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Abstract

In the Randall-Sundrum scenario, we analyse the dynamics of an AdS5

braneworld when conformal matter fields propagate in five dimensions. We

show that conformal fields of weight −4 are associated with stable geometries

which describe the dynamics of inhomogeneous dust, generalized dark radiation

and homogeneous polytropic dark energy on a spherically symmetric 3-brane

embedded in the compact AdS5 orbifold. We discuss aspects of the radion

stability conditions and of the localization of gravity in the vicinity of the

brane.

1 Introduction

In the Randall-Sundrum (RS) scenario [1, 2] the observable four-dimensional (4D)
Universe is a 3-brane world embedded in a Z2 symmetric 5D anti-de Sitter (AdS)
space. In the RS1 model [1] the fifth dimension is compact and there are two 3-brane
boundaries. The gravitational field is bound to the hidden positive tension brane and
decays towards the observable negative tension brane. In this setting, the hierarchy
problem is reformulated as an exponential hierarchy between the weak and Planck
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scales [1]. In the RS2 model [2], the orbifold has an infinite fifth dimension and just
one observable positive tension brane near which gravity is exponentially localized.

In the RS models, the classical field dynamics is defined by 5D Einstein equations
with a negative bulk cosmological constant ΛB, Dirac delta sources standing for the
branes and a stress-energy tensor describing other fields propagating in the bulk [1]-
[3]. A set of vaccum solutions is given by ds̃2

5 = dy2 + e−2|y|/lds2
4, where y is the

cartesian coordinate representing the fifth dimension, the 4D line element ds2
4 is Ricci

flat, l is the AdS radius given by l = 1/
√

−ΛBκ2
5/6 with κ2

5 = 8π/M3
5 and M5 the

fundamental 5D Planck mass. In the RS1 model, the hidden Planck brane is located
at y = 0 and the visible brane at y′ = πrc, where rc is the RS compactification scale
[1]. The brane tensions λ > 0 and λ′ < 0 have the same absolute value |λ′| = λ. In
the vaccum λ is given in terms of ΛB and l by λ = −ΛBl. In the RS2 model [2], the
visible brane is the one with positive tension λ located at y = 0. The hidden brane
is sent to infinity and is physically decoupled.

The low energy theory of gravity on the observable brane is 4D general relativity
and the cosmology may be Friedmann-Robertson-Walker [1]-[10]. In the RS1 model,
this requires the stabilization of the radion mode using, for example, a 5D scalar field
[3, 6, 9, 10]. The gravitational collapse of matter has also been analyzed in the RS
scenario [11]-[16]. However, an exact 5D geometry describing a stable black hole lo-
calized on a 3-brane has not yet been discovered. Indeed, non-singular localized black
holes have only been found in an AdS4 braneworld [12]. A solution to this problem
requires a simultaneous localization of gravity and matter which avoids unphysical
divergences [11, 13]-[16] and could be related to quantum black holes on the brane
[15]. In addition, the covariant Gauss-Codazzi approach [17, 18] has uncovered a rich
set of braneworld solutions, many of which have not yet been associated with exact
5D spacetimes [19]-[22].

In this paper we report on research about the dynamics of a spherically symmetric
3-brane in the presence of 5D conformal matter fields [16, 23] (see also [24]). In the
previous work [16, 23] we have discovered a new class of exact 5D dynamical solutions
for which gravity is bound to the brane by the exponential RS warp. These solutions
were shown to be associated with conformal bulk fields characterized by a stress-
energy tensor T̃ ν

µ of weight -4 and by the equation of state T̃ a
a = 2T̃ 5

5 (see also [5] and
[25]). They were also shown to describe on the brane the dynamics of inhomogeneous
dust, generalized dark radiation and homogeneous polytropic matter. However, the
density and pressures of the conformal bulk fluid increase with the coordinate of the
fifth dimension. Consequently and just like in the Schwarzschild black string solution
[11], the RS2 scenario is plagued with an unphysical singularity at the AdS horizon.
Such divergence does not occur in the RS1 model because the compactified space
ends before the AdS horizon is reached. However, the radion mode turns out to
be unstable [26]. In this work we discuss new exact 5D braneworld solutions which
are stable under radion field perturbations and still describe on the visible brane
the dynamics of inhomogeneous dust, generalized dark radiation and homogeneous
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polytropic dark energy. We also consider the point of view of an effective Gauss-
Codazzi observer and show that the gravitational field is bound to the vicinity of the
brane.

