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Evolution of the nucleus
Damien P Devos1, Ralph Gräf2 and Mark C Field3

The nucleus represents a major evolutionary transition. As a

consequence of separating translation from transcription many

new functions arose, which likely contributed to the remarkable

success of eukaryotic cells. Here we will consider what has

recently emerged on the evolutionary histories of several key

aspects of nuclear biology; the nuclear pore complex, the

lamina, centrosomes and evidence for prokaryotic origins of

relevant players.
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Introduction
The nucleus is enclosed by the nuclear envelope (NE)

to form a container for most eukaryotic cellular DNA.

Contiguous with the endoplasmic reticulum, the NE

separates gene expression (transcription, mRNA matu-

ration) from protein synthesis (translation, folding,

assembly), but necessitates a channel for bidirectional

trafficking (the nuclear pore complex (NPC)), a mech-

anism of mechanical support (lamins) and of chromoso-

mal positioning and segregation. The NE and NPC also

participate in chromosomal positioning, mitosis and

transcriptional control. NE origins are linked to the

ER and coated vesicles (CV) [1], probably via a

proto-NE, that was possibly freely permeable with a

sealed state arising subsequently ([2–4], discussed

in [5]). Many models have been offered for nuclear

origins and the events that underly the acquisition of

an endomembrane system [4,6,7,8��] (Figure 1). Here

we consider several nuclear-associated systems to pro-

vide insights into how the nucleus has evolved, together

with evidence for some of the relevant prokaryotic

precursors.

The nuclear pore complex: translocator,
organiser, regulator
Nucleocytoplasmic transport maintains a distinct compo-

sition between the cytoplasm and nucleus to facilitate

functional differentiation [9,10] (Figure 2). NPCs with

apparently similar morphologies are observed in the NE

of many lineages, suggesting that evolutionary changes to

the NPC are likely minor in terms of overall composition

or architecture, and conservation of the basic mechanisms

of transport across eukaryotes is clear. The NPC pro-

teomes for yeast, mammals, trypanosomes, plants and

Tetrahymena [11,12��,13–15] provide insights into NPC

evolution. The NPC proteins, nucleoporins (Nups),

demonstrate greatly divergent amino acid sequences

but with retention of secondary structural architectures.

However, in silico identification of Nups remains challen-

ging and our understanding of the evolutionary histories

of many individual Nups remains unclear [16,17].

The NPC has eight spokes surrounding a central channel,

and connected by the inner ring facing the channel

(Nup170/Nup155 complex in yeast/metazoa), outer rings

(Nup84/Nup107-160 complex in yeast/metazoa) and

membrane rings (Pom152 in yeast, gp210 in metazoa)

[18]. The inner and outer rings represent the structural

scaffold, and most of their Nups conform to the proto-

coatomer architecture, that is possess b-propeller and/or

a-solenoid domains, and are well conserved and structu-

rally related to vesicle coats [1,7,19]. Further, structural

similarity between some Nups and karyopherins suggest

a common origin; Nup188 and Nic96 bind FG-repeats

and translocate through NPCs, providing experimental

evidence in support of the proposed common origin

between the NPC and the soluble nuclear transport

machinery [20��,21��]. This may indicate that the Kaps

arose as a soluble Nup variant, or potentially vice versa.

Some Nups, for example Seh1 and Elys are non-universal

while the trypanosome Nup84 complex equivalent may

possess additional subunits (S. Obado, MCF, M.P. Rout

and B.T. Chait, in preparation). Most remaining Nups are

conserved; Aladin for example is widely retained, but lost

specifically from yeasts [5]. Clearly the major membrane-

deforming/stabilising functionality of the NPC is

evolutionary stable, and hence likely mechanistically

similar, across the eukaryotes, consistent with a compara-

tively invariable morphology (Figure 3).
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The membrane ring displays considerable flexibility, and

thesequencedivergencebetweenyeastandanimalPom152

and gp210 is well known. Possible orthologs of gp210 and

NDC1, but not Pom121, are present in Arabidopsis [13], but

in T. brucei no membrane Nups have been identified to date

[14]. Therefore the interface between the scaffold and NE

may vary between taxa, albeit with unclear consequences,

but may also have an association with NPC assembly [22].

