
− 1, (1.11)

which has a minimum at d = θ. This loss is a generalization of the entropy loss

function used by several authors taking the shape parameter p = 1. The more general

version (1.11) allows different shapes of loss function when p > 0 and for d > θ, i.e.

a positive error causes more serious consequences than a negative error. The Bayes

estimator of θ under the general entropy loss will be,

d̂ =
[
Eθ{θ−p}

]− 1
p , (1.12)

provided that, Eθ [θ−p] exists and is finite. They also detailed the properties of a

general entropy loss function.

a) When p = 1 the Bayes estimate (1.12) coincides with the Bayes estimate under

the weighted squared error loss function (d−θ)2
θ

.

b) When p = −1 the Bayes estimate (1.12) coincides with the Bayes estimate under

a squared error loss function (1.1).
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1.3.10 Bounded linex loss

Wen and Levy (2001) proposed a new parametric family of bounded and asymmetric

loss function named the blinex loss function. They explained, due to the nature of

many decision problems, such as reliability, the analysis requires the use of asymmetric

losses and Zellner’s (1986) linex loss can be applied but the utility theory and other

practical arguments suggest that the bounded loss functions are more appropriate

than the unbounded ones. They also noticed that, while the linex loss function has

been extensively explored in the literature and found to be quite useful, it is limited

in application because the expected linex loss does not exist under some densities, for

example, the student-t. The expected blinex loss does not suffer this disadvantage.

This shortcoming prevents linex loss from wider usage as in predictive analysis under

a normal likelihood. They proposed the following bounded linex loss function based

on the linex loss function.

If d is an estimate of θ and w represent the scalar error resulting from a decision

(estimate) d which is denoted as w = d− θ, then the linex loss function is defined as

l(w) = c(ebw − bw − 1);

where b 6= 0 and c > 0. Linex is not bounded and depending on the sign of the

parameter b, the linex loss is approximately exponential on one side and linear on the

other side. Wen and Levy define the new parametric family of bounded asymmetric

loss function, denoted by lb(w), based on the linex loss function l(w) as,

lb(w) =
l(w)

1 + λl(w)
=

c(ebw − bw − 1)

1 + λc(ebw − bw − 1)

=
1

λ

[
1− 1

1 + λc(ebw − bw − 1)

]
.
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where, b 6= 0, c > 0 and λ > 0. Setting a = λc, the function becomes,

lb(w) =
1

λ

[
1− 1

1 + a(ebw − bw − 1)

]
. (1.13)

They call this function a blinex loss, since it is bounded and is derived from a linex

loss function. For the mathematical properties of the blinex loss function, see Wen

and Levy (2001). In their paper they also proved that the Bayes estimate of mean

based on a normal posterior distribution under the blinex loss function exists and is

unique. Wen and Levy (2004) also developed an algorithm for fitting the parameter

of the blinex loss function.

We have discussed different types of symmetric and asymmetric loss function above.

Now we will outline the posterior expected loss or posterior risk function for the Bayes

estimate θ as we need this later for an optimum SSD.

1.4 Posterior expected loss or posterior risk func-

tion

If l(d, θ) is any loss function and p(θ|x) is any posterior distribution of θ then the

expected loss, which is called the posterior risk’s(PR) for the Bayes estimate θ, is

defined as

PR =

∫
l(d, θ)p(θ|x)dθ. (1.14)

Now for the squared error loss function (1.1) the PR’s for the Bayes estimate θ will

be,

PR =

∫
l1(d, θ)p(θ|x)dθ = a0

∫
(d− θ)2p(θ|x)dθ, (1.15)
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which is clearly a0 × posterior variance. The scale a0, which often takes the value 1,

does not affect the Bayes estimate but has some effects on the optimum sample size.

The PR’s for the Bayes estimate θ under the loss function (1.6) is,

PR =

∫ (
θ − d

d

)2

p(θ|x)dθ

=
V ar(θ|x)
E(θ2|x)

, (1.16)

provided E(θ2|x) > 0. The PR’s for the Bayes estimate θ under the linex loss function

(1.8) is

PR = a

∫
[exp(b(d− θ))− b(d− θ)− 1]p(θ|x)dθ

= a[exp(bd)E{exp(−bθ|x)} − bd+ bE(θ|x)− 1]

= a[exp(bd) exp(−bd)− bd+ bm− 1]

= ab(m− d̂lin), (1.17)

where a is the scale parameter, b is the shape parameter of the linex loss, m is the

posterior mean and d̂lin is the Bayes estimate under the linex loss function defined in

(1.9). The PR’s for the Bayes estimate θ under the bounded linex loss function (1.13)

is,

PR =
1

γ

∫ [
1− 1

1 + a(eb(d−θ) − b(d− θ)− 1)

]
p(θ|x)dθ. (1.18)

It is difficult to solve (1.18) analytically. So we will solve this integral numerically

using R for an optimum sample size. Now we will review the literature related to the

asymmetric loss functions.
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1.5 Application of asymmetric loss function

We have defined different types of symmetric and asymmetric loss functions above.

Now we shall review the literature where these loss functions may be used. Rojo

(1987) proposed a general class of linear estimators of the form cx̄ + d where x̄ and

x̄ − aσ2

2n
are special cases of this general form. He determined the range of c and d

for which cx̄ + d is admissible under a linex loss function. He proved that cx̄ + d is

admissible if 0 ≤ c < 1 or c = 1 and d = −aσ2

2n
and otherwise is inadmissible. Later

Sadooghi-Alvadani and Nematollahi (1989) in a short paper corrected the proof of the

inadmissibility of cx̄+ d when c < 0 given by Rojo (1987) and showed that his result

is true with a different choice of dominating estimators. Bolfarine (1989) studied the

prediction of a population total using a linex loss function under a simple regression

model through the origin. He also studied two stage sampling and a binomial super

population model for an optimal prediction under a linex loss function.

Basu and Ibrahimi (1991) considered the exponential life testing model as,

p(x|θ) =
1

θ
exp

(
−x
θ

)
, x > 0, θ > 0,

where θ is a random variable and obtained the Bayes estimator of θ under their

proposed loss function (1.10) using three different types of priors such as:

1. The uniform prior with no prior information about θ or more generally the quasi-

density of the form

p1(θ) = 1/θa, 0 < θ <∞, a ≥ 0.
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2. The inverted gamma with parameters α, β > 0 with the density function given by

p2(θ) =


βα

Γ(α)
(1
θ
)α+1 exp(−β

θ
), θ > 0

0, otherwise .

3. If the life tester knows in advance that the probable values of θ lie over a finite range

(α, β) but he does not have any strong opinion about any subset of values over the

range (α , β) then a uniform distribution over (α , β) may be a good approximation.

So the prior distribution will be,

p3(θ) =


1

(β−α)
, 0 < α ≤ θ ≤ β,

0, elsewhere.

They considered the reliability function, γ = R(t) as the probability that a system

will survive at a specified mission time t.

4. For a situation where the experimenter has no prior information about γ, they

used the following non-informative prior distribution as

p4(γ) =
1

γ log γ
, 0 < γ ≤ 1,

which is a special case of p1(θ) giving a = 1.

5. They considered a prior distribution for γ which is a beta distribution with pa-

rameter α and β > 0 as follows:

p5(γ) =
1

B(α, β)
(γ)α−1(1− γ)β−1, 0 < γ ≤ 1.

They also obtained the Bayes estimator of γ using this prior p5(γ) considering the
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loss function given by Canfield (1970) as,

l(γ̂, γ) =


k1(

γ̂
γ
− 1)2, if γ̂ ≤ γ,

k1(
γ̂
γ
− 1)2 + k2(

γ̂
γ
− 1), if γ̂ ≥ γ.

Canfield (1970) concludes that when α = β = 1 (implying p5 is uniform) and if

k2 = 0 (symmetric loss function), the resulting estimator is the minimum variance

unbiased estimator of the reliability function. They obtained the estimators of the

exponential parameter θ under the Varian’s (1975) linex loss , the modified linex loss

(1.10) and the squared error loss function considering the priors p1(θ), p2(θ), p3(θ)

respectively and compared the estimates by the posterior risk functions. Finally,

they obtained the Bayes estimator of the reliability, R(t) = exp(−t/θ) for the Varian

(1975) loss function using non-informative priors p4(γ) and p5(γ) respectively.

Sadooghi-Alvadandi and Parsian (1992) studied the estimation of a binomial pa-

rameters n, p with known p and unknown n ∈ {0, 1, ...} using the linex loss function.

Pandey and Rai (1992) studied the Bayesian estimation of the mean and the square

of the mean of a normal distribution with mean (µ) and variance σ2 (known) using the

linex loss function. They compared the estimates relative to the risk functions and

Bayes risk under the linex loss and the squared error loss function with the alternative

estimators e.g. UMVUE.

Parsian and Farsipour (1993) studied the admissibility and inadmissibility of a

scale parameter using an asymmetric loss function which is similar to (1.10). They

defined Pitman (1939) estimator to estimate a parameter, θ. Let x1,x2,. . .,xn be a

random sample of size n taken from a density 1
θ
p(x

θ
), then the estimate of θ under the
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loss function l(d, θ) =
(
d
θ
− 1
)2

is given by,

d̂ =

∫∞
0
θ−n

∏n
i=1 p(

x
θ
)dθ∫∞

0
θ−n+1

∏n
i=1 p(

x
θ
)dθ

,

which is also called the Pitman estimator of θ. Use of this quadratic loss function in

scale parameter estimation heavily penalizes overestimation.

Calabria and Pulcini (1994) considered m censored observations out of a sample

of size n. First m observations are failed at t1,t2,. . . ,tm and the remaining (n −m)

items are functioning at tm+1,. . . tn. These observations are assumed to have a two-

parameter Weibull distribution given by,

p(t|α, β) =
β

α

(
t

β

)β−1

exp

[
−
(
t

α

)β]
;α, β > 0, t > 0,

where α and β are the scale and shape parameter respectively. They obtained the

mean lifetime of the underlying population, ET = αΓ
(

1
β+1

)
, the reliability of the

item for a given mission time t, say, Rt = exp
[
−t
(
t
α

)β]
, the reliability life of a given

reliability level, say Rg = α
[
ln
(

1
R

)] 1
β and the hazard rate at a given magnitude

of time, say, Ht = β
α

(
t
α

)β−1
under the linex loss (1.8) and their proposed entropy

loss (1.11) using different types of prior distributions. Finally, they compared the

estimates obtained from two different loss functions.

Parsian and Nematollahi (1994) studied the estimation of a scale parameter under

the entropy loss function ,

l(d, θ) = ν

(
θ

d
− ln

θ

d
− 1

)
.

Which is a special case of (1.11) with p = −1. This loss function is strictly convex in

θ
d

but it is not convex in d, and as a function of d it has a unique minimum at d = θ.
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They obtained a Pitman type generalized Bayes estimator of θ = τ r with respect to

a noninformative prior, p(θ) = 1
τ

under the entropy loss considering a gamma, an

inverse Gaussian, a Normal with zero mean, and an exponential distribution. They

also considered the admissibility and inadmissibility of a class of linear estimator

of the form cT + d under this loss function. Later on, Cain and Janssen (1995)

studied the real estate price prediction under the asymmetric loss functions. They

used three different types of asymmetric loss functions namely asymmetric linear loss

function by Granger (1969), asymmetric quadratic loss function by Cain (1991) and

the asymmetric linex loss function Zellner (1986) to predict the selling price of houses

through a real estate agents when the distribution of prediction error is normal. They

compared their results and obtained the adjustment factor for the predictive mean

under these three loss functions.

Calabria and Pulcini (1996) studied point estimation for left truncated exponential

samples and used the linex loss function of Zellner (1986), modified linex loss function

of Basu and Ibrahimi (1991) and general entropy loss function of Calabria and Pulcini

(1994). They compared the general entropy and the modified linex loss function

graphically. Moreover they obtained the Bayes estimate using a non-informative and

a conjugate prior under these asymmetric loss functions and compared their result

with that of ML estimators.

Cain and Janssen (1999) studied the market price of individual town house units

where there is an asymmetry in the loss function. The selling price of single family

dwellings is estimated by means of a linear model applied to a sample of comparable

properties with explanatory variables including the number of rooms, and bathrooms,
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the floor area, number of fireplaces, year of construction, garage, parking space, neigh-

borhood location, freehold or leasehold etc. The estimated market price of an actual

16-unit town house is then adjusted for an asymmetry in the loss function and they

observed that the overpricing is more serious than underpricing with optimal adjust-

ment factors derived under the linex loss function.

Moore and Papadopoulos (2000) studied the Burr-XII distribution as a failure

model under various loss functions. The two parameter Burr type XII distribution

with pdf and distribution function in the respective forms

p(x|θ, β) = θ.β.xβ−1(1 + xβ)−(θ+1), θ, β > 0, (1.19)

F (x|θ, β) = 1− (1 + xβ)−θ, 0 ≤ x, θ, β > 0,

where θ and β are the parameters. Assuming β is known they obtained the Bayes

estimate of the parameter θ and the reliability R(t) under the loss functions (1.2),(1.3)

and (1.4). Moreover, they considered the following priors for the parameter θ to obtain

the Bayes estimate of g(θ).

1. gamma prior, p1(θ) = mv+1

Γ(v+1)
θve−mθ.

2. Jeffreys’ improper prior, p2(θ) ∝ 1
θ
.

Finally, they compared their estimates obtained from three different loss functions

using two different priors through simulation.

Soliman (2001) studied Bayes estimates under the linex and the quadratic error

loss functions for the Pareto model. The density, reliability and failure rate of the

two-parameter Pareto distribution with parameter (α, β) are given respectively by,

p(x|α, β) = αβα(x+ β)−(α+1);x > 0; (α > 0, β > 0)
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R(t) = βα(t+ β)−α; t > 0.

H(t) = α(t+ β)−1; t > 0,

where α is the shape parameter, β is the scale parameter, R(t) is the reliability

function and H(t) is the failure rate. He considered the squared error and the linex

loss function and obtained the Bayes estimate of α, R(t) and H(t) respectively when

β is known. Then he considered the Bayesian estimation of the parameters α, β

when both are unknown taking some suitable priors for α and β. In this situation he

also obtained the estimates of R(t) and H(t). In both cases he used Lindley’s (1980)

approximation to obtain the estimates of the parameters. Finally, he compared the

estimates obtained from a squared error loss function and a linex loss function with

the usual ML estimators through simulation.

Soliman (2002) studied reliability estimation in a generalized life model using

Burr-XII distribution given in (1.19). He considered some suitable prior distributions

for (θ, β) and used the squared error loss, linex loss and general entropy loss functions

(Calabria and Pulcini, 1996) to obtain the approximate Bayes estimate of the relia-

bility function R(t) through Lindley’s (1980) approximation. Finally, he compared

the estimate of the reliability function using a simulation study.

Marsh and Zellner (2004), studied the Bayesian solutions to the graduate admis-

sions to achieve a targeted number of acceptances for its entering in any class who

accepts an offer. Firstly, they obtained the point predictions of the numbers enrolling

given the number of offers relative to the SE loss function and the linex loss function

for a homogeneous set of data. They also did the same for the heterogeneous data

like probabilities of enrolment associated with cost for n individuals.
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Demetrescu (2006), extended the Gauss-Newton algorithm under an asymmetric

loss function. Xiao, Takada and Shi (2005) obtained a minimax confidence bound

of the normal mean under the linex loss function. Shi, Gao and Shi (2005) studied

the convergence rate of the empirical Bayes estimation for two dimensional trunca-

tion parameters under a linex loss function. Chai et al.,(2007), studied the empirical

Bayes estimators using a linex loss function under type-II censored samples. Far-

sipour and Zakerzadeh (2006) studied the estimation of generalized variance under

an asymmetric loss function named the squared log error loss function. Moreover,

Sengupta (2008) and Chattopadhyay (2000) used the linex loss function in sequential

estimation problems, to determine the optimum process parameters by Cheng, Hung

(2007), to estimate the failure rate of integrated circuit by Cain and Janssen (1995),

the estimation of the market price of individual town house by Cain and Janssen

(1999). Linex loss function is also used in obtaining failure rates by Schabe (1991,

1996).

We have discussed both the symmetric loss and asymmetric loss functions indi-

cating their applications in different fields. As our plan is to obtain Bayesian SSD

under symmetric and asymmetric loss functions so we will now review the literature

related to the Bayesian SSD.
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1.6 Literature review on Bayesian Sample Size De-

termination (SSD)

The problem of determining the size of a sample has received much attention in the

literature. Frequentist methods are generally based on a power calculation. There

are two main strands in the Bayesian literature. We will outline these two approaches

and then give some more detail about each. The first is to look at measures which

are analogous to power. For example Adcock (1988) obtained a closed form solution

for determining sample size for the normal distribution with known and unknown

variances by the average coverage criteria (ACC) method. Joseph, Wolfson, and Du

Berger (1995) obtained the sample size for a binomial proportion considering the

highest posterior density (HPD) interval. In this paper they also proposed a related

method to ACC called the average length criteria (ALC) method where the coverage

probability 1− α is fixed and the length of HPD interval is equal to l on average. In

the same paper they outlined another Bayesian method of determining sample size

called worst outcome criteria (WOC) where both l and α are fixed in advance. Weiss

(1997) obtained the sample size for a normal distribution with known variance using

a Bayes factor. Adcock (1997) reviewed the SSD problem including frequentist and

Bayesian methods. Pham-Gia and Turkkan (1992) obtained the sample size for a bi-

nomial proportion. Pham-Gia (1997) described a method of matching the ALC and

maximization of expected utility (MEU). Joseph and Belisle (1997) obtained Bayesian

sample size for a normal mean and difference between two normal means using all

three ACC, ALC and WOC methods. Joseph, Du Berger and Belisle (1997) deter-

mine the sample size based on length and coverage of the posterior credible interval
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to estimate the difference between two binomial proportions using the Bayesian and

mixed Bayesian criteria. Stuger (2006) obtained the optimum sample size using an

asymmetric loss function considering ACC and ALC method for a binomial distribu-

tion. Sahu and Smith (2006) discussed sample size determination with applications in

clinical trials and in financial audits. They considered a bounded loss function but not

any cost function in their study. Santis (2006) discussed SSD for a robust Bayesian

analysis. Santis (2007) used historical data for Bayesian sample size determination.

Wang and Gelfand (2002) discussed sample size considering a sampling prior and a

fitting prior to get the posterior distribution for different models through simulation.

All these methods discussed above are based on the probability coverage α and the

length, l of the interval containing the parameter.

A second strand uses ideas taken from decision theory to combine the cost of

taking a sample with the posterior expected loss and choose the sample size which

minimizes the (pre-posterior) expected cost. There are choices to be made about

the cost function and loss function. The first Bayesian account of this sample size

determination method has been given by Raiffa and Schlaifer (1961) considering bi-

nomial and normal distributions. DeGroot (1970) obtained the Bayesian sample size

considering squared error and absolute error loss function and a linear cost function.

Lindley (1972) obtained the sample size using a squared error loss function for a

normal distribution with known variance. Lindley (1997a) gave a clear discussion

of the SSD problem through Maximization of Expected Utility (MEU). In the same

paper he compared his result with the ALC method. There has been much debate

between advocates of the ACC method and the MEU method about whether the

ACC method is fully Bayesian or not. For a discussion paper see Adcock (1997a)
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and Lindley (1997b). Muller and Parmigiani (1995) considered utility functions and

optimized the expected utility by curve fitting of Monte Carlo samples for sample size

determination. They also considered a cost function in their study. In the following

we will discuss the optimum sample size based on power like calculations.

1.6.1 SSD based on power calculation

The Average Coverage Criteria (ACC) method was introduced by Adcock (1988). If

the vector x denotes a sample of size n and θ is the parameter under study then

conditional on x , θ is contained in a specified interval R(x) with probability 1 − α

on an average over all possible samples. So defining T (x) = Pr[θ ∈ R(x)|x], we now

determine n so that

E[T (x)] =

∫ {∫
R(x)

p(θ|x, n)dθ

}
p(x)dx = 1− α.

Here R(x) is a symmetric interval about the posterior mean E[θ|x] of the form

R(x) = E[θ|x] ± l/2 where l is the specified length. For a non-symmetric poste-

rior distributions, Joseph et al.(1995) proposed a region of the form R(x) = [a, a+ l]

where l is given and a is determined so that R(x) is the highest posterior density

(HPD) interval. Joseph, Wolfson, and Du Berger, (1995) determined the binomial

sample size via the highest posterior density (HPD) interval. A related method to

ACC is called the average length criteria (ALC) method where the coverage prob-

ability 1 − α is fixed and the length of HPD interval is equal to l on average. In

the same paper they also mentioned another Bayesian method of determining sample

size called the worst outcome criteria (WOC) based on averaging over the marginal

51



distribution of x. The minimum sample size is obtained such that

infx

{∫ a(x,n)+l

a(x,n)

p(θ|x, n)dθ

}
≥ 1− α.

Where, a(x, n) is the lower limit of the HPD credible set of length l for the posterior

density p(θ|x, n) and α and l both are fixed in advance. However, Lindley mentioned

that it is not a Bayesian rule as it didn’t include the expected value operation over

the marginal distribution of x.

Weiss (1997) obtained the sample size for a normal distribution with known vari-

ance using Bayes factor, i.e.

B = ln[p(x|H0)/p(x|H1)].

He obtained the sample size by fixing α and β and then solving a pair of equations:

Pr[B > Bcut|H0] = 1− α,

Pr[B ≤ Bcut|H1] = 1− β,

for given H0 and H1 to determine both the sample size n and the cut-off point Bcut.

1.6.2 Simulation based approach

Weng and Gelfand (2002) proposed a simulation based approach to Bayesian SSD

for performance under a given model and for separating models. They discussed

different models including a survival model with censoring and a logistic regression

model. To obtain the SSD they introduced the idea of a sampling prior and fitting

priors to get the posterior distributions for different models where they suggested
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the sampling prior would be informative and the fitting prior is non-informative.

Sahu and Smith (2006) used this approach and they distinguished between these two

priors. The sampling prior is used to generate the parameter values which are then

conditioned to generate the data from p(x|θ) in substantive experiments, i.e. data

x are generated from the joint hierarchical model π(s). Once data are available we

would like to pretend that the informative prior distribution which generated the

data is unknown to us, and we would like to make an inference with assumption of

relatively non-informative prior distribution. They also considered a bounded type

loss function for an optimum sample size.

1.6.3 SSD using utility functions

Lindley (1997a) gave a clear direction of SSD problem through Maximization of

Expected Utility (MEU) considering a linear cost function described below. Let,

x1,x2,. . .,xn be a sample of size n taken from the density p(x|θ) with unknown pa-

rameter θ. If p(x|θ, n) is the likelihood of the data and p(θ) is the prior density of θ

then the posterior density of θ will be,

p(θ|x, n) =
p(x|θ, n)p(θ)

p(x|n)
. (1.20)

Now consider a utility function u(n, x, d, θ) so the sample size will be found first

taking expectations of utility over random quantities θ and x and then maximizing

over deterministic quantities d and n. From (1.20) we can find p(θ|d, x, n), where the

density p(θ|d, x, n) is the same as p(θ|x, n) since the choice of d does not influence

the distribution of θ, given x and n. Then we maximize the expected utility over d

to select the terminal decision. Going backward in time, the expectation over x of
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this maximized value can be found by using p(x|n). Finally, this expectation can be

maximized over n to give the optimum sample size. It is the solution of

max
n

[∑
x

max
d

{∫
u(n, x, d, θ)p(θ|x, n)dθ

}
p(x|n)

]
. (1.21)

In the continuous case the summation will be replaced by an integration. Now by

Raiffa and Schlaifer (1961), the utility does not depend on x and is additive and linear

in n as follows,

u(n, x, d, θ) = u(d, θ)− cn− c0, (1.22)

where c is the cost in utiles of each observation, c0 is the sampling set-up cost. It

is usual for each observation to cost the same, so justifying the linearity in n. Now

using special form of utility, (1.22), (1.21) becomes,

max
n

[∑
x

max
d

{∫
u(d, θ)p(θ|x, n)dθ

}
p(x|n)− cn− c0

]
. (1.23)

Now using the result of equation (1.20) in (1.23) the final expression for getting an

optimum sample of size n will be,

max
n

[∑
x

max
d

{∫
u(d, θ)p(x|θ, n)p(θ)dθ

}
− cn− c0

]
. (1.24)

This method of determining sample size termed as maximization of expected utility

(MEU). In this method MEU is used twice, first over θ and d then over x and n. In

the same paper Lindley compared his result with the ALC method with discussions.

In our case, we will use a loss function rather than a utility function, u(n, x, d, θ)

where the form of loss will be,

−u(n, x, d, θ) = l(d, θ) + cn+ c0 (1.25)

and the final form to get a minimum sample size will be,

min
n

[∑
x

max
d

{∫
l(d, θ)p(x|θ, n)p(θ)dθ

}
+ cn+ c0

]
. (1.26)
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Muller and Parmigiani (1995) discussed the Bayesian optimal design via curve fit-

ting of Monte Carlo experiments. They described a class of optimization algorithms

designed to gain efficiency in such situations, by exploring smoothness of the ex-

pected utility surface and borrowing information from neighbouring design points.

They considered the different forms of utility functions and the cost function in dif-

ferent situations. Now we discuss the pre posterior analysis as we need it later for an

optimum SSD.

1.7 Pre-posterior analysis

Suppose, x = (x1, . . . , xn) is a random sample from the distribution with pdf p(xi|n, θ)

and the prior for θ is p(θ). If the likelihood of the sample is denoted by p(x|n, θ) then

the pre-posterior distribution of x|n will be,

p(x|n) =

∫
p(x|θ, n)p(θ)dθ.

In determining the optimum sample size we will consider the posterior risk (PR)

defined earlier which may sometimes depend on x. Then we need to average over x

knowing the pre-posterior distribution of x|n. So to make the PR independent of x

we need to find an average posterior risk (APR) by∫
PR p(x|n)dx. (1.27)

Then we will add a linear cost function to the risk and minimize them together to get

the optimum sample size. Here are the details of the cost functions we will be using

for an optimum sample size.
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1.8 Cost function

Sampling cost per unit is one of the very important ingredients to consider to get an

optimum sample size. In this study we will consider a linear cost function given by

Lindley (1972) as,

C(n) = c0 + cn, n > 0 (1.28)

and

C(0) = 0.

Here c0 is the sampling set-up cost or any other related cost involve in sampling and

c is the sampling cost per unit. If there is no plan to sample at all, obviously there

is no set-up cost or sampling related cost. If the posterior risk function for the Bayes

estimates does not depend on x then we will add it to the cost function (1.28) to

obtain the total cost. That is we use

TC(n) = C(n) + PR.

On the other hand if it does depend on x then we find the APR using (1.27) and

then we add it to the cost function (1.28) for the expected total cost. that is in this

situation we use

E[TC(n)] = C(n) + APR.

The problem that costs of sampling and APR are measured in different units will be

discussed in chapter 8, section 8.3. If we want to draw samples from two populations

then we need to consider the following cost function. Let c1 be the cost of recruiting

units of size n1 from one population and c2 be the cost of recruiting units of size

n2 from another population. For example, to compare the difference between two
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treatment means, we consider a cost function,

C(n) = c0 + c1n1 + c2n2. (1.29)

If we want to have an equal number of units then consider n1 = n2, if not then

consider n1 6= n2. The sampling cost per unit could be the same for the samples

drawn from both populations so take, c1 = c2 if different, then consider c1 6= c2. Note

that, in finding a minimum cost, we usually treat n as a real quantity so are able

to differentiate TC(n) with respect to it to find a turning point n∗. In practice, of

course, n is a positive integer and we must check whether x n∗y or p n∗q gives the

smaller value.

