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Preface 

This is a draft report and the final report is due for publication November 2014.  This yield 
forecasting report is one of seven reports evaluating the feasibility of a hybrid gas-
concentrated solar power (CSP) plant using Linear Fresnel Reflector (LFR) technology to 
replace the coal fired power station at Collinsville, Queensland, Australia.  Table 1 shows the 
seven reports and the affiliation of the lead authors. 

Table 1: Collinsville feasibility study reports and their lead researcher groups and authors 

Report Affiliation of the 
lead author 

Yield forecasting (Bell, Wild & Foster 2014b) EEMG 
*Dispatch forecasting (Bell, Wild & Foster 2014a)  EEMG 
*Energy economics (Bell, Wild & Foster 2014a) EEMG 
Solar mirror cleaning requirements (Guan, Yu & Gurgenci 2014) SMME 
Optimisation of operational regime (Singh & Gurgenci 2014b) SMME 
Fossil fuel boiler integration (Singh & Gurgenci 2014a) SMME 
Power system assessment (Shah, Yan & Saha 2014a) PESG 
Yield analysis of a LFR based CSP by long-term historical data (Shah, 
Yan & Saha 2014b) 

PESG 

*Combined report 
 
These reports are part of a collaborative research agreement between RATCH Australia and 
the University of Queensland (UQ) funded by the Australian Renewable Energy Agency 
(ARENA) and administered by the Global Change Institute (GCI) at UQ.  Three groups from 
different schools undertook the research: Energy Economics and Management Group 
(EEMG) from the School of Economics, a group from the School of Mechanical and Mining 
Engineering (SMME) and the Power and Energy Systems Group (PESG) from the School of 
Information Technology and Electrical Engineering (ITEE).   

EEMG are the lead authors for three of the reports.  Table 2 shows the “Collinsville Solar 
Thermal - Research Matrix” that was supplied by GCI to the researchers at EEMG for their 
reports.  The suggested content for the three reports in the matrix was restructured to 
provide a more logical presentation for the reader that required combining the Energy 
Economics and Dispatch Forecasting reports. 
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Table 2: Collinsville Solar Thermal - Research Matrix – EEMG’s components 

Yield Forecasting 
Modelling and analysis of the solar output in order that the financial feasibility of the plant 
may be determined using a long-term yield estimate together with the dispatch model and 
the modelled long-term spot price. 

Dispatch Forecasting 
Analysis of the expected dispatch of the plant at various times of day and various months 
would lead to better prediction of the output of the plant and would improve the ability to 
negotiate a satisfactory PPA for the electricity produced. Run value dispatch models (using 
pricing forecast to get $ values out). Output will inform decision about which hours the plant 
should run. 

Energy Economics 
Integration of the proposed system into the University of Queensland’s Energy Economics 
Management Group’s (EEMG) existing National Electricity Market (NEM) models to look at 
the interaction of the plant within the NEM to determine its effects on the power system 
considering the time of day and amount of power produced by the plant. Emphasis to be on 
future price forecasting. 

 

The results from this yield report are used to inform the ‘Energy economics and dispatch 
forecasting’ report (Bell, Wild & Foster 2014a).   

 
Doctor William Paul Bell 
Research Fellow 
Energy Economics and Management Group 
The School of Economics 
The University of Queensland 
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Executive Summary  

1 Introduction 

This report’s primary aim is to provide yield projections for the proposed Linear Fresnel 
Reflector (LFR) technology plant at Collinsville, Queensland, Australia.  However, the 
techniques developed in this report to overcome inadequate datasets at Collinsville to 
produce the yield projections are of interest to a wider audience because inadequate 
datasets for renewable energy projects are commonplace.  The subsequent report called 
‘Energy economics and dispatch forecasting’ (Bell, Wild & Foster 2014a) uses the yield 
projections from this report to produce long-term wholesale market price and dispatch 
forecasts for the plant.   

2 Literature review 

The literature review discusses the four drivers for yield for LFR technology: 

 DNI (Direct Normal Irradiance) 
 Temperature 
 Humidity 
 Pressure 

Collinsville lacks complete historical datasets of the four drivers to develop yield projects but 
its three nearby neighbours do possess complete datasets, so could act as proxies for 
Collinsville.  However, analysing the four drivers for Collinsville and its three nearby sites 
shows that there is considerable difference in their climates.  This difference makes them 
unsuitable to act as proxies for yield calculations.  Therefore, the review investigates 
modelling the four drivers for Collinsville. 

We introduce the term “effective” DNI to help clarify and ameliorate concerns over the dust 
and dew effects on terrestrial DNI measurement and LFR technology.  

We also introduce a modified TMY technique to overcome technology specific Typical 
Metrological Year (TMY).  We discuss the effect of climate change and the El Nino Southern 
Oscillation (ENSO) on yield and their implications for a TMY. 

2.1 Research questions 

Research question arising from the literature review include: 

The overarching research question: 

Can modelling the weather with limited datasets produce greater yield predictive power 
than using the historically more complete datasets from nearby sites?  

This overarching question has a number of smaller supporting research questions: 

 Is BoM’s DNI satellite dataset adequately adjusted for cloud cover at Collinsville? 
 Given the dust and dew effects, is using raw satellite data sufficient to model yield?  
 Does elevation between Collinsville and nearby sites affect yield? 
 How does the ENSO affect yield? 
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 Given the 2007-2012 constraint, will the TMY process provide a “Typical” year over 
the ENSO cycle? 

 How does climate change affect yield? 

A further research question arises in the methodology but is included here for completeness. 

 What is the expected frequency of oversupply from the Linear Fresnel Novatec Solar 
Boiler? 

3 Methodology 

In the methodology section, we discuss the data preparation and the model selection 
process for the four drivers of yield. 

4 Results and analysis 

In the results section we present the four driver models selected and the process that was 
undertaken to arrive at the models. 

5 Discussion 

We analyse the extent to which the research questions are informed by the results. 

6 Conclusion 

In this report, we have identified the key research questions and established a methodology 
to address these questions.  The models for the four drivers have been established allowing 
the calculation of the yield projections for Collinsville. 
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1 Introduction 

The primary aim of this report is to produce hourly yield projections of electricity power for 
the proposed LFR plant at Collinsville, based on the environmental condition between 2007 
and 2013. However, the techniques and methods used to overcome the inadequacies of the 
environmental, site-specific datasets provide a wider appeal for the report.  The dataset 
inadequacies make accurate projections of future income streams and the subsequent 
securing of funding difficult (Cebecauer et al. 2011; Lovegrove, Franklin & Elliston 2013; 
Stoffel et al. 2010). 

The hourly power yield projections from this report are used in a subsequent report called 
‘Energy Economics and Dispatch Forecasting’ (Bell, Wild & Foster 2014a), to calculate the 
lifetime revenue of the proposed plant and perform sensitivity analysis on gas prices. 

This report compares the yield from the proposed Collinsville LFR plant using two different 
calculation methods.  One method simply uses complete historical datasets from three 
nearby sites: MacKay, Rockhampton and Townsville in Queensland.  The other method uses 
datasets derived from a meteorological model developed from three sources:  

 BoM’s hourly solar satellite data 
 BoM’s Collinsville Post Office weather station  
 Allen’s (2013) datasets 

The overarching research question for the report: 

Can modelling the weather with limited datasets produce greater yield predictive power 
than using the historically more complete datasets from nearby sites?  

The executive summary provides an outline of the report. 
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2 Literature review 

2.1 Introduction 
This literature review helped us to develop the research question and informed the 
methodology to address the research question.  

Linear Fresnel Reflector (LFR) technology provides at least three benefits: 

 helping address climate change;  
 providing a replacement for unsustainable fossil fuel dependency; and   
 increasing diversity and resilience within the electricity systems.  

Other renewable energy technologies such as solar PV and wind generation have 
successfully transitioned from the infant industry phase with numerous large-scale 
commercialisations of the technologies emerging in Australia.  In contrast, LFR in Australia is 
very much in the infant industry stage with a few small booster projects.  Furthermore, unlike 
solar PV and wind generation, LFR lacks the gradually increasing scale pathway from 
household units to large-scale units because LFR plants involve a minimum economy of 
scale consideration.  This consideration makes the transition from the infant industry phase 
more problematic.  Therefore, there is a requirement for a lager subsidy per venture and, 
consequently, less scope for experimentation and a risk of failure.  The large scale 
investment requirements make a failure unacceptable, which means that research is 
essential to better inform investment decisions.  This research has a public good aspect with 
benefits that go beyond those accruing to the individual firm willing to fund such research.  
The yield projections in this report are the first step in the process to help better inform 
investment decisions at Collinsville.  However, the research is clearly useful to others 
considering such ventures. 

Section 2 presents the four environmental drivers of yield and discusses driver data 
availability and contrasts the drivers in Collinsville with the three comparison sites.  Section 3 
introduces the concept of “effective” direct normal irradiance to address the dew effect and 
dust effect. Sections 4 and 5 discuss the effect of El Niño–Southern Oscillation and climate 
change on the four drivers and yield to scope sensitivity analysis.  Section 6 discusses the 
format and technique “Typical Meteorological Year” and its implications for sensitivity and 
inter-year variation analysis and introduces modifications to the technique to overcome 
shortfalls.  Section 7 concludes the literature review and presents the research questions 
that arise. 

2.2 Four main drivers of yield 
The US National Renewable Energy Laboratory’s (NREL) Systems Advisors Model (SAM) 
provides standard yield models for a range of renewable energy technologies, including a 
model specifically for the proposed LFR technology at Collinsville (Wagner 2012; Wagner & 
Zhu 2012).  SAM calculates the kilowatts (kW) generated each hour using four environment 
variables. 

 

 Direct normal irradiance (DNI) 
 Temperature (Dry bulb) 
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 Humidity 
 Pressure 

Section 3.2 discusses the SAM methodology in more detail.  Other environment variables 
also affect the amount of electricity produced but these four variables are considered the 
main drivers.  Thus, they form the nucleus of the “complete meteorological dataset” in the 
following discussion where there is a choice between using complete historical 
meteorological datasets from nearby sites and using incomplete data from Collinsville to 
model the four environmental variables. 

Shah, Yan and Saha (2014b) provide a detailed account of the yield calculated using the 
SAM model and the complete historical meteorological data from three nearby sites at 
MacKay, Rockhampton and Townsville.  Table 3 aids in the inter-site comparison of the four 
drivers by grouping the annual daily-metrological means for the period 1981-2010. These 
means are by the four metrological drivers for yield for the four sites. 

Table 3: Meteorological daily annual means 1981-2010 for Collinsville and neighbours 

 Collinsville 
PO 

MacKay 
Aero 

Rockhampton 
Aero 

Townsville 
Aero 

DNI proxy 
daily sunshine (hours) - - - 8.6 
daily exposure (MJ/m2) 20.4 20.8 20.2 21.1 
number clear days 121.3 - 120.6 116.3 
number of cloudy days 78.2 - 93.0 100.9 
9am cloud cover 2.9 - 3.7 4.2 
3pm cloud cover 4.0 - 3.8 3.7 

Temperature (Dry Bulb) (°C) 
max 30.4 27.4 28.6 29.2 
min 16.8 17.9 17.2 20.2 
9am 23.3 24.0 22.7 25.3 
3pm 29.3 25.9 27.4 27.7 

Relative Humidity (%) 
9am 66 72 67 65 
3pm 43 64 46 57 

Pressure proxy 
elevation (m) 196 5 10 4 

Wind speed (km/h) 
9am 3.1 17.9 12.8 13.1 
3pm 5.2 25.1 15.7 22.4 

Dew point 
9am 16.3 18.2 15.8 17.8 
3pm 14.2 18.3 13.6 17.9 
(Source: BoM 2014a) 

The interrelationship amongst the four drivers and other weather variables provides context 
to the following discussion and informs the methodology chosen. Radiant energy causes 
temperature changes, temperature changes cause pressure changes and pressure 
gradients cause winds.  These direct relationships are interwoven and moderated within the 
hydrologic cycle whose indicators available at the Collinsville BoM weather station include 
relative humidity, cloud cover, evaporation, dew point and wet bulb temperatures.  So, Table 
3 also includes, wind speed, for discussion and the dew point.  Table 3 presents annual 
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means, so masks any seasonal variation in the annual cycle that is present in each of the 
four drivers.  Additionally, Table 3 only hints at the variation in the daily cycle. 

