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Abstract: In this paper, we propose a new approach based on convex optimization to address
the received signal strength (RSS)-based cooperative localization problem in wireless sensor
networks (WSNs). By using iterative procedures and measurements between two adjacent
nodes in the network exclusively, each target node determines its own position locally. The
localization problem is formulated using the maximum likelihood (ML) criterion, since
ML-based solutions have the property of being asymptotically efficient. To overcome
the non-convexity of the ML optimization problem, we employ the appropriate convex
relaxation technique leading to second-order cone programming (SOCP). Additionally, a
simple heuristic approach for improving the convergence of the proposed scheme for the
case when the transmit power is known is introduced. Furthermore, we provide details about
the computational complexity and energy consumption of the considered approaches. Our
simulation results show that the proposed approach outperforms the existing ones in terms
of the estimation accuracy for more than 1.5 m. Moreover, the new approach requires a
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lower number of iterations to converge, and consequently, it is likely to preserve energy in
all presented scenarios, in comparison to the state-of-the-art approaches.

Keywords: wireless localization; wireless sensor network (WSN); received signal
strength (RSS); second-order cone programming (SOCP) problem; cooperative localization;
distributed localization

1. Introduction

Wireless sensor networks (WSNs) find applications in the most varied areas, such as monitoring
(industrial, healthcare, environmental), energy-efficient routing, exploration (deep water, underground,
outer space), surveillance, and many more [1]. A WSN comprises a number of sensor nodes (in
the further text, called nodes), which are deployed over a region of interest in order to acquire the
desired measurements. Besides sensing, nodes have the capability of communicating and processing the
acquired data. Recent advances in radio frequency (RF) and micro-electro-mechanical systems (MEMS)
permit the use of large-scale networks with hundreds or thousands of nodes [1]. WSNs are subject to
changes in topology (e.g., adding nodes, node or link failures), which aggravates the development of
even the simplest algorithms.

In many practical applications, data acquired inside a WSN are irrelevant if the referred location
is not known. Accurate positioning of objects and people in both indoor and outdoor environments
enables new applications in emergency and commercial services that can improve safety and efficiency
in everyday life [2]. Hence, accurate information about nodes’ positions is a valuable resource, which
offers additional knowledge to the user.

Nodes are commonly deployed over a monitored area with limited to non-existing control of their
position in space (e.g., thrown out of an aeroplane). Installing a global positioning system (GPS) device
in each node would severely raise the network costs and restrict its applicability [1]. In order to reduce the
implementation costs, only a small fraction of nodes are equipped with GPS, called anchor (reference)
nodes. The remaining ones, called target nodes, determine their positions by using a kind of localization
scheme that exploits the known positions of the anchor nodes [1,3].

Localization schemes typically rely on distance measurements between nodes. These measurements
are extracted from the time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival
(AOA), round-trip time (RTT), received signal strength (RSS) information or a combination of them,
depending on the available hardware. Even though less accurate than TOA or TDOA, RSS measurements
are very attractive to system designers, due to the low device cost [4], which is why they caught much
attention in the research society recently [5–12].

The required processing inherent to localization schemes can be executed in a centralized or
distributed fashion. The former approach assumes the existence of a central processor (node or a
base station) which gathers all measurements via wireless transmissions and solves the localization
problem [5–8]. However, in large-scale networks, it is very likely that there would exist a bottleneck at
and near the central processor, causing high energy drain [4]. Additionally, the computational complexity



Sensors 2014, 14 18412

of a centralized approach is highly affected by the network size. Many applications do not have a
central processor or none with enough computational capacity to handle the necessary calculations. In
some practical applications, privacy may prohibit sharing objective functions between nodes [13] and
a distributed approach becomes an interesting alternative [1,3]. This approach is characterized by low
computational complexity and high-scalability, which makes it a preferable solution for large-scale and
highly-dense networks [3]. However, distributed algorithms are executed iteratively, which raises the
energy consumption and makes them sensitive to error propagation. In general, when the necessary
number of iterations (until convergence) is lower than the average number of hops to the central
processor, the distributed approach is likely to preserve energy [1].

In [10], a distributed RSS-based localization algorithm for WSNs was presented. This algorithm was
characterized by a spatial constraint that limits the solution space to a region around the current position
estimate. Using discretization of the solution space, the authors in [10] found the position update of each
node by minimizing a local objective function over the candidate set using direct substitution. Although
the computational characteristics of such algorithms are excellent, their performance highly depends
on good initialization, since the objective function is non-convex and the algorithm may get trapped
into a local minimum or a saddle point, causing a large estimation error. Another distributed approach
using consensus and convex optimization for sensor node localization based on RSS measurements was
introduced in [11]. This algorithm employed the semidefinite relaxation technique to transform the
non-convex maximum likelihood (ML) estimator into a convex one. Béjar and Zazo showed in [11]
that applying a distributed algorithm based on an augmented Lagrangian approach using primal-dual
decomposition to the derived convex estimator converges to the solution of the centralized approach.
However, the approach in [11] deals only with a non-cooperative localization problem, where a
single target node emits beacon frames to all anchor nodes in the network. In [12], a distributed
cooperative localization algorithm that dynamically estimates the path loss exponent (PLE) by using
RSS measurements was introduced. In order to reduce the energy consumption and possibly improve
the estimation accuracy, the authors in [12] presented a node selection mechanism to limit the number
of cooperating neighbors. Bel et al. used a Gauss–Seidel approach where the PLE is fixed first, and
a gradient descent search is applied to estimate the target positions, which are then used to update
the estimate of the PLE. This approach is efficient in the sense of computational complexity, but its
performance highly depends on good initialization and the step size of the search.

