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bUniversidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749 - 024

Lisboa, Portugal
cCTS/UNINOVA, Campus da FCT/UNL, Monte de Caparica, 2829-516 Caparica, Portugal

dInstituto de Telecomunicações, Av. Rovisco Pais 1, Torre Norte, piso 10, 1049 - 001
Lisboa, Portugal
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Abstract

This paper addresses target localization problem in a cooperative 3-D wireless

sensor network (WSN). We employ a hybrid system that fuses distance and angle

measurements, extracted from the received signal strength (RSS) and angle-of-

arrival (AoA) information, respectively. Based on range measurement model

and simple geometry, we derive a novel non-convex estimator based on the least

squares (LS) criterion. The derived non-convex estimator tightly approximates

the maximum likelihood (ML) one for small noise levels. We show that the

developed non-convex estimator is suitable for distributed implementation, and

that it can be transformed into a convex one by applying a second-order cone

programming (SOCP) relaxation technique. We also show that the developed

non-convex estimator can be transformed into a generalized trust region sub-

problem (GTRS) framework, by following the squared range (SR) approach.

The proposed SOCP algorithm for known transmit powers is then generalized

to the case where the transmit powers are different and not known. Furthermore,

we provide a detailed analysis of the computational complexity of the proposed
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algorithms. Our simulation results show that the new estimators have excellent

performance in terms of the estimation accuracy and convergence, and they

confirm the effectiveness of combining two radio measurements.

Keywords: Wireless localization, wireless sensor network (WSN), received

signal strength (RSS), angle-of-arrival (AoA), second-order cone programming

(SOCP), generalized trust region sub-problem (GTRS).

1. Introduction

In recent years wireless sensor networks (WSNs) have been used in various

areas, like event detection (fires, floods) [1], monitoring (health care, industrial,

agricultural, environmental) [2, 3], energy-efficient routing [4], exploration (un-

derground, deep water, outer space) [5], and surveillance [6], to name a few. A5

key element in many practical applications is to accurately determine the loca-

tions of sensors [7, 8], namely in search and rescue missions or to enhance the

network coverage. Although global positioning system (GPS) receivers can be

used to locate the sensors, GPS is ineffective in indoor, dense urban and forest

environments or canyons [9]. Besides, installing a GPS receiver in each sensor10

would be extremely expensive in large-scale WSNs, which would restrict its ap-

plicability [8, 10]. Hence, development of localization strategies from different

terrestrial radio frequency (RF) sources is of great practical interest.

Nowadays, RF signals come from a wide variety of sources and technologies,

and they can be used for localization purpose. In a WSN, the locations of the un-15

known sensors (targets) are determined by using a kind of localization schemes

that typically rely on the locations of the reference sensors (anchors) and range

measurements between them. Range measurements can be extracted from dif-

ferent characteristics of the radio signal, such as time-of-arrival (ToA) [11],

time-difference-of-arrival (TDoA) [12], round-trip time (RTT), time of flight20

(ToF) [13], angle-of-arrival (AoA) [14] or received signal strength (RSS) [15, 16],

depending on the available hardware. Recently, hybrid systems that fuse two

measurements of the radio signal have been investigated [17]-[27]. Hybrid sys-
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tems profit by exploiting the benefits of combined measurements (more avail-

able information), taking advantage of the strongest points of each technique25

and minimizing their drawbacks. On the other hand, the price to pay for using

such systems is the increased complexity of network devices, which increases the

network implementation costs [8, 10].

Typically, data processing in localization schemes can be performed in a cen-

tralized or a distributed manner [28]. On the one hand, existence of a central30

processor (sensor or a base station) is required for the former approach. Central

processor gathers all measurements via wireless transmissions and produces a

map of the entire network [20]-[23]. However, in large-scale networks, a high

energy drain is likely to occur at and near the central processor, caused by a bot-

tlenecks [10]. Likewise, the computational complexity of a centralized approach35

depends highly on the network size. In many applications a central processor

(or one with enough computational capacity) is not available. Furthermore,

confidentiality may prevent sharing objective functions between sensors in some

practical applications [29]. On the other hand, the later approach is distin-

guished by low computational complexity and high-scalability, which makes it40

a preferable solution for large-scale and highly-dense networks [28]. However,

distributed algorithms are executed iteratively, which makes them vulnerable

to error propagation and raises the energy consumption. In general, when the

average number of hops to the central processor is higher than the necessary

number of iterations required for convergence, the distributed approach is likely45

to be more energy-efficient [8].

Localization of a sensor network with small number of anchors using graph

theory and binary data has drawn much attention recently [30]-[34]. In [35]

a study of traditional non-cooperative RSS- and AoA-based localization meth-

ods for visible light communication systems was presented. The approaches50

in [17]-[19] are based on the fusion of RSS and ToA measurements. A hybrid

system that merges range and angle measurements was investigated in [20]. The

authors in [20] proposed two estimators to solve the non-cooperative target lo-

calization problem in a 3-D scenario: linear least squares (LS) and optimization

3



based. The LS estimator is a relatively simple and well known estimator, while55

the optimization based estimator was solved by Davidson-Fletcher-Powell algo-

rithm [36]. In [21], the authors derived an LS and a maximum likelihood (ML)

estimator for a hybrid scheme that combines RSS difference (RSSD) and AoA

measurements. Non-linear constrained optimization was used to estimate the

target’s location from multiple RSS and AoA measurements. Both LS and ML60

estimators in [21] are λ-dependent, where λ is a non-negative weight assigned

to regulate the contribution from RSS and AoA measurements. A selective

weighted LS (WLS) estimator for RSS/AoA localization problem was proposed

in [22]. The authors determined the target location by exploiting weighted

ranges from the two nearest anchor measurements, which were combined with65

the serving base station AoA measurement. In [21] and [22], authors investigated

the non-cooperative hybrid RSS/AoA localization problem for a 2-D scenario

only. A WLS estimator for a 3-D RSSD/AoA non-cooperative localization prob-

lem when the transmit power is unknown was presented in [23]. However, the

authors in [23] only investigated a small-scale WSN, with extremely low noise70

power. Two estimators for 3-D non-cooperative RSS/AoA localization prob-

lem based on convex optimization and squared-range approach were proposed

in [24]. The work in [25] addressed an RSS/AoA non-cooperative localization

problem in 2-D non-line of sight environments. The authors in [25] proposed

an alternating optimization algorithm, composed of fixing the value of the scat-75

ter orientation and solving the semidefinite programming (SDP) representation

of the localization problem and later using the obtained location estimate to

update the value of the scatter orientation, for localizing a mobile target in a

WSN. In [26] a cooperative RSS/AoA localization problem was investigated.