This section discusses the four metrological drivers for SAM while considering two aspects 
for each driver. Firstly, is the use of alternative nearby sites suitable to provide weather 
proxies for Collinsville?  Secondly, can the limited weather datasets available at Collinsville 
to model Collinsville’s four drivers to inform the methodology in section 3? 

2.2.1 Direct normal irradiance  
DNI is the first of the four drivers for yield in the SAM model and is the primary component in 
driving yield from CSP (Stoffel et al. 2010, p. 101), such as LFR technology.  DNI is the 
instantaneous intensity of solar direct beam energy falling on a surface normal to the beam 
(BoM 2013).  BoM estimates DNI from hourly geostationary satellite images, starting in 1990.  
This contrasts with DNI data from Allen (2013) who produces minute ground based 
observations starting in Dec 2012.  

2.2.1.1 Inter-site comparisons of DNI 
The proxies for discussion of DNI in Table 3 include annual mean daily exposure, number of 
clear days and cloud cover.  The daily exposure is derived from satellite data (BoM 2007).  
Allen (2013) sums BOM’s hourly satellite data for the Collinsville Power Station site and finds 
the sum closely follows the BOM daily exposure at the Collinsville Post Office weather 
station, so a comparison using the daily exposure as a proxy for DNI is warranted. 

In Table 3, the annual mean daily exposure for the four sites is similar, which implies that the 
yield at MacKay, Rockhampton and Townsville can provide a good approximation to the 
yield at Collinsville.  However, there are two reservations. Firstly, the number of cloudy days 
at Rockhampton and Townsville are about 20% higher than at Collinsville, which calls into 
question the validity of the annual mean daily exposure derived from satellite data.  Secondly, 
in Table 3, the 9 am and 3 pm cloud cover indicates a differing daily cycle of cloud cover 
between the inland high altitude Collinsville and the three coastal low altitude sites, which 
implies the profile of the daily yield cycle would differ. 

MacKay, Rockhampton and Townsville are less than ideal sites for LFR because their low 
altitude and close proximity to the coast present higher concentrations of aerosols than 
would be found otherwise.  Aerosols reduce DNI, which is a primary component in driving 
yield from CSP (Stoffel et al. 2010, p. 101).  The higher aerosol concentration in the three 
coastal towns cause a larger yield deviation between satellite and ground station determined 
DNI than would be found at more ideal CSP sites.  However, the BoM (2013) has adjusted 
the satellite data for atmospheric transmittance aka clearness index, which should 
ameliorate this concern.  

In a further twist to the aerosol effect, sites destined for CSP could be subject to preliminary 
earthworks or demolishing of exiting power plant, such as in Collinsville.  These activities 
increase the aerosol levels above those expected when the CSP plant is completed, so yield 
projections based on site based solar measurement underreport yield.  This situation is 
discussed further in the dust effect section below. 
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2.2.1.2  Collinsville DNI data 
Table 3 shows the satellite derived solar daily exposure but SAM requires hourly DNI.  BoM 
(2013) provides hourly satellite DNI data but the previous section questioned the accuracy of 
the satellite data for terrestrial use when considering the cloud coverage.  A solution to this 
issue is to adjust the satellite data for cloud coverage and other environment variables by 
calibrating against Allen’s (2013) terrestrial DNI dataset for Collinsville.  Section 3 discusses 
the methodology in more detail. 

The solar altitude angle provides a way to approximate DNI without cloud cover.  The solar 
altitude angle is the angle subtended between the sun and horizontal plane of the observer.  
The altitude can be calculated from the zenith or, more fully, the solar zenith angle, that is, 
the angle subtended between the sun and the normal to the horizontal plane of the observer.  
Reda and Andreas (2008) provide an algorithm to calculate the zenith angle and Roy (2004) 
implements the algorithm in computer code to calculate the zenith angle from the time and 
position by longitude, latitude and altitude. 

As discussed, DNI is the primary driver for CSP.  However two other measures of irradiance 
in common use are Global Horizontal Irradiance (GHI) and Diffused Horizontal Irradiance 
(DHI). GHI is the instantaneous intensity of solar energy falling on a horizontal surface (BoM 
2013).  BoM (2013) provides gridded satellite solar intensity dataset in W/m2 for both DNI 
and GHI but not DHI.  Equation 1 shows how to calculate DHI from the GHI, DNI and zenith 
angle. 

Equation 1: Three irradiances and zenith angle  

DHI = GHI - DNI cos (zenith) 

The BoM (2013) grids are produced for each hour starting in 1990; the grids consists of 839 
columns by 679 rows where the grids’ x and y corner corresponds to the longitude and 
latitude 112.025 and -43.975, respectively, and each cell size is 0.05 degrees or 
approximately 5km. 

For the period of interest in this report, 2007 to 2013, two satellites sources were used: the 
Japanese Advanced Meteorological Imager (JAMI) and the Multi-Functional Transport 
Satellite (MTSAT) series operated by the Japan Meteorological Agency. Table 3 shows the 
coverage dates of the two satellites.  A grid is produced for each hour but the satellite takes 
time to traverse Australia hence the minutes past the hour the satellite image was produced 
is related to the latitude.  The latitudes for the proposed Collinsville LFR plant and Collinsville 
Post Office and Allen’s (2013) weather stations are -20.5344, -20.5533 and -20.5418, 
respectively.  These latitudes are between 48 to 49 minutes past the hour for satellite 
MTSAT-1R and between 46.8 and 47.7 minutes past the hour for the satellite MTSAT-2. 
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Table 4: Satellite's minutes past the hour by latitude 

Start date 2005-11-01 2010-07-01 
End date 2010-06-30 Ongoing 
Latitude MTSAT-1R MTSAT-2 
-10.0 46.2 44.7 
-15.0 47.2 45.7 
-20.0 48.3 46.8 
-25.0 49.2 47.7 
-30.0 50.1 48.6 
-35.0 51.0 49.5 
-40.0 51.7 50.2 
-44.0 52.3 50.8 

(Source:  BoM  2013)  

Section 3 discusses further calculating the altitude and zenith and adjusting the satellite 
derived DNI, GHI and DHI for the minutes past the hour. Table 4 presents the minutes past 
the hour.  These derivations provide a means to produce a modified satellite DNI that better 
matches terrestrial conditions at Collinsville. 

2.2.2 Temperature (Dry bulb)  
Dry bulb temperature is the second of four drivers for yield in the SAM model.  In this report 
“temperature” means “dry bulb temperature”.  In contrast, wet bulb and dew point 
temperatures are referred to explicitly.  

2.2.2.1 Inter-site comparisons of dry bulb temperature 
Table 3 shows a wider range of temperatures that is the difference between maximum and 
minimum temperatures in Collinsville than in the three coastal towns.   The higher maximum 
temperatures that usually occur during mid-afternoon temperature, and the lower minimum 
temperatures that usually occur during early morning, are a consequence of the higher 
altitude compared to coastal locations.  The sea breeze cools the coast sites during the day 
and land breeze moderates the loss of heat during the night.  Consistent with these 
differences in climate, Collinsville has fewer cloudy nights and heavier dew.  Section 2.3.6 
discusses the dew effect further. 

There is a relationship between elevation and temperature but this relation is complex.  
Table 3 contrasts the elevations of Collinsville at 197 m with three nearby comparison sites 
whose elevations range from 4 m to 10 m.  Complexity stems, in part, from three different 
lapse rates that are changes in temperature per change in elevation.  These lapse rates help 
explain cloud dynamics.  The National Oceanic and Atmospheric Administration (NOAA 
2014) provides a dry adiabatic temperature lapse rate (DALR) near 9.6 °C /km and a 
saturated adiabatic lapse rate (SALR) near 6 °C /km.   The adiabatic condition provides the 
rate of loss of temperature of a parcel of air that does not swap energy with its surroundings, 
such as an idealised cloud.  The environmental lapse rate (ELR), that is, for the air outside 
the parcel, is about 6.5 °C /km (Fovell 2010).  These lapse rates vary from place to place 
and over time but they provide some guidance for a temperature sensitivity analysis on yield 
between the Collinsville and the three comparison sites.  

The climatic differences between Collinsville and its comparison sites, has implications for 
temperature and thus yield.  Comparatively, Collinsville has a cold wet start in the morning 
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but Collinsville’s temperatures are close to the other sites by 9 am and surpass them by 3 
pm.  So, even if the daily yield from the comparison sites were the same, this shift in yield 
from early morning to late afternoon has implications, as the prices for electricity in 
Queensland is usually higher in the late afternoon than in the early morning.   

The implications for temperature and, thus, yield for the different climates, calls into question 
the suitability of using the complete historical meteorological data from the three coastal 
towns in yield calculations for Collinsville.  Relatively higher electricity price in the late 
afternoon compound this climate issue. 

2.2.2.2 Collinsville temperature data 
At the BoM’s Collinsville Post Office weather station, in operation since 1939, there are 
currently three daily temperature measurements taken at 6 am, 9 am and 3 pm.  This BoM 
coverage is far short of the hourly input required for the SAM model but at least the 3 
measurements are taken during the daylight hours when yield is modelled.  The BoM also 
provides daily maximum and minimum dry bulb temperatures measured daily at 9 am for the 
previous 24 hours.  In contrast, Allen (2013) provides temperature readings each minute but 
coverage only starts in December 2012.  This is far short of the 2007-2013 yield projection 
requirements of the subsequent report called ‘Energy Economics and dispatch forecasting’ 
(Bell, Wild & Foster 2014a).  

As discussed, radiant energy causes temperature changes; temperature changes cause 
pressure changes and pressure gradients cause winds.  Therefore, this relationship provides 
additional variables to model temperature.  Radiant energy indicators are the BoM’s hourly 
DNI, GHI and DHI and daily total solar exposure derived from satellite images discussed in 
the previous section.  Wind direction and speed are taken thrice daily at 6 am, 9 am and 3 
pm at the BoM’s Collinsville Post Office weather station.  Atmospheric pressure lacks 
coverage at the BoM’s Collinsville weather station.  The following sections discuss wind 
speed, wind direction and alternative indicators for atmospheric pressure. 

In addition to the direct relationships just discussed there is the hydrologic cycle, which acts 
to ameliorate temperature differences and whose available indicators include relative 
humidity, cloud cover, precipitation, evaporation, dew point and wet bulb temperatures.  
Therefore, these indicators provide additional variables to model temperature and are 
measured thrice daily at BoM’s Collinsville weather station, excepting evaporation and 
precipitation are measured once daily. 

Section 3 discusses further the use of these indicators in modelling temperature. 

