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Abstract

We discuss the dynamics of a spherically symmetric dark radiation vaccum

in the Randall-Sundrum brane world scenario. Under certain natural assump-

tions we show that the Einstein equations on the brane form a closed system.

For a de Sitter brane we determine exact dynamical and inhomogeneous solu-

tions which depend on the brane cosmological constant, on the dark radiation

tidal charge and on its initial configuration. We define the conditions leading

to singular or globally regular solutions. We also analyse the localization of

gravity near the brane and show that a phase transition to a regime where

gravity propagates away from the brane may occur at short distances during

the collapse of positive dark energy density.

1 Introduction

In the search for extra spatial dimensions the Randall and Sundrum (RS) brane world
scenario is particularly interesting for its simplicity and depth [1]. In this model the
Universe is a 3-brane boundary of a noncompact Z2 symmetric 5-dimensional anti-de
Sitter space. The matter fields live only on the brane but gravity inhabits the whole
bulk and is localized near the brane by the warp of the infinite fifth dimension.

Since its discovery many studies have been done within the RS scenario (see Ref. [2]
for a recent review and notation). For a brane bound observer [3, 4, 5] the interaction
between the brane and the bulk introduces correction terms to the 4-dimensional
Einstein equations, namely, a local high energy embedding term generated by the
matter energy-momentum tensor and a non-local term induced by the bulk Weyl
tensor. Such equations have an intrincate non-linear dynamics. For example, the
exterior vaccum of collapsing matter on the brane is now filled with gravitational
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modes originated by the bulk Weyl curvature and can no longer be regarded as a
static space [6, 7].

Previous research on the RS scenario has been focused on static or homogeneous
dynamical solutions. In this proceedings we report some new results on the dynamics
of a spherically symmetric RS brane world vaccum. For a de Sitter brane we present
exact dynamical and inhomogeneous solutions, define the conditions to characterize
them as singular or globally regular and discuss the localization of gravity to the
vicinity of the brane (see Ref. [8] for more details).

2 Brane Vaccum Field Equations

In the Gauss-Codazzi formulation of the RS model [3, 4, 5], the Einstein vaccum field
equations on the brane are given by

Gµν = −Λgµν − Eµν , (1)

where Λ is the brane cosmological constant and the tensor Eµν is the limit on the
brane of the projected 5-dimensional Weyl tensor. It is a symmetric and traceless
tensor constrained by the following conservation equations

∇µEµ
ν = 0. (2)

The projected Weyl tensor Eµν can be written in the following general form [5]

Eµν = −
(

κ̃

κ

)4 [

U
(

uµuν +
1

3
hµν

)

+ Pµν + Qµuν + Qνuµ

]

, (3)

where uµ such that uµuµ = −1 is the 4-velocity field and hµν = gµν + uµuν is the
tensor projecting orthogonaly to uµ. The forms U , Pµν and Qµ represent different
aspects of the effects induced on the brane by the 5-dimensional gravitational field.
Thus, U is an energy density, Pµν a stress tensor and Qµ an energy flux.

Since the 5-dimensional metric is not known, in general Eµν is not completely
determined on the brane [3, 4] and so the effective 4-dimensional theory is not closed.
To close it we need simplifying assumptions about the effects of the gravitational field
on the brane. For instance we may consider a static and spherically symmetric brane
vaccum with Qµ = 0, Pµν 6= 0 and U 6= 0. This leads to the Reissner-Nordström
black hole solution on the brane [9].

It is also possible to close the system of Einstein equations when considering a
dynamical and spherically symmetric brane vaccum with Qµ = 0, U 6= 0, and Pµν 6= 0.
The general, spherically symmetric metric in comoving coordinates (t, r, θ, φ) is given
by

ds2 = gµνdxµdxν = −eσdt2 + A2dr2 + R2dΩ2, (4)
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where dΩ2 = dθ2 + sin2θdφ2, σ = σ(t, r), A = A(t, r), R = R(t, r) and R is the
physical spacetime radius. If the traceless stress tensor Pµν is isotropic then it will
have the general form

Pµν = P
(

rµrν −
1

3
hµν

)

, (5)

where P = P(t, r) and rµ is the unit radial vector, given in the above metric by
rµ = (0, A, 0, 0). Then