1.9 Lindley’s conjugate utility

Alongside the Bayesian optimum sample size determination we will obtain an approx-

imate optimum decisions under the Lindley’s (1976) conjugate utility function for one

parameter exponential family. In the same paper Lindley noted that it is possible to

extend the idea for several parameters. To do this first we propose a two parame-

ter conjugate utility function which fits nicely with the bivariate exponential family.

Then we obtain the approximate optimum decisions for both parameters of the bi-

variate exponential family under the proposed conjugate utility function when both

parameters are unknown. In the following we will review Lindley’s (1976) conjugate

utility functions.

If x is a random variable depending on a single parameter θ for a suitable param-
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eterizations the density of x, given θ, is

p(x|θ) = exp (xθ)H(x)G(θ), (1.30)

where H(x) is some non negative function and G(θ)−1 =
∫

exp (xθ)H(x)dx for all

θ for which the integral is finite. The natural conjugate family for θ by Raiffa and

Schlaifer (1961) is proportional to

p(θ) ∝ exp(x0θ)G(θ)n0

for suitable x0 and n0. Defining

K(n0, x0)
−1 =

∫
exp(x0θ)G(θ)n0dθ, (1.31)

the integral being over the relevant θ-values, the conjugate density of θ, given n0 and

x0 is

p(θ|n0, x0) = exp (x0θ)G(θ)n0K(n0, x0), (1.32)

where K(n0, x0) is defined in (1.31). Now if we draw a random sample of size n

from (1.30), and if the distribution of θ prior to sample is given by (1.32), then the

distribution after the sample is

p(θ|x, n) ∝ exp (θ
∑

xi)G(θ)n+n0 , (1.33)

where the summations are from zero (not one) to n. Besides a distribution of θ we

need to introduce a utility function u(d, θ). A convenient utility function which uses

the distribution of θ and fits nicely with x is

u(d, θ) = exp{x(d)θ}G(θ)n(d)F (d) (1.34)

where x(d), n(d) and F (d) are suitable functions of d whose form we will discuss

below. Consider the maximum of (1.34) for a fixed d. Let, g(θ) = logG(θ) so we
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have,

log u(d, θ) = x(d)θ + n(d)g(θ) + logF (d)

Then take,

∂ logU(d, θ)

∂θ
= x(d) + n(d)g′(θ).

We see that the logarithmic derivative of (1.34) vanishes if

x(d) + n(d)g′(θ) = 0. (1.35)

It would be natural in most applications for such a maximum to occur at θ = d, that

is for the decision being taken, d is the best decision for θ. So from (1.35) we have,

x(d) = −n(d)g′(d) (1.36)

referring to this condition C1, and using it to eliminate x(d). Using this condition in

(1.34), we have the maximum utility will be,

u(d, d) = exp[n(d)g(d)− g′(d)d]F (d), (1.37)

Taking the maximum utility as 1, let f(d) = logF (d) and define it as

f(d) = n(d)[g′(d)d− g(d)], (1.38)

referring to this condition as C2. Now using the condition (1.38) in (1.37) we have

the final expression of Lindley’s utility function as follows,

u(d, θ) = exp[n(d){g(θ)− g(d)− g′(d)(θ − d)}] (1.39)

and only n(d) is free to be selected. Finally, he gave an outline of finding n(d) where

he considered n(d)−1 = −kg′′(d) for some constant k and noted it as as condition C3.

He then maximized the the expected utility (1.39) under some approximations which

we will discuss in chapter 7. Then we will extend these results to the two parameter

exponential family.
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1.10 Conclusion

In this chapter we have reviewed the literature related to the loss functions, utility

function and the Bayesian sample size determination. We have discussed both the

symmetric and the asymmetric loss functions. We found most of the SSD has been

done under the symmetric squared error (SE) loss function but we haven’t seen any

SSD under any of the asymmetric loss functions. So we will review SSD under the

symmetric SE loss function in Chapter 2, then we will deal with the Bayesian SSD

problem under the asymmetric loss functions in the Chapters 3-4. In chapter 5

we will discuss the optimum SSD under the loss function from DeGroot(1970). In

Chapter 6, we will also deal with SSD problem but under our proposed utility (or

loss) function. Since the maximization expected utility (MEU) function is equivalent

to the minimization expected loss function. We will deal with the Bayesian SSD

problem through the minimization of expected loss function. This method includes

the following elements.

i) Prior distribution

ii) Current data following a distribution

iii) Marginal or Pre-posterior distribution

iv) Posterior distribution

v) Loss function

vi) Posterior risk function

vii) Cost function

Finally, adding vi) and vii),we will minimize both the costs the posterior risks together

to get the optimum sample of size n. In Chapter 7, we will discuss and extend
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Lindley’s (1976) paper on conjugate utility function for one parameter. We will

present how to estimate the parameters of the bivariate exponential family when both

parameters are unknown under a two parameter conjugate utility function. Finally

in Chapter 8 we will discuss practical implications together with the limitations of

the research done and provide some suggestions for further research.

61



Chapter 2

Bayesian SSD using squared error

loss

2.1 Introduction

Sample Size Determination (SSD) is an important issue to consider when estimating

any parameter. A number of researchers have studied the Bayesian SSD problem.

One group have considered utility (or loss) functions and cost functions in their SSD

problems and the others have considered power calculations which we discussed in

the previous chapter. A very common approach is to consider a squared (SE) error

loss function for an optimum sample size. In this chapter we will discuss the optimum

sample size under this commonly used SE loss function. We will explore the normal,

exponential, Poisson and binomial distributions. For the normal distribution we
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consider the optimum sample size for different situations. To obtain the optimum

sample size our objective is to minimize the posterior risk function and a linear cost

function (1.28) described in previous chapter. We will also discuss the situation where

it is not worth sampling due to a high sampling cost or strong prior information. We

will present all the figures and tables at the end of the chapter.

2.2 SSD to estimate a normal mean when preci-

sion is known (Lindley, 1972)

Suppose x1, x2,. . . ,xn is a random sample of size n taken from a normal distribution

with mean θ and known precision ξ. So the likelihood of the sample will be,

p(x|θ) =

(
ξ

2π

)n
2

exp

[
−1

2
ξΣn

i=1(xi − θ)2

]
.

We can equivalently write,

p(x|θ) ∝ exp(nxξθ) exp

(
−1

2
nξθ2

)
. (2.1)

Let us take a conjugate prior of θ with mean µ0 and precision n0ξ as,

p(θ) ∝ exp(n0µ0ξθ) exp

(
−1

2
n0ξθ

2

)
. (2.2)

Now combining (2.1) and (2.2) the posterior distribution will be,

p(θ|x) ∝ exp {(nx+ n0µ0)ξθ} exp

{
−1

2
(n+ n0)ξθ

2

}
; (2.3)

which is normal with mean nx+n0µ0

n+n0
and precision (n + n0)ξ. So under the SE loss

(1.1), from (1.15) we have the posterior risk function as,

PR =
a0

(n+ n0)ξ
. (2.4)
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Now adding the cost function (1.28) to the risk function (2.4) we have the total cost

as,

TC(n) = c0 + cn+ PR

= c0 + cn+
a0

(n+ n0)ξ
, (2.5)

which is clearly independent of x. It is to be noted that c0, c and a0 have to be chosen

so that losses and costs are measured in the same units (we have discussed on this

point in chapter 8 section 8.3). Now consider n is a real positive number. To have

a minimum sample of size n differentiate TC(n) w.r.t. n and setting equal to zero ,

i.e., ∂TC(n)
∂n

= 0 gives

n∗se =

√
a0

cξ
− n0. (2.6)

If there is little prior information, that is n0 → 0 in (2.6), then the optimum sample

size under the SE loss function will be,

n∗se = σ

√
a0

c
, (2.7)

where a0 is the scale of the loss function. It is also clear that the sample size is

proportional to the standard deviation of the data but inversely proportional to the

sampling cost per unit. If the data variability increases the size of the sample also

increases but if the sampling cost increases then the optimum sample size decreases.

2.2.1 No sampling situation

Now if we do not sample the total cost is given by

TC(0) =
a0

n0ξ
.
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If we take a sample of size n∗ then the total cost of sampling ( giving n = n∗se in (2.5))

will be,

TC(n∗) = c0 − cn0 + 2

√
ca0

ξ
.

Therefore the overall optimum sample size is

n∗ = max

{
0,

√
a0

cξ
− n0

}
The truncation at 0 matters and we automatically choose not to sample when

√
a0

cξ
≤

n0 in addition to the situation when
√

a0

cξ
> n0 and TC(0) is exceeded by TC(n∗).

This implies the decision not to sample occurs when[
a0

n0ξ
< c0 − cn0 + 2

√
ca0

ξ
and

√
a0

cξ
> n0

]
or

√
a0

cξ
≤ n0.

Equivalently the decision to sample occurs when

a0

n0ξ
> c0 − cn0 + 2

√
ca0

ξ
and

√
a0

cξ
> n0. (2.8)

Solving for y =
√
c we find that we sample when

n0y
2 − 2

√
a0

ξ
y +

a0

n0ξ
− c0 > 0 and y <

√
a0

n2
0ξ
.

So that [
y <

√
a0

n2
0ξ
−
√
c0
n0

or y >

√
a0

n2
0ξ

+

√
c0
n0

]
and y <

√
a0

n2
0ξ
,

which implies that

√
c <

√
a0

n2
0ξ
−
√
c0
n0

.

So choose not to sample when

c >

[√
a0

n2
0ξ
−
√
c0
n0

]2

.
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That is for known a0, c0, ξ, and n0 if the sampling cost per unit, c exceeds
(

1
n0

√
a0

ξ
−
√

c0
n0

)2

then it is not worth sampling at all due to high sampling cost per unit.

Now we will obtain the range of n0 so that the decision not to sample occurs.

From (2.8) the decision to sample occurs when

cn2
0 −

{
c0 + 2

√
ca0

ξ

}
n0 +

a0

ξ
> 0 and n0 <

√
a0

cξ
.

So that[
n0 <

c0
2c

+

√
a0

cξ
− 1

2c

√
c20 + 4c0

√
ca0

ξ
or n0 >

c0
2c

+

√
a0

cξ
+

1

2c

√
c20 + 4c0

√
ca0

ξ

]

and

n0 <

√
a0

cξ
.

This implies that the optimal decision is to sample when

n0 <
c0
2c

+

√
a0

cξ
− 1

2c

√
c20 + 4c0

√
ca0

ξ
.

So we choose not to sample when

n0 >
c0
2c

+

√
a0

cξ
− 1

2c

√
c20 + 4c0

√
ca0

ξ
,

where a0, c0, c and ξ are known.

2.2.2 Numerical study

From figure 2.1, we can see that if the sampling cost per unit c goes up, then the

optimum sample size goes down. It is also clear that if the sampling cost per unit
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is too high then it is not worth sampling at all. When the precision goes up this

implies that the variability within data is reduced so that the optimum sample size

goes down. Moreover, if we have bigger prior size of samples then it is not worth

sampling to estimate a normal mean under the SE loss function.

2.3 SSD to estimate a normal precision when mean

is known

Suppose x1, x2,....,xn is a random sample of size n taken from a normal distribution

with mean µ0 and precision ξ. So the likelihood of the sample will be,

p(x|ξ) ∝ ξn/2 exp

[
−1

2
ξ
∑

(xi − µ0)
2

]
. (2.9)

Let us take a gamma conjugate prior as,

p(ξ) ∝ ξα−1 exp(−βξ) (2.10)

Now combining (2.9) and (2.10) the posterior distribution will be,

p(ξ|x) ∝ ξ
n
2
+α−1 exp

{
−1

2
ξ
[∑

(xi − µ0)
2 + 2β

]}
. (2.11)

Let, t =
∑

(xi−µ0)
2 , so the posterior distribution of ξ|t has a Gamma(α+ n

2
, β+ t

2
)

distribution with mean,
α+n

2

β+ t
2

and variance,
α+n

2

(β+ t
2
)2
. Now we want to estimate ξ by d.

So following (1.1) the squared error loss function becomes,

l(d, ξ) = a0(d− ξ)2.

Now from (1.15) the posterior risk will be,

PR =
a0

(
α+ n

2

)(
β + t

2

)2 , (2.12)
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Note that t is a sufficient statistic for ξ and the pre-posterior distribution of t follows

a Gamma-Gamma distribution with parameters α, 2β and n
2

(Bernardo and Smith

1994). We have,

p(t) =
ct

n
2
−1

(2β + t)α+n
2

, t > 0; (2.13)

where,

c =
(2β)α

Γ(α)

Γ
(
α+ n

2

)
Γ
(
n
2

) .

Consider the cost function (1.28) and adding this cost with the risk function (2.12),

we have the total cost as,

TC(n) = c0 + cn+ PR = c0 + cn+
a0

(
α+ n

2

)(
β + t

2

)2 .

Now we will find the APR by taking expectation over (2.12) w.r.t. t using the

pre-posterior distribution (2.13). That is,

Et[TC(n)] = c0 + cn+ a0Et

[
α+ n

2

(β + t
2
)2

]
. (2.14)

Now find

Et

[
α+ n

2

(β + t
2
)2

]
=

(2β)α

Γ(α)

Γ(α+ n
2
)

Γ(n
2
)

∫
(α+ n

2
)

(β + t
2
)2
× t

n
2
−1

(2β + t)α+n
2

dt

=
(2β)α

Γ(α)

4(α+ n
2
)Γ(α+ n

2
)

Γ(n
2
)

∫
t
n
2
−1

(2β + t)α+2+n
2

dt

=
(2β)α

Γ(α)

4(α+ n
2
)Γ(α+ n

2
)

Γ(n
2
)

Γ(α+ 2)Γ(n
2
)

(2β)α+2Γ(α+ 2 + n
2
)

=
α(α+ 1)

β2
(
α+ 1 + n

2

) . (2.15)

Using this result in (2.14), we have the expected total cost as,

Et[TC(n)] = c0 + cn+
a0α(α+ 1)

β2
(
α+ n

2
+ 1
) . (2.16)
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To obtain a minimum sample of size n setting ∂Et[TC(n)]
∂n

= 0 we have,

n∗se = 2

[√
a0α(α+ 1)

2β2c
− (α+ 1)

]
, (2.17)

which is the optimum sample of size n to estimate a normal precision when mean is

known under the SE loss function.

2.3.1 No sampling situation

From (2.16), the expected total cost of sampling at n = 0 is

Et[TC(0)] =
a0α

β2
.

Again from (2.16) the expected total cost of sampling at n = n∗se is

Et[TC(n∗)] = c0 − 2c(α+ 1) +
2
√

2a0cα(α+ 1)

β
.

Now the optimum sample size (2.17) should be,

n∗ = max

{
0, 2

√
a0α(α+ 1)

2β2c
− 2(α+ 1)

}
.

Choose not to sample when
√

a0α(α+1)
2β2c

≤ α+1 i.e.,
√

a0α
2β2(α+1)

≤
√
c in addition to the

situation when
√

a0α(α+1)
2β2c

> α+1 i.e.,
√

a0α
2β2(α+1)

>
√
c and Et[TC(0)] is exceeded by

Et[TC(n∗)]. This implies that the decision not to sample occurs when[
a0α

β2
< c0 − 2c(α+ 1) +

2
√

2a0cα(α+ 1)

β
and

√
a0α

2β2(α+ 1)
>
√
c

]

or
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√
a0α

2β2(α+ 1)
≤
√
c.

Equivalently the decision to sample occurs when

a0α

β2
> c0 − 2c(α+ 1) +

2
√

2a0cα(α+ 1)

β
and

√
a0α

2β2(α+ 1)
>
√
c.

Now solving for y =
√
c we obtain that we sample when

2c(α+ 1)y2 −
2y
√

2a0α(α+ 1)

β
+
a0α

β2
− c0 > 0 and y <

1

β

√
a0α

2(α+ 1)

So that [
y >

1

β

√
a0α

2(α+ 1)
+

√
c0

2(α+ 1)
or y <

1

β

√
a0α

2(α+ 1)
−
√

c0
2(α+ 1)

]

and

y <
1

β

√
a0α

2(α+ 1)
.

Which implies that

√
c <

1

β

√
a0α

2(α+ 1)
−
√

c0
2(α+ 1)

.

So choose not to sample when

c >

[
1

β

√
a0α

2(α+ 1)
−
√

c0
2(α+ 1)

]2

.

That is for known a0, c0, α and β if the sampling cost per unit exceeds the amount[
1
β

√
a0α

2(α+1)
−
√

c0
2(α+1)

]2

then it is not worth sampling due to the high sampling cost

to estimate a normal precision when mean is known under the SE loss function.
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2.3.2 Numerical study

From figure 2.2, we observe that if the sampling cost per unit goes up the optimum

sample size goes down whatever the value of α or β. From graph it is also clear that

for α > β the sample size is higher than α = β. On the other hand for α < β the

optimum sample size is lower than the case when α = β. From figure 2.3 it is clearly

seen that if the value of prior parameter β goes up, then the optimum sample size

goes down for fixed values of c and α. When we kept c and β fixed and increased α

then we see that the bigger the value of α gives bigger the sample size compared to

the smaller values of α.

2.4 SSD to estimate the difference between two

normal means

Suppose, x = x1, x2,....,xn1 is a random sample of size n1 with mean µ1 and precision

ξ1 and y = y1, y2,....,yn2 is another random sample of size n2 with mean µ2 and

precision ξ2 taken from a normal distribution. Consider prior distributions for µ1|ξ1

as N(µ01, n01ξ1) and for µ2|ξ2 as N(µ02, n02ξ2). We will determine the sample size to

estimate the difference between two means, θ, where θ = µ1 − µ2, under the squared

error loss function. First of all we will assume the two populations have an equal

known precision ξ1 = ξ2 = ξ (say). Secondly, we will consider known but unequal

precisions. In this situation we will consider n1 6= n2.
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2.4.1 SSD when precision is known and common

The posterior density of θ = µ1 − µ2 having observed data X and Y to estimate

θ = µ1 − µ2 given n1 and n2 is

θ|x, y ∼ N

{
m2 −m1,

ξ(n01 + n1)(n02 + n2)

n1 + n2 + n01 + n02

}
, (2.18)

where m1 and m2 are the estimates of µ1 and µ2 respectively and ξ is a common,

known precision. Let m be the posterior mean where, m = m2−m1, m1 = n01µ01+n1x
n01+n1

,

m2 = n02µ02+n2y
n02+n2

and the posterior variance, v2 = n1+n2+n01+n02

ξ(n01+n1)(n02+n2)
. Now from (1.15)

the posterior risk under the SE loss function (1.1) will be,

PR =
a0(n1 + n2 + n01 + n02)

ξ(n01 + n1)(n02 + n2)
.

For simplicity let us take a0 = 1 and adding this posterior risk with the cost function

(1.29) we have the total cost as,

TC(n) = c0 + c1n1 + c2n2 +
n1 + n2 + n01 + n02

ξ(n01 + n1)(n02 + n2)
. (2.19)

Now consider the case that both the sample sizes are the same and the prior sample

sizes are also the same but the sampling costs per unit are different when we draw

the samples from two populations. That is n1 = n2 = n (say), n01 = n02 = n0 (say),

We have from (2.19),

TC(n) = c0 + (c1 + c2)n+
2

ξ(n0 + n)
. (2.20)

To get the optimum sample size n differentiate (2.20) w.r.t. n and setting equal zero

we have,

n∗ =

√
2

ξ(c1 + c2)
− n0; (2.21)
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which is the optimum sample of size n per group when the equal size of the prior

and the equal size of the posterior samples are taken from both populations and

the sampling cost per unit are the same within the population but different between

populations. If the sampling costs per unit are the same within and between popula-

tions then we have c1 = c2 = c (say) and from equation (2.21), we can work out the

optimum sample size as,

n∗ =
1√
cξ
− n0. (2.22)

Now we consider the optimum sample size when the equal number of samples will be

taken from both populations but the prior sample sizes are unequal with a common

precision ξ. That is n1 = n2 = n, (say) n01 6= n02 and c1 6= c2. So from (2.19) we

have,

TC(n) = c0 + (c1 + c2)n+
2n+ n01 + n02

ξ(n01 + n)(n02 + n)
(2.23)

Now differentiating (2.23) w.r.t. n and setting equal zero we have,

A1n
4 +B1n

3 + C1n
2 +D1n+ E1 = 0; (2.24)

where,

A1 = (c1 + c2), B1 = 2A1N0, C1 = A1N
2
0 + 2A1N

′
0 − 2k1, D1 = 2A1N0N

′
0 − 2k1N0,

E1 = A1N
′
0
2 + 2k1N

′
0 −N0

2, N0 = n01 + n02, N
′
0 = n01n02, and k1 = 1

ξ
.

We can easily solve the equation (2.24) for given, c1, c2 , n01, n02 , and ξ to determine

the sample of size n. Clearly, here the sampling cost per unit within the population

is the same but between the populations is different and the prior sample sizes are

different as well. To solve the equation numerically we assumed, n01 = n02 = 10,

ξ = 1. We solved this polynomial equation using Maple 13 assuming c1 + c2 = c. We

found four roots of n and out of these four roots, three roots are negative and only one
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root is positive. We have considered that positive root as the optimum sample size

for a given value of c′ . Clearly from figure 2.4, we see that if the sampling cost goes

up, the optimum sample size goes down. We observe that it is not worth sampling

when sampling cost per unit c > 0.01.

Now we will find the optimum sample sizes (n1, n2) jointly when n1 6= n2, n01 6=

n02, c1 6= c2 but ξ1 = ξ2 = ξ. To do so let us differentiate (2.19) w.r.t. n1 first and

setting equal zero we have,

n∗1 =
1√
c1ξ

− n01. (2.25)

Again differentiate (2.19) w.r.t. n2, we have,

n∗2 =
1√
c2ξ

− n02. (2.26)

We will have a pair of the optimum sample of size (n∗1, n
∗
2) from (2.25) and (2.26)

which jointly minimizes the total cost of (2.19).

2.4.2 SSD when precision is known but unequal

Now we will determine the optimum sample size to estimate the difference between

two normal means by θ, where θ = µ1 − µ2, under the squared error loss function

(1.1) considering ξ1 6= ξ2. For this case the posterior density observing the data x

and y to estimate θ = µ1 − µ2 will be,

θ|x, y ∼ N

{
m2 −m1,

ξ1ξ2(n01 + n1)(n02 + n2)

ξ1(n1 + n01) + ξ2(n2 + n02)

}
, (2.27)

where, ξ1 6= ξ2 but known, m1 = n01µ01+n1x
n01+n1

, m2 = n02µ02+n2y
n02+n2

. Here the posterior

variance is, ξ1(n1+n01)+ξ2(n2+n02)
ξ1ξ2(n01+n1)(n02+n2)

which is the posterior risk under the SE loss function.
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Now adding the cost function (1.28) with the variance we have the total cost,

TC(n) = c0 + c1n1 + c2n2 +
ξ1(n1 + n01) + ξ2(n2 + n02)

ξ1ξ2(n01 + n1)(n02 + n2)
. (2.28)

Let choosing samples from population X are independent of choosing samples from

population Y . So to find the optimum sample of sizes (n∗1, n
∗
2), differentiate, (2.28)

w.r.t. n1 and n2 separately and setting each equation equation equal zero we have,

n∗1 =
1√
c1ξ1

− n01 (2.29)

and

n∗2 =
1√
c2ξ2

− n02. (2.30)

For given, c1, c2 , n01, n02 , ξ1 and ξ2 we will have a pair of optimum sample of size

(n∗1, n
∗
2) from (2.29) and (2.30) which jointly minimizes the equation (2.28).

In the following section we will discuss the optimum sample size to estimate an

exponential parameter.

2.5 SSD to estimate an exponential parameter

Suppose x1, x2,....,xn is a random sample of size n taken from an exponential distri-

bution with parameter λ with density,

p(x|λ) = λ exp(−λx);x > 0, λ > 0.

Let t =
∑
xi, so the likelihood of the sample is,

p(x|λ) = λn exp(−λt). (2.31)
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Consider the conjugate gamma prior for λ as,

p(λ) =
βα

Γ(α)
λα−1 exp(−βλ).

So the posterior density is,

p(λ|x) ∝ λα+n−1 exp{−(β + t)λ)}; (2.32)

which is a Gamma(α + n, β + t) distribution with mean, α+n
β+t

and variance, α+n
(β+t)2

.

Now under the SE loss function (1.1), following the equation (1.15), the posterior risk

will be,

PR =
a0(α+ n)

(β + t)2
.

Now inserting the cost function (1.28) into the risk PR, we have the total cost as,

TC(n) = c0 + cn+ PR

= c0 + cn+
a0(α+ n)

(β + t)2
;

which depends on t. At this stage we will take expectation over TC(n) w.r.t t where

t follows a Gamma-Gamma distribution with parameters α, β and n (Bernardo and

Smith, 1994). So we have,

Et[TC(n)] =

∫ [
c0 + cn+

a0(α+ n)

(β + t)2

]
p(t)dt

= c0 + cn+
a0β

α(α+ n)

Γ(α)

Γ(α+ n)

Γ(n)

∫
tn−1

(β + t)α+2+n
dt

= c0 + cn+
a0β

α(α+ n)

Γα

Γ(α+ n)

Γ(n)

Γ(α+ 2)

βα+2

Γ(n)

Γ(α+ n+ 2)

= c0 + cn+
a0α(α+ 1)

β2(α+ n+ 1)
. (2.33)

To obtain the optimum sample of size n setting ∂Et[TC(n)]
∂n

= 0 gives,

n∗se =

√
a0α(α+ 1)

β2c
− (α+ 1), (2.34)

which is the optimum sample size to estimate an exponential parameter.
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2.5.1 No sampling situation

If we have no plan to sample then the expected total cost is (giving n = 0 in (2.33)),

Et[TC(0)] =
a0α

β2
.

Also the expected total cost for an optimum sample of size n = n∗se will be,

Et[TC(n∗)] = c0 − c(α+ 1) +
2

β

√
a0cα(α+ 1).

Now the optimum sample size (2.34) should be,

n∗ = max

{
0,

√
a0α(α+ 1)

β2c
− (α+ 1)

}
.

Now choose not to sample when
√

a0α(α+1)
β2c

≤ (α+ 1) i.e.,
√

a0α
β2(α+1)

≤
√
c in addition

to the situation when
√

a0α(α+1)
β2c

> (α + 1) i.e.,
√

a0α
β2(α+1)

>
√
c and Et[TC(0)] is

exceeded by Et[TC(n∗)]. This implies the decision not to sample occurs when[
a0α

β2
< c0 − c(α+ 1) +

2

β

√
a0cα(α+ 1) and

√
a0α

β2(α+ 1)
>
√
c

]

or

√
a0α

β2(α+ 1)
≤
√
c.

Equivalently the decision to sample occurs when

a0α

β2
> c0 − c(α+ 1) +

2

β

√
a0cα(α+ 1) and

√
a0α

β2(α+ 1)
>
√
c.