2.2.3 Relative humidity  
Relative humidity (RH) is the third of the four drivers for yield in the SAM model.  To inform 
the discussion below, a brief description of the relationship amongst RH and the three 
temperature dry bulb, wet bulb and dew point is provided. RH is the ratio between vapour 
supply and vapour capacity.  The dew point temperature indicates vapour supply as it is the 
lowest air temperature at which the current vapour supply remains unchanged that is before 
saturation is reached.  The vapour capacity is a function of dry bulb temperature.  Wet bulb 
temperature indicates the coolest air temperature achievable by evaporation (Fovell 2010, p. 
21). 
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2.2.3.1 Inter-site comparisons of relative humidity  
Table 3 shows the relative humidity at MacKay is the least comparable to Collinsville.  The 9 
am relative humidity at Collinsville, Townsville and Rockhampton is comparable.  However, 
the 3 pm relative humidity at Collinsville is much lower than the RH at the comparison sites.  
The decrease in Collinsville’s RH from 66% at 9 am to 43% at 3 pm is explained by both the 
water vapour supply decreasing indicated by the dew point temperature decreasing from 
16.3°C to 14.2°C and the water vapour capacity indicated by the dry bulb temperature 
increasing from 23.2°C to 29.3°C.  Exacerbating this effect is the feebleness or absence of a 
cooling sea breeze at Collinsville to moderate the afternoon rising temperatures and provide 
further moisture.  This situation contrasts to the coastal comparison sites. 

2.2.3.2 Collinsville relative humidity data 
BoM’s Collinsville weather station provides thrice-daily RH data.  As for the related variables, 
the weather station also provides thrice-daily measurements for three temperatures: dry bulb, 
wet bulb and dew point and daily measurements for evaporation, precipitation and solar 
exposure.  Another consideration is wind direction as a sea breeze could moderate 
temperature and increase the supply of water vapour in contrast a land breeze could 
exacerbate the rising afternoon temperatures and reduce the supply of water vapour.  The 
weather station provides thrice-daily wind direction data. 

2.2.4 Pressure 
Pressure is the last of the four drivers for yield in the SAM mode.  As there is an absence of 
atmospheric BoM data for Collinsville, the use of the ideal gas law becomes invaluable to the 
following discussion.  The ideal gas laws in Equation 2 stipulates that pressure, temperature 
and density are dependent on one another, meaning a change in one cause a change in one 
or more of the others. 

Equation 2: Ideal gas law 

p = rt 

Where   p = pressure (Pascals) 
   = density  
  r = proportionality constant 
  t = temperature (Kelvin scale) 

2.2.4.1 Inter-site comparisons of pressure  
Table 3 contrasts the elevations of Collinsville at 197 m with three nearby comparison sites 
whose elevations range from 4 m to 10 m.  As elevation increases, the proportion of 
atmosphere bearing down decreases, so reducing air density.  The ideal gas law indicates 
that there is a corresponding decrease in temperature and/or pressure with an increase in 
elevation.  This is indeed the case within the troposphere where the ELR for temperature is 
6.5 °C/km and pressure is 1.2 kPas/100 m (Fovell 2010).  The sensitivity of yield to elevation 
via the associated changes in temperature and pressure is an issue when using the nearby 
sites as proxies for yield at Collinsville.  This implies a sensitivity analysis is warranted to 
investigate the relationship. 
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2.2.4.2 Collinsville pressure data 
The absence of BoM atmospheric data requires consideration of other variables to model 
pressure, such as those variables in the direct relationships of irradiance causing 
temperature change, and temperature change causing pressure change and pressure 
gradient causing wind.  Furthermore, the hydrological cycle moderates temperature change, 
so these hydrological variables also require consideration.  Previous sections discuss the 
availability of these variables. 

Atmospheric tides are regular cyclic changes in the atmospheric pressure over periods of 12 
or 24 hours.  These are small oscillations at low elevations but are amplified at high 
elevations.  The tides are driven largely by solar irradiance and to a lesser extent the lunar 
cycle.  These atmospheric tides are mostly driven by solar irradiance, so both a daily and 
annual cycle in the pressure is expected.  There is an extensive literature on atmospheric 
tides.  However, the National Oceanic and Atmospheric Administration (NOAA 2012) 
consider the most basic change in pressure occurs twice daily with maximums at 10 am and 
10 pm and minimums at 4 pm and 4 am.  Section 3 discusses implementing this basic cycle 
to represent solar tides and modelling pressure. 

2.2.5 Why not use wind speed as a fifth driver?  
SAM fails to include wind in its calculation of yield to allow for a chill factor.  This could be 
considered a major oversight but building a linear Fresnel technology plant in a site with high 
winds is unlikely as the plant would be subject to damage.  A consideration in the optimal 
positioning of linear Fresnel technology plant is low wind speed and at low wind speeds, the 
chill factor can be ignored in modelling. 

There is considerably lower wind speed in Collinsville than in the three comparison sites in 
Table 3.  This is consistent with the three comparison sites being subject to the sea breeze 
cycle and Collinsville being situated inland at higher elevation and within a valley.   

The higher wind speed at Collinsville’s three coastal neighbours makes both SAM unsuitable 
to model the yield from these sites and the sites unsuitable to build linear Fresnel technology 
plants.  However, the exclusion of wind speed from SAM’s calculation of yield does make the 
yield calculated from these comparison sites more comparable with the yield from the 
Collinsville. 

We disregard wind speed as a driver in the calculation of yield but wind speed is present in 
the direct relationships flowing from solar irradiance, temperature, pressure to wind.  
Therefore, we consider wind’s suitability as a variable to model the four drivers.  Like 
temperature and humidity, wind speed is measured thrice daily by BoM, but unlike 
temperature and humidity, whose change is slow, wind speed can vary greatly.  This makes 
wind speed less amenable to interpolation using three measurements.  However, wind 
direction is more consistent so more amendable to interpolation.  Section 3 discusses these 
issues further.  

2.3 Effective Direct Normal Irradiance 
The previous section discussed DNI as the first of the four drivers of yield in the SAM model 
but there is a requirement to introduce the concept of “effective DNI” that is the component 
of DNI that a CSP plant can use.  We frame the concept within two effects: the dew and dust 
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effects.  The discussion of the effects both simultaneously help crystallise the concept of 
effective DNI and ameliorates concerns about the discrepancy between the measurement of 
DNI and effective DNI. 

2.3.1 Dew effect and effective DNI 
The dew effect involves dew collecting on LFR or DNI measuring instruments where both 
require warming and evaporation by the sun before the suns energy can be harnessed to 
produce electricity, whether by the LFR or the instrument measuring DNI.  The dew effect is 
considerable in places with clear nights low wind speed, which describes the weather at 
Collinsville in Table 3.  The clear cloudless nights allow cooling of the earth surface via 
reradiating heat into outer space and low wind speed allows the cooling of the air close to 
the ground, so the air precipitates its moisture.  Collinsville has the lowest average minimum 
annual dry bulb temperature of the four sites.  However, the dew effect can be ignored 
because both the measuring instrument for DNI and the LFR plant are subjected to the dew 
effect.  The DNI that is measured by the instrument is an “effective” DNI.  

The automatic adjustment for the dew effect on ground based measurement to read effective 
DNI is absent in satellite data.  The dew effect makes the unmodified use of satellite DNI 
data questionable. 

2.3.2 Dust effect and effective DNI 
This section discusses the dust effect with the following hierarchy  

 Dust-in the atmosphere 
 Dust-on  

o the LFR 
o the measuring instrument 

The “dust-in” the atmosphere that attenuates DNI can be modelled along with other aerosols 
in the atmosphere.  This modelling assumes that the surrounding natural or manmade dust 
producing activities remain consistent between model calibration and projection periods.  
However, a change in coal mining intensity or methodology could affect dust levels or a 
change in wind patterns.  Wind patterns can change because of El Niño–Southern 
Oscillation or climate change, which the next section discusses. 

“Dust-on” the LFR reduces the effectiveness of DNI to heat water.  The Mechanical and 
Mining Engineering (MME) School at UQ (Guan, Yu & Gurgenci 2014) reports on the 
cleaning requirements to address dust-on the LFR.  

Similarly, “dust-on” Allen’s (2013) measuring instruments reduces the amount of DNI 
measured, so only effective DNI is measured.  Allen (2013) discusses the dust and cleaning 
of the measuring instruments. 

As with the dew effect, both the measuring instrument for DNI and the LFR are subject to 
dust effects, so in a simplifying assumption the measured DNI can be considered the 
“effective” DNI for the LFR.  However, if the MME group provides an economical solution to 
cleaning dust from the LFR more frequently than the cleaning of dust from the measuring 
instrument, the yield calculated from the dusty measuring instrument will slightly underreport 
the true yield.  The converse will hold if Allen cleans the measuring instrument more often 
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than the LFR are cleaned.  This section acknowledges the dust effect but ignores the effect 
as being self-compensating via the “effective” DNI reasoning and too complex to model 
exactly given the uncertainty over the future actions of Allen, the MME group, El Niño–
Southern Oscillation and climate change. 

Satellite DNI data may be adjusted for the first component of the dust effect that is dust-in 
the atmosphere, but the self-compensating “effective” DNI reasoning in the dust-on effect is 
absent in satellite data.  Consideration for the dust-on effect makes the unmodified use of 
satellite DNI data questionable. 

2.4 The effect of El Niño–Southern Oscillation on yield 
This section discusses the effect of El Niño – Southern Oscillation (ENSO) on the four 
drivers for yield.  The previous sections discuss the four drivers within the context of regular 
daily or annual cycles.  In contrast, the ENSO is irregular and can spans more than a year. 
Therefore, there is an expectation of many ENSO cycles during the lifetime of the proposed 
plant at Collinsville. 

BoM (2005) discusses ENSO within a worldwide context.  In contrast, this section discusses 
ENSO implications for Collinsville, Queensland.  The ENSO spans the Pacific and consists 
of two main phases: the La Niña and El Niño phase.  La Niña is considered normal weather 
phase within the cycle whereas El Niño is considered an abnormal weather phase. During 
La Niña, there is an atmospheric convection current established between Queensland and 
Central America by the warmer waters off Queensland and cooler waters of Central America.  
This convection cycle is called the Walker Circulation and produces the trade winds blowing 
east to west.  The trade winds crossing the Pacific are high in moisture when they reach 
Queensland and the Walker circulation causes the trade wind to ascend over Queensland 
encouraging precipitation from the moisture-laden air.  Another consequence of the Walker 
circulation is the relatively low pressure over Queensland compared to the mid Pacific. The 
Southern Oscillation Index (SOI) in Figure 1 shows La Niña and El Niño phases indicated by 
this pressure difference.  However, the SOI uses the difference in pressure between Tahiti 
and Darwin. 
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Figure 1: Southern Oscillation Index 1994-2007 

 

(Source: BoM 2005) 

In the El Niño phase, the water surface temperature in the Eastern and mid Pacific warms 
disturbing the Walker Circulation.  For Queensland, the atmospheric convection current now 
runs counter to the trade wind and high-pressure forms over Queensland relative to mid and 
Eastern Pacific.  The air arriving in Queensland is now dry. 

In summary, relative to the La Niña phase, the El Niño phase brings higher pressures, 
weaker winds and less water vapour, which results in lower humidity, fewer clouds and rain.  
Fewer clouds and rain improve DNI. The El Niño phase also brings higher day time 
temperatures and lower night time temperature because the moderating effects of moisture 
is reduced. 

Consequently, the El Niño phase produces higher yield. Additionally, the higher 
temperatures drive higher prices for electricity in Queensland.  So, El Niño events could 
prove a profitable time for CSP plants.  This comes with the caveat that the El Niño induced 
increase in bush fires fail to attenuate DNI. 

The ENSO cycle has implications for finding a “Typical” representative year for a TMY.  The 
TMY section discusses this issue further. 