The authors in [26] proposed an SDP estimator to simultaneously localize mul-80

tiple targets. However, the proposed algorithm is for centralized applications

only, and its computational complexity depends highly on the network size.

Convex optimization techniques were employed in [27] to solve the coopera-

tive RSS/AoA target localization problem with unknown transmit powers in a

distributed manner.85
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Apart from [26] and [27], all mentioned approaches investigate non-cooperative

localization problem only, where the location of a single target, which commu-

nicates with anchors exclusively, is determined at a time. Contrary to these

approaches, in this paper we investigate the target localization problem in a

large-scale WSN, where the number of anchors is scarce and the communication90

range of all sensors is restricted (e.g., to prolong sensor’s battery life). In such

settings, only some targets can directly communicate with anchors; therefore, co-

operation between any two sensors within the communication range is required

in order to acquire sufficient amount of information to perform localization. We

design novel distributed hybrid localization algorithms based on second-order95

cone programming (SOCP) relaxation and generalized trust region sub-problems

(GTRS) framework that take advantage of combined RSS/AoA measurements

with known transmit power to estimate the locations of all targets in a WSN.

The proposed algorithms are distributed in the sense that no central sensor coor-

dinates the network, all communications occur exclusively between two incident100

sensors and the data associated with each sensor are processed locally. First,

the non-convex and computationally complex ML estimation problem is broken

down into smaller sub-problems, i.e., the local ML estimation problem for each

target is posed. By using the RSS propagation model and simple geometry,

we derive a novel local non-convex estimator based on the LS criterion, which105

tightly approximates the local ML one for small noise levels. Then, we show

that the derived non-convex estimator can be transformed into a convex SOCP

estimator that can be solved efficiently by interior-point algorithms [37]. Fur-

thermore, following the squared range (SR) approach, we propose a suboptimal

SR-WLS estimator based on the GTRS framework, which can be solved exactly110

by a bisection procedure [38]. We then generalize the proposed SOCP estima-

tor for known transmit powers to the case where the target transmit powers are

different and not known.

Throughout the paper, upper-case bold type, lower-case bold type and reg-

ular type are used for matrices, vectors and scalars, respectively. Rn denotes115

the n-dimensional real Euclidean space. The operators ⊗ and (•)T denote the
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Kronecker product and transpose, respectively. The normal (Gaussian) distri-

bution with mean µ and variance σ2 is denoted by N (µ, σ2). diag(x) denotes a

square diagonal matrix in which the elements of vector x form the main diag-

onal of the matrix, and the elements outside the main diagonal are zero. The120

N -dimensional identity matrix is denoted by IN and the M ×N matrix of all

zeros by 0M×N (if no ambiguity can occur, subscripts are omitted). ‖x‖ denotes

the vector norm defined by ‖x‖ =
√
xTx, where x ∈ Rn is a column vector.

The remainder of this work is organized as follows. In Section 2, the RSS and

AoA measurement models are introduced and the target localization problem is125

formulated. Section 3 presents the development of the proposed distributed es-

timators. In Section 4 we provide an analysis about the computational complex-

ity, while in Section 5 we discuss the performance of the proposed algorithms.

Finally, Section 6 summarizes the main conclusions.

2. Problem Formulation130

Consider a large-scale WSN with M targets and N anchors, randomly de-

ployed over a region of interest. The considered network can be seen as a

connected graph, G(V, E), with |V| = M +N vertices and |E| edges, where | • |

represents the cardinality (the number of elements in a set) of a set. The set of

targets and the set of anchors are respectively labeled as T (|T | = M) and A135

(|A| = N), and their locations are denoted by x1,x2, ...,xM and a1,a2, ...,aN

(xi,aj ∈ R3, ∀i ∈ T and ∀j ∈ A), respectively. To save power (battery

duration conditions the lifetime of a network), it is assumed that all sensors

have limited communication range, R. Thus, two sensors, i and j, can ex-

change information if and only if they are within the communication range140

of each other. The sets of all target/anchor and target/target connections

(edges) are defined as EA = {(i, j) : ‖xi − aj‖ ≤ R,∀i ∈ T ,∀j ∈ A} and

ET = {(i, k) : ‖xi − xk‖ ≤ R,∀i, k ∈ T , i 6= k}, respectively.

For ease of expression, let us define a matrix X = [x1,x2, ...,xM ] (X ∈

R3×M ) as the matrix of all unknown target locations. We determine these145
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locations by using a hybrid system that fuses range and angle measurements.

Throughout this work, it is assumed that the range measurements are ob-

tained from the RSS information exclusively, since ranging based on RSS re-

quires the lowest implementation costs [8]. The RSS between two sensors i and

j which are within the communication range of each other (from the transmit-

ting sensor), Pij (dBm), is modeled as:

PAij = P0i − 10γ log10

‖xi − aj‖
d0

+ nij ,∀(i, j) ∈ EA, (1a)

P Tik = P0i − 10γ log10

‖xi − xk‖
d0

+ nik,∀(i, k) ∈ ET , (1b)

(see [39, 40]), where P0i (dBm) denotes the reference power at a distance d0

(‖xi − aj‖ ≥ d0, ‖xi − xk‖ ≥ d0) from the transmitting sensor (which depends

on the transmit power [10]), γ is the path loss exponent (PLE) between sensors

i and j which indicates the rate at which the power decreases with distance, and150

nij and nik are the log-normal shadowing terms modeled as nij ∼ N (0, σ2
nij ),

nik ∼ N (0, σ2
nik

). We assume that the target/target RSS measurements are

symmetric1, i.e., P Tik = P Tki ,∀(i, k) ∈ ET , i 6= k.

