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SUMMARY

In this thesis a kinematic human upper body model for evaluating clothing fit and ap-

pearance is developed and validated. Realistic and accurate human body models are re-

quired in many different application areas, including medicine, computer graphics, biome-

chanics, and sport science. A particular application of interest for a human body model is

a virtual reality clothing model to evaluate fit and appearance of garments.

A robotics-based model for the human upper body skeleton is derived. To validate the

model, upper body motion data is collected with a markerless motion capture system using

Microsoft Kinect. A baseline evaluation of markerless motion capture with a single Kinect

sensor presents results from tracking a robot arm trajectory, frequency tests, and human

motion capture experiments. Because occlusion causes a single Kinect sensor to fail in

accurately predicting the human pose, a second Kinect sensor is integrated into the system.

Data from the two sensors is fused and filtered using an Extended Kalman filter. The results

are compared to marker-based tracking with a Vicon Motion Capture system.

The Extended Kalman filter is shown to ensure constant body segment lengths, thus

producing a more realistic estimation of the joint positions than obtained from the raw

Kinect data. The proposed setup offers a low-cost, markerless, and portable alternative to

marker based motion tracking.

xiv



CHAPTER 1

INTRODUCTION AND BACKGROUND

The objective of this master thesis is to develop and validate a kinematic human upper

body model for evaluating clothing fit and appearance. Realistic and accurate human body

models are required in many different application areas, including medicine, computer

graphics, biomechanics, and sport science. A particular application of interest for a human

body model is a virtual reality clothing model to evaluate fit and appearance of garments.

In order to accurately evaluate clothing, a human body model that can produce realistic

human motions is required.

The next section contains a brief motivation for the research and the objectives of this

thesis. Section 1.2 provides a description of the background and scope of work, including

an overview of human motion capture technologies, their capabilities and limitations. In

Section 1.3 the contributions of this thesis are described. Finally, Section 1.4 outlines the

remaining chapters of this thesis.

1.1 Motivation and Objectives

1.1.1 Evaluating Clothing Fit

Clothing fit is considered to be the most important criterion for customers to evaluate cloth-

ing appearance. There is no clear definition of the quality of clothing fit [1]. However, psy-

chological comfort, appearance and physical dimensional fit do contribute to the customer’s

perceived satisfaction of fit. To assess dimensional fit of a garment, dress forms and 3D

body scanning systems are currently used [1, 2]. These methods can reliably evaluate the

fit in static poses, but they cannot be used to quickly and accurately assess the quality of fit

or change of appearance of a wide range of garments during dynamic poses e.g. walking.
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β1

β2

Figure 1.1: Robot arm with elbow and shoulder angle

In recent decades, human body and motion modeling has received increasing attention,

with applications in computer vision, virtual reality and sports science. To date, synthesis

of realistic human motions remains a challenge in biomechanics. While clothing simulation

is usually accomplished using finite element analysis [3], evaluation of clothing fit on a real

human body performing motions requires a kinematic model capable of predicting realistic

human-like motion.

1.1.2 Motion Analysis and Injury Prevention

Work related musculoskeletal disorders (WRMSDs) are a major issue plaguing factory

workers, traffic policemen, and others who routinely perform significant upper-body mo-

tions [4, 5]. Muscular fatigue is induced due to long working hours, as well as incorrect

or sub-optimal motion techniques [6]. Assessment of the range of motion (ROM) of a hu-

man joint can yield information about the use, injury, disease, extendability of tendons,

ligaments and muscles [7].

An additional area of interest is the derivation of joint angle trajectories from motion

capture data collected from humans in an experimental setting. Such trajectories can, for

example, be used to drive a robot through motions that mimic human arm movements. An

example for such a robot is shown in Figure 1.1, where the shoulder and elbow angles β1

and β2 are used to drive the robot.
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1.1.3 Low-Cost Human Tracking

While many established optical motion capture systems involve multiple high definition

cameras and have been proven to be accurate, they are often expensive and infeasible to

use outside the confined space in which they are installed. On the other hand, the Microsoft

Kinect sensor is a non-invasive, low-cost camera primarily used in the video-gaming indus-

try which can be used to track 25 joints of a human skeleton. The sensor provides RGB,

depth, and infrared data.

Numerous studies have been presented evaluating the accuracy of skeleton and joint

tracking using the first version of the Kinect sensor [8, 9, 10]. Motion capture of upper-

body movements using the Kinect compared to a marker-based system has been studied

and compared to established optical motion capture methods with respect to applications in

ergonomics, rehabilitation, and postural control [11, 12, 13]. Overall, these studies found

that the Kinect’s precision is less than the optical motion capture system, yet the Kinect has

various advantages such as portability, markerless motion capture, and price. To improve

the Kinect’s motion capture precision, some approaches used additional wearable inertial

sensors [14]. With this approach, more accurate joint angle measurements were obtained.

1.2 Background

To further understand the foundation of this thesis, the background and scope of the work

must be considered. This includes a thorough analysis of the available human motion

capture tools to assess their capabilities and limitations. The most common approach is to

model the human body as a serial multibody system, in which the rigid or flexible bodies

(limbs) are connected via joints.

In order to produce realistic and natural human-like motions, one needs to understand

the basic concept of the human structural system and the major movable joints in the real

human body. The human musculoskeletal system consists of the bones of the skeleton,

3



cartilage, muscles, ligaments, and tendons. The human skeleton consists of more than

200 bones [7] driven by over 250 muscles, which introduces a great number of degrees

of freedom (DoF) into human body models. Different techniques such as physics-based

simulation [15], finite element analysis [16], and robotic-based methods [17] have been

employed with the goal of modeling realistic human motion.

The suitability of an existing model and the derived human-like motions can be evalu-

ated by comparing with human motion capture systems. The most commonly used motion

capture systems are vision-based. These system can be divided into marker-based and

markerless systems. While marker-based systems such as OptiTrack or Vicon use multi-

ple cameras to track the positions of reflective markers attached to a human test subject,

markerless systems such as the Microsoft Kinect sensor estimate a human pose and joint

position based on a depth map acquired with infrared or time-of-flight sensors.

Marker-based systems are widely used and have been established to be fairly accurate

[18]. In contrast, markerless systems use position estimation algorithms that introduce

error into the measurements. Because most markerless systems have a single camera, only

one point of view is available. Occlusion of limbs or movement out of the camera view

can cause the pose estimation to fail. While marker-based systems are costly and confined

to a certain volumetric workspace, markerless systems are more affordable and can easily

be used in many different settings. To reduce occlusion problems in Kinect measurements,

motion capture setups involving multiple Kinect sensors have been developed [19, 20].

Vicon 3D Motion Capture systems involve multiple high definition cameras which are

accurate, but expensive, and infeasible to use in shopping malls, airports, aircraft carriers,

road settings, etc.. On the other hand, the Kinect can be used for human-body motion

analysis in a wide variety of settings. The primary differentiating factor between the Kinect

and Vicon system is the necessity of retro-reflective markers in the Vicon system. Light

from the Vicon cameras is emitted and is reflected back from markers in the field of view.

This yields the 3D position of each marker. However, the Kinect does not require markers
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for human-body tracking because a proprietary Microsoft software possesses the ability to

track human body joints.

1.3 Thesis Contributions

This thesis addresses the development of a new kinematic model for the human body in

three dimensions with the goal of evaluating the fit and appearance of clothing. A robotics-

based model for the human upper body skeleton is derived. To mimic realistic human

movements, motion data is collected using a markerless motion capture system (Microsoft

Kinect) that tracks 25 joints of the human skeleton. Because occlusion causes a single

Kinect sensor to fail in accurately estimating the human pose, a second Kinect sensor is

integrated into the system, creating a dual-Kinect system. Different sensor orientations are

tested to find the best relative orientation between the two Kinect sensors and a human test

subject. Data acquired from both sensors is calibrated and fused using a weighted aver-

age calculation. Joint tracking performance is subsequently enhanced using two different

approaches: in the first approach, the tracked positions are filtered using a linear Kalman

filter. In the second approach, the positions are fed into an extended Kalman filter based

on the novel kinematic human upper body model. This approach ensures constant limb

lengths during the tracked motions. To investigate how the fit of clothing affects tracking,

experiments with a human test subject wearing garments of different fit are conducted. The

accuracy of the dual-Kinect system is evaluated by comparison with a marker-based Vicon

motion capture system.

1.4 Outline of Thesis

This thesis consists of six chapters. The first chapter covered the background, objectives,

and motivation to develop a kinematic human upper body model to evaluate clothing fit.

Chapter Two presents an overview of previous work done on human motion modeling and

is divided into lower body, torso, and upper body models. The proposed kinematic hu-
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man body model and the framework used for improved joint tracking is laid out in Chapter

Three. Chapter Four covers an evaluation of the baseline performance of depth measure-

ments obtained with the Kinect, and human motion capture with a single Kinect sensor.

Chapter Five describes the improved human motion capture with a dual-Kinect system. It

presents a method for fusing the sensor data and demonstrates improvements in accuracy

with the employed method by comparing with a Vicon motion capture system. Finally,

Chapter Six discusses the results of the motion capture experiments, tracking performance

of the different filters with fused data, other significant findings, and future work.
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CHAPTER 2

PREVIOUS HUMAN BODY MODELING

Vision based studies of human motion can be classified into ’model-based’ methods that

use a priori shape models of the human, and ’appearance-based’ or ’view-based’ meth-

ods [21]. Appearance-based methods first detect features in an image, and subsequently

build a human body representation, whereas model-based approaches fit image data to a

predefined human body model. While appearance-based approaches do not employ an ob-

ject model, and thus can be used in more diverse situations, they are, in general, sensitive

to noise e.g. clothes or other objects in the frame. In contrast, model-based methods can

integrate knowledge about the shape into visual inputs, and can be used for high-level clas-

sification of motions. However, additional processing steps, e.g. parameter estimation, are

usually required.

This chapter presents a review of model-based methods used in human motion analysis.

The reviewed models are grouped into lower body models and upper body models. While

lower body models include part of the trunk, the pelvis, the hips and the legs, upper body

models are often a combination of torso and arm models. The structure of the models, as

well as their application in human motion motion tracking and prediction are reviewed.

Lower body models are mainly used in gait analysis, while torso and upper body models

have been used in investigation of broader applications.

2.1 Level of Detail of Human Body Models

Depending on the complexity required in an application, the human body can be repre-

sented at different levels of detail, from bounding boxes and stick figures to 3D volumetric

models that include muscle and soft tissue dynamics [15, 21]. Comprehensive human body

models can be very detailed and often contain multiple layers e.g. a skeleton layer account-
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ing for the articulated motion of the bones caused by muscle contraction, and a layer for

soft tissue deformation.

Because human motion is essentially caused by movement of the supporting bones of

the musculoskeletal system, more general representations treat the human body as a com-

bination of rigid body segments (links) and the joints connecting them. Many human body

models further decompose the anatomical human joints into combinations of single-DoF

prismatic or revolute joints commonly used for the description of serial robot manipulators

[17]. To describe and analyze the kinematics and dynamics of such models, a robotics

based approach can be used.

2.1.1 Joint Type Classification

Anatomical human joints can be defined as the union of two or more bones, and as the

region in which motion occurs [22, 23]. There are many joint classifications available.

Because the focus of this thesis lies on modeling joint motion, a classification based on

joint mobility is presented here [22, 23, 24]: fibrous, cartilaginous, and synovial. While

fibrous and cartilaginous joints provide stability or a limited amount of mobility (e.g. the

sutures of the skull or the intervertebral joints of the spine), synovial joints allow for a large

degree of motion (e.g. the shoulder and hip joints) [7, 23]. Commonly, six different types

of synovial joints can be distinguished. Table 2.1 lists these joint types with a description

of the allowed motion and examples [25].

2.2 Lower Body Models

The lower body is generally comprised of trunk and pelvis segments, and two legs. Motion

of the lower limbs is enabled through the hip, knee and ankle joints. A common approach is

to consider the lower body as a mechanical linkage or as a multibody system with defined

links or segments interconnected by joints [26]. The motion of the links is generally driven

by joint rotations.
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Table 2.1: Synovial Joint Type Classification

Name Allowed motion

Plane joint Sliding or gliding movement of two bones
e.g. Acromioclavicular joint

Hinge joint Flexion and extension in one plane
e.g. Elbow (humero-ulnar) joint

Pivot joint Rotation of one bone about the other
e.g. Atlanto-axial joint

Condylar joint Movement around two perpendicular axes
e.g. Wrist joint

Saddle joint Permit the same movements as condylar joints; the articular
surfaces are saddle shaped e.g. Carpometacarpal joint of thumb

Ball-and-socket joint All movements except gliding
e.g. Shoulder (glenohumeral) joint, hip joints

In a review of physics-based modeling of human walking, Xiang et al. [27] present a

classification of lower body models based on geometry of planar and spatial models. The

mechanical models for the human body can be further divided into skeletal models, where a

muscle group driving a joint is lumped and represented as joint torque, and musculoskeletal

models, which consider the motions and forces at the muscular level. Some approaches

further include modeling of muscle activation patterns, and the interaction between the

nervous system and muscles used to produce a coordinated motion [28]. Figure 2.1 shows

an example of a lower body model with 23 DoF and 10 segments. The effect of the upper

body mass on the lower body model is accounted for by lumping the head, arms, and torso

into a single segment.

The most common use of lower body models is to investigate walking, one of the most

fundamental human motions, yet complex in terms of neural control and stability [27].

Other previously investigated motions include jumping and pedaling [28].
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Figure 2.1: Example Lower Body Model used in Walking Simulations1

2.2.1 Walking

Modeling and simulation of human walking is an important field of study in both robotics

and biomechanics. Knowledge about gait mechanisms can be applied to real-time con-

trol of biped robots, clinical biomechanics, or pathological gait analysis [27]. A variety

of methods for modeling and simulating of human walking motion have been developed.

In this section, a simplified model (inverted pendulum model), and a more complicated

method (optimization method) are discussed.