Solving for y =
√
c we obtain that we sample when

(α+ 1)y2 − 2y

β

√
a0α(α+ 1)−

(
c0 −

a0α

β2

)
> 0 and y <

1

β

√
a0α

α+ 1
.
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So that [
y <

1

β

√
a0α

α+ 1
−
√

c0
α+ 1)

or y >
1

β

√
a0α

α+ 1
+

√
c0

α+ 1

]

and

y <
1

β

√
a0α

α+ 1
,

which implies that

√
c <

1

β

√
a0α

α+ 1
−
√

c0
α+ 1

.

So choose not to sample when

c >

[
1

β

√
a0α

α+ 1
−
√

c0
α+ 1

]2

.

That is for known a0, c0, ξ, and n0 if the sampling cost per unit, c exceeds
[

1
β

√
a0α
α+1

−
√

c0
α+1

]2
then it is not worth sampling at all due to high sampling cost.

2.5.2 Numerical study

From figure 2.5, we found that to estimate an exponential parameter, if the sampling

cost per unit c goes up then the optimum sample size goes down for all values of α

or β. Then we fixed the sampling cost per unit c and changed the values of the prior

parameters α and β to see the effect of the prior parameters on the optimum sample

size. From the same figure it is clear that if α > β then the sample size is higher than

the optimum sample with α = β. On the other hand for α < β the optimum sample

size is smaller than the optimum sample size when the prior parameters, α = β. From

figure 2.6 it is evident that the optimum sample size goes up for an increasing β when

c and α are kept fixed.

78



2.6 SSD for a Poisson parameter (DeGroot, 1970)

Let x follow a Poisson distribution with an unknown parameter θ. Then the proba-

bility density function of x will be,

p(x|θ) =
exp(−θ)θx

x!
;x = 0, 1, 2, . . . . (2.35)

Let x1, x2,. . . ,xn be a sample of size n from a Poisson distribution given in (2.35).

Also let t =
∑n

i=1 xi. So the likelihood of the sample is,

p(x|θ) =
exp(−nθ)θt∏

x!
. (2.36)

Let us take the prior distribution of θ as,

p(θ) =
βα

Γ(α)
θα−1 exp(−βθ). (2.37)

Then the posterior distribution of θ|x is,

p(θ|x) =
(n+ β)t+α

Γ(t+ α)
θt+α−1 exp{−(β + n)}dθ, (2.38)

which is a Gamma(t+ α, n+ β) distribution. Now under the SE loss (1.1) following

the equation (1.15), the posterior risk will be,

PR =
a0(t+ α)

(n+ β)2
. (2.39)

Now add a linear cost function (1.28) with (2.39) we have the total cost as,

TC(n) = c0 + cn+
a0(t+ α)

(n+ β)2
;

which clearly depends on t. So to have a minimum n we need to take expectation

over TC(n) w.r.t t as follows.

Et[TC(n)] = c0 + cn+ Et(PR) = c0 + cn+
a0(α+ E(t|n))

(n+ β)2
. (2.40)
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At this stage, we need to find E[t|n], where t is a sufficient statistics for θ. Since xi

has a Poisson (θ) distribution, so t has a Poisson (nθ) distribution. We have,

E(t|n) = E[E(t|θ, n)]

= nE[θ|n]

=
nα

β
. (2.41)

Using this result in (2.40) we have,

Et[TC(n)] = c0 + cn+
a0α

β(n+ β)
. (2.42)

To determine the minimum sample of size n∗, differentiating, Et[TC(n)] w.r.t. n and

setting equal to zero we have,

n∗se =

√
a0α

cβ
− β. (2.43)

Clearly, the optimum sample size under the SE loss function n∗se depends on the shape

parameter of the loss function a0, prior parameters α, β and the sampling cost per

unit, c.

2.6.1 No sampling situation

If we have no plan to sample then the expected total cost is (giving n = 0 in (2.42)),

Et[TC(0)] =
a0α

β2
.

Also the expected total cost for an optimum sample of size n = n∗se will be,

Et[TC(n∗)] = c0 − cβ + 2

√
a0cα

β
.
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Now the optimum sample size (2.43) should be,

n∗ = max

{
0,

√
a0α

cβ
− β

}
.

Now we automatically choose not to sample when
√

a0α
cβ
≤ β i.e., 1

β

√
a0α
β
≤
√
c in

addition to the situation when
√

a0α
cβ

> β i.e., 1
β

√
a0α
β
>
√
c and Et[TC(0)] is exceeded

by Et[TC(n∗)]. This implies the decision not to sample occurs when[
a0α

β2
< c0 − cβ + 2

√
a0cα

β
and

1

β

√
a0α

β
>
√
c

]
or

1

β

√
a0α

β
≤
√
c.

Equivalently the decision to sample occurs when

a0α

β2
> c0 − cβ + 2

√
a0cα

β
and

1

β

√
a0α

β
>
√
c.

Solving for y =
√
c we obtain that we sample when

βy2 − 2y

√
a0α

β
−
(
c0 −

a0α

β

)
> 0 and y <

1

β

√
a0α

β
.

So that[
y <

1

β

√
a0α

β
− 1

β

√
a0α

(
1

β
− 1

)
+ c0β or y >

1

β

√
a0α

β
+

1

β

√
a0α

(
1

β
− 1

)
+ c0β

]

and

y <
1

β

√
a0α

β
.

Which implies that

√
c <

1

β

√
a0α

β
− 1

β

√
a0α

(
1

β
− 1

)
+ c0β.

So choose not to sample when

c >

[
1

β

√
a0α

β
− 1

β

√
a0α

(
1

β
− 1

)
+ c0β

]2

.
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That is for known a0, c0, ξ, and n0 if the sampling cost per unit, c exceeds[
1
β

√
a0α
β
− 1

β

√
a0α

(
1
β
− 1
)

+ c0β

]2

then it is not worth sampling at all due to high

sampling cost.

2.6.2 Numerical study

From figure 2.7, we observe that to estimate a Poisson parameter, if the sampling cost

per unit goes up then the optimum sample size goes down for the prior parameters α

or β. We also fixed the sampling cost per unit and then changed the values of α and

β to see the effect of the prior parameters on the optimal sample size. From the graph

it is clear that if α > β then the sample size is higher than the optimum sample when

the prior parameters, α = β. On the other hand for α < β the optimum sample sizes

are less than the optimum size of samples when prior parameters, α = β. From figure

2.8 we can see that if the prior parameter β goes up, then the optimum sample sizes

goes down. On the other hand for a fixed value of β, when the value of α increases,

then the optimum sample sizes also increases.

2.7 SSD for a Binomial distribution

Suppose a discrete random variable X has a binomial distribution with parameters θ

and n and its probability function is,

p(x|θ) = nCxθ
x(1− θ)n−x, 0 ≤ θ ≤ 1, x = 0, 1, . . . , n. (2.44)
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Let us take the prior distribution for the proportion θ as a beta distribution,

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1, α, β > 0, 0 ≤ θ ≤ 1. (2.45)

(B(α, β) is the beta function with parameters α and β). The posterior distribution

of θ|x will be,

p(θ|x) =
1

B(α+ x, β + n− x)
θx+α−1(1− θ)n+β−x−1, α, β > 0, 0 ≤ θ ≤ 1. (2.46)

Now using (2.45) and (2.46), we have the marginal or pre-posterior distribution of

x|n is,

p(x|n) =

∫ 1

0

p(θ)p(θ|x)dθ

=
nCx

B(α, β)

∫ 1

0

θx+α−1(1− θ)n+β−x−1dθ

=
n!B(α+ x, n+ β − x)

x!(n− x)!B(α, β)
, x = 0, 1, . . . , n. (2.47)

Here, x follows a beta-binomial distribution with parameter α, β and n. Now under

the squared error loss function (1.1), from the equation (1.15) the posterior risk will

be,

PR =
a0(α+ x)(β + n− x)

(α+ β + n)2(α+ β + n+ 1)
. (2.48)

Now adding the cost function (1.28) with the risk function (2.48) we have the total

cost as,

TC(n) = c0 + cn+
a0(α+ x)(β + n− x)

(α+ β + n)2(α+ β + n+ 1)
,

which depends on x. For simplicity let us take a0 = 1. So to find the minimum n we

first take the expectation over TC(n) w.r.t the pre posterior distribution of x given
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in (2.47). We have,

Ex[TC(n)] = c0 + cn+ Ex[PR]

= c0 + cn+
α(n+ β) + (β + n− α)E(x|n)− E(x2|n)

(α+ β + n)2(α+ β + n+ 1)

= c0 + cn+
a(n+ β) + (β + n− α)E(x|n)− V ar(x|n)− [E(x|n)]2

(α+ β + n)2(α+ β + n+ 1)
.

At this stage, we need to find E(x|n) and V ar(x|n) following a beta-binomial distri-

bution (2.47), from Bernardo and Smith (1994) we have,

E(x|n) =
nα

α+ β
.

and variance,

V ar(x|n) =
nαβ(α+ β + n)

(α+ β)2(α+ β + 1)
.

Using these results in Ex[TC(n)] we have,

Ex[TC(n)] = c0 + cn+
α(n+ β)(α+ β + 1)(α+ β)2 + nα(n+ β − α)(α+ β)(α+ β + 1)

(α+ β)2(n+ α+ β)2(α+ β + 1)(α+ β + n+ 1)

− nαβ(α+ β + n) + n2α2(α+ β + 1)

(α+ β)2(n+ α+ β)2(α+ β + 1)(α+ β + n+ 1)
.

We can re-write this equation as,

Ex[TC(n)] = c0 + cn+
n2k1 + nk2 + k3

k4(n+ α+ β)2(α+ β + n+ 1)
(2.49)

where, k1 = αβ, k2 = α(α + β)(α + β + 1) + α(β − α)(α + β + 1) − αβ, k3 =

αβ(α + β)(α + β + 1), k4 = k3
αβ

so that k1, k2, k3 and k4 are independent of n. To

obtain the optimum sample of size n, differentiating (2.49) w.r.t. n and setting equal

zero we have,

ck4(α+ β + n)3(α+ β + n+ 1)2 + (α+ β + n)(α+ β + n+ 1)(2nk1 + k2)

− (α+ β + n)(n2k1 + nk2 + k3)− 2(n2k1 + nk2 + k3)(α+ β + n+ 1) = 0.
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To simplify this equation let us assume, α+β+n+1 ' α+β+n for a large n. Then

we have more simplified equation as follows,

ck4(α+ β + n)4 + (α+ β + n)(2nk1 + k2)− 3(n2k1 + nk2 + k3) = 0,

which can be re-written as,

ck4(α+ β + n)4 − n2k1 + 2n[(α+ β)k1 − k2] + (α+ β)k2 − 3k3 = 0. (2.50)

2.7.1 Numerical study

We can easily solve the equation (2.50) to obtain the optimum sample size of n using

maple 13. For the given prior parameters α, β and c we obtained four roots of n

and out of these four, three roots are negative, so the only positive solution of n is

considered as we need the optimum sample size as a positive whole number to perform

our study. From figure 2.9 we can see that if the sampling cost per unit increases,

then the optimum sample size decreases. It can also be clearly observed from the

graph that it is not worth sampling if the sampling cost per unit is c > 0.04.

2.8 Summary

In this chapter we have determined the optimum sample size of two continuous and

two discrete distributions under the symmetric SE loss function. These are the nor-

mal, the exponential, the Poisson and the binomial distribution. In the case of normal

distribution first we reviewed the SSD problem of Lindley (1972), where he obtained
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the sample size to estimate a normal mean when precision is known. We extended the

result obtaining the optimum sample size to estimate a normal precision when mean

is known. We also determined the sample size considering a number of situations,

such as, estimating the difference between two normal means for a known equal and

unequal precision subsequently. Next, we reviewed the DeGroot (1970) SSD problem

for a Poisson distribution under the SE loss function. Then we obtained the sample

size for an exponential parameter and a Binomial proportion under the SE loss func-

tion. We observed that the sample size depends on the shape parameter of the loss

function, prior parameter(s) and the sampling cost per unit. In all the situations we

showed the effect of the sampling cost and the prior parameters on the optimum sam-

ple size graphically. We also noted the situation of not worth sampling for the higher

sampling cost (generally c is bigger than some function of the prior parameters) or a

strong prior information for all distributions.
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Figure 2.1: Optimum sample size to estimate a normal mean as a function of the

sampling cost c for different values of ξ and n0 = 1 under the SE loss function.

Figure 2.2: Optimum sample size to estimate a normal precision when mean is known

as a function of the sampling cost per unit c for different values of α, β under the SE

loss function.
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Figure 2.3: Optimum sample size to estimate a normal precision as a function of the

prior parameter β when the sampling cost per unit c = 0.0001 for different values of

α.

88



Figure 2.4: Optimum sample size to estimate the difference between two normal

means as a function of the sampling cost per unit c (assumed c1 + c2 = c) when the

precision is known and common.

Figure 2.5: Optimum sample size to estimate an exponential parameter as a function

of the sampling cost per unit c for different values of α, β under the SE loss function.
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Figure 2.6: Optimum sample size to estimate an exponential parameter as a function

of the prior parameter β when the sampling cost per unit c = 0.0001 and for a fixed

prior parameter α.

Figure 2.7: Optimum sample size to estimate a Poisson parameter as a function of

the sampling cost per unit c for different values of α, β under the SE loss function.
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Figure 2.8: Optimum sample size to estimate a Poisson parameter as a function of

the prior parameter β when the sampling cost per unit c = 0.0001 and the prior

parameter α fixed.

Figure 2.9: Optimum sample size to estimate a Binomial proportion θ as a function

of the sampling cost per unit c when α =β = 0.1 under the SE loss function.
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Chapter 3

Bayesian SSD using linex loss

3.1 Introduction

In the previous chapter we discussed the optimum sample size using the squared

error (SE) loss function. In a situation where underestimation is more serious than

overestimation or vice-versa, then an asymmetric loss function should be used. In such

a situation how many samples do we need to take to estimate the parameter under

study? In this chapter, we consider the sample size using an asymmetric (linex)

loss function and a linear cost function for various distributions. We compare the

sample size obtained from this asymmetric loss function with the sample size from

the symmetric SE loss function. We also discuss the situation where it is not worth

sampling due to high sampling cost or strong prior information.

The plan of this chapter is to obtain the optimum sample size under the linex
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loss function for a number of situations. First we discuss SSD for different cases of

normal distribution. Then we obtain SSD for an exponential distribution. Finally we

consider SSD for a Poisson distribution.

3.2 SSD to estimate a normal mean when preci-

sion is known

Suppose x1, x2,....,xn is a random sample of size n taken from a normal distribution

with mean θ and known precision ξ. Now consider a conjugate prior of θ asN(µ0, n0ξ).

From the previous chapter, section 2.2, we have the posterior distribution of θ|x is,

p(θ|x) ∝ exp {(nx+ n0µ0)ξθ} exp

{
−1

2
(n+ n0)ξθ

2

}
(3.1)

We have,

E{exp(−bθ)|x} = exp

(
−bm+

ab2v2

2

)
,

where m is the posterior mean and v2 is the posterior variance. Using this result in

(1.9) we have the Bayes estimate of θ is,

d̂lin = m− abv2

2
. (3.2)

Now following the equation (1.17) the posterior risk function under the linex loss

function (1.8) will be,

PR =
ab2v2

2
(3.3)
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Now adding the cost function (1.28) with the posterior risk (3.3) the total cost will

be,

TC(n) = c0 + cn+
ab2v2

2

= c0 + cn+
ab2

2ξ(n+ n0)
. (3.4)

Since TC(n) depends on n and the precision (known) only, the optimum sample size

will be the solution of ∂TC(n)
∂n

= 0. This gives,

n∗lin = b

√
a

2cξ
− n0. (3.5)

If the scale parameter for the SE loss and the linex loss are equal to 1, that is,

a0 = a = 1, then for b =
√

2, we have the sample size under the linex loss given in

(3.5) and under the SE loss functions given in the chapter-2, equation (2.5) are the

same. Clearly n depends on the data precision, the scale and the shape parameter

of the loss function and the sampling costs per unit c. If the prior information is not

informative, giving n0 = 0 in (3.5), we have the optimum sample size under the linex

loss function as,

n∗lin = σb

√
a

2c
. (3.6)

That is the optimum sample size under the linex loss function is directly proportional

to the shape parameter of the loss function and variability of the data but inversely

proportional to the square root of the sampling cost per unit when there is no prior

information available.
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3.2.1 No sampling situation

The total cost if we do not sample is

TC(0) =
ab2

2n0ξ
.

The total cost of a sample for size n∗ is

TC(n∗) = c0 − n0c+ b

√
2ac

ξ
.

Now the optimum sample size (3.5) is,

n∗ = max

{
0, b

√
a

2cξ
− n0

}
The truncation at 0 matters, so we choose not to sample when b

√
a

2cξ
≤ n0 in addition

to the situation when b
√

a
2cξ

> n0 and TC(0) is exceeded by TC(n∗). This implies

the decision not to sample occurs when[
ab2

2n0ξ
< c0 − n0c+ b

√
2ac

ξ
and b

√
a

2cξ
> n0

]
or b

√
a

2cξ
≤ n0.

Equivalently the decision to sample occurs when

ab2

2n0ξ
> c0 − n0c+ b

√
2ac

ξ
and b

√
a

2cξ
> n0. (3.7)

Solving for y =
√
c we obtain that we sample when

n0y
2 − by

√
2a

ξ
−
(
c0 −

ab2

2n0ξ

)
> 0 and y <

b

n0

√
a

2ξ
.

So that [
y <

b

n0

√
a

2ξ
−
√
c0
n0

or y >
b

n0

√
a

2ξ
+

√
c0
n0

]
and y <

b

n0

√
a

2ξ
.
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Which implies that

c1/2 <
b

n0

√
a

2ξ
−
√
c0
n0

.

So choose not to sample when

c >

[
b

n0

√
a

2ξ
−
√
c0
n0

]2

.

That is for known a0, c0, ξ, and n0 if the sampling cost per unit, c exceeds[
b
n0

√
a
2ξ
−
√

c0
n0

]2

then it is not worth sampling at all.

Now we will obtain the range of n0 so that the decision not to sample occurs.

From (3.7) the decision to sample occurs when

cn2
0 −

{
c0 + b

√
2ac

ξ

}
n0 +

ab2

2ξ
> 0 and n0 < b

√
a

2cξ

so that

[
n0 < b

√
a

2cξ
− 1

2c

{√
c20 + 2bc0

√
2ac
ξ
− c0

}
or n0 > b

√
a

2cξ
+ 1

2c

{√
c20 + 2bc0

√
2ac
ξ
− c0

}]

and

n0 < b

√
a

2cξ
.

Which implies that the decision to sample when

n0 < b

√
a

2cξ
− 1

2c


√
c20 + 2bc0

√
2ac

ξ
− c0

 .

So we can choose not to sample when

n0 > b

√
a

2cξ
− 1

2c


√
c20 + 2bc0

√
2ac

ξ
− c0

 ,

where a, b, c, c0 and ξ are known.
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3.2.2 Numerical study

In figure 3.1, we kept a = 1, σ = 0.1, n0 fixed and we can see that as the sampling

cost per unit c increases, the optimum sample size decreases. We observe that due

to the high sampling cost c ≥ 0.0001 (figure 3.1) it is not worth sampling at all. For

a0 = a = 1 and b =
√

2, then the optimum sample size under the SE loss and under

the linex loss function are the same. If b >
√

2 the sample size under the SE loss is

less than the sample size under the linex loss function. If b <
√

2 the sample size

under the SE loss is more than the sample size under the linex loss function. We also

observe from the equation (3.5) that, if the prior sample size n0 increases then the

optimum sample size decreases for the fixed values of a, b, c and ξ. On the other

hand, the optimum sample size increases either the shape parameter, b or the scale

parameter, a increases.

3.3 SSD to estimate a normal precision when mean

is known

Suppose x1, x2,....,xn is a random sample of size n taken from a normal distribu-

tion with mean µ0 and precision ξ. Now take a conjugate prior as a Gamma(α, β)

distribution, so from chapter 2, equation (2.11) we have the posterior distribution

of ξ|x also has a Gamma
(
α+ n

2
, β +

P
(xi−µ0)2

2

)
distribution. This time we want to

estimate the normal precision ξ by d. We have,

E {exp(−bξ)|x} =

(
1 +

b

β + t
2

)−(α+n
2
)

. (3.8)
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Using (3.8) in (1.9) the Bayes estimate under the linex loss function (1.8) will be,

d̂ =
α+ n

2

b
ln

(
1 +

b

β + t
2

)
. (3.9)

Now from (1.17) the posterior risk for the linex loss function (1.9) will be,

PR = ab

[
α+ n

2

β + t
2

−
α+ n

2

b
ln

(
1 +

b

β + t
2

)]
.

Now adding the cost function (1.28) with the PR we have the total cost as,

TC(n) = c0 + cn+ PR

= c0 + cn+ ab

[
α+ n

2

β + t
2

−
α+ n

2

b
ln

(
1 +

b

β + t
2

)]
.

Let, z = b
β+ t

2

. Now expanding ln(1 + z), since b < β + t
2

is small, neglecting 3rd and

higher powers of z we have,

TC(n) ≈ c0 + cn+
ab2

2

(α+ n
2
)

(β + t
2
)2
. (3.10)

For a minimum n first take the expectation over TC(n) w.r.t. t following the pre-

posterior distribution (2.13) and using the result of (2.15) we have,

Et[TC(n)] = c0 + cn+
ab2α(α+ 1)

2β2
(
α+ n

2
+ 1
) . (3.11)

To obtain a minimum sample of size n setting ∂Et[C(n)]
∂n

= 0 and we have,

n∗lin =
b

β

[√
aα(α+ 1)

c

]
− 2(α+ 1). (3.12)

Which is the required optimum sample size to estimate a normal precision when mean

is known under the linex loss function.
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3.3.1 No sampling Situation

The expected total cost of sampling under the linex loss function is

Et[TC(n)] = c0 + cn+
ab2α(α+ 1)

2β2
(
α+ n

2
+ 1
) .

Now find the expected total cost for choosing no sample and the optimum sample of

size n∗ giving n = 0 and n = n∗lin in Et[TC(n)] respectively. We have,

Et[TC(0)] =
ab2α

2β2

and

Et[TC(n∗)] = c0 +
2b

β

√
acα(α+ 1)− 2c(α+ 1).

Now the optimum sample size (3.12) should be

n∗ = max

{
0,

b

β

[√
aα(α+ 1)

c

]
− 2(α+ 1)

}
.

Now we choose not to sample when b
β

√
aα(α+1)

c
≤ 2(α + 1) i.e., b

2β

√
aα
α+1

≤
√
c in

addition to the situation when b
β

√
aα(α+1)

c
> 2(α + 1) i.e., b

2β

√
aα
α+1

≥
√
c and TC(0)

is exceeded by TC(n∗). This implies the decision not to sample occurs when[
ab2α

2β2
< c0 +

2b

β

√
acα(α+ 1)− 2c(α+ 1) and

b

2β

√
aα

α+ 1
>
√
c

]
or

b

2β

√
aα

α+ 1
≤
√
c.

Equivalently the decision to sample occurs when

ab2α

2β2
> c0 +

2b

β

√
acα(α+ 1)− 2c(α+ 1) and

b

2β

√
aα

α+ 1
>
√
c.

Solving for y =
√
c we obtain that we sample when

2y2(α+ 1)− 2b

β

√
aα(α+ 1)y −

(
c0 −

ab2α

2β2

)
> 0 and y <

b

2β

√
aα

α+ 1
.
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So that [
y <

b

2β

√
aα

α+ 1
−
√

c0
2(α+ 1)

or y >
b

2β

√
aα

α+ 1
+

√
c0

2(α+ 1)

]

and

y <
b

2β

√
aα

α+ 1
.

Which implies that

√
c <

b

2β

√
aα

α+ 1
−
√

c0
2(α+ 1)

.

So choose not to sample when

c >

[
b

2β

√
aα

α+ 1
−
√

c0
2(α+ 1)

]2

.

That is for known a, b, c0, α, β and n0 if the sampling cost per unit, c exceeds[
b

2β

√
aα
α+1

−
√

c0
2(α+1)

]2

then it is not worth sampling due to high sampling cost per

unit.

3.3.2 Numerical study

From figure 3.2 we found that, if the sampling cost per unit goes up then the optimum

sample size goes down for both the SE and the linex loss functions assuming both

the scale parameter of the SE loss a0 and the shape parameter of the linex loss a are

equal to 1. Again for a0 = a = 1, if the shape parameter of the linex loss, b >
√

2,

then the optimum sample size is higher than the SE loss function. The reverse is also

true. From figure 3.3 we see that, if the prior parameter β goes up, then the optimum

sample sizes are goes down for any c. On the other hand, looking at the equation
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(3.12), the scale parameter a, the shape parameter b and the prior parameter, α has

the similar type of effects on the optimum sample size. If any one of them increases

knowing the others, then the optimum sample size also increases.

3.4 SSD to estimate the difference between two

normal means

Suppose, x = x1, x2,....,xn1 is a random sample of size n1 with mean µ1 and precision

ξ1 and y = y1, y2,....,yn2 is another random sample of size n2 with mean µ2 and

precision ξ2 taken from a normal distribution. Consider the prior distributions for

µ1|ξ1 as N(µ01, n01ξ1) and for µ2|ξ2 as N(µ02, n02ξ2). We will determine the sample

size to estimate the difference between two means by θ where θ = µ1 − µ2 under the

linex loss function. At first, we assume the two populations have an equal and known

precisions ξ1 = ξ2 = ξ (say) and in this case we consider the equal size of sample

could be drawn from both populations, that is n1 = n2 = n. Secondly, we consider

the known but unequal precisions where we consider n1 6= n2. In this situation we

obtain the joint minimum sample of sizes n1 and n2 under the linex loss functions.

3.4.1 SSD when precision is known and common

Let us take the estimates of the posterior means µ1 and µ2 are m1 and m2 respectively.

Now consider the estimate of the difference between two means is θ where θ = µ1−µ2.

So from chapter 2 equation (2.18), the posterior density of θ observing the data x
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and y which is a normal distribution with mean, m = m2 −m1 and variance, v2 =

n1+n2+n01+n02

ξ(n01+n1)(n02+n2)
. Where ξ is both a common and known precision, m1 = n01µ01+n1x

n01+n1

and m2 = n02µ02+n2y
n02+n2

. Using the posterior density provided in the equation (2.18) we

have,

E{exp(−bθ)|x} = exp

(
−bm+

b2v2

2

)
.