All mentioned approaches deal only with the localization problem, where the target’s transmit power,
PT , is known. In this paper, we design a novel distributed cooperative algorithm based on second-order
cone programming (SOCP) relaxation for node localization in WSNs using RSS measurements. In huge
contrast to the existing work, we investigate both cases of known and unknown PT . Hence, the main
contribution of our work is two-fold. In the case where PT is known, the main contribution of our
work is the reduction of the estimation error by more than 1.5 m in comparison to the state-of-the-art
approaches. In the case where PT is not known, to the best of the authors’ knowledge, there is no existing
solution proposed to overcome the mentioned problem; hence, the main contribution of our work is a
novel distributed SOCP-based algorithm for target node localization in the presence of unknown PT in a
cooperative network. For both cases, we start by coloring the network to establish a working hierarchy
inside the network. To color the network, we employ the second-order coloring scheme [14], which
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implies that no node has the same color as any of its neighbors nor its neighbors’ neighbors. This way, we
guarantee that our algorithm is completely distributed and efficient (collision-free and fast as nodes with
the same color can work in parallel). Next, we break down the non-convex and computationally complex
ML estimation problem into smaller sub-problems, i.e., we pose the local ML estimation problem for
each target node. We derive a non-convex estimator, which tightly approximates the local ML estimator
for small noise. The SOCP relaxation technique is applied to the derived non-convex estimator in order
to form a convex one, which can be efficiently solved by interior-point algorithms [15]. Each target
node obtains the solution locally, using an iterative procedure. In the case where PT is not known, we
propose a simple algorithm based on SOCP relaxation, which can be described in four parts. First,
target nodes obtain the estimates of their positions by iteratively solving the proposed SOCP problem
for unknown PT . Next, the position estimates are fixed and used to attain an estimation of PT at each
target node. Target nodes then obtain the average estimated value of PT by means of average consensus.
Finally, target nodes update their position estimates by solving the proposed SOCP problem for known
PT , by exploiting the consensus estimate of PT . In addition, a possible improvement of the convergence
properties of the proposed algorithm for known PT is investigated, by allowing a first-degree memory
in the nodes. We propose a simple heuristic approach, which combines the previous and the new target
position estimates in order to derive new estimates closer to the true target locations. At last, we provide
details about the computational complexity and energy consumption of the considered algorithms.

The remainder of the paper is structured as follows. In Section 2 the RSS measurement model for
cooperative localization is introduced, and the ML optimization problem for locating multiple target
nodes is formulated. Section 3 provides details about the development of the proposed SOCP estimators
for both cases of known and unknown PT . The computational complexity and energy consumption
analysis are summarized in Section 4. In Section 5, we provide the computational complexity, energy
consumption and simulation results to compare the performance of the newly proposed estimators with
the existing ones. Finally, in Section 6, we summarize the main conclusions.

2. Problem Formulation

We consider a large-scale WSN with M target and N anchor nodes, randomly deployed over a region
of interest. The considered network can be seen as a connected graph, G(V , E), with |V| = M + N

vertices and |E| edges, where | • | represents the cardinality of a set. The set of target nodes and the
set of anchor nodes are labeled as T = {t : t = 1, ...,M} and A = {a : a = M + 1, ...,M + N},
respectively. Without loss of generality, this paper focuses on the 2D scenario (the extension to 3D
scenario is straightforward), where the true locations of the nodes are denoted as xi (xi ∈ R2), ∀i ∈
V (V = T ∪ A). Due to battery consumption (the lifetime of the network), it is assumed that all nodes
have limited communication range, R (the generalization to other cases is straightforward). Hence, two
nodes, i and j, can exchange information if and only if they are within the communication range of each
other. The set of connections (edges) is defined as E = {(i, j) : ‖xi − xj‖ ≤ R, i ∈ T , j ∈ V , i 6= j}.
Accordingly, the set of neighbors of target node i is defined as Ni = {j : (i, j) ∈ E}.

For ease of expression, let us define X = [x1,x2, ...,xM ] as the matrix of all target node positions that
need to be determined (X ∈ R2×M ). We assume that the anchor positions are known a priori, while each
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target node i is given an initial estimation of its position, x̂(0)
i , ∀i ∈ T ; hence, X̂

(0)
contains all initial

target node position estimations. Furthermore, sets U = {(i, j) : ‖xi − xj‖ ≤ R, ∀i ∈ T ,∀j ∈ A}
and W = {(i, k) : ‖xi − xk‖ ≤ R, ∀i, k ∈ T , i 6= k} denote the existence of the target/anchor and
the target/target connections, respectively.

Using the relationship Lij (dB) = 10 log10
PT
Pij

, where Lij is the path loss between two nodes i and
j, PT is the transmission power of a node, and Pij is the received power at a distance ‖xi − xj‖ from
the transmitting node, it is easy to see that the localization problem can be formulated by the path loss
instead of the RSS. Under the log-normal shadowing and log-distance path loss model, the path loss
between two nodes i and j can be modeled according to the following radio propagation path loss model
(in dB) [16,17]:

LUij = L0 + 10γ log10

‖xi − xj‖
d0

+ vij, (i, j) ∈ U

LWik = L0 + 10γ log10

‖xi − xk‖
d0

+ vik, (i, k) ∈ W (1)

where L0 is the path loss measured at a short reference distance d0 (‖xi−xj‖ ≥ d0) from the transmitting
node, γ is the PLE and vij is the log-normal shadowing term between the i-th and j-th node, modeled
as a zero-mean Gaussian random variable with variance σ2

ij , i.e., vij ∼ N
(
0, σ2

ij

)
. We assume that the

target/target path loss measurements are symmetric, i.e., LWik = LWki for i 6= k.
Given the observation vector L = [Lij] (L ∈ R|E|), the conditional probability density function