FG-repeat Nups serve to provide gating functionality, and

the FG/FXFG repeat, if not the precise arrangement within

the Nup protein bearing the repeats, appears very widely

conserved across eukaryotes. An interesting example of an

exception to FG or FXFG repeat architecture comes from

Tetrahymena, where the transcriptionally inactive micronu-

cleus possesses Nup98 paralogs with poly-N/NIFN repeats

and the transcriptionally active macronucleus, more con-

ventional FG-repeat Nup98 [12��,23]. Significantly, despite

variation in sequence and locations of the FG repeats in

Nups, the number of FGs and sequence environment

within which the FGs are embedded appear to be better

conserved, implying conservation of the gating mechanism,

although the precise mechanisms by which this operates

remain controversial [14,16].

Both cytoplasmic fibrils and the nuclear basket exhibit

complex evolutionary patterns [5], likely impacting their

interactions with other cellular systems. For example,

Nup358 anchors RanGAP at the cytoplasmic fibrils in

metazoa but trypanosomes lack Nup358 and an alternate

anchor for RanGAP is present in plants, while yeast

RanGAP is solely cytoplasmic [13,16,24��]. Amongst the

many nuclear basket connections are the transcriptional

apparatus, the lamina and protein/RNA transport systems.

There is evidence for conserved interactions between the

NPC and TREX-2 and SAGA, important in mRNA export

and transcription respectively [25] and also Nup-inter-

actions with the spindle and checkpoint proteins

[26,27��]. Given that TREX-2 and SAGA subunits are

present in many lineages, it is again likely that this is

ancient and central to NPC function. Interesting, the inner

nuclear NPC components, Tpr in vertebrates and Mlps in

yeasts, are orthologs and widely represented across the

eukaryotes, whereas the discicristata (Euglenozoa plus

Percolozoa) have no detectable Tpr/Mlp homologue, but

have two nucleoporins with similar architectures and func-

tions [5,26] (Holden et al., submitted for publication).

Significantly, those data suggest that LECA possessed

Tpr/Mlp; the presence of analogues in early diverging

trypanosomes suggests that a second mechanism was pre-

sent in LECA or that this replaced an original Tpr/Mlp-

based system for interacting with the nuclear interior in the

discicristata, possibly as a response to changes in transcrip-

tional mechanisms.

Centrosomes, centrins and spindle poles
Centrosomes serve as the main microtubule-organising

centres (MTOCs), and are essential for cell architecture

in all organisms using microtubules for organelle position-

ing. Nuclear-associated bodies (NABs) or spindle pole

bodies (SPBs) are centrosomal structures in association

with the nucleus, and are best characterised in yeasts

and Dictyostelium amoebae. In budding yeast the SPB

consists of a stack of three plaques and is permanently

inserted into the NE (Figure 2). In Dictyostelium, the NAB
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within the Archaea, but this remains unresolved [85,86]. LECA/FECA; Last/first eukaryotic common ancestor. (b) Eukaryotic phylogeny, based on
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commonly studied and/or organisms familiar to most experimental cell biologists are provided to anchor the reader, and supergroups are indicated by

bars. There is a clear emphasis within many clades in the study of pathogenic species, for obvious and fully justified reasons. SAR + CCTH;

Stramenopile, Alveolata, Rhizaria + Cryptophyta, Centrohelida, Telonemia and Haptophyta.
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also contains a tripartite core; although attached to the NE,

the Dictyostelium NAB is cytosolic during interphase, only

entering the NE upon centrosome duplication at mitosis,

similar to fission yeast [28,29]. The Dictyostelium NAB

organises a radial microtubule cytoskeleton very similar

to metazoan cells. Centrosomes of animals, yeasts and

amoebozoa share a surprisingly small cohort of com-

ponents: the g-tubulin small complex (g-TuSC; g-tubulin,

GCP2, GCP3) required for microtubule nucleation; EB1,

TACC and XMAP215 for microtubule dynamics and

stabilisation; centrin, Cep192/SPD2, and centrosomin

(Cnn) as scaffolding proteins, kinases from the polo, aurora,

NIMA and Cdk family regulating duplication and spindle

organisation and the dynein motor protein [30–33]. Hence

much of the diversity of centrosomal functions is likely a

direct result of divergent composition in modern lineages.

