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Abstract: Lifestyle is the primary prevention of diabetes, especially type-2 diabetes (T2D). Nutritional
intake of olive oil (OO), the key Mediterranean diet component has been associated with the
prevention and management of many chronic diseases including T2D. Several OO bioactive
compounds such as monounsaturated fatty acids, and key biophenols including hydroxytyrosol and
oleuropein, have been associated with preventing inflammation and cytokine-induced oxidative
damage, glucose lowering, reducing carbohydrate absorption, and increasing insulin sensitivity
and related gene expression. However, research into the interaction of OO nutraceuticals with
lifestyle components, especially physical activity, is lacking. Promising postprandial effects have been
reported when OO or other similar monounsaturated fatty acids were the main dietary fat compared
with other diets. Animal studies have shown a potential anabolic effect of oleuropein. Such effects
could be further potentiated via exercise, especially strength training, which is an essential exercise
prescription for individuals with T2D. There is also an evidence from in vitro, animal, and limited
human studies for a dual preventative role of OO biophenols in diabetes and cancer, especially
that they share similar risk factors. Putative antioxidative and anti-inflammatory mechanisms
and associated gene expressions resulting from OO biophenols have produced paradoxical results,
making suggested inferences from dual prevention T2D and cancer outcomes difficult. Well-designed
human interventions and clinical trials are needed to decipher such a potential dual anticancer and
antidiabetic effects of OO nutraceuticals. Exercise combined with OO consumption, individually or
as part of a healthy diet is likely to induce reciprocal action for T2D prevention outcomes.

Keywords: olive nutraceuticals; functional foods; exercise; nutrition; type-2 diabetes

1. Introduction

Diabetes is a major health problem and one of the leading causes of morbidity and mortality
worldwide [1]. The current estimated prevalence has already reached over 400 million people [2].
Preventing type 2 diabetes (T2D) is possible mainly through lifestyle adjustments. Large prospective
studies have all shown remarkable reductions in T2D incidence through combinations of dietary and
physical activity modifications [3,4]. Reduced T2D incidence rates have also been found more recently
in the PREDIMED follow up study, which also demonstrated key benefits of the Mediterranean diet
(MD) such as adherence in reducing cardiovascular disease and mortality rates [5,6]. Such interest has
made it important to review the T2D preventative role of functional foods and bioactive components
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present within MD including vegetables and fruit, olive oil, fish, and tree nuts [7]. Given that olive oil
(OO), especially in its extra-virgin form, is the distinct macronutrient lipid and key culinary ingredient
characterizing MD, it would be important to review the T2D preventative bioactive ingredients of OO
from molecular to whole body level.

At a molecular level, several bioactive ingredients within OO have been repeatedly linked with
anti-oxidant and anti-inflammatory preventative functions, particularly those from monounsaturated
fatty acids (MUFA), and key biophenols such as oleuropein and hydroxytyrosol (HT) [8]. The health
benefits of OO in T2D prevention and management continues to be of a growing research interest and
a simple search on PubMed using OO and diabetes as keywords revealed 417 entries, and this was
increased to 1667 entries with the search of OO and health. Readers can also refer to recent systematic
reviews for virgin OO effects in T2D prevention [9]. However, there is a lack of research on how OO
and its phenolic components function as part of lifestyle prevention of T2D, especially when combined
with enhanced physical activity. Augmenting the benefits of healthy nutritional food components,
or functional food, with adding lifestyle approaches such as exercise, can extend a comprehensive
model for T2D prevention and management previously presented [7]. This review aims to investigate
key molecular components of OO ingredients and how they interact with lifestyle approaches to
prevent disease, especially T2D. It will also discuss recent findings of novel molecular functions of OO,
and how they can be augmented in the lifestyle prevention of T2D and associated diseases.