2.5 The effect of climate change on yield 
This section discusses the effect of climate change on the four drivers for yield.  The 
previous sections discuss the effect of weather cycles on the four drivers.  In contrast this 
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section discusses the effect of the more permanent and gradual change in climate over the 
expected lifetime of the proposed plant. 

Climate change is a global phenomenon whose focus is on the average rise in global 
temperatures but the main driver for CSP is DNI.  Nevertheless, studying the temperature 
change and the associate changes in other variables provides a useful background to the 
issue.  Additionally, Climate change focuses on global temperature change but the local 
effects can run counter to the global effect, as seen with the ENSO, a rise in temperature in 
one area can cause disruptions to normal weather patterns whose effects can be uneven. 

Consequently, there requires some discretion in selecting Global Climate Models (GCM) that 
report the most likely, hottest or coolest cases for the geographic area of interest and 
provide the range of variables required for analysis.  For this report, there is a tension over 
the selection of the geographic area because selecting the National Electricity Market (NEM) 
as a the geographic area will best reflect the demand and price for the electricity produced 
but selecting GCMs for Collinsville will best reflect the yield.  Foster et al. (2013) have 
already conducted an analysis for the NEM for five variables, including three of the four 
drivers, but their focus is temperature rather than DNI.  Their choice of the carbon emission 
scenario is SRES A1FI, which best reflects the high carbon emissions trajectory currently 
occurring around the world.  Clarke and Webb (2011) select three GCMs from 23 GCMs 
reflecting two extremes and an average case for Foster et al. (2013): 

• Most likely case – MRI-CGCM2.3.2 
• Hottest case  – CSIRO-Mk3.5 
• Coolest case  – MIROC3.2 

For the five environment variables: 

• solar radiation; 
• temperature; 
• relative humidity; 
• wind speed; 
• rainfall. 

The hottest case is the worst case from a climate change perspective but the hottest case 
could be the best case from an LFR perspective because higher temperatures help provide 
more yield and increase electricity demand in Queensland. 

Table 5 shows the projected change in climate from 1990 to 2040 for the location at latitude 
and longitude (-20.5, 148) from the ozClim projection series (CSIRO 2011; Page & Jones 
2001).  This location is the closest to the proposed plant at (-20.5344, 147.8072).  Notable is 
the ordering of the projected mean temperature change where the most likely case is smaller 
than both the coolest and hottest cases.  As discussed earlier, the local effect can run 
counter to the global effect.  The fourth driver, pressure, is omitted from the table as ozClim 
(CSIRO 2011; Page & Jones 2001)  lacks pressure projections. 
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Table 5: projected change in climate from 1990 to 2040 

 Coolest case 
MIROC3.2-Medres 

Most likely case 
MRI-CGCM2.3.2 

Hottest case 
CSIRO-Mk3.5 

Solar radiation (%) -1 0.1 0.8 
Temperature Mean (°C) 1.21 1.04 1.33 
Relative humidity Mean (%) 0.8 -0.7 -0.9 
(Source: CSIRO 2011; Page & Jones 2001) 

Therefore, the most likely expected percentage change in solar radiation, the main driver for 
yield, from 1990 to 2040 is 0.1 percent.  The change in temperature is just over 1 °C and a 
decrease in humidity is 0.7 percent.  These three changes taken together would increase 
yield but only by a tiny amount.  Similarly, in the hottest case, the changes would act to 
increase yield slightly.  In coolest case the changes may slightly decrease yield.  Sensitivity 
analysis could provide a more exact estimate. 

2.6 Typical Meteorological Year and Wholesale Spot Prices  
This section discusses the use of the Typical Meteorological Year (TMY) with consideration 
to matching electricity demand data for the given metrological conditions and the ensuing 
wholesale spot price and dispatch calculations.  The ensuing ‘Energy Economics and 
dispatch Forecasting report’ (Bell, Wild & Foster 2014a) uses the TMY yield projects from 
this report to help forecast wholesale prices and dispatch. 

2.6.1 TMY both a technique and format 
Marion and Urban (1995) and Wilcox and Marion (2008) provide user manuals for the 
collection and processing of data to produce TMY2 and TMY3 data files that are TMY 
version 2 and 3.  TMY is both a format and a technique.  SAM can use both TMY3 and 
TMY2.  This report uses the TM3 format and we introduce a modified TMY technique.  As a 
format, the TMY files are an hourly record of selected weather variables for an entire year for 
a specific location.  Importantly, TMY’s hourly data represents the average of the weather 
variable for the previous hour. This representation contrasts with BoM’s data that usually 
records the instantaneous reading. 

Originally, the TMY technique was developed to calculate a hypothetical year that could 
represent a number of years ranging from 15 to 30 years to estimate the typical heating and 
cooling costs for buildings.  However, the results of the TMY technique were extended for 
use within the renewable energy generation sector.  The TMY technique involves finding the 
12 most typical meteorological months (TMMs) from a range of years.  The meteorological 
variables of interest are weighted according to their importance and the weighted average 
used to select the TMMs. 

The advantages of the TMY technique include the simplicity of the technique, simplifying 
ensuing calculations, such as providing a single baseline year in sensitivity analysis.  These 
factors in turn provide easy to explain results.  The disadvantages include lacking analysis of 
the variability between years, so lacking P90 analysis, and subjectivity of assigning weights 
to each weather variable and the technology dependency of the weights. For instance, 
appropriate weights for a LFR and wind generator would differ considerably. 

To address the subjectivity of the weights and their technology dependence, this report 
introduces a modified TMY technique that compares average monthly yield within the range 
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of years to determine the 12 TMMs.   This simultaneously avoids the explicit assignment of 
weights to each of the four drivers: DNI, temperature, humidity and pressure and ensures 
the four drivers are implicitly weighted in a technologically appropriate way. 

To address the lack of analysis of variability for CSP yield, Stoffel et al. (2010, p. 101) 
suggests using several years in the analysis rather than a single year or a TMY to assess 
the effects of inter-year variability.  However, analysis of each year carries a large 
computational overhead that becomes excessive for any sensitivity analysis. 

Whether to conduct sensitivity analysis or variability analysis requires an assessment of 
priorities. Section 7.1 discusses variability analysis for further research rather than the TMY 
method used in this report and the two subsequent reports. 

2.6.2 TMY implications for demand and supply in the NEM  
A long been established relationship is the dependence of electricity demand on weather but 
the production of electricity in a predominantly fossil fuel generation fleet is relatively 
independent of weather.  However, with the introduction of more renewable energy, the 
production of electricity is becoming more dependent on the weather and since the marginal 
cost of the renewable segment is nearly zero, weather can now have an even more dramatic 
effect on spot prices.  

Figure 2 shows the average demand across the NEM for the years 2007 to 2011 by time of 
day.  Bell, Wild and Foster (2013) calculate that the increasing midday depression in net 
demand can be explained largely by the introduction of solar PV.  This reduction in net 
midday demand is expected to continue with further solar PV installations.  In contrast, the 
reduction in demand in the early hours of the morning can be explained by the introduction 
of solar water heaters replacing electrical water heaters that use off-peak power.  This 
transformation of the net demand curve requires that the same TMMs calculated for 
Collinsville’s LFR are consistently applied across the NEM to determine generation mix and 
net demand to calculate realistic wholesale spot prices.  Bell, Wild and Foster (2014a) 
discuss in more detail the implications for net demand, wholesale prices and dispatch the 
ensuing ‘Energy Economics and dispatch forecasting’.  



Collinsville solar thermal project: Yield Forecasting 
 

page 26 
 

Figure 2: NEM’s net average demand for 2007 to 2011  

 

(Source: Bell, Wild & Foster 2013) 

2.6.3 ENSO implications for TMY selection 
The requirement of the subsequent reports to select a TMY from the years 2007-12 and 
ENSO cycle have implications for finding a “Typical” representative year for a TMY.  
Selecting a TMY from a larger number of years would average out the ENSO cycle to find a 
more representative TMY but the constraints of the subsequent reports eliminate this 
possibility.  However, a comparative analysis of yield from years 2007-2012 with earlier 
years could ameliorate this concern. 

2.7 Conclusion 
The literature review has both established the research questions and provided direction for 
the methodology to address these questions. 

Motivating the research question is the questionability of using yield projections from nearby 
sites at MacKay, Rockhampton and Townsville as proxies for yield from Collinsville.  The 
appeal of using these three comparison sites is their complete historical environmental 
datasets of the four drivers for yield: DNI, temperature, humidity and pressure. However, the 
literature review has established considerable differences in climate between Collinsville and 
the comparison sites.  The comparison sites have costal climates moderated by the daily 
alternating cycle of the sea and land breeze.  In contrast, Collinsville has a colder wetter 
start in the early morning but lacking the moderating sea breeze, temperatures surpass 
those of the coastal comparison site in the mid-afternoon.  In Queensland, the price of 
electricity is generally higher in the late afternoon, so this climate engendered shift in yield 
production makes the yield more profitable. 
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Furthermore, the efficacy of using the raw hourly BoM (2013) DNI data derived from satellite 
images for Collinsville is questionable when comparing the daily total solar intensity derived 
from satellite images and cloud coverage at Collinsville and its three comparison sites.  
Additionally, the dew and dust effects make the use of raw BoM DNI satellite data 
questionable. 

The BoM Collinsville Post Office weather station, in operation since 1939, provides thrice 
daily measurements for temperature and humidity but lacks any pressure data.  This 
coverage is far short of the hourly coverage required by SAM to calculate yield.  However, 
Allen (2013) provides one-minute data for all four drivers starting in December 2012 but this 
coverage is far short of the 2007-2013 yield projection period requirements of the 
subsequent reports. 

The review introduces the concept of “effective” DNI to help ameliorate dew and dust effect 
concerns and a modified TMY technique to eliminate the need for technology specific 
weighting of environment variables.  The methodology further develops these two items. 

2.7.1 Research questions 
The research questions arising from the literature review. 

The overarching research question: 

Can modelling the weather with limited datasets produce greater yield predictive power 
than using the historically more complete datasets from nearby sites?  

This overarching question has a number of smaller supporting research questions: 

 Is BoM’s DNI satellite dataset adequately adjusted for cloud cover at Collinsville? 
 Given the dust and dew effects, is using raw satellite data sufficient to model yield?  
 Does elevation between Collinsville and nearby sites affect yield? 
 How does the ENSO affect yield? 
 Given the 2007-2012 constraint, will the TMY process provide a “Typical” year over 

the ENSO cycle? 
 How does climate change affect yield? 

A further research question arises in the methodology but is included here for completeness. 

 What is the expected frequency of oversupply from the Linear Fresnel Novatec Solar 
Boiler? 
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3 Methodology 

3.1 Introduction  
This section describes the methods used to address the research questions arising from the 
literature review in the previous section.   The overarching research question: 

Can modelling the weather with limited datasets produce greater yield predictive power 
than using the historically more complete datasets from nearby sites?  

This report uses the Systems Advisor Model (SAM) to calculate yield from the proposed LFR 
at Collinsville from the four drivers. 

 DNI 
 Temperature 
 Humidity  
 Pressure 

The previous section established the questionability of using complete historical datasets of 
the four drivers from nearby sites to calculate yield as a proxy for yield at Collinsville.  This 
questionability necessitated using datasets from Collinsville for the four drivers. 

The hourly BoM DNI dataset starting in 1990 derived from satellite imagery for Collinsville 
meets both temporal requirements for this report.  These requirements are an hourly dataset 
for SAM and the range of years, 2007-2012, for two subsequent reports.  However, as 
discussed in the literature review, the dew and dust effects and ambiguity over cloud cover 
make the use of this DNI dataset questionable without modification for the aforementioned. 