(pdf) is:

p(L|X) =
∏

(i,j):(i,j)∈U

1√
2πσ2

ij

exp−

(
LUij − L0 − 10γ log10

‖xi−xj‖
d0

)2
2σ2

ij

+
∏

(i,k):(i,k)∈W

1√
2πσ2

ik

exp−

(
LWik − L0 − 10γ log10

‖xi−xk‖
d0

)2
2σ2

ik

(2)

The most common estimator used in practice is the ML estimator, since it has the property of being
asymptotically efficient (for large enough data records) [18]. The ML estimator forms its estimate
as the matrix X̂ , which maximizes the conditional pdf in Equation (2); hence, the ML estimator is
obtained as:

X̂ = arg min
X

∑
(i,j):(i,j)∈U

1

σ2
ij

[(
LUij − L0

)
− 10γ log10

‖xi − xj‖
d0

]2

+
∑

(i,k):(i,k)∈W

1

σ2
ik

[(
LWik − L0

)
− 10γ log10

‖xi − xk‖
d0

]2
(3)

Even though the ML estimator is approximately the minimum variance unbiased (MVU)
estimator [18], the least squares (LS) problem in Equation (3) is non-convex and has no closed-form
solution. In the remainder of this work, we will show that the LS problem in Equation (3) can be relaxed
as a SOCP, which can be solved efficiently by interior-point algorithms [15].
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2.1. Assumptions

Before we proceed, let us prompt some assumptions made about the considered WSN:

(1) σ2
ij = σ2, ∀(i, j) ∈ E ;

(2) All nodes are equipped with omnidirectional antennas and have identical PT ;
(3) The network is connected and it does not vary in time;
(4) A coloring scheme of the network is available.

Assumptions (1) and (2) are made for the sake of simplicity (without loss of generality).
Assumption (2) implies that L0 and R are equal for all nodes. In Assumption (3), a network is connected
if and only if there exists a path between each nodes i, j ∈ V . Finally, in Assumption (4), a coloring
scheme is an assignment of colors (numbers) to the nodes in order to establish a working hierarchy in the
network. In this work, we employ a second-order coloring scheme, meaning that no node has the same
color (number) as any of its neighbors nor its neighbors’ neighbors [14,19], as illustrated in Figure 1.

Figure 1. A possible second-order coloring scheme for a network with |V| = 13 nodes.
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As one can see from Figure 1, the blue nodes will be the first ones to estimate their positions, while
all other nodes are in the idle state. After the blue nodes finish working, they will broadcast the updated
position to their neighbors. The red nodes will be the next ones to work, using the updated information
from the blue nodes, and so on, following the colors (numbers) in Figure 1. Each node in the network
needs to know only its own color and after which color (neighbor) is its turn to operate, rather than all the
colors in the network. Note that, since we employed the second-order coloring scheme, nodes with the
same color may work in parallel without the risk of message collision at the receiving end. According
to Figure 1, the execution time of the algorithm is decreased from the time needed to realize |V| = 13

operations to |C| = 8 operations by working in parallel, where C represents the set of colors of the
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nodes. Note that the network coloring problem may be considered as an optimization problem where
the goal is to minimize the number of different colors. Although interesting in its own right, we did not
investigate this problem here, since it does not follow the main idea of this work. In wireless scenarios,
coloring schemes are used in media access control (MAC) protocols in order to achieve collision-free
algorithms [19].

3. Distributed Approach Using SOCP Relaxation

Note that the objective function in (3) depends only on the positions and pairwise measurements
between the adjacent nodes. Assuming that the initial position estimations of the target nodes are known,
the problem in Equation (3) can be partitioned, i.e., the minimization can be executed independently by
each target node, using only the information gathered from its neighbors. Hence, instead of solving
Equation (3), which can be computationally exhausting (in large-scale WSNs), we break down
Equation (3) into subproblems, which are solved locally (by each target node) using the iterative
approach. Therefore, target node i updates its position estimate by minimizing the following local ML
problem:

x̂
(k+1)
i = argmin

xi

∑
j∈Ni

1

σ2

[
Lij − L0 − 10γ log10

‖xi − x̂j‖
d0

]2
, ∀i ∈ T (4)

where x̂j denotes the last position update of the j-th neighbor (if the j-th neighbor is a target node) or
the true neighbor’s position (if the j-th neighbor is an anchor node) received by the i-th target node.
From Equation (4), we distinguish two possible cases of the localization problem: PT of the transmitting
node is known; and a more practical scenario, where PT is not known at the receiving end. In the
following text, we deal with these two cases, and we propose a distributed solution based on the SOCP
relaxation for both of them.

3.1. Transmit Power Is Known

From the propagation model (1), the estimated distance between the i-th target node and its j-th
neighbor, d̂ij , is given by:

d̂ij ≈ d010
Lij−L0

10γ (5)

We can rewrite Equation (5) as:
λij d̂ij ≈ αd0 (6)

where λij = 10−
Lij
10γ and α = 10−

L0
10γ . Assuming that the initial target position estimates are available,

from Equation (6), the updated position of the i-th target node, x̂
(k+1)
i , is found by minimizing

the following LS problem. Another possible explanation with more theoretical justification leading
to Equation (7) is as follows. We can rewrite Equation (1) as Li−L0

10γ
= log10

‖xi−xj‖
d0

+
vij
10γ

, which

corresponds to λij‖xi − xj‖ = αd010
vij
10γ . For sufficiently small noise, the first-order Taylor series

expansion to the right-hand side of the previous expression is given by λij‖xi−xj‖ = αd0(1 + ln 10
10γ

vij),
i.e., λij‖xi − xj‖ = αd0 + εij , where εij = αd0

ln 10
10γ

vij is the zero-mean Gaussian random variable with

the variance α2d20
(ln 10)2

100γ2
σ2. Clearly, the corresponding LS estimator is given by Equation (7). A similar
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processhas been done in [8]. Even though our estimator is derived under the assumption that the noise is
small, it works excellent in the case where this assumption does not hold, as we will see in Section 5:

x̂
(k+1)
i = argmin

xi

∑
j∈Ni

(λij‖xi − x̂j‖ − αd0)2 , ∀i ∈ T (7)