2. Bioactive Compounds and Key Functions of Olive Oil: Relevance for Diabetes

Over 30 hydrophillic biophenolic compounds have been identified in OO derived from
the olive tree fruit (Olea europaea L., Oleaceae family), most of which are responsible for the
organoleptic properties, bitter and pungent flavours and aromas, and oxidative stability of
the oil [10–12]. Biophenols are a diverse and heterogenous group of compounds characterized
by an aromatic benzene ring attached to one or more hydroxyl groups in their structure.
They are synthesized as secondary plant metabolites via the shikimate, polyketide, and acetate
biosynthetic pathways, producing C6–C3, and C6–C3–C6 derivatives, and aromatic terpenoids,
respectively [13]. Several enzymatic transformations including condensation, cyclisation, glycosylation,
hydroxylation, acylation, methylation, and prenylation contribute to the structural diversity of
phenylalanine-derived metabolites [14] and tyrosol (4-(2-Hydroxyethyl) phenol), one of the major
phenylethanoids derived from OO, which has the ability to form esters with fatty acids [15].
Levels of biophenols in OO are highly variable and are influenced by several factors including
different varietal cultivars, degree of fruit ripening, stage of maturation, storage conditions,
and processing methods [16,17]. Nonetheless, studies have shown that extra virgin OO (EVOO)
contains greater levels of biophenols (ca. 50–800 mg/kg) compared with those of refined OO (ca.
62–198 mg/kg), which undergo further and more extensive processing [18]. HT (3,4-DHPEA) and
tyrosol (p-HPEA) comprise over 90% of the total phenolic content of OO, in addition to their secoiridoid
derivatives—dialdehydic forms of elenolic acid (EA) linked to HT (oleacein: 3,4-DHPEA-EDA)
and tyrosol (oleocanthal: p-HPEA-EDA), aglycones of oleuropein (3,4-DHPEA-EA) and ligstroside
(p-HPEA-EA). Hydrophilic esters of EA; tyrosol, HT, oleocanthal, and oleuropein, and their associated
compounds; 10-hydroxyoleuropein, ligstroside, and 10-hydroxyligstroside are the most prevalent [19].
Lignans; (+)-1-acetoxypinoresinol and (+)-1-hydroxypinoresinol, and their respective glucosides have
been detected in the bark of the olive tree, and in OO, and levels have been reported to be in the
region of ca. 100 mg/kg [20]. Phenolic acids; sinapic, vanillic, caffeic, ferulic, p-hydroxybenzoic,
p-coumaric acid, protocatechuic acid, and hydroxy-isocromans; 1-phenyl-6,7-dihydroxy-isochroman
and 1-(3′-methoxy-4′-hydroxy)-6,7-dihydroxy-isochroman, synthesized from reactions with HT,
benzaldehyde, and vanillin, have also been detected in OO, however levels rarely exceed ca.
1 mg/kg [21]. Similarly, flavonoids, luteolin and apigenin are present in levels much lower in
comparison to other phenolics derived from OO [22]. HT, tyrosol, and oleuropein are of scientific
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interest due to their significant effects on several molecular, genetic, and biological mechanisms,
which could contribute to the prevention of chronic diseases such as T2D.

