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Abstract— The problem of deciding which inputs in a model
influence the most the state or output is often of practical
importance, especially in the cases in which the system can
be over-parameterized. In this context, a designer is required
to perform sensitivity analyses so as to select which inputs are
the most relevant to the problem at hand and remove those
with smaller or no impact. In this paper, we tackle this issue
by constructing the exact reachable set of a linear system that
relates the inputs with the state of that system. By means of
projections and solutions of linear optimization programs, we
are able to assess which inputs drive the most the state or the
output of a linear system. Illustrative examples are presented
in order to provide insights on the proposed method.

I. INTRODUCTION

Sensitivity analysis has been a long standing research topic
addressed by multiple techniques. The problem relates to the
identification of the inputs causing the largest variability of
the state/output of a model. Different techniques have been
proposed and lengthy discussions are presented in the books
[1], [2], [3], while further information can be found in the
review articles [4], [5].

The sensitivity analysis is typically conducted by defining
a model, assigning probability density functions to each
input, generating inputs, and assessing the output of the
model. The view in this paper is centered on a worst-
case scenario where, instead of considering the probability
information, the sensitivity analysis is driven by the most
extreme impact each input can have on the state/output of
the model.

The main motivation of considering the sensitivity of a
model is to find which inputs are the most successful in
achieving a control strategy or which contribute the most to
the outputs of the system. We envisage as particular case
of interest a formation of agents with their own dynamics.

D. Silvestre is with the Department of Electrical and Computer
Engineering of the Faculty of Science and Technology of the Uni-
versity of Macau, Macau, China, and with the Institute for Sys-
tems and Robotics (ISR), Instituto Superior Técnico, University of
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Which nodes contribute the most for a final decision depends
on their individual dynamics but also on the topology. The
techniques designed for sensitivity analysis in this paper aim
to answer the question of which inputs should be used or,
in the opposite direction, which elements are the ones that
can cause the final state to drift the most in the worst-case
scenario. In a smart grid environment, such techniques would
be useful to determine what is the worst operating point if
one of the inputs is compromised or faulty following the
concepts in [6].

The first group of methods that has been used to address
the problem can be categorized as direct methods or differ-
ential sensitivity analysis because the model equations are
differentiated (similarly computed the difference equations)
with respect to the inputs. The impact of each input can then
be described by these derivatives. Many formulations exist
for continuous-time models that are surveyed in [5] and that
have been more recently developed in the works [7], [8], and
also for the discrete-time case in [9], by exploiting the case
of a Kalman filter.

The variance-based methods in [7], [8] determine the
sensitivity of each input by computing the variance on the
output caused by the inputs through an approximation model,
by using Taylor series expansions. These methods have the
advantage of considering a general nonlinear model of the
type Y = f(X1, · · · , Xk), whereas the focus of this paper
is on the linear case and with the main difference that only
the variance is being used to compute the sensitivity. Our
proposal is to leverage on recent developments in reachability
sets computational approaches as a measurement of the
uncertainty or variability caused by a given input.

Additional methods exist that estimate the variance using
for example FAST (Fourier Amplitude Sensitivity Test) [10],
which resorts to the Fourier series to represent the ANOVA
decomposition of the nonlinear model. Similarly, some also
use the WASP (Walsh Amplitude Sensitivity Procedure) [11].
The main objective is to compute the ratio between the
variance of Y given X for all possible values of X and the
variance of Y as a measure of the sensitivity. Examples range
from [12], in which a transformation is used to reduce the
computational cost, to [13] for a general sensitivity analysis
independent of the model and also [14] where different
methods based on variance using FAST are compared with
direct methods. All such techniques consider the sensitivity
from a variance point-of-view, trying to identify which inputs
cause the most variability. Another interesting question arises
when focusing on the support of the distribution where
finding which input generates the worst possible scenario
among all the plant inputs.