To obtain the AoA measurements (both azimuth and elevation angles), we

assume that either antenna arrays or a directional antenna is implemented at155

anchors [20, 41, 42], or that the anchors are equipped with video cameras [43].

In order to make use of the AoA measurements from different anchors, the

orientation information is required, which can be obtained by implementing a

digital compass at each anchor [20, 41]. However, a digital compass introduces

an error in the AoA measurements due to its static accuracy. For the sake of160

simplicity and without loss of generality, we model the angle measurement error

and the orientation error as one random variable in the rest of this paper.

Fig. 1 gives an illustration of a target and an anchor locations in a 3-D space.

As shown in Fig. 1, xi = [xix, xiy, xiz]
T and aj = [ajx, ajy, ajz]

T are respectively

1This assumption is made without loss of generality; it is readily seen that, if PTik 6= PTki ,

then it is enough to replace PTik ← (PTik + PTki)/2 and PTki ← (PTik + PTki)/2 when solving the

localization problem.
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Figure 1: Illustration of a target and anchor locations in a 3-D space.

the unknown coordinates of the i-th target and the known coordinates of the165

j-th anchor, while dAij , φ
A
ij and αAij represent the distance, azimuth angle and

elevation angle between the i-th target and the j-th anchor, respectively. The

ML estimate of the distance between two sensors can be obtained from the RSS

measurement model (1) as follows [8]:

d̂ij =

 d010
P0i−P

A
ij

10γ , if j ∈ A,

d010
P0i−P

T
ij

10γ , if j ∈ T .
(2)

Applying simple geometry, azimuth and elevation angle measurements2 can be170

modeled respectively as [20]:

φAij = arctan

(
xiy − ajy
xix − ajx

)
+mij , for (i, j) ∈ EA, (3)

and

αAij = arccos

(
xiz − ajz
‖xi − aj‖

)
+ vij , for (i, j) ∈ EA, (4)

where mij and vij are the measurement errors of azimuth and elevation angles,

respectively, modeled as mij ∼ N (0, σ2
mij ) and vij ∼ N (0, σ2

vij ).

2Note that we consider here the case where only anchors have the necessary equipment to

perform the respective angle measurements. An alternative approach would be to provide the

necessary equipment to all sensors. However, our simulations showed that there is no gain for

such a setting, and it would severely raise the overall network implementation costs.
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Given the observation vector θ = [P T ,φT ,αT ]T (θ ∈ R3|EA|+|ET |), where175

P = [PAij , P
T
ik ]T , φ = [φAij ]

T , α = [αAij ]
T , the conditional probability density

function (PDF) is given as:

p(θ|X) =

3|EA|+|ET |∏
i=1

1√
2πσ2

i

exp− (θi − fi(X))2

2σ2
i

, (5)

where

f(X) =



...

P0i − 10γ log10
‖xi−aj‖

d0
...

P0i − 10γ log10
‖xi−xk‖

d0
...

arctan
(
xiy−ajy
xix−ajx

)
...

arccos
(
xiz−ajz
‖xi−aj‖

)
...



, σ =



...

σnij
...

σnik
...

σmij
...

σvij
...



.

Maximizing the log of the likelihood function (5) with respect to X gives us

the ML estimate, X̂, of the unknown locations [44], as:180

X̂ = arg min
X

3|EA|+|ET |∑
i=1

1

σ2
i

[θi − fi(X)]
2
. (6)

Asymptotically (for large data records) the ML estimator in (6) is the minimum

variance unbiased estimator [44]. However, finding the ML estimate directly

from (6) is not possible, since (6) is non-convex and has no closed-form solu-

tion. Nevertheless, in the remainder of this work we will show that the LS

problem in (6) can be solved in a distributed manner by applying certain ap-185

proximations. More precisely, we propose a convex relaxation technique leading

to a distributed SOCP estimator that can be solved efficiently by interior-point

algorithms [37], and a suboptimal estimator based on the GTRS framework

leading to a distributed SR-WLS estimator, which can be solved exactly by a

bisection procedure [38]. We also show that the proposed SOCP estimator can190
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be generalized to solve the localization problem in (6) where, besides the target

locations, their transmit powers are different and unknown.

2.1. Assumptions

We outline here some assumptions for the WSN (made for the sake of sim-

plicity and without loss of generality):195

(1) The network is connected and it does not change during the computation

period;

(2) Measurement errors for RSS and AoA models are independent, and σnij =

σn, σmij = σm and σvij = σv, ∀(i, j) ∈ EA ∪ ET ;

(3) The necessary equipment for collecting the AoA measurements is installed200

at anchors exclusively;

(4) A coloring scheme of the network is available.