Inverted Pendulum Model

Because walking involves a periodic exchange of kinetic and potential energy, a common

simplified approach in gait modeling is based on a planar inverted pendulum, treating the

body mass as concentrated mass located at the center of gravity (COG). With this approach,

trajectories for the COG can be generated in closed form. However, due to the simplicity

1Image from [26]
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of the model, natural and realistic human walking motion is difficult to recreate [29].

Optimization Method

Optimization-based motion prediction offers a more complex approach to analyze and sim-

ulate human motions. This method uses large-DoF models and optimizes joint angle and

torque trajectories according to a predefined human performance measure. Commonly used

performance measures include mechanical energy, metabolic energy, and stability [27].

2.3 Upper Body Models

The upper body consists of the torso, head, and arms. Models of the upper body usu-

ally have some degree of redundancy and use optimization techniques to define the pose.

Lura [17] proposed a robotics based upper body model for predictive simulation of upper

body motions, which was used to evaluate prosthetics performance. Lee et al. [15] in-

troduced a comprehensive biomechanical model that takes into account, more or less, all

the relevant articular bones of the human upper body. The model used by Lee includes

physics-based simulation of soft-tissue deformations.

2.3.1 Torso Models

Motion of the torso is mainly attributed to the spine, which consists of vertebrae separated

by vertebral discs. Often, parts of the spine are grouped and treated as rigid bodies inter-

connected by joints. This approach simplifies the motion within the corresponding area [7].

Figure 2.2 shows an example of this approach in which torso motion is modeled using 9

joints.

2.3.2 Human Arm Models

Using a robotics based approach, the human arm can be modeled as a series of rigid links

connected by multiple joints. These joints represent the anatomical joints (shoulder joint,
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Figure 2.2: Example for Modeling of the Human Vertebral Column2

elbow joint, and wrist joint) [30]. Models of the human arm commonly have up to 7

DoF, assuming the origin of the base frame is fixed and located at the shoulder joint. The

anatomical shoulder joint itself is then modeled as three revolute joints with intersecting

orthogonal axes. The elbow joint is modeled as either a single or two serial revolute joints,

and the wrist joint usually has two or three DoF [17].

To resolve the redundancy in the inverse kinematics of the 7 DoF model, a common

solution is to reduce the model to a 6 DoF model, allowing for a purely analytical solution.

This has been achieved by optimizing the “swivel angle" of the elbow [30] or by minimizing

the upper arm elevation. Figure 2.3 shows an example of a robotics based model for the

human upper body that uses rigid links and joints to represent body segments.

2.3.3 Upper Body Motions

Previously studied motions of the upper body include hand tool use in ergonomic work

site analysis [4], ball throwing [7], dumbbell curls, and respiratory torso movement [15].

Lura [17] used a robotics-based upper body model to investigate several range of motion

(RoM) tasks, as well as activities of daily living (ADL), e.g. drinking from a cup, or

2Image from [7]
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Figure 2.3: Example of a Robotics Based Human Upper Body Model3

opening a door.

3Image from [17]
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CHAPTER 3

KINEMATIC HUMAN UPPER BODY MODEL

In this chapter, a novel kinematic human upper body model is presented. The human upper

body is modeled as a series of links that are connected by joints. In order to employ a

robotics-based framework, the anatomical joints are decomposed into a series of revolute,

single DoF joints.

This chapter is structured as follows. First, the key joints and degrees of freedom nec-

essary to adequately model the human upper body are discussed. Then, a robotics-based

framework using Denavit-Hartenberg (DH) parameters is provided and the kinematic mod-

els for the torso and arms are explained in detail. Forward kinematics and inverse kinemat-

ics for general serial link manipulators are discussed. Finally, a linear Kalman filter and

an extended Kalman filter incorporating the described upper body model for joint tracking

with a Kinect sensor are developed.

3.1 Key Joints and Degrees of Freedom

In order to develop a kinematic model, one needs to understand the major movable joints

of the real human body. The upper body can be divided into a torso segment, a head

segment including the neck, and the arms. Because the intended application of the model

is to evaluate clothing fit not including hats, the head segment is neglected in the modeling

process.

Motion of the torso segment arises mainly from the vertebral column or spine, which

consists of multiple discs. To sufficiently model the mobility of the spine, but at the same

time limit the degrees of freedom, the spine can be divided into three regions: a lower

region (sacrum and coccyx), a middle region (chest or thoracic region), and an upper region

(located approximately at the sternum). The movable parts in each of these regions will be
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Figure 3.1: DH Parameters and Link Frames

modeled as a 3-DoF universal joint, enabling 3-axis motion.

The major joints of the human arm are located in the shoulder, elbow, and wrist. Shoul-

der motion is achieved through the shoulder complex, which consists of 20 muscles, three

functional joints and three bony articulations. However, the term “shoulder joint" usu-

ally refers to only one particular joint, the glenohumeral joint, which is a ball-and-socket-

type joint [23]. Usually only the shoulder joint is considered in models of anthropometric

arms [30]. It is commonly modeled as a 3-DoF universal joint, which is sufficient to enable

3-axis motion of the upper arm. The elbow and wrist joints are each modeled with two

DoF.

Using a robotics-based approach to modeling the human upper body, the rotation of

each body segment is defined by joint angles θi, i = 1 . . . n, where n is the number of

single-DoF joints in the complete model. The orientation and position of the links in the

kinematic chain can then be expressed using Denavit-Hartenberg parameters.

3.2 Denavit-Hartenberg Parameters

In order to describe the spatial configuration of a serial robot, Denavit-Hartenberg (DH)

parameters [31] are commonly used. Each joint i is assigned a frame O with location p.

Figure 3.1 shows the relation between DH parameters and frames i− 1 and i for a segment

of a general manipulator. di is the distance from Oi−1 to Oi, measured along Zi. ai is the
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distance from Zi to Zi+1, measured along Xi. θi is the joint angle between Xi−1 and Xi,

measured about Zi. αi is the angle between Zi and Zi+1, measured about Xi. A 4 × 4

homogeneous transformation matrix can be used to transform frame i to i+ 1:

T i+1
i =



cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1


(3.1)

with joint angle θi, link twist αi, link length ai and link offset di.

It should be noted that multiple options for the placement of the coordinate frames

generally exist. In the following sections, the major anatomical joints of the upper body are

decomposed into single-DoF revolute joints and the DH parameters for the torso and arm

model are derived.

3.3 Torso Model

The torso is modeled as a tree-structured chain composed of four rigid links: one link from

the base of the spine to the spine midpoint, one link from the spine midpoint to the spine at

the shoulder, approximately located at the sternum, and two links connecting spine at the

shoulder to the left and right shoulder. The corresponding joints in the torso model will be

referenced to as “SpineBase",“SpineMid", and “SpineShoulder", with the SpineShoulder

connecting to the “ShoulderLeft" and “ShoulderRight". Figure 3.2 shows the locations of

these joints in the human body.

Because we are only considering movement in the upper body, the base of the spine is

assumed to be fixed in space. The lower spine region is considered as a universal joint that

can be modeled as three independent, single-DoF revolute joints with intersecting orthog-

onal axes. The corresponding joint angles are θ1, θ2, and θ3. The same approach is taken to

model motion in the mid region of the spine. The SpineMid enables the torso to rotate and
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Figure 3.2: Human Torso Model - Joint Locations

bend about three axes with joint angles θ4, θ5, and θ6. At the SpineShoulder, the kinematic

chain is split into two branches, allowing for independent motion of both shoulder joints

relative to the sternum. For each branch, the shoulder joint is modeled as three independent,

single-DoF revolute joints. The link connecting the SpineShoulder with the ShoulderLeft

can be moved with joint angles θ7, θ8, and θ9, while the right link can be moved with θ10,

θ11, and θ12, respectively.

In summary, the complete torso model consists of four rigid links, interconnected by

12 single-DoF revolute joints. Using the DH conventions, coordinate systems and corre-

sponding DH parameters are assigned to each joint. Figure 3.3 shows the coordinate frames

assigned to the joints and the joint angles. The corresponding DH parameters for the torso

model are listed in Table 3.1. Provided the link lengths L1,L2,L3 and L7, and the 12 joint

angles θ1, θ2, ..., θ12, the spatial configuration of the torso model is completely defined.

3.4 Arm Model

Each arm is modeled as a serial kinematic chain consisting of three links: one link from

the shoulder joint to the elbow joint, one from elbow to the wrist and one link from the

wrist to the tip of the hand. The corresponding link lengths are L4, L5, and L6 for the left
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Table 3.1: DH Parameters for Torso Model

i Joint θi di ai αi

1 SpineBase Z θ1 + π/2 0 0 π/2
2 SpineBase X θ2 + π/2 0 0 π/2
3 SpineBase Y θ3 0 L1 0
4 SpineMid Y θ4 + π/2 0 0 π/2
5 SpineMid Z θ5 + π/2 0 0 π/2
6 SpineMid X θ6 + π/2 0 L2 π/2
7 SpineShoulder Y (left) θ7 + π/2 0 0 π/2
8 SpineShoulder Z (left) θ8 + π/2 0 0 π/2
9 SpineShoulder X (left) θ9 + π/2 L3 0 π/2
10 SpineShoulder Y (right) θ10 + π/2 0 0 π/2
11 SpineShoulder Z (right) θ11 + π/2 0 0 π/2
12 SpineShoulder X (right) θ12 + π/2 −L7 0 π/2
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arm, and L8, L9, and L10 for the right arm. The joints considered here will be referenced

to as “ShoulderLeft’, “ElbowLeft", and “WristLeft", and “ShoulderRight’, “ElbowRight",

and “WristRight", respectively. Figure 3.4 shows the location of these joints in the body.

The anatomical shoulder joint is modeled as a universal joint, providing three DoFs for

the rotation of the upper arm. The left (right) shoulder joint can therefore be modeled as

three independent, single-DoF revolute joints with intersecting orthogonal axes with joint

angles θ13, θ14, and θ15 (right: θ20, θ21, and θ22). The elbow is modeled as two single-DoF

revolute joints with joint angles θ16 and θ17 (right: θ23 and θ24). The wrist is modeled as

two single-DoF revolute joints with joint angles θ18 and θ19 (right: θ25 and θ26).

Figure 3.5 shows the coordinate frames and joint angles for the left arm model. The cor-

responding DH parameters for the left and right arm model are listed in Table 3.2. Adding

up the DoF for the shoulder, elbow, and wrist, each arm model has 7 DoFs.

Because only 6 DoF are required to define the position and orientation of the end-

effector (tip of the hand), it follows that the human arm model is redundant. Redundancy

is defined as the number of joints exceeding the output degrees of freedom [7]. For the

human arm, this redundancy can be observed by, first, fixing the positions of the shoulder

and wrist in space. Then allow the elbow to move without moving the shoulder or wrist
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Table 3.2: DH Parameters for the Left and Right Arm Model

i Joint θi di ai αi

13 ShoulderLeft Y θ13 + π/2 0 0 π/2
14 ShoulderLeft Z θ14 + π/2 0 0 π/2
15 ShoulderLeft X θ15 L4 0 0
16 ElbowLeft X θ16 0 0 −π/2
17 ElbowLeft Z θ17 − π/2 0 L5 0
18 WristLeft Z θ18 0 0 −π/2
19 WristLeft Y θ19 0 L6 0

20 ShoulderRight Y θ20 + π/2 0 0 π/2
21 ShoulderRight Z θ21 + π/2 0 0 π/2
22 ShoulderRight X θ22 −L8 0 0
23 ElbowRight X θ23 0 0 −π/2
24 ElbowRight Z θ24 − π/2 0 −L9 0
25 WristRight Z θ25 0 0 −π/2
26 WristRight Y θ26 0 −L10 0
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Table 3.3: Body Segment Lengths

Li Body Segment Li Body Segment

L1 Lower Torso L6 Left Palm
L2 Upper Torso L7 Right Clavicle
L3 Left Clavicle L8 Right Upper Arm
L4 Left Upper Arm L9 Right Forearm
L5 Left Forearm L10 Right Palm

position. Combining the torso and arm model further increases redundancy, making the

upper body model a highly redundant system.

Offsets in the joint angles θi are introduced to place the upper body model in the rest

position with both arms fully extended to the sides (=T-Pose), shown in Figures 3.2 and

3.4, when θi = 0 for i = 1, . . . , 26. The body segment lengths for the upper body model

are shown in Figure 3.6. Table 3.3 lists the names of the corresponding segments. Table 3.4

gives an overview of the biomechanical motions provided by each joint angle.