In [15], the authors show how the sensitivity can also be
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computed from the posterior probability given a prior on
the inputs and thus describing it by means of a Bayesian
approach. Using the previous method requires fewer runs
than data-driven techniques such as Monte-Carlo tools. The
work in [16] addresses the case of determining the sensi-
tivity of medical parameters in a model by a Monte-Carlo
approach, where the input space is sampled and propagated
with the model, so as to determine its variance. The case of
the over-parameterized hydrological models is also studied in
[17] using a latin-hypercube sampling and a one-factor-at-a-
time (OAT) sampling to produce a global sensitivity analysis.
Other applications examples are: water flow and quality in
[18]; the spread of malaria in [19]; assessing technology
according to the National Institute for Clinical Excellence
in [20]; hybrid systems in [21]; and the interested reader is
referred to the recent survey in [22] for further information.

In this paper, the focus is on constructing reachability
sets for linear systems in order to quantify the impact of
a given input on the state/output of the model. Intuitively,
the variability of the state/output with respect to the inputs
is measured by computing their respective interval through
a reachable set. Resorting to the concept of Set-Valued
Observers (SVOs) enables the generation of a polytope
representing the restrictions on the state given the inputs
and uncertainties on the initial state. The choice satisfies the
need for an optimal representation for linear systems (i.e.,
no conservatism is added when there are no uncertainties in
the dynamics). Motivated by the findings in [23] that OAT
strategies might be justified for linear models, we sought to
investigate that claim via a direct comparison between the
two approaches, i.e., considering a single input versus con-
sidering multiple inputs simultaneously. The contributions of
this paper can therefore be summarized as follows:
• The introduction of a formal method that makes use

of reachability sets to compute the sensitivity of each
input;

• A result proving, for linear models, the relationship
between the sensitivity of OAT input with testing all
the inputs at the same time.

Notation : The transpose of a matrix A is denoted by
Aᵀ. For vectors ai, (a1, . . . , an) := [aᵀ1 . . . aᵀn]ᵀ. We let
1n := [1 . . . 1]ᵀ and 0n := [0 . . . 0]ᵀ indicate n-dimensional
vector of ones and zeros, respectively, and In denotes the
identity matrix of dimension n. Dimensions are omitted
when clear from context. The vector ei denotes the canonical
vector whose components are equal to zero, except for the ith
component. The symbol ⊗ denotes the kronecker product.

II. REACHABILITY FOR LINEAR SYSTEMS

In the context of sensitivity analysis, one is typically
interested in determining what happens to the output if the
inputs belong to some hypercube. Assuming a linear system,
the optimal approach to model the smallest reachable set
is using polytopes, as demonstrated in [24]. Therefore, we
consider a definition that follows the same principles as those
of Set-valued Observers (SVOs) that can be found in recent
works [25], [26], [27], [28] and the references therein.

We consider a linear time-invariant model of the form:
x(k + 1) = Ax(k) +Bu(k) + Ed(k)

y(k) = Cx(k)
, (1)

where x(k) ∈ Rnx , y(k) ∈ Rny , u(k) ∈ Rnu and d(k) ∈
Rnd , with matrices of appropriate size. In order to build
a closed reachability set, we assume the bound ∀1≤i<nd

:
|di(k)| ≤ 1 without loss of generality since matrix E can be
appropriately scaled. The main objective is to characterize
the impact of each entry of input d(·) to the state x(k) or
the output y(k).

To review the steps in the construction of reachable sets
from the model in (1), we define Set(M,m) := {q : Mq ≤
m}, which represents a convex polytope, with the operator ≤
being a component-wise operation between the two vectors.
The aim of an SVO (Set-Valued Observer) is to find the
smallest set X(k) containing all possible states of the system
at time k, knowing that ∀0≤i<H , x(k− i) ∈ X(k− i) for all
past H time steps and the dynamics of the system (1) for all
possible values of inputs d(k).