In assumption (1), we assume that the sensors are static and that there

is no sensor/link failure during the computation period, and that there exists

a path between any two sensors i, j ∈ V. Assumption (2) is made for the205

sake of simplicity. Assumption (3) indicates that only anchors are suitably

equipped to acquire the AoA measurements (e.g. with directional antenna or

antenna array [20, 41, 42], or video cameras [43]), due to network costs. Finally,

assumption (4) implies that a coloring scheme is available in order to color

(number) the sensors and establish a working hierarchy in the network. More210

precisely, we assume that a second-order coloring scheme is employed, meaning

that no sensor has the same color (number) as any of its one-hop neighbors

nor its two-hop neighbors [45]-[47]. In this way, we avoid message collision and

reduce the execution time of the algorithm, since sensors with the same color

can work in parallel3.215

3Note that the network coloring problem may be considered as an optimization problem

where the goal is to minimize the number of different colors. Although interesting in its own

right, we did not investigate this problem here, since it does not follow the main idea of our
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3. Distributed Localization

Notice that the problem in (6) is dependent on the locations and pairwise

measurements between the adjacent sensors only. Thus, having the initial lo-

cation estimations of the targets, X̂
(0)

, at hand, the problem in (6) can be

divided, i.e., the minimization can be performed independently by each target220

using only the information gathered from its neighbors. Hence, rather than

solving (6), which can be computationally exhausting (in large-scale WSNs), we

break down (6) into sub-problems, which we solve locally (by each target) using

iterative approach. Consequently, target i updates its location estimate in each

iteration, t, by solving the following local ML problem:225

x̂
(t+1)
i = arg min

xi

3|EAi |+|ETi |∑
j=1

1

σ2
j

[θj − fj(xi)]2 , ∀i ∈ T , (7)

where EAi = {j : (i, j) ∈ EA} and ETi = {k : (i, k) ∈ ET , i 6= k} represent the set

of all anchor and all target neighbors of the target i respectively, and the first

|EAi |+ |ETi | elements of fj(xi) are given as:

fj(xi) = P0i − 10γ log10
‖xi−âj‖

d0
, for j = 1, ..., |EAi |+ |ETi |,

with

âj =

 aj , if j ∈ A,

x̂
(t)
j , if j ∈ T .

3.1. Transmit Powers Are Known230

3.1.1. Distributed SOCP Algorithm

Assuming that X̂
(0)

is given, when the noise power is sufficiently small,

from (1) we can write:

λij‖xi − âj‖ ≈ d0, ∀i ∈ T ,∀j ∈ EAi ∪ ETi , (8)

work, and our algorithms do not depend on the applied scheme; it is mentioned here merely

as an interesting fact that might prevent message retransmission in order to save energy in

the network, and not as a fundamental part of our algorithms.
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where

λij =

 10
PAij−P0i

10γ , if j ∈ A,

10
PTij−P0i

10γ , if j ∈ T .

Similarly, from (3) and (4) we respectively get:235

cTij(xi − aj) ≈ 0, ∀i ∈ T ,∀j ∈ EAi (9)

and

kTij(xi − aj) ≈ ‖xi − aj‖ cos(αAij), ∀i ∈ T ,∀j ∈ EAi (10)

where cij = [− sin(φAij), cos(φAij), 0]T and kij = [0, 0, 1]T . According to the LS

criterion and (8), (9) and (10) each target updates its location by solving the

following problem:

x̂
(t+1)
i = arg min

xi

∑
j∈EAi∪ETi

(λij‖xi − âj‖ − d0)
2

+
∑
j∈EAi

(
cTij(xi − aj)

)2
+
∑
j∈EAi

(
kTij(xi − aj)− ‖xi − aj‖ cos(αAij)

)2
.

(11)

The LS problem in (11) is non-convex and has no closed-form solution. To240

convert (11) into a convex problem, we introduce auxiliary variables rij =

‖xi − âj‖,∀(i, j) ∈ EA ∪ ET , z = [zij ], g = [gij ], p = [pij ], where zij =

λAijrij − d0,∀(i, j) ∈ EA ∪ ET , gij = cTij(xi − aj), and pij = kTij(xi − aj) −

rij cos(αAij),∀(i, j) ∈ EA. We get:

minimize
xi,r,z,g,p

‖z‖2 + ‖g‖2 + ‖p‖2

subject to245

rij = ‖xi − âj‖, ∀(i, j) ∈ EA ∪ ET ,

zij = λijrij − d0, ∀(i, j) ∈ EA ∪ ET ,

gij = cTij(xi − aj), ∀(i, j) ∈ EA,

pij = kTij(xi − aj)− rij cos(αAij), ∀(i, j) ∈ EA.

(12)

Introduce epigraph variables e1, e2 and e3, and apply second-order cone

constraint relaxation of the form ‖z‖2 ≤ e1, to obtain:

minimize
xi,r,z,g,p,e1,e2,e3

e1 + e2 + e3

12



subject to

‖xi − âj‖ ≤ rij , ∀(i, j) ∈ EA ∪ ET ,

zij = λijrij − d0, ∀(i, j) ∈ EA ∪ ET ,

gij = cTij(xi − aj), ∀(i, j) ∈ EA,

pij = kTij(xi − aj)− rij cos(αAij), ∀(i, j) ∈ EA,∥∥∥∥∥∥
 2z

e1 − 1

∥∥∥∥∥∥≤ e1+1,

∥∥∥∥∥∥
 2g

e2 − 1

∥∥∥∥∥∥≤ e2+1,

∥∥∥∥∥∥
 2p

e3 − 1

∥∥∥∥∥∥≤ e3+1.

(13)

The problem in (13) is an SOCP problem, which can be efficiently solved by

the CVX package [48] for specifying and solving convex programs. In the further250

text, we will refer to (13) as “SOCP”.

3.1.2. Distributed SR-WLS Algorithm

We can rewrite (8) as:

λ2ij‖xi − âj‖2 ≈ d20, ∀(i, j) ∈ EA ∪ ET . (14)

In order to give more importance to the nearby links, introduce weights, w =

[
√
wij ], where255

wij = 1− d̂ij∑
(i,j)∈EA∪ET d̂ij

.

In (10), substitute ‖xi − âj‖ with d̂ij described in (2). According to the WLS

criterion and (14), (9) and (10) each target updates its location by solving the

following problem:

x̂
(t+1)
i = arg min

xi

∑
j∈EAi∪ETi

wij
(
λ2ij‖xi − âj‖2 − d20

)2
+
∑
j∈EAi

wij
(
cTij(xi − aj)

)2
+
∑
j∈EAi

wij

(
kTij(xi − aj)− d̂ij cos(αAij)

)2
.