Several important biological properties have been ascribed to biophenols derived from OO,
including antioxidant; free-radical scavenging and cardio-protective effects, and their ability to
modulate pro-inflammatory cytokines and markers of inflammation, which could mitigate modifiable
risk factors associated with T2D [23–25]. The cardioprotective role of HT and their derivatives,
particularly oleuropein, in their ability to improve high-density lipoproteins (HDL) [26], reduce
low-density lipoprotein (LDL), inhibit platelet aggregation, and improve endothelial function [27]
are well recognized. Health claims exist in the EU for the role of OO derived biophenols in their
protection against the oxidation of blood lipids, and maintenance of normal blood LDL-cholesterol
levels [28], and current recommendations suggest a daily intake of ca. 20 g of EVOO (of which 5 mg is
derived from HT and its derivatives) to protect from CVD [29]. Such recommendations do not yet exist
for T2D. Evidence from in vitro, in vivo, and clinical studies indicate significant anti-inflammatory
effects of HT in their ability to reduce the expression of adhesion and signaling molecules and
inflammatory markers [30,31]. These effects are well documented in those at risk for CVD; however,
few studies have been tested in people with or at risk of T2D. Nonetheless, OO derived biophenols may
reduce postprandial inflammation by decreasing the activation of nuclear-factor kappa B (NF-κB) and
lipopolysaccharide (LPS) absorption. Camargo et al. [32] administered a virgin OO enriched meal with
different concentrations of phenolics (High: 398 ppm, Intermediate: 149 ppm and Low: 70 ppm) to
subjects with metabolic syndrome (MetS) including T2D. Inhibition of NF-κB and decreased expression
of interleukin-IL-1β and IL-6 was observed following the meal enriched with the highest concentration
(398 ppm) of OO. Reduced fasting plasma glucose concentrations, glycated haemoglobin A1c (HbA1c),
body weight, and inflammatory adipokines have also been demonstrated in a small-scale study with
overweight T2D patients following intake of EVOO (equivalent to 577 mg/kg, mainly as HT) [33].
Phenolics could exert potential anti-diabetic effects due to their potent free-radical scavenging and
antioxidative properties. Animal models and in vitro evidence demonstrate their interaction with
intracellular signaling pathways, such as nuclear transcription factor (erythroid-derived 2)-like 2
(Nrf2), which is involved in the regulation of the expression of antioxidant proteins that protect against
oxidative damage. In vitro studies indicate the potential role of HT and oleuropein in their ability to
protect cells against oxidative stress by activating the Nrf2/ARE pathway in a dose-dependent manner,
with HT exhibiting potent radical scavenging capacity [34] and ability to upregulate protective enzymes
including thioredoxin reductase [35]. Evidence from a recent meta-analysis on OO consumption
in T2D patients reported a lower production of advanced glycosylated end-products (AGE’s) [9].
HT supplementation (10 mg/kg/day for 5 weeks) enhanced glucose tolerance and insulin sensitivity
leading to a decrease of homeostatic model assessment-insulin resistance in rat models [36]. Further
potential anti-diabetic mechanisms have been demonstrated in experimental in vitro studies for
flavonoids and phenolic acids e.g., chlorogenic, ferulic, caffeic, and tannic acids, in their ability
to inhibit α-amylase, α-glucosidase enzymes, and the sodium dependent SGLT1-mediated glucose
transport, thus potentially influencing glucose metabolism by inhibiting carbohydrate digestion
and absorption [37,38]. HT has a high degree of bioavailability as evidenced by their high rates
of absorption following ingestion of EVOO (40–95%) in humans; oleuropein-glycoside, oleuropein,
and ligstroside–aglycones are converted to HT or tyrosol and excreted in urine, and HT and tyrosol
themselves are sometimes conjugated to glucuronic acid and excreted in urine as glucuronides [39].
It is also thought that ingestion in this formulation (i.e., oil) could further mitigate their breakdown in
the gastrointestinal tract. The mechanisms of absorbing and exerting key OO bioactive compounds
may explain its fate and preventative effects in T2D and other cardiometabolic diseases. It is likely
that biophenols may influence glucose metabolism via several mechanisms; inhibition of carbohydrate
digestion and glucose absorption in the intestine, activation of insulin receptors and glucose uptake in
the tissues, antioxidative properties, and immunomodulatory effects.
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Several T2D protective mechanisms of OO and similar olive leaves biophenols have been
reported from cell culture, animal and human studies, and summarized in detail elsewhere [40].
Those include oleuropein effects on reducing amyloid aggregation and preventing inflammation and
cytokine-induced oxidative damage of pancreatic β-cells and enhancing β-cells capacity; olive leaves
extracts effects include lowering glucose and cholesterol levels; modifying gene expression implicated
in lipogenesis, thermogenesis and insulin resistance; reducing digestion and intestinal absorption
of dietary carbohydrates in the mucosal and in serosal sides of the intestine; reducing HbA1c and
fasting plasma insulin; acutely enhancing insulin sensitivity and related gene expression by OO
ingestion [41]; oleacein preventing inflammatory response and cytokine-mediated oxidative cell
damage with downregulation of a number of genes involved in adipocyte differentiation. It is however
unclear at this juncture, the precise role of OO biophenols, and further investigations, especially in
humans, are necessary to fully elucidate their mechanisms in T2D.