21



Table 3.4: Joint Motion Definitions

i Joint Name Joint Angle Motion

1 SpineBase Z θ1 Lumbar Flexion/Extension
2 SpineBase Y θ2 Lumbar Lateral
3 SpineBase X θ3 Lumbar Rotation
4 SpineMid Y θ4 Thoracic Lateral
5 SpineMid Z θ5 Thoracic Flexion/Extension
6 SpineMid X θ6 Thorax Rotation
7 SpineShoulder (left) Y θ7 Left Clavicle Elevation/Depression
8 SpineShoulder (left) Z θ8 Left Clavicle Flexion/Extension
9 SpineShoulder (left) X θ9 Left Clavicle Rotation

10 SpineShoulder (right) Y θ10 Right Clavicle Elevation/Depression
11 SpineShoulder (right) Z θ11 Right Clavicle Flexion/Extension
12 SpineShoulder (right) X θ12 Right Clavicle Rotation
13 ShoulderLeft Y θ13 Left Shoulder Abduction/Adduction
14 ShoulderLeft Z θ14 Left Shoulder Flexion/Extension
15 ShoulderLeft X θ15 Left Shoulder Medial/Lateral Rotation
16 ElbowLeft X θ16 Left Elbow Pronation/Supination
17 ElbowLeft Z θ17 Left Elbow Flexion/Extension
18 WristLeft Z θ18 Left Wrist Radial/Ulnar Deviation
19 WristLeft Y θ19 Left Wrist Flexion/Extension
20 ShoulderRight Y θ20 Right Shoulder Adduction/Abduction
21 ShoulderRight Z θ21 Right Shoulder Flexion/Extension
22 ShoulderRight X θ22 Right Shoulder Medial/Lateral Rotation
23 ElbowRight X θ23 Right Elbow Pronation/Supination
24 ElbowRight Z θ24 Right Elbow Flexion/Extension
25 WristRight Z θ25 Right Wrist Radial/Ulnar Deviation
26 WristRight Y θ26 Right Wrist Flexion/Extension
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3.5 Forward Kinematics

Given the values for all link lengths and joint angles, the position and orientation of the

joints up to the end-effector (tip of the hand) can be expressed in the base frame. It can

be calculated using the transformation matrices with the DH-Parameters of the kinematic

model listed in Tables 3.1 and 3.2. These kinematic equations state the forward kinematics

of the upper body model. Using the joint angles as generalized coordinates in the joint

vector q = [θ1 . . . θ26]
T , the pose of the serial manipulator can be calculated as a

function of the joint angles:

x = f(q). (3.2)

The position p and orientation [n s o] of the ith joint, expressed in the base frame, can

be calculated by multiplication of the transformation matrices:

[
n s o p
0 0 0 1

]
= T 1

0 T
2
1 . . . T

i
i−1. (3.3)

3.6 Inverse Kinematics

The inverse kinematics of a system are generally used to calculate joint angles q based on

a given position and orientation of an end-effector x:

q = f−1(x) (3.4)

Solving the inverse kinematics problem is not as straight-forward as calculating the for-

ward kinematics. Due to the kinematic equations being nonlinear, their solution is not

always obtainable in closed form. Because the developed upper body model is a highly

redundant system, the conventional inverse kinematics for a closed-form solution cannot

be applied. The challenge of solving the redundancy of human poses is still a prominent

research topic [7, 17, 30]. Instead of calculating a closed-form solution, we use a Jacobian
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based approach. The Jacobian provides a mapping between joint angle velocities q̇ and

Cartesian velocities ẋ

ẋ = J(q)q̇, (3.5)

where J is the Jacobian matrix ∂f/∂q.

3.7 State Estimation Methods for Joint Tracking

Considering a state-space representation, the system model describes the dynamics of the

system, or in this case how the links of the upper body model move in time. The observation

model describes the relationship between the states and measurements. In this work, a

linear Kalman filter and an extended Kalman filter are developed for joint tracking.

3.7.1 State Space Models

If it can be assumed that a tracked object, such as a joint of the human body, is executing

linear motion, the linear Kalman filter can be used to estimate the states of a system. Below,

two commonly used examples of discrete-time state space models describing the motion

of an object in 3D space are presented [19]. For the sake of simplicity, the equations are

derived to track a single joint’s position. The models presented here are later used with the

linear Kalman filter algorithm.

Zero Velocity Model

Assuming the velocity of the joint to be zero, the state vector for a problem with three

spacial dimensions is given by s = [x y z]T and the state space model is given by

sk+1 = Ask + wk (3.6)

zk = Csk + vk, (3.7)
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where the state transition matrix is given by

A =

1 0 0
0 1 0
0 0 1

 (3.8)

The observation matrix C takes into account the observed coordinates of the joint position

and is given by

C =

1 0 0
0 1 0
0 0 1

 (3.9)

Constant Velocity Model

Another approach is to model the joint to be moving with constant velocity and taking into

account the joint velocities as states. For a 3D problem, the state space vector becomes

6-dimensional: s = [x y z ẋ ẏ ż]T . The state space model has the same form as

in the zero velocity model in Eq. (3.6) and (3.7), with the state transition matrix given by

A =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (3.10)

where ∆t is the sampling time. If only the positions, and not the velocities are observed,

the observation matrix is given by

C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (3.11)

3.7.2 Linear Kalman Filter

The Kalman filter [32] is a recursive algorithm used to estimate a set of unknown parame-

ters (in this case the states s) based on a set of measurements z. It uses a prediction and an
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update step. The linear Kalman filter provides an optimal solution to the linear quadratic

estimation problem. Assume the system and measurement models are linear and given by:

sk+1 = Fksk +Bkuk + wk (3.12)

zk = Hksk + vk. (3.13)

Fk is the state transition matrix, Bk is the input matrix, Hk is the observation matrix, wk

is the process noise, and vk is the measurement noise. It is assumed that the process and

measurement noises are zero-mean, Gaussian noise vectors with covariance matrices Qk

and Rk, i.e. w ∼ N (0, Qk) and v ∼ N (0, Rk). The covariance matrices are:

Qk = E(wkw
T
k ) (3.14)

Rk = E(vkv
T
k ) (3.15)

Consider that at time k the state estimate ŝk|k and error covariance matrix Pk|k are known

and contain the information provided by all previous measurements. In the prediction step

of the Kalman filter, these quantities can be propagated forward in time using:

ŝk|k−1 = Fkŝk−1|k−1 +Bkuk (3.16)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (3.17)

If a new measurement is available, then the update step can be performed:

yk = zk −Hkŝk|k−1 (3.18)

ŝk|k = ŝk|k−1 +Kkyk (3.19)

Pk|k = (I −KkHk)Pk|k−1 (3.20)
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Equation 3.18 is a measure of the error between the measurement zk and the current state

estimate mapped into the measurement space. This measure is weighted by the Kalman

gain:

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1
. (3.21)

3.7.3 Extended Kalman Filter

While the linear Kalman filter can be used for linear systems, the Extended Kalman Filter

(EKF) extends the algorithm to work on nonlinear systems. Consider a nonlinear model:

sk+1 = f(sk, uk) + wk (3.22)

zk = h(sk) + vk (3.23)

The true state and measurement vectors can be approximated by linearizing the system

about the current state estimate using a first-order Taylor series expansion:

sk+1 ≈ f(ŝk) + Fk(sk − ŝk) (3.24)

zk ≈ h(ŝk) +Hk(sk − ŝk) (3.25)

Fk and Hk are the Jacobians of the system and measurement models, evaluated at the

current state estimate:

Fk =
∂f

∂s

∣∣∣∣
s=ŝk

(3.26)

Hk =
∂h

∂s

∣∣∣∣
s=ŝk

(3.27)

After linearizing the system, the standard Kalman Filter can be applied. It should be noted

that contrary to the linear Kalman filter, the EKF is not optimal. The filter is also still

subject to the assumption of Gaussian noise for the process and measurement [33].
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CHAPTER 4

MOTION CAPTURE USING A SINGLE KINECT SENSOR

In this chapter, the motion capture process with a single Kinect sensor is described and

results are compared to a marker-based tracking system using a Vicon 3D Motion Capture

system. The following section presents an evaluation of the baseline performance of depth

measurements using the Kinect and its frequency-tracking abilities. Next, results from

upper body joint angle tracking experiments with a single Kinect are presented. A test

subject performed three different upper body motions: two planar motions (a two-handed

wave and a “slow down" signal) and one non-planar motion (a one-handed “move along"

signal). Finally, results from tracking the planar upper-body motion with additional weight

lifting and under low light conditions are presented.

4.1 Kinect Baseline Performance Evaluation1

4.1.1 Tracking of a Robot Arm

This section evaluates the robustness of the Kinect system by testing its ability to track a

known motion generated by a 3-degree-of-freedom robot. Figure 4.1 shows the robot arm

used in this test. The system is controlled using Siemens Simotion drives and PLCs. A

MATLAB code is used to generate the trajectory that the robot arm executes [34].

Figure 4.2 shows the labeled components of the robot arm. Unlike conventional serial

links, 2 motors are mounted on the base of the robot to drive the 2 links. The two motors

can be driven in a coordinated manner to drive link 1. However, if the motors are moved

differentially, then a 4-bar linkage rotates link 2. The two links can be moved laterally via

a linear stage. The robot, motor driver, connection points, etc. are mounted onto the lower

1The work in this section was performed in conjunction with Prachi Sahoo and Siddarth Sreeram.
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Figure 4.1: 3-DoF Robot Arm.

frame of the robot arm assembly.

Figure 4.3 shows the experimental setup used in this test. The Kinect is placed at an

angle facing the robot arm. The robot arm has three red markers placed on it: one marker is

on the base, one on the elbow, and one on the end effector. By default, the Kinect is able to

track joints once it identifies a human body in its field of view. However, in this experiment

a human is not tracked, instead the position of red markers is being tracked. The challenge

was to track an object, in this case a robot arm, which did not mimic the general human

silhouette, by processing the depth data acquired using the Kinect sensor.

To solve this problem, a visual marker detection was used. Red markers were chosen

because red components can easily be detected in real time based on images acquired by

the Kinect. This data can be processed to track the centroid of the red markers. Figure 4.4

shows a screen capture of a video recorded by the Kinect. This image shows a green “cross“

on the red marker indicating that the Kinect is tracking the centroid of the red marker.

The MATLAB script that was written to capture the data and track the markers on the

robot arm made use of functions in the Kinect Toolbox and the Image Processing Tool-
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Figure 4.2: Schematic Diagram of Robot Arm.

Figure 4.3: Labeled Experimental Setup.
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Figure 4.4: Tracked Marker.

box [35]. A red color filter is first applied to the frame, followed by a simple conversion to

binary and circle detection. This process accurately locates where the markers are in the

Kinect’s field of view. Once the X and Y coordinates of the pixel that coincides with the

centroid of the tracked marker are obtained, a built-in function provided by the Kinect for

Windows SDK can be used to map between locations on the color image and their corre-

sponding locations on the depth image. This function can be used to obtain the X, Y, and Z

coordinates of the tracked marker in 3D space.

This process was used on the binary image of each frame to track the red markers

and record their X, Y, and Z coordinates with respect to the Kinect’s origin. Because the

Kinect’s origin and the robot arm’s origin were different, the data was transformed so that

the Kinect’s coordinate system matched that of the robot arm. A tracked position of the end

effector PK
EE = [x y z 1]T , given in the Kinect’s coordinate system, was transformed

into the robot’s coordinate system to yield PR
EE using a 4× 4 homogeneous transformation

matrix AR:

PR
EE = ARP

K
EE (4.1)

A detailed description of how the transformation matrix can be derived from the Kinect
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Figure 4.5: XYZ Coordinates of End Effector vs. Kinect Measurement for Trial 1.

measurements based on Corresponding Point Set Registration is laid out in Section 5.3.1.

The trajectory that was constructed to move the end effector was compared to the trajec-

tory data collected by the Kinect. Three trials were conducted tracking a baseline trajectory

that was originally developed for painting and sandblasting operations over large areas [34].

During the executed trajectory, the robot arm moved along the linear stage, and both the

shoulder and the elbow joint were moved.

Figure 4.5 shows the XYZ coordinates of the end effector and their respective measured

trajectories for trial 1. It can be observed that the Kinect tracks the Y coordinate almost per-

fectly. However, the X and Z coordinate show some deviation from the trajectory. Similar

figures were generated for all trials and can be found in Appendix A.

Figure 4.6 shows the XYZ coordinates of the tracked end effector marker for three tri-

als of the same robot motion. Figure 4.7 shows the error between the robot trajectory and
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Figure 4.8: End Effector Trajectory in 3D Space.

Kinect measurements for the three trials. To analyze the accuracy, the mean and maximum

absolute errors between the Kinect measurements and the true robot trajectory were calcu-

lated for each trial and are listed in Table 4.1. The end effector position could be tracked

especially well in the Y direction. Mean absolute errors were smaller than 10 mm for all

trials except the X component of trial 1, where the mean absolute error was 10.51 mm. Gen-

erally, the robot trajectory could be tracked especially well in the Y direction. The tracking

performance was worst in the X direction. Maximum absolute errors in the tracked position

were smaller than 27 mm for all trials.

The average end effector trajectory from the three Kinect measurements was calculated.

Figure 4.8 shows the comparison between the XYZ coordinates of the programmed end

effector trajectory and the averaged Kinect tracking data. To investigate the repeatability

between the different trials, the mean and maximum absolute deviation from the average

Kinect measurement was calculated for each trial. The values are listed in Table 4.1. The

mean absolute deviations were smaller than 2 mm for the X and Z component of the motion

for all trials, and smaller than 4.4 mm for tracking motion in the Y direction. The maximum
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Table 4.1: Mean absolute error (MAE), maximum absolute error, mean absolute deviation
(MAD) and maximum absolute deviation for robot arm tracking experiments with Kinect.
All values in mm.

MAE Max. abs. error
X Y Z X Y Z

Trial 1 10.51 1.63 7.48 23.77 7.47 15.91
Trial 2 9.86 5.61 7.89 22.45 15.55 19.55
Trial 3 9.49 6.93 8.72 23.17 20.42 26.67

MAD Max. abs. deviation
X Y Z X Y Z

Trial 1 1.67 4.36 1.76 9.47 13.57 15.03
Trial 2 1.42 2.46 0.87 8.24 10.23 5.33
Trial 3 1.55 3.42 1.75 7.95 11.30 12.13

absolute deviation was smallest for tracking the X component of the trajectory, and did not

exceed 15.1 mm for all trials. Thus the tracking of the end effector position with Kinect

was repeatable in the conducted experiments.

It can be observed that the Kinect tracked the marker on the end effector with similar

accuracy for each trial. Hence, it can be concluded that the Kinect tracks motion in a

reliable and repeatable manner, and thus is inherently a robust tool to study and evaluate

upper body motion.

4.1.2 Frequency Tests

It is important to understand the tracking limitations of the Kinect sensor. One important

limitation is how reliably the Kinect can track frequencies of motions. Prior to human-

motion tracking, a simple pendulum setup was utilized to verify the frequency of measure-

ment by the Kinect and Vicon. Both systems were used to track a retro-reflective marker at

the end of a pendulum. A pendulum setup was placed in front of the Kinect at a distance

of 1.5 meters, as seen in Figure 4.9. The swinging motion of the pendulum bob with a

marker was tracked by the Kinect and Vicon systems for varying lengths of the pendulum.
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Figure 4.9: Pendulum setup for varying suspension lengths

Pendulum frequencies measured by the systems were compared with theoretical values.