2 5D Einstein equations and conformal fields

To map the AdS5 orbifold, consider the coordinates (t, r, θ, φ, z) where z is related to
the cartesian coordinate y by z = ley/l, y > 0. The most general non-factorizable dy-
namical metric consistent with the Z2 symmetry in z and with 4D spherical symmetry
on the brane is given by

ds̃2
5 = Ω2

(

dz2 − e2Adt2 + e2Bdr2 + R2dΩ2
2

)

, (1)

where Ω = Ω(t, r, z), A = A(t, r, z), B = B(t, r, z) and R = R(t, r, z) are Z2 symmetric
functions. R(t, r, z) represents the physical radius of the 2-spheres and Ω is the warp
factor characterizing a global conformal transformation on the metric.

In the RS1 model, the classical dynamics is defined by the 5D Einstein equations,

G̃ν
µ = −κ2

5

{

ΛBδν
µ +

1√
g̃55

[λδ (z − z0) + λ′δ (z − z′0)]
(

δν
µ − δν

5δ
5
µ

)

− T̃ ν
µ

}

, (2)

where T̃ ν
µ is the stress-energy tensor of the matter fields which is conserved in 5D,

∇̃µT̃ µ
ν = 0. (3)

For a general 5D metric g̃µν , (2) and (3) form an extremely complex system of
differential equations. To solve it we need simplifying assumptions about the field
variables involved in the problem. Let us first consider that the bulk matter is
described by conformal fields with weight s. Under the conformal transformation
g̃µν = Ω2gµν , the stress-energy tensor satisfies T̃ ν

µ = Ωs+2T ν
µ . Consequently, (2) and

(3) may be rewritten as [16]

Gν
µ = −6Ω−2 (∇µΩ) gνρ∇ρΩ + 3Ω−1gνρ∇ρ∇µΩ − 3Ω−1δν

µg
ρσ∇ρ∇σΩ

−κ2
5Ω

2
{

ΛBδν
µ + Ω−1 [λδ(z − z0) + λ′δ (z − z′0)]

(

δν
µ − δν

5δ
5
µ

)

− Ωs+2T ν
µ

}

, (4)

∇µT µ
ν + Ω−1

[

(s + 7)T µ
ν ∂µΩ − T µ

µ ∂νΩ
]

= 0. (5)

If we separate the conformal tensor T̃ ν
µ in two sectors T̃ ν

µ and Ũν
µ with the same

weight s, T̃ ν
µ = T̃ ν

µ + Ũν
µ where T̃ ν

µ = Ωs+2T ν
µ and Ũν

µ = Ωs+2Uν
µ , and take s = −4

then it is possible to split (4) as follows

Gν
µ = κ2

5T
ν
µ , (6)
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6Ω−2∇µΩ∇ρΩgρν − 3Ω−1∇µ∇ρΩgρν + 3Ω−1∇ρ∇σΩgρσδν
µ =

−κ2
5Ω

2
{

ΛBδν
µ + Ω−1 [λδ(z − z0) + λ′δ (z − z′0)]

(

δν
µ − δν

5δ5
µ

)}

+ κ2
5U

ν
µ . (7)

On the other hand, the Bianchi identity implies

∇µT
µ
ν = 0. (8)

Then (5) is in fact

∇µU
µ
ν + Ω−1

(

3T µ
ν ∂µΩ − T µ

µ ∂νΩ
)

= 0. (9)

Note that (6) and (8) are 5D Einstein equations with conformal bulk fields, but
without a brane or bulk cosmological constant. They do not depend on the warp factor
which is dynamically defined by (7) and (9). The warp is then the only effect reflecting
the existence of the brane or of the bulk cosmological constant. We emphasize that
this is only possible for the special set of bulk fields which have a stress-energy tensor
with conformal weight s = −4.