3. Does Olive Oil Prevent T2D Independently or as Part of a Healthy Diet?

Attributing health benefits to OO cannot be investigated in isolation of other healthy dietary
and lifestyle components, especially since OO has been the defined food component characterizing
MD, which contains other healthy foods such as seafood, fruits and vegetables, and nuts [42].
However, longitudinal prospective studies which OO to households who consumed MD reported
better cardioprotective outcomes compared with MD supplemented with nuts, despite both diets
showed better risk-reduction outcomes than low-fat control diet [5]. In the 10-year follow-up of
this study, T2D incidence was lower with OO supplemented MD compared with MD supplemented
with nuts or low-fat diet control (80, 92, and 101), and this corresponded to lower hazard ratios
(0.60 vs. 0.82) in the MD supplemented with OO compared with the MD with nuts [6]. Another
longitudinal study also reported a lower 10-year incidence of T2D and CVD events in prediabetic
individuals who had a higher adherence to MD components [43]. However, OO was part of 11 other
components in the 55-score Greek MD scales used in the latter compared with OO being part of 9
other components in the Spanish 14-item MD scale used in the PREDIMED follow-up study [6,44].
Other MD interventions have also shown relevant improvement in T2D biomarkers and enhanced
microvascular and cardiorespiratory outcomes when MD was combined with an 8-week exercise
intervention and a one-year follow up, with OO being the key ingredient implemented as part of
the MD 9 components in older adults and postmenopausal women cohorts [45–47]. MD-induced
enhancement in endothelial function and markers of vascular inflammation has been associated with
improved glucose tolerance in individuals with MetS [48].

In a sub-group of the PREDIMED study follow up (after 1 year), the cardioprotective
anti-inflammatory benefits were attributed to OO only based on lower plasma tumor necrosis factor
receptor (TNFR60) concentration found in individuals allocated in the highest tertile of OO and
vegetables consumption compared with those in lowest tertile [49]. This was combined by an overall
MD-components induced reduction in plasma IL-6, TNFR60, and TNFR80, compared with an increase
in those who followed a low-fat diet. Thus, there is convincing evidence that consuming OO as part of
a healthy MD diet is protective of T2D in high-risk individuals with prediabetes and those with high
CVD risk.

The current evidence from cohort studies on OO in T2D prevention stems from meta-analyses,
which have shown that OO is the key MUFA (55–80% oleic acid), and that MUFA from vegetable
sources are responsible for alleviating T2D metabolic risk factors and reducing all-cause mortality,
stroke, and CVD events [9,25]. Nevertheless, evidence from randomized controlled trials has
often focused on testing the main OO biophenol compounds (oleuropein, tyrosol, HT, flavonoids,
and lignans) and other MUFA compounds. These compounds have been reviewed recently for their
effectiveness in the prevention of T2D, especially showing increased HDL, enhanced endothelial
vascular activity, reduced reliance on carbohydrate substrates, and reduced glucose release from
the liver, as well as increased glucose uptake in peripheral tissues, which can reduce HbA1c [9].
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When compared with other healthy oils with similar constituents such as a-linoleic acid in rapeseed
oil (common in the Nordic diet), OO biophenols, especially oleuropein, have been suggested to be
superior in their anti-oxidation and effects on blood lipids [50]. For example, the EPIC-Interact study
has shown that phospholipid α-linoleic acid (a compound found only in oleic acid of OO) is inversely
associated with T2D [51]. Further anticancer and cardioprotective properties within α-linolenic acid of
OO have been suggested to be superior than α-linoleic acid found in rapeseed oil, especially when
such oils are consumed as part of a healthy diet such as MD [9,50].

4. New Scope for Olive Oil, Physical Activity, and Lifestyle Approaches in T2D Prevention

The synergistic effects between healthy food components including OO and other lifestyle factors,
especially physical activity, is integral to the prevention and management of T2D. Better T2D outcomes
can be achieved, whether through combining nutritional ingestions with exercise, or with other
lifestyle approaches to augment the mechanistic preventative effects of functional foods (i.e., molecular,
metabolic, vascular, and behavioral), and has been shown to be effective as part of a model we recently
developed for the prevention and management of T2D [52].