Figure 4.10: Theoretical and measured natural frequency for varying suspension lengths

Figure 4.10 shows the results of the frequency test for five pendulum suspension lengths.

The Kinect tracked the pendulum motion with good accuracy for all tested lengths. This

test verified that the Kinect is able to track motions at frequencies that are typically per-

formed based on human physical limits. The mean average error in frequency measurement

of the pendulum for the Kinect was 0.011 Hz, compared to the Vicon’s error of 0.024 Hz.
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Some of the error can be attributed to noise in the system, typically created by small re-

flective surfaces in the view of the camera system. Additional error may have arisen due

to occlusion of the marker behind the brick structure of the pendulum, which is shown in

Figure 4.9, during which time not all Vicon cameras would have captured data. However,

the marker was in plain view of the Kinect sensor throughout data collection.

4.2 Comparison of Kinect and Vicon Motion Capture Systems

Motion capture and joint tracking analysis is used extensively in video game and graphic

design, but applications in biomechanics and robotics are gaining in importance. Vicon

3D Motion Capture systems involve multiple high definition cameras which are accurate,

but expensive, and infeasible to use outside of the confined space of a motion capture lab.

Microsoft Kinect is a low-cost camera primarily used in the video game industry which can

be used for human-body motion analysis.

The primary differentiating factor between Kinect and Vicon is the necessity of retro-

reflective markers in the Vicon system. Light from the Vicon cameras is emitted and is re-

flected back from markers in the field of view. This yields the 3D position of each marker.

However, the Kinect does not require markers for human-body tracking because a propri-

etary software possesses the ability to track human body joints without markers. The Vicon

system is composed of multiple cameras set up around the perimeter of the measurement

workspace at varying heights to obtain a full 360 degree view of the field. On the other

hand, the Kinect is a single sensor that only measures what is in its field of view.

4.2.1 Joints Tracked by Kinect

The Kinect sensor tracks a human skeleton comprised of 25 joints. The joint positions are

estimated from depth data. Table 4.2 lists the joints tracked by Kinect with their name and

description. The position estimate of each joint is available at a frame rate of approximately

30 frames per second.
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Table 4.2: Joints tracked by the Kinect v2 Sensor

No. Name Description No. Name Description

1 SpineBase Base of the Spine 14 KneeLeft Left Knee
2 SpineMid Middle of the Spine 15 AnkleLeft Left Ankle
3 Neck Neck 16 FootLeft Left Foot
4 Head Head 17 HipRight Right Hip
5 ShoulderLeft Left Shoulder 18 KneeRight Right Knee
6 ElbowLeft Left Elbow 19 AnkleRight Right Ankle
7 WristLeft Left Wrist 20 FootRight Right Foot
8 HandLeft Left Hand 21 SpineShoulder Spine at the Shoulder
9 ShoulderRight Right Shoulder 22 HandTipLeft Tip of the Left Hand
10 ElbowRight Right Elbow 23 ThumbLeft Left Thumb
11 WristRight Right Wrist 24 HandTipRight Tip of the Right Hand
12 HandRight Right Hand 25 ThumbRight Right Thumb
13 HipLeft Left Hip

4.2.2 Vicon Marker Placement

The Vicon motion capture system uses retro-reflective markers that are attached to tracking

objects, in this case, to the body of a human test subject performing the motion. Because

this thesis is focused on upper body motions, nineteen (19) markers were strategically

placed on the test subject to track joints of the upper body corresponding to those tracked

by the Kinect sensor. For each of the joints, the position was obtained by calculating the

average of two (three for the SpineBase joint) markers, as listed in Table 4.3. Figure 4.11

and Figure 4.12 show the marker placement on the test subject.

4.3 Comparison of Kinect and Vicon Motion Capture for Upper Body Joint Angle

Tracking2

The following section describes a process for markerless tracking of three different upper-

body motions and evaluates the accuracy of the Kinect’s joint tracking abilities for these

motions by comparing the joint angles to values obtained with the Vicon 3D Motion Cap-

2The work in this section was performed in conjunction with Siddarth Sreeram.
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ture system. Because this thesis focuses on upper-body motions, the scope of the joint
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SPM2

SPS2
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SPS1
LSH1RSH1

LEL1REL1

LWR2LWR1RWR2

SPB2SPB1

REL2 LEL2

LSH2 RSH2

RWR1

Figure 4.11: Marker Placement for Measurements with a Single Kinect Sensor3

Figure 4.12: Marker Placement on Test Subject

angle analysis in this study is limited to shoulder and elbow angle trajectories. The de-

rived information from human upper-body motions can also potentially be used in robot

applications that seek to mimic human upper-body movements.

3This image was adapted from https://www.c-motion.com/v3dwiki/index.php/
Tutorial:_Plug-In_Gait_Full-Body
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Table 4.3: Kinect Joints and corresponding Markers

Name Markers Name Markers

SpineBase SPB1, SPB2, SPB3 WristLeft LWR1, LWR2
SpineMid SPM1, SPM2 ShoulderRight RSHO1, RSHO2
SpineShoulder SPS1, SPS2 ElbowRight REL1, REL2
ShoulderLeft LSHO1, LSHO2 WristRight RWR1, RWR2
ElbowLeft LEL1, LEL2

Figure 4.13: Experiment Setup: Vicon Cameras and Kinect v2 Sensor

4.3.1 Instrumentation and Setup

Tracking data was recorded at the Indoor Flight Facility at Georgia Tech. The room has

15 Vicon MX3+ cameras sampling at 100 Hz. Data was concurrently obtained using the

Microsoft Kinect sampling at 30 Hz. The software used to process the data was Vicon

Nexus 2.5 (Vicon Motion Systems, Oxford, UK) and the Microsoft SDK provided for

Kinect developers. The test subject stood at a distance of 2 meters directly in front of the

Kinect sensor. The experimental setup is shown in Figure 4.13.
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4.3.2 Data Processing

Marker trajectories were filtered using a Woltring filter [36] in the Vicon Nexus 2.5 software

pipeline which is commonly used to minimize marker trajectory noise. Gaps in marker

data with gap sizes< 20 frames (< 0.2 seconds) were filled using spline interpolation. To

calculate the joint positions corresponding to the Kinect’s tracked joints, mean position

data from two (three for the SpineBase) markers were calculated for each upper-body joint.

The coordinate system of the Kinect data was aligned with the Vicon coordinate system

via coordinate transformation. To synchronize the timing of the collected motion data from

Vicon and Kinect, the error in joint position data for the left and right wrist for each motion

was minimized using least-squares fit. To reduce noise, the Kinect data was filtered with

a low pass filter. As human movement is generally associated with low frequencies, the

cutoff frequency of the filter was set to 3 Hz. The shoulder rotation data was calculated

with respect to body planes. For the tested set of motions, it was assumed that the elbow

joint has only one degree of freedom. Elbow joint angles were, therefore, calculated as the

angle between two vectors (one from elbow to wrist and one from elbow to shoulder) [11].

4.3.3 Planar Motions

The planar motions analyzed in this study were the two-handed wave and the two-handed

“slow down" motions. Figure 4.14 illustrates the two-handed wave and the two-handed

“slow down" signal motions performed in this study. Because these motions result in upper-

body joint rotations in mainly one plane, they are referred to as planar motions. Note that

the wave motion in 4.14(a)-(c) occurs in the X-Z plane, while the “slow down" motion oc-

curs in the Y-Z plane. Figure 4.15 shows that position tracking in the X and Z dimensions

for the right wrist (the 2D coordinates) was nearly indistinguishable for the Kinect com-

pared to the Vicon. The Y dimension represents the axis extending from the Kinect to the

subject, and there was some discrepancy observed in that data. This arose from the error in

the depth map stream gathered by the Kinect’s infrared camera. Figure 4.16 presents joint
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Figure 4.14: Illustration of the planar motions performed in this study: (a)-(c) Two-handed
wave, (d)-(f) Two-handed “slow down" signal.
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Figure 4.15: Right wrist joint trajectory for two-handed wave motion.

angle trajectories for the left elbow angle and left shoulder angle during the two-handed

wave motion. Generally, the Kinect was able to track the joint angle phase, and tracked the

amplitude with a small, and roughly constant offset.

Figure 4.17 presents joint angle trajectories for the right elbow angle and right shoulder

angle during the two-handed “slow-down" motion. While the elbow angle is tracked well,

the shoulder angle displays a larger offset in amplitude. However, the phase of the motion
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Figure 4.16: Joint angle trajectories for two-handed wave motion.
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Figure 4.17: Joint angle trajectories for two-handed “slow down" signal motion.

was tracked well by the Kinect for both joint angles.

When looking at joint angle measurements in Figure 4.16, the frequency of joint angle

measurement by the Kinect closely matches the Vicon data for a two-handed wave. How-

ever, there is some amplitude offset, simply due to the positioning of the markers on the

subject’s elbow and shoulder. If the marker positions do not line up exactly with the coordi-

nate joint mapping algorithm of the Kinect SDK, then some amplitude offset is expected in

the joint angle measurements. Figure 4.17 shows similar results for the two-handed “slow

down" motions, with some skips in the shoulder data, likely due to joint occlusion at those

times. When the hands are at the highest point, it is possible that they occluded the shoul-

der from the view of the Kinect, causing a loss of smoothness in the data. The magnitude

of elbow joint angle amplitude matches up very closely in both figures, whereas there are

some discrepancies in the shoulder angle for the “slow down" motion.

In summary, the Kinect performed well for the two-handed wave motion joint tracking,

but tracked the shoulder angle during the “slow down" motion less accurately, which is

likely caused by occlusion of the elbow joint.

4.3.4 Non-planar Motion

A more complex, non-planar motion is important to investigate as to determine the joint

tracking ability of the Kinect in 3D, spanning different planes and observing results when

faced with problems such as joint occlusion. The non-planar motion conducted by the sub-
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Figure 4.18: Illustration of the non-planar motion performed in this study: one-handed
“move along" motion

ject was the one-handed “move along" motion. The motion was performed by pointing the

left hand in a fixed direction (towards the left of the subject), and the right hand performing

an elliptical counter-clockwise motion.

Figure 4.18 illustrates the one-handed, non-planar “move along" motion performed in

this study. Figure 4.19 shows joint angle trajectories for the one-handed “move along"

motion. While the right elbow could be tracked well with the Kinect, left elbow angle

trajectories showed large offsets compared to the Vicon measurements. As expected, the

left elbow experienced almost no change in angle because the left hand is stationary for

this motion. Still, the graphs for the left hand do display some angle change, highlighting

the sensitivity of both the Kinect and Vicon systems.

The right hand performs the elliptical motion, and the right elbow is tracked very well,

with nearly no discrepancy in the data. The phase and amplitude measurements are accu-
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Figure 4.19: Joint angle trajectories for one-handed “move along" signal motion.

0 2 4 6 8

Time (s)

20

40

60

80

100

120

A
n
g
le

 (
d
e
g
)

 Vicon  Kinect

(a) No additional weight

0 2 4 6 8

Time (s)

20

40

60

80

100

120

A
n

g
le

 (
d

e
g

)
 Vicon  Kinect

(b) 5 lbs additional weight in each hand

Figure 4.20: Right shoulder joint angle trajectories weighted tests.

rately measured by both systems.

4.3.5 Weighted Tests

Motions were performed with the subject carrying 2 lbs, 3 lbs and 5 lbs dumbbells in each

hand to assess the performance of the camera systems for changing frequencies and objects

in the subject’s hands, as well as the physical effect on the subject.

As the subject completed the two-handed wave with additional weights, the frequency

of the motion declined, as seen in Figure 4.20. This is an intuitive result, as lifting additional

weights leads to exhaustion and, therefore, less repetitions of the motion can be conducted

in the same time period. From the data it is evident that both Kinect and Vicon systems are

able to cope with objects in the test subject’s hands and still track joints well.
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4.3.6 Rotation Tests

In an additional set of tests, the subject performed motions while gradually moving from

the frontal to the sagittal plane, with respect to the Kinect sensor. This experiment was

conducted to observe the performance of the Kinect when it cannot “see" the entire human

body, and to obtain the approximate angle at which the tracking begins to fail.

Figure 4.21 shows right shoulder and right elbow joint angle trajectories for the two-

handed wave motion conducted as the orientation of the subject, relative to the Kinect, was

increased from 0◦ to 90◦. The root-mean-square error (RMSE) was computed for different

orientation angles relative to the Kinect sensor using:

RMSEM =

√√√√∑n
1

(
β̂i − βi

)2
n

, (4.2)

where M is a specific motion, n is the number of recorded frames, β̂ is the joint angle

calculated from Kinect measurements and β is the joint angle calculated from Vicon mea-

surements. The results are listed in Table 4.4. For each motion, a 90◦ orientation toward the

Kinect resulted in a very large RMSE. Generally, the RMSE increased as the motion was

performed at a greater angle relative to the Kinect. However, good tracking was obtained

for some of the motions up until 60◦ relative positioning.

4.3.7 Low Light Conditions

The effects of varying light conditions is an interesting area of study for camera systems

such as the Kinect and Vicon, and these were briefly considered in this chapter. Low light,

for the purposes of this study, is defined as a situation where the only sources of light in the

room are the red light from the Vicon cameras, the small amount of light emitted from the

cameras on the Kinect and the laptop computer that was used to run the Kinect.