The LS problem in Equation (7) is non-convex and has no closed-form solution. However, in the
following text, we will show that Equation (7) can be written as a convex optimization problem by
using SOCP relaxation. First, define auxiliary variables dij = ‖xi − x̂j‖ and z = [zij], where zij =

λijdij − αd0, ∀(i, j) ∈ E . We get:
minimize
xi,dij ,z

∑
j∈Ni

z2ij

subject to:
zij = λijdij − αd0, dij = ‖xi − x̂j‖ (8)

Introduce an epigraph variable, t. By using the second-order cone constraint (SOCC) relaxation, we
obtain the following convex optimization problem:

minimize
xi,dij ,z,t

t

subject to:
[2z; t− 1] ≤ t+ 1, zij = λijdij − αd0, ‖xi − x̂j‖ ≤ dij (9)

Problem (9) is an SOCP problem, which can be efficiently solved by the CVX package [20] for
specifying and solving convex programs. Note that by applying the SOCC relaxation, the original set of
feasible points is enlarged, which means that the optimal solution of Equation (9), x?i , might not be the
optimal solution of Equation (7). However, if the SOCC of the form ‖p‖ ≤ q is satisfied as an equality,
we have that the SOCC relaxation is not a relaxation at all and that x?i of Equation (9) is also the optimal
solution of Equation (7).

In summary, the derivation of the above SOCP approach can be described in two parts. In the first
part, the local non-convex ML estimator in Equation (4) is approximated by a different non-convex
estimator in Equation (7). The use of the objective function in Equation (7) is motivated by the fact that
we get a much smoother surface in comparison to Equation (4), at a cost of introducing some bias with
respect to the ML solution (see Figure 2). If the bias effect is small, we might reach the ML solution by
employing a local search around the solution of Equation (7). In the second part of our approach, we
convert Equation (7) into a convex problem by applying SOCP relaxation.

Figure 2 illustrates a realization of the objective functions in Equations (4) and (7), for the case where
the true node positions are used (Figure 2a,b) and a realization of Equation (7) when the estimated
positions of the target nodes, obtained by solving Equation (9), are used: after the first and the tenth
iteration (Figure 2c,d), respectively. We randomly placed M = 50 target and N = 25 anchor nodes
inside a square region of the size 30 × 30 m2. The i-th target node is located at [12.8; 23.0] and has
five anchor and five target nodes as its neighbors. All target nodes were given an initial guess of their
positions in the center of the mentioned area. The rest of the parameters are set to: L0 = 40 dB,
σ = 0 dB, γ = 3; and the objective functions are plotted versus x and y coordinates (the step in the mesh
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grid is 0.1 m). Figure 2a shows that the objective function in Equation (4), given the true positions of the
target nodes, has a global minimum at [12.8; 23], and some local minima and saddle points. Figure 2b
shows that the objective function in Equation (7), given the true positions of the target nodes, has a global
minimum at [12.8; 23.1] and is much smoother than Equation (4). We can see that the objective functions
Equations (4) and (7) have similar behavior: both monotonically increase and decrease in the same
regions. In Figure 2c, one can see that the global minimum has shifted to [14.4; 17.3]. Furthermore,
it can be seen that the shape of this objective function does not coincide with the objective function in
Figure 2b. This is due to the fact that in the first iteration, target nodes broadcast their initial position
guess to their neighbors, which results in high estimation error. However, as the number of iterations is
increased, the estimation accuracy becomes better, as shown in Figure 2d, where the global minimum
is located at [12.8; 23]. From Figure 2, it is clear that the objective function in (7) is an excellent
approximation of the objective function in Equation (4).

Figure 2. Illustration of the cost functions (4) and (7) versus x and y coordinates
(target location); the minimum of the cost function is indicated by a white square. (a)
Objective function in Equation (4) using the true target positions; (b) objective function in
Equation (7) using the true target positions; (c) objective function in Equation (7) after one
iteration; (d) objective function in Equation (7) after ten iterations.

(a) (b)

(c) (d)
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Algorithm 1 summarizes the proposed distributed SOCP approach for known PT . Algorithm 1
is distributed in the sense that no central node coordinates the network, all communication occur
exclusively between two incident nodes and the data associated with each node is processed locally.
Lines 5–7 are executed simultaneously by all nodes i ∈ Cc, which may decrease the execution time of
the algorithm. The only information exchange occurs in Line 7, when the nodes broadcast their position
updates x̂

(k+1)
i to their neighbors. Since x̂

(k+1)
i ∈ R2, we can conclude that the proposed algorithm

requires at most a broadcast of 2KmaxM real values.

Algorithm 1 “SOCP1”: the proposed distributed second-order cone programming (SOCP) algorithm for
known PT .