More precisely, the initial state satisfies x(0) ∈ X(0),
where X(0) := Set(M0,m0) and M0 and m0 are selected
such that the corresponding polytope is guaranteed to contain

the initial state. The notation Z̄ :=

[
Z
−Z

]
, for a matrix Z,

and v̄ :=

[
v
−v

]
, for a vector v will be used to shorten

the following equations. The information obtained by an
additional output measurement y(k + 1), results in a set
X(k + 1) that can be described as the set of points, x,
satisfying

M(k)A−1 −M(k)A−1E
C̄ 0
0 Ī


︸ ︷︷ ︸

M(k+1)

[
x

d(k − 1)

]
≤

m(k) + ũ(k, 1)
ȳ(k + 1) + ν?1

1


︸ ︷︷ ︸

m(k+1)

for some d(k − 1) where we used the notation ũ(k,H) :=
H∑
τ=1

M(k)A−τBu(k − τ + 1).

We will be assuming an invertible matrix of the dynamics
A to enable the previous strategy, although it is possible to
construct the same set otherwise by resorting to the strategy
in [24].

The above computations assume a horizon value H = 1,
i.e., only the measurements from time k + 1 and the input
signal from time k are used to compute the set-valued
estimate of the state at time k + 1. One can leverage on
this idea to construct the set corresponding to the constraints
that respect the model from time zero to some time k, since
this will be suitable for the purpose of sensitivity analysis.
The computations can be extended to a general horizon H
by defining the set as:

M(H)


x

d(0)
...

d(H − 1)

 ≤ m(H) (2)



where

M(H) :=

[
M0A

−H −M0A
−1E · · · −M0A

−HE
02Hnd×nx

IH ⊗ Ī

]
,

m(H) :=

[
m0 + û(H)

12Hnd

]
,

with û(H) :=

H∑
τ=1

M0A
−τBu(τ − 1).

The inequality in (2) describes an optimal polytope that
contains all constraints given by the model (1) and the hy-
percube for inputs d(0), d(1), · · · d(H) for which we would
like to analyze the associated contributions to the state. The
relationship between the state x(H) and the values of d(·)
are captured in the polytope.

III. SENSITIVITY ANALYSIS USING POLYTOPES

The general sensitivity analysis considers the individual
contributions as well as the possible interactions among the
inputs as opposed to the OAT framework where each input
is taken independently. In this section, the two cases will be
addressed.

A. General Sensitivity

The set X(H) defined by (2) comprises all points of the
type (x(H), d(0), · · · , d(H − 1)) that satisfy the dynamics
(1) and can be reached for at least a point on the set of
values being tested for the inputs. This property holds even
if the reachable set X(H) is not convex. Using the general
sensitivity approach, one can project the set into a the lower
dimension set defining how x(H) varies with respect to a
subset of the inputs, while setting the remaining to zero. The
sensitivity of the state or output corresponds to the interval
between the maximum and the minimum value attained with
a worst-case selection. This formulation admits more general
linear models and the addition of constraints to the set of
admissible states. For instance, one can answer questions
like “what is the sensitivity of state j at time H with respect
to inputs 2 and 3, given some unknown initial condition, and
in the case where the measurement at time H − 5 is zero?”.

Returning to the assumptions in this paper, since X(H) is
a polytope, one could resort to the so-called Fourier-Motzkin
elimination method [29] to remove the dependence on some
of the inputs and obtain the description of x(H) on a smaller
subset. However, such tools have a heavy computational
complexity and, since the objective is solely to compute the
amplitude of the state or output with respect to the admissible
values of the inputs, a different technique is proposed in this
paper.

Since the computation of the sensitivity is going to be
written as an optimization problem, we will constrain the
state to belong to the space with a single non-zero ith input.
In order to do so, we introduce the linear map Πi : Rnx+1 7→
Rnx+Hnd defined as

Πi(x) =

[
Inx 0
0 ei

]
x

where ei is the ith vector of the canonical basis of RHnd ,
and is helpful in formulating the problem of finding the
sensitivity amplitude for input i, where 1 ≤ i ≤ Hnd.
However, it can be generalized to select more than one input
by replacing ei with a matrix

[
ei1 ei2 · · ·

]
to select inputs

i1, i2, · · · . Thus, the selection can take inputs at different time
instants or entries in the input vector.