The BoM weather station at the Collinsville post office in operation since 1939 provides both 
temperature and humidity datasets but these datasets contain only thrice daily readings 
taken at 6 am, 9 am and 3 pm.  This thrice daily reading is insufficient to meet the hourly 
requirement for SAM.  In addition the weather station lacks any datasets for the fourth driver, 
pressure. 

The above inadequacies of the BoM datasets require that models of the four drivers are 
developed to form the appropriate projections.  These projections must satisfy the hourly 
requirement for SAM and the range of years, 2007-2012, for the subsequent reports.   

Allen (2013) provides one-minute resolution terrestrial based measurements taken at 
Collinsville for all four drivers. Allen (2013) converted these one-minute datasets into hourly 
datasets to meet SAM’s requirements.  But Allen’s (2013)  datasets start in December 2012, 
which fails to meet the 2007-2012 requirement of the subsequent reports.  However, Allen’s 
datasets are suitable to calibrate models of the four drivers with the inadequate BoM 
datasets, as the Allen’s (2013) datasets are derived from terrestrial based measurement and 
in an appropriate format for SAM.   

Modelling the four drivers requires considering their explanatory variables for inclusion in a 
model.  As discussed in the literature review, there are a set of direct relationships 
moderated by the hydrological cycle.  The direct relationships include: solar irradiance 
causes temperature rise, temperature change causes pressure change and pressure 
gradients cause wind.  There is considerable interrelation between the four drivers and their 
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explanatory variables, which is unremarkable, since we are dealing with weather cycles.  
There are 22 variables available to explain the four drivers.  This presents two problems: 
highly correlated environmental variables and the curse of dimensionality.  

There is a great possibility that the environmental variables are highly correlated or 
synchronised, so a subset of the variables, that are the most uncorrelated, could be selected 
to model the four drivers.  The procedure adopted is known as principle component analysis.  
For instance, the fourth driver, pressure, may be adequately modelled with just three of the 
variables: temperature, wind direction, and month. 

Regarding the ‘curse of dimensionality’, neural networks are used to develop the models as 
they are a standard tool within the electricity industry to analysis weather-demand 
relationships and are well suited to modelling non-linear systems, such as the weather 
(Deoras 2010; Hippert, Pedreira & Souza 2001).  However, neural networks are non-
communicative, that is the order of the explanatory variables affects the results of the fitted 
model.  So, there are 22! (= 1.124x1021) ways to order 22 variables.  This simple factorial 
fails to account for all combinatorial possibilities with fewer than 22 explanatory variables 
that are potential models for the four drivers. 

Using the Akaike Information Criteria (AIC) (Akaike 1974) within a pragmatic search routine 
to find a minimal set of explanatory variables eliminates the need to calculate every 
combination of explanatory variables.  The AIC value helps to select between models and 
provides a trade-off between goodness of fit and model complexity.  The number of variables 
k in the model indicates the level of complexity.  For example, the fourth driver, pressure, 
could be modelled with either a simpler two-variable model (temperature and wind direction) 
or a more complex three-variable model (temperature, wind direction, and month).  The first 
line in Equation 3 shows the generalised AIC form and the last line shows the residual sum 
of the squares (RSS) form (Burnham & Anderson 2002, p. 342) used in this report.  The 
RSS form assumes that the errors are normally distributed with a mean of zero and 
independent.  In that case, the likelihood function L is the residual sum of the squares 
divided by the number of observations RSS/n for large values of n.  In model selection, the 
model with the smallest AIC is preferred.  The 2k provides a penalty for model complexity 
and the natural log of the likelihood function 2ln(L) provides a measure of goodness of fit. In 
model comparison, the constant c can be ignored. 

Equation 3: Akaike Information Criteria 

AIC = 2k – 2ln(L)   - general form 
AIC = n ln(RSS/n) + 2k + c  - RSS form use in this report 

Where 

L = likelihood function 
k = number of variables 
RSS = residual sum of the squares 
c = constant 

The selected models are used to produce projections of the four drivers for the years 2007-
2013, which SAM uses to calculate yield for 2007-2013.  As discussed in the literature 
review, there is the option whether to use a single Typical Meteorological Year (TMY) in a 
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sensitivity analysis on gas prices or analyse individual years to calculate inter-year variability 
and develop a P90 for lifetime revenue.  However, obstacles to acquiring data in a timely 
fashion for this report precluded the possibility of the variability analysis.  Therefore, this 
report calculates a single TMY to enable a sensitivity analysis on gas prices in the 
subsequent report (Bell, Wild & Foster 2014a).  The TMY is constructed from the years 
2007-2012.  These years correspond to datasets of electricity demand and renewable 
energy generation in the subsequent reports.  The Typical meteorological month (TMM) is 
the month in the years 2007-2012 that has the yield closest to the mean of the months from 
these years.  The TMY is made from the 12 TMMs.  For the year 2013, the yields calculated 
from the datasets of the four drivers from the driver models and from Allen (2013) are 
compared to help validate the models.  

The following sections elaborate on the process outlined above where necessary. Section 2 
discusses preparation of the datasets.  Section 3 discusses selecting the best models for the 
four drivers.  Section 4 discusses modelling yield from the four drivers.  Shah, Yan and Saha 
(2014b)  present the methodology for calculating yield from the historical datasets. 

3.2 Preparing the data 
This section discusses the preparation the datasets for use in this report.  The outline below 
shows a hierarchy of the datasets and their functional use.   

 Target or dependent variable  
o Allen’s (2013) datasets 

 Input or explanatory variables  
o BoM’s hourly solar satellite data 
o BoM’s Collinsville Post Office weather station  
o Other  

There are 4 target variables and 22 explanatory variables available.  

3.2.1 Allen’s datasets: Target or dependent variables 
Allen (2013) collects one-minute data from a terrestrial weather station at Collinsville for the 
four drivers of yield.  Allen (2013) converts the one-minute data into an hourly form 
specifically to meet the requirements of SAM.  SAM’s requirement for hourly data is the 
average of the instantaneous values of the previous hour. 

3.2.2 BoM’s Collinsville Post Office datasets: Input or explanatory variables 
BoM observes data at three different frequencies at Collinsville: 

 Once daily 
 Thrice daily 
 Six times daily  

The frequency of measurement of the environmental variable determines their preparation, 
so the following discussion groups the datasets or variables by frequency.  Interpolation of 
missing values was performed using the average of the previous and following day.   The 
thrice or six times daily measurements were interpolated using the measurements taken at 
the same time the previous day and next day. 
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3.2.2.1 Once daily data 
The outline below shows the datasets with a single daily data reading. 

o Temperature dry bulb 
 Maximum 
 Minimum 

o Evaporation 
o Solar exposure 

BoM takes daily data readings at 9 am for the previous 24 hours, except for the total daily 
solar exposure, which is estimated from satellite images 

This report assumes that minimum temperatures occur in the early hours of the morning and 
maximum temperatures occur in the remaining hours of the day. So, the same minimum dry 
bulb temperature is assigned to the hours 00 to 09 for that day and the same maximum dry 
bulb temperature is assigned to all hours 10 to 23 for the previous day.   

Evaporation is a daily rate, so the value was simply assign to the hours 00 to 09 that day and 
the hours 10 to 23 for the previous day.  

The solar exposure was simply assigned to every hour of the day.  The modelling is only 
required for the daylight hour, so the paradox of assigning solar exposure to the night time 
hours is a non-issue.  

3.2.2.2 Thrice daily data 
Thrice daily readings are taken at 6 am, 9 am and 3 pm for the following variables.   

o Temperature 
 Dry bulb 
 Wet bulb 
 Dew point 

o Relative humidity 
o Wind 

 Speed 
 Direction 

o Cloud cover 
o Visibility 
o Precipitation 

As discussed in the literature review, wind speed and direction are fickle and unsuitable for 
interpolation with such low-resolution datasets. However, the other environment variables 
are slower changing, so are more amenable to interpolation and modelling.  Additionally, 
only the daylight hours require modelling, which in effect doubles the resolution of the thrice-
daily readings.  The thrice-daily readings were simply interpolated with the following 
exceptions. 

Precipitation is a cumulative measurement. In contrast, the other variables are instantaneous 
measurements. Therefore, precipitation is converted into a rate and the rate simply assigned 
to the relevant hours. 
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An improvement in the interpolation for wind direction should be considered in further 
research for two reasons.  Firstly, the wind direction 360° represents north and 0° represents 
no-wind or calm, so a simple interpolation between 0° and a positive value is misleading.  
Secondly, the wind may simply switch directions, for instance from a land breeze to a sea 
breeze, which also makes interpolation misleading. 

3.2.2.3 Six times daily data – weather present and past  
The BoM uses the codes in Table 6 to record weather phenomena present at 6 am, 9 am 
and 3 pm and in the past hours.  These thrice-daily past and present weather recordings in 
effect give six daily readings.  The codes for the present times are simply assigned to the 
respective hour of the day and the codes for the past times are assigned to the previous 
intervening hours.  For example, the code for the past weather reading at 9 am is assigned 
to 7 am and 8 am. 

Table 6: BoM’s past and present weather phenomena types and codes 

4 Smoke 
5 Haze 
6-7 Dust 
8 Dust whirls 
9 Dust storm 
10 Mist 
11,41 Fog patches 
12 Shallow fog 
13 Lightning 
14 Distant/nearby virga 
15-16 Distant precipitation 
17 Thunder 
18 Squall 
19 Funnel cloud 
20 Recent drizzle 
21 Recent rain 
22,26 Recent snow 
23 Recent rain and snow 
24 Recent precipitation 
25 Recent shower 
27 Recent hail 
28 Recent fog 
29 Recent thunderstorm 
30-32 Dust storm 
33-35 Severe dust storm 

38-39 Blowing snow 
40 Distant fog 
42-49 Fog 
50-55 Drizzle 
56-57 Freezing drizzle 
58-59 Drizzle 
60-65 Rain 
66-67 Freezing rain 
68-69 Sleet 
70-75 Snow 
76 Ice prisms 
77 Snow grains 
78 Starlike crystals 
79 Ice pellets 
80-81 Shower 
82 Violent shower 
83-84 Sleet 
85-86 Snow shower 
87-88 Soft hail shower 
89-90 Hail shower 
91-95 Thunderstorm 
96,99 Thunderstorm and hail 
97 Heavy thunderstorm 
98 Thunderstorm and dust 

(Source: BoM 2011)  

However, there are issues with interpolating the missing codes.  For instance averaging 
code 4 for smoke with code 98 for “Thunderstorm and dust” gives a code 51 for drizzle.  In 
further research, a more sophisticated algorithm is required to handle the missing readings.  
Additionally, the weather phenomena are a composite of existing variables such as visibility, 
relative humidity, precipitation, temperature, cloud cover, and evaporation.  Therefore, the 
codes in Table 6 are an index of components already modelled.   
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3.2.3 BoM’s Satellite datasets: Input or explanatory variables 
As discussed in the literature review, the BoM’s hourly satellite data for DNI and GHI 
requires adjustment for minutes past the hour according to the latitude of the observation, 
see Table 4.  The times of the BoM’s DNI and GHI readings are adjusted for the minutes 
past the hour then interpolated to provide the readings on the hour to match those datasets 
from BoM’s Collinsville post office weather station.  

3.2.4 Other input or explanatory variables 
This section discusses other variables derived from the BoM datasets or otherwise.  The 
following outline groups these variables by type. 