Although the system of dynamical equations is now partially decoupled, it remains
difficult to solve. Note for instance that Ω depends non-linearly on A, B and R. In
addition, it is affected by T ν

µ and Uν
µ . So consider the special setting A = A(t, r),

B = B(t, r), R = R(t, r) and Ω = Ω(z). Then (6) and (7) lead to

Gb
a = κ2

5T
b
a , (10)

G5
5 = κ2

5T
5
5 , (11)

6Ω−2(∂zΩ)2 + κ2
5Ω

2ΛB = κ2
5U

5
5 , (12)

{

3Ω−1∂2
zΩ + κ2

5Ω
2
{

ΛB + Ω−1 [λδ(z − z0) + λ′δ(z − z′0)]
}}

δb
a = κ2

5U
b
a, (13)

where the latin indices represent the 4D coordinates t, r, θ and φ. Since according to
(10) and (11) T ν

µ depends only on t and r, (8) becomes

∇aT
a
b = 0. (14)

On the other hand, (12) and (13) imply that Uν
µ must be diagonal, Uν

µ = diag(−ρ̄, p̄r,
p̄T, p̄T, p̄5), with the density ρ̄ and pressures p̄r, p̄T satisfying ρ̄ = −p̄r = −p̄T. In
addition, Uν

µ must only depend on z. Consequently, ∇aU
a
b = 0 is an identity. Then

using (9) and noting that T ν
µ = T ν

µ (t, r), we find

∂zp̄5 + Ω−1∂zΩ
(

2U5
5 − Ua

a

)

= 0, 2T 5
5 = T a

a . (15)

If Uν
µ (z) is a conserved tensor field like T ν

µ , then p̄5 must be constant. So (15) leads
to the following equations of state:

2T 5
5 = T a

a , 2U5
5 = Ua

a . (16)
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Then we obtain p̄5 = −2ρ̄. Uν
µ is thus constant. On the other hand if T ν

µ =
diag (−ρ, pr, pT, pT, p5) where ρ, pr, pT and p5 are, respectively, the density and pres-
sures then its equation of state is rewritten as

ρ − pr − 2pT + 2p5 = 0. (17)

Note that ρ, pr, pT and p5 must be independent of z, but may be functions of
t and r. The bulk matter is, however, inhomogeneously distributed along the fifth
dimension because the physical energy density, ρ̃(t, r, z), and pressures, p̃(t, r, z), are
related to ρ(t, r) and p(t, r) by the scale factor Ω−2(z). Also note that T ν

µ determines
the dynamics on the branes and that in the RS1 model, the two branes have identical
cosmological evolutions. On the other hand, it is also important to note that the warp
factor depends on the conformal bulk fields only through Uν

µ . Consequently, the role
of Uν

µ is to influence how the gravitational field is warped around the branes. In our
previous work Uν

µ was set to zero [16, 23, 26]. The corresponding braneworld solutions
were warped by the exponential RS scale factor and turned out to be unstable under
radion field perturbations [26]. So we also introduce Uν

µ as a stabilizing sector.

3 Exact 5D warped solutions

The AdS5 braneworld dynamics is defined by the solutions of (10) to (14) and (17). Let
us first solve (12) and (13). As we have seen, Uν

µ is constant with ρ̄ = −p̄r = −p̄T =
−p̄5/2. If p̄5 = 0 then Uν

µ = 0, and we end up with the usual RS warp equations. As

is well known, a solution is the exponential RS warp Ω(y) = ΩRS(y) = e−|y|/l [1, 2]. If
p̄5 is non-zero then we find a new set of warp solutions. Integrating (12) and taking
into account the Z2 symmetry, we obtain (see figure 1)

Ω(y) = e−|y|/l
(

1 + p5
Be2|y|/l

)

, (18)

where p5
B = p̄5/(4ΛB). This set of solutions must also satisfy (13) which contains the

Israel jump conditions. As a consequence, the brane tensions λ and λ′ are given by

λ = λRS
1 − p5

B

1 + p5
B

, λ′ = −λRS
1 − p5

B exp(2πrc/l)

1 + p5
B exp(2πrc/l)

, (19)

where λRS = 6/(lκ2
5). Note that in the limit p5

B → 0, we obtain the RS warp and also
the corresponding brane tensions.

To determine the dynamics on the brane we need to solve (10) and (11) when T ν
µ

satisfies (14) and (17). Note that as long as p5 balances ρ, pr and pT according to (11)
and (17), the 4D equation of state is not constrained. Three examples correspond-
ing to inhomogeneous dust, generalized dark radiation and homogeneous polytropic
matter were analised in [16] and [23].
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Figure 1: Plots of W = ln Ω(x), x = y/rc for l/rc = 5. The dashed, thin and thick
lines correspond, respectively, to p5

B equal to 1.5, 0.5 and 0.15.