Let the notation Xi(H) := {x : Πi(x) ∈ X(H)} represent
the projected set, which will not be computed explicitly.
Remark that input i is an entry of the input vector at a given
time and therefore there are Hnd inputs. Then, the sensitivity
function can be given as in the following definition.

Definition 1: Given a set X(H) built for a given horizon
H , the general sensitivity of state j to the input i can be
defined as the function:

S(Xi(H), j) := xmax
j (H)− xmin

j (H),

xmax
j (H) = maxx(H)

di

∈Xi(H)

xj(H)

xmin
j (H) = minx(H)

di

∈Xi(H)

xj(H).

In Definition 1, di is an input where 1 ≤ i ≤ Hnd.
Notice that this function measures the sensitivity of the
state (similarly the definition can represent an output if the
polytope is constructed for the output) to the ith input. The
problem can be solved independently by computing two
linear optimization programs:

minimize
z

[
ej
0nd

]ᵀ
z

subject to z = Πi(x),

M(H)z ≤ m(H).

(3)

and

minimize
z

−
[
ej
0nd

]ᵀ
z

subject to z = Πi(x),

M(H)z ≤ m(H).

(4)

The optimization programs (3) (minimum) and (4)
(maximum) directly compute the two terms in function
Si(X(H), j). Remark that the solution of both problems
is a linear objective function in a projected space from the
original reachability set, which can be extended to other ways
of computing the sets and more general models than that in
(1). The steps are summarized in Algorithm 1.

The next lemma proves the intuition stated in [23], clari-
fying the relationship to the dynamics applied to the initial
state.

Lemma 1 (General sensitivity for Linear Systems):
Consider an initial state x0 satisfying ‖x0‖∞ ≤ 1 for the
linear system in (1) and a vector of inputs d. Also consider
the definition of S(Xi(H,J ), j) as the sensitivity amplitude
of the state xj(H) to input i assuming all inputs in J are
zero.



Algorithm 1 General Sensitivity Analysis
Require: Linear model of the form (1), time horizon H .
Ensure: Computation of the influence of each input in the

final state.

1: /* Compute the full reachability set X(H) */
2: X(H) from (2)
3: for each input i do
4: /* Compute minimum and maximum of x(H) */
5: minxj(H) from (3)
6: maxxj(H) from (4)
7: /* Compute sensitivity S(Xi(H), j) */
8: S(Xi(H), j) = maxxj(H)−minxj(H)
9: return Sensitivity values

10: end for

Then, the following holds:

S(X(H, ∅), j) =
∑
`∈D

S(X`(H,D\{`}), j)−(|D|−1)Sx0
.

where D = {κ ≤ Hnd} with integer κ, and Sx0
is the worst-

case contribution of the initial state on state xj at time H ,
i.e.:

Sx0
:= S(X(H,D), j).

Proof: Let us write the solution to the state equation
in (1):

x(H) = AHx0 +

H−1∑
τ=0

AH−1−τ
(
Ed(τ) +Bu(τ)

)
. (5)

To compute S(X(H, ∅), j), given the bounds for the inputs
and the initial state ‖x0‖∞ ≤ 1, one needs to compute

argmin
z

eᵀjL(z)

subject to ‖z‖∞ ≤ 1.
(6)

and
argmax

z
eᵀjL(z)

subject to ‖z‖∞ ≤ 1.
(7)

using different linear functions L(z). In particular, when
L(z) = AHz the optimization programs in (6) and (7)
give us xmin and xmax as the arguments that minimize
and maximize that linear function subject to the constraints.
Therefore,

Sx0
= eᵀjA

H(xmax − xmin)

as the amplitude of the sensitivity caused by the dynamics on
the (unknown) initial state. Given that the objective function
in the maximization of the jth entry of the state vector in
(5) is a separable function (i.e., linear), it holds:

S(X(H, ∅), j) = Sx0 +eᵀj
(H−1∑
τ=0

AH−1−τE(dτmax−dτmin)
)

where dτmax and dτmin are the respective solutions to (7) and
(6) with L(z) = AH−1−τEz. If we redo the calculations for

S(X`(H,D \ {`}), j), and since all inputs are set to zero
except `, one gets that:

S(X`(H,D\{`}), j) = Sx0
+eᵀjA

H−1−τE(d`max−d`min)
)

i.e., it is the same state solution as in (5) but with all inputs
except ` set to zero. Thus, the conclusion follows by noticing
two facts. The first one is that S(X(H, ∅), j) is the sum
of Sx0 and one term for each input `. Second fact is that
summing all S(X`(H,D\{`}), j) equals to adding |D| times
the term Sx0

and the same terms related with the inputs `.