 Astrological angles 
o Azimuth 
o Zenith 
o Altitude 

 DHI 
 Pressure represented as a sine wave 
 Time 

o Month 
o Hour 

The astrological angles are calculated for every hour of the year for Collinsville, using the 
algorithm described in section 2.2.1.2. 

Equation 1 calculates DHI using the original DNI and GHI datasets from the previous section.  
DHI is then adjusted for the satellite latitude / minute past the hour deviation as described in 
the previous section.  

Pressure is modelled as a sine wave with maximums at 10 am and 10 pm and minimums at 
4 pm and 4 am (NOAA 2012).  This is intended to capture the atmospheric tide as discussed 
in section 2.2.4. 

Lastly, any other daily and seasonal effects can be captured using the hour of the day and 
month of the year as variables. 

3.3 Selecting the best model for the four drivers  
As discussed in section 3.1, AIC is used in a pragmatic search routine to select a minimal 
set of explanatory variables for each of the four drivers.  The routine addresses two 
problems: highly correlated environmental variables and the curse of dimensionality.  This 
section discusses the steps in the search routine. 

3.3.1 Step 1 – finding the besting fitting one-variable models  
The first step involves finding the first explanatory variable for each of the four drivers to 
provide the best fitting single-variable model.  This involves simply calculating R-squared 
(R2) values for each of the 22 explanatory variables and selecting the explanatory variable 
with the highest R2 value.  AIC is unsuitable for this first step because AIC fails to convey 
information in an easily interpretable way about goodness of fit of the model whereas R2 
does.   Equation 4 shows the calculation of R2.  In this report the total sum of squares SStot is 
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the variability in Allen’s (2013) dataset and the residual sum of squares SSres is the square 
residuals between the fitted model and Allen’s (2013) datasets.  So, an R2 value closer to 1 
denotes a better fit as the SSres approach zero. 

Equation 4: R-squared a measure of a model's goodness of fit 

R2 = 1 – SSres / SStot 

Where  
SSres = Residual sum of squares 
SStot = Total sum of squares 

3.3.2 Step 2 – selecting two-variables models 
In the second step the best fitting explanatory variable for each of the four drivers is used to 
form 21 two-variable models by appending one of the remaining 21 explanatory variables.  
For instance if the explanatory variable, month, provides the best fitting single-variable 
model for the driver, pressure, then the driver, pressure, is modelled with the following two-
variables models:  (month, temperature), (month, humidity), (month, hour), and so forth.      

3.3.3 Step 3 – selecting three-variable models 
The two-variable model with the lowest AIC is selected and the remaining 20 explanatory 
variable are used to form 20 three-variable models.  For instance if the two-variable model, 
(month, hour), provides the lowest AIC value for the driver, pressure, then the driver, 
pressure, is modelled with the following three-variable models: (month, hour, temperature), 
(month, hour, humidity), (month, hour, DNI), and so forth.  

3.3.4 Step N – iterating through N-variable models until information is 
exhausted 

The above routine is iterated until there lacks any significant decrease in AIC.  At this point 
the information value in the remaining explanatory variable has been exhausted and adding 
further explanatory variables to the model just introduces noise into the results.  

3.3.5 Neural network internal weights affecting the number of variables in 
value k 

All the neural networks in this report have 10 internal weights that are optimised to provide 
model fit.  These weights in effect add extra variables to the models by increasing the value 
of k in Equation 3. This increases the value of AIC but the effect of these weights on AIC can 
be ignored because a constant number of weights were used throughout the report for all 
models and the value of AIC is only used in model comparison where such constants can be 
ignored.    

However, the weight effect in Equation 5 adjusted-R2 (adj-R2) cannot be ignored. The adj-R2 
extends the R2 for single-variable models in Equation 4 for use with multi-variable models. 
Failing to allow for the weights will slightly over report the adj-R2 value. 
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Equation 5: Adjust R-squared a measure of goodness of fit for multi-variable models 

Adj-R2 = R2 – (1 – R2) k / (n – k – 1)  

Where  
k = number of variables in the model 
n = number of observations used in the model 

Nevertheless, the effect of the 10 weights on the adj-R2 values in Equation 5 is trivial as 
looking at the worst case scenario can show.  Calculating the term k / (n – k – 1) for a single-
variable model with and without the weights that is k = 1 & 11 and with the number of 
observation as the number of daytime hours in year that is n = 4380, which gives the 
following results 0.000228 & 0.002518, respectively.  The overall effect on adj-R2 is less than 
0.25% as the term (1 – R2) is always less than 1.  Ameliorating the effect even further is the 
degrees of freedom of the 10 weights requiring only adding 9 weights to the term k.  
Furthermore, only a fraction of each weight may require reflecting in the term k. This issue is 
left for further research but for this report the issue can be ignored. 

3.3.6 Neural network and variability of AIC and adj-R2 
In the above steps, the mean adj-R2 or AIC of10 simulations is used because the goodness-
of-fit of each simulation of a neural networks can differ slightly.  This variation arises 
because there is a random assignment of the data into segments for specific purposes: 
training (70%), validation (15%) and test (15%) (MathWorks 2014a).  Where the training set 
provides the data to find the best fit; the validation set provides data to prevent over fitting 
the training data (MathWorks 2014b); and the test set provides data that is independent of 
both training and validation.  This test set independence offers predictive falsifiability of the 
fitted model.  Running the neural network over a number of simulations and averaging the 
adj-R2 or AIC values helps improve the veracity of the results because in each simulation the 
data is randomly assigned into the training, validation and testing sets. 

3.4 Calculating yield with the Systems Advisor Model from four drivers 
The NREL’s SAM model (Wagner 2012; Wagner & Zhu 2012) calculates the hourly yield for 
LFR given hourly values for the four drivers in TMY format.  The company Novatec Solar will 
provide the LFR technology for Collinsville.  SAM has a sample file for a “Linear Fresnel 
Novatec Solar Boiler”.  This file contains all the default parameters for a standard Novatec 
Solar installation. Table 7 shows the changes from the default setting advised by Novatec 
Solar. 
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Table 7: Advised default setting changes to SAM’s ‘Linear Fresnel Novatec Solar Boiler’ 

Field groupings Input fieldnames Advised 
value 

Default 
value 

Solar Field 
parameters 

Number of modules in boiler section: 17 12 
Number of modules in superheater section: 6 6 
Collector azimuth angle: -10° 0 

Steam Conditions 
at design 
 

Field outlet temperature: 500°C 500 
Turbine inlet pressure:  120bar 90 

Plant Design   Design turbine gross output:  30.07 MWe 49.998 
(Source: Glaenzel 2013) 

The increase in the number of modules in the boiler section is consistent with an increase in 
‘turbine inlet pressure’.  However both these changes are expected to increase the default 
‘design turbine gross output’ but the default has been decreased from 49.998 to 30.07MW. 
This implies the plant will exceed the 30 MW AEMO imposed dispatch limit under ideal 
climatic conditions.  The oversizing of the boiler allows the plant to contribute to the grid 
closer to its 30 MW limit under less than ideal climatic conditions.  However, this may involve 
some spillage of excess supply but the amount is uncertain. The frequency of exceeding the 
dispatch limit is added to the research questions.  

The collector azimuth angle -10° means a 10° inclination to the west, which allows the plant 
to maximise output during the later afternoon when electricity prices are typically higher in 
Queensland. 

3.5 Conclusion 
This section building on the literature review has discussed the methodologies ready to 
apply to the research questions to provide the results in the next section.  

The overarching research question:  

Can modelling the weather with limited Collinsville datasets produce greater yield 
predictive power than the more extensive datasets from nearby sites?  

Has a supplementary question: 

What is the expected frequency of oversupply from the Linear Fresnel Novatec Solar 
Boiler? 
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4 Results and analysis 

4.1 Introduction 
This section presents the results from running the simulations described in the methodology 
in Chapter 3 to address the research questions arising in the literature review: 

Can modelling the weather with limited datasets produce greater yield predictive power 
than using the historically more complete datasets from nearby sites?  

Section 2 presents the results from modelling the four environment variables that are drivers 
for yield in the Systems Advisor Model (SAM).  The model is calibrated using the year 2013 
dataset from Allen (2013).  

4.2 Selecting the best models for the four drivers 
Sections 3.2 and 3.3 discuss the preparation of the data and methodology for this section.  
The four drivers for yield calculations in SAM are: 

 DNI 
 Temperature  (Dry bulb) 
 Humidity 
 Pressure 

Allen (2013) provides the datasets for the four drivers from his observations at Collinsville.  
These four drivers are the target or dependent variables.  BoM provides most of the 22 input 
or explanatory variables.  Section 3.2 provides details.  

4.2.1 Step 1 – selecting the one-variable models 
Table 8 shows the mean adj-R2 values for the four drivers against the 22 input or 
explanatory variables ranked by descending mean adj-R2.  The mean adj-R2 of 10 
simulations is used because the results from each simulation of a neural network can differ 
slightly.  Section 3.3.6 discusses this issue.  

The selection of the first explanatory variable for DNI, temperature, and relative humidity is 
unsurprising.  Selecting the first explanatory variable for pressure is more vexing but Section 
2.2.4 discusses the moderating effect of the hydrological cycle and the direct relationships: 
temperature causes pressure changes and pressure gradients cause wind.  Consistent with 
these relationships, Table 8 (d) shows that four forms of temperature measurement rank 
within the six highest mean R2 explanatory variables.  Month and Azimuth also feature in the 
highest six, which would reflect the annual atmospheric tide discussed in Section 2.2.4.  
However the mean R2 values for wind speed and direction indicate no fit.  As discussed in 
the literature review the three daily observations for wind is insufficient for such a fickle 
variable. 
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Table 8: Step 1 - selecting the one-variable models for the four drivers using R2 

Rank 
(a) DNI (b) Temperature (c) Humidity (d) Pressure 

Explanatory 
Variables 

mean 
adj-R2  mean 

adj-R2  mean 
adj-R2  mean 

adj-R2 
1 dni 0.81 temp 0.93 hum 0.81 wet 0.57 
2 ghi 0.50 maxMin 0.85 hour 0.55 mon 0.55 
3 dhi 0.39 wet 0.62 maxMin 0.51 dew 0.40 
4 cloud 0.33 hum 0.52 dni 0.42 azimuth 0.37 
5 zenith 0.30 azimuth 0.45 azimuth 0.42 temp 0.35 
6 altitude 0.30 hour 0.44 ghi 0.40 maxMin 0.34 
7 hour 0.29 ghi 0.36 temp 0.38 evap 0.21 
8 solar 0.27 altitude 0.35 speed 0.38 rain 0.14 
9 hum 0.22 zenith 0.35 zenith 0.27 hour 0.12 
10 speed 0.14 mon 0.33 altitude 0.27 weather 0.11 
11 pressure 0.13 speed 0.24 solar 0.21 solar 0.10 
12 direct 0.12 evap 0.22 direct 0.19 hum 0.10 
13 rain 0.12 solar 0.21 cloud 0.18 direct 0.09 
14 azimuth 0.11 dni 0.21 dew 0.17 pressure 0.08 
15 evap 0.11 dhi 0.21 evap 0.16 cloud 0.07 
16 weather 0.11 direct 0.17 weather 0.16 altitude 0.06 
17 dew 0.08 dew 0.13 dhi 0.15 vis 0.06 
18 maxMin 0.07 cloud 0.11 rain 0.13 speed 0.06 
19 mon 0.07 pressure 0.08 vis 0.12 zenith 0.05 
20 vis 0.06 weather 0.05 mon 0.11 dni 0.05 
21 temp 0.05 vis 0.03 pressure 0.09 dhi 0.03 
22 wet 0.04 rain 0.01 wet 0.06 ghi 0.02 

 
Equation 6 shows the one-variable models from the Table 8 for step 1. 