However, only a limited number of well-designed studies have tested the effectiveness of OO
synergy with exercise interventions on relevant T2D outcomes. For example, combining 1-h of
moderate endurance exercise with consuming an OO breakfast meal (saturated fat 15% and unsaturated
fat 85%) produced a 26% lower postprandial triglyceride (TG) than a butter-no exercise meal (saturated
fat 71% and unsaturated fat 29%) [53]. Such combined effects suggest positive mechanisms for OO on
lipid abnormalities associated with T2D or “diabetic dyslipidemia” such as the high concentration
of TG and small dense LDL and a low concentration of HDL cholesterol [54]. Another study using
animal models has shown that diets with OO induced better counteracting benefits to exercise-induced
oxidative-stress (26% vs. 17% increase in the area under the curve) compared with a butter-based diet
trial [55]. This suggests that the benefits of OO may be significantly augmented when combined
with exercise, due to reciprocal actions on T2D outcomes and exercise-induced oxidative-stress.
Other studies encompassing EVOO as part of MD have also shown effectiveness in combining MD
with supervised moderate exercise training in enhancing microcirculatory vascular activity in high-risk
individuals [45,46]. A 6-month multicomponent lifestyle school-based program consisting of four
different lifestyle approaches (physical activity, nutrition education, combined with substituting
normally taken oil with EVOO) found that glycemic and diastolic blood pressure were reduced in
the intervention group who adopted EVOO [56]. OO consumption as part of a health dietary plan
is likely to produce better T2D prevention outcomes when combined with exercise, and requires
further investigations.

Enhancing the anabolic effects of strength training through novel effects of OO compounds is
another interesting area in T2D prevention, especially given the importance of strength training for
patients with T2D patients or those at high-risk [2]. Recent evidence from animal studies indicated
novel anabolic enhancing effects of OO biophenols on androgen function. For example, oleuropein
supplementation increased testicular testosterone concentrations, reduced plasma corticosterone,
and enhanced plasma LH in rat models [57]. These anabolic effects were observed following the
addition of 0.1 g per 100 g oleuropein to a high protein (40%) diet (40, 25, and 10 g per 100 g casein)
levels for 28 days high-protein diet [58].

Oleuropein has also been found to confer a higher resistance to oxidation of EVOO when
compared with other healthy oils such as rapeseed oil [50,51]. Whether and how oleuropein potentiates
anabolic effects can be enhanced via exercise training is yet to be investigated in T2D prevention.

For example, testosterone deficiency promotes insulin resistance and increases the risk of T2D [59].
Testosterone plays a critical role in the regulation of body composition in males and exhibits potential
anti-obesity effects mediated by the androgen receptor (AR) [60]. Emerging research from knockout
mice indicates a protective mechanism of AR signaling in adipocytes, critical in the regulation of
insulin action and glucose homeostasis, independent of adiposity [61]. This new insight into the
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importance of AR activity may potentially lead to the development of a new multicomponent lifestyle
strategy targeted at insulin resistance associated with testosterone deficiency, for which OO could play
an important therapeutic role.

In addition to their potential anabolic effects, OO biophenols may play a role in augmenting
strength training outcomes as part of T2D prevention via their putative added modulation of the
anti-inflammatory, anti-oxidation, and pro-hypertrophy mechanism, especially when OO was ingested
as part of a dietary plan. A recent rodent study reported an increase in muscle hypertrophy, articular
cartilage recovery, and reduced IL-6 in rats with early osteoarthritis when exercise (daily treadmill
running 5 days a week for 10 min) was combined with ingesting a standardized diet enriched with
EVOO for 12 weeks [62]. The combined anti-inflammatory and pro-hypertrophy mechanism induced
by conjugated OO jointly with exercise could be effective in preventing and treating T2D and associated
complications. For example, reducing inflammatory cytokines could counteract muscle catabolism
via actions on monocyte adhesion proteins such as monocyte chemoattractant protein-1 molecule
(MCP1) [63].