The previous result asserted a relationship between the
general sensitivity and the OAT strategy where the key step
was a result of the linearity of (1). The next corollary reaches
the same intuitive conclusion provided in [23].

Corollary 1: Assume that the initial condition x0 is
known, then the general sensitivity is the sum of the OAT
sensitivities of each input.

Proof: The result follows from the fact that if x0 is
known then xmax = xmin and Sx0 = 0.

Given the relationship between the general sensitivity and
the OAT strategy for linear systems, in the next section fur-
ther details are provided on how to compute this sensitivity
for linear systems in an efficient manner.

B. One-Factor-At-A-Time (OAT)

The discussion about the general sensitivity pointed to-
wards the adoption of an OAT strategy to the linear case. As
a consequence, the computational complexity of the method
is largely reduced because the number of variables is much
smaller. Intuitively, OAT aims at fixing all inputs except one
and computing the amplitude of change on the state caused
by the analyzed input.

For simplicity of notation, let us say that the parameter i
corresponds to the entry ` at time t, i.e., that the labeling di =
d`(t). Fixing all but the ith input to zero enables rewriting
the polytope definition in (2) as:

Mi(H)

[
x
di

]
≤ mi(H) (8)

where

Mi(H) :=

 M0A
−H −M0A

t−1Ee`
01×nx

1
01×nx −1

 ,
mi(H) :=

[
m(k) + û(H)

12

]
.

In turn, the optimizations required for computing the
sensitivity also simplify to:

minimize
x

[
ej
0nd

]ᵀ
x

subject to Mi(H)x ≤ mi(H).

(9)

and

minimize
x

−
[
ej
0nd

]ᵀ
x

subject to Mi(H)x ≤ mi(H).

(10)



1

2

3

4

5

0.45

0.6

0.8

0.35

0.35

0.45

0.5

0.2

0.1
0.4

0.3

0.5

Fig. 1. Communication graph between the different vehicles.

Notice that both (9) and (10) do not involve any projection
and work directly on the much smaller space of Rnx+1

instead of Rnx+Hnd . For comparison with Algorithm 1, it
is summarized the steps of the OAT approach in Algorithm
2.

Algorithm 2 OAT Sensitivity Analysis
Require: Linear model of the form (1), time horizon H .
Ensure: Computation of the influence of each input in the

final state.

1: for each input i do
2: /* Compute the ith reachability set Xi(H) */
3: Xi(H) given by (8)
4: /* Compute minimum and maximum of xj(H) */
5: minxj(H) from (9)
6: maxxj(H) from (10)
7: /* Compute sensitivity S(Xi(H), j) */
8: S(Xi(H), j) = maxxj(H)−minxj(H)
9: return S(Xi(H), j)

10: end for

IV. SIMULATION RESULTS

In this section, we present simulations for a network
comprised of N = 5 vehicles with unicycle dynamics
described in [30]. The formation follows the graph in Figure
1 where it is annotated the weights that each vehicle uses
in a directional consensus algorithm to decide on a group
velocity and direction values.

As described in [30], the discrete-time model for the ith
vehicle can be written as:[

pi
qi

]
(k + 1) =

[
pi
qi

]
(k) + TAi(θi)

[
vi
wi

]
(k)

where the state (pi, qi) identify the position of the front of the
vehicle and the inputs (vi, wi) account for the linear velocity

TABLE I
SENSITIVITY VALUES FOR EACH VEHICLE WITH UNKNOWN INITIAL

POSITION.