(15)

The above WLS estimator is non-convex and has no closed-form solution.

However, we can express (15) as a quadratic programming problem whose260
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global solution can be computed efficiently [38]. Using the substitution yi =

[xTi , ‖xi‖2]T ,∀i ∈ T , (15) can be rewritten as:

ŷ
(t+1)
i = arg min

yi

‖W (Ayi − b)‖2

subject to

yTi Dyi + 2lTyi = 0, (16)

where W = I3 ⊗ diag(w),

A =



...
...

−2λ2ijâ
T
j λ2ij

...
...

cTij 0
...

...

kTij 0
...

...


, b =



...

d20 − λ2ij‖âj‖2
...

cTijaj
...

kTijaj + d̂Aij cos(αAij)
...


,

265

D =

 I3 03×1

01×3 0

 , l =

03×1

−1/2

 ,
i.e.,A ∈ R3|EAi |+|ETi |×4, b ∈ R3|EAi |+|ETi |×1, andW ∈ R3|EAi |+|ETi |×3|EAi |+|ETi |.

The objective function and the constraint in (16) are both quadratic. This

type of problem is known as GTRS [38, 49], and it can be solved exactly by a

bisection procedure [38]. We denote (16) as “SR-WLS” in the remaining text.

In summary, the derivation of the above approaches can be described in two270

parts. In the first part, the local non-convex ML estimator in (7) is approxi-

mated by a different non-convex estimator, (11) and (15) respectively. The use

of the objective functions in (11) and (15) is motivated by the fact that we get a

much smoother surface in comparison to (7), at a cost of introducing some bias

with respect to the ML solution (see Fig. 2). If the bias effect is small, we might275

reach the ML solution by employing a local search around the solution of (11)

and (15). In the second part of our approach, we convert (11) and (15) into a

convex problem and GTRS framework, by following the above procedures.
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(a) Objective function in (7) using true sen-

sors’ locations

(b) Objective function in (11) after one it-

eration

(c) Objective function in (15) after one itera-

tion

(d) Objective function in (15) after three iter-

ations

Figure 2: Illustration of the objective functions in (7), (11) and (15) versus x (m) and y (m)

coordinates (target location); the minimum of the objective function is indicated by a white

square.
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Fig. 2 illustrates a realization of the objective function in (7), for the case

where the true sensors’ locations were used and a realization of (11) and (15)280

after only one iteration, and (15) after three iterations, where the estimated

targets’ locations were used. The i-th target was located at [2.0; 3.3], and it

could directly communicate with its three anchor and three target neighbors.

The noise standard deviation (STD) of RSS measurements was set to σnij = 2

dB and the noise STD of angle measurements was set to σmij = 3 deg, and285

the rest of the parameters follow the set-up described in Section 5. On the one

hand, in Fig. 2a, where the true sensors’ locations were used, one can see that

the objective function is highly non-convex and its global minimum is located

at [2.4; 3.5]. Due to non-convexity of the problem, recursive algorithms, such as

gradient search method, might get trapped into a local minimum, causing large290

error in the location estimation process. On the other hand, in Figs. 2b, 2c

and 2d, where estimated targets’ locations (obtained by solving the proposed

“SOCP” and “SR-WLS” algorithm, respectively) were used, it can be seen that

these objective functions are much smoother than the one in (7), and that the

global minimum after only one iteration is located at [2.5; 4.1] and [4.3; 4.9]295

for (11) and (15), respectively and at [2.4; 3.6] for (15) after three iterations.

Because of the smoothness of the objective functions, the global minimum of

the considered problems can be obtained uniquely and effortlessly for all targets

via interior-point algorithms [37] and bisection procedure [38], by following the

proposed procedures. However, the quality of the obtained solution will depend300

on the tightness of the performed relaxation. As we show in Section 5, the

estimation accuracy betters as the number of iterations grows in general. Thus,

we can conclude that the objective functions in (11) and (15) represent an

excellent approximation of the original problem defined in (7).

Assuming that C represents the set of colors of the sensors, Algorithm 1 sum-305

marizes the proposed distributed SOCP and SR-WLS algorithms. Algorithm 1

is distributed in the sense that there is no central processor in the network,

its coordination is carried out according to the applied coloring scheme, in-

formation exchange occurs between two incident sensors exclusively, and data

16



processing is performed locally by each target. Lines 5− 7 are executed simul-310

taneously by all targets i ∈ Cc, which may decrease the execution time of the

algorithm. At Line 6, we solve (13) if SOCP algorithm is employed, and (16)

if SR-WLS algorithm is employed. The only information exchange occurs at

Line 7, when targets broadcast their location updates x̂
(t+1)
i to their neighbors.

Since x̂
(t+1)
i ∈ R3, we can conclude that the proposed algorithm requires at315

most a broadcast of 3 × Tmax ×M real values. Depending on which estimator

is employed, in the remaining text, we label Algorithm 1 either as “SOCP” or

as “SR-WLS”.

Algorithm 1 The proposed distributed SOCP/SR-WLS algorithm

Require: X̂
(0)

, Tmax, C, aj , ∀j ∈ A

1: Initialize: t← 0

2: repeat

3: for c = 1, ..., C do

4: for all i ∈ Cc (in parallel) do

5: Collect âj ,∀j ∈ EAi ∪ ETi

6: x̂
(t+1)
i ←

solve (13),if using SOCP algorithm,

solve (16),if using SR-WLS algorithm

7: Broadcast x̂
(t+1)
i to âj , ∀j ∈ EAi ∪ ETi

8: end for

9: end for

10: t← t+ 1

11: until t < Tmax

3.2. Transmit Powers Are Not Known

Often in practice testing and calibration are not the priority in order to320

restrict the implementation costs. Moreover, due to battery exhaust over time,

sensors’ transmit powers, Pi’s, might change over time. Therefore, Pi’s are often

not calibrated, i.e., not known. Not knowing Pi implies that P0i is not known

in the RSS model (1); see [10] and the references therein.