In the context of lifestyle T2D prevention, effects of OO are not exclusive to exercise and diet.
Disease-related detriments to other lifestyle behaviors such as sleep disturbance, fatigue, depression,
and stiffness have also been shown to improve with OO combined with exercise intervention in women
with fibromyalgia [64]. Such positive synergetic effects of OO and exercise could be explained by
their effect on oxidative stress, especially on reducing inflammatory cytokines IL-6 and TNF-α [65],
which are key biomarkers in T2D prevention and management. Further research is needed to test such
synergetic effects in high-risk and T2D individuals. Research in this area is especially important given
the promising evidence for augmented T2D preventative effects, when physical activity is combined
with selected functional foods and nutraceutical of MD and naturally available health promoting herbs,
as summarized elsewhere [7].

Another interesting lifestyle approach is to investigate whether biophenols, including those
in OO can augment physiological exercise performance, especially cardiorespiratory exercise
capacity. Enhanced cardiorespiratory fitness is known to associate with disease prevention especially
cardio-metabolic disorders [66]. However, a recent review did not provide convincing evidence about
the role of biophenols and exercise performance [67]. Quercetin supplementation for 7 days was
reported to enhance aerobic capacity and improve exercise time, but the meta-analysis relied on a small
number of studies, which used non-OO biophenols and may not apply to this review. Nonetheless,
enhancing exercise-dependent outcomes, especially cardio metabolic, through OO supplementation is
potentially increasing its effectiveness for T2D prevention when adopted as part of a lifestyle approach.

5. Diabetes, Cancer Mechanisms and Olive Oil Interrelationship

The link between hyperinsulinemia, T2D, and cancer is a research area of a growing interest,
since there is evidence that people with diabetes are at a significantly higher risk of developing many
forms of cancer given their similarities in risk factors and pathophysiology [68]. Some evidence
indicates a higher risk of more aggressive and metastatic forms of cancer, with poor prognosis
in diabetics [68,69]. Plausible biological mechanisms have been described to account for this link
including the effects of hyperglycemia, hyperinsulinemia, and inflammation on cancer etiology and
progression [70]. Insulin is a growth factor, which stimulates cell mitosis and migration, and inhibits
apoptosis, effects that could potentially become exacerbated under conditions of insulin resistance and
impairment of insulin-regulated metabolic pathways, as seen in T2D.

Therefore, the potential of OO as a protective agent in both diabetes and cancer makes it
interesting to decipher their underlying mechanisms, and to pave the way to develop effective
treatment approaches. Evidence from epidemiological studies indicate a potential role of OO in
the prevention of certain cancers, especially those affecting the breast and colon [71–74]. Potential
anti-cancer effects of OO biophenols have been shown in experimental studies, whereby oleuropein
inhibited cancer cell growth and induced apoptosis in human breast cancer cell lines, T-47D, and
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MCF-7 via the p53-dependent pathway and via regulation of Bax and Bcl2 genes [75,76]. Similarly,
HT reduces hydrogen peroxide induced DNA damage in human peripheral blood mononuclear cells
and promyelocytic leukemia cells (HL60) [77]. The prevention of ROS-induced DNA damage is a
potential mechanism of defense against the multistage process of carcinogenesis, and DNA mutations
arising from damage caused to DNA is a common feature in carcinogenesis. Pathophysiological
manifestations of diabetes, i.e., increased plasma glucose, insulin, AGEs and free fatty acids, enhanced
reactive oxygen species (ROS), and oxidative stress, and increased DNA damage, have been reported to
be considerably higher in people with poor glycemic control, and diabetes [78,79]. Potential anticancer
and antidiabetic effects of OO biophenols are likely mediated, in part, by their potent antioxidant
and free radical scavenging properties, and human intervention studies albeit limited, have shown
decreased levels of urinary 8-oxo-7,8-dihydro-2′deoxyguanosine (8-OHdG), a known biomarker of
DNA damage, after short-term consumption of OO [80].