First, the Vicon and Kinect systems were run concurrently with all other light removed
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Figure 4.21: Joint angle trajectories for two-handed wave motion for different orientations
towards Kinect: (a)-(d) Right Shoulder and (e)-(h) Right Elbow
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Table 4.4: RMSE (◦) in Joint Angle Trajectories from Rotation Tests for two-handed Wave
Motion and one-handed “Move Along" Signal for Left and Right (L, R) Elbow and Shoul-
der (E, S)

Motion Joint Orientation towards Kinect
angle 0◦ 30◦ 60◦ 90◦

Wave motion LE 12.62 13.35 12.12 20.63
(4x600 frames) RE 11.82 7.28 10.18 36.24

LS 11.53 14.17 13.49 14.79
RS 11.86 6.23 11.35 16.16

Move along signal LE 3.37 4.64 13.76 5.78
(4x350 frames) RE 6.19 5.75 10.35 71.82

LS 6.68 18.56 24.43 16.61
RS 10.26 4.81 3.52 54.10

- Good tracking result

from the room. Following this, complete darkness was created by switching off the Vicon

system and only running the Kinect in darkness. Figure 4.22 presents the left elbow angle

for the two-handed wave motion under low light conditions. Joint angle trajectories from

the Kinect showed large error compared to the Vicon measurements in amplitude, but the

Kinect was able to accurately track the frequency of the motion. In complete darkness, the

Kinect was still able to track joint positions. Because for this test the Vicon system had to

be switched off completely, comparison between the two systems could not be conducted.

In low light conditions, the Vicon performed as expected, because its infrared cameras

do not require ambient light to function well. The Kinect was also able to function and

did track joints, but performed poorly. In complete darkness, the Kinect performed joint

tracking much better than in the low light environment, likely due to reduced interference

and reflections from surfaces in the room, thereby reducing noise in the signal.
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Figure 4.22: Left Elbow joint angle during two-handed wave motion in low light conditions

4.3.8 Summary

The Kinect proved to be a useful tool for several motion capture applications. For planar

motions such as the two-handed wave and the two-handed “slow down", the Kinect was

expected to perform well because all joints were in its field of view. It did so, and joint

angle measurements matched up closely with Vicon measurements. However, there was

some loss of accuracy for the “slow down" motion, likely due to elbow joint occlusion.

For non-planar motions such as the two-handed “move along", the left hand was sta-

tionary during the motion, but the Kinect still estimated small movements in the joints. The

right arm joints were tracked sufficiently well during the elliptical motion, and joint occlu-

sion did not seem to be much of an issue. The weighted tests showed that objects in the

subject’s hands did not degrade tracking. Rotation tests showed that Kinect tracking fails

when the subject is standing at more than 60◦ with respect to the Kinect. Lastly, low light

conditions were problematic for the Kinect because of interference and reflections, and

in fact it performed better in complete darkness due to reduced reflection from arbitrary

surfaces in the room.
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CHAPTER 5

DUAL-KINECT MOTION CAPTURE

This chapter presents a dual-Kinect system for real-time motion capture measurements. To

evaluate the performance of the proposed system, it is used to track a human test subject

conducting a set of three different motions (“two-handed wave", “slow-down signal", and

“torso twist"). Further testing with loose-fitting clothes demonstrates the robustness of

the proposed measurement system. During these tests, the test subject conducted motions

commonly performed to test fit of garments, such as the torso twist, calf extensions, and

squats.

The dual-Kinect system uses Kalman filters to fuse the two data steams and improve

joint tracking. For analyzing the results in detail, a script that records the joint position

estimates from both Kinect sensors has been implemented. To evaluate the tracking perfor-

mance, data was concurrently obtained with a Vicon motion capture system.

The recorded data was used to study the joint position tracking performance for dif-

ferent filter parameters for a linear Kalman filter (LKF), and for the Extended Kalman

filter (EKF) based on the kinematic human upper body model that was introduced in Chap-

ter 3. Results from human motion capture experiments with the dual-Kinect system and

both filters are compared to marker-based motion capture data collected with a Vicon sys-

tem.

5.1 Dual-Kinect Motion Capture Process

In this section, the motion capture process with two Kinect sensors (referred to as Kinect

1 and Kinect 2) is described. First, data acquired from both Kinects is transformed into a

common coordinate system. Then, the joint position estimates are combined using sensor

fusion, taking into account the tracking state of each joint provided by the Kinects.
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Figure 5.1: The Dual-Kinect Motion Capture Process

For real-time tracking, the fused data is subsequently fed into a linear Kalman fil-

ter (LKF), yielding joint position estimates based on both Kinect data streams. For offline

analysis, the same data is fed into an Extended Kalman filter (EKF). The EKF estimates

the joint angles of the upper body model. Figure 5.1 shows the workflow of the proposed

motion capture system.

5.2 Implementation Details

For the real-time portion of the proposed system, the necessary computations must be car-

ried out quickly enough to track motion at 30 frames per second. This is required for the

tracking performance to be perceived without lag. To improve the out-of-the-box skeleton-

tracking provided by Kinect, the Dual-Kinect system must yield more stable joint position

estimates. Compared to a single-Kinect system, using data from two Kinects can increase

the possible tracking volume and reduce problems caused by occlusion, especially for turn-

ing motions e.g. a torso twist.
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5.2.1 Hardware and Implementation Restrictions

Development, data collection, and evaluation were carried out on two Laptops with Intel

Cores i7-6820HQ CPUs. Because the Kinect for Windows Software Development Kit

(SDK) for the second version of Kinect only supports one sensor, data was acquired with

two laptops. Communication between the laptops was established via the User Datagram

Protocol (UDP), used primarily for low latency applications. In order to directly process

the data in MATLAB, the Kin2 Toolbox Interface for MATLAB [35] was used for data

collection.

5.2.2 Dual-Kinect Configuration

To find an optimal orientation of the two Kinect sensors relative to each other, and to the

test subject, nine (9) different sensor configurations were evaluated. First, both sensors

were placed directly next to each other to define the zero position. The test subject stood

facing the Kinect sensors at a distance of about 2 meters, while performing test motions.

For the first six test configurations, both Kinects were then gradually moved outwards on a

circular trajectory around the test subject, as illustrated on the left side of Figure 5.2.

The angle γ between each sensor and the zero position was increased in 15◦ steps.

For Configurations 7-9, one Kinect sensor was kept at the zero position, while the second

Kinect was placed at varying positions on a circular trajectory towards the right of the test

subject in 30◦ steps. The angle δ was measured between the two Kinects, as illustrated on

the right side of Figure 5.2.

For each sensor configuration, the test subject performed a set of three test motions (a

wave motion, a “slow down" signal, and a torso twist). Table 5.1 lists all tested sensor

configurations with their respective angles.

Because this thesis is focused on upper body motions, the fused tracking data of the

wrist joints was chosen as a measure of tracking quality. Evaluation of the tracking data

from the different test configurations showed that with the combined data from both Kinects,
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Figure 5.2: Different Kinect Configurations Tested in this Study

Table 5.1: List of tested Dual-Kinect Configuration Variants

Configuration Angle between Kinect Configuration Angle between Kinect
No. sensors and zero position No. sensors and zero position

1 γ = 0◦ 6 γ = 75◦

2 γ = 15◦ 7 δ = 30◦

3 γ = 30◦ 8 δ = 60◦

4 γ = 45◦ 9 δ = 90◦

5 γ = 60◦

the wrist joint could be tracked closely for Configurations 1-5 and Configurations 7-8.

However, for Configurations 6 and 9, the wrist trajectory could not be tracked reliably,

especially at extreme positions during the torso twist motion. The wrist joint trajectories

from the Dual-Kinect system for all test configurations are presented in Appendix D.

Setting up the Kinects according to Configuration 4, at an angle of 90◦ with respect to

each other, and at an angle of γ = 45◦ to the test subject, produced very good tracking

results. The dual-Kinect system was able to cover a large range of motion without losing

the wrist position. This configuration was chosen to evaluate the filter performance and

comparing the Kinect tracking results to the Vicon motion capture data. The configuration

is shown in Figure 5.3.
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Figure 5.3: Chosen Dual-Kinect Configuration

5.3 Sensor Calibration and Sensor Fusion

Prior to data collection, the two Kinect sensors were calibrated to yield the rotation matrix

and translation vector needed to transform points from the coordinate system of Kinect 2

into a common coordinate system, in this case, the coordinate system of Kinect 1.

5.3.1 Calibration

Considering the need for a fast, real-time calibration without any additional calibration

objects, the two Kinects can be calibrated using the initial 3D position estimates of the

25 joints. To ensure no joint occlusion, the test subject is required to stand with straight

legs and both arms fully extended, pointing sideways in a T-shape (= T-Pose) for less than

two seconds, while 50 frames are acquired by both Kinect sensors. Then, the joint position

estimates are averaged and fed into the calibration algorithm, which is based on an approach

similar to the multiple Kinect Calibration described by Córdova-Esparza et al. [20]. The

coordinate transformation is calculated via Corresponding Point Set Registration [37].

Considering two sets of 3D points SetA and SetB, with SetA given in coordinate frame
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1 and SetB given in coordinate frame 2, solving for R and t from:

SetA = R · SetB + t (5.1)

yields the rotation matrix R and translation vector t needed to transform the points from

coordinate frame 2 into coordinate frame 1. The problem of finding the optimal rigid

transformation matrix can be divided into the following steps:

1. Find the centroids of both datasets.

2. Bring both datasets to the origin.

3. Find the optimal rotation R.

4. Find the translation vector t.

The rotation matrix R is found using Singular Value Decomposition (SVD). Given N

Points PA and PB from dataset SetA and SetB respectively, with P = [x y z]T , the

centroids of both datasets are calculated using:

centroidA =
1

N

N∑
i=1

P i
A (5.2)

centroidB =
1

N

N∑
i=1

P i
B (5.3)

The equations needed to find the rotation matrix R are given by:

H =
N∑
i=1

(P i
A − centroidA)(P i

B − centroidB) (5.4)

[U, S, V ] = SV D(H) (5.5)

R = V UT (5.6)
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The translation vector t can then be found using:

t = −R ∗ centroidB + centroidA (5.7)

With the derived rotation matrix and translation vector, the joint position data from Kinect 2

can be transformed into the coordinate system of Kinect 1. Both datasets are further pro-

cessed in the sensor fusion step to yield a fused joint position.

5.3.2 Sensor Fusion

The joint positions collected from both Kinects are used to calculate a weighted fused

measurement. In addition to the 3D coordinates of the 25 joints, the Kinect sensor assigns

a tracking state to each of the joints, with 0 = ’Not Tracked’, 1 = ’Inferred’, 2 = ’Tracked’.

This information is used to intelligently fuse the data collected by both Kinects. If the

tracking state of a joint is ’Tracked’ by both Kinects, or the tracking state of the joint is

’Inferred’ in both Kinects, then the average position is taken. If a joint is ’Tracked’ by

one Kinect, but ’Infrerred’ or ’Not Tracked’ by the other, then the fused position only uses

data from the ’Tracked’ joint. The fused position pfused of each joint can, therefore, be

calculated using the position estimates p1 from Kinect 1 and p2 from Kinect 2 as follows:

pfused = w1p1 + w2p2, (5.8)

with weighting factors w1 and w2 assigned using the tracking state information for each

joint obtained from both Kinects:

w1 =
TrackingState1

TrackingState1 + TrackingState2
(5.9)

w2 =
TrackingState2

TrackingState1 + TrackingState2
(5.10)
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5.4 Linear Kalman Filter for Kinect Joint Tracking

To improve tracking of the 25 joints, two versions of a linear Kalman filter were designed

based on the state space models presented in Section 3.7.1. The state vector is taken to be

the true 3D coordinates of the 25 joints for the zero-velocity model, and the 3D coordinates

and velocities of the 25 joints for the constant-velocity model. For the sake of simplicity,

the derived Kalman filter equations are presented for only one joint. The same equations

can be applied to all 25 joints.

5.4.1 Linear Kalman Filter Implementation

After completing the coordinate transformation and sensor fusion steps described in the

previous sections, the fused joint position is fed into the Kalman filter as a measurement.

Algorithm 1 summarizes the linear Kalman filter algorithm used for the joint position track-

ing with the Dual-Kinect system.

Algorithm 1 Linear Kalman Filter Algorithm
1: function LINEAR KALMAN FILTER

Initialize: k = 0, Given: ŝ0|0, P0|0, H , Q, R

Predict
2: State Estimate: ŝk|k−1 = F ŝk−1|k−1
3: Error Covariance: Pk|k−1 = FPk−1|k−1F

T +Q

Update
4: if new measurement available then
5: Measurement: zk, set k = k + 1
6: Kalman Gain: Kk = Pk|k−1H

T (HPk|k−1H
T +R)−1

7: State Estimate: ŝk|k = ŝk|k−1 +Kk(zk −Hŝk|k−1)
8: Error Covariance: Pk|k = (I −KkH)Pk|k−1
9: return ŝk|k

10: end if
11: Go to Step 2
12: end function

The filter equations remain the same for both the zero and the constant-velocity model.
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Depending on the chosen underlying state space model, the state vector, as well as state

transition matrix F and the observation matrix H are set accordingly. For the zero-velocity

model, the state vector consists of the joint positions s = [x y z]T , and the matrices

take the following form:

F =

1 0 0
0 1 0
0 0 1

 , H =

1 0 0
0 1 0
0 0 1

 (5.11)

For the constant-velocity model, the states are the joint positions and the joint velocities

s = [x y z ẋ ẏ ż]T , and F and H are calculated as follows:

F =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (5.12)

In both cases, the measurements are the fused joint positions from the Dual-Kinect system.