The generalization of the proposed SOCP estimator for known P0i is straight-325

forward for the case where P0i is not known. More specifically, we can rewrite (8)
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as follows:

ζij‖xi − âj‖ ≈ ηid0,∀i ∈ T ,∀j ∈ EA ∪ ET , (17)

where ηi = 10
P0i
10γ and

ζij =

 10
PAij
10γ , if j ∈ A,

10
PTij
10γ , if j ∈ T .

Following the LS concept and (17), (9) and (10), each target updates its

location by solving the following problem:330 (
x̂
(t+1)
i , ηi

)
= arg min

xi,ηi

∑
j∈EAi∪ETi

(ζij‖xi − âj‖ − ηid0)
2

+
∑
j∈EAi

(
cTij(xi − aj)

)2
+
∑
j∈EAi

(
kTij(xi − aj)− ‖xi − aj‖ cos(αAij)

)2
.

(18)

By applying similar procedure as in Section 3.1.1, we obtain the following

SOCP estimator:

minimize
xi,ηi,r,z,g,p,e1,e2,e3

e1 + e2 + e3

subject to

‖xi − âj‖ ≤ rij , ∀(i, j) ∈ EA ∪ ET ,

zij = ζijrij − ηid0, ∀(i, j) ∈ EA ∪ ET ,

gij = cTij(xi − aj), ∀(i, j) ∈ EA,

pij = kTij(xi − aj)− rij cos(αAij), ∀(i, j) ∈ EA,∥∥∥∥∥∥
 2z

e1 − 1

∥∥∥∥∥∥≤ e1+1,

∥∥∥∥∥∥
 2g

e2 − 1

∥∥∥∥∥∥≤ e2+1,

∥∥∥∥∥∥
 2p

e3 − 1

∥∥∥∥∥∥≤ e3+1.

(19)

The problem in (19) is a classical SOCP, where the objective function and

equality constraints are affine, and the inequality constraints are second-order335

cone constraints [37].

Algorithm 2 outlines the proposed SOCP algorithm for unknown Pi’s. Lines 5−

10 are performed concurrently by all targets i ∈ Cc, which might reduce the run-

ning time of the algorithm. At Line 6, we solve (19) S number of times, after

18



which we start calculating the ML estimate of P0i, P̂0i, and switch to solving (13)340

as if P0i is known. Line 7 is introduced to avoid the oscillation in the location

estimates. At Line 10, the location updates, x̂
(t+1)
i ∀i ∈ T , are broadcasted to

neighbors of i. In the remaining text, we label Algorithm 2 as “uSOCP”.

4. Complexity Analysis

In order to evaluate the overall performance of a localization algorithm, it345

is necessary to analyze the trade off between the estimation accuracy and com-

putational complexity. In this section, we investigate computational complexity

of the considered algorithms. According to [50], the worst case computational

complexity of an SOCP is:

O

(
√
L

(
m2

L∑
i=1

ni +

L∑
i=1

n2i +m3

))
, (20)

where L is the number of the second-order cone constraints, m is the number of350

the equality constraints, and ni is the dimension of the i-th second-order cone.

Assuming that Nmax is the maximum number of steps in the bisection proce-

dure, Table 1 provides a summary of the worst case computational complexities

of the considered algorithms. In Table 1, the labels “SDP” and “uSOCP2” are

used to denote the centralized SDP algorithm in [26] and the distributed SOCP355

algorithm in [27], respectively, which will be used later on in Section 5 to offer

a better understanding of the performance of the proposed algorithms.

Table 1 shows that the computational complexity of a distributed algorithm

depends mainly on the size of neighborhood fragments, rather than the total

number of sensors in a WSN. Theoretically, it is possible to have a fully con-360

nected network, i.e., |EAi | + |ETi | = M + N − 1,∀i ∈ T . However, in practice,

the size of the neighborhood fragments are much smaller, due to energy restric-

tions (limited R). Therefore, distributed algorithms are a preferable solution in

large-scale and highly-dense networks, since adding more sensors in the network

will not have a severe impact on the size of neighborhood fragments. Table 1365

also reveals that the proposed distributed SOCP algorithms are computationally
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Algorithm 2 The proposed distributed uSOCP algorithm

Require: x̂
(0)
i , ∀i ∈ T , aj , ∀j ∈ A, C, S, PLow

0 , PUp
0 , Tmax

1: Initialize: t← 0

2: repeat

3: for c = 1, ..., C do

4: for all i ∈ Cc (in parallel) do

5: Collect âj ,∀j ∈ EAi ∪ ETi

6: x̂
(t+1)
i ←

solve (19), if t < S,

solve (13) using P̂0i, if t ≥ S
7: if

‖x̂(t+1)
i −x̂

(t)
i ‖

‖x̂(t)
i ‖

> 1 then

8: x̂
(t+1)
i ← x̂

(t)
i

9: end if

10: Broadcast x̂
(t+1)
i to âj , ∀j ∈ EAi ∪ ETi

11: end for

12: end for

13: t← t+ 1

14: if t > S then

15: for all i ∈ T (in parallel) do

16: P̂0i ←
∑
j∈EAi∪ETi

Pij+10γ log10
‖x̂(t)−âj‖

d0

|EAi |+|ETi |
17: if P̂0i < PLow

0 then

18: P̂0i ← PLow
0

19: else if P̂0i > PUp
0 then

20: P̂0i ← PUp
0

21: end if

22: end for

23: end if

24: until t < Tmax

20



Table 1: Computational Complexity of the Considered Algorithms

Algorithm Complexity

SOCP Tmax ×M ×O
((

max
i
{3|EAi |+ |ETi |}

)3.5)
SR-WLS Tmax ×M ×O

(
Nmax ×max

i
{3|EAi |+ |ETi |}

)
uSOCP Tmax ×M ×O

((
max
i
{3|EAi |+ |ETi |}

)3.5)
SDP O

(√
3M

(
81M4

(
N + M

2

)2))