Eν
µ =

(

κ̃

κ

)4

diag (ρ,−pr,−pT ,−pT ) , (6)

where the energy density and pressures are, respectively, ρ = U , pr = (1/3) (U + 2P)
and pT = (1/3) (U − P). Consequently, the conservation Eq. (2) read [10]

2
Ȧ

A
(ρ + pr) = −2ρ̇ − 4

Ṙ

R
(ρ + pT ) ,

σ′ (ρ + pr) = −2pr
′ + 4

R′

R
(pT − pr), (7)

where the dot and the prime denote, respectively, derivatives with respect to t and r.
A synchronous solution is permitted with the equation of state ρ+ pr = 0, equivalent
to P = −2U where U has the dark radiation form

U =
(

κ

κ̃

)4 Q

R4
. (8)

The constant Q is the dark radiation tidal charge. Hence, we get

Gµν = −Λgµν +
Q

R4
(uµuν − 2rµrν + hµν) , (9)

an exactly solvable closed system for the unknown functions A(t, r) and R(t, r) which
depends on the free parameters Λ and Q. Indeed, its solutions are of the LeMâıtre-
Tolman-Bondi type

ds2 = −dt2 +
R′2

1 + f
dr2 + R2dΩ2, (10)

where R satisfies

Ṙ2 =
Λ

3
R2 − Q

R2
+ f. (11)

The function f = f(r) > −1 is interpreted as the energy inside a shell labelled by r
in the dark radiation vaccum and is fixed by its initial configuration.
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3 Localization of Gravity near the Brane

As is clear in Eq. (9) the dark radiation dynamics depends on Λ and Q. It is important
to point out that these parameters have a direct effect on the localization of gravity
in the vicinity of the brane. Indeed, the tidal acceleration away from the brane [5] is
given by [9]

− lim
y→0±

R̃ABCDnAũBnC ũD =
κ̃2

6
Λ̃ +

Q

R4
, (12)

where ũA is the extension off the brane of the 4-velocity field satisfying ũAnA = 0 and
ũAũA = −1. The gravitational field is only bound to the brane if the tidal acceleration
points towards the brane. It must then be negative implying that

Λ̃R4 < −6Q

κ̃2
. (13)

As a consequence, gravity is only localized for all R if Λ < Λc with Λc = κ̃4λ2/12 and
Q ≤ 0 or Λ = Λc and Q < 0. For Λ < Λc and Q > 0 the gravitational field will just
remain localized if R > Rc where R4

c = 3Q/(Λc − Λ). On the other hand for Λ > Λc

and Q < 0 localization is limitted to the epochs R < Rc. If Λ ≥ Λc and Q ≥ 0 then
gravity is always free to propagate far away into the bulk.

According to recent supernovae measurements (see e.g. Ref. [11]) Λ ∼ 10−84GeV2.
On the other hand M̃p > 108GeV and Mp ∼ 1019GeV imply λ > 108GeV4 [12]
because 6κ2 = λκ̃4. Since Λc = κ2λ/2 then Λc is bound from below, Λc > 10−29GeV2.
Hence, observations demand Λ to be positive and smaller than the critical value Λc,
0 < Λ < Λc. Note that is means an anti-de Sitter bulk, Λ̃ < 0. The same conclusion
is true if Mp is in the TeV range because Λc increases when Mp decreases.

Since current observations do not yet constrain the sign of Q [13] we conclude
that for 0 < Λ < Λc only for Q < 0 gravity is bound to the brane for all R. If Q > 0
then for R < Rc the tidal acceleration is positive and gravity is no longer localized
near the brane.

4 Inhomogeneous Dynamics for a de Sitter Brane

Assume from now on that 0 < Λ < Λc. Non-static solutions correspond to f 6= 0. An
example is

∣

∣

∣

∣

∣

R2 +
3f

2Λ

∣

∣

∣

∣

∣

=
√

β cosh



±2

√

Λ

3
t + cosh−1





∣

∣

∣r2 + 3f
2Λ

∣

∣

∣

√
β







 , (14)

where β = (3/Λ)[3f 2/(4Λ) + Q] and + or − correspond respectively to expansion
or collapse. If Q > 0 then f > −1 but for Q < 0 the energy function f must

satisfy in addition |f | > 2
√

−QΛ/3. Since R is a non-factorizable function of t and r
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these solutions define new exact and inhomogeneous cosmologies for the spherically
symmetric dark radiation de Sitter brane.