5.5 Extended Kalman Filter for Kinect Joint Tracking

To implement the extended Kalman filter, nonlinear dynamics of upper body motions are

taken into account. The joint positions are calculated using the transformation matrices

derived from the kinematic human upper body model presented in Chapter 3. Instead of

the joint position and translational joint velocities used with the linear Kalman filter, the

joint angles and angular joint velocities are taken to be the states of the system:

s =
[
θ1 . . . θ26 θ̇1 . . . θ̇26

]T
(5.13)
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Assuming constant angular joint velocities, the system has the following description in

sampled time:

sk+1 = f(sk) + wk = Fsk + wk (5.14)

zk = h(sk) + vk (5.15)

The process noisewk and the measurement noise vk are assumed to be zero mean, Gaussian

noise with covariance Qk and Rk, respectively. The state transition matrix is given by:

F =

I26×26 ∆tI26×26

026×26 I26×26

 (5.16)

with sampling time ∆t. In the measurement model, the 3D positions of the upper body

joints can be calculated using the DH-Parameters and transformation matrices for the upper

body model derived in Chapter 3. Recalling the transformation matrices

T i+1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di
0 0 0 1

 , (5.17)

the spatial configuration of the upper body model is defined for given link lengthsL1, · · · , L10

and joint angles θ1, · · · , θ26. Using the transformation matrices T i
i−1 = T i

i−1(θi), the posi-

tion of the ith joint pi = [xi yi zi]
T can be expressed as a function of i joint angles:

[
pi
1

]
= T 1

0 T
2
1 . . . T

i
i−1


0
0
0
1

 (5.18)

= h(θ1, · · · , θi) = h(s) (5.19)
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The system can be linearized about the current state estimate using the Jacobian:

Hk =
∂h

∂s

∣∣∣∣
s=ŝk

(5.20)

For each time step k, the linearized function is evaluated at the current state estimate.

The form of the underlying transformation matrices T i
i−1 is dependent on the body seg-

ment lengths L1-L10. Therefore, h(s) is initialized with corresponding values for the body

segment lengths of each individual test subject obtained during the Dual-Kinect calibration

process.

5.5.1 Extended Kalman Filter Implementation

Algorithm 2 summarizes the extended Kalman filter algorithm used for upper body joint

tracking.

Algorithm 2 Extended Kalman Filter Algorithm
1: function EXTENDED KALMAN FILTER

Initialize: k = 0, Given: ŝ0|0, P0|0, Q, R
Initialize h(θ) with body segment lengths L1-L10

Predict
2: State Estimate: ŝk|k−1 = F ŝk−1|k−1
3: Error Covariance: Pk|k−1 = FPk−1|k−1F

T +Q

Update
4: if new measurement available then
5: Measurement: zk, set k = k + 1
6: Linearize h: Hk = ∂h

∂s

∣∣
s=ŝk

7: Kalman Gain: Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1

8: State Estimate: ŝk|k = ŝk|k−1 +Kk(zk −Hkŝk|k−1)
9: Error Covariance: Pk|k = (I −KkHk)Pk|k−1

10: return h(ŝk|k)
11: end if
12: Go to Step 2
13: end function
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5.5.2 Handling Missing Data

One advantage of the underlying state space model for the Kalman filter is that a missing

observation can easily be integrated into the filter framework. If at time step k a joint’s

position is lost by both Kinect sensors (tracking state ’Not Tracked’ for Kinect 1 and Kinect

2), then the vector zk −Hkŝk|k−1 and the Kalman gain Kk are set to zero. Thus, the update

only follows the state space model:

ŝk|k = F ŝk−1|k−1 (5.21)

Pk|k = FPk−1|k−1F
T +Q (5.22)

This approach can be applied to the implementations of both the linear Kalman filter and

the extended Kalman filter.

5.6 Experimental Setup

5.6.1 Tracked Motions

Joint tracking with the Dual-Kinect system utilizing the Kalman filters was tested with

three test motions: a two-handed wave, a two-handed “slow down" signal, and a torso

twist. The first two motions were previously tested with the single-Kinect motion capture

(see Section 4.3). To investigate the effect of joint occlusion on the Dual-Kinect system,

the third motion from the previous study was replaced with a torso twist motion. The test

subject rotated her upper body from side to side about 90 degrees. This motion causes joint

occlusion of the elbow, wrist, and hand.

Starting from the T-Pose, the test subject performed five repetitions of all three test

motions. To clearly distinguish the between different motions in the recorded data, the

subject returned to the T-Pose for about two seconds before switching to a new motion.

Data was recorded continuously until five repetitions for each of the three motions had
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been completed, and the subject had returned to the T-Pose.

5.6.2 Marker-based Tracking

To evaluate the performance of the Dual-Kinect system, tracking data for the three test

motions was compared to marker-based tracking data recorded with a Vicon 3D motion

capture system at the Indoor Flight Facility at Georgia Tech. For the marker-based motion

capture with the Vicon system, the full body Plug-in-Gait marker setup was used. The

marker setup uses 39 retroreflective markers and can be used with the Plug-in-Gait model,

which is a well-established, and commonly-used, model for marker-based motion capture.

A complete list of the markers used in the experiments and details on the marker place-

ment can be found in Appendix B. Figure 5.4 shows the locations of the markers for the

full body Plug-in-Gait model. Figure 5.5 shows the subject standing in the T-Pose while

facing the Dual-Kinect setup. Figure 5.6 shows the test subject wearing the motion capture

suit with the attached markers.

5.6.3 Marker Trajectory Data Processing

Motion capture data from the Vicon system was processed in the Vicon Nexus 2.5 and

Vicon BodyBuilder 3.6.3 software (Vicon Motion Systems, Oxford, UK). Marker tra-

jectories were filtered using a Woltring filter [36]. Gaps in the marker data with dura-

tions< 20 frames (< 0.2 seconds) were filled using spline interpolation. In order to com-

pare the performance of the Dual-Kinect system to the marker-based Vicon tracking, joint

center locations corresponding to the joints tracked by the Kinect system were calculated

from the marker trajectories in Vicon BodyBuilder.
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Figure 5.4: Marker Placement for Full Body Plug-in-Gait Model1

Figure 5.5: Test Subject Standing in T-Pose and Dual-Kinect Test Setup

1This image was adapted from http://www.idmil.org/mocap/Plug-in-Gait+Marker+
Placement.pdf and https://www.c-motion.com/v3dwiki/index.php/Tutorial:
_Plug-In_Gait_Full-Body
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Figure 5.6: Marker Placement for Full Body Plug-in-Gait Model on Test Subject

5.7 Results and Comparison with Vicon Motion Capture

In this section, results from tracking experiments with two variants of the linear Kalman

filter and the Extended Kalman filter (EKF) are presented. While the first variant of the

linear Kalman filter (LKF1) uses a zero-velocity model, the second variant (LKF2) uses a

constant-velocity motion model. The position estimates are compared to the raw data from

the Kinect sensors, and to joint position data obtained from marker-based motion capture.

The joint positions derived from the Vicon system were assumed to be the true positions of

the joints.

5.7.1 Linear Kalman Filter

During the experiments, it was noted that the differences between the two variants of the

linear Kalman filter were in many cases small, but became larger as the process covariance
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Figure 5.7: Z Component of the Left Wrist Joint Trajectory with Sensor Fusion and Linear
Kalman Filter with Constant Velocity Model (Q = 0.005)

was decreased. This result is to be expected, as a smaller process covariance means the

filter relies more on the underlying motion model and less on actual observations. Fig-

ure 5.7 shows the z component of the left wrist joint position for the recorded test motions

estimated with the linear Kalman filter using the constant-velocity model (LKF2). The

position estimate is compared with the raw data acquired by Kinect 1 and 2.

Figure 5.8 shows the difference between the raw data and the filtered data for the z

component of the left wrist position estimate. The greatest deviation between the raw

data and the LKF2 output was observed during the torso twist motion, as the wrist moved

behind the torso during the motion, and was therefore occluded. The average deviation

between the Kinect 1 and the LKF2 output was 19.6113 mm, and the maximum deviation

between Kinect 1 and the LKF2 output was 246.0466 mm. The average deviation between

the Kinect 2 and LKF2 was 16.3035 mm and the maximum deviation between Kinect 2 and

LKF2 was 131.5598 mm.

To compare the joint tracking data from Kinect with Vicon data, the filter outputs were

aligned with the Vicon data in terms of motion timing and were transformed into the Vi-
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Figure 5.8: Error Between Kinect 1 and 2 and LKF2 Outputs for the Z Component of the
Left Wrist Joint Trajectory

Table 5.2: Mean Absolute Error (MAE) and Maximum Absolute Error (MAD) for LKF2
for Tracking the Position of the Left Wrist. All values in mm.

x y z

MAE 36.9908 16.1586 22.9192
MAD 163.7479 157.4331 125.5755

con’s coordinate system. Because the Kinect samples at a rate of approximately 30 Hz,

the filter outputs were interpolated using linear interpolation to match the Vicon’s sampling

rate of 100 Hz.

Figure 5.9 shows the position estimate of the left wrist from the LKF2. The results are

compared to the joint trajectory obtained with the Vicon system. Figure 5.10 shows the

difference between the Vicon and the LKF2 data for tracking the left wrist position. The

mean and maximum deviations between the LKF2 output and the Vicon data are listed in

Table 5.2. The mean deviation was smallest in the y component of the position estimate,

and was worst in the x direction. The maximum deviation also occured in the x direction.
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Figure 5.9: Left Wrist Joint Trajectory with Sensor Fusion and LKF2 (Q = 0.005) - Com-
parison with Vicon Motion Capture Data
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Figure 5.10: Error Between the LKF2 Output and the Vicon Data for the Left Wrist Position
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Figure 5.11: Z Component of the Left Wrist Joint Trajectory with Sensor Fusion and Ex-
tended Kalman Filter (Q = 0.0001)

Figure 5.9 shows that the left wrist position was closely tracked for the wave motion

(from t=0 s until t=10 s) and the “slow down" motion (from t=11s until t=21 s). During the

torso twist motion starting at t=23 s, however, there was some discrepancy between Kinect

and Vicon tracking data for extreme positions, when the wrist moved out of the field of

view of both Kinect sensors. Generally, the wrist could be tracked well for the majority of

the test motions.

5.7.2 Extended Kalman Filter

Figure 5.11 presents the z component of the left wrist joint trajectory from the EKF output,

as well as the raw data acquired by Kinect 1 and 2. The wrist position could be tracked

closely for the first two motions (two-handed wave and “slow down signal"). However, the

EKF outputs from tracking the torso twist motion were not as smooth as the linear Kalman

filter outputs. To better compare the tracking performance of the different filter variants,

the same data sets obtained from Kinect 1 and 2 were used.

Figure 5.12 compares the wrist position estimate from the EKF with the LKF2 outputs
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Figure 5.12: Left Wrist Joint Trajectory from EKF - Comparison with Vicon and LKF2
Outputs
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Figure 5.13: Error Between Vicon and LKF2, and Vicon and EKF Outputs for the Left
Wrist
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Table 5.3: Mean Absolute Error (MAE) for all Filter Variants Averaged Over Ten Upper
Body Joints

Filter MAE (mm)
variant x y z

LKF1 36.4419 37.0706 30.4291
LKF2 36.5739 36.9309 31.0161
EKF 37.5273 40.2169 32.3851

and the data obtained with the Vicon system. Figure 5.13 shows the deviation between each

filter output and the Vicon data. For the first two tracked motions, differences between the

filter outputs are very small. For the torso twist motion, the linear Kalman filter provides a

more stable and smoother tracking of the joint position.

To evaluate accuracy of the tracking with the different variants of the Kalman filters, the

mean absolute errors in x, y, and z position between the filter outputs and joint position data

collected with the Vicon system were calculated for ten joints considered in the kinematic

upper body model (see Chapter 3): SpineMid, SpineShoulder, ShoulderLeft, ElbowLeft,

WristLeft, HandTipLeft, ShoulderRight, ElbowRight, WristRight, and HandTipRight. The

values are listed in Appendix E.

Table 5.3 lists the mean absolute error in x, y, and z position averaged over the ten

joints considered in the upper body model. In general, the different filter variants tracked

the motion of the joints with similar accuracy, with the linear Kalman filter using a zero-

velocity model (LKF1) performing slightly better than the linear Kalman filter using a

constant-velocity model (LKF2) and the Extended Kalman filter (EKF). The most accurate

results in terms of least mean absolute error averaged over all joints were achieved while

tracking the z coordinate of the position (along the vertical axis). In general, mean absolute

error was greatest in the y direction (corresponds to the axes extending from the Kinect

sensors to the test subject).

The Kinect’s out-of-the-box joint tracking algorithm is not based on a kinematic model
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Figure 5.14: Length of the Left Arm during Motion Capture Trial

for the human body. As a consequence, the distances between neighboring tracked joints

i.e. the limb lengths of the estimated skeleton are not kept constant. This can lead to

unrealistic variation of the body segment lengths and “jumping" of the joint positions. The

extended Kalman filter used in this study uses the novel kinematic human upper body model

described in Sections 3.3 and 3.4. By using the model, constant limb lengths are enforced

during the joint tracking.

Figure 5.14 shows the length of the left arm calculated from the different filter outputs.

The arm length was measured from elbow joint to wrist joint. The outputs from the EKF

show that by definition, the arm length was kept constant throughout the motion, while the

estimates from the linear Kalman filters show that the estimated arm length varied over

time.

5.8 Tracking with Garments of Different Fit

This section presents an experimental protocol to evaluate how the fit of clothing affects

motion capture and joint tracking with the dual-Kinect system. Most motion capture sys-
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Figure 5.15: Test Subject wearing a tight-fitting Motion Capture Suit with retroreflective
Markers

tems require extremely tight fitting clothes, very little clothing, or a special suit to track

joint position and angles accurately. Moreover, a large number of these systems are marker

based systems that use retroreflective markers to track joints. In the event that the test

subject wears glasses, light colored clothing, or reflective jewelry, the data becomes noisy.

Figure 5.15 shows a test subject in a motion capture suit with retroreflective markers

that are required by the Vicon system. Given that the Kinect sensor uses RGB and depth

data to track a human-shaped silhouette, it does need a reasonable view of the joint motions

that compose the human body motion. It is clear that the clothing worn by the test subject

obscures the visible joint motion to some degree. This section demonstrates that the dual-

Kinect system can track human motion even when relatively loose clothing is worn by the

test subject.