Now using this result in (1.9) the Bayes estimate under the linex loss function (1.8)

will be,

d̂lin = m− bv2

2
. (3.13)

So using this result in the equation (1.17) the posterior risk will be,

PR =
ab2v2

2
,

where a is the scale , b is the shape parameter of the linex loss function and v2 is the

posterior variance. Now adding a linear cost function (1.28) to the risk function PR

we have the total cost as,

TC(n) = c0 + c1n1 + c2n2 +
ab2

2ξ

n1 + n2 + n01 + n02

(n01 + n1)(n02 + n2)
. (3.14)

Consider n1 = n2 = n(say), n01 = n02 = n0(say) in (3.14) and for a minimum n

differentiate it w.r.t n then setting equal zero we have,

n∗ = b

√
a

ξ(c1 + c2)
− n0. (3.15)

If c1 = c2 = c we have the optimum sample size,

n∗ = b

√
a

2ξc
− n0. (3.16)

If n1 = n2 = n but n01 6= n02, c1 6= c2 then (3.14) becomes,

TC(n) = c0 + (c1 + c2)n+
ab2

2ξ

2n+ n01 + n02

(n01 + n)(n02 + n)
. (3.17)
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For an optimum sample size, differentiating (3.17) w.r.t. n and setting equal to zero

we have,

An4 +Bn3 + Cn2 +Dn+ E = 0, (3.18)

where, A = c1 + c2, B = 2AN0, C = AN2
0 + 2AN ′

0 − 2k2, D = 2AN0N
′
0 − 2k2N0,

E = AN ′
0
2 + 2k2N

′
0 −N0

2, N0 = n01 + n02, N
′
0 = n01n02, k2 = ab2

2ξ
. For the given, c1,

c2 , n01, n02 , ξ and b we can easily solve the equation (3.18) for an optimum sample

of size n.

Consider a situation where, n1 6= n2, n01 6= n02 and c1 6= c2. If the sampling from

X is independent of sampling from Y then we can determine the optimum sample

sizes for both n1 and n2 separately. Let us differentiate (3.14) w.r.t. n1 we have,

n∗1 =
b
√
a√

2c1ξ
− n01. (3.19)

Again differentiate (3.14) w.r.t. n2 we have,

n∗2 =
b
√
a√

2c2ξ
− n02. (3.20)

For the given, c1, c2 , n01, n02 , ξ, a and b we can find n1 and n2 from equation (3.19)

and (3.20) respectively which jointly minimizes the equation (3.14).

3.4.2 Numerical study

We have solved the equation (3.18) using Maple and found that out of four roots

three roots are negative. So the only positive root is considered as an optimum

sample size and from figure 3.4, we observe that if the sampling cost per unit goes

up, then the optimum sample size goes down to estimate the difference between two
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normal means when n01 = 8, n02 = 12, ξ = 1, a = 1 and b = 0.1. From figure 3.5,

we observe that if the shape parameter, b increases then the optimum sample size

decreases when n01 = 8, n02 = 12, ξ = 1, c1 + c2 = c = 0.001 are kept fixed. Also

from the equations (3.15), (3.16), (3.19), and (3.20) we have the optimum sample per

group is proportional to the shape parameter of the linex loss function b but inversely

proportional to the sampling cost per unit c.

In the above section we obtained the optimum sample size for the difference be-

tween two normal means when the precisions of two populations are assumed to be

known and equal. In the following section we will obtain the optimum sample of size

considering the known but unequal precisions of two populations.

3.4.3 SSD when the precision is known but unequal

From (1.17) the posterior risk function for the Bayes estimate θ = µ1 − µ2 under the

linex the loss function is,

PR =
ab2

2
× ξ1(n1 + n01) + ξ2(n2 + n02)

ξ1ξ2(n01 + n1)(n02 + n2)
. (3.21)

Now adding the cost function (1.28) with the risk function (3.21) we have the total

cost as,

TC(n) = c0 + c1n1 + c2n2 +
ab2

2

[
ξ1(n1 + n01) + ξ2(n2 + n02)

ξ1ξ2(n01 + n1)(n02 + n2)

]
. (3.22)

The sample of sizes n1 and n2 may be drawn independently from two different pop-

ulations X and Y respectively under the same experiment. For example if we want

to compare the difference between two treatments to cure the same disease, then we
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might allocate patients to the treatments randomly. Or even if the samples of patients

are taken from the same hospital, we might need to draw samples from two different

groups of patients who are taking two different treatments to treat the same disease.

So the samples we want to draw from two populations may be independent. Let us

differentiate (3.22) w.r.t. n1 we have,

n∗1 = b

√
a

2c1ξ1
− n01. (3.23)

Again differentiate (3.22) w.r.t. n2 we have,

n∗2 = b

√
a

2c2ξ2
− n02. (3.24)

For given, c1, c2, n01, n02 , ξ1, ξ2, a and b we can find n1 and n2 from equation (3.23)

and (3.24) respectively which jointly minimizes the total cost (3.22).

In the following section we will obtain the optimum sample to estimate an expo-

nential parameter under the linex loss function.

3.5 SSD to estimate an exponential parameter

Suppose x1,x2,. . .,xn is a random sample of size n taken from an exponential distri-

bution with parameter λ. From Chapter 2, equation (2.32), we have the posterior

density of λ|x is a Gamma(α + n, β + t) distribution with mean α+n
β+t

and variance

α+n
(β+t)2

. Now using this posterior distribution we have,

E{exp(−bλ)|x} =

[
1 +

b

β + t

]−(α+n)

.
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Using this result in (1.9), the Bayes estimate of λ under the linex loss function (1.8)

is,

d̂ =
α+ n

b

[
ln

{
1 +

b

β + t

}]
.

Now using this result in (1.17) the posterior risk will be,

PR =
ab(α+ n)

β + t
− a(α+ n)

[
log

{
1 +

b

β + t

}]
.

Now inserting the linear cost function (1.28) into the risk function we have the total

cost as,

TC(n) = c0 + cn+
ab(α+ n)

β + t
− a(α+ n)

[
log

{
1 +

b

β + t

}]
≈ c0 + cn+

ab(α+ n)

β + t
− a(α+ n)

[
b

β + t
− b2

2(β + t)2

]
≈ c0 + cn+

a(α+ n)b2

2(β + t)2
.

Here we have expanded the log term and neglected 3rd and higher powers of b
β+t

as b < β + t. Clearly, TC(n) depends on the data t. So at this stage take the

expectation over TC(n) w.r.t. t that is find Et[TC(n)] where, t follows a Gamma-

Gamma distribution with parameters α, β and n (Bernardo and Smith,1994). We

have,

Et[TC(n)] = c+ cn+
ab2βα(α+ n)

2Γ(α)

Γ(α+ n)

Γ(n)

∫
tn−1

(β + t)α+2+n
dt

= c0 + cn+
ab2βα(α+ n)

2Γ(α)

Γ(α+ n)

Γ(n)

Γ(α+ 2)

βα+2

Γ(n)

Γ(α+ n+ 2)

= c0 + cn+
ab2α(α+ 1)

2β2(α+ n+ 1)
.

To obtain an optimum sample of size n setting ∂Et[TC(n)]
∂n

= 0 gives,

n∗lin =
b

β

√
aα(α+ 1)

2c
− (α+ 1). (3.25)
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Which is the optimum sample size to estimate an exponential parameter under the

linex loss function.

3.5.1 No sampling situation

The total expected cost to estimate an exponential parameter under the linex loss

function is

Et[TC(n)] = c0 + cn+
ab2α(α+ 1)

2β2(α+ n+ 1)
.

Now find the expected total cost for n = 0 and n = n∗lin respectively we have,

Et[TC(0)] =
ab2α

2β2

and

Et[TC(n∗)] = c0 +
b

β

√
2acα(α+ 1)− c(α+ 1).

The optimum sample size (3.25) should be

n∗ = max

{
0,

b

β

√
aα(α+ 1)

2c
− (α+ 1)

}
.

So we choose not to sample when b
β

√
aα(α+1)

2c
≤ (α + 1) i.e., b

β

√
aα

2(α+1)
≤
√
c in

addition to the situation when b
β

√
aα(α+1)

2c
> (α+ 1) i.e., b

β

√
aα

2(α+1)
>
√
c and TC(0)

is exceeded by TC(n∗). This implies the decision not to sample occurs when[
ab2α

2β2
< c0 +

b

β

√
2acα(α+ 1)− c(α+ 1) and

b

β

√
aα

2(α+ 1)
>
√
c

]
or

b

β

√
aα

2(α+ 1)
≤
√
c.
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Equivalently the decision to sample occurs when

ab2α

2β2
> c0 +

b

β

√
2acα(α+ 1)− c(α+ 1) and

b

β

√
aα

2(α+ 1)
>
√
c.

Solving for y = c1/2 we obtain that we sample when

y2(α+ 1)− b

β

√
2aα(α+ 1)y −

(
c0 −

ab2α

2β2

)
> 0 and y <

b

β

√
aα

2(α+ 1)
.

So that [
y <

b

β

√
aα

2(α+ 1)
−
√

c0
α+ 1

or y >
b

β

√
aα

2(α+ 1)
+

√
c0

α+ 1

]

and

y <
b

β

√
aα

2(α+ 1)
.

Which implies that

√
c <

b

β

√
aα

2(α+ 1)
−
√

c0
α+ 1

.

So choose not to sample when

c >

[
b

β

√
aα

2(α+ 1)
−
√

c0
α+ 1

]2

.

That is for known a, b, c0, α, β and n0 if the sampling cost per unit, c exceeds[
b
β

√
aα

2(α+1)
−
√

c0
α+1

]2

then it is not worth sampling due to high sampling cost per

unit.

3.5.2 Numerical study

From figure 3.6 we observe that if the sampling cost per unit c goes up, then the

optimum sample size goes down for both SE and linex loss function when a0 = a = 1.
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Moreover, if the shape parameter of the linex loss b > 2 then the optimum sample

size is bigger than the SE loss. The reverse is also true. Interestingly, for a0 = a = 1,

when b = 2 then the optimum sample sizes are equal under both linex and SE loss

function. From figure 3.7, the optimum sample sizes goes up if the prior parameter

β goes down. On the other hand, from the equation (3.25), we see that, if the prior

parameter α goes up then the optimum sample sizes also goes up. Also if the shape

parameter b of linex loss function goes up then the optimum sample size also goes

up. That is the prior parameter, α and the shape parameter b has the similar type

of effect on the optimum sample size n∗.

3.6 SSD to estimate a Poisson parameter

Let x1, x2,. . . ,xn be a random sample of size n taken from a Poisson distribution

given in (2.35). Now consider prior distribution of θ as a Gamma(α, β) distribution

and from Chapter 2 equation (2.38) we have the posterior distribution of θ|x which is

also a Gamma (t+ α, n+ β) distribution. Using this posterior distribution we have,

E{exp(−bθ)|x} =

[
n+ β

n+ β + b

]α+t

. (3.26)

So using the result of (3.26) in (1.9), the Bayes estimate under the linex loss function

(1.8) will be,

d̂lin = −α+ t

b
ln

(
n+ β

n+ β + b

)
. (3.27)
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From the equation (1.17), the posterior risk under the linex loss function will be,

PR = ab

[
t+ α

β + n
+
α+ t

b
ln

(
n+ β

n+ β + b

)]
= a

[
b

β + n
+ (t+ α) ln

(
n+ β

n+ β + b

)]
.

Now adding the cost function (1.28) with the PR we have the total cost as,

TC(n) = c0 + cn+
ab

β + n
+ a(t+ α) ln

(
n+ β

n+ β + b

)
,

which depends on t. Now taking the expectation over TC(n) w.r.t. t we have,

Et[TC(n)] = c0 + cn+ a
b

β + n
+ (α+ E(t|n)) ln

(
β + n

n+ β + b

)
. (3.28)

From previous chapter equation (2.41) we have,

E(t|n) =
αn

β
.

Using this result in (3.28) we have,

Et[TC(n)] = c0 + cn+ a

[
bα

β
+
α(n+ β)

β
ln

(
n+ β

n+ β + b

)]
(3.29)

To have a minimum sample of size n differentiate (3.29) w.r.t. n and setting equal to

zero we have,

c

a
+

bα

β(n+ β + b)
+
α

β
ln

(
n+ β

n+ β + b

)
= 0

cβ

aα
+

b

(n+ β + b)
+ ln

(
n+ β

n+ β + b

)
= 0

Let z = n+ β + b gives,

cβ

aα
+
b

z
+ ln

(
1− b

z

)
= 0

Expanding log(1− b
z
) , since b < z, neglecting 3rd and higher powers of b

z
we have,

βc

aα
+
b

z
− b

z
− b2

2z2
= 0
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cβ

aα
− b2

2z2
= 0

Since, z = n+β+ b, after some simplification the approximate sample size under the

linex loss function will be,

n∗lin = b

√
aα

2cβ
− (β + b). (3.30)

Here the optimum sample size depends on the prior parameters α and β, the cost

of sampling per unit c, the scale and shape parameter a, b of the linex loss function

respectively.

3.6.1 No sampling situation

If z = n+ β + b we can re-write the equation (3.29) as,

Et[TC(n)] = c0 + cn+ a

[
bα

β
+
α(n+ β)

β
ln

(
1− b

z

)]
.

Expanding the log term, since b < n+ β + b, neglecting the power of 2 and more we

have,

Et[TC(n)] ≈ c0 + cn+ a

[
bα

β
− bα

β

(
1− b

n+ b+ β

)]
= c0 + cn+

aαb2

β(n+ β + b)
.

Now we find the expected total cost when there is no plan to sample giving n = 0 in

Et[TC(n)] we have,

Et[TC(0)] =
aαb2

β(n+ β + b)
.
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Again obtain the expected total cost for an optimum sample of size n∗ giving n = n∗lin

in Et[TC(n)] we have,

Et[TC(n∗)] = c0 + c

(
b

√
aα

2cβ
− b− β

)
+
b
√

2acαβ

β

= c0 + 3b

√
aαc

2β
− c(β + b).

The optimum sample size (3.30) should be

n∗ = max

{
0, b

√
aα

2cβ
− (β + b)

}
.

So we choose not to sample when b
√

aα
2cβ
≤ (β+b) i.e., b

β

√
aα
2β
≤
√
c in addition to the

situation when b
√

aα
2cβ

> β + b i.e., b
β

√
aα
2β
>
√
c and TC(0) is exceeded by TC(n∗).

This implies the decision not to sample occurs when[
aαb2

β(n+ b+ β)
< c0 + 3b

√
aαc

2β
− c(β + b) and

b

β

√
aα

2β
>
√
c

]
or

b

β

√
aα

2β
≤
√
c.

Equivalently the decision to sample occurs when

aαb2

β(n+ b+ β)
> c0 + 3b

√
aαc

2β
− c(β + b) and

b

β

√
aα

2β
>
√
c.

Solving for y =
√
c we obtain that we sample when

(β + b)y2 − 3b

√
aα

2β
y −

(
c0 −

aαb2

β(n+ b+ β)

)
> 0 and y <

b

β

√
aα

2β
.

So that [
y <

3β

2(β + b)

{
b

β

√
aα

2β
− v

3β

}
or y >

3β

2(β + b)

{
b

β

√
aα

2β
+

v

3β

}]

and

y <
b

β

√
aα

2β
.
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Which implies that

√
c <

3β

2(β + b)

{
b

β

√
aα

2β
− v

3β

}
,

where v =

√
9aαb2

2β
+ 4(β + b)

(
c0 − aαb2

β(n+β+b)

)
. So choose not to sample when

c >
9β2

4(β + b)2

[
b

β

√
aα

2β
− v

3β

]2

.

That is for known a, b, α, β and c0 if the sampling cost per unit, c exceeds

9β2

4(β+b)2

[
b
β

√
aα
2β
− v

3β

]2

then it is not worth sampling due to high sampling cost per

unit to estimate a Poisson parameter under the linex loss function. Since getting

sample is expensive, so if we look at the sampling cost per unit, then it is possible to

take an initial decision according to our budget that the sampling is possible or not

in such a situation. We also need to consider the overall cost of sampling c0 because

if the sampling set-up cost is too high then it may also not worth sampling at all.

3.6.2 Numerical study

From figure 3.8 we observe that if the sampling cost per unit goes up then the optimum

sample size goes down for both the SE and linex loss functions. From figure 3.9 it is

clear that the optimum sample size goes up when the prior parameter β goes down.

So the prior parameter, β and the sampling cost per unit c has the the similar type

of effect on the optimum sample size. On the other hand from the equation (3.30),

we see that as the prior parameter, α increases then the optimum sample size also

increases for any c. Also if the shape parameter b goes up then the optimum sample

size also goes up for any value of c. Again we observe from (3.30) that if the shape
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parameter b goes up then the optimum sample sizes are also goes up for any values

of the prior parameter α. We conclude that the optimum sample size is proportional

to the prior parameter α, the scale parameter a, the shape parameter b but inversely

proportional to the square root of the prior parameter β and the sampling cost per

unit c.

3.7 Summary

In this chapter we have shown how a Bayesian decision theoretic approach to deter-

mine the optimum sample size can be extended to the asymmetric linex loss function.

There are a number of situations where the losses involved are asymmetric. Varian

was concerned with estimating the value of real estate of taxation. In medicine it

could be more serious to underestimate temperature than overestimate it. In sec-

tion 3.2 we obtained the optimum sample size to estimate a normal mean when the

precision is known. Section 3.3 contains the optimum sample size determination to

estimate a normal precision when mean is known. Then, in section 3.4, we obtained

the optimum sample size to estimate the difference between the two normal means

under the linex loss function which we could use to compare the two treatment means

when both treatment follows a normal distribution. Next, in section 3.5 we explored

optimum SSD to estimate an exponential parameter. Finally, in section 3.6 we de-

tailed an optimum SSD to estimate a Poisson parameter. In most cases the optimum

sample size depends on the prior parameters, data variability, sampling cost per unit,

c and the scale and shape parameter of the loss function. For most cases we have
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also used graph to plot the sampling cost per unit against the optimum sample size

n∗ and observed that if the sampling cost per unit goes up, the optimum sample size

goes down. We have also noted cases where, due to high sampling cost of collecting

data or strong prior information, it is not worth sampling.

115



Figure 3.1: Optimum sample size to estimate a normal mean µ as a function of the

sampling cost per unit c.

Figure 3.2: Optimum sample size to estimate a normal precision ξ as a function of the

sampling cost per unit c when α = β = 0.1 under the SE and the linex loss function.
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Figure 3.3: Optimum sample size to estimate a normal precision ξ as a function of

the prior parameter β (when prior parameter α = 0.1, shape parameter b = 1.5 kept

fixed) for different values of the sampling cost per unit c under the linex loss function.

Figure 3.4: Optimum sample size to estimate the difference between two normal

means as a function of the sampling cost per unit c when the precision ξ = 1, the

prior sample sizes, n01 = 8, n02 = 12 and the shape parameter b = 0.1 of the linex

loss function.
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Figure 3.5: Optimum sample size to estimate the difference between two normal

means as a function of the shape parameter b when the precision ξ = 1, prior sample

sizes, n01 = 8, n02 = 12 and the sampling cost per unit c = 0.001 under the linex loss

function.

Figure 3.6: Optimum sample size to estimate an exponential parameter θ as a function

of the sampling cost c when α = β = 0.1 and for different values of b of the linex loss

function when a = 1.
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Figure 3.7: Optimum sample size to estimate an exponential parameter θ as a function

of the prior parameter β when a = 1, α = 0.1, b = 0.5 and for different values of c.

Figure 3.8: Optimum sample size to estimate a Poisson parameter θ as a function

of the sampling cost per unit c when the scale parameter a = 1, prior parameters

α = β = 0.1 under the SE and different values of the shape parameter, b of the linex

loss function.
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Figure 3.9: Optimum sample size to estimate a Poisson parameter θ as a function of

the prior parameter β when α = 0.1, b = 0.5 for different values of the sampling cost

per unit c under the linex loss function.
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Chapter 4

Bayesian SSD under the bounded

linex loss function

4.1 Introduction

In this chapter we will obtain the optimum sample size for a bounded linex loss

function given by Wen and Levy (2001). We have reviewed this bounded asymmetric

loss function in the section 1.3.10 of Chapter 1. If p(θ|x) is any posterior density then

we also defined the posterior risk in the equation (1.18), section 1.4 of Chapter 1.

Since it is difficult to solve the integral (1.18) analytically, we will find the optimum

sample size for different distributions under this blinex loss function numerically using

the program R. In our simulation study, first we will average the posterior risk of

(1.18) to obtain the average posterior risk (APR), then adding a linear cost function
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(1.28) with this APR we obtain the expected total cost as,

E(TC) = c0 + cn+ APR. (4.1)

Then find E(TC) for different n and plot E(TC) vs n. Finally, find the optimum

sample size n∗ giving a minimum cost.

The algorithm to obtain an optimum sample size is as follows.

1. Generate a sample, x∗ of size n from the pre-posterior distribution, p(x|n).

2. Find the posterior distribution for the parameter of interest p(θ|x∗, n)

3. Generate θ∗ from the posterior distribution p(θ|x∗, n). We considered 10,000 θ∗

at this stage.

4. Find the minimum value of the posterior risk.

5. Repeat 1 to 4 for different samples and find the average posterior risk (APR).

6. Add a linear cost function c0 + cn to the APR to get E(TC).

7. Repeat 1 to 6 for different n.

8. Plot E(TC) vs n.

9. Find the sample size giving the minimum cost which is our required optimum

sample size.

Now following the steps described above we will determine the optimum sample size

under the bounded linex loss function (1.18) for different distributions. We shall

present all the tables and figures at the end of this chapter.
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4.2 SSD to estimate a Normal mean when preci-

sion is known

Suppose x1, x2,....,xn is a random sample of size n taken from a normal distribution

with mean θ and known precision ξ. Let us take a conjugate prior as normal with mean

µ0 and precision n0ξ. The posterior distribution, p(θ|x) given in chapter 2, equation

(2.3) which is also a normal distribution with mean, µ̂ = nx+n0µ0

n+n0
and precision,

ξ̂ = (n + n0)ξ. Under the blinex loss given in (1.13) the posterior risk function is

given in the equation (1.18), where the posterior density p(θ|x) is now N(µ̂, ξ̂). It is

difficult to solve the integral (1.18) analytically, so we will use R to get the optimum

sample size following the steps described in the previous section.

4.2.1 Numerical study

In table 4.1, we have presented the optimum sample size by varying the bounding

parameter γ and the shape parameter b when the scale parameter a = 0.5 is kept

fixed to estimate a normal mean. We also found from the table that, if the shape and

scale parameter b and a are fixed but the bounding parameter γ increases then the

optimum sample size decreases. On the other hand if γ fixed then for an increasing

shape parameter b, the optimum sample size also increases when the scale parameter

a is fixed. In figure 4.1 we found that for the given set of parameters the optimum

sample size is around 24 as it gives the minimum cost of sampling which is given in

bold type in table 1 as R output.
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4.3 SSD to estimate a normal precision when mean

is known.

Suppose x1, x2,....,xn is a random sample of size n taken from a normal distribution

with mean µ0 and precision ξ. The posterior distribution of ξ|x is same as Chapter 2,

equation (2.11). This time we want to estimate ξ by d. Under the blinex loss given in

(1.13) the posterior risk function is given in the equation (1.18), where the posterior

density p(θ|x) is given in (2.11). It is difficult to solve the integral (1.18) analytically,

so we will run the program R to get the APR then we add it with the cost function

(1.28) for the expected total cost. In step 1 of the R program we have simulated x∗

from a t distribution (Bernardo and Smith 1994) as the pre-posterior distribution.

Then we followed all the steps in order for an optimum sample size described earlier.

In table 4.2, we have presented the optimum sample size under the blinex loss function

for different bounding parameter γ and shape parameter b. We obtained each of the

sample sizes from the figure (one is shown in figure 4.2) by comparing the sample

size against the total cost and the sample with the minimum cost is chosen as the

optimum sample size.

4.3.1 Numerical study

In table 4.2 we found that for a fixed shape parameter b if the bounding parameter

γ goes up then the optimum sample size goes down. On the other hand for a fixed

bounding parameter γ if we increase the shape parameter b then the optimum sample
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size also increase. The R output is presented in the figure 4.2 and we found that the

optimum sample size is around 45 (shown as bold type in the table 4.2) to estimate

a normal precision under the blinex loss function when b = γ = 0.1.

4.4 SSD to estimate a normal mean when preci-

sion is unknown

Suppose x1, x2,....,xn is a random sample of size n taken from a normal distribution

with mean µ and precision ξ. So the likelihood of the sample will be,

p(x|µ, ξ) ∝ ξ
n
2 exp

{
−1

2
ξ
∑

(xi − µ)2

}
. (4.2)

Now specify a prior for µ and ξ, p(µ, ξ) in the form p(µ|ξ)p(ξ). Since for known ξ

the normal is self conjugate we use a normal prior for µ|ξ and we also use a gamma

prior for ξ. So take µ|ξ is a N(µ0, n0ξ) distribution and ξ is a Gamma(α/2, β/2)

distribution. That is,

p(µ|ξ) =

√
n0ξ

2π
exp

{
−(n0ξ)

2

∑
(µ− µ0)

2

}
(4.3)

and

p(ξ) = {Γ(α/2)}−1(β/α)α/2ξα/2−1 exp(−(1/2)βξ). (4.4)
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Now using the result of (4.2), (4.3) and (4.4) we have the joint distribution of (µ, ξ)

will be,

p(µ, ξ|x) = p(x|µ, ξ)× p(µ|ξ)× p(ξ)

∝ ξ
n
2 exp

{
−1

2
ξ
∑

(xi − µ)2

}
× ξ

1
2 exp{−n0ξ

2
(µ− µ0)

2}

×ξ
α
2
−1 exp

[
−βξ

2

]
∝ ξ

α+n+1
2

−1 exp

[
−ξ

2
{β +

∑
(xi − µ)2 + n0(µ− µ0)

2}
]
. (4.5)

Now we want p(µ) by

p(µ) =

∫
p(µ, ξ|x)dξ =

∫
p(x|µ, ξ)p(µ|ξ)p(ξ)dξ. (4.6)

Now integrating (4.6) and after some calculations we have the posterior unconditional

distribution of µ has a t distribution with α + n degrees of freedom with location

µ∗ = n0µ0+nx
n0+n

and precision α∗

β∗ where,

α∗ = (α+ n)(n0 + n)

and

β∗ = β +
1

n+ n0

[
n
∑

(xi − µ)2 + n0(xi − µ0)
2
]
.

That is, µ|x has a tα+n

(
µ∗, α

∗

β∗

)
distribution. The posterior risk is the blinex loss

averaged over this t distribution. So we will run R program to obtain the optimum

sample size. We assumed the scale parameter a = 0.5 throughout the simulation

study. In our usual optimization procedure we obtained the average posterior risk

(APR) of µ through the simulation study using R, then minimized the expected total

cost for an optimum sample size following the steps presented in the section 4.1.
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4.4.1 Numerical study

From table 4.3 we observe that for a fixed shape parameter b if the bounding parameter

γ goes up then the optimum sample size goes down. On the other hand for a fixed

bounding parameter γ if we increase the shape parameter b then the optimum sample

sizes are also increases. Figure 4.3 is one example of the R output where we found

that for α = 1, β = 2, n0 = 1, µ0 = 1, c0 = 1, c = 0.001, γ = 0.3, b = 0.4 and

a = 0.5 the optimum sample size is around 18 (shown in bold type in the table 4.3).

We considered prior mean of the precision is 2 so that sd = 1√
2
. This means results

are directly comparable to the known precision case. We found that the optimum

sample size to estimate a normal mean when precision is unknown is bigger than the

optimum sample size to estimate a normal mean when precision is known (table 4.1)

because of the extra uncertainty about the precision.

4.5 SSD for an exponential distribution

Suppose x1, x2,....,xn is a random sample of size n taken from an exponential distri-

bution with parameter λ with density,

p(x|λ) = λ exp(−λx);x > 0, λ > 0.