The latter describes the dynamics on the brane of dark energy in the form of a
polytropic fluid. The diagonal conformal matter may be defined by

ρ = ρP, pr + ηρP
α = 0, pT = pr, p5 = −1

2
(ρP + 3ηρP

α) , (20)

where ρP is the polytropic energy density and the parameters (α, η) characterize
different polytropic phases.

Solving the conservation equations, we find [23, 27]

ρP =
(

η +
a

S3−3α

)
1

1−α

, (21)

where α 6= 1, a is an integration constant and S = S(t) is the Robertson-Walker
scale factor of the brane world which is related to the physical radius by R = rS.
For −1 ≤ α < 0, the fluid is in its generalized Chaplygin phase (see also [27]). With
this density, the Einstein equations lead to the following 5D dark energy polytropic
solutions [23]:

ds̃2
5 = Ω2

[

−dt2 + S2

(

dr2

1 − kr2
+ r2dΩ2

2

)]

+ dy2, (22)

where the brane scale factor S satisfies Ṡ2 = κ2
5ρPS2/3 − k. The global evolution of

the observable universe is then given by [22, 23]

SṠ2 = V (S) =
κ2

5

3

(

ηS3−3α + a
)

1

1−α − kS. (23)

In figure 2, we present some ilustrative examples.
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Figure 2: Plots of V = SṠ2, Z = S1−α for k > 0, η > 0 and a > 0. The dashed, thin
and thick lines correspond, respectively, to α equal to −1/4,−1/2 and −1.

4 Radion stability

To analyse how these solutions behave under radion field perturbations, we consider
the saddle point expansion of the RS action [26, 28, 29]

S̃ =
∫

d4xdy
√

−g̃

{

R̃

2κ2
5

− ΛB − 1√
g̃55

[λδ (y) + λ′δ (y − πrc)] + L̃B

}

, (24)

where L̃B is the lagrangian characterizing the 5D matter fields. The most general
metric consistent with the Z2 symmetry in y and with 4D spherical symmetry on the
brane may be written in the form

ds̃2 = a2ds2
4 + b2dy2, ds2

4 = −dt2 + e2Bdr2 + R2dΩ2
2, (25)

where the metric functions a = a(t, r, y), B = B(t, r, y), R = R(t, r, y) and b =
b(t, r, y) are Z2 symmetric. Now a is the warp factor and b is related to the radion
field. Our braneworld backgrounds correspond to b = 1, B = B(t, r), R = R(t, r)
and a = Ω(y).

Consider (25) with a(t, r, y) = Ω(y)e−β(t,r) and b(t, r) = eβ(t,r). Then the dimen-
sional reduction of (24) in the Einstein frame leads to [26]

S̃ =
∫

d4x
√−g4

(

R4

2κ2
4

− 1

2
∇cγ∇dγgcd

4 − Ṽ

)

, (26)

where γ = β/(κ4

√

2/3 ) is the canonically normalized radion field. The function

Ṽ = Ṽ (γ) is the radion potential, and it is given by

Ṽ = 2
κ2

5

χ3
∫

dyΩ2
[

3(∂yΩ)2 + 2Ω∂2
yΩ
]

+ χ
∫

dyΩ4
(

ΛB − L̃B

)

+χ2
∫

dyΩ4 [λδ (y) + λ′δ (y − πrc)] , (27)

where χ = exp(−κ4γ
√

2/3 ) and we have chosen
∫ πrc

−πrc
dyΩ2 = κ2

5/κ
2
4.
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To analyse the stability of the AdS5 braneworld solutions, we consider the saddle
point expansion of the radion field potential Ṽ . If p5

B = 0, then Ω = ΩRS. The
radion potential has two critical extrema, χ1 = 1 and χ2 = 1/3 [26]. Our solutions
correspond to the first root χ1 = 1. The same happens if the bulk matter is absent
as in the RS vacuum solutions. Stable background solutions must be associated with
a positive second variation of the radion potential. If the equation of state of the
conformal bulk fields is independent of the radion perturbation, then for χ = χ1 = 1
the second variation is negative, and so the braneworld solutions are unstable [26].