The amoeboid cell state has been regarded as ancestral,

and acentriolar MTOCs in fungi and amoebozoans were

therefore considered to represent the primitive centroso-

mal form. However, comparative genomics indicates that

LECA likely possessed one or two centrioles associated

with a cilium, since centrioles are found in all major

eukaryotic subgroups [30,34,35] and the LECA was

almost definitely flagellated [8��]. The absence of cen-

trioles in higher plants, fungi and most amoebozoans is

therefore a secondary loss, and implies that centrosomes

likely had original roles in initiating cilium formation

while the centriole served as a basal body for microtubule

nucleation. Indeed, ciliate centrioles act exclusively as

basal bodies and their mitotic spindle poles are devoid of

centrioles [36]. Centrioles may have originally exploited

spindle association to ensure an equal distribution into

daughter cells, rather than having an active role at the

spindle [37–39], and this possibility is supported by

evidence that centrioles are dispensable for spindle for-

mation [40–42]. Despite this, these same studies found

that centrioles are essential for formation of astral

microtubules and cilia. The ancestral centrosome may

thus have been a membrane/chromatin-associated

microtubule nucleation centre with dual centromere/cen-

trosome functions. Subsequently duplicated during

10 Cell nucleus
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eukaryotic evolution, a centrosome remained attached to

the plasma membrane while a microtubule nucleation

centre attached to proto-endomembranes that later dif-

ferentiated into the NE [35]. This process could have

generated an intranuclear microtubule nucleation centre

that organised the spindle and an extra-nuclear centro-

some responsible for organising pellicular and flagellum

microtubules and significantly this configuration is pre-

sent in the discicristata, such as Euglena and trypano-

somes [43]. These scenarios suggest that the tight

association of a nucleus-associated centrosome with clus-

tered centromeres during the entire cell cycle, as in fission

yeast and Dictyostelium, is primitive. The hypothesis that

nuclear centromeres originally had dual centromere/cen-

trosome functions is supported by observations that both

structures remain closely associated with each other

during the entire cell cycle, as in fission yeast or Dictyos-
telium where centromeres cluster close to the inner

nuclear membrane and permanently associate with the

SPB/centrosome at the cytosolic nuclear face [44–46].

Besides tubulins, centrins (of the calmodulin family of

calcium-binding proteins) may be the most ancient cen-

trosomal proteins [47], with general functions in connect-

ing microtubular and membrane-bound structures.

Centrins may have been critical to assembly of the primi-

tive centromeric microtubule nucleation complex [35]. In

S. cerevisiae Cdc31p (yeast centrin) is a major constituent of

the assembly platform for the new SPB upon SPB dupli-

cation at the NE. There are several centrin isoforms, which

in most species can be grouped into two subfamilies:

human centrin-2-like and yeast Cdc31p/centrin-3-like

proteins. Since members are present in both unikonts

and bikonts, these subfamilies arose early [48], and losses

are likely secondary events. By this model, yeasts retained

only centrin-3 with its ancient, nuclear functions after loss

of cilia for locomotion [35]. However, this is likely too

simplistic as flies and nematodes lack centrin-3 and cen-

trin-2 assumes the nuclear role [48]. Further, Dictyostelium
CenA and CenB belong to neither subfamily, but both

predominantly associate with the nucleus, with CenA

concentrated at centromeres and CenB at nuclear internal

[49,50]. While an exact function of CenA is unknown,

CenB is important for nuclear architecture and centrosome

nuclear attachment, the latter function being conserved

with S. cerevisiae Cdc31p [51].

Lamins, laminas and LINCs
The NE is subtended in most cells by a morphologically

recognisable lamina, first described in amoebozoa [52–54].

The lamina in metazoan cells is comprised of lamins, a

family of repetitive coiled coil �60–80 kDa proteins [55].

Lamins serve as organisers of heterochromatin, NPCs and

multiple additional nuclear structures, reflected in the

importance of laminopathies to human disease ([56], com-

piled in [55,57]). Lamins are targeted to the NE by C-

terminal prenylation, and in mammalian cells the distinct

isoformshave somewhatdiffering locations [58,59].Lamins

were assumed to be metazoan specific, suggesting a recent

origin. It is clear this is incorrect as lamin orthologs are

present in several amoebozoan species, with the best

characterised being Dictyostelium NE81, with functions

fully compatible with a bona fide lamin [60��,61], pushing

the lamin origin to the origin of unikonts and perhaps even

earlier. Furthermore, while there are no documented

lamins within bikonts, the discicristate NUP-1 protein,
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A number of features associated with prokaryotic cells that are shared with eukaryotes. Note that not all of these features are present in any one
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centrosome was associated with an early membranous structure that gave rise to the nuclear envelope.
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and higher plant NMCP proteins assume similar locations

and functions, as well as retain a predicted coiled coil

architecture [55,62��,63��]. It is unknown if the LECA

had a lamina of NUP-1-like, NMCP-like or lamin-like

proteins, or if NUP-1/NMCP and lamins are in some

manner evolutionarily related. It is formally possible that

the LECA had a more complex lamina and that all but one

system was subsequently lost, or that the discicristata and

plants replaced a lamin-based lamina with NUP-1 or

NMCP respectively.