The posterior density of λ|x is same as of Chapter 2 equation (2.32). This time we

want to estimate λ by d, hence under the blinex loss (1.13) we can easily get a

mathematical form of the posterior risk function using (1.18) of Chapter 1, which is

difficult to obtain analytically. So to obtain the APR we will use the steps involve in R
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and to do that in the step-1, we have simulated x∗ from the pre-posterior distribution

which is a gamma-gamma distribution. Then for the expected total cost we have

added APR with the cost function (1.28) with c0 = 1 and c = 0.0001. Finally plot

E(TC) against n to get the optimum sample size. In table 4.4 we have presented the

optimum sample size for different combination of the bounding parameter γ and the

shape parameter b, keeping the scale parameter a is fixed.

4.5.1 Numerical study

From table 4.4 we found that for a fixed shape parameter b if the bounding parameter

goes up then the optimum sample sizes goes down. On the other hand for a fixed

bounding parameter γ if we increase the shape parameter b then the optimum sample

sizes are also increases. In figure 4.4 we have presented the R output where we found

that for α = β = 1, a = 0.5, γ = 0.3 and b = 0.3 the optimum sample size is around

50 (shown in bold type in table 4.4).

4.6 SSD for a Poisson distribution

Let x1, x2,....,xn be a sample of size n taken from a Poisson distribution. The posterior

distribution of θ|x is presented in Chapter 2, equation (2.38). Now if we want to

estimate θ by d, then the mathematical form of the posterior risk function under the

blinex loss (1.13) can easily obtain from (1.18) which is difficult to find analytically.

The optimum sample size is obtained by minimizing (4.1). This time in step-1, to
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draw x∗, we have considered a negative binomial distribution with parameter α and

β
β+n

where α is a positive integer. In table 4.5, we have presented the optimum sample

size for different combination of γ and b, keeping the scale parameter a = 0.5 is fixed.

We have considered the prior parameters, α = β = 2, c0 = 1 and c = 0.0001 in our

simulation study.

4.6.1 Numerical study

From table 4.5 we observe that for a fixed shape parameter b if the bounding parameter

γ goes up then the optimum sample size goes down. On the other hand for a fixed

bounding parameter γ if we increase the shape parameter b then the optimum sample

sizes also increases. In figure 4.5, we have showed how we obtained the optimum

sample size against the minimum cost for a given set of parameters using the program

R. We found that the optimum sample size is around 30 under the blinex loss function

when the shape parameter, b = 0.4 and the bounding parameter γ = 0.5, which is

shown in bold type in table 4.5.

4.7 Conclusion

In this chapter we obtained the optimum sample size for various distributions un-

der the blinex loss function. Because of the complicated form of the posterior risk

function, we have used R program to minimize the total expected cost. First we con-

sidered three different cases of normal distribution. We considered SSD to estimate a
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normal mean when the precision is known, SSD to estimate a normal precision when

mean is known and SSD to estimate a normal mean when the precision is unknown.

In the last case we have simulated the pre-posterior samples from a t distribution.

In this situation we are not able to use the linex loss function because the mgf of t

distribution does’t exists. As we discussed in Chapter 1, only distributions which has

the mgf can give an optimum Bayes decision under the linex loss function. Hence the

blinex loss overcomes this weakness of the linex loss function and we have obtained

the optimum sample size for this loss function. Then we considered SSD to estimate

an exponential parameter. Finally, we considered SSD to estimate a Poisson param-

eter. We found that the optimum sample size depends on the prior parameters, the

scale, shape and bounding parameter of the blinex loss function. In all the cases for a

fixed scale, shape and prior parameters, if the bounding parameter of the blinex loss

function increases then the optimum sample sizes are decreases. On the other hand

for a fixed scale, bounding and prior parameters, if the shape parameter of the blinex

loss function increases then the optimum sample size also increases.
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Table 4.1: Optimum sample size to estimate a normal mean for different values of γ

and b when θ = 1, sd =
√

2, n0 = 1, µ0 = 1, c0 = 1 and c = 0.001.

Sample size b

γ 0.1 0.2 0.3 0.4 0.5

0.1 10 15 18 22 24

0.2 7 10 12 15 20

0.3 5 8 10 12 16

0.4 3 6 8 11 13

0.5 1 3 4 6 8

Table 4.2: Optimum sample size to estimate a normal precision (mean known) when

ξ = 1, n0 = 10, µ0 = 1, c = 0.0001, α = β = 1.

Sample size b

γ 0.1 0.2 0.3 0.4 0.5

0.1 45 62 74 96 110

0.2 35 48 60 72 85

0.3 30 40 50 63 70

0.4 26 34 44 55 56

0.5 20 30 40 46 48

Table 4.3: Optimum sample size to estimate a normal mean (precision unknown)

when α = 1, β = 2 n0 = 1, µ0 = 1, c = 0.001.

Sample size b

γ 0.1 0.2 0.3 0.4 0.5

0.1 16 19 23 27 33

0.2 13 17 22 25 28

0.3 10 12 15 18 21

0.4 7 11 13 16 19

0.5 3 6 9 13 17
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Table 4.4: Optimum sample size to estimate an exponential parameter λ for different

values of γ and b when α = β = 1 and a = 0.5.

Sample size b

γ 0.1 0.2 0.3 0.4 0.5

0.1 45 68 81 97 110

0.2 35 46 69 81 92

0.3 25 36 50 68 77

0.4 15 27 34 45 63

0.5 10 18 30 36 47

Table 4.5: Optimum sample size to estimate a Poisson parameter θ for different values

of γ and b when α = β = 2 and a = 0.5.

Sample size b

γ 0.1 0.2 0.3 0.4 0.5

0.1 34 45 56 65 72

0.2 25 36 40 49 58

0.3 20 31 36 42 49

0.4 15 24 32 35 43

0.5 12 21 26 30 36
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Figure 4.1: SSD to estimate a normal mean (precision is known) under the blinex

loss for θ = 1, sd =
√

2, n0 = 1, µ0 = 1, c = 0.001, γ = 0.1, b = 0.5 and a = 0.5.
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Figure 4.2: SSD to estimate a normal precision (mean is known) for ξ = 1, n0 = 10,

µ0 = 1, c = 0.0001 , γ = b = 0.1 , α = β = 1.
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Figure 4.3: SSD to estimate a normal mean (precision unknown) when α = 1, β = 2,

n0 = 1, µ0 = 1, c = 0.001, c0 = 1, γ = 0.3, b = 0.4 and a = 0.5.
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Figure 4.4: SSD to estimate an exponential parameter when λ = 1.5, α = β = 1,

c = 0.0001, γ = 0.3, b = 0.3 and a = 0.5.
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Figure 4.5: SSD to estimate a Poisson parameter for λ = 1, α = β = 2, c0 = 1,

c = 0.0001, b = 0.4 and γ = 0.5.
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Chapter 5

SSD under the loss function by

DeGroot (1970)

5.1 Introduction

In Chapters 3 and 4 we obtained the optimum sample size under an asymmetric

linex loss function and an asymmetric bounded linex loss function respectively. But

there are some other asymmetric loss functions which may be considered when under

estimation is more serious than overestimation or vice-versa. Besides the linex loss

function we also observed some other asymmetric loss functions which are to be

found in the literature and it is possible to obtain the optimum sample size for these

asymmetric loss functions. In this chapter, we obtain the optimum sample size under

an asymmetric loss function due to DeGroot (1970) with a linear cost function given
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Figure 5.1: Shape of the loss function where, x = θ
d
.

in (1.28) for various distributions. In a situation where we are unable to get analytic

results we will use the R program to find the optimum sample size. If d is an estimate

of θ then recall the asymmetric loss function is defined by DeGroot (1970) from

Chapter 1 as,

l(d, θ) =

(
θ − d

d

)2

, (5.1)

where θ > 0. The form of the posterior risk function for the Bayes estimate θ has

been given in Chapter 1, equation (1.16).

Properties: i) The estimation error is x− 1, where x = θ
d
.

ii) For 0 ≤ x ≤ 2, the loss function l(d, θ) is symmetric.

iii) At the point x = θ
d

= 1 that is for θ = d, the loss is zero.
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iv) For x > 2 the shape of the loss function is increasing.

In the following we will provide the optimum SSD for a number of cases under the

loss function (5.1) and present all the tables and figures at the end of the chapter.

5.2 SSD to estimate a normal mean when preci-

sion is known.

Suppose x1, x2,...., xn is a random sample of size n taken from a normal distribution

with mean θ and known precision ξ. Let us take a conjugate prior for θ also as a

normal with mean µ0 and precision n0ξ. Now from chapter 2 equation (2.3) we have

the posterior distribution of θ|x is also a normal distribution with mean nx+n0µ0

n+n0
and

precision (n+ n0)ξ. Using the equation (1.16) the posterior risk for the loss function

(5.1) will be,

PR =

[
1 +

ξ(nx̄+ n0µ0)
2

n+ n0

]−1

. (5.2)

Now adding the cost function (1.28) with the posterior risk (5.2) the total cost will

be,

TC(n) = c0 + cn+

[
1 +

ξ(nx̄+ n0µ0)
2

n+ n0

]−1

; (5.3)

which depends on x. Now we need to take expectation over (5.3) w.r.t the pre-

posterior distribution of x̄, we have

Ex̄[TC(n)] = c0 + cn+

∫ [
1 +

ξ(nx̄+ n0µ0)
2

n+ n0

]−1

p(x̄)dx̄.

It is not possible to obtain E(TC), so we will use the R program to find an op-

timum sample size. We will follow the steps as in Chapter 4. This time in step
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1, we have simulated the data, x∗ from the pre-posterior distribution of x which is

a N

(
µ0,

1
1
ξ
+ 1
n0ξ

)
distribution, then for an optimum SSD we followed all the steps

described in the chapter 4 section (4.1). In our study we have considered a linear

cost function (1.28) with c0 = 1 and c = 0.0001. In table 5.1, we shall present the

optimum sample sizes to estimate a normal mean, θ when the precision ξ = 10.

5.2.1 Numerical study

From table 5.1, we observed that for the fixed prior mean µ0 if the prior sample size

n0 increases then the optimum sample size decreases. Again for the fixed prior sample

size n0 if the prior mean µ0 increases, then the optimum sample size decreases. The

notation ‘-’ shows that it is not worth sampling as for these combination of parameters

the values of n are less than zero. Moreover, in figure 5.2 we have presented the R

output where the optimum sample is around 28 for µ0 = 0.5 and n0 = 5 which is

shown as bold type in the table 5.1.

5.3 SSD to a estimate a normal precision when

mean is known.

Suppose x1, x2,....,xn is a random sample of size n taken from a normal distribution

with mean µ0 and precision ξ. The posterior distribution of ξ|x is given in Chapter

2 equation (2.11). Under the asymmetric loss function (5.1), following the equation
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(1.16) the posterior risk is

PR =
1

1 + α+ n
2

.

Adding the linear cost function (1.28) with the posterior risk PR, the total cost will

be,

TC(n) = c0 + cn+
1

1 + α+ n
2

. (5.4)

To get the optimum sample size differentiate (5.4) w.r.t. n and setting equal to zero

we have,

n∗ =

√
2

c
− 2(α+ 1). (5.5)

The optimum sample size is independent of β because we found the posterior risk

function (PR) is independent of β.

5.3.1 Numerical study

From figure 5.3 we see that if the sampling cost per unit c goes up then the optimum

sample size goes down for any prior parameter, α. We also see from the equation

(5.5) that if the prior parameter α increases then the optimum sample size decreases

for any fixed sampling cost per unit, c.

5.4 SSD for an exponential parameter

Suppose x1, x2,....,xn is a random sample of size n taken from an exponential distri-

bution with parameter λ. The posterior distribution of λ|x is presented in Chapter
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2 equation (2.32). Now following equation (1.16) the posterior risk under the loss

function (5.1) will be,

PR =
1

1 + α+ n
.

Now the total cost will be,

TC(n) = c0 + cn+
1

1 + α+ n
2

. (5.6)

So for the optimum sample of size n differentiate (5.6) w.r.t. n and setting equal to

zero we have,

n∗ =
1√
c
− (α+ 1), (5.7)

which is the optimum sample size to estimate an exponential parameter under the

loss function (5.1).

5.4.1 Numerical study

From figure 5.4 we can see that if the sampling cost per unit c goes up then the

optimum sample sizes are goes down for any prior parameter, α. We also observe

from the equation (5.7) that if the prior parameter α increases then the optimum

sample size decreases for the fixed sampling cost per unit, c.

5.5 SSD for a Poisson distribution

Let x1, x2,....,xn be a sample of size n from a Poisson distribution with parameter θ.

The posterior distribution of θ|x is given in Chapter 2 equation (2.38). Now following
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the equation (1.16) the posterior risk under the loss function (5.1) will be,

PR =
1

1 + t+ n
.

So the total cost will be,

TC(n) = c0 + cn+
1

1 + t+ n
;

which depends on data vector t. Now take an expectation over TC(n) w.r.t. t we

have,

Et[TC(n)] = c0 + cn+ Et

[
1

1 + t+ n

]
.

It is not possible to obtain an analytic result of Et(TC) so we will use the R program

for an optimum sample size n∗. We will follow the steps in R given in the previous

chapter and in step 1 we simulated the data, x∗ from the pre-posterior distribution

which is a negative binomial distribution with parameter α and β
β+n

. Then we followed

all the steps from 2-9 in order for an optimum sample size. In this study we have

considered a linear cost function (1.28) with c0 = 1 and c = 0.001. In table 5.2, we

present the optimum sample size to estimate a Poisson parameter, λ. In figure 5.5

we have presented the R output for the prior parameters α = 1, β = 2.

5.5.1 Numerical study

From table 5.2 we observe that if the prior parameter α goes up, then the optimum

sample size goes down for a fixed β. On the other hand if the prior parameter, β

goes up, then the optimum sample sizes also go up for a fixed value of α. From figure

5.5 we found that the optimum sample size is around 15 for the prior parameter

α = 1, β = 2 which is presented in bold type in table 5.2 as R output.
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5.6 Conclusion

In this chapter we obtained the optimum sample size for a normal, an exponential and

a Poisson distributions under an asymmetric loss function due to DeGroot (1970). We

have defined this loss function in the equation (5.1) and the form of the posterior risk

function is provided in the equation (1.16). To estimate a normal mean and a Poisson

parameter we are unable to obtain the optimum sample size analytically because of

the complicated form of the posterior risk function. We then developed the programs

in R to obtain an optimum sample size in these cases. We also obtained the optimum

sample size to estimate a normal precision when mean is known and SSD to estimate

an exponential parameter. In these two situations we obtained the optimum sample

size with closed and simple form formulas under the asymmetric loss function (5.1)

without any approximation.
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Table 5.1: Optimum sample size to estimate a normal mean for different values of

the prior parameters µ0 and n0, c0 = 1 and c = 0.0001.

µ0 n0 n∗ n0 µ0 n∗

0.5 5 28 5 0.5 28

10 22 1 15

15 16 1.5 12

20 11 2 8

1 5 15 10 0.5 22

10 12 1 12

15 8 1.5 7

20 5 2 3

1.5 5 12 15 0.5 15

10 7 1 8

15 3 1.5 5

20 - 2 2

Table 5.2: Optimum sample size to estimate a Poisson parameter for different values

of the prior parameters α and β when c0 = 1 and c = 0.001.

α β n∗ β α n∗

1 1 12 1 1 12

2 15 2 10

3 18 3 8

4 20 4 6

2 1 10 2 1 15

2 12 2 12

3 14 3 10

4 16 4 8

3 1 8 3 1 18

2 10 2 14

3 12 3 12

4 14 4 10
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Figure 5.2: SSD to estimate a normal mean θ for µ0 = 0.5, n0 = 5, c0 = 1 and

c = 0.0001.

Figure 5.3: Optimum sample size to estimate a normal precision (mean known) as a

function of the sampling cost per unit, c for different values of α.

145



Figure 5.4: Optimum sample size to estimate an exponential parameter θ as a function

of the sampling cost per unit, c for different values of α.
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Figure 5.5: SSD to estimate a Poisson parameter λ for α = 1, β = 2, c0 = 1 and

c = 0.001.

146



Chapter 6

SSD under a scaled exponential

utility function

6.1 Introduction

In this chapter we propose a utility function and obtain the Bayes estimate and the

optimum sample size under this utility function. This utility function is designed

especially to obtain the Bayes estimate when the posterior follows a gamma distribu-

tion. If d is an estimate of θ then the loss or utility function should be functions of

d and θ which incorporate either the difference of d and θ or the ratio of d and θ or

both. But there is an inverse relation between loss and utility functions. If we define

a loss function as l(d, θ) and an utility function as u(d, θ), then the relation between

them is l(d, θ) = maxd u(d, θ)−u(d, θ). This means for a unique Bayes estimate, mini-
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mizing expected loss is equivalent to the maximizing expected utility. In practice, the

experimenter wants to have some closed form estimates for their decisions without

approximation considering either utility or loss functions. In most cases, they are

happy to work with the posterior mean. So if the posterior mean is the estimate

to choose then what will be the form of the utility or loss function(s)? The simple

answer is a squared error loss function. Is this always true? Can we have any other

utility or loss function which is asymmetric in nature and gives the posterior mean

as a Bayes estimate. To answer this question we will define a new utility function to

estimate the parameter ∈ R+. We will also obtain the expected utility for this utility

function. Then we will present an equivalent form of loss function. Finally we will

obtain the optimum sample size by minimizing both the posterior expected loss and

a linear cost function defined in Chapter 1 equation (1.28). As some of the posterior

risk functions are in complicated form, we are unable to differentiate it for an opti-

mum sample size. In those situations we use the R program to obtain the optimum

sample size. We consider a Normal with known mean, a Pareto, an Exponential and a

Poisson distribution for an optimum sample size under the proposed utility function.

Now we will define this utility function.

6.2 Scaled exponential utility function

If d is an estimate of θ, then define a utility function as,

u(d, θ) =
θ

d
exp

[(
1− θ

d

)]
. (6.1)
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Figure 6.1: Shape of the scaled exponential loss function for, r = θ
d
.

Where, θ ∈ R+ and the utility will be maximum at the point θ = d that is u(d, d) = 1.

Alternatively we can consider the above utility function as a loss function below.

l(d, θ) = 1− r exp(1− r), (6.2)

where, r = θ
d

and for r = 1 we have d = θ means there is no loss implies l(d, d) = 0.

Properties:

i) This loss function is bounded as the maximum loss could be 1 and the minimum

loss is zero.

ii) The loss is decreasing if, 0 < r ≤ 1.

iii) If r = 1 that is θ = d then the loss is zero as the estimation error is r − 1.

iv) The loss is increasing for r > 1.
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This is an asymmetric loss function because the loss, l(d, θ) decreases sharply when

r takes the value from 0 to 1 and then it will be 0 for r = 1. Finally, the shape of

the loss increases less steeply for r > 1. Since the exponential form of utility is scaled

by θ
d

hence the name of the proposed utility function is a scaled exponential utility

function. In the following theorem we will obtain the Bayes estimate for this utility

function.

Theorem 1 Suppose x1, x2,....,xn is a random sample of size n taken from any

distribution p(x|θ), where θ is the parameter under study ∈ R+. Let p(θ) be any prior

distribution of θ that gives the posterior distribution p(θ|x) as a Gamma distribution

with parameters (say) α and β. Then the Bayes estimate under the utility function

u(d, θ) = θ
d
exp

[
(1− θ

d
)
]

will be the posterior mean α
β
.

Proof

Suppose x1, x2,....,xn is a random sample of size n taken from a density p(x|θ). If p(θ)

is any prior for θ gives the posterior p(θ|x) as a gamma distribution with parameter α

and β. Consider the utility function u(d, θ) = θ
d
exp

[
(1− θ

d
)
]
. So the expected utility

w.r.t. the posterior density p(θ|x) will be,

E[u(d, θ)] =

∫
θ

d
exp

(
1− θ

d

)
p(θ|x)dθ. (6.3)
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Now differentiate (6.3) w.r.t. d we have,

∂E[u(d, θ)]

∂d
=

βαe

Γ(α)

∫
θα+1−1 exp{−(βθ)}

×
[
1

d

(
θ

d2

)
exp

{
−θ
d

}
− 1

d2
exp

{
−θ
d

}]
dθ

=
βαe

Γ(α)
[
1

d3

∫
θα+2−1 exp

{
−
(
β +

1

d

)
θ

}
dθ

− 1

d2

∫
θα+1−1 exp

{
−
(
β +

1

d

)
θ

}
dθ]

=
βαe

Γ(α)

[
Γ(α+ 2)

d3(β + 1
d
)α+2

− Γ(α+ 1)

d2(β + 1
d
)α+1

]
=

βαe

d2(β + 1
d
)α+1

[
α(α+ 1)

d(β + 1
d
)
− α

]
=

αβαek

d2(β + 1
d
)α+1

[
(α+ 1)

d(β + 1
d
)
− 1

]
.

To obtain the Bayes estimate now setting ∂Eu(d,θ)
∂d

= 0 we have,

(α+ 1)

d(β + 1
d
)
− 1 = 0.

Gives,

d̂ =
α

β
,

which is clearly the posterior mean.

In the following theorem we will present the expected utility for the utility function

defined in the equation (6.1).

Theorem 2 Suppose x1, x2,. . . ,xn is a random sample of size n taken from any

distribution p(x|θ), where θ is the parameter under study ∈ R+. Let, p(θ) is any prior

distribution of θ that gives the posterior distribution p(θ|x) as a Gamma distribution

with parameters (say) α and β. Then the maximum expected utility under the utility

function u(d, θ) = θ
d
exp

[
(1− θ

d
)
]

will be, e
(
1 + 1

α

)−(α+1)
.
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Proof

Suppose x1, x2,. . . ,xn is a random sample of size n taken from a density p(x|θ).

If p(θ) is any prior for θ gives the posterior p(θ|x) as a gamma distribution with

parameter α and β. From theorem 1, the Bayes estimate under the utility function

u(d, θ) = θ
d
exp

[
(1− θ

d
)
]

is,

d̂ =
α

β
,

which is the posterior mean. So the expected utility will be,

E[u(d, θ)] =

∫
θ

d
exp

{(
1− θ

d

)}
p(θ|x)dθ. (6.4)

The expected utility (6.4) will be maximum at d = α
β
. We have,

E[u(d, θ)] =

∫
θ

d
exp

(
1− θ

d

)
p(θ|x)dθ

=
βαe

dΓ(α)
×
∫
θα+1−1 exp

{
−
(
β +

1

d

)
θ

}
dθ

=
βαe

dΓ(α)
× Γ(α+ 1)

(β + 1
d
)α+1

=
βα+1e

α
× α

(β + β
α
)α+1

=
βα+1e

βα+1
× 1

(1 + 1
α
)α+1

= e

(
1 +

1

α

)−(α+1)

.

Clearly the expected utility is independent of the prior parameter β. Now the equiv-

alent form of the posterior risk under the loss function (6.2) will be,

PR = 1− e

(
1 +

1

α

)−(α+1)

. (6.5)
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In the following we will consider different distributions to obtain the optimum sample

size under the loss function (6.2) using the results of the theorem 1 and theorem 2

and present all the tables and figures at the end of the chapter.

6.3 SSD to estimate a normal precision when mean

is known

Suppose x1, x2,. . . ,xn is a random sample of size n taken from a normal distribution

with mean µ0 and precision ξ. The posterior distribution of ξ|x is given in chapter 2,

equation (2.11). Now by theorem 1, Bayes estimate under the loss function (6.2) will

be,

d̂ =
α+ n

2

β + t
2

. (6.6)

From theorem 2 the expected utility will be,

E[u(ξ, θ)] = e×
(

1 +
1

α+ n
2

)−(α+n
2
+1)

. (6.7)

So from (6.5) the posterior risk function will be,

PR = 1− e×
(

1 +
1

α+ n
2

)−(α+n
2
+1)

= 1− exp

{
1−

(
α+

n

2
+ 1
)

log

(
1 +

1

α+ n
2

)}
= 1− exp

{
1 +

(
α+

n

2
+ 1
)

log

(
α+ n

2

α+ n
2

+ 1

)}
Let, z = α+ n

2
+ 1, so we have,

PR = 1− exp

{
1 + z log

(
1− 1

z

)}
.
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Now expanding the log term and neglecting 3rd and the higher powers of z (as if the

power of z increases then the value of 1
z

decreases), we have,

PR ≈ 1− exp

(
−1

z

)
,

substituting the value of z in PR we have,

PR ≈ 1− exp

(
− 1

α+ n
2

+ 1

)
. (6.8)

Now adding the cost function (1.28) with the posterior risk (6.8) we have the total

cost as,

TC(n) ≈ c0 + cn+ 1− exp

(
− 1

α+ n
2

+ 1

)
. (6.9)

To obtain the optimum sample of size n, differentiate (6.9) w.r.t n, then setting equal

zero we have,

4c
(
α+

n

2
+ 1
)2

− exp

{
− 1

2
(
α+ n

2
+ 1
)2
}

= 0. (6.10)

Now we will use Maple 13 to solve the equation (6.10) for n. To solve for n we see

that out of the three roots there is only one root that is positive and we shall consider

it as the optimum sample size for the given values of c and α. In table 6.1 we present

the optimum sample size for different values of c keeping α fixed and in table 6.2 we

present the optimum sample size to estimate a normal precision for different values

of α keeping the sampling cost per unit c fixed.

6.4 SSD to estimate an exponential parameter

Suppose x1, x2,....,xn is a random sample of size n taken from an exponential dis-

tribution with parameter λ. From Chapter 2 equation (2.32) we have the posterior
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density λ|x has a Gamma(α + n, β + s) distribution. Now by theorem 1, the Bayes

estimate under the loss function (6.2) will be,

d̂ =
α+ n

β + s

and by (6.5) the posterior risk (PR) will be,

PR = 1− e×
(

1 +
1

α+ n

)−(α+n+1)

= 1− exp

{
1− (α+ n+ 1) log

(
1 +

1

α+ n

)}
= 1− exp

{
1 + (α+ n+ 1) log

(
α+ n

α+ n+ 1

)}
Let, z = α+ n+ 1, so the PR becomes,

PR = 1− exp

{
1 + z log

(
1− 1

z

)}
.

Now expanding the log term and neglecting 3rd and the higher powers of z (as if the

power of z increases then the value of 1
z

decreases), we have,

PR ≈ 1− exp

{
−1

z

}
,

substituting the value of z in PR, we have,

PR ≈ 1− exp

{
− 1

α+ n+ 1

}
. (6.11)

Now adding the cost function (1.28) with the posterior risk (6.11) we have the total

cost as,

TC(n) ≈ c0 + cn+ 1− exp

{
− 1

α+ n+ 1

}
(6.12)

To obtain an optimum sample size n differentiate (6.12) w.r.t n, then setting equal

to zero we have,

2c(α+ n+ 1)2 − exp

{
− 1

2(α+ n+ 1)2

}
= 0. (6.13)
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Now we will use Maple 13 to solve the equation (6.13) for n. To solve for n we see

that out of the three roots only one root is positive and consider it as the optimum

sample size for the given values of c and α. In table 6.3 we will present the optimum

sample size to estimate an exponential parameter for different values of c keeping

α is fixed and in table 6.4 we will provide the optimum sample size when the prior

parameter α varies but the sampling cost per unit c kept fixed.