If the equation of state is kept invariant under the radion perturbations, it is
possible to find stable solutions at χ = 1 if the warp is changed. Indeed, the new
relevant warp functions are given in (18). Consider Ṽ =

∫

d4x
√−g4Ṽ . With x = y/rc

and rc

∫ π
−πdxΩ2 = κ2

5/κ
2
4, we find

δ2Ṽ
δγ2

∣

∣

∣

γ=0
= −4

3
κ2

4

(

r2
c

∫

dxΩ2
)−1 ∫

d4x
√

−g̃4M, (28)

where the dimensionless radion mass parameter M is

M = λrcκ
2
5Ω

4(0) + λ′rcκ
2
5Ω

4(π) − 6r2
c

l2

∫

dxΩ4. (29)

Stable solutions correspond to M < 0. Consequently, stability exists for a range of
the model parameters if p5

B > 0 (see figure 3). For p5
B ≤ 0, all solutions are unstable.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

pB
5

-10

-5

0

5

10

M

Figure 3: Plot of radion mass parameter M for l/rc = 5. Thick line, 0 < p5
B ≤

e−2π/5 : λ > 0, λ′ ≤ 0. Thin line, e−2π/5 < p5
B ≤ 1 : λ ≥ 0, λ′ > 0. Dashed line,

p5
B > 1 : λ < 0, λ′ > 0.

For p5
B > 0, the stability of the AdS5 braneworlds also depends on the dimensionless

ratio l/rc. For l/rc < 1.589 · · ·, all solutions turn out to be unstable. Stable universes
begin to appear at l/rc = 1.589 · · · , p5

B = 0.138 · · ·. For l/rc > 1.589 · · ·, we find
stable solutions for an interval of p5

B (see in figure 3 the example of l/rc = 5) which
increases with l/rc. For large enough but finite l/rc, the stability interval approaches
the limit ]0.267 · · · , 3.731 · · ·[. Naturally, M → 0 if l/rc → ∞.
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5 Gauss-Codazzi equations and localization of

gravity

For an observer confined to the brane, the effective 4D Einstein equations are given
by [16, 17, 18, 21]

Gν
µ =

2κ2

5

3

[

Uβ
αqα

µqν
β +

(

Uβ
αnαnβ − 1

4
Uα

α

)

qν
µ

]

+ Kα
αKν

µ

−Kα
µKν

α − 1
2
qν
µ

(

K2 −Kβ
αKα

β

)

− Eν
µ , (30)

where Gν
µ = Gβ

αqα
µqν

β, nµ = δµ
5 is the unit normal to the brane and qν

µ = δν
µ − nµn

ν .
The stress-energy tensor is Uν

µ = −ΛBΩ2(0)δν
µ +T ν

µ , Kν
µ is the extrinsic curvature and

Eν
µ the traceless projection of the 5D Weyl tensor. The 4D observer finds the same

dynamics on the brane because [16]

E b
a =

κ2
5

3

(

−T b
a +

1

2
T 5

5 δb
a

)

(31)

and
4

3

(

U b
a +

1

4
U5

5 δb
a

)

−
(

ΛB +
κ2

5λ
2

6

)

δb
aΩ

2(0) = 0. (32)

Since the tidal acceleration [16, 21] is aT = κ2
5ΛB(1 + p5

B)
2
/6 < 0, the gravitational

field is bound to the vicinity of the brane.

6 Conclusions

In this paper we have analised exact 5D solutions describing the dynamics of AdS5

braneworlds when conformal fields of weight -4 are present in the bulk. We have
discussed their behaviour under radion field perturbations and shown that if the
equation of state characterizing the conformal fluid is independent of the perturbation,
then the radion may be stabilized by a sector of the conformal fields while another
sector of the same class of fields generates the dynamics on the brane. Stabilization
requires a bulk fluid sector with a constant negative 5D pressure and involves new
warp functions. On the brane these solutions are able to describe, for example,
the dynamics of inhomogeneous dust, generalized dark radiation and homogeneous
polytropic dark energy. More general 4D equations of state may also be considered.
This analysis is left for future work. We have also shown that an effective Gauss-
Codazzi observer sees gravity localized near the brane and deduces the same dynamics
on the brane if she makes the same hyphotesis about the 5D fields. Whether gravity
is suficiently bound to the brane and the hierarchy strong enough are open problems
for future research.
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