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Motivation

Networked Control Systems -
Systems sharing a network with
controller/observer in a different
physical location.

Fault Detection - The uncertainty
regarding node communication
increases the complexity.
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Set-valued estimates

The objective is to determine and maintain set-valued
estimates of the state of the system.

Available measurements at the sensor nodes are shared with
the estimator.

Low-battery usage by the nodes and low-computational power
are key requirements.

Two main issues: the Fourier-Motzkin projection method is
computationally heavy and the size of the matrices grows
rapidly.
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Motivating Example

The set description relies on x(k) and
previous time instants.

Exact projection relies on the expensive
Fourier-Motzkin elimination method.

When using polytopes the number of
hyper-edges increases.

Then, we use an overapproximation that
is of low complexity.

x(k)

x(k − 1)

Silvestre, Rosa, Hespanha and Silvestre Self-Triggered Set-Valued Observers 5/16



Introduction
Problem Definition
Proposed Solution
Main Properties
Simulation Results
Final Remarks

Motivating Example

The set description relies on x(k) and
previous time instants.

Exact projection relies on the expensive
Fourier-Motzkin elimination method.

When using polytopes the number of
hyper-edges increases.

Then, we use an overapproximation that
is of low complexity.

X̃(k) X̃(k + 1)

Silvestre, Rosa, Hespanha and Silvestre Self-Triggered Set-Valued Observers 5/16



Introduction
Problem Definition
Proposed Solution
Main Properties
Simulation Results
Final Remarks

Motivating Example

The set description relies on x(k) and
previous time instants.

Exact projection relies on the expensive
Fourier-Motzkin elimination method.

When using polytopes the number of
hyper-edges increases.

Then, we use an overapproximation that
is of low complexity.

X̃(k + 1)

X̃(k + 2)

E(k + 2)

Silvestre, Rosa, Hespanha and Silvestre Self-Triggered Set-Valued Observers 5/16



Introduction
Problem Definition
Proposed Solution
Main Properties
Simulation Results
Final Remarks

Problem Outline

For an Uncertain Linear Parameter-Varying System (LPV), a
set-valued estimate X(k) is typically non-convex.

Consider a Set-Valued Observer (SVO) that generates
polytopic approximations, X̃(k), of the optimal X(k).

Self-Triggered SVOs Problem

How can we provide low-complexity overapproximations for the set
X̃(k).

Silvestre, Rosa, Hespanha and Silvestre Self-Triggered Set-Valued Observers 6/16



Introduction
Problem Definition
Proposed Solution
Main Properties
Simulation Results
Final Remarks

Problem Model

Take a Uncertain LPV of the form

S :

{
x(k + 1) = A(∆(k))x(k) +B(∆(k))u(k)
y(k) = C(∆(k))x(k)

n∆ number of uncertainties

∆(k) is assumed to be polytopic i.e.,

A(∆(k)) =
n∆∑
`=1

∆`(k)A`, |∆`(k)| ≤ 1, ∀k ≥ 0.

A` are constant matrices
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SVO

Proposed Solution

Ellipsoidal Overbound

Use SVOs to compute X̃(k);

Ensure a symmetry condition on X̃(k);

Then, Ellipsoidal overbound E(k) is simply the square of
matrix M , where X̃(k) := {x : Mx ≤ 1}.

Self-Triggered SVOs

Use standard SVOs to get X̃(k) and the above ellipsoidal
overbound E(k);

Update E(k) using methods in the literature for ellipsoids;

When E(k) is too conservative reduce the conservatism by
running the standard SVOs.
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SVO

SVOs

Given the previous set X̃(k):

Using SVOs, the algorithm predicts X̃p(k + 1) using the
dynamics;
Then, the set is intersected with the measurement set
Y (k + 1).

Y (k + 1)

X̃(k) X̃p(k + 1)

X̃(k + 1)
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SVO

Self-triggered Strategy

Each iteration the algorithm checks
if the current ellipsoid is within the
error bound BC .

If yes, propagate it using the
worst-case dynamics.

If not, run classical SVO to get a
better approximate.

Compute the new ellipsoidal
approximation.
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SVO

Special Case of distributed systems

In gossip algorithms all the dynamics
matrices are equal up to a permutation of
row and columns.

An overbound for the worst-case norm is
found by selecting the ellipsoid that aligns
with the singular vectors of Y (k + 1).

For the case of ellipsoid overbound, a
similar strategy to make the set
symmetric can be used.

E∆1(k + 1)
E∆2(k + 1)

Y (k + 1)

E(k + 1)
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Properties

Matrix M ∈ R`×n, where `� n (high number of hyper-plane
restrictions) whereas the proposed overbound matrix belongs
to Rn×n;

Running the SVO computations at some time instants allows
to use the idle moments to pre-compute the necessary
combinations of matrices products;

In distributed systems, it is possible to discard dynamics
matrices based on their singular vectors structure and
compute the worst estimate with minimal processing effort.
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Main Result

The time to the next trigger, τ , is given by

τ =
⌈

logγ
σmin(M(T ))C√

n

⌉
T is the last triggering time;

C is the maximum norm at the previous trigger

γ = max
i
σmax(A0 +A∆i)
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Simulation Results (1/2)

Setup: We considered a simplified wind turbine model with
uncertainty in the initial state and bounded disturbances and
measurement noise.

In a typical run, the standard SVO
(blue line) after the initial
allocation of data structures, has
each iteration taking around 50 ms.

The Self-Triggered SVO (green
line) makes it suitable for this
application with sampling period of
10 ms.
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Simulation Results (2/2)

The algorithm for having a polytope with symmetric edges has a
severe impact on the performance after 50 sampling times.

The volume metric degraded as the
origin of the polytope moved away
from the origin, which introduced
conservatism.

Additional research is required for
ensuring the symmetry condition,
which was outside the scope of this
paper.
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Final Remarks

Contributions:

given a symmetric structure for polytope matrix, we show how
to compute an overbounding ellipsoid or ball;

a self-triggered mechanism that uses ellipsoidal
approximations, triggering the computation of the SVO only
when necessary to ensure convergence;

results are provided for the worst-case triggering frequency for
a Linear Parameter-Varying (LPV) system;

For gossip algorithms, it is shown that the overbounds are
efficient to compute and propagate, since its complexity is
constant.
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The end

Thank you for your time.
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