Require: X̂
(0)

, Kmax, C, xa, ∀a ∈ A
1: Initialize: k ← 1

2: repeat
3: for c = 1, ..., C do
4: for all i ∈ Cc (in parallel) do
5: Collect x̂j from j ∈ Ni
6: x̂

(k)
i ← solve Equation (9)

7: Broadcast x̂(k)
i to j ∈ Ni

8: end for
9: end for

10: k ← k + 1

11: until k ≤ Kmax

3.2. Transmit Power Is Not Known

In order to minimize the expenses and achieve a low-cost localization system, testing and calibration
of the devices are usually not the priority in practice [1]. This means that the node transmit power, PT , is
not calibrated, i.e., not known. Not knowing PT corresponds to not knowing L0 in the path loss model;
hence, in this subsection, L0 is considered to be an unknown parameter that also needs to be estimated.
Adaptation of the SOCP approach for known L0 is straightforward for the case where L0 is not known:

minimize
xi,dij ,z,t,α

t

subject to:
[2z; t− 1] ≤ t+ 1, zij = λijdij − αd0, ‖xi − x̂j‖ ≤ dij (10)

Algorithm 2 summarizes the proposed distributed SOCP approach for unknown PT . This algorithm
can be easily explained in four parts. The first part includes Lines 1–12, where we estimate the targets’
positions by solving the SOCP problem described in Equation (10), K1max number of times. In order to
minimize the oscillations in the position estimates, we employ a weight, w, in Line 7 of our algorithm.
Although the difference in the performance is marginal, according to our simulations, the best choice of
the weight is w = 1√

k
. Then, in Lines 13–17, we use the estimates obtained in the K1max-th iteration to

find the estimate of L0, L̂0i, at each target node. Since we assumed that L0 is identical for all nodes, an
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average consensus is executed next in order to reach the average estimated value of L0, L̂0; lines 18–20.
To realize the average consensus, we employ the local-degree weights method [21], since it is particularly
suitable for distributed implementation and guarantees convergence (if the graph is not bipartite). The
final part of our algorithm involves Lines 21–31, which are executed K2max number of times. Here, we
take advantage of L̂0 and obtain the targets’ position estimates by solving Equation (9) as if L0 is known,

i.e., we calculate α̂ = 10−
L̂0
10γ . Concerning the information exchange of the proposed algorithm, it is easy

to see that it requires at most a broadcast of (2 (K1max +K2max) +Dmax)M real values, given that Dmax

is the maximum number of communications between nodes in order to reach the consensus.

4. Energy Consumption Analysis

To evaluate the overall performance of an algorithm, besides the estimation accuracy, it is also
important to asses its energy consumption. The trade-off between the estimation accuracy and the energy
consumption determines the applicability potential of an algorithm; thus, it is its key feature.

To prolong the lifetime of a network, i.e., to maintain the lifetime of nodes’ battery, it is very important
to mitigate the energy depletion in a WSN. Two major energy-consuming phases of an algorithm are:
data processing and data communication. In the following text, we provide an analysis of these two
phases. However, in order to provide a more complete overview of the algorithms’ performance, we
present the results of the analysis together with the simulation results in Section 5.

4.1. Data Processing

As we mentioned earlier, data collected inside the network is processed locally by each target
node in a distributed approach. In order to evaluate the efficiency of an approach, in terms of data
processing, we have to determine its computational complexity. The formula for computing the worst
case computational complexity of a SOCP problem [22], given below, is used to calculate the complexity
of the proposed approach:

O

(
√
L

(
m2

L∑
i=1

ni +
L∑
i=1

n2
i +m3

))
(11)

where L is the number of the second-order cone constraints, m is the number of the equality constraints
and ni is the dimension of the i-th second-order cone.

Let us assume that we can always equalize the energy consumption of two algorithms in the data
processing phase through voltage adjustment [23]. Energy depletion of two algorithms is then compared
through the execution time of the algorithms, meaning that a more energy-efficient algorithm is the more
time-efficient one.

4.2. Data Communication

After processing the data in order to update its position estimate, a node immediately broadcasts
this estimate to its neighbors. This phase of the algorithm is the most expensive, regarding the
energy-consumption, since the energy required to transmit one bit could be used to execute thousands of
instructions, depending on the hardware and the range [1,4].
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Algorithm 2 “SOCP2”: the proposed distributed SOCP algorithm for unknown PT .

Require: X̂
(0)

, K1max, K2max, C, xa, ∀a ∈ A
1: Initialize: k ← 1

2: repeat
3: for c = 1, ..., C do
4: for all i ∈ Cc (in parallel) do
5: Collect x̂j from j ∈ Ni
6: x̂

(k)
isocp ← solve (10)

7: x̂
(k)
i ← (1− w)x̂

(k−1)
i + wx̂

(k)
isocp

8: Broadcast x̂(k)
i to j ∈ Ni

9: end for
10: end for
11: k ← k + 1

12: until k ≤ K1max

13: for c = 1, ..., C do
14: for all i ∈ Cc (in parallel) do

15: L̂0i ←
∑
j∈Ni

Lij−10γ log10
‖x̂(k)
i
−x̂

(k)
j
‖

d0

|Ni|
16: end for
17: end for
18: begin consensus
19: L̂0 ← 1

M

∑M
i=1 L̂0i

20: end consensus
21: k ← K1max + 1

22: repeat
23: for c = 1, ..., C do
24: for all i ∈ Cc (in parallel) do
25: Collect x̂j from j ∈ Ni
26: x̂

(k)
i ← solve (9) by using L̂0

27: Broadcast x̂(k)
i to j ∈ Ni

28: end for
29: end for
30: k ← k + 1

31: until k ≤ K1max +K2max

The formula for computing the total amount of energy consumed by the network in the
communication phase, given below, is employed:

Ecom =

(
ETxM + ERx

M∑
i=1

|Ni|

)
Kreq (12)

where ETx and ERx denote the energy consumed by a node for broadcasting and receiving data,
respectively, and Kreq is the number of iterations required for an algorithm to converge.
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5. Simulation Results

In this section, computer simulations are performed in order to compare the performance of the
proposed approaches with the state-of-the-art. The proposed algorithms were solved by using the
MATLAB package CVX [20], where the solver is SeDuMi [24].