Secoiridoid from OO especially oleocanthal, have been shown to inhibit the proliferation,
migration, and invasion of various human breast, prostate cancer, and multiple myeloma cells [81].
Oleocanthal is the OO compound responsible for the pungent sensation at the back of the throat, is
thought to exert similar non-steroidal anti-inflammatory activity to that within ibuprofen, especially in
inhibiting harmful cyclooxygenase (COX) 1 and COX2 enzymes [82]. Inhibition of COX2 and matrix
metalloproteinases through OO biophenols oleuropein and HT have shown reduced angiogenesis in
cultured endothelial cells [83]. Differences in the gene expression profile of breast tissue has also been
reported in an animal model of breast cancer susceptibility following ingestion of OO compared with
corn oil. Expression of metabolism genes related to mitochondrial uncoupling proteins, were found
only after OO ingestion, suggesting a reduction in the balance of intake and expenditure, alongside a
down-regulation of the expression of S100 genes [84] that have been associated with the progression of
breast tumorigenesis. The inflammatory transduction of S100 protein signaling is mediated by receptor
for advanced glycation end-products (RAGE), in a variety of cell types [85]. RAGE is a multi-ligand
cell-surface receptor that propagates cellular dysfunction in several inflammatory disorders, in tumors
and in diabetes [86]. It is also a marker for oxidative stress through its interaction with AGEs,
where its accelerated formation due to increased concentration of circulating glucose is a feature of
T2D [87]. The associated metabolic abnormalities between diabetes and cancer is significant and of
clinical importance, and therefore, mandatory counselling and/or screening for changes linked with
cancer could be one strategy to accompany lifestyle approaches in patients presenting with obesity,
pre-diabetes, and diabetes.

Evidence from in vitro, animal, and limited human studies suggest potential benefit of OO
biophenols via putative anti-oxidative and anti-inflammatory mechanisms involving NF-κB inhibition
with COX-2, IL-6, IL-8, and IL-1β (down-stream products of NF-κB) expressed at lower levels.
These may account for the lower prevalence of cancer in people consuming a MD. However, there is a
long way still before such mechanisms are deciphered for each disease. For example, improving insulin
sensitivity by inducing the inhibition of NFkB expression is also thought to mediate muscle wasting
seen with disuse, denervation, and some systemic diseases (i.e., cancer, sepsis) [88]. High phenolic
content OO has been shown to inhibit NF-κB and decrease IL-1β and IL-6 postprandially in individuals
with MetS [31]. Clinical evidence showing dual antidiabetic and anticancer effects is limited and
somewhat inconclusive, however intervention studies have reported some benefit of OO mostly based
on changes in biomarkers associated with immunomodulatory and anti-oxidative capacity in healthy,
diabetic, and cancer patients [32,49,80,89,90] (Table 1). However, these findings remain inconsistent
and this could be due in part to a lack of robust and well-designed clinical trials.
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Table 1. Potential antidiabetic and anticancer dual effects of olive oil in human studies.

Reference Patients Dose and Formulation Outcomes

Carmargo et al. [32]

n 49 with MetS, age range:
36–71 years old (19 men,
30 women); mean BMI:
38.59 ± 0.58 kg/m2

40 mL VOO intake over 24 h,
provided as a breakfast of high
(398 ppm), intermediate
(149 ppm) or low (70 ppm) TP

High dose: Decrease NF-κB,
IL-6, TLR4 protein,
IL-1β expression
Low dose: Increase NF-kB p65
subunit, IL-6; TLR4 protein,
TNF-α.

Urpi-Sarda et al. [49] n 106 sub-cohort at high risk of
CVD, from the PREDIMED trial

VOO (1 L/week) compared with
a control low-fat diet at 3
months and 1 year old follow-up

At 3 months: Reduced IL-6 and
CRP with VOO
At 1 y: Reduced TNFR 60,
IL-6, TNFR80
Increase: IL-6, TNFR60, TNFR80
with low-fat diet

Weinbrenner et al. [80]
n 12 Healthy men, age range:
20–22 y, mean BMI:
22.9 ± 1.7 kg/m2

25 mL/day VOO: Subjects
received 1 of the 3 treatments
(25 mL/d) over 4 days with a
washout period of 10 d between
treatments. low, moderate and
high TP content
(10–486 mg/kg TP)