The Kinects were placed according in Configuration 4 (see Section 5.2.2), at an angle

of 90◦ with respect to each other, and at an angle of γ = 45◦ to the test subject. The test
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Figure 5.16: Test Subject performing Test Motion with Tight-Fitting (left) and Loose-
Fitting Clothes (right)

subject executed characteristic motion performed by people to test fit of garments, such as

the torso twist, calf extensions, and squats. Joint position data was collected for two trials,

one with fitted clothing, and the other with loose clothing. Figure 5.16 shows the outfits

used for the two trials. The tighter outfit is shown on the left, while the looser outfit is

shown on the right. The skeleton tracked by the dual-Kinect system is overlaid on the RGB

frame of a video recording of the test motions.

Figure 5.17 shows the joint position plot for the SpineBase from the two trials. The

subject performed two calf extensions and a squat. In the z component of the tracked joint,

the squat motion can be clearly identified starting from t=20 s until t=22.5 s for tracking

with both tight-fitting and loose-fitting clothes. Because the test subject changed starting

positions in between the two trials, there was an offset in the x and y component of the

tracked position. It could be observed that loose fitting clothing did not significantly de-
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Figure 5.17: SpineBase Trajectory for Test Motions with Tight-Fitting and Loose-Fitting
Clothes

grade the tracking ability of the dual-Kinect system. Because the tracking does not fail with

the loose fit of the clothing, it can be concluded that, in general, the dual-Kinect system is

a robust tool to capture motions performed by clothed test subjects.

5.9 Graphical User Interface for Real-Time Joint Tracking with Dual-Kinect

To visualize the real-time tracking with the Dual-Kinect system, a graphical user inter-

face (GUI) was implemented in MATLAB. Figure 5.18 shows the implemented GUI. Fig-

ure 5.19 shows example results for tracking the test motions ((a)-(c) torso twist, (d)-(f)

two-handed wave motion). The tracked skeletons from both Kinect sensors, as well as the

combined resulting skeleton are plotted for each time frame. The GUI can be used for

calibration, recording tracking data, and replaying the tracked results.

A red colored joint indicates that the Kinect sensor has either lost the joint’s position

completely, or the tracking state of the joint is ’Inferred’. As shown in Figure 5.19, the

fused data compensates for occlusion of the joints of the right arm, and uses the more

realistic position data from Kinect 2 to calculate the position estimation.
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Figure 5.18: GUI for Real-Time Tracking with the Dual-Kinect System
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(a) Kinect 1 (b) Kinect 2 (c) Combined Result

(d) Kinect 1 (e) Kinect 2 (f) Combined Result

Figure 5.19: Real-time Tracking Results with Dual-Kinect and Linear Kalman Filter: (a)-
(c) Torso Twist, (d)-(f) Wave Motion
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CHAPTER 6

CONCLUSION

6.1 Discussion

Chapter 1 presented a background and motivation for the problem of human motion capture

and human modeling in the context of evaluating clothing fit. Chapter 2 explored prior work

in human body and human motion modeling and reviewed established models for the lower

and upper body. In Chapter 3, a novel kinematic human upper body model was developed.

The model is composed of a torso segment and two arms, and has 26 degrees of freedom.

A robotics based approach using Denavit-Hartenberg parameters was used to define the

upper body pose via joint angles.

Chapter 4 contained a baseline evaluation of markerless motion capture with a single

Kinect sensor, and presented results from tracking a known trajectory of a robot arm and

human motion capture experiments. The human motion capture experiments were com-

pared to data acquired with a marker based Vicon 3D system. It was concluded that in

general, the Kinect could track motions in a reliable manner, and with acceptable accuracy

for the intended application of evaluating clothing fit. However, due to it relying on only

one camera viewpoint, occlusion can lead to problems while tracking more complex human

motions.

In an attempt to overcome this limitation of the Kinect sensor, a dual-Kinect setup using

two sensors was developed in Chapter 5. Experiments with different sensor placements

tracking human joints during a set of three test motions were conducted. A method of

fusing data from two Kinects was presented. In order to further improve the joint tracking, a

Kalman filter and an extended Kalman filter derived on the developed kinematic upper body

model were designed and integrated into the dual-Kinect setup. The tracking performance
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was evaluated by comparing the data to joint positions calculated from marker tracking with

the Vicon system. Both Kalman filters lead to reduced jitter in the Kinect data. In addition,

the extended Kalman filter ensures constant body segment lengths, and thus produces more

realistic joint position estimation than the raw Kinect data which does not enforce this

constraint.

A drawback of the EKF is that poor choices of initial conditions and noise properties

can lead to the filter becoming unstable. Currently, the linear Kalman filter has been imple-

mented into the real-time joint tracking setup with the dual Kinect system. However, the

EKF has only been tested offline with recorded datasets.

The proposed setup offers a low-cost, markerless, and portable alternative to marker

based motion tracking. It eliminates the disadvantage of tedious marker setup and subject

preparation time. Human upper body motion recorded with the proposed setup can be used

as input for virtual character animation. Joint trajectories for motions typically performed

while trying on clothes can be animated based on experimental data. To evaluate clothing

fit, a cloth model can be put on top of the virtual character.

In summary, the main contributions of this thesis are:

1. Development of a novel, robotics-based model for the human upper body with 26

degrees of freedom.

2. Development of a dual-Kinect motion tracking system that enables real-time human

motion capture.

3. Design and implementation of two linear Kalman filters and an Extended Kalman

filter based on the developed upper body model.

4. Experimental validation of the developed tracking system through comparison with

a marker based Vicon motion capture system.
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6.2 Future Work

The proposed dual-Kinect system can easily be used to create pose libraries for a variety of

human motions, e.g. for ergonomic workspace assessments or physical rehabilitation. In

order to model the whole human body, the proposed upper body model can be extended.

This can be achieved by adding joints and links representing the lower limbs, the neck, and

head. To further increase the task space of the tracking system and even achieve a 360◦-

view, additional Kinect sensors can be added to the dual-Kinect setup while using the same

sensor fusion method. The use of the proposed model in conjunction with a clothing model

can be further explored with e.g. finite-element models or mass-spring-damper models for

cloth drape simulation.
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APPENDIX A

ROBOT TRACKING TRAJECTORIES
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Figure A.1: XYZ Coordinates of End Effector vs. Kinect Measurement for Trial 2.
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Figure A.2: XYZ Coordinates of End Effector vs. Kinect Measurement for Trial 3.
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Figure A.3: XYZ Coordinates of End Effector vs. averaged Kinect Measurement (Trials
1-3).
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APPENDIX B

PLUG-IN-GAIT MARKER PLACEMENT
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Plug-in-Gait Marker Placement 
 

 
 
The following describes in detail where the Plug-in-Gait markers should be placed on the 
subject. Where left side markers only are listed, the positioning is identical for the right side. 
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Upper Body 

Head Markers 
LFHD Left front 

head 
Located approximately over the left temple 

RFHD Right front 
head 

Located approximately over the right temple 

LBHD Left back 
head 

Placed on the back of the head, roughly in a horizontal plane of the 
front head markers 

RBHD Right back 
head 

Placed on the back of the head, roughly in a horizontal plane of the 
front head markers 

 
The markers over the temples define the origin, and the scale of the head. The rear markers 
define its orientation. If they cannot be placed level with the front markers, and the head is level 
in the static trial, tick the "Head Level" check box under options on “Run static model” in the 
pipeline when processing the static trial. Many users buy a headband and permanently attach 
markers to it. 

Torso Markers 
C7 7th Cervical 

Vertebrae 
Spinous process of the 7th cervical vertebrae 

T10 10th Thoracic 
Vertebrae 

Spinous Process of the 10th thoracic vertebrae 

CLAV Clavicle Jugular Notch where the clavicles meet the sternum 
STRN Sternum Xiphoid process of the Sternum 
RBAK Right Back Placed in the middle of the right scapula. This marker has no 

symmetrical marker on the left side. This asymmetry helps the auto-
labeling routine determine right from left on the subject. 

  
C7, T10, CLAV, STRN define a plane hence their lateral positioning is most important. 

Arm Markers 
LSHO Left shoulder 

marker 
Placed on the Acromio-clavicular joint  

LUPA Left upper 
arm marker 

Placed on the upper arm between the elbow and shoulder markers. 
Should be placed asymmetrically with RUPA 

LELB Left elbow Placed on lateral epicondyle approximating elbow joint axis 
LFRA Left forearm 

marker 
Placed on the lower arm between the wrist and elbow markers. Should 
be placed asymmetrically with RFRA 

LWRA Left wrist 
marker A 

Left wrist bar thumb side 

LWRB Left wrist 
marker B 

Left wrist bar pinkie side 
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The wrist markers are placed at the ends of a bar attached symmetrically with a wristband on the 
posterior of the wrist, as close to the wrist joint center as possible. 
 
LFIN Left fingers Actually placed on the dorsum of the hand just below the head of the 

second metacarpal 
 

Lower Body 

Pelvis 
LASI Left ASIS Placed directly over the left anterior superior iliac spine 
RASI Right ASIS Placed directly over the right anterior superior iliac spine 
 
The above markers may need to be placed medially to the ASIS to get the marker to the correct 
position due to the curvature of the abdomen.  In some patients, especially those who are obese, 
the markers either can't be placed exactly anterior to the ASIS, or are invisible in this position to 
cameras. In these cases, move each marker laterally by an equal amount, along the ASIS-ASIS 
axis. The true inter-ASIS Distance must then be recorded and entered on the subject parameters 
form. These markers, together with the sacral marker or LPSI and RPSI markers, define the 
pelvic axes. 
 
LPSI Left PSIS Placed directly over the left posterior superior iliac spine 
RPSI Right PSIS Placed directly over the right posterior superior iliac spine 
 
LPSI and RPSI markers are placed on the slight bony prominences that can be felt immediately 
below the dimples (sacro-iliac joints), at the point where the spine joins the pelvis. 
 
SACR Sacral wand 

marker 
Placed on the skin mid-way between the posterior superior iliac spines 
(PSIS). An alternative to LPSI and RPSI. 

 
SACR may be used as an alternative to the LPSI and RPSI markers to overcome the problem 
of losing visibility of the sacral marker (if this occurs), the standard marker kit contains a base 
plate and selection of short "sticks" or "wands" to allow the marker to be extended away from the 
body, if necessary.  In this case it must be positioned to lie in the plane formed by the ASIS and 
PSIS points. 

Leg Markers 
LKNE Left knee Placed on the lateral epicondyle of the left knee 
 
To locate the "precise" point for the knee marker placement, passively flex and extend the knee a 
little while watching the skin surface on the lateral aspect of the knee joint. Identify where knee 
joint axis passes through the lateral side of the knee by finding the lateral skin surface that comes 
closest to remaining fixed in the thigh. This landmark should also be the point about which the 
lower leg appears to rotate. Mark this point with a pen. With an adult patient standing, this pen 
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mark should be about 1.5 cm above the joint line, mid-way between the front and back of the 
joint.  Attach the marker at this point. 
 
LTHI Left thigh Place the marker over the lower lateral 1/3 surface of the thigh, just 

below the swing of the hand, although the height is not critical. 
 
The thigh markers are used to calculate the knee flexion axis location and orientation. Place the 
marker over the lower lateral 1/3 surface of the thigh, just below the swing of the hand, although 
the height is not critical. The antero-posterior placement of the marker is critical for correct 
alignment of the knee flexion axis. Try to keep the thigh marker off the belly of the muscle, but 
place the thigh marker at least two marker diameters proximal of the knee marker. Adjust the 
position of the marker so that it is aligned in the plane that contains the hip and knee joint centers 
and the knee flexion/extension axis. There is also another method that uses a mirror to align this 
marker, allowing the operator to better judge the positioning.  
 
LANK Left ankle Placed on the lateral malleolus along an imaginary line that passes 

through the transmalleolar axis 
LTIB Left tibial 

wand 
marker 

Similar to the thigh markers, these are placed over the lower 1/3 of the 
shank to determine the alignment of the ankle flexion axis 

 
The tibial marker should lie in the plane that contains the knee and ankle joint centers and the 
ankle flexion/extension axis. In a normal subject the ankle joint axis, between the medial and 
lateral malleoli, is externally rotated by between 5 and 15 degrees with respect to the knee 
flexion axis. The placements of the shank markers should reflect this. 

