technology from seed

A Geographic Unicast Routing Algorithm using no Location Service

Daniel de Matos Silvestre Teresa Vazão

Outline

- Geographic and directional routing
 - Concept
 - Motivation
- Problems to overcome
 - A short state-of-the-art
- Solution
- Conclusion & Future work

technology from seed

Geographical and directional routing - Concept

- Routing in Ad Hoc network is the problem of selecting the next hop.
- Geographical routing means that it relies on the coordinates of the nodes.
- The definition of coordinates enables sending messages using different directions.
- Assuming 1-hop neighbour information, the problem is:
- Determine the next hop based on the coordinates of the source, destination and neighbours.

Geographical and directional routing - Motivation

- Routing in Ad Hoc is frequently characterised by broadcast with its associated overhead.
- The introduction of coordinates and directions enables:
 - Unicast transmissions over different interfaces;
 - The possibility to make position-based decisions instead of exchanging additional control information.
- The main objectives of this work was:
 - Reduce overhead;
 - Decrease End-to-End delay.

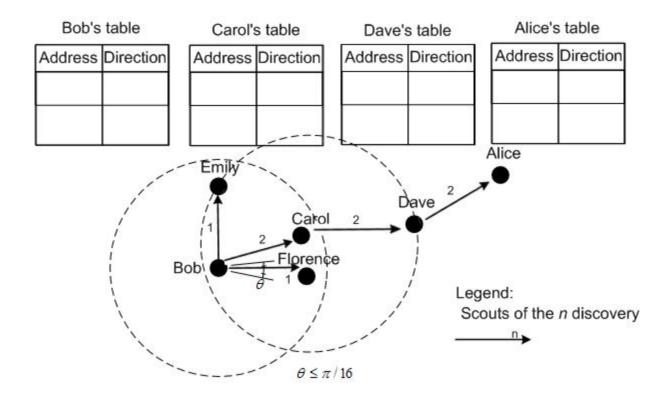
Problems to overcome

- Routing in Ad Hoc networks has some problems:
 - Use of broadcast in each link for both data and control messages.
 - Broadcast discoveries (i.e. sent to all nodes)
 - Broadcast Storm Cascading updates sent to all the nodes.
- Geographical Routing presents additional problems:
 - How does the source determines and keeps the coordinates of the destination up-to-date;
 - How to overcome the problem that "closest is not always the best".
 - Not possible to use a Location Service in an Ad Hoc environment.

State-of-the-art

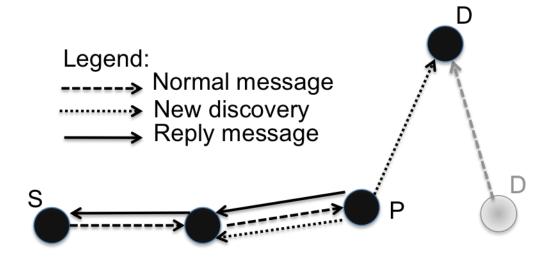
- DSR Dynamic Source Routing
- DSDV Destination-Sequenced Distance Vector
- AODV Ad hoc On-Demand Distance Vector
- OLSR Optimised Link State Routing
- AntHocNet swarm intelligence
- Epidemic Routing
- GPSR Greedy Perimeter Stateless Routing
- ORRP Optimal Reactive Routing Protocol

Solution


- Simple Wide-deploy Algorithm for ad hoc Networks (SWAN)
- Features:
 - Discovery phase based on exploring 8 directions;
 - Proxy state (depends on size of queues);
 - Angle correction technique;
 - Location prediction.

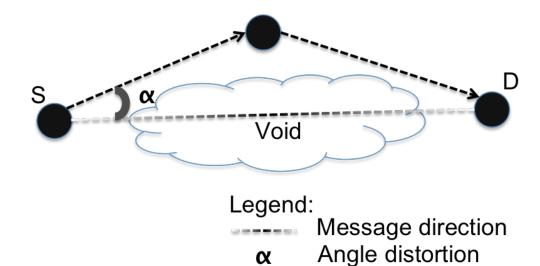
Discovery phase

- Discovery phase:
 - Explore 8 directions:



Proxy State

- Proxy State:
 - To avoid discarding messages when there is available queue:



Angle Correction

- Angle correction:
 - To make possible distortions to the forwarding angle:

Location prediction

Location prediction:

- Inspired on what is done to discard instantaneous trends in stocks.
- An average movement vector is calculated based on the sampled instant vectors.
- Use of recursive formula to make easier its calculation.
- Entries in the forwarding table are updated according to the next predictable position of the destination.
- The Time-To-Live (TTL) for each entry takes into consideration speed, how accurately is the average vector.
- For the TTL time, the location prediction is a reasonable assumption.

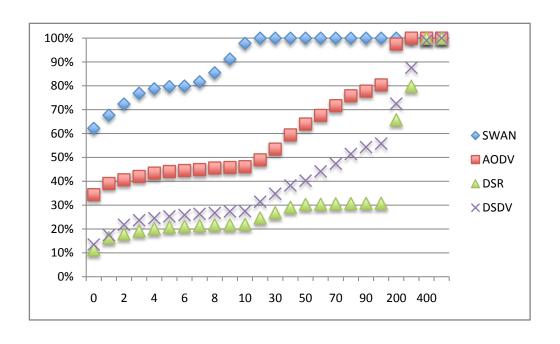
Experimental Setup

Setup description:

- 100 nodes.
- Antennae range: 100 meters.
- 1Km x 1Km area.
- Average 3.6 neighbours at time 0.
- 2Mb/s transmission rate.
- 10 information flows.
- IEEE 802.11 DCF.
- 128-byte packet per second.
- Speed of nodes: randomly from 10 to 20 m/s.

Results

End-to-End delay:


Delivery Delay 0,8 SWAN 0,7 AODV DSR 0,6 - DSDV Delay (sec) 0,5 0,3 0,2 0,1 300 320 340 360 380 400 420 440 460 480 **Simulation Time**

Results

Overhead:

Future work

- Study the algorithm in field experiments.
- Improve its coverage for larger networks.
- Improve the performance of the location prediction algorithm.

