

Self-Triggered Set-Valued Observers

D. Silvestre, P. Rosa, J. Hespanha and C. Silvestre dsilvestre@isr.ist.utl.pt

2015 European Control Conference Linz, Austria.

17th July 2015

Introduction

UNIVERSIDADE DE MACAL UNIVERSITY OF MACAU

Outline

- 2 Problem Definition
- Proposed Solution
- Main Properties 4
- 5 Simulation Results

Final Remarks 6

Motivation

- Networked Control Systems -Systems sharing a network with controller/observer in a different physical location.
- Fault Detection The uncertainty regarding node communication increases the complexity.

Set-valued estimates

- The objective is to determine and maintain set-valued estimates of the state of the system.
- Available measurements at the sensor nodes are shared with the estimator.
- Low-battery usage by the nodes and low-computational power are key requirements.
- Two main issues: the Fourier-Motzkin projection method is computationally heavy and the size of the matrices grows rapidly.

Motivating Example

- The set description relies on x(k) and previous time instants.
- Exact projection relies on the expensive Fourier-Motzkin elimination method.
- When using polytopes the number of hyper-edges increases.
- Then, we use an overapproximation that is of low complexity.

Motivating Example

- The set description relies on x(k) and previous time instants.
- Exact projection relies on the expensive Fourier-Motzkin elimination method.
- When using polytopes the number of hyper-edges increases.

- $\tilde{X}(k) \longrightarrow \tilde{X}(k+1)$
- Then, we use an overapproximation that is of low complexity.

Motivating Example

- The set description relies on x(k) and previous time instants.
- Exact projection relies on the expensive Fourier-Motzkin elimination method.
- When using polytopes the number of hyper-edges increases.
- Then, we use an overapproximation that is of low complexity.

Problem Outline

- For an Uncertain Linear Parameter-Varying System (LPV), a set-valued estimate X(k) is typically non-convex.
- Consider a Set-Valued Observer (SVO) that generates polytopic approximations, $\tilde{X}(k)$, of the optimal X(k).

Self-Triggered SVOs Problem

How can we provide low-complexity overapproximations for the set $\tilde{X}(k)$.

Problem Model

• Take a Uncertain LPV of the form

$$S: \begin{cases} x(k+1) = A(\Delta(k))x(k) + B(\Delta(k))u(k) \\ y(k) = C(\Delta(k))x(k) \end{cases}$$

n_Δ number of uncertainties

•
$$\Delta(k)$$
 is assumed to be polytopic i.e.,
 $A(\Delta(k)) = \sum_{\ell=1}^{n_{\Delta}} \Delta_{\ell}(k) A_{\ell}, \ |\Delta_{\ell}(k)| \le 1, \forall k \ge 0.$

• A_ℓ are constant matrices

Proposed Solution

Ellipsoidal Overbound

- Use SVOs to compute $\tilde{X}(k)$;
- Ensure a symmetry condition on $\tilde{X}(k)$;
- Then, Ellipsoidal overbound *E(k)* is simply the square of matrix *M*, where *X̃(k)* := {*x* : *Mx* ≤ 1}.

Self-Triggered SVOs

- Use standard SVOs to get $\tilde{X}(k)$ and the above ellipsoidal overbound $\mathcal{E}(k)$;
- Update $\mathcal{E}(k)$ using methods in the literature for ellipsoids;
- When $\mathcal{E}(k)$ is *too conservative* reduce the conservatism by running the standard SVOs.

SVOs

Given the previous set $\tilde{X}(k)$:

- Using SVOs, the algorithm predicts $\tilde{X}_p(k+1)$ using the dynamics;
- Then, the set is intersected with the measurement set Y(k+1).

Self-triggered Strategy

- Each iteration the algorithm checks if the current ellipsoid is within the error bound \mathcal{B}_C .
- If yes, propagate it using the worst-case dynamics.
- If not, run classical SVO to get a better approximate.
- Compute the new ellipsoidal approximation.

Self-triggered Strategy

- Each iteration the algorithm checks if the current ellipsoid is within the error bound \mathcal{B}_C .
- If yes, propagate it using the worst-case dynamics.
- If not, run classical SVO to get a better approximate.
- Compute the new ellipsoidal approximation.

Self-triggered Strategy

- Each iteration the algorithm checks if the current ellipsoid is within the error bound \mathcal{B}_C .
- If yes, propagate it using the worst-case dynamics.
- If not, run classical SVO to get a better approximate.
- Compute the new ellipsoidal approximation.

Special Case of distributed systems

- In gossip algorithms all the dynamics matrices are equal up to a permutation of row and columns.
- An overbound for the worst-case norm is found by selecting the ellipsoid that aligns with the singular vectors of Y(k + 1).
- For the case of ellipsoid overbound, a similar strategy to make the set symmetric can be used.

Special Case of distributed systems

- In gossip algorithms all the dynamics matrices are equal up to a permutation of row and columns.
- An overbound for the worst-case norm is found by selecting the ellipsoid that aligns with the singular vectors of Y(k + 1).
- For the case of ellipsoid overbound, a similar strategy to make the set symmetric can be used.

Properties

- Matrix M ∈ ℝ^{ℓ×n}, where ℓ ≫ n (high number of hyper-plane restrictions) whereas the proposed overbound matrix belongs to ℝ^{n×n};
- Running the SVO computations at some time instants allows to use the idle moments to pre-compute the necessary combinations of matrices products;
- In distributed systems, it is possible to discard dynamics matrices based on their singular vectors structure and compute the worst estimate with minimal processing effort.

Main Result

• The time to the next trigger, $\tau,$ is given by

$$\tau = \left\lceil \log_{\gamma} \frac{\sigma_{\min}(M(T))C}{\sqrt{n}} \right\rceil$$

- T is the last triggering time;
- C is the maximum norm at the previous trigger

$$\gamma = \max_{i} \sigma_{\max}(A_0 + A_{\Delta_i})$$

Introduction Problem Definition Proposed Solution Main Properties Simulation Results Final Remarks

Simulation Results (1/2)

Setup: We considered a simplified wind turbine model with uncertainty in the initial state and bounded disturbances and measurement noise.

- In a typical run, the standard SVO (blue line) after the initial allocation of data structures, has each iteration taking around 50 ms.
- The Self-Triggered SVO (green line) makes it suitable for this application with sampling period of 10 ms.

Simulation Results (2/2)

The algorithm for having a polytope with symmetric edges has a severe impact on the performance after 50 sampling times.

- The volume metric degraded as the origin of the polytope moved away from the origin, which introduced conservatism.
- Additional research is required for ensuring the symmetry condition, which was outside the scope of this paper.

Introduction Problem Definition Proposed Solution Main Properties Simulation Results Final Remarks

Final Remarks

Contributions:

- given a symmetric structure for polytope matrix, we show how to compute an overbounding ellipsoid or ball;
- a self-triggered mechanism that uses ellipsoidal approximations, triggering the computation of the SVO only when necessary to ensure convergence;
- results are provided for the worst-case triggering frequency for a Linear Parameter-Varying (LPV) system;
- For gossip algorithms, it is shown that the overbounds are efficient to compute and propagate, since its complexity is constant.

• Thank you for your time.

Self-Triggered Set-Valued Observers

D. Silvestre, P. Rosa, J. Hespanha and C. Silvestre dsilvestre@isr.ist.utl.pt

2015 European Control Conference Linz, Austria.

17th July 2015