6.5 SSD to estimate the shape parameter of a Pareto

distribution

Suppose x1, x2,....,xn be a random sample of size n taken from a Pareto distribution

with parameter θ. The density function will be,

p(x|θ) = θαθ0x
−(θ+1);x > α0, θ > 0.

We can re-write it as,

p(x|θ) = θ exp

{
−θ log

(
x

α0

)}
1

x
. (6.14)

So the likelihood of the sample is,

p(x|θ) = θn exp

{
−θ

n∑
i=1

log

(
xi
α0

)}∏ 1

xi
. (6.15)

Let us consider the prior for θ as,

p(θ) ∝ θα−1 exp (−βθ). (6.16)

Now combining (6.15) and (6.16) the posterior distribution of θ|x is,

p(θ|x) ∝ θn+α−1 exp{−(β +
∑

log xi − n logα0)θ}. (6.17)
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Which follows a gamma distribution with parameter n+α and β+
∑

log xi−n logα0.

Now by theorem 1, the Bayes estimate under the loss function (6.2) is

d̂ =
n+ α

β +
∑

log xi − n logα0

.

Following the equation (6.5) we can obtain the posterior risk as,

PR = 1− e

[
1 +

1

n+ α

]−(n+α+1)

, (6.18)

which is exactly the same as the posterior risk to estimate an exponential parameter

obtained in previous section. This is because the posterior risk under the loss function

(6.2) is independent of the prior parameter β. So in this situation we will have exactly

the same cost function as of (6.12) and of course for an optimum sample size we need

to solve the same equation as (6.13) which will lead us to the similar numerical results

obtained from an exponential distribution.

6.5.1 Numerical study

For all the optimum sample sizes (to estimate a particular parameter discussed above)

increases when the sampling cost per unit decreases for the fixed values of the prior

parameters (refer to the table 6.1 and the table 6.3). Again we observe that if the

prior parameter, α increases then the optimum sample size decreases for a fixed value

of the sampling cost per unit c (refer to the table 6.2 and the table 6.4). We also

observe that for the large sampling cost per unit, c and the bigger prior parameter

value it might not worth sampling due to the high sampling cost or enough prior

information. In table 6.2, to estimate a normal precision when mean is known for

α = 10 and c = 0.002, it is not worth sampling due to big sampling cost c and
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large α. Similarly, in the table 6.4, it not worth sampling to estimate an exponential

parameter for (c = 0.0002, α = 50), (c = 0.0005, α = 45) and (c = 0.0005, α = 50)

because of the high sampling cost or enough prior information.

6.6 SSD to estimate a Poisson parameter

Let x follows a Poisson distribution with parameter θ. From chapter 2 equation (2.38),

we have the posterior distribution of θ|x is a gamma distribution with parameter t+β

and n+ α. By theorem 1, the Bayes estimate under the loss function (6.2) will be,

d̂ =
t+ β

n+ α
(6.19)

and by theorem 2, the corresponding posterior risk function will be,

PR = 1− e

(
1 +

1

t+ β

)−(t+β+1)

. (6.20)

Adding the linear cost function (1.28) with (6.20) we have the total cost as,

TC = c0 + cn+ 1− e

(
1 +

1

t+ β

)−(t+β+1)

, (6.21)

which depends on the data t. To obtain the optimum sample size we need find

Et(TC). Because of the complicated form of the equation (6.21) we are unable to

solve it analytically and use the R program to get the optimum sample size following

the steps described in chapter 4. Here we have considered a negative binomial as the

pre posterior distribution to draw samples in step-1. In table 6.5, we have presented

the optimum sample size to estimate a Poisson parameter, θ for different values of

the prior parameters α and β.
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6.6.1 Numerical study

From table 6.5 we observe that if the prior parameter α goes up then the optimum

sample size goes down for a fixed β. On the other hand, we found that if the prior

parameter β goes up then the optimum sample sizes also go up for a fixed α. In figure

6.2 we have presented the R output where we can see that the optimum sample size

is around 15 which gives the minimum cost for the prior parameters, α = 1, β = 4

(which is shown in bold type in table 6.5).

6.7 Conclusion

Normally we know the Bayes estimate under the symmetric squared error utility

(or loss) function will be the posterior mean. In this chapter we proposed a new

asymmetric utility function which also gives the posterior mean as a Bayes estimate

for the parameter ∈ R+. The advantage of using this utility function is that it is

bounded and it gives the posterior mean as a Bayes estimate for the gamma posterior

distribution which is presented in theorem 1. Looking at the practical importance

Smith (1980) obtained Bayes estimates under different form of bounded loss functions.

We have reviewed his loss functions in Chapter 1. We obtained the expected utility

function with a conjugate prior set up for this asymmetric form of utility function in

theorem 2. Then we obtained the optimum sample size using this utility function. We

considered a normal distribution to estimate the precision, a Pareto distribution, an

exponential distribution and a Poisson distribution. We have presented the analytic

results to obtain SSD for the normal, an exponential and a Pareto distribution. For
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these distributions we found from the numerical study that if the prior parameter goes

up then the optimum sample size goes down. We have obtained the optimum sample

size for a Poisson distribution using the R program because of the complicated form

of the posterior risk function. In this case if the prior parameter α goes up when β is

fixed then optimum sample size goes down, on the other hand if α is fixed and β goes

up then the optimum sample size also goes up. This is possibly because we have drawn

the pre-posterior samples from a negative binomial distribution with the parameter

α which is an integer and the parameter β is a function of n. We can easily obtain an

optimum sample size for the scale parameter of Maxwell and Rayleigh distributions

following the same approach as the one we discussed in this chapter.
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Table 6.1: Optimum sample size to estimate a normal precision when mean is known

for different values of the sampling cost per unit, c.

Optimum sample size n∗

c α = 1 α = 2 α = 3

0.0005 40 32 28

0.0010 26 22 18

0.0015 20 16 12

0.0020 17 13 9

0.0025 15 11 7

0.0030 13 9 5

0.0035 12 8 4

0.0040 11 7 3

0.0045 10 6 3

0.0050 9 5 1

Table 6.2: Optimum sample size to estimate a normal precision when mean is known

for different values of the prior parameter, α.

Optimum sample size n∗

α c = 0.001 c = 0.0015 c = 0.002

1 27 21 18

2 25 19 16

3 23 17 14

4 21 15 12

5 19 13 10

6 17 11 8

7 15 9 6

8 13 7 4

9 11 5 2

10 9 3 -
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Table 6.3: Optimum sample size to estimate an exponential parameter for different

values of the sampling cost per unit, c.

Optimum sample size n∗

c α = 1 α = 3 α = 5

0.0001 69 67 65

0.00015 56 54 52

0.0002 48 46 44

0.0025 43 41 39

0.0003 39 37 35

0.00035 36 34 32

0.0004 32 31 30

0.00045 31 30 28

0.0005 30 28 26

0.00055 28 26 24

0.0006 27 25 23

0.00065 24 26 22

0.0007 25 23 21

Table 6.4: Optimum sample size to estimate an exponential parameter for different

values of the prior parameter, α.

Optimum sample size n∗

α c = 0.0001 c = 0.0002 c = 0.0005

5 65 44 39

10 60 39 34

15 55 34 29

20 50 29 24

25 45 24 19

30 40 19 14

35 35 14 9

40 30 9 4

45 25 4 -

50 20 - -
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Table 6.5: Optimum sample size to estimate a Poisson parameter for different values

of the prior parameters α and β when c0 = 1 and c = 0.001.

α β n∗ β α n∗

1 1 10 1 1 10

2 12 2 6

3 14 3 4

4 15 4 2

2 1 6 2 1 14

2 8 2 8

3 10 3 6

4 12 4 4

3 1 4 3 1 16

2 6 2 10

3 8 3 8

4 10 4 6
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Figure 6.2: SSD to estimate a Poisson parameter, λ when prior parameters α = 1, β =

3, c0 = 1, c = 0.001.
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Chapter 7

Optimum decisions under Lindley’s

conjugate utility function

7.1 Introduction

In this chapter we will obtain the optimum decisions under the conjugate utility func-

tion described by Lindley(1976). First he proposed a conjugate utility function for the

one parameter exponential family. He solved the ratio of two integrals of the expected

utility through approximations. Then he considered a normal and a binomial distri-

bution and approximated a large sample with some conditions to solve the equations

for the optimum decisions under the conjugate utility function. In this chapter first

we will consider his conjugate utility function and some other distributions namely,

exponential, Poisson and Maxwell distributions to obtain the optimum decisions us-
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ing his approximation. In the first chapter, section 5.1 we reviewed the literature on

Lindley’s conjugate utility function. In the first half of this chapter we will discuss

the maximization of the expected utility for the one parameter exponential family.

We will then obtain the approximate optimum decision for the Poisson parameter,

exponential parameter, Pareto parameter and the parameter of Maxwell distribution

based on Lindley’s conjugate utility for one parameter exponential family. We will

also sketch the shape of the utility function for each distribution at the end of the

chapter.

In many situations we have seen that the estimation of the parameters of the two

parameter exponential family are difficult when both parameters are unknown. For

such an estimation we need to define a conjugate utility for a two parameter expo-

nential family. In Lindley’s (1976) paper, he noted that it is possible to extend the

results of the one parameter exponential family to the two parameter exponential fam-

ily but gave no details. Note the technique of expanding the posterior distribution as

a Taylor series and taking the terms up to the second order is essentially the Laplace

method for integrals although Lindley (1976) does not mention this point. For de-

tails of the use of Laplace’s method for approximate calculation of posterior moments

and deriving marginal distributions see Tierney and Kadane (1986). They described

approximations to the posterior means and variances of positive functions of a real

and vector-valued parameter, and to the marginal posterior densities of an arbitrary

parameter. In our case we will maximize the expected utility for a two parameter

exponential family and to approximate posterior integrals we will use a Taylor ex-

pansion in all cases. So the second half of this chapter contains the whole procedure

for maximizing the expected utility for the two parameter exponential family when
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both parameters are unknown. First we will define the posterior distribution for the

two parameter exponential family. Then we will propose a conjugate utility function

for two parameters. Next we will lay out the maximization procedure of the expected

utility with some approximations which will result in two theorems. Finally, we will

estimate the parameters of the normal, trinomial, inverse Gaussian distribution using

the results of the theorems when both parameters are unknown. We will also sketch

the two parameter utility functions for these distributions at the end of the chapter.

In the following we will describe the maximization of expected utility for the one

parameter exponential family given by Lindley.

7.2 Optimum decisions for one parameter expo-

nential family

We have presented the posterior distribution of θ in the the equation (1.33) and the

utility function in (1.34). Let xm =
∑n

i=0 xi and N = n+ n0. The expected utility of

d with respect to the posterior density (1.33) will be,

U(d) =

∫
exp[(xm + x(d))θ]G(θ)N+n(d)K(N, xm)F (d)dθ

=
K(N, xm)

K(N + n(d), xm + x(d))
(7.1)

in terms of known functions. But it is difficult to obtain analytic results from (7.1).

So Lindley developed an approximation for a larger N as he noted it will be useful

when either the sample size is larger or the prior knowledge is substantial.
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If N →∞ , xm =
∑n

i=0 xi will also increase and we have xm = Nx, follows

x =
xm
N

=
x0 +

∑n
i=1 xi

n0 + n
(7.2)

It is to be noted that x is the only sample mean when x0 = n0 = 0, otherwise it

is modified in a familiar way by the prior knowledge. Then he gave the following

lemma.

Lemma 1 For large N , K[N + n(d), Nx+ x(d)]−1 is asymptotically[
−2π

Ng′′(θ0)

] 1
2
[
h(θ0)−

h′′(θ0)

2Ng′′(θ0)

]
exp{N [xθ0 + g(θ0)]},

where θ0 is the root of the equation x+ g′(θ0) = 0 and h(θ) = exp[x(d)θ + n(d)g(θ)].

Proof

Following (1.31) let,

I = [K(N + n(d), xm + x(d)]−1

=

∫
exp[Nx+ x(d)θ]G(θ)N+n(d)dθ

=

∫
exp[Nx+ x(d)θ + (N + n(d))g(θ)]dθ

=

∫
exp[N(x+ g(θ))] exp[x(d)θ + n(d)g(θ)]dθ

=

∫
exp[Nf(θ)]h(θ)dθ, (7.3)

where f(θ) = x + g(θ) and h(θ) = exp[x(d)θ + n(d)g(θ)]. Now expanding both f(θ)

and h(θ) of (7.3) in a Taylor series about θ0 and give the root f ′(θ0) = 0, implies
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g′(θ0) = 0, so the integral I becomes,

I =

∫
[{h(θ0) + (θ − θ0)h

′(θ0) +
1

2
(θ − θ0)

2h′′(θ0)}

× exp{N [f(θ0) +
1

2
(θ − θ0)

2f ′′(θ0)]}]dθ

= exp[Nf(θ0)]

∫ {
h(θ0) + θh′(θ0)− θ0h

′(θ0) +
h′′(θ0)

2
(θ − θ0)

2

}
× exp

(
N

2
(θ − θ0)

2f ′′(θ0)

)
dθ

For large N if θ is distributed as normal with mean θ0 and precision Ng′′(θ0) (where

f ′′(θ0)= g′′(θ0) < 0) we have,
[
Ng′′(θ0)
−2π

] 1
2 ∫

exp
(
N
2
(θ − θ0)

2g′′(θ0)
)
dθ = 1. This implies

the mean of θ, E(θ|x) = θ0 and variance of θ, var(θ) = − 1
Ng′′(θ0)

. Using these results

in the integral I we have,

I =

[
−2π

Ng′′(θ0)

] [
h(θ0) +

h′′(θ0)

2
var(θ|x)

]
exp[Nf(θ0)]

=

[
−2π

Ng′′(θ0)

] [
h(θ0)−

h′′(θ0)

2Ng′′(θ0)

]
exp[N{x+ g(θ0)}] (7.4)

proved.

The approximate result for the denominator of (7.1) is given in (7.4). Since the

numerator is a special case of the denominator with n(d) = x(d) = 0 which implies

h(θ) = 1, we have,

K(N, xm)−1 =

[
−2π

Ng′′(θ0)

]
exp[N{x+ g(θ0)}]. (7.5)

Now using the result of (7.4) and (7.5) in (7.1), U(d) is asymptotically,

F (d)

[
h(θ0)−

h′′(θ0)

2Ng′′(θ0

)

]
. (7.6)

First consider if the term O(N−1) is omitted, then the maximum expected utility will

only be F (d)h(θ0) and using conditions C1 and C2 it becomes,

exp[−n(d)g′(d)θ0 + n(d)g(θ0) + n(d){g′(d)d− g(d)}].
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After few simplifications this expression will be the same as the utility function (1.39)

which clearly has the maximum at d̂ = θ0. In the following theorem Lindley proves

an approximate optimum decision for θ for this utility function.

Theorem 3 Under conditions C1 and C2 the optimum decision for large N is given

by the root, θ0, of the equation x+ g′(θ) = 0.

Clearly the above theorem is for an optimum approximate decision for θ when

O(N−1) is omitted from the equation (7.6). Lindley then retained the term O(N−1)

as it is in the equation (7.6) and maximized it for an improved estimate of θ stating

the following theorem.

Theorem 4 Under conditions C1 and C2 the optimum decision, to O(N−1) is

θ0 −
1
2
n′(θ0)

Nn(θ0)g′′(θ0)
.

In equation (7.6) the term n(d) is free to select but Lindley also gave an outline

how we can choose it. For θ near d we may expand the expression in braces of (1.39)

about d which is approximately,

exp

[
1

2
n(d)g′′(d)(θ − d)2

]
,

so that near the θ best for that d, the utility behaves like a normal density with

spread, [−n(d)g′′(d)]−
1
2 ] where g′′(d) < 0. So n(d) measures how near θ has to be to

d for decision to be good: large n(d) says it has to be very near, small n(d) means

that it is not critical. A special case would be where the departure is the same for all
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d. Finally Lindley gave n(d) as

n(d)−1 = −κg′′(d)

for some constant κ and referred to this as condition C3. Lindley (1961) considered

this condition C3 along with condition C1 and C2 to obtain an optimum decision for

θ which is,

θ0 +
1
2
g(3)(θ0)

N{g′′(θ0)}2
. (7.7)

For an optimum decision it gives similar results given in theorem 4. In the paper

Lindley (1976) gave an optimum decision for the Normal mean with known variance

(equal to one). So we have,

p(x|θ) = (2π)−
1
2 exp

[
−1

2
(x− θ)2

]
.

This is the form of (1.30) with G(θ) = exp[−1
2
θ2], so g(θ) = −1

2
θ2. Theorem 1 gives

the optimum decision (under C1 and C2) to be x. Then he considered the case for

normal variance, known mean taken to be zero. So the probability density will be,

p(y|φ) = (2πφ)−
1
2 exp

[
−1

2
y2φ

]
,

where φ is the variance. Now let, x = −1
2
y2 so that x < 0, and θ = φ−1, the precision.

Then G(θ) = θ
1
2 and g(θ) = 1

2
log θ for θ > 0. Theorem1 gives the large sample

decision as θ−1
0 = −2x. Turning back to the original data {yi} and the variance φ,

the decision for φ is
Pn
i=1 y

2
i+y

2
0

n+n0
. Then he considered the approximate optimal decision

for the Bernoulli sample. In each situation he also discussed the corrected estimates

of the parameters using theorem 4. But we haven’t seen the shape of the conjugate

utility function for the parameter of the distributions he studied. In the following

section we will obtain the optimum decisions for an exponential, a Poisson, a Pareto
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and a Maxwell distribution. We will use the conjugate utility structure (1.31) and for

an optimum decision will follow theorem 3 and theorem 4. We will also sketch the

shape of the conjugate utility functions and present them at the end of the chapter.

7.2.1 Optimum decision for a Poisson parameter

Let x follow a Poisson distribution with parameter θ. The likelihood of the sample is

given in Chapter 2 equation (2.36). Let, ψ = log θ and eψ = θ. So the likelihood is

now

p(x|ψ, n) ∝ exp[−neψ] exp[tψ] (7.8)

Let us consider a natural conjugate prior for ψ as,

p(ψ|x0, n0) ∝ exp
[
−n0e

ψ
]
exp [x0ψ] (7.9)

Combining (7.8) and (7.9) we have the posterior distribution as,

p(ψ|x0, n0) ∝ exp
[
−(n+ n0)e

ψ
]
exp [(t+ x0)ψ] (7.10)

Now from (7.2) we have,

x =
xm
N
, (7.11)

where xm = t + x0 =
∑n

i=0 xi and N = (n + n0). From (7.2) we have, G(ψ) =

exp[−eψ], g(ψ) = −eψ, g(d) = −ed, g′(d) = −ed, g′′(d) = −ed, n(d)−1 = −kg′′(d), so,

n(d) = 1
ked

. Now by theorem 3, the optimum decision for ψ will be ψ0 = log x, so

that, θ0 = x. By theorem 4, the decision for ψ is ψ0 = log x− 1
2Nx

gives the decision

for θ = x exp[− 1
2Nx

].
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Shape of the utility function

If d is an estimate of ψ then the conjugate utility for ψ under conditions C1 and C2

is,

u(d, ψ) = exp {n(d)[g(ψ)− g(d)− g′(d)(ψ − d)]}

Now under condition C3 the utility function will be,

u(d, ψ) = exp

{
1

ked
[−eψ + ed + ed(ψ − d)]

}
. (7.12)

In figure 7.1 we have plotted u(d) against d for various φ and observe that at the

point d = φ the utility reach a maximum at 1. We also found that if the parameter

value goes up then underestimation is more serious than overestimation for the given

set of parameters.

7.2.2 Optimum decision for an exponential parameter

Suppose x1, x2,....,xn is a random sample of size n taken from an exponential distri-

bution with parameter λ. The likelihood of the sample is given in chapter 2 equation

(2.31). Consider a conjugate prior for λ as,

p(λ) ∝ λn0 exp(−x0λ) (7.13)

So combining (2.31) and (7.13) the posterior density is,

p(θ|x) ∝ λn0+n exp{−(x0 + t)λ)}. (7.14)

Now comparing with (7.2) we have,

x =
xm
N

(7.15)
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Where, xm = −(t+ x0) =
∑n

i=0 xi and N = n+ n0. We also have, G(λ) = λ, g(λ) =

log λ, g′(λ) = 1
λ
, so , g(d) = log d , g′(d) = 1

d
,g′′(d) = − 1

d2
, n(d)−1 = −kg′′(d) = k

d2
, so,

n(d) = d2

k
. By theorem 3, for large N the decision for λ under the conjugate utility

(7.16) will be, λ0 = NPn
i=0 xi

. By theorem 4, the decision for λ will be λ0

(
1 + 1

N

)
.

Shape of the utility function

If d is an estimate of θ, under conditions C1 and C2 the conjugate utility for λ will

be,

u(d, λ) = exp

[
n(d)

{
n log

(
λ

d

)
− n

d
(λ− d)

}]
; (7.16)

where n(d) can be chosen independently. Using condition C3 we have the utility

function as,

u(λ, d) = exp

[
d2

k

{
n log

(
λ

d

)
− n

d
(λ− d)

}]
; (7.17)

From figure 7.2 we observe that for λ = d, the maximum utility is 1. If the values

of λ goes up then the shape of the utility shifts to the right for fixed range of d. We

also observe from figure 7.3 that if the sample size goes up, the decision range goes

down. The reverse is also true. From both shapes we can see that, after reaching the

maximum at λ = d, the utility comes down to the right faster than to its left which

implies that if over estimation is more serious than under estimation then the utility

u(d, λ) is more appropriate.
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7.2.3 Optimum decision for a Pareto parameter

Suppose x1, x2,....,xn is a random sample of size n taken from a Pareto distribution

with parameter θ. The likelihood is given in Chapter 6 equation (6.15). Consider the

conjugate prior of θ as,

p(θ) ∝ θn0 exp

[
−θ log

(
x0

α0

)]
. (7.18)

Now combining, (6.15) and (7.18) we have,

p(θ|x) ∝ θn+n0 exp

[
−θ

n∑
i=0

log

(
xi
α0

)]
. (7.19)

Now comparing with (7.2) we have,

x =
xm
N

(7.20)

Where, xm = −
∑n

i=0 log
(
xi
α0

)
and N = n + n0, G(θ) = θ, g(θ) = log θ, g′(θ) = 1

θ
,

so , g(d) = log d , g′(d) = 1
d
,g′′(d) = − 1

d2
, n(d)−1 = −kg′′(d) = k

d2
, so, n(d) = d2

k
. By

theorem 3, for large N the decision for θ under the conjugate utility (7.21) will be,

θ0 = n+n0

exp
hPn

i=0 log
“
xi
α0

”i . By theorem 4, the decision for θ will be θ0

(
1 + 1

N

)
.

Shape of the utility function

If d is an estimate of θ, under conditions C1 and C2 the conjugate utility for θ will

be,

u(θ, d) = exp

[
n(d)

{
log θ − log d− 1

d
(θ − d)

}]
; (7.21)

where n(d) can be chosen independently. Using condition C3 we have the utility

function as,

u(θ, d) = exp

[
d2

k

{
log θ − log d− 1

d
(θ − d)

}]
; (7.22)
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From figure 7.4 we observe that for θ = d the maximum utility is 1. The shape of the

utility function increases up to its maximum then decreases. If the values of θ goes up

then the shape of the utility shifts to the right for a fixed range of d. From both figures

7.4 and 7.5 we can see that, after reaching the maximum at θ = d the utility comes

down to the right faster than to its left which implies that if over estimation is more

serious than under estimation then this utility u(d, θ) seems to be more appropriate.

7.2.4 Optimum decision for a Maxwell distribution

The Maxwell distribution is used to model the distribution of speeds of molecules in

thermal equilibrium as given by statistical mechanics. Defining σ =
√

KT
m

, where K

is the Stephan- Boltzmann constant, T is the temperature, m is the mass of molecule,

and x denotes the speed of a molecule, the probability distribution over the range

x ∈ [0,∞) is

p(x|σ) =

√
2

π

x2 exp(− x2

2σ2 )

σ3
, (7.23)

where, σ > 0 is the scale parameter. In the study of the velocity distributions of

molecules in R3 Maxwell assumed that in every cartesian coordinate system the three

components of the velocity are mutually independent random variables with zero

expectation. It can be shown that the three components are normally distributed

with the same variance. Let us take θ = 1
σ2 . So the distribution (7.49) will be,

p(x|θ) ∝ θ
3
2 exp

(
−θx

2

2

)
(7.24)
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Let x1, x2,. . . , xn be a sample of size n taken from Maxwell distribution. So the

likelihood of the sample is,

p(x|θ) ∝ θ
3n
2 exp

(
−θ
∑
x2
i

2

)
(7.25)

Let us take the conjugate family prior as,

p(θ) ∝ exp

(
−1

2
x2

0θ

)
θ

3n0
2 (7.26)

Now combining (7.50) and (7.26) the posterior distribution will be,

p(θ|x) ∝ exp

[
−
(∑

x2
i

2
+
x2

0

2

)
θ

]
θ

3
2
(n+n0)

We can equivalently write,

p(θ|x) ∝ G(θ)N exp(xθ)

where, N = 3
2
(n+ n0) , xm = −1

2
(
∑n

i=0 x
2
i ) and G(θ) = θ. Now comparing with (7.2)

we have,

x =
xm
N

(7.27)

If d is an estimate of θ, under conditions C1 and C2 the conjugate utility for θ will

be,

u(d, θ) = exp

[
n(d)

{
log θ − log d− 1

d
(θ − d)

}]
; (7.28)

where n(d) can be chosen independently. Using condition C3 we have the utility

function as

u(d, θ) = exp

[
d2

k

{
log θ − log d− 1

d
(θ − d)

}]
; (7.29)

where, G(θ) = θ, g(θ) = log θ, g′(θ) = 1
θ
, so , g(d) = log d , g′(d) = 1

d
,g′′(d) = − 1

d2
,

n(d)−1 = −kg′′(d) = k
d2

, so, n(d) = d2

k
. By theorem 3, for large N the decision for
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θ under the conjugate utility (7.28) will be, θ0 = 3(n+n0)

2
Pn
i=0 x

2
i
. By theorem 4, retaining

O(N−1) , the decision for θ will be θ0

(
1 + 1

N

)
, where, θ0 = 3(n+n0)

2
Pn
i=0 x

2
i
.

We have discussed optimization procedure of the estimates for one parameter

exponential family under Lindley’s one parameter conjugate utility function. In the

following we will first propose a conjugate utility function for the two parameter

exponential family. Then we will discuss the procedure of maximization of this utility

function for the two parameter exponential family. At the end, we will consider the

estimation procedure of the parameters of the normal, trinomial and inverse Gaussian

distributions when both parameters are unknown.

7.3 Optimum decisions for the two parameter ex-

ponential family

Lindley (1976) suggested that his results could be extended to multivariate situations

but gave no details. Here we develop his method for the bivariate exponential family.