uSOCP2

Tmax ×M ×O
(
max
i

{√
3|EAi |+ |ETi |(

(3|EAi |)2(3|EAi |+ |ETi)|+ (3|EAi |+ |ETi |)2
)})

more demanding than the proposed SR-WLS one. This result is not surprising,

since the SOCP approach employs sophisticated mathematical tools, whereas

the SR-WLS approach applies the bisection procedure to solve the localization

problem. Nevertheless, higher complexity of the proposed SOCP algorithms is370

justified by their superior performance in terms of the estimation accuracy and

convergence, as we will see in Section 5.

5. Performance Results

In this section, we present a set of results in order to asses the performance

of the proposed approaches in terms of the estimation accuracy and conver-375

gence. All of the presented algorithms were solved by using the MATLAB

package CVX [48], where the solver is SeDuMi [51]. In order to demonstrate the

benefit of fusing two radio measurements versus traditional localization systems,

we include also the performance results of the proposed methods when only

RSS measurements are employed, called here “SOCPRSS” and “SR-WLSRSS”.380

To provide a performance benchmark, we employ also the existing distributed

SOCP approach for unknown Pi’s [27] labelled as “uSOCP2”, as well as the

centralized cooperative approach described in [26] for known Pi’s which is used

as a lower bound on the performance of the distributed approaches, denoted as

“SDP”.385
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A random deployment of M targets and N anchors inside a cube region of

length B in each Monte Carlo (Mc) run is considered. Random deployment

of sensors is of particular interest, since the localization algorithms are tested

against various network topologies in order to asses their robustness. In favor of

making the comparison of the considered approaches as fair as possible, we first390

obtained Mc = 500 targets’ and anchors’ locations, as well as noise realizations

between two sensors ∀(i, j) ∈ EA ∪ ET , i 6= j, in each Mc run. Furthermore, we

made sure that the network graph is connected in each Mc run. We then solved

the localization problem with the considered approaches for those scenarios. In

all simulations presented here, the reference distance was set to d0 = 1 m, the395

communication range of a sensor to R = 6.5 m, the maximum number of steps

in the bisection procedure to Nmax = 30 and the PLE was fixed to γ = 3.

The true value of the reference power is drawn from a uniform distribution on

an interval [PLow
0 , PUp

0 ], i.e., P0i ∈ U [PLow
0 , PUp

0 ] dBm. Also, to account for

a realistic measurement model mismatch and test the robustness of the new400

algorithms to imperfect knowledge of the PLE, the true PLE was drawn from

γij ∈ U [2.7, 3.3],∀(i, j) ∈ EA ∪ ET , i 6= j. Finally, we assumed that the initial

guess of the targets’ locations, X̂
(0)

, is in the intersection of the big diagonals

of the cube area.

The performance metric is the normalized root mean square error (NRMSE),

defined as

NRMSE =

√√√√ 1

MMc

Mc∑
i=1

M∑
j=1

‖xij − x̂ij‖2,

where x̂ij denotes the estimate of the true location of the j-th target, xij , in405

the i-th Monte Carlo run.

Fig. 3 illustrates the NRMSE versus t performance of the considered ap-

proaches when N = 20 and M = 50. From Fig. 3, we can see that the perfor-

mance of all considered algorithms betters as t grows, as anticipated. Further-

more, it can be noticed that the “uSOCP” curve gets saturated at t = 3. Hence,410

at this point we start estimating P0i’s, and continue our algorithm as if P0i’s

are known. This fact explains the sudden curve drop after t = 3. One can argue
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that the proposed “uSOCP” algorithm shows excellent performance, outper-

forming noticeably the existing “uSOCP2” approach and achieving the lower

bound provided by its counterpart for known Pi’s. Also, it can be seen that415

the proposed hybrid methods outperform considerably their traditional coun-

terparts that utilize RSS measurements only. Moreover, the “SR-WLS” method

performs better than the “SOCPRSS” method in every iteration. This is impor-

tant to note because the later method is computationally more demanding due

to the use of sophisticated mathematical tools, which shows that even a simple420

algorithm such as the one based on bisection procedure can produce high esti-

mation accuracy when two radio measurements are combined. One can perceive

that all major changes in the performance for the considered algorithms take

place in the first few iterations (t ≤ 10 or t ≤ 20), and that the performance

gain is negligible afterwards. This result is very important because it shows425

that our approaches require a low number of signal transmissions, which might

enhance the utilization efficiency of the radio spectrum, a precious resource for

wireless communications. It also shows that our algorithms are energy efficient;

the communication phase is much more expensive (in terms of energy) than the

data processing one [8]. Finally, the proposed SOCP performs outstanding, very430

close to the lower bound provided by the centralized “SDP” approach in just a

few iterations.

Fig. 4 illustrates the NRMSE versus t performance of the considered ap-

proaches when N = 30 and M = 50. Figs. 3 and 4 reveal that the performance

of all algorithms improves significantly as more anchors are added into the net-435

work. This behavior is expected, since when N grows more reliable informa-

tion and more AoA measurements are available in the network. Furthermore,

Fig. 4 exhibits that the proposed hybrid algorithms outperform their RSS coun-

terparts, and that they can be stopped after just 5 − 10 iterations. Finally,

although the new methods were derived under the assumption that the noise is440

small, we can see that they work excellent even when the assumption does not

hold.