Foot Markers 
LTOE Left toe Placed over the second metatarsal head, on the mid-foot side of the 

equinus break between fore-foot and mid-foot 
LHEE Left heel Placed on the calcaneous at the same height above the plantar surface 

of the foot as the toe marker 
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APPENDIX C

PLUG-IN-GAIT MARKER IDENTIFIERS AND LOCATION
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Table C.1: Marker Identifiers and Marker Placement for Plug-in-Gait model used for track-
ing with Vicon 3D Motion Capture System

Marker Number Marker Identifier Placement

1 LFHD Left Front Head
2 RFHD Right Front Head
3 LBHD Left Back Head
4 RBHD Right Back Head
5 C7 7th Cervical Vertebrae
6 T10 10th Thoracic Vertebrae
7 CLAV Clavicle
8 STRN Sternum
9 RBAK Right Back
10 LSHO Left Shoulder
11 LUPA Left Upper Arm
12 LELB Left Elbow
13 LFRA Left Forearm
14 LWRA Left Wrist Marker A
15 LWRB Left Wrist Marker B
16 LFIN Left Fingers
17 RSHO Right Shoulder
18 RUPA Right Upper Arm
19 RELB Right Elbow
20 RFRA Right Forearm
21 RWRA Right Wrist Marker A
22 RWRB Right Wrist Marker B
23 RFIN Right Fingers
24 LASI Left Anterior Superior Iliac Spine
25 RASI Right Anterior Superior Iliac Spine
26 LPSI Left Posterior Iliac Spine
27 RPSI Right Posterior Iliac Spine
28 LKNE Left Knee
29 LTHI Left Thigh
30 LANK Left Ankle
31 LTIB Left Tibial Marker
32 LTOE Left Toe
33 LHEE Left Heel
34 RKNE Right Knee
35 RTHI Right Thigh
36 RANK Right Ankle
37 RTIB Right Tibial Marker
38 RTOE Right Toe
39 RHEE Right Heel
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APPENDIX D

DUAL-KINECT SETUP TEST TRAJECTORIES
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(c) Setup 3 (γ=30◦)

5 10 15 20 25 30 35 40

Time(s)

-500

0

500

1000

1500

P
o
s
it
io

n
 (

m
m

)

X

Y

Z

(d) Setup 4 (γ=45◦)

Figure D.1: Fused Left Wrist Trajectory for Dual-Kinect Setup 1-4
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(f) Setup 6 (γ=75◦)

Figure D.1: Fused Left Wrist Trajectory for Dual-Kinect Setup 5-6
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(a) Setup 7 (δ=30◦)
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(b) Setup 8 (δ=60◦)
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(c) Setup 9 (δ=90◦)

Figure D.2: Fused Left Wrist Trajectory for Dual-Kinect Setup 7-9
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APPENDIX E

TRACKING ACCURACY OF MOTION CAPTURE EXPERIMENTS WITH

DUAL-KINECT

97



Ta
bl

e
E

.1
:A

cc
ur

ac
y

of
th

e
D

iff
er

en
tF

ilt
er

O
ut

pu
ts

fo
rS

et
up

4

M
ea

n
A

bs
ol

ut
e

E
rr

or
(m

m
)

L
K

F1
L

K
F2

E
K

F
Jo

in
t

X
Y

Z
X

Y
Z

X
Y

Z

Sp
in

eM
id

21
.7

04
4

59
.9

31
4

23
.4

77
2

21
.2

94
4

59
.9

41
7

23
.5

56
21

.3
34

8
60

.7
89

5
31

.3
57

7
Sp

in
eS

ho
ul

de
r

24
.3

90
5

23
.0

31
4

17
.3

14
23

.9
63

9
23

.1
03

9
17

.5
66

8
28

.0
91

8
32

.7
70

1
28

.3
60

3
Sh

ou
ld

er
L

ef
t

46
.7

21
7

30
.6

34
8

27
.9

16
46

.5
16

1
30

.3
62

6
28

.2
06

8
61

.6
30

1
27

.5
94

7
30

.5
57

9
E

lb
ow

L
ef

t
38

.8
94

9
41

.3
34

6
24

.6
37

5
38

.6
78

8
39

.2
19

6
24

.6
78

6
34

.3
34

42
.8

24
1

20
.5

73
4

W
ri

st
L

ef
t

27
.7

63
20

.1
57

4
27

.8
80

4
28

.1
15

7
19

.1
07

5
29

.0
17

7
28

.5
10

7
22

.6
61

3
27

.4
90

9
H

an
dT

ip
L

ef
t

50
.8

30
7

46
.2

03
9

50
.1

84
9

53
.5

38
3

46
.1

91
3

52
.4

59
2

57
.2

51
8

57
.1

38
4

53
.4

15
1

Sh
ou

ld
er

R
ig

ht
24

.7
81

1
31

.5
79

9
38

.2
53

9
24

.4
55

7
31

.4
34

4
38

.4
15

27
.0

51
4

28
.7

53
4

40
.4

57
E

lb
ow

R
ig

ht
42

.5
64

5
45

.1
52

3
28

.2
15

6
40

.7
34

6
44

.1
18

7
28

.3
20

9
33

.9
06

6
47

.0
17

6
25

.0
73

5
W

ri
st

R
ig

ht
35

.9
73

9
31

.5
86

5
21

.8
42

2
33

.2
69

8
31

.6
33

9
21

.8
75

8
31

.1
03

3
34

.9
59

6
17

.7
35

3
H

an
dT

ip
R

ig
ht

50
.7

94
5

41
.0

93
6

44
.5

69
6

55
.1

71
6

44
.1

95
5

46
.0

64
6

52
.0

58
47

.6
60

6
48

.8
29

9

98



REFERENCES

[1] Jintu Fan, Winnie Yu, and Lawrance Hunter. Clothing appearance and fit: Science
and technology. Elsevier, 2004.

[2] Phoebe R Apeagyei. “Application of 3D body scanning technology to human mea-
surement for clothing Fit”. In: this issue (2010).

[3] Kwang-Jin Choi and Hyeong-Seok Ko. “Research problems in clothing simulation”.
In: Computer-aided design 37.6 (2005), pp. 585–592.

[4] Shweta Satish Devare Phadke, Rajak Revati, and Rauf Iqbal. “Work Related Mus-
culoskeletal Symptoms among Traffic Police: Cross Sectional Survey Using Nordic
Musculoskeletal Questionnaire”. In: ().

[5] C Ha et al. “The French Musculoskeletal Disorders Surveillance Program: Pays
de la Loire network”. In: Occupational and Environmental Medicine 66.7 (2009),
pp. 471–479. eprint: http://oem.bmj.com/content/66/7/471.full.
pdf.

[6] Jessica G Ramsey, CPE Kristin Musolin, and Charles Mueller. “Evaluation of carpal
tunnel syndrome and other musculoskeletal disorders among employees at a poultry
processing plant”. In: National Institute for Occupational Safety and Health, Health
Hazard Evaluation, Report 2014-0040 (2015), p. 3232.

[7] Edward YL Gu. A journey from robot to digital human: mathematical principles
and applications with MATLAB programming. Vol. 1. Springer Science & Business
Media, 2013.

[8] Amir Mobini, Saeed Behzadipour, and Mahmoud Saadat Foumani. “Accuracy of
Kinect’s skeleton tracking for upper body rehabilitation applications”. In: Disability
and Rehabilitation: Assistive Technology 9.4 (2014), pp. 344–352. eprint: http:
//dx.doi.org/10.3109/17483107.2013.805825.

[9] Anne Schmitz et al. “Accuracy and repeatability of joint angles measured using a
single camera markerless motion capture system”. In: Journal of Biomechanics 47.2
(2014), pp. 587 –591.

[10] Brook Galna et al. “Accuracy of the Microsoft Kinect sensor for measuring move-
ment in people with Parkinson’s disease”. In: Gait & Posture 39.4 (2014), pp. 1062
–1068.

99

http://oem.bmj.com/content/66/7/471.full.pdf
http://oem.bmj.com/content/66/7/471.full.pdf
http://dx.doi.org/10.3109/17483107.2013.805825
http://dx.doi.org/10.3109/17483107.2013.805825


[11] A. Fernández-Baena, A. Susín, and X. Lligadas. “Biomechanical Validation of Upper-
Body and Lower-Body Joint Movements of Kinect Motion Capture Data for Reha-
bilitation Treatments”. In: 2012 Fourth International Conference on Intelligent Net-
working and Collaborative Systems. 2012, pp. 656–661.

[12] Ross A. Clark et al. “Validity of the Microsoft Kinect for assessment of postural
control”. In: Gait & Posture 36.3 (2012), pp. 372 –377.

[13] C. C. Martin et al. “A real-time ergonomic monitoring system using the Microsoft
Kinect”. In: 2012 IEEE Systems and Information Engineering Design Symposium.
2012, pp. 50–55.

[14] F. Destelle et al. “Low-cost accurate skeleton tracking based on fusion of kinect and
wearable inertial sensors”. In: 2014 22nd European Signal Processing Conference
(EUSIPCO). 2014, pp. 371–375.

[15] Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. “Comprehensive Biome-
chanical Modeling and Simulation of the Upper Body”. In: ACM Trans. Graph. 28.4
(2009), 99:1–99:17.

[16] Walter Maurel. “3D modeling of the human upper limb including the biomechanics
of joints, muscles and soft tissues”. PhD thesis. Ecole Polytechnique Federale De
Lausanne, 1999.

[17] Derek James Lura. “The Creation of a Robotics Based Human Upper Body Model
for Predictive Simulation of Prostheses Performance”. PhD thesis. University of
South Florida, 2012.

[18] Alexandra Pfister et al. “Comparative abilities of Microsoft Kinect and Vicon 3D
motion capture for gait analysis”. In: Journal of Medical Engineering & Technol-
ogy 38.5 (2014), pp. 274–280. eprint: http://dx.doi.org/10.3109/
03091902.2014.909540.

[19] Ville Stohne. “Real-time filtering for human pose estimation using multiple Kinects”.
MA thesis. KTH, School of Computer Science and Communication (CSC), 2014.

[20] Diana Margarita Córdova-Esparza et al. “Multiple Kinect V2 Calibration”. In: Automatika–
Journal for Control, Measurement, Electronics, Computing and Communications
60.1 (2017).

[21] J. K. Aggarwal and Sangho Park. “Human motion: modeling and recognition of
actions and interactions”. In: Proceedings. 2nd International Symposium on 3D Data
Processing, Visualization and Transmission, 2004. 3DPVT 2004. 2004, pp. 640–647.

100

http://dx.doi.org/10.3109/03091902.2014.909540
http://dx.doi.org/10.3109/03091902.2014.909540


[22] A. Maciel, L. P. Nedel, and C. M. Dal Sasso Freitas. “Anatomy-based joint models
for virtual human skeletons”. In: Proceedings of Computer Animation 2002 (CA
2002). 2002, pp. 220–224.

[23] Signe Brunnstrom. Clinical kinesiology. FA Davis Company, 1972.

[24] Margareta Nordin and Victor Hirsch Frankel. Basic biomechanics of the muscu-
loskeletal system. Lippincott Williams & Wilkins, 2001.

[25] Richard Drake, A Wayne Vogl, and Adam WM Mitchell. Gray’s Anatomy for Stu-
dents E-Book. Elsevier Health Sciences, 2009.

[26] Frank C Anderson and Marcus G Pandy. “Dynamic optimization of human walk-
ing”. In: Journal of biomechanical engineering 123.5 (2001), pp. 381–390.

[27] Yujiang Xiang, Jasbir S Arora, and Karim Abdel-Malek. “Physics-based modeling
and simulation of human walking: a review of optimization-based and other ap-
proaches”. In: Structural and Multidisciplinary Optimization 42.1 (2010), pp. 1–23.

[28] Marcus G Pandy. “Computer modeling and simulation of human movement”. In:
Annual review of biomedical engineering 3.1 (2001), pp. 245–273.

[29] S. Kajita and K. Tani. “Study of dynamic biped locomotion on rugged terrain-
derivation and application of the linear inverted pendulum mode”. In: Proceedings.
1991 IEEE International Conference on Robotics and Automation. 1991, 1405–1411
vol.2.

[30] Yuting Wang. “Closed-form inverse kinematic solution for anthropomorphic motion
in redundant robot arms”. PhD thesis. Arizona State University, 2013.

[31] J. Denavit and R. S. Hartenberg. “A kinematic notation for lower-pair mechanisms
based on matrices”. In: Trans. ASME E, Journal of Applied Mechanics 22 (1955),
pp. 215–221.

[32] Rudolph Emil Kalman et al. “A new approach to linear filtering and prediction prob-
lems”. In: Journal of basic Engineering 82.1 (1960), pp. 35–45.

[33] Andrew Leonard. “Vehicle Tracking Using Ultra-Wideband Radar”. PhD thesis.
Georgia Institute of Technology, 2016.

[34] John A Harber. “A dual hoist robot crane for large area sensing”. PhD thesis. Georgia
Institute of Technology, 2016.

[35] Juan R. Terven and Diana M. Córdova-Esparza. “Kin2. A Kinect 2 toolbox for MAT-
LAB”. In: Science of Computer Programming 130 (2016), pp. 97 –106.

101



[36] Herman J Woltring. “A Fortran package for generalized, cross-validatory spline
smoothing and differentiation”. In: Advances in Engineering Software (1978) 8.2
(1986), pp. 104–113.

[37] Paul J. Besl and Neil D. McKay. Method for registration of 3-D shapes. 1992.

102


	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Introduction and Background
	Motivation and Objectives
	Evaluating Clothing Fit
	Motion Analysis and Injury Prevention
	Low-Cost Human Tracking

	Background
	Thesis Contributions
	Outline of Thesis

	Previous Human Body Modeling
	Level of Detail of Human Body Models
	Joint Type Classification

	Lower Body Models
	Walking

	Upper Body Models
	Torso Models
	Human Arm Models
	Upper Body Motions


	Kinematic Human Upper Body Model
	Key Joints and Degrees of Freedom
	Denavit-Hartenberg Parameters
	Torso Model
	Arm Model
	Forward Kinematics
	Inverse Kinematics
	State Estimation Methods for Joint Tracking
	State Space Models
	Linear Kalman Filter
	Extended Kalman Filter


	Motion Capture using a Single Kinect Sensor
	Kinect Baseline Performance Evaluation
	Tracking of a Robot Arm
	Frequency Tests

	Comparison of Kinect and Vicon Motion Capture Systems
	Joints Tracked by Kinect
	Vicon Marker Placement

	Comparison of Kinect and Vicon Motion Capture for Upper Body Joint Angle Tracking
	Instrumentation and Setup
	Data Processing
	Planar Motions
	Non-planar Motion
	Weighted Tests
	Rotation Tests
	Low Light Conditions
	Summary


	Dual-Kinect Motion Capture
	Dual-Kinect Motion Capture Process
	Implementation Details
	Hardware and Implementation Restrictions
	Dual-Kinect Configuration

	Sensor Calibration and Sensor Fusion
	Calibration
	Sensor Fusion

	Linear Kalman Filter for Kinect Joint Tracking
	Linear Kalman Filter Implementation

	Extended Kalman Filter for Kinect Joint Tracking
	Extended Kalman Filter Implementation
	Handling Missing Data

	Experimental Setup
	Tracked Motions
	Marker-based Tracking
	Marker Trajectory Data Processing

	Results and Comparison with Vicon Motion Capture
	Linear Kalman Filter
	Extended Kalman Filter

	Tracking with Garments of Different Fit
	Graphical User Interface for Real-Time Joint Tracking with Dual-Kinect

	Conclusion
	Discussion
	Future Work

	Robot Tracking Trajectories
	Plug-In-Gait Marker Placement
	Plug-In-Gait Marker Identifiers and Location
	Dual-Kinect Setup Test Trajectories
	Tracking Accuracy of Motion Capture Experiments with Dual-Kinect
	References