# vehicle 1 2 3 4 5
S(Xi(H), 1) 2.0467 2.0654 2.1017 2.0428 2.0763

and rotation. Moreover, T stands for the sampling time, θi
for the orientation and matrix Ai(θi) is given as:

Ai(θi) =

[
cos θi −l sin θi
sin θi l cos θi

]
.

In this scenario, the vehicles initial orientation is known
to be θ(0) =

[
π/4 π/6 π/3 π/5 −π/3

]
but their

initial position is unknown with the constraint that ∀1≤i≤5 :
‖
[
pi(0) qi(0)

]ᵀ ‖∞ ≤ 1. At each time step, after injecting
their input, the nodes follow a consensus algorithm to decide
the common position based on their state. Given the network
topology and weights in Figure 1, one can define the iteration
of a linear consensus algorithm of the type x(k+1) = Px(k)
to be given by the matrix:

P = Adj⊗ I

and

Adj =


0.20 0 0.45 0 0
0.80 0.30 0 0 0

0 0.35 0.10 0.50 0.60
0 0.35 0 0.50 0
0 0 0.45 0 0.40

 .
In this example, the weights associated with
each node contribution to the final value are[
0.0826 0.0944 0.1468 0.0661 0.1101

]
⊗

[
1 1

]
.

Therefore, the sensitivity analysis by traditional methods
would have to take into consideration two different aspects.
First, the inputs of each vehicle, even though equal, will
have a different impact on their position depending on
each initial orientation. On the other hand, the fact that
those positions are subject to a consensus algorithm with
different weights can change the relative impact of a node
position to the final agreed one. Using the proposed strategy
in this paper, the SVOs produce a set for the final output
(as opposed to the example where the sensitivity was with
respect to the state) and the inputs are the different signals
to each of the vehicles.

The reported sensitivities are presented in Table I when the
initial position of the nodes is unknown but their orientation
is given by the initial state. These values translate that
the largest amplitude in the final output is obtained when
changing the vehicle 3 input.

In order to verify in an example the result in Lemma 1,
we computed the sensitivity of the model to zero inputs
and obtained S(X(H), 1) = 2, which was expected given
that with no input the vehicles will not move and their final
positions are going to be within the same initial state irre-
spective of how long it has passed since the initial time. The
simulation was repeated with a known (pi(0), qi(0)) taken
from a uniform distribution by setting the initial polytope to



TABLE II
SENSITIVITY VALUES FOR EACH VEHICLE WHEN THEIR INITIAL

POSITION IS KNOWN AND UNIFORMLY DISTRIBUTED.

# vehicle 1 2 3 4 5
S(Xi(H), 1) 0.0467 0.0654 0.1017 0.0428 0.0763

be a singleton. The new sensitivities are reported in Table
II, which satisfies the result in Corollary 1 that states the
sensitivity of considering all inputs to be the sum of taking
one-factor-at-time. In order to confirm the result in Lemma 1,
the general sensitivity for the unknown model was computed
to be 2.3329 which is the sum of the sensitivities with known
initial state and

∑
1≤`≤5 S(X`(H,D \ {`}), 1)− 4Sx0 .

V. CONCLUSIONS AND FURTHER RESEARCH

This paper addressed the problem of computing the sensi-
tivity of the state of a linear model to some inputs. By build-
ing on results from reachability analysis, a novel solution is
proposed that computes the impact of inputs on the state by
checking the maximum interval of realizations of the state
found using two linear optimization programs. Simulations
are presented for a case of a network of dynamical systems
(vehicles modeled as unicycles) where different weights to
the links measure various contributions to the overall output.
Through simulation it is illustrated the main result of this
paper that general sensitivity is equal to the sum of OAT
approach only when the initial state is known. Two main
directions of future work are envisioned: addressing the
same issue on more complicated linear models (such as
Linear Parameter-Varying) and resorting to other reachability
tools; and, performing the same analysis for nonlinear and
hybrid models using the general sensitivity based on their
correspondent reachable sets.
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