If p(x|θ) depends on θ = (ψ1(θ), ψ2(θ)) and t(x) = (t1(x), t2(x)) are jointly sufficient

for (ψ1(θ), ψ2(θ)) and if we are able to write the density p(x|θ) in form

p(x|θ) = exp{t1(x)ψ1(θ) + t2(x)ψ2(θ)}G(θ)H(x), (7.30)

then the density belongs to two parameter exponential family. Where,

G(θ)−1 =

∫
exp{t1(x)ψ1(θ) + t2(x)ψ2(θ)}H(x)dx.
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If we draw a sample of size n from (7.30) then the likelihood of the sample will be

p(x|θ) = exp

{
n∑
i=1

t1(xi)ψ1(θ) +
n∑
i=1

t2(xi)ψ2(θ)

}
G(θ)n

n∏
i=1

H(xi). (7.31)

Now consider the natural conjugate prior family for θ as,

p(θ|n0, t(x0)) ∝ exp {t1(x0)ψ1(θ) + t2(x0)ψ2(θ)}G(θ)n0 (7.32)

Also define,

K(n0, t(x0))
−1 =

∫
exp {t1(x0)ψ1(θ) + t2(x0)ψ2(θ)}G(θ)n0dθ (7.33)

So the conjugate prior density of θ given n0 and x0 is,

p(θ|n0, t(x0)) = exp {t1(x0)ψ1(θ) + t2(x0)ψ2(θ)}G(θ)n0K(n0, t(x0)). (7.34)

Combining (7.31) and (7.34) the posterior density will be

p(θ|n0, t(x)) ∝ exp

{
n∑
i=0

t1(xi)ψ1(θ) +
n∑
i=0

t2(xi)ψ2(θ)

}

×G(θ)n+n0

n∏
i=1

H(xi)K(N,
∑

t(xi)). (7.35)

Clearly,

K(N,
∑

t(xi))
−1 =

∫
exp

{
n∑
i=0

t1(xi)ψ1(θ) +
n∑
i=0

t2(xi)ψ2(θ)

}
G(θ)Ndθ, (7.36)

where, N = n+ n0.

In any multiple decision problem we have to take decisions d = (d1, d2, . . . , dp) for

the parameter values θ = (θ1, θ2, . . . , θp) respectively. Now we will define a conjugate

utility function for such a problem. Let us denote, u(d, θ) as the utility function which

represents multiple decisions for multiple parameters and define as follows:

u(d, θ) = exp{x1(d)ψ1(θ) + x2(d)ψ2(θ)G(θ)n(d)F (d), (7.37)
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where, x1(d), x2(d) and F (d) are some suitable functions of d. It is not necessary to

impose normalizing constraints on a utility function as the function F (d) does not

have to integrate to 1. The only restriction on F (d) is that it must be positive. We

want to maximize the expected utility (7.37) with respect to the posterior, (7.35) by

taking expectation on U(d, θ). So the expected utility of d will be,

u(d) =

∫
exp

{
(
n∑
i=0

t1(xi) + x1(d))ψ1(θ) + (
n∑
i=0

t2(xi) + x2(d))ψ2(θ)

}
×G(θ)n+n0+n(d)K(N,

∑
t(xi))F (d)dθ

=
K(N,

∑
t(xi))F (d)

K(N + n(d),
∑
t(xi) + x(d))

. (7.38)

Clearly, K(N,
∑
t(x)) is defined in (7.36) and in a similar fashion the denominator

will be,

K(N + n(d),
∑

t(x) + x(d))−1 =

∫
exp{(

n∑
i=0

t1(xi) + x1(d))ψ1(θ)

+(
n∑
i=0

t2(xi) + x2(d))ψ2(θ)}

×G(θ)N+n(d)dθ. (7.39)

Now maximization over d will give us the optimum decisions for θ.We also see that the

expected utility and the probability distribution belong to the same closed family. The

maximization over d is the solution of the ratio of two K functions. In the following

section we will discuss the choice of the function of d in (7.37). Then we will discuss

the method of maximizing the ratio of two K functions given in (7.38).
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7.3.1 Form of the two parameter conjugate utility function

For the two parameter case (p = 2), consider ψ1(θ) = ψ1 and ψ2(θ) = ψ2 , and

g(ψ1, ψ2) = logG(ψ1, ψ2). Obviously, ψ1 and ψ2 can be obtained after some suitable

re-parametrization. So (7.37) becomes,

u(d1, d2, ψ1, ψ2) = exp{x1(d1, d2)ψ1 + x2(d1, d2)ψ2}G(ψ1, ψ2)
n(d1,d2)F (d1, d2), (7.40)

where, x1(d1, d2) , x2(d1, d2) and F (d1, d2) are some suitable functions of d1 and d2.

Since we want to maximize d1, d2 of (7.40), so the logarithmic derivative of (7.40)

vanishes for both parameters. So we can write,

logU(d1, d2, ψ1, ψ2) = x1(d1, d2)ψ1 + x2(d1, d2)ψ2 + n(d1, d2)g(ψ1, ψ2) + logF (d1, d2).

(7.41)

Now differentiate (7.41) w.r.t. ψ1 and ψ2 separately and setting each equation equal

to zero we have,

x1(d1, d2) = −n(d1, d2)g
′
1(ψ1, ψ2) (7.42)

and

x2(d1, d2) = −n(d1, d2)g
′
2(ψ1, ψ2), (7.43)

where, g′1(ψ1, ψ2) = ∂g(ψ1,ψ2)
∂ψ1

and g′2(ψ1, ψ2) = ∂g(ψ1,ψ2)
∂ψ2

. Using (7.42) and (7.43) in

(7.40) the utility function will be,

u(d1, d2, ψ1, ψ2) = exp [n(d1, d2){g(ψ1, ψ2)− ψ1g
′
1(ψ1, ψ2)− ψ2g

′
2(ψ1, ψ2)}]F (d1, d2)

(7.44)

At the points d1 = ψ1 and d2 = ψ2, the utility function will be maximum. That is

the best possible decision has been made. So

u(d, d) = exp [n(d1, d2){g(d1, d2)− d1g
′
1(d1, d2)− d2g

′
2(d1, d2)}]F (d1, d2). (7.45)
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Now we need to define F (d1, d2). To make u(d, d) to a common value to 1. Let,

f(d1, d2) = logF (d1, d2) = n(d1, d2)[d1g
′
1(d1, d2) + d2g

′
2(d1, d2)− g(d1, d2)]. (7.46)

Now using (7.46) in (7.44) we have the utility function as,

u(d1, d2, ψ1, ψ2) = exp[n(d1, d2){g(ψ1, ψ2)− g′1(ψ1, ψ2)(ψ1 − d1)

−g′2(ψ1, ψ2)(ψ2 − d2)− g(d1, d2)}] (7.47)

For d1 = ψ1 and d2 = ψ2 the maximum utility will be 1. The advantage of this kind

of utility is it is bounded compared to unbounded squared error or linex loss function.

Here n(d1, d2) can be chosen independently as some suitable function of d1 and d2.

The utility structure doesn’t affect the value of n(d1, d2), as it is simply the scale of

the utility function. Now we will discuss how to chose n(d).

7.3.2 Outline of choosing n(d)

If we expand g(ψ1, ψ2) of (7.47) by Taylor series near d1 , d2 up to second order terms

we have,

u(d1, d2, ψ1, ψ2) = exp[n(d1, d2){g(d1, d2) + ĝ1(ψ1 − d1) + ĝ2(ψ2 − d2)

+
1

2
ĝ11(ψ1 − d1)

2 +
1

2
ĝ22(ψ2 − d2)

2 + ĝ12(ψ1 − d1)(ψ2 − d2)

− (ĝ1 + (ψ1 − d1)ĝ11)(ψ1 − d1)− (ĝ2 + (ψ2 − d2)ĝ22)(ψ2 − d2)

− g(d1, d2)}],
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where, ĝ1 = ∂g(ψ1,ψ2)
∂ψ1

|ψ1=d1,ψ2=d2 , ĝ2 = ∂g(ψ1,ψ2)
∂ψ2

|ψ1=d1,ψ2=d2 , ĝ11 = ∂2g(ψ1,ψ2)
∂2ψ1

|ψ1=d1,ψ2=d2 ,

ĝ22 = ∂2g(ψ1,ψ2)
∂2ψ2

|ψ1=d1,ψ2=d2 and ĝ12 = ∂g(ψ1,ψ2)
∂ψ1,∂ψ2

|ψ1=d1,ψ2=d2 . After simplification we have,

u(d1, d2, ψ1, ψ2) = exp[−n(d1, d2)

2
{ĝ11(ψ1 − d1)

2 + ĝ22(ψ2 − d2)
2

−2ĝ12(ψ1 − d1)(ψ2 − d2)}]

= K1 ×
n(d1, d2)

√
ĝ11ĝ22

2π
√
ĝ11ĝ22 − g2

12

exp[−n(d1, d2)

2
{ĝ11(ψ1 − d1)

2

+ĝ22(ψ2 − d2)
2 − 2ĝ12(ψ1 − d1)(ψ2 − d2)}],

where K1 =
2π
√
ĝ11ĝ22−ĝ212

n(d1,d2)
√
ĝ11ĝ22

. Clearly, (ψ1, ψ2) has an asymptotic bivariate normal dis-

tribution where the precision of ψ1 is n(d1, d2)ĝ11, the precision of ψ2 is n(d1, d2)ĝ22

and the correlation between ψ1 and ψ2 is ρ = ĝ12√
ĝ11ĝ22

. Now assume the parameters are

independent so (ψ1, ψ2) asymptotically follows a bivariate normal distribution with

precision of ψ1 is n(d1, d2)ĝ11 and the precision of ψ2 is n(d1, d2)ĝ22. So the precision

of ψ1 and ψ2 depends on n(d1, d2) and it measures the closeness between (d1, ψ1) and

(d2, ψ2). One possibility could be, the departure between d1 and ψ1, d2 and ψ2 are

expected to be the same for all d1 and d2; so we define

n(d1, d2)
−1 = −κĝ12, (7.48)

for some constant κ can be chosen independently as the utility is not affected by a

scale change.

7.3.3 Maximization of the expected utility

At this stage we need to maximize u(d) which is the ratio of two K functions given in

(7.38). We can obtain this ratio numerically if K(N+n(d),
∑
t(x)+x(d)) is available
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but it is difficult to obtain analytic results. Now we will do some approximations which

will help us to make optimum decision at least about the parameters of interest. Let,

N = n0 + n . If N → ∞ then
∑n

i=0 t1(xi) and
∑n

i=0 t2(xi) will also increase. So

define,

x1 =

∑n
i=0 t1(xi)

N
(7.49)

and

x2 =

∑n
i=0 t2(xi)

N
(7.50)

Now we need to re-write (7.39) for the two parameter case, considering ψ1(θ) = ψ1,

ψ2(θ) = ψ2, g(ψ1, ψ2) = logG(ψ1, ψ2). So we have an integral, say I as,

I = K[N + n(d),
∑

t(x) + x(d)]−1

=

∫ ∫
exp{[

n∑
i=0

t1(xi) + x1(d1, d2)]ψ1

+[
n∑
i=0

t2(xi) + x2(d1, d2)]ψ2}G(ψ1, ψ2)
N+n(d1,d2)dψ1dψ2

=

∫
exp{(Nx1 + x1(d1, d2))ψ1 + (Nx2 + x2(d2, d2))ψ2

+(N + n(d1, d2))g(ψ1, ψ2)}dψ1dψ2

=

∫ ∫
exp[N{x1ψ1 + x2ψ2 + g(ψ1, ψ2)}]

× exp[ψ1x1(d1, d2) + ψ2x2(d1, d2) + n(d1, d2)g(ψ1, ψ2)]dψ1dψ2

=

∫ ∫
exp[Nf(ψ1, ψ2)]× h(ψ1, ψ2)dψ1dψ2. (7.51)

Where, f(ψ1, ψ2) = x1ψ1+x2ψ2+g(ψ1, ψ2), h(ψ1, ψ2) = exp[ψ1x1(d1, d2)+ψ2x2(d1, d2)+

n(d1, d2)g(ψ1, ψ2)] , N = n+ n0. Now expanding f(ψ1, ψ2) and h(ψ1, ψ2) of (7.51) by
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Taylor series for two variables ψ1 and ψ2 up to second order about (ψ01, ψ02) we have,

exp[Nf(ψ1, ψ2)] = exp[N{f(ψ01, ψ02) +
∂f(ψ1, ψ2)

∂ψ1

|ψ1=ψ01,ψ2=ψ02(ψ1 − ψ01)

+
∂f(ψ1, ψ2)

∂ψ2

|ψ1=ψ01,ψ2=ψ02(ψ2 − ψ02)

+
1

2!
{∂

2f(ψ1, ψ2)

∂2ψ1

|ψ1=ψ01,ψ2=ψ02(ψ1 − ψ01)
2

+2
∂2f(ψ1, ψ2)

∂ψ1∂ψ2

|ψ1=ψ01,ψ2=ψ02(ψ1 − ψ01)(ψ2 − ψ02)

+
∂2f(ψ1, ψ2)

∂2ψ2

|ψ1=ψ01,ψ2=ψ02(ψ2 − ψ02)
2}}].

In the expansion of exp[Nf(ψ1, ψ2)] consider the root,

f ′1(ψ1, ψ2) =
∂f(ψ1, ψ2)

∂ψ1

|ψ1=ψ01,ψ2=ψ02 = 0 (7.52)

and

f ′2(ψ1, ψ2) =
∂f(ψ1, ψ2)

∂ψ2

|ψ1=ψ01,ψ2=ψ02 = 0 (7.53)

Now exp[Nf(ψ1, ψ2)] becomes,

exp[Nf(ψ1, ψ2)] = exp[N{f(ψ01, ψ02) +
1

2

∂2f(ψ1, ψ2)

∂2ψ1

|ψ1=ψ01,ψ2=ψ02(ψ1 − ψ01)
2

+
∂2f(ψ1, ψ2)

∂ψ1∂ψ2

|ψ1=ψ01,ψ2=ψ02(ψ1 − ψ01)(ψ2 − ψ02)

+
1

2

∂2f(ψ1, ψ2)

∂2ψ2

|ψ1=ψ01,ψ2=ψ02(ψ2 − ψ02)
2}]

= exp[Nf(ψ01, ψ02)] exp[−1

2
{−N ∂2f(ψ1, ψ2)

∂2ψ1

|ψ1=ψ01,ψ2=ψ02(ψ1 − ψ01)
2

−2N
∂2f(ψ1, ψ2)

∂ψ1∂ψ2

|ψ1=ψ01,ψ2=ψ02(ψ1 − ψ01)(ψ2 − ψ02)

−N ∂2f(ψ1, ψ2)

∂2ψ2

|ψ1=ψ01,ψ2=ψ02(ψ2 − ψ02)
2}]

Now by definition of f(ψ1, ψ2),

∂2f(ψ1, ψ2)

∂2ψ1

|ψ1=ψ01,ψ2=ψ02 = ĝ11,
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∂2f(ψ1, ψ2)

∂ψ1∂ψ2

|ψ1=ψ01,ψ2=ψ02 = ĝ12

and

∂2f(ψ1, ψ2)

∂2ψ2

|ψ1=ψ01,ψ2=ψ02 = ĝ22.

So,

exp[Nf(ψ1, ψ2)] = exp[Nf(ψ01, ψ02)] exp[−1

2
{−Nĝ11(ψ1 − ψ01)

2

−2Nĝ12(ψ1 − ψ01)(ψ2 − ψ02)−Nĝ22(ψ2 − ψ02)
2}]

= exp[Nf(ψ01, ψ02)]× C1 ×
N
√
ĝ11 − ĝ212

ĝ22

√
ĝ22 − ĝ212

ĝ11

2π[1− ĝ212
ĝ11ĝ22

]

× exp[−1

2
{−Nĝ11(ψ1 − ψ01)

2

−2Nĝ12(ψ1 − ψ01)(ψ2 − ψ02)−Nĝ22(ψ2 − ψ02)
2}].

Where, C1 =
2π[1− ĝ212

ĝ11ĝ22
]

N

r
ĝ11−

ĝ212
ĝ22

r
ĝ22−

ĝ212
ĝ11

. In the above expansion the last exponent approxi-

mately follows bivariate normal distribution with precision of ψ1 is −N
(
ĝ11 − ĝ212

ĝ22

)
,

precision of ψ2 is −N
(
ĝ22 − ĝ212

ĝ11

)
and the correlation between ψ1 and ψ2 is ρ = ĝ12√

ĝ11ĝ22
.

Clearly, both ĝ11 and ĝ22 are always negative. If the variables are independent then,

ρ = 0 implies ĝ12 = 0 , so exp[Nf(ψ1, ψ2)] becomes

exp[Nf(ψ1, ψ2)] = exp[Nf(ψ01, ψ02)]× C2 ×
N
√
ĝ11ĝ22

2π

× exp[−N
2
{ĝ11(ψ1 − ψ01)

2 + ĝ22(ψ2 − ψ02)
2}],
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where, C2 = 2π
N
√
ĝ11ĝ22

. Now expanding h(ψ1, ψ2) by the Taylor expansion for two

variables at ψ01, ψ02 we have,

h(ψ1, ψ2) = h(ψ01, ψ02) +
∂h(ψ1, ψ2)

∂ψ1

|ψ1=ψ01,ψ2=ψ02(ψ1 − ψ01)

+
∂h(ψ1, ψ2)

∂ψ2

|ψ1=ψ01,ψ2=ψ02(ψ2 − ψ02)

+
1

2!
{∂

2h(ψ1, ψ2)

∂2ψ1

|ψ1=ψ01,ψ2=ψ02(ψ1 − ψ01)
2

+2
∂2h(ψ1, ψ2)

∂ψ1∂ψ2

|ψ1=ψ01,ψ2=ψ02(ψ1 − ψ01)(ψ2 − ψ02)

+
∂2h(ψ1, ψ2)

∂2ψ2

|ψ1=ψ01,ψ2=ψ02(ψ2 − ψ02)
2}

For simplicity denote ,

ĥ1 =
∂h(ψ1, ψ2)

∂ψ1

|ψ1=ψ01,ψ2=ψ02 ,

ĥ11 =
∂2h(ψ1, ψ2)

∂2ψ1

|ψ1=ψ01,ψ2=ψ02 ,

ĥ2 =
∂h(ψ1, ψ2)

∂ψ2

|ψ1=ψ01,ψ2=ψ02 ,

ĥ22 =
∂2h(ψ1, ψ2)

∂2ψ2

|ψ1=ψ01,ψ2=ψ02 ,

and

ĥ12 =
∂2h(ψ1, ψ2)

∂ψ1∂ψ2

|ψ1=ψ01,ψ2=ψ02 .

So the above expansion becomes

h(ψ1, ψ2) = h(ψ01, ψ02) + ĥ1(ψ1 − ψ01) + ĥ2(ψ2 − ψ02)

+
1

2
ĥ11(ψ1 − ψ01)

2 + ĥ12(ψ1 − ψ01)(ψ2 − ψ02) +
1

2
ĥ22(ψ2 − ψ02)

2.
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Now consider the integral (7.51),∫ ∫
exp[Nf(ψ1, ψ2)]× h(ψ1, ψ2)dψ1dψ2 = exp[Nf(ψ01, ψ02)]

× C2{h(ψ01, ψ02) + ĥ1E(ψ1 − ψ01)

+ ĥ2E(ψ2 − ψ02) +
1

2
ĥ11E(ψ1 − ψ01)

2

+ ĥ12E(ψ1 − ψ01)(ψ2 − ψ02)

+
1

2
ĥ22E(ψ2 − ψ02)

2}.

After suitable re-parametrization the posterior density of ψ1 and ψ2 will be indepen-

dent so we get,∫ ∫
exp[Nf(ψ1, ψ2)]h(ψ1, ψ2)dψ1dψ2 = exp[Nf(ψ01, ψ02)]C2{h(ψ01, ψ02)

+
1

2
V ar(ψ1) +

1

2
V ar(ψ2)}

= exp[Nf(ψ01, ψ02)]C2{h(ψ01, ψ02)

−1

2

ĥ11

Nĝ11

− 1

2

ĥ22

Nĝ22

}.

That is K(N + n(d),
∑
t(x) + x(d))−1 is asymptotically,

exp[Nf(ψ01, ψ02)]×
2π

N
√
ĝ11ĝ22

× {h(ψ01, ψ02)−
1

2

ĥ11

Nĝ11

− 1

2

ĥ22

Nĝ22

}. (7.54)

Since the numerator is a special case of the denominator in (7.38) with n(d1, d2) =

x1(d1, d2) = x1(d1, d2) = 0 gives, h(ψ1, ψ2) = 1. So, K(N,
∑
t(x))−1 is asymptotically,

C2 exp[Nf(ψ01, ψ02)]. (7.55)

For large N , applying the result of (7.54) and (7.55) to both numerator and denomi-

nator of (7.38) gives u(d1, d2, ψ1, ψ2) has an approximate value,[
h(ψ01, ψ02)−

1

2

ĥ11

Nĝ11

− 1

2

ĥ22

Nĝ22

]
F (d1, d2) (7.56)
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recognizing f ′′(ψ1, ψ2) = g′′(ψ1, ψ2). If we ignore the term O(N−1) then u(d1, d2) is

simply

h(ψ01, ψ02)F (d1, d2), (7.57)

where,

h(ψ01, ψ02) = exp[ψ01x1(d1, d2) + ψ02x2(d1, d2) + n(d1, d2)g(ψ01, ψ02)]

= exp[n(d1, d2){g(ψ01, ψ02)− ψ01g
′
1(ψ01, ψ02)− ψ02g

′
2(ψ01, ψ02)}]

and

F (d1, d2) = exp[n(d1, d2){d1g
′
1(d1, d2) + d2g

′
2(d1, d2)− g(d1, d2)}].

So the equation (7.57) will be maximum at d̂1 = ψ01 and d̂2 = ψ02. Thus we have

proved the following theorem.

Theorem 5 For large N, under the conditions (7.42), (7.43) and (7.46) the optimum

decision for the two parameter exponential family will be, ψ01 and ψ02 where, ψ01 and

ψ02 are the roots of two simultaneous equations:

x1 + g′1(ψ1, ψ2) = 0

and

x2 + g′2(ψ1, ψ2) = 0.

Better results can be obtained if we keepO(N−1) which we will present in the following

theorem.

Theorem 6 The optimum decisions of ψ01 and ψ02 to O(N−1) will be, ψ01− n′(ψ01)
N [n′′(ψ01)+n(ψ01)ĝ11]

and ψ02 − n′(ψ02)
N [n′′(ψ02)+n(ψ02)ĝ22)]

respectively.
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Proof

Now expanding d1 and d2 of (7.56) near ψ01, ψ01 respectively by Taylor series up-to

second order term and setting n(d1)
−1 = −k1ĝ11, n(d2)

−1 = −k2ĝ22 and n(d1, d2)
−1 =

k3ĝ12 = 0 (as ψ1 and ψ2 are assumed independent). We have,

exp[−1
2
n(ψ01, ψ02){(d1 − ψ01)

2ĝ11 + (d2 − ψ02)
2ĝ22}]

× [1− 1
N
{n(ψ01, ψ02) + (d1 − ψ01)n

′(ψ01) + (d2 − ψ02)
2n′(ψ02)

+ 1
2
(d1 − ψ01)

2n′′(ψ01) + 1
2
(d2 − ψ02)

2n′′(ψ02)

+ 1
2
n(ψ01, ψ02)

2{(d1 − ψ01)
2ĝ11 + (d2 − ψ02)

2ĝ22}}].

Now let, d1 − ψ01 = z1 and d2 − ψ02 = z2. So the above expression becomes,

u(z) = exp(A1z
2
1 + A2z

2
2)(1 + a+ b1z1 + b2z2 + c1z

2
1 + c2z

2
2). (7.58)

Where, A1 , A2 are O(1) and a , b1, b2,c1, c2 are O(N−1) defined as follows. a =

−n(ψ01, ψ02), A1 = −1
2
n(ψ01, ψ02)ĝ11, A2 = −1

2
n(ψ01, ψ02)ĝ22, b1 = −n′(ψ01), b2 =

−n′(ψ02), c1 = −1
2
[n′′(ψ01)+n2(ψ01, ψ02)ĝ11], c2 = −1

2
[n′′(ψ02)+n2(ψ01, ψ02)ĝ22]. Now

differentiate (7.58) w.r.t. z1 and z2 separately and neglecting the powers of z1 and z2

with 2 and more then finally setting each equal to zero we have,

z1 =
−b1

2(A1 + c1 + aA1)
= − n′(ψ01)

n′′(ψ01) + n(ψ01, ψ02)ĝ11

and

z2 =
−b2

2(A2 + c2 + aA2)
= − n′(ψ02)

n′′(ψ02) + n(ψ01, ψ02)ĝ22

.

So the corrected estimate of ψ01 and ψ02 will be d̂1 = ψ01 + z1 and d̂2 = ψ02 + z2

respectively.

In the following we will obtain the approximate optimum decisions for the two pa-

rameter exponential family when both are unknown using the results of the theorem.
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7.3.4 Optimum decisions for a normal mean µ and precision

λ when both are unknown

Consider a normal distribution with mean, µ, precision, λ (both parameter unknown)

with density function,

p(x|µ, λ) =

[
λ

2π

] 1
2

exp

{
−λ

2
(x− µ)2

}
= (2π)−

1
2

[
λ

1
2 exp

{
−1

2
λµ2

}]
exp

(
xµλ− 1

2
x2λ

)
.

Let x1,x2,. . .,xn be a random sample of size n from the above density, then the like-

lihood of the sample will be,

p(x|µ, λ) = (2π)−
n
2

[
λ

1
2 exp

{
−1

2
λµ2

}]n
exp

(
µλ

n∑
i=1

xi −
1

2
λ

n∑
i=1

x2
i

)
(7.59)

Consider a conjugate prior family,

p(µ, λ|τ0, τ1, τ2) ∝
[
λ

1
2 exp

{
−1

2
λµ2

}]τ0
exp

(
τ1µλ−

1

2
τ2λ

)
(7.60)

Now combining (7.59) and (7.60) the posterior density will be,

p(µ, λ|x) ∝
[
λ

1
2 exp

{
−1

2
λµ2

}]n+τ0

exp

{
µλ

(
n∑
i=1

xi + τ1

)
− 1

2

(
n∑
i=1

x2
i + τ2

)
λ

}
.

(7.61)

The canonical form of (7.61) are obtained by setting,

(ψ1, ψ2) =
(
µλ,−1

2
λ
)
, (xa, xb) = (

∑n
i=1 xi + τ1,

∑n
i=1 x

2
i + τ2). So, (7.61) becomes,

p(ψ1, ψ2|x) ∝
[
(−2ψ2)

1
2 exp

{
ψ2

1

4ψ2

}]n+τ0

exp[ψ1xa + ψ2xb] (7.62)

We can re-write (7.62) as,

p(ψ1, ψ2|x) ∝ G(ψ1, ψ2)
N exp[ψ1xa + ψ2xb], (7.63)
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where, G(ψ1, ψ2) = (−2ψ2)
1
2 exp

[
ψ2

1

4ψ2

]
and N = n + τ0. Now find, g(ψ1, ψ2) =

1
2
log(−2ψ2) +

ψ2
1

4ψ2
. So, g′1(ψ1, ψ2) = ψ1

2ψ2
, g′2(ψ2, ψ2) = 1

2ψ2
− ψ2

1

4ψ2
2
. Using (7.48) we have

n(d1, d2) =
d22
d1

assuming κ = 1
2
. So from (7.47) we have the conjugate utility function

will be,

u(ψ1, ψ2, d1, d2) = exp[
d2

2

d1

{1

2
log(−2ψ2) +

ψ2
1

4ψ2

− ψ1

2ψ2

(ψ1 − d1)

− (
1

2ψ2

− ψ2
1

4ψ2

)(ψ2 − d2)−
1

2
log(−2d2)−

d2
1

4d2

}]. (7.64)

Since ψ1 and ψ2 are independent, so we will keep ψ2 = d2 = 1 fixed and in the figure

7.6 we sketched three dimensional shape of the conjugate utility function of (7.64)

for different values of decisions d1 and d2 when ψ1 = 1.5 and ψ2 = −5 are kept

fixed. The reason to consider a large negative value of ψ2 is because we need to get

the positive value of λ with small variance. We observe from the graph that at the

point d1 = ψ1 = 1.5 and d2 = ψ2 = −5, the shape of the utility function attains its

maximum. For large N , x1 = xa
N

, x2 = xb
N
. Now by theorem 5, solving equations

x1 + g′1(ψ1, ψ2) = 0 and x2 + g′2(ψ1, ψ2) = 0 simultaneously, we have the solution for

ψ1 is ψ01 = x1

x2−x1
2 and the solution for ψ2 is ψ02 = 1

2(x1
2−x2)

. Now going backwards to

the data x we have,

µ̂ =

∑n
i=1 xi + τ1
N

and

λ̂ =
N2

N(
∑n

i=1 x
2
i + τ2)− (

∑n
i=1 xi + τ1)2

.