A random deployment of M target and N anchor nodes inside a square region of length B in each
Monte Carlo (Mc) run is considered. The random deployment of the nodes is of particular interest,
since a common practical requirement for a WSN is that it is flexible in topology; hence, the localization
algorithms need to be robust to various scenarios. In order to make the comparison of the considered
approaches as fair as possible, we first obtained Mc = 500 target and anchor nodes positions, as well
as noise realizations between nodes (i, j) ∈ E in each Mc run. Furthermore, we made sure that the
network graph is connected in eachMc run. We then solved the localization problem with the considered
approaches for those scenarios. In all simulations presented here, the path loss exponent is set to γ = 3,
the reference distance d0 = 1 m, the power loss L0 = 40 dB and the communication range of a node
is R = B/5 m. We assumed that the initial guess of the target positions, X̂

(0)
, is in the intersection

of the diagonals of the square area, since the biggest possible error for this case is half of the diagonal
of the area. In the case of known PT , the maximum number of iterations is set to Kmax = 200, while
for unknown PT , K1max = 10 and K2max = 25, unless stated otherwise. The performance metric is the
normalized root mean square error (NRMSE), defined as:

NRMSE =

√√√√ 1

MMc

Mc∑
i=1

M∑
j=1

‖xij − x̂ij‖2

where x̂ij denotes the estimate of the true location of the j-th target, xij , in the i-th Monte Carlo run.
In Table 1, we provide an overview of the considered algorithms in this section, together with their

worst case computational complexities. To the best of authors’ knowledge, the state-of-the-art algorithms
for the case where PT is known are described in [10,12], whereas for the case when PT is not known,
there is no existing work.

From Table 1, it is clear that the computational complexity of the distributed algorithms mainly
depends on the size of the neighborhood fragments, rather than the total number of nodes in the WSN.
Although it is theoretically possible to have that max

i
{|Ni|} = M + N − 1, for i = 1, ...,M , in

practice, the size of the neighborhood fragments are much smaller, due to limited R. For example, in our
simulations, the majority of nodes had very few neighbors, and the average size of fragments was well
below 10. Increasing the number of nodes in the network does not necessarily impact the neighborhood
fragments (or not significantly), which is why the distributed algorithms are preferable in large-scale and
highly-dense WSNs in contrast to the centralized ones. Table 1 also reveals that the proposed algorithms
are computationally the most demanding, in comparison to the existing ones. However, this fact is
justified by their superior performance in the estimation accuracy, as we will see in the following text.
Additionally, it is important to stress that the communication process is much more energy-consuming
than the computation one [1,4].
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Table 1. Summary of the considered algorithms.

Algorithm Description Complexity

DSCL The spatially constrained algorithm in [10] Kmax ×M × F ×O
(

max
i
{|Ni|}

)
LS The least squares algorithm in [12] Kmax ×M × titer2 ×O

(
max

i
{|Ni|}

)
SOCP1 The proposed Algorithm 1 for known PT Kmax ×M ×O

((
max

i
{|Ni|}

)3.5)
SOCP2 The proposed Algorithm 2 for unknown PT (K1max +K2max)×M ×O

((
max

i
{|Ni|}

)3.5)
+M ×Dmax

In [10], the authors proposed a discretization of the search region over a 5× 5 resolution grid, since it
represents the best trade-off between accuracy and computational complexity. In all scenarios considered
here, for the approach in [10], we have discretized the search region with F = 100 randomly generated
points in order to achieve higher estimation accuracy for this approach. The approach in [12] considers
the localization problem where the PLE is not known. However, it is straightforward to adapt it for the
case of known PLE, by using the true value of the PLE instead of the estimated one. In all considered
scenarios, for the approach in [12], the step size of the gradient descent method is set to γx = 10−3, while
the required number of iterations are set to titer1 = Kmax and titer2 = 5. Although in [12], the authors
consider node selection mechanisms in order to determine the optimum number of cooperating nodes
and obtain a good trade-off in terms of position accuracy versus energy consumption, we do not employ
it here. The reason is that, for the chosen scenarios, the number of neighbors is below the optimum value
for a majority of the target nodes; therefore, we allow target nodes to cooperate with all neighboring
nodes, independent of the fragment size.

5.1. Known PT

Figure 3 illustrates the NRMSE versus k performance of the considered approaches for different N .
From Figure 3, we can see that the estimation accuracy of all approaches better outcomesas k and/or N
increases, as anticipated. Moreover, it can be seen that the proposed approach outperforms the existing
ones in both estimation accuracy and convergence sense. In terms of the estimation accuracy, the new
approach reduces the estimation error on average for about 1.5–2 m, when compared to the existing
ones. In terms of convergence, one can see that the proposed approach requires only k = 20 iterations
to converge, while state-of-the-art approaches do not converge even after k = 200 iterations. This result
is very important in the sense of energy conservation, since the proposed approach may be stopped
after only k = 15 iterations, while the existing ones require much more iterations. Finally, it is worth
mentioning that the “LS” approach outperforms the “DSCL” and the proposed one in the first iteration.
This is due to the fact that the “LS” approach uses a weighted mean of the coordinates of the n nearest
anchor nodes to determine the initial guess of the targets’ positions. This method, as well as the other
ones, such as multidimensional scaling (MDS) [25], can also be used to obtain the initial guess for the
proposed approach. However, these methods increase the computational cost, and we do not use them for
our approach.
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Figure 3. Simulation results for cooperative localization when L0 is known: normalized
root mean square error (NRMSE) versus k comparison for different N , when M = 50,
σ = 0 dB, R = 6 m, B = 30 m, L0 = 40 dB, γ = 3, d0 = 1 m, Mc = 500.