Equation 6: The best fitting one-variable models and their mean adj-R2 

dnia = f(dnib)    mean adj-R2 = 0.81 (a) 
tempa = f(tempb)   mean adj-R2 = 0.93 (b) 
huma = f(humb)   mean adj-R2 = 0.81 (c) 
presa =  f(wetb)   mean adj-R2 = 0.57 (d) 

Where 

a = Alan’s (2013) dataset 
b = Bureau of Meteorology’s dataset 
temp = Dry bulb temperature (°C) 
hum = Relative humidity (%) 
wet = wet bulb temperature (°C) 
pres = Atmospheric Pressure (mbar) 

The results from the one-variable model selection are used in step 2. 
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4.2.2 Step 2 – Selecting the two-variable models 
The unshaded rows in Table 9 show the mean AIC and adj-R2 values for the four drivers 
against the 21 two-variable models input or explanatory variables ranked by ascending order 
of mean AIC.  The first row in the Table 9 is shaded grey to indicate this is the one-variable 
model from step one above.  Equation 7 shows the best two-variable model, with ‘best’ 
defined as the model with the lowest AIC. 

Equation 7: Best fitting two-variable models and their mean adj- R2 

dnia = f(dnib, month)    mean adj-R2 = 0.83 (a) 
tempa = f(tempb, ghib)    mean adj-R2 = 0.95 (b) 
huma = f(humb, dnib)    mean adj-R2 = 0.86 (c) 
presa =  f(wetb, month)   mean adj-R2 = 0.67 (d) 

These two-variable models are used in step 3 to find the three variable models as discussed 
in Section 3.3.3.  This process was continued for 11 steps with the results discussed in the 
next section. 
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Table 9: Step 2 – Selecting the best two-variable model ranked by mean AIC 

(a) DNI 
Rank  AIC adj-R2 
 DNI 44634 0.81 
1 mon 44346 0.83 
2 ghi 44375 0.82 
3 dhi 44411 0.82 
4 maxMin 44413 0.82 
5 zenith 44426 0.82 
6 hour 44429 0.82 
7 azimuth 44431 0.82 
8 cloud 44435 0.82 
9 altitude 44454 0.82 
10 solar 44525 0.81 
11 pressure 44550 0.81 
12 hum 44570 0.82 
13 temp 44590 0.82 
14 evap 44597 0.81 
15 wet 44606 0.81 
16 rain 44617 0.81 
17 speed 44620 0.81 
18 weather 44636 0.81 
19 dew 44637 0.81 
20 direct 44657 0.81 
21 vis 44704 0.81 
    

 

(b) Temperature 
 AIC adj-R2 
TEMP 2072 0.93 
ghi 400 0.95 
hour 779 0.95 
altitude 811 0.95 
zenith 853 0.95 
azimuth 1039 0.95 
dni 1184 0.94 
maxMin 1323 0.94 
dhi 1536 0.94 
weather 1547 0.94 
pressure 1601 0.94 
rain 1745 0.94 
dew 1822 0.93 
solar 1840 0.93 
cloud 1846 0.93 
wet 1851 0.93 
hum 1886 0.93 
direct 1912 0.93 
mon 1921 0.93 
speed 1975 0.93 
vis 2005 0.93 
evap 2102 0.93 

 

(c) Humidity 
 AIC adj-R2 
HUM 17575 0.81 
dni 16622 0.86 
ghi 16632 0.86 
hour 16727 0.86 
azimuth 16813 0.85 
zenith 16932 0.84 
altitude 16980 0.84 
cloud 17008 0.84 
mon 17019 0.84 
pressure 17200 0.83 
dew 17239 0.83 
dhi 17265 0.83 
rain 17283 0.83 
solar 17285 0.83 
wet 17288 0.83 
temp 17296 0.83 
weather 17310 0.83 
speed 17411 0.82 
direct 17442 0.82 
evap 17456 0.82 
maxMin 17477 0.82 
vis 17578 0.82 

 

(d) Pressure 
 AIC adj-R2 
WET 7544 0.57 
mon 7012 0.67 
dew 7085 0.68 
temp 7100 0.67 
hum 7107 0.68 
maxMin 7123 0.65 
hour 7128 0.66 
dni 7140 0.61 
azimuth 7239 0.66 
cloud 7269 0.64 
ghi 7274 0.63 
evap 7330 0.63 
pressure 7351 0.63 
rain 7363 0.61 
weather 7392 0.61 
speed 7439 0.61 
solar 7445 0.64 
zenith 7448 0.62 
vis 7452 0.62 
dhi 7477 0.63 
altitude 7507 0.62 
direct 7604 0.62 
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4.2.3 Step 11 – Selecting the eleven-variable models 
Equation 8 shows the best eleven-variable model from Table 10 that is the model with the 
lowest AIC.  The previous 10 steps provide similar tables but to aid clarity and save space 
these tables are excluded.  Table 10 provides a composite of the previous 10 steps. 

Equation 8: Best fitting eleven-variable models 

dnia = f(dnib, month, ghib, dhib, cloudb, pressure, visb, maxMinb, directb, solarb, tempb) (a) 
mean adj-R2 = 0.86 

tempa = f(tempb, ghib,solarb, maxMInb, weatherb, dewb, visb, hour, evapb, altitude, month) (b) 
mean adj-R2 = 0.97 

huma = f(humb, dnib, hour, month, dewb, solarb, weatherb, cloudb, zenith, visb, azimuth) (c) 
mean adj-R2 = 0.93 

presa =  f(wetb, month, dewb, solarb, hour, directb, humb, dnib, cloudb, ghib, altitude) (d) 
mean adj-R2 = 0.83 

The first ten rows, shaded grey in Table 10, indicate the accumulation of the previous ten 
steps to find the ten-variable model.  The first greyed row shows the one-variable model and 
its mean AIC and R2 values.  The second greyed row shows the second variable of the two-
variable model and its mean AIC and R2 values.    The third greyed row shows the third 
variable of the three-variable model and its mean AIC and R2 values and so forth until the 
tenth row. 

The 12 unshaded rows in Table 10 show the eleventh variable of the eleven-variable models 
and their mean AIC and R2 values.  There are 12 eleven-variable models and they are 
ranked in ascending order of mean AIC.  Equation 8 shows the best models.  The next 
section discusses pruning these models.
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Table 10: Step 11 – selecting the best eleven-variable model by mean AIC 

(a) DNI 

Rank  Mean 
AIC 

Mean 
adj-R2 

1 dni   44654   0.81  
2 mon   44414   0.82  
3 ghi   44187   0.83  
4 dhi   43892   0.85  
5 cloud   43806   0.85  
6 pressure   43706   0.85  
7 vis   43716   0.85  
8 maxMin   43828   0.85  
9 direct   43764   0.85  
10 solar   43707   0.85  
1 temp   43587   0.86  
2 speed   43618   0.86  
3 hour   43640   0.86  
4 dew   43652   0.86  
5 rain   43718   0.85  
6 wet   43760   0.85  
7 altitude   43782   0.85  
8 evap   43790   0.85  
9 hum   43818   0.85  
10 azimuth   43858   0.85  
11 zenith   43908   0.85  
12 weather   43933   0.85  
    

 

(b) Temperature 
 Mean 

AIC 
Mean 
adj-R2 

temp 2144 0.93 
ghi 433 0.95 
solar 152 0.96 
maxMin -237 0.96 
weather -478 0.96 
dew -909 0.97 
vis -786 0.97 
hour -1363 0.97 
evap -1351 0.97 
altitude -1220 0.97 
mon -1766 0.97 
dni -1723 0.97 
dhi -1536 0.97 
zenith -1535 0.97 
pressure -1519 0.97 
wet -1502 0.97 
speed -1498 0.97 
rain -1484 0.97 
azimuth -1438 0.97 
direct -1418 0.97 
hum -1360 0.97 
cloud -1236 0.97 

 

(c) Humidity 
 Mean 

AIC 
Mean 
adj-R2 

hum 17550 0.81 
dni 16592 0.86 
hour 15825 0.89 
mon 14962 0.91 
dew 14666 0.92 
solar 14619 0.92 
weather 14595 0.92 
cloud 14324 0.92 
zenith 14280 0.92 
vis 13762 0.93 
azimuth 13795 0.93 
temp 13845 0.93 
wet 13869 0.93 
maxMin 13948 0.93 
rain 13975 0.93 
dhi 14028 0.93 
ghi 14035 0.93 
pressure 14050 0.93 
altitude 14390 0.92 
speed 14404 0.92 
direct 14418 0.92 
evap 14463 0.92 

 

(d) Pressure 
 Mean 

AIC 
Mean 
adj-R2 

wet 7546 0.57 
mon 7096 0.68 
dew 6501 0.74 
solar 6069 0.79 
hour 5817 0.80 
direct 5456 0.82 
hum 5604 0.81 
dhi 5575 0.81 
cloud 5324 0.83 
ghi 5399 0.82 
altitude 5076 0.83 
pressure 5085 0.83 
evap 5145 0.84 
dni 5242 0.82 
rain 5255 0.83 
maxMin 5313 0.82 
vis 5345 0.82 
weather 5375 0.83 
speed 5378 0.82 
azimuth 5438 0.82 
temp 5448 0.82 
zenith 5771 0.80 
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4.2.4 Pruning the models using signal to noise ratio 
This section discusses pruning the models in Equation 8 using an information signal to noise 
ratio to arrive at the models in Equation 9. 

Equation 9: Best fitting models after considering signal to noise 

dnia = f(dnib, month, ghib, dhib, cloudb, pressure)     (a) 
mean adj-R2 = 0.85 

tempa = f(tempb, ghib, solarb, maxMInb, weatherb, dewb)    (b) 
mean adj-R2 = 0.97 

huma = f(humb, dnib, hour, month, dewb, solarb, weatherb, cloudb, zenith, visb) (c) 
mean adj-R2 = 0.93 

presa =  f(wetb, month, dewb, solarb, hour, directb)     (d) 
mean adj-R2 = 0.83 

Examining the mean adj-R2 values in Table 10 shows that the information content available 
from adding an extra explanatory variable is nearly exhausted because the adj-R2 is no 
longer increasing or increases very little.  Additionally, for the shaded section of Table 10, 
the simulations of the models of various lengths have all been rerun and their mean AIC and 
R2 values calculated.  These AIC values no longer increase monotonically as was the case 
during their selection in the previous steps.  This indicates that the noise is greater than the 
information being extracted in the current process.  Section 3.2.3 discusses the source of 
noise or variability in the goodness-of-fit between simulations of neural network. 

This lack of monotonicity in the mean AIC values could be addressed by averaging across 
more simulations.  This would improve the stability of the mean AIC value and possible alter 
the order of the explanatory variables selected.  This is an approach taken in (Woodd-
Walker, Kingston & Gallienne 2001) who ran 100 simulations to address the variability in 
simulation results.  However any increase in R2 values is likely to be slight. 

Alternatively, the instability of the mean AIC value also provides an indicator of the point at 
which adding the extra explanatory variables provides such a poor signal to noise ratio that 
the variable can be ignored.  This poor signal to noise ratio can be seen in the greyed rows 6 
and 7 in Table 10(a) where the mean AIC increases from pressure to visibility.  The mean 
AIC also increases from visibility to max-min temperature in greyed rows 7 and 8.  
Furthermore, Table 8(a) shows that the mean adj-R2 values for the visibility and max-min 
temperature are 0.06 and 0.07, respectively.  Pruning the DNI model at pressure is 
appropriate. 