So, 1

λ̂
=

Pn
i=1 x

2
i+τ2

N
− µ̂2, which is close to sample variance if τ1 = τ2 = τ0 = 0. So the

approximate value of ψ1 and ψ2 will maximize the expected utility defined in (7.64).
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7.3.5 Optimum decisions for a trinomial distribution when

both parameters are unknown

The probability distribution of the trinomial distribution with parameter θ1 and θ2

is,

p(r1, r2|θ1, θ2) ∝ θr11 θ
r2
2 [1− (θ1 + θ2)]

n−(r1+r2), (7.65)

where, 0 < θ1 < 1 , 0 < θ2 < 1, 0 < r1, r2 < n, r1 + r2 ≤ n.

The conjugate prior family will be,

p(θ1, θ2) ∝ θα1
1 θα2

2 [1− (θ1 + θ2)]
α3 . (7.66)

Now combining (7.65) and (7.66) we have the posterior distribution as,

p(θ1, θ2|r1, r2) ∝ θα1+r1
1 θα2+r2

2 [1− (θ1 + θ2)]
n+α3−(r1+r2)

∝
[

θ1

1− (θ1 + θ2)

]α1+r1 [ θ2

1− (θ1 + θ2)

]α2+r2

[1− (θ1 + θ2)]
n+α1+α2+α3

∝ exp

[
(α1 + r1) log

(
θ1

1− (θ1 + θ2)

)
+ (α2 + r2) log

(
θ2

1− (θ1 + θ2)

)]
[1− (θ1 + θ2)]

n+α1+α2+α3

The canonical form of the above distribution obtained by setting,

(ψ1, ψ2) =

(
log

(
θ1

1− (θ1 + θ2)

)
, log

(
θ2

1− (θ1 + θ2)

))
.

Now we have,

p(θ1, θ2|r1, r2) ∝ exp[(α1 + r1)ψ1 + (α2 + r2)ψ2]

[
1

eψ1 + eψ2 + 1

]n+α1+α2+α3

∝ exp[r′1ψ1 + r′2ψ2]G(ψ1, ψ2)
α′

3 .

Where, G(ψ1, ψ2) = 1
eψ1+eψ2+1

, r′1 = α1 + r1 , r′2 = α2 + r2 and N = n+α1 +α2 +α3.

So, g(ψ1, ψ2) = − log(eψ1 + eψ2 + 1), g′1(ψ1, ψ2) = ∂g
∂ψ1

= − eψ1

(eψ1+eψ2+1)
, g′2(ψ1, ψ2) =
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∂g
∂ψ2

= − eψ2

(eψ1+eψ2+1)
. Now using (7.48) we have

n(d1, d2) = −(exp(d1) + exp(d2) + 1)2

exp(d1 + d2)

assuming κ = 1. So from (7.47) we have the conjugate utility function will be,

u(ψ1, ψ2, d1, d2) = exp[−(ed1 + ed2 + 1)2

ed1+d2
{− log(eψ1 + eψ2 + 1) +

eψ1

eψ1 + eψ2 + 1
(ψ1 − d1)

+
eψ2

eψ1 + eψ2 + 1
(ψ2 − d2) + log(ed1 + ed2 + 1)}]. (7.67)

The utility function (7.67) will be maximum at ψ1 = d1 and ψ2 = d2. In figure 7.7

we will sketch the conjugate utility function (7.67). We observe from the graph that

at the point d1 = ψ1 = 1.5 and d2 = ψ2 = 1.1 the utility function (7.67) attains its

maximum.

Now let, for large N , ψ1 =
r′1
N

and ψ2 =
r′2
N

. Now using theorem 5, solving equations

ψ1 + g′1(ψ1, ψ2) = 0 , ψ2 + g′2(ψ2) = 0 simultaneously we have,

eψ1

eψ2
=

1 + ψ1

1 + ψ1, ψ2

.

Going backward to the original data we have,

θ1

θ2

=
r′1
r′2

=
α1 + r1
α2 + r2

.

7.3.6 Optimum decisions for an Inverse Gaussian distribu-

tion when both parameters are unknown

The probability density function of the inverse Gaussian distribution is as follows,

p(x|µ, λ) =

[
λ

2πx3

] 1
2

exp

{
−λ(x− µ)2

2µ2x

}
; (7.68)
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where x > 0, mean µ > 0, the dispersion parameter λ > 0. Let, x1, ..., xn be a random

sample of size n from (7.68), so the likelihood function will be,

p(x|µ, λ) ∝ λ
n
2 exp

{
−nλ

2
V − nλ(x− µ)2

2µ2x

}
. (7.69)

where, V = 1
n

(
1Pn
i=1 xi

− 1
x

)
, x = 1

n

∑n
i=1 xi. We can re-write (7.69) as,

p(x|µ, λ) ∝ λ
n
2 exp

[
nλ

µ

]
exp

[
−(
nV

2
+

n

2x
)λ− nλx

2µ2

]
. (7.70)

Now define a conjugate family as,

p(x|µ, λ) ∝ λ
n0
2 exp

[
n0λ

µ

]
exp

[
−τ0

2
λ− τ1λ

2µ2

]
. (7.71)

Now combining (7.70) and (7.71) we have the posterior distribution will be,

p(µ, λ|x) ∝ λ
n+n0

2 exp

[
(n+ n0)λ

µ

]
exp

[
−
(
nV

2
+

n

2x
+
τ0
2

)
λ−

(
nx

2
+
τ1
2

)
λ

µ2

]
.

(7.72)

Now following Gutierrez-Pena and Smith (1995), the canonical form of the above dis-

tribution obtained by setting, (ψ1, ψ2) =
(
−λ

2
,− λ

2µ2

)
and (xa, xb) =

(
nV + n

x
+ τ0, nx+ τ1

)
.

Also let, N = n+ n0. So (7.72) becomes,

p(ψ1, ψ2|x) ∝
[
(−2ψ1)

1
2 exp{−2

√
ψ1ψ2}

]N
exp [xaψ1 + xbψ2] ; (7.73)

where, G(ψ1, ψ2) = (−2ψ1)
1
2 exp{−2

√
ψ1ψ2}. So, g = 1

2
log(−2ψ1) − 2

√
ψ1ψ2. We

have , g′1(ψ1, ψ2) = 1
2ψ1
−
√

ψ2

ψ1
and g′2(ψ1, ψ2) = −

√
ψ1

ψ2
. Now using (7.48) we have,

n(d1, d2) =
√
d1d2

assuming κ = 1
2
. So from (7.47) we have the conjugate utility function will be,

u(ψ1, ψ2, d1, d2) = exp[(
√
d1d2){

1

2
log(−2ψ1)− 2

√
ψ1ψ2 − (

1

2ψ1

−

√
ψ2

ψ1

)(ψ1 − d1)

+

√
ψ1

ψ2

(ψ2 − d2)−
1

2
log(−2d1) + 2

√
d1d2}]. (7.74)
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The utility function (7.74) will be maximum at ψ1 = d1 and ψ2 = d2. In figure 7.8

we sketched three dimensional shape of the the conjugate utility function (7.74). We

observe from the graph that at the point d1 = ψ1 = −4 and d2 = ψ2 = −2 the utility

function (7.67) attains its maximum. Because the inverse Gaussian parameters µ and

λ are positive, looking at the canonical form of the parameter ψ1 and ψ2, we can

ensure the positive values of the parameters by taking the negative values of ψ1 and

ψ2. For large N let, x1 = xa
N

and x2 = xb
N

. Now by theorem 5, solving equations

x1 + g′1(ψ1) = 0 and x2 + g′2(ψ2) = 0 simultaneously, we get the solution for ψ1,

ψ01 =

[
2

(
1

x2

− x1

)]−1

,

and the solution for ψ2,

ψ02 =

[
2x2

2

(
1

x2

− x1

)]−1

.

Now going backwards to the original data we have,

µ̂ =
1

N
(nx+ τ1)

and

λ̂ =

[
1

N

(
nV +

n

x
+ τ0

)
− µ̂−1

]−1

.

The approximate value of ψ1 and ψ2 will maximize the expected utility defined in

(7.74).

7.4 Conclusion

Lindley (1976) clearly explained the concepts of conjugate utility functions and proved

theorems to obtain approximate optimum decisions under the utility function for
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one parameter exponential family. First of all we have presented his theorem and

showed his proof of it. Then using his results we obtained the approximate optimum

decisions for the parameter of the exponential, Pareto and Maxwell distributions

under the conjugate utility functions. For each distributions we also graphed the

shape of the utility function. We have extended the conjugate utility function for the

one parameter exponential family of Lindley (1976) to the two parameter exponential

family. Here we made the approximation in the expected utility given in (7.36)

where we showed the maximum utility will be 1 for ψ1 = d1 and ψ2 = d2. We

have outlined a method of choosing d in equation (7.44). To maximize the expected

utility of (7.36) for the two parameter exponential family we have approximated the

ratio of two integrals given in (7.38) by Taylor expansion. At the time of doing

the expansions, we have considered two roots, given in the equations (7.52) and

(7.53), so that the expected utility given in (7.38) is maximized and the approximate

decisions for the parameters without O(N−1) are summed up in theorem 5. The

corrected estimates of the parameters are presented in theorem 6 where we retained

O(N−1) for the optimum decisions. We did not follow the approximation procedure

of Tierney and Kadane (1986) as their intention was to approximate the posterior

moments but for us to maximize the expected utility. But the similarity in both

methods needs to be a positive g function. For the two parameter exponential family,

for a g function, we re-parameterize the parameter θ to ψ following the canonical

forms of Smith and Gutierrez-Pena (1985), then we applied the results of theorem

5 for an optimum decisions of ψ. Someone can easily get the optimum decisions for

θ going backward to the original data which was shown with examples in section

7.9-7.11. For each case we have written the mathematical form of the utility function
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and sketched the shape of the utility function as well. It is to be noted that we

have clearly discussed the form of the utility function for the two parameter and

developed the approximation procedure of maximizing it under the two parameter

exponential family. In the approximations by Lindley (1980), Tierney and Kadane

(1986), Tierney, Kass and Kadane (1989) did not consider the form of utility function

in their optimization and obtained approximations to the posterior moments. We did

not consider the optimum sample size for the exponential family and left it for future

research.
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Figure 7.1: Conjugate utility function to estimate a Poisson parameter ψ = log θ as

a function of d for k = 1 and for different values of ψ.

Figure 7.2: Conjugate utility function to estimate an exponential parameter λ as a

function of d when n = 10, k = 1 are fixed.
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Figure 7.3: Conjugate utility function to estimate an exponential parameter λ as a

function of d when λ = 0.5, k = 1 are fixed and for different values of n.

Figure 7.4: Conjugate utility function to estimate a Pareto parameter as a function

of d when k = 1 are fixed and for different values of the parameter θ.
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Figure 7.5: Conjugate utility function to estimate a Pareto distribution as a function

of the parameter θ when k = 1 is fixed and for different values of d.

Figure 7.6: Shape of the conjugate utility function for a normal distribution for

ψ1 = 1.5 and ψ2 = −5 and in x axis takes the decision d1 with range -1 to 1 and in y

axis takes the decision d2 with range -1 to 1.
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Figure 7.7: Shape of the conjugate utility function for a trinomial distribution for

ψ1 = 1.5, ψ2 = 1.1 and in x axis takes the decision d1 with range 0 to 2.5 and in y

axis takes the decision d2 with range 0 to 2.

Figure 7.8: Shape of the conjugate utility function for an inverse Gaussian distribution

for ψ1 = −4, ψ2 = −2 and in x axis takes the decision d1 with range -5 to 2 and in y

axis takes the decision d2 with range -5 to 2.
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Chapter 8

Limitations and future research

8.1 Introduction

In this chapter we shall discuss the applications and limitations of the research done

with some indication of possible areas for future research. In the first chapter we

reviewed the literature related to loss functions, utility functions and Bayesian sample

size determinations. In the chapters 2-6 we have obtained the optimum sample size

under various symmetric and asymmetric loss functions. In chapter 7 we studied the

Lindley’s conjugate utility for the one parameter exponential family and we extended

it to the two parameter exponential family. In the next section first we will discuss

SSD based on power like calculations and utility (or loss) functions and compare

our results with other authors. Then we will discuss Chapters 3-7 indicating the

achievements and limitations of the work done in each chapter. We have considered

a linear cost function and the posterior risk function for an optimum SSD. In the
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following section we will lay out the measurements of costs and risks with a suggestion

as to how we can measure these using the same units of measurement. Finally we

will give some indications of some possible areas of future research.

8.2 Discussion

We obtained the optimum SSD for a number of models using both symmetric and

asymmetric loss functions. Here we will discuss and compare our methods with the

methods used by other authors. DeGroot (1970) obtained Bayesian sample size for

gamma distribution using a squared error loss function and a linear cost function.

He also considered an absolute error loss function for the optimum sample of size n

to estimate a normal mean with known precision. In both situations he considered

a loss function instead of a utility function and obtained the posterior risk function.

Then, adding a linear cost function to the risk function he minimized them together to

obtain the optimum sample size which is equivalent to the MEU discussed in Chapter

1. But rather than considering a utility function he considered a loss function. Lindley

(1972) obtained the sample size using the squared error loss function for a normal

distribution with known variance. In the example (refer to Chapter 2) he minimized

a linear cost function and the posterior risk together to obtain the optimum sample of

size n. It is of interest for the purposes of this study that DeGroot (1970) considered

the absolute error loss function. Muller and Parmigiani (1995) also considered the

absolute error utility function to obtain the SSD for a binomial distribution through

curve fitting of a Monte Carlo experiment. Adcock (1988) obtained the solution for
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an optimum sample size using the ACC method but there has been a ongoing long

debate obtaining the sample size between adherence of the ACC method and the

MEU method. According to Lindley i) the use of MEU is guaranteed to be coherent

: this method is comparable to other methods ii) it is accompanied by a well defined

algorithm for its solution iii) a wide range of utility functions can be accommodated.

Finally, he suggested that to understand utility and do more research into practical

determination of utilities so that the method can be used more effectively. We tried to

introduce some new forms of utility function and the SSD under these utility functions

as well.

Now we will obtain the sample size using the sampling prior and fitting prior

of Wang and Gelfand (2002) and then we will compare our method where we will

obtain the sample size using the approach described in Chapter 4. We have discussed

Wang and Gelfand’s (2002) approach in Chapter 1. For the sampling prior, first we

will simulate θ∗ from the chosen prior distribution of θ, say, p(θ). Then we simulate

the data x′is from the distribution x′is|θ∗. Next we take a non informative prior

distribution of θ called the fitting prior and then combine this prior and the data to

get the posterior distribution, p(θ|x). At this stage we find the posterior expected

risk and add this with the cost function to get total cost. Finally, plot sample size

against the total cost. We look for the sample size producing minimum cost, which

is considered as an optimum sample size. So, this method involves, simulating data

from a given prior distribution (for the parameter of interest) then simulating data

given those prior samples, finally considering a fitting prior which is non-informative

to give the posterior distribution. To do this we have used the R program for the

simulation study.
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Table 8.1: Optimum sample size for a Poisson parameter under the SE loss.

Pre posterior is a negative binomial Sample size Fitting prior non informative Sample size

Conjugate prior is a Gamma Sampling prior is a Gamma

λ = 1, Gamma(1,1) 35 Gamma(1,1) 33

Gamma(2, 2) 30 Gamma(2, 2) 32

Gamma(3, 3) 24 Gamma(3,3) 27

Gamma(4, 4) 20 Gamma(4,4) 24

In table 8.1 show the optimum sample size to estimate a Poisson parameter under

the squared error loss function. Following the approach of Wang and Gelfand (2002),

we generated the prior sample from a gamma distribution. Then generated samples

from the Poisson distribution given that prior sample. Now giving a fitting prior as

non informative and combine it with the data we obtained the posterior distribution.

Here we considered a cost function c0 + cn = 1 + 0.001n and added it with the

posterior risk to get the total cost. Finally plot total cost against sample size. Pick

the optimum sample size giving minimum cost. It is clear from the table 8.1 that the

optimum sample sizes are very close for both under the usual optimization procedure

as in Chapter 4 and the approach of Wang and Gelfand (2002) although as the prior

becomes more informative the difference increases. Similarly we have considered the

optimum sample size for a binomial parameter under the SE loss function considering

the cost function 1+0.0008n. We also found from table 8.2 that the optimum samples

sizes are close for both approaches.

In table 8.3 we presented the optimum sample size for a binomial parameter

p = 0.1 under the absolute error loss function using our approach and the approach

of Wang and Gelfand (2002). This time we have taken the sampling cost per unit

as 0.0008 as did Muller and Parmigiani (1995). We observe that there is not a huge
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Table 8.2: Optimum sample size for a binomial parameter under the SE loss.

Pre posterior is a beta binomial Sample size Fitting prior non informative Sample size

Conjugate prior is a beta Sampling prior is beta

Beta(0.3,0.7) 15 Beta(0.3,0.7) 16

Beta(0.2, 0.8) 12 Beta(0.2, 0.8) 14

Beta(0.1,0.5) 8 Beta(0.1,0.5) 10

Beta(0.1,0.9) 5 Beta(0.1,0.9) 7

Table 8.3: Optimum sample size for a binomial parameter under the AE loss.

Pre posterior is a beta binomial Sample size Fitting prior non informative Sample size

Conjugate prior is a beta Sampling prior is a beta

Beta(0.3,0.7) 30 Beta(0.3,0.7) 33

Beta(0.2, 0.8) 28 Beta(0.2, 0.8) 29

Beta(0.1,0.5) 26 Beta(0.1,0.5) 27

Beta(0.1,0.9) 23 Beta(0.1,0.9) 25

difference in sample size calculation between our approach and the approach of Wang

and Gelfand (2002). To compare both methods, we considered the same loss function

and cost functions for both cases. From table 8.3 we observe that, for an absolute

error loss function there is some differences found in the optimum sample size in the

two methods but not very large. This absolute error loss function is also considered

by Muller and Parmigiani (1995) to obtain the optimum sample size. From table 8.3

we can see that, our approach gives very similar results to their results. We obtained

the optimum sample size around 30 and they got the optimum sample size around 29

to estimate a binomial parameter p = 0.1 with the conjugate prior, Beta(0.3,0.7). On

the other hand, when we considered Wang and Gelfand’s (2002) approach, then using

the usual minimization procedure we found optimum sample size is 33 which is very

close to 34, the optimum sample size obtained by Muller and Parmigiani (1995) after
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smoothing their fitting curve. So we found some agreement between our approach

and others.

But neither Wang and Gelfand (2002) nor Muller and Parmigiani (1995) used the

asymmetric loss function or the bounded asymmetric loss function in their studies.

So we explored the optimum sample size under these loss functions where we were

able to give some closed form optimum sample size for some distributions but for

others we used a simulation study for an optimum SSD.

In Chapter 3 we obtained the optimum sample size under the linex loss function

for a number of models. In the following practical situations we can use this loss

function and in such situations if we need to determine the optimum sample size, we

may use the form of SSD discussed in a particular model of Chapter 3 according to

the needs of that particular situation.

Example 1. Consider some food which can be displayed on shelves up to 15 days

maximum after manufacturing date. If any shop displayed food for only 12-13 days

then the shop might lose some money if they hadn’t sold it. But if they displayed

the food for 16-20 days this may cause a huge danger to customers as it may be

poisonous, which in monetary terms could be very serious. So again over estimation

of days is more dangerous than under estimation. In that case b > 0.

Example-2. Sengupta (2008). Assume a civil engineer is building a dam and

is interested in finding the height of the dam that is being built. If, due to some

error, the height is estimated to be greater than the optimal value, then the costs

the engineer incurs are mainly for materials and labour. On the other hand, if the
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estimated height is less than it should be, then the consequences will be dangerous

in terms of environmental impact, which in monetary terms can be very high. So in

this situation, it is logical to use b < 0, such that under estimation is penalized more

than over estimation.

There are many situations like this in medicine as well. For example, under

estimating (or over estimating) the blood pressure of a patients could have a huge

effect on the patient’s treatment. In the food industry, when baking biscuits over-

heating might be more serious than under heating.

We have obtained the optimum sample size under the blinex loss function in

Chapter 4. This overcomes the limitations of the linex loss functions where we are

unable to obtain the Bayes estimate if the mgf of the distribution doesn’t exist. In

practice the loss is bounded for any practical situation. So it is also important to

learn about the optimum SSD under the bounded loss function. Highlighting this

issue Smith (1980) studied where the Bayes estimates for a parameter θ must lie for a

specific posterior distribution of θ under different classes of symmetric bounded loss

functions. In such situations we need to find the optimum SSD as well. Looking at

the practical importance of bounded loss functions in this chapter we have explored

with the optimum SSD under the bounded asymmetric loss functions. But in this

case we couldn’t manage to get the closed form for an optimum sample size because

of the complicated form of the posterior risk function and we used the simulation

study using R for the optimum SSD.

Some popular unbounded loss functions like SE loss function may be used in dif-

ferent situations and it is useful to obtain an optimum SSD under those loss functions.

208



In chapter 5 we have obtained the optimum sample size under the loss function of

DeGroot(1970). This is an unbounded loss function and described for the positive

values of the parameters. For some distributions we found the optimum SSD in closed

form but for others not.

In Chapter 6 we have proposed an asymmetric loss function for a parameter taking

positive values which gives the posterior mean as a Bayes estimate. This is the first

asymmetric loss function which came in the literature giving posterior mean as a

Bayes estimate besides the symmetric SE loss function. This is also a bounded loss

function which has practical importance as described by Smith (1980). The limitation

of this loss function is it is only for parameters taking positive values. So it doesn’t

cope with the very commonly used normal distribution.

It is very difficult to obtain the estimates of the distributions with two or more

unknown parameters. On the other hand for any unique decision we need to call a

loss or utility function which can cope with the distribution under study. Lindley

(1976) clearly described the optimum decision procedure for one parameter exponen-

tial family proposing one parameter conjugate utility function. First, we reviewed his

work in Chapter 7 then we extended it for the two parameter exponential family. We

have proposed a conjugate utility function for the bivariate exponential family, then

described the optimization procedure for the optimum decisions of both parameters

when they are unknown.
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8.3 Risks and costs

In Chapter 1, section 1.9, we discussed the cost function, C(n). For an optimum

SSD to get the total cost we always added C(n) to the average posterior risk (APR)

function. That is

E[TC(n)] = C(n) + APR.

Here C(n) is measured in pounds but the risk is dimensionless. To choose an appro-

priate scale for a decision maker I could ask “If I could guarantee to reduce the risk

by 1 unit, how much would you pay in pounds?” Let κ be the value in pounds that

the decision maker would pay to reduce the the posterior risk by 1. So the total cost

is now better expressed as,

E[TC(n)] = C(n) + κ(APR).

Note that Lindley (1976) says that all consequences should be measured in ‘utiles’

but does not fully explain how this should be done. Note also that scaling the loss

function and hence the posterior risk by κ does not change the decision that minimizes

the expected loss but it does change the decision for n. It does change the value of the

loss or posterior risk in an appropriate way. Similar concepts have been used in health

economics to put the costs and the effectiveness of treatments into the same unit of

measurements by introducing a suitable scale factor (Jackson and Nixon 2010).

Another way of looking at the costs and the posterior risks in the same units

of measurement is to find the optimum value of the total cost TC(n) at n = n∗.

From Chapter 2, recalling the equation (2.2.1), the expected total cost (to estimate
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a normal mean when the precision is known) will be,

TC(n)n=n∗ = TC(n∗) = c0 − cn0 + 2σ
√
ca0,

where a0 is the scale parameter of the squared error loss function which could play the

same role as κ described earlier, σ is the sample standard deviation measured in some

distance, n0 is the prior sample size (some numbers), c0, c are the initial cost and the

sampling cost per unit respectively which can both be measured in pounds. Looking

Figure 8.1: The expected total cost for different choices of the scale parameter of the

SE loss function a0 to estimate a normal mean when σ = 0.5, n0 = 10 and c0 = £100.

at figure 8.1, we can see that the expected total cost is £130 when the sampling set

up cost is £100 and the sampling cost per unit is £1. From this we can say that the
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experimenter is able to draw up to 30 samples from the budget of £130 by paying

up to £1600 (the value of a0) for reducing the risks by 1 unit. This £1600 is the

conversion rate of risk to the equivalent value of costs (same role as κ). We sketched

four different scenarios taking different sampling costs per unit. But for a particular

experiment the experimenter should have to choose only one strategy out of many

possibilities so that he/she has to choose one value a0, and c looking at his optimal

budget for an optimum SSD. It is to be noted that some other parameters (in this

example σ, n0 and c0) should be known to the experimenter before deciding how

many representative samples are needed to perform the study.

8.4 Future research

Because of the limited scope of the present investigation it would be important in the

future for further research into the symmetric and asymmetric loss functions and the

practical application of these loss functions. Further research would also be done into

the optimum decisions and the optimum SSD under these loss functions. There may

be some other applications of the linex loss function in different fields, for example,

in actuarial science or in clinical trials which require further research.

We have obtained the optimum SSD for different symmetric and asymmetric loss

functions. Hopefully, in future, because of the practical importance of the bounded

loss functions, we can explore with the optimum sample size under the symmetric

bounded loss functions given by Smith (1980).
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We have proposed an asymmetric bounded loss function which gives the posterior

mean as a Bayes estimate for the positive values of the parameter. There are some

areas for improvement in this area, for example, to find the form of the asymmetric

bounded loss function or utility function which covers both positive and negative

values of the parameter, which can also be used in practical situations.

Throughout the optimum SSD study we have considered a linear cost function

but in some other situations a non linear form of the cost function e.g. c0 + c
√
n may

be used. This requires further research into how it can be used in practical situations.

We have obtained the optimum decisions for the bivariate exponential family when

both parameters are unknown under a bivariate conjugate utility function through

approximation. This could be extended to more than two parameters. At this stage

we are unable to obtain the optimum SSD for the univariate and bivariate exponential

family because of the complicated form of the posterior expected utility function and

have left this as possible avenue of future research.
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