0 20 40 60 80 100 120 140 160 180 200

3

4

5

6

7

8

9

10

Figure 4 illustrates the NRMSE versus k performance of the considered approaches for different
M . From Figure 4, it can be seen that all approaches require slightly higher number of iterations
when M is increased. However, the estimation accuracy of all approaches does not deteriorate when
more target nodes are added in the network; the proposed approach performs even better when M

increases. Additionally, Figure 4 exhibits superior performance of the proposed approach in both
estimation accuracy and convergence realizations, in comparison to state-of-the-art. We can see that
the new approach improves the estimation accuracy for more than 1.5 m, thereby requiring not more
than k = 20 iterations to converge, while the existing methods require at least k = 120 iterations
to converge.

Figure 4. Simulation results for cooperative localization when L0 is known: NRMSE versus
k comparison for different M , when N = 25, σ = 0 dB, R = 6 m, B = 30 m, L0 = 40 dB,
γ = 3, d0 = 1 m, Mc = 500.
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In Figures 3 and 4, we investigated the case where the wireless channel is noise-free. In practice,
however, the channel is prone to noise influence, which can severely impact the algorithm’s performance.
Hence, in Figure 5, we investigate the influence of noise on the performance of the considered algorithms.

Figure 5 illustrates the NRMSE versus k performance of the considered approaches for σ = 6 dB.
As the performance benchmark, we employ the simulation results of the considered methods when the
channel is noise-free, i.e., σ = 0 dB in this figure. From Figure 5, one can see that as σ increases, the
performance of all approaches deteriorates by approximately 0.5 m. Moreover, we can see that the new
approach converges after only k = 20 iterations for both choices of σ, while the existing approaches do
not converge after k = Kmax number of iterations. Finally, Figure 5 shows that the proposed approach
outperforms the state-of-the-art in terms of the estimation accuracy, achieving a gain of more than 1.5 m
for both choices of σ.

Figure 5. Simulation results for cooperative localization when L0 is known: NRMSE versus
k comparison for different σ, when N = 25, M = 50, R = 6 m, B = 30 m, L0 = 40 dB,
γ = 3, d0 = 1 m, Kmax = 100, Mc = 500.
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Figure 6. Simulation results for cooperative localization when L0 is known: NRMSE and k̄
versus σ comparison, when N = 25, M = 50 dB, R = 6 m, B = 30 m, L0 = 40 dB, γ = 3,
d0 = 1 m, Kmax = 100, ε = 10−3, Mc = 500.
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From Figures 3–5, one can conclude that perhaps it is not necessary for an algorithm to perform
all Kmax number of iterations, since we might preserve energy if less iterations are performed. Thus,
in Figure 6, we illustrate the NRMSE performance of the considered approaches for different σ, as
well as the average number of required iteration, k̄, when a stopping criterion, ‖x̂(k+1)

i − x̂
(k)
i ‖ ≤ ε, is

introduced. This stopping criterion implies that a target node will stop calculating its position estimate
if two consecutive estimations of its position are sufficiently close to each other. Once this condition is
met by all target nodes, the network will stop working in order to save energy.

In Figure 6, blue solid lines represent the NRMSE performance (left y-axis) and red solid lines
represent k̄ performance (right y-axis) of the considered approaches for different σ, when Kmax = 100

and ε = 10−3. As can be seen from Figure 6, the new approach outperforms the state-of-the-art by more
than 1.5 m for all ranges of σ. Furthermore, we can see that the proposed approach also outperforms
the existing ones in terms of convergence. Our approach requires on average about k̄ = 42 iterations to
converge, while the existing approaches do not meet the stopping condition inKmax number of iterations.

Let us interpret the above result in terms of energy consumption. In Table 2, we represent the average
running time per node per Mc run of the considered algorithms for Mc = 100 runs, which we will use to
analyze the energy consumption of the algorithms.

Assuming that Eproc is the total energy required for processing the data, Ep is the energy spent per
working second in data processing phase, t is the average running time of an algorithm, Kreq = k̄,
Ec = ETxM +ERx

∑M
i=1 |Ni| is the energy spent per iteration in data communication phase, we present

the results for the energy depletion of the considered algorithms in Table 3.

Table 2. The average running time per node per Mc run of the considered algorithms
for known PT , when N = 25, M = 50, σ = 0 dB, R = 6 m, Mc = 100. CPU:
Intel(R)Core(TM)i7-363QM 2.40 GHz.

Algorithm Time (s)

DSCL 0.0013
LS 0.0004

SOCP1 0.36

Table 3. The average energy depletion of the considered algorithms for known PT , when
N = 25, M = 50, σ = 0 dB, R = 6 m, Mc = 100.

Algorithm Eproc (J) Ecom (J) Etot (J) = Eproc + Ecom

DSCL Ep × t×M ×Kreq Ec ×Kreq 63.4Ep + 100Ec

LS Ep × t×M ×Kreq Ec ×Kreq 21.7Ep + 100Ec

SOCP1 Ep × t×M ×Kreq Ec ×Kreq 746.48Ep + 42Ec

From Table 3, one can see that the proposed approach is the most energy consuming in the data
processing phase. This result is expected, since the proposed approach is more computationally complex,
in comparison to the existing ones. Furthermore, we can see that our approach preserves almost 60% of
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energy in the communication phase, in comparison to state-of-the-art. Since the communication phase
is much more energy expensive than the data processing one [1,4], i.e., Ec � Ep, we can conclude that
the proposed approach is likely to preserve energy for all values of σ. Moreover, since our approach
requires a significantly lower number of signal transmissions, the utilization efficiency of the radio
spectrum can be enhanced. This result is important, because the radio spectrum is a precious resource
for wireless communications.

5.1.1. Heuristic Approach for Improving the Convergence of the Proposed Algorithm

Although the proposed algorithm converges in less iterations than the existing ones, we have observed
in our simulations that it still has potential for further improvement. In the following text, we give a short
overview of the proposed heuristic approach, which improves the convergence of the proposed algorithm
for known PT , without a significant increase in the computational complexity.