In Table 10(b), pruning the temperature model at dew point is appropriate because the mean 
AIC value increases from dew point to visibility, and there is no increase in mean R2 value. 

In Table 10(c), pruning the humidity model at visibility is appropriate because the mean AIC 
values increase from visibility to azimuth, and there is no increase in mean R2 value. 

The mean adj-R2 values in Table 8(d) for the explanatory variables for the driver pressure 
are the poorest of the four drivers.  In Table 10(d), pruning the pressure model at direct that 
is wind direction is appropriate because the mean AIC value increases from direct to hum 
and the mean adj-R2 values in Table 8(d) for the following explanatory variables in the 
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pressure model are small.  Section 3.2.2.2 discusses the misleading aspect of interpolating 
wind direction and the requirement for a better algorithm. 

Equation 9 shows the models from Equation 8 but the number of explanatory variables have 
been pruned after considering poor signal to noise ratio that is increasing AIC. 

4.3 Conclusion 
The models for the four drivers of yield have been selected, so the project can proceed to 
the next stage that is the development of the yield projections. 
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5 Discussion 

5.1 Introduction 
The discussion in this preliminary or draft report addresses the research questions but a 
more comprehensive discussion will be provided in the final report when all the results are 
available. 

5.2 Can modelling the weather with limited datasets produce greater 
yield predictive power than using the historically more complete 
datasets from nearby sites? 

The preliminary analysis in the literature review established that the climates between 
Collinsville and the coastal comparisons site differ considerably.  This difference calls into 
question their use as proxies for the climate and yield in Collinsville.  Given the climatic 
differences, Collinsville is expected to have slightly higher yield and the yield in the afternoon 
will be particularly higher.  This comparatively intensive afternoon yield period requires the 
use of a daily yield profile in addition to average daily yield statistic when comparing yield 
between Collinsville and the other sites.  

The Power and Energy Systems (Shah, Yan & Saha 2014b) group calculating the yield for 
the three comparison sites found that MacKay and Townsville had gaps in their datasets, 
which leaves only Rockhampton as a comparisons site. 

5.3 Is BoM’s DNI satellite dataset adequately adjusted for cloud cover at 
Collinsville? 

Section 2.2.1 discusses discrepancies in Table 3 over cloud cover and the satellite derived 
daily solar exposure between Collinsville and the comparison sites.  This research arose to 
address these discrepancies.  Equation 10 helps address this research question.   Equation 
10 comprises of data from Table 8, Table 9 and Table 10.  

Equation 10: Cloud cover and DNI modelling 

(a) Dnia = f(dnib)      mean adj-R2 = 0.81 
(b) Dnia = f(cloudb)      mean adj-R2 = 0.33 
(c) Dnia = f(dnib, cloudb)     mean adj-R2 = 0.82 
(d) Dnia = f(dnib, mon, ghib, dhib, cloudb, pressure)  mean adj-R2 = 0.85 

Where 
a = Allen’s (2013) dataset 
b = BoM’s dataset 
cloud = cloud cover 

Equation 10(a) and Equation 10(b) show the mean adj-R2 values for the single-variable 
models: dnib and cloudb at 0.81and 0.33, respectively.  Equation 10 (c) shows a mean adj-R2 
values of 0.82 for the two-variable model (dnib, cloudb).  The one percentage point increase 
in mean adj-R2 from the one-variable model in Equation 10(a) to the two-variable model in 
Equation 10(c) indicates that the BoM’s DNI data estimation from satellite images 
adequately incorporates cloud coverage.  This comes with the caveat that cloudb is thrice 
daily dataset and dnib is hourly.  Equation 10(d) shows the final model selected for the driver 
DNI.  The inclusion of cloudb after mon, ghib and dhib indicates that cloudb plays a very small 
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part in the model.  ghib and dhib already incorporate cloud coverage in there derivation.  This 
further reduces the role of cloudb in the final model.  

5.4 Given dust and dew effects, is raw satellite data sufficient to model 
yield? 

Section 2.3 discusses the dust and dew effect and introduces the concept of “effective” DNI 
to ameliorate concern over these effects for the use of terrestrial measurement of DNI for 
LFR yield calculations.  However, satellite data uses image evaluation, so is unadjusted for 
dust and dew effects but may allow for some dust-in the atmosphere.  Equation 10(a) shows 
the relation between “effective” DNI and satellite DNI represented by dnia and dnib, 
respectively.  The mean adj-R2 = 0.81 indicates that raw satellite data is good approximation 
to effective DNI but lacks a good fit. 

5.5 Does elevation between Collinsville and nearby sites affect yield? 
Section 2.2 discusses the lapse rates for temperature and pressure that is the change in 
temperature or pressure with change in elevation.  The temperature and pressure decrease 
with increased elevation but this relation is far from simple with temperature having three 
lapse rates, which are used to study cloud dynamics.  Using the simple pressure and 
environmental lapse rates (ELR) to perform a sensitivity analysis on the yield difference 
between Rockhampton and Collinsville provides an opportunity to recalibrate 
Rockhampton’s yield data for the pressure and temperature difference.  A simple application 
of the ELR would imply a small temperature decrease for Collinsville but examining Table 10 
shows that the temperature range for Collinsville is wider relative to the three comparison 
sites.  So, other effects such as the presence or absence of a sea breeze are overwhelming 
any temperature change induced by elevation and the ELR. 

5.6 How does the ENSO affect yield? 
Section 2.4 discusses the ENSO where the El Niño phase relative to the La Niña phase 
increases DNI, temperature and pressure and reduces humidity.  The overall El Niño effect 
is to increase yield and electricity demand.  

5.7 Given the 2007-2012 constraint, will the TMY process provide a 
“Typical” year over the ENSO cycle? 

Section 2.6 discusses the TMY process and the 2007-2012 constraint.  The TMY process is 
expected to average out the ENSO cycle to provide a representative year.  However, the 
2007-2012 constraint may lack enough data to average out the ENSO cycle.  Comparing the 
yield from the TMY for 2007-2012 with the TMY yield for previous years could ameliorate this 
concern.   

However, Figure 3 show the percentage deviations in yield from the long term mean for 
1999-2012 for the comparison site in Rockhampton.  Collinsville could be expected to follow 
a similar pattern.  This yield deviation pattern suggests a bias toward La Niña that is lower 
yield, during 2007-2012 compared to 1999-2006.  This implies the report’s period of study, 
2007-2012, will under report the yield.  The follow paragraph investigates the La Niña and El 
Niño phases to contrast their prevalence during the periods 2007-2012 and 1999-2006 to 
verify this interpretation of Figure 3. 
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Figure 3 Yearly energy yield and deviations from long term mean values 

 
(Source: Shah, Yan & Saha 2014b) 

Figure 4 shows the mean annual SOI for 1875-2013 where positive SOI indicates a La Niña 
(BoM 2014c) bias and the negative SOI indicates an El Niño (BoM 2014b) bias.  The mean 
annual SOI for 2007-12 is 5.63, which indicates a strong La Niña bias, and for 1999-2006 is -
0.4167, which indicates El Niño bias.  This supports the interpretation in of Figure 3.  
However, the mean annual SOI for 1875-1998 is -0.05, so both 1999-2006 and 2007-12 are 
bias in opposite directions compared to the longer-term average SOI.  Hence comparing 
these periods overstates the La Niña bias of the period understudy.  Nevertheless, there is a 
La Niña bias in the period understudy.  This bias will cause an underreporting the yield from 
the plant. 

Figure 4: Mean annual SOI 1875-2013 

 

(Source: BoM 2014d) 
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5.8 How does climate change affect yield? 
Section 2.5 discusses that the most likely effects of climate change are to reduce humidity 
and increase temperature and DNI but increase DNI only by a tiny amount.  The data series 
of climate change lack projections for pressure.  However, this scenario is similar to the El 
Niño phase described above, which indicates an increase in pressure.  Therefore, the El 
Niño phase and climate change have similar implications for the LFR at Collinsville that are 
increasing yield and electricity demand. 

Modelling the NEM becomes complex very quickly, so it is essential to focus on the core 
issue of the feasibility study that is to gain a PPA for the solar thermal project.  EEMG’s three 
reports strive to strike a balance by avoiding too many complexities but providing sufficient 
complexity to address the core issue of the feasibility study.  Incorporating climate change 
into the modelling in the subsequent reports would impose a great deal of complexity over a 
small effect for the proposed plant.  However, a sensitivity analysis on the data in Table 5 
would quantify how small the climate change effect is likely to be. 

Section 7, further research, suggests options for investigating the effect of climate change on 
the proposed plant. 

5.9 What is the expected frequency of oversupply from the Linear 
Fresnel Novatec Solar Boiler? 

Section 3.4 discusses yield calculation using SAM’s default “Linear Fresnel Novatec Solar 
Boiler” that is modified to reflect the LFR at Collinsville.  These modifications indicate the 
boiler is oversized and is likely to exceed the 30MW limit imposed by AMEO.   

The Power Energy Systems Group’s (Shah, Yan & Saha 2014b) yield calculation using 
SAM’s modified “Linear Fresnel Novatec Solar Boiler” with Rockhampton’s historical 
complete environmental datasets found that the yield exceeded 30MW.  This issue of 
exceeding the AMEO limit requires consideration of both frequency and size of exceeding 
the limit to determine whether exceeding the limit is acceptable by AMEO or spillage is 
required. 
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. 

6 Conclusion 

This preliminary or draft report presents the complete literature review, arising research 
questions and methodology to address the research questions.  This draft report also 
presents the first set of results that are the models for the four drivers of yield and yield 
estimates for Rockhampton.   The discussion in Section 5 analyses the research questions 
based on the results were possible. 

The methodology is in place to address the remaining research questions to provide a more 
comprehensive discussion in the final report when all results are available.  The models for 
the four drivers of yield have been selected, so the project can proceed to the next stage that 
is the development of the yield projections. 
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7 Further research 

This section compiles the further research discussed elsewhere in this report. 

7.1 Inter-year variability rather than TMY 
Section 2.6.1 compares two approaches to yield analysis.  The TMY approach that allows 
sensitivity analysis and the individual year approach that allows inter-year variability analysis 
to calculate a P90.  This report and the subsequent reports use the TMY approach.  The 
inter-year variability approach is suggested for further research. 

7.2 Using BoM’s Rockhampton one-minute solar dataset 
Appendix A provides yield analysis based on hourly data for Rockhampton from US Energy 
Plus.  The BoM provides one-minute solar data for Rockhampton starting from 1996.  This 
data provides the opportunity to assess the yield more accurately. 

7.3 Climate change adjusted demand forecasts   
Section 2.5 discusses the effect of climate change on yield, using three GCMs models to 
represent three cases: most like temperature rise, hottest and coolest for the NEM’s 
geographic area.  But because the main driver for yield is DNI, this analysis could be 
improved by selecting GCMs for the three cases: most like change in solar radiance, dullest 
and brightest for the NEM area.  In addition, comparing the GCM selection for Collinsville 
with the NEM would indicate if any local climate change effect on Collinsville is running 
counter to the global effect on the NEM.  The local effect determines yield but the global 
effect determines demand and prices. 

7.4 The effects of weights in the neural networks on adj-R2 and AIC 
Section 3.3.5 discusses the effect of the internal weights within the neural networks to cause 
an overestimation of adj-R2 values.  This effect was shown to be trivial in the report.   

In addition to adj-R2 values to indicate model fit, this report uses AIC to select between 
models.  The effect of the weights on AIC in this report was shown to be irrelevance because 
10 weights are used throughout this report.  However, keeping the weights fixed at 10 
reduces the possibility of fine-tuning the neural networks.   
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