5 Singularities and Regular Bounces

The dark radiation dynamics defined by Eq. (11) may produce shell focusing singu-
larities at R = 0 or regular bouncing points at some R 6= 0. To see this consider

R2Ṙ2 = V (R, r) =
Λ

3
R4 + fR2 − Q. (15)

If for all R ≥ 0 the potential V is positive then a shell focusing singularity forms
at R = Rs = 0. Alternatively, if there is an epoch R = R∗ 6= 0 for which V = 0
then a regular rebounce point appears at R = R∗. For the dark radiation vaccum
at most two regular rebounce epochs can be found. Since Λ > 0 there is always
a phase of continuous expansion to infinity with ever increasing rate. Depending
on f(r) other phases may exist. To ilustrate take β > 0 and compare the settings

Q < 0, f > −1, |f | > 2
√

−QΛ/3 and Q > 0, f > −1.
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Figure 1: Plot of V for β > 0 and Q < 0. Non-zero values of f belong to the interval

−1 < f < −2
√

−QΛ/3 and correspond to shells of constant r.

If for Q < 0 we have f > 2
√

−QΛ/3 then V > 0 for all R ≥ 0. There are
no rebounce points and the dark radiation shells may either expand continuously

or collapse to a singularity at Rs = 0. However for −1 < f < −2
√

−QΛ/3 (see

Fig. 1) we find two rebounce epochs at R = R∗± with R2
∗±

= −3f/(2Λ)±√
β. Since

V (0, r) = −Q > 0 a singularity also forms at Rs = 0. Between the two rebounce
points there is a forbidden zone where V is negative. The phase space of allowed
dynamics is thus divided in two disconnected regions separated by the forbidden
interval R∗− < R < R∗+. For 0 ≤ R ≤ R∗− the dark radiation shells may expand to
a maximum radius R = R∗−, rebounce and then fall to the singularity. If R ≥ R∗+

then there is a collapsing phase to the minimum radius R = R∗+ followed by reversal
and subsequent accelerated continuous expansion. The singularity at Rs = 0 does
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not form and so the solutions are globally regular. Since Q < 0 gravity is bound to
the brane for all the values of R.

0.5 1 1.5 2 2.5 3 3.5 4

R
2

2

4

6

8

10

V
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Figure 2: Plot of V for β > 0 and Q > 0. Non-zero values of f belong to the interval

f > −1 and correspond to shells of constant r. The shaded region indicates where gravity

is not localized near the brane.

If Q > 0 (see Fig. 2) then we find globally regular solutions with a single rebounce
epoch at R = R∗ where R2

∗
= −3f/(2Λ) +

√
β. This is the minimum possible radius

for a collapsing dark radiation shell. It then reverses its motion and expands forever.
The phase space of allowed dynamics defined by V and R is limitted to the region
R ≥ R∗. Below R∗ we find a forbidden region where V is negative. In particular,
V (0, r) = −Q < 0 implying that the singularity at Rs = 0 does not form and so the
solutions are globally regular. Note that if gravity is to be bound to the the brane
for R > R∗ then R∗ > Rc. If not then we find a phase transition epoch R = Rc such
that for R ≤ Rc the gravitational field is no longer localized near the brane.

6 Conclusions

In this work we have reported some new results on the dynamics of a RS brane world
dark radiation vaccum. Using an effective 4-dimensional approach we have shown
that some simplifying but natural assumptions lead to a closed and solvable system
of Einstein field equations on the brane. We have presented a set of exact dynamical
and inhomogeneous solutions for Λ > 0 showing they further depend on the dark
radiation tidal charge Q and on the energy function f(r). We have also described
the conditions under which a singularity or a regular rebounce point develop inside
the dark radiation vaccum and discussed the localization of gravity near the brane.
In particular, we have shown that a phase transition to a regime where gravity is not
bound to the brane may occur at short distances during the collapse of positive dark
energy density on a realistic de Sitter brane. Left for future research is for example
an analysis of the dark radiation vaccum dynamics from a 5-dimensional perspective.
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