A further group of proteins associated with the NE is

SUN and KASH domain proteins [64��,65]. SUN proteins

are present in all major eukaryotic groups, except for the

discicristata [66�]. SUN proteins are concentrated at the

inner NE and interact with KASH-family proteins at the

outer NE, forming the LINC complex [64��,65,67].

Different KASH-family proteins manage direct or indir-

ect connections to cytoplasmic microtubules, actin fila-

ments, intermediate filaments and dynein, which in turn

maintains the centrosome close to the nucleus through its

microtubule minus end-directed motor activity. SUN

proteins are linked to lamins [68], required for proper

centrosome/nucleus attachment [69]. Although this link-

age has been proven only for metazoa, since Dictyostelium
NE81 is required for centrosome/nucleus attachment and

interference with NE81 causes phenotypes similar to

SUN1 disruptions, this likely extends to Amoebozoa

[46,60��,70]. Thus, lamins may have co-evolved with

SUN-proteins, suggesting the widespread presence of

lamins, while the absence of SUN and lamins from the

discicristata is compatible with the absence of lamins and

substitution by NUP-1. However, as plants also have

SUN/KASH and NMCP proteins but not lamins, coevo-

lution is therefore not strictly necessary [71]. Further, a

functional connection between lamins and open mitosis

also can be discounted [35]. Dictyostelium has a partial

closed mitosis, comparable to Aspergillus [72]; as the

former has a lamin and the latter apparently does not,

these features are not linked. Dictyostelium may have

solved the problem of making the NE sufficiently flexible

for karyokinesis by partial disassembly of NE81 networks,

as NE81 remains associated with the NE throughout the

cell cycle [60��]. Hence at present there remains no

obvious rationale to underpin the use of a particular set

of proteins to build a lamina or the functional implications

of these potentially distinct systems.

Prokaryotic origins
Given the clear conservation of many nuclear functions and

structures, it is perhaps no surprise that there is growing

evidence for origins of several systems and components

pre-LECA, and even reaching back to prokaryotes

(Table 1). Surprisingly, prokaryotic homologues of

proteins with the protocoatomer architecture, that is,

related to the NPC scaffold, have been detected only in

bacteria belonging to the PVC superphylum [73]. PVC

bacteria have a unique endomembrane system that is

complex and dynamic [73–75], and it is unclear if this

represents an example of convergence, lateral gene transfer

or deep evolutionary relationships. Importantly, this may

indicate that there is a fundamental aspect to the proto-

coatomer architecture that is of extreme value to mem-

brane modeling, and further highlights that internal

membranes of considerable complexity exist outside

eukaryotes. Orthologs of many nuclear proteins and RNAs

are present in Archaea, including PCNA, Sm-like, MCM

and GINS, encompassing functions from transcription,

DNA replication, mRNA processing and telomere con-

struction [76–78]. Similarly, most archaea encode histone

variants [79,80] and snoRNA genes [81], all indicating a

shared cohort of nuclear genes/RNAs between Archaea

and eukaryotes. With improved detection methods eukar-

yotic features are increasingly being identified in prokar-

yotes and it is becoming clear that the transition between

these two major cellular forms may have been more gradual

that previously suspected (Table 1).

Summary
Many nuclear functions, including complex interactions

and dynamics, are conserved across eukaryotes, and

which engage massive assemblies of proteins with ancient

origins. A number of notable, lineage-specific features

have been described, most prominently the lamina, and

the implications remain to be fully established. Further-

more, centrosomes have complex nuclear evolutionary

relationships and even the strict view of an endomem-

brane system as a eukaryotic feature is challenged by the

presence of membranous systems in prokaryotes. The

emergence of additional model systems beyond the clas-

sical yeasts and animals will continue to contribute to

understanding the evolution of nuclear functions and the

origins of the nucleus itself.
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12 Cell nucleus

Table 1

Selection of genes that are represented both in prokaryotic and

eukaryotic genomes. A small selection of examples is given, to

illustrate that both bacteria and Archaea may share genes with

eukaryotes which have important roles in the nucleus.

Protein complex Functions in Present in Reference

MC proteins Endomembrane system Bacteria [73]

PCNA DNA metabolism Archaea [76]

Sm-like Small nuclear

ribonucleoproteins

Archaea [77]

CMG complex DNA replication Archaea [78]

snoRNA Post-trancriptional

modifications

Archaea [81]

Dynamin Membrane manipulation Bacteria [82]

ESCRT Membrane/cell division Archaea [83,84]
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