Fig. 5 illustrates the NRMSE versus t performance of the considered ap-
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Figure 3: NRMSE versus t comparison, when N = 20, M = 50, R = 6.5 m, σnij = 3 dB,

σmij = 6 deg, σvij = 6 deg, γij ∈ U [2.7, 3.3], γ = 3, B = 20 m, P0i ∈ U [−12,−8] dBm,

d0 = 1 m, Mc = 500.
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Figure 4: NRMSE versus t comparison, when N = 30, M = 50, R = 6.5 m, σnij = 3 dB,

σmij = 6 deg, σvij = 6 deg, γij ∈ U [2.7, 3.3], γ = 3, B = 20 m, P0i ∈ U [−12,−8] dBm,

d0 = 1 m, Mc = 500.
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Figure 5: NRMSE versus t comparison, when N = 20, M = 60, R = 6.5 m, σnij = 3 dB,

σmij = 6 deg, σvij = 6 deg, γij ∈ U [2.7, 3.3], γ = 3, B = 20 m, P0i ∈ U [−12,−8] dBm,

d0 = 1 m, Mc = 500.

proaches when N = 20 and M = 60. From Figs. 3 and 5 it can be seen that

the distributed approaches require a slightly higher number of iterations to con-445

verge when M is increased. However, the estimation accuracy of the considered

algorithms does not deteriorate when more targets are added in the network;

it actually betters when M is increased. Finally, Fig. 5 confirms the effective-

ness of using the combined measurements in hybrid systems in comparison with

using only a single measurement4.450

In Figs. 6, 7 and 8 we investigate the impact of the quality of RSS and AoA

measurements on the performance of the considered approaches. More precisely,

Figs. 6, 7 and 8 respectively illustrate the NRMSE versus σnij (dB), σmij (deg)

and σvij (deg) comparison, when N = 20, M = 50, R = 6.5 m, and Tmax = 30.

In these figures, we can observe that the performance of all algorithms degrades455

as the quality of a certain measurement drops, as expected. It can also be seen

that the quality of the RSS measurements has the most significant impact on

4Actually, in Figs. 3, 4 and 5 we have performed the simulations with Tmax = 200 iterations

in order to make sure that the considered approaches converge. In favour of a better overview,

here, we present only the results for the first t = 30 iterations.
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Figure 6: NRMSE versus σnij (dB) comparison, when N = 20, M = 50, R = 6.5 m, σmij = 1

deg, σvij = 1 deg, γij ∈ U [2.7, 3.3], γ = 3, Tmax = 30, B = 20 m, P0i ∈ U [−12,−8] dBm,

d0 = 1 m, Mc = 500.

the performance of the proposed algorithms, while the error in the azimuth and

elevation angle measurements have marginal influence on the performance. This

is not surprising, since the error of a few degrees in AoA measurements does460

not impair considerably their quality on a fairly short distance (communication

range of all sensors is restricted to R = 6.5 m), as shown in Figs. 7 and 8. On the

other hand, RSS measurements are notoriously unpredictable [8]. Nonetheless,

we can see from Fig. 6 that the performance loss is lower than 15 % for the

“SOCP” and “uSOCP”, and 10 % for the “SR-WLS”, which is relatively low465

for the considered error span. Finally, from the figures, we can see that the

proposed “uSOCP” outperforms the existing “uSOCP2” for all settings.

6. Conclusions

In this work, we proposed two novel distributed algorithms to solve the

RSS/AoA localization problem for known transmit powers based on SOCP re-470

laxation technique and GTRS framework. The proposed SOCP algorithm pro-

vides exceptional localization accuracy in just a few iterations. Our algorithm

based on GTRS framework is solved via a simple bisection procedure, and it

26



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 7: NRMSE versus σmij (dB) comparison, when N = 20, M = 50, R = 6.5 m, σnij = 1

dB, σvij = 1 deg, γij ∈ U [2.7, 3.3], γ = 3, Tmax = 30, B = 20 m, P0i ∈ U [−12,−8] dBm,

d0 = 1 m, Mc = 500.
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Figure 8: NRMSE versus σvij (dB) comparison, when N = 20, M = 50, R = 6.5 m, σnij = 1

dB, σmij = 1 deg, γij ∈ U [2.7, 3.3], γ = 3, Tmax = 30, B = 20 m, P0i ∈ U [−12,−8] dBm,

d0 = 1 m, Mc = 500.
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represents an excellent alternative to our SOCP algorithm, since its somewhat

lower accuracy is compensated with linear computational complexity. We also475

show that the proposed SOCP algorithm for known transmit power can be gen-

eralized to the case where the transmit powers are different and not known.

Our simulation results show that all of the proposed algorithms efficiently solve

the very challenging cooperative localization problem, both in terms of the esti-

mation accuracy and the convergence; the SOCP-based algorithm achieves the480

lower bound provided by the centralized SDP algorithm in only a few iterations,

and outperforms notably the existing distributed approach. Furthermore, the

simulation results confirmed the robustness of the proposed algorithms to the

imperfect knowledge of the PLE, which is a very important practical scenario.

Appendix A. Second-order cone programming485

This appendix adds a supplementary explanation for second-order cone pro-

gramming (SOCP). For more details see [32].

A general form of an SOCP problem is given as follows:

minimize
x

cT0 x

subject to

‖Aix+ bi‖ ≤ cTi x+ di (i = 1, ...,m),

Fx = g,

where x ∈ Rn is the optimization variable, Ai ∈ Rni×n, and F ∈ Rp×n. A490

constraint of the form ‖Aix + bi‖ ≤ cTi x + di is called a second-order cone

constraint (SOCC). An SOCP problem is solvable in polynomial time by using

interior point methods [32].

In addition, a hyperbolic constraint of the form ‖x‖2 ≤ yz, for variables

x ∈ Rn and y, z ≥ 0, can be represented as an SOCC as below:495

‖x‖2 ≤ yz, y, z ≥ 0⇐⇒

∥∥∥∥∥∥
 2x

y − z

∥∥∥∥∥∥ ≤ y + z.
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