Decrease: 8-oxo-dG in
mitochondrial DNA and urine,
MDA in urine
Increase: GSH-Px
No effect: GR

De Bock et al. 2013 [89] n 46 Overweight patients, mean
BMI: 28.0 ± 2.0 kg/m2

OLE provided as capsules
containing 51.1 mg oleuropein
and 9.7 mg HT

28% Increase Beta cell function
Increase: IL-6
No effect: IL-8, TNF-α,
high-sensitive CRP

Oliveras-López et al. [90]
n 45 healthy men and women
(age: 21–45 years old), mean
BMI: 21.4 ± 0.5 kg/m2

50 mL EVOO for 30 days, two
doses ingested at breakfast (30
mL) and lunch (20 mL)

Increase: Plasma AOX capacity,
AOX enzymes—CAT, GPX;
improved gene expression SOD

AOX: antioxidant; VOO: virgin olive oil; EVOO: extra virgin olive oil; OLE: olive oil leaf extract; 8-oxo-dG:
8-oxo-7,8-dihydro-2′deoxyguanosine; GR: glutathione reductase; HT: hydroxytyrosol; GSH-Px: glutathione
peroxidase; IL-6: interleukin-6; IL-1B: interleukin-1beta; CRP: C-reactive protein; MDA: malonaldehyde; NF-κB:
nuclear factor kappa B; ROS: reactive oxygen species; SOD: superoxide dismutase; TLR4: toll-like receptor 4; TNF-α:
tumor necrosis factor-alpha; TP: total phenolics.

6. Conclusions

Lifestyle prevention of T2D necessitates investigating nutritional dietary bioactive compounds.
OO intake as part of the diet has been associated with the prevention and management of T2D.
OO contains an abundance of biophenols; oleuropein, HT and their derivatives, and several antidiabetic
mechanisms have been ascribed to their potential immunomodulatory, antiproliferative, antioxidative,
and anabolic effects. There is a promising evidence that such effects can be further augmented with
combining physical activity lifestyle components with OO consumption. OO mechanisms have
mainly emanated from in vitro studies and animal models, with limited clinical studies. Nonetheless,
their potential effects on T2D and associated comorbidities is encouraging, such as the potential
dual diabetes and cancer protective role found in OO nutraceuticals (Figure 1). Robust human
intervention and clinical trials are necessary to fully elucidate the role of OO in T2D and their associated
comorbidities, especially when combined with exercise.
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Figure 1. Olive oil, types, and phenolic compounds, and associated diabetes protective molecular
mechanisms, which can potentially be augmented with physical activity. AGE’s: Advanced glycated
end-products; CAT: catalase; CRP: c-reactive protein; Hb1Ac: glycated haemoglobin; GSH-Px:
glutathione peroxidase; IL: interleukin; LPS: lipopolysaccharide; MDA: malonaldehyde; SOD:
superoxide dismutase; TNFR: tumor necrosis factor receptor. Arrows within caption indicate decrease
(↓) or increase (↑).
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EA Elenolic acid
GSH-Px Glutathione peroxidase
HbA1c Haemoglobin A1c
HDL High-density lipoprotein
HT Hydroxytyrosol
HL60 Leukemia cell line
IL Interleukin
LDL Low-density lipoprotein
LPS Lipopolysaccharide
T2D Type 2 diabetes
OO Olive oil
8-OHdG 8-oxo-7,8-dihydro-2′-deoxyguanosine
MCF-7 Breast cancer cell line
MCP1 Monocyte chemoattractant protein-1
MD Mediterranean diet
MDA Malonaldehyde
MetS Metabolic syndrome
MUFA Monounsaturated fatty acids
NF-κB Nuclear-factor kappa B
Nrf2 Nuclear transcription factor

(erythroid-derived-2)-like 2
PMBC Peripheral blood mononuclear cells
P53 Tumor protein antigen
RAGE Receptor for advanced glycation end products
ROS Reactive oxygen species
SGLT-1 Sodium dependent mediated glucose transporter
SOD Superoxide dismutase
TNFα Tumor necrosis factor alpha
TNFR60 Tumor necrosis factor receptor
T-47D Breast cancer cell line
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