Target node i first obtains a solution of the SOCP problem in Equation (9), x̂(k+1)
isocp . Then, the target

node takes an additional step from the point x̂(k+1)
isocp in the direction

−−−−−−→
x̂
(k)
i x̂

(k+1)
isocp . The size of the step taken

is wδ(k+1)
i , where w is the weight used to avoid oscillations in the position estimates and:

δ
(k+1)
i =

∑
j∈Ni |rij − ‖x̂

(k)
i − x̂j‖|

|Ni|

given that rij = d010
Lij−L0

10γ . The motivation for calculating the step size in this way is that by improving
the position estimates in every iteration, we are also minimizing the difference between the measured
and the Euclidean distances; therefore, we are decreasing the step size in each iteration. Hence, an
intermediate estimate is obtained as:

x̂
(k+1)
iimp = x̂

(k+1)
isocp + δ

(k+1)
i [cos(αi); sin(αi)]

where αi is the angle between points x̂
(k)
i and x̂

(k+1)
isocp . At last, target node i determines its updated

position estimate as:
x̂
(k+1)
i = (1− w)x̂

(k+1)
isocp + wx̂

(k+1)
iimp

and immediately broadcasts this estimate to its neighbors.
In Figure 7, we have investigated the influence of the chosen weight on the estimation accuracy of the

proposed approach. Note that the choice w = 0 corresponds to the case where x̂
(k+1)
i = x̂

(k+1)
isocp , i.e., no

additional step is taken after the SOCP solution is attained. Figure 7 shows that a considerable gain in
the estimation accuracy is achieved in the first few iterations by taking the additional step. Moreover, it
can be seen that the new approach converges after only k = 5 iterations for the choice w 6= 0, whereas
k = 15 iterations are necessary for w = 0. Finally, even though the difference in the performance is
marginal, based on our simulations, we have concluded that the best choice of the weight is w = 1

k

in general.
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Figure 7. NRMSE versus number of iterations comparison of the proposed approach for
different choices of w.
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Figure 8. Estimation process of the proposed approach in the first 10 iterations. (a) Network
configuration; (b) SOCP1 approach, w = 0; (c) SOCP1 approach, w = 1
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Figure 8b,c illustrate an example of the estimation process in the first ten iterations for the proposed
approach, when w = 0 and w = 1

k
, respectively. In Figure 8a, we show the network layout considered

for this particular example.
Comparing Figure 8b,c, one can see that, in general, making an additional step of the length δ(k)i in the

first iteration pushes the estimates much closer to the true target positions. As the number of iterations
increases, the step size, i.e., w, decreases, giving more importance to the solution obtained with the
proposed SOCP approach. Additionally, from Figure 8, we can see that the target node, which has no
anchor nodes as its neighbors (upper right corner), suffers the lowest, while the target node closest to x̂

(0)
i

experiences the highest estimation accuracy in these few iterations. Although we cannot guarantee that
our approach will converge under all conditions, our simulation results show that it is a good heuristic.

5.2. Unknown PT

Figure 9 illustrates the NRMSE versus k performance of the proposed approach for unknown PT . As
the performance benchmark, we employ the proposed approach when PT is known in this figure, since
we are not aware of any existing work that addresses the distributed localization problem for the case
when PT is not known. From Figure 9, it can be seen that the proposed approach reduces the estimation
error as k increases, as expected. Furthermore, the saddle point at k = 10 is observed. This is because,
at this point, we obtain an estimate of PT , and we proceed with our algorithm as if PT is known, using
its estimated value. From Figure 9, we can conclude that the proposed approach provides excellent
estimation accuracy, since it attains the lower bound given by the results of the proposed approach for
known PT .

Figure 9. Simulation results for cooperative localization for known and unknown L0:
NRMSE versus k comparison, when N = 25, M = 50, σ = 0 dB, R = 6 m, B = 30 m,
L0 = 40 dB, γ = 3, d0 = 1 m, Mc = 500.
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6. Conclusions

In this work, we addressed the RSS-based target localization problem in a cooperative WSN. A novel
distributed cooperative algorithm based on SOCP relaxation is presented, for both cases of known and
unknown target transmit power, PT . For both scenarios, we start with the network coloring to ensure a
completely distributed and collision-free algorithm. We derive the ML estimation problem to localize
all target nodes simultaneously, and we break it down into local ML problems for each target node. The
local ML estimator is tightly approximated by another non-convex estimator for small noise. The derived
non-convex estimator allows the use of convex optimization tools in order to convert the estimation
problem into a convex one. Hence, appropriate convex relaxations are applied to the derived non-convex
estimator, and novel SOCP estimators are proposed to solve the target localization problem for known
and unknown PT . As we considered a distributed implementation of the proposed algorithms, they
are executed iteratively. In the case of unknown PT , we solve the localization problem K1max number of
times, after which we attain the ML estimate of PT by fixing the target estimates. We then take advantage
of this estimate in order to further improve the estimation accuracy of the proposed approach; hence, we
proceed in our algorithm as if PT is known. Additionally, we propose a simple heuristic approach to
further improve the convergence of the proposed approach for known PT , which requires a first-degree
memory in the target nodes. Moreover, we provided details about the computational complexity and
energy consumption of the considered algorithms. The simulation results confirm the effectiveness of
the proposed algorithms, showing a remarkable improvement in the estimation accuracy of more than
1.5 m in the case of known PT , in comparison with the state-of-the-art. The new approach requires
less number of iterations to converge and is likely to preserve energy in all scenarios presented in this
work. When PT is not known, the simulation results certify the excellent performance of our approach,
attaining the lower bound defined by the new